Science.gov

Sample records for chimeric zebrafish embryos

  1. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  2. Generation and developmental characteristics of porcine tetraploid embryos and tetraploid/diploid chimeric embryos.

    PubMed

    He, Wenteng; Kong, Qingran; Shi, Yongqian; Xie, Bingteng; Jiao, Mingxia; Huang, Tianqing; Guo, Shimeng; Hu, Kui; Liu, Zhonghua

    2013-10-01

    The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid (4n) embryos and produce tetraploid/diploid (4n/2n) chimeric embryos. Different electric field intensities were tested and 2 direct current (DC) pulses of 0.9 kV/cm for 30 μs was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos. The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos, reached 85.4% and 28.5%, respectively. 68.18% of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization (FISH). Although the number of blastomeres in 4n blastocysts was significantly lower than in 2n blastocysts (P<0.05), there was no significant difference in developmental rates of blastocysts between 2n and 4n embryos (P>0.05), suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos. Moreover, 4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos. We found that the developmental rate and cell number of blastocysts of 4-cell (4n)/4-cell (2n) chimeric embryos were significantly higher than those of 2-cell (4n)/4-cell (2n), 4-cell (4n)/8-cell (2n), 4-cell (4n)/2-cell (2n) chimeric embryos (P<0.05). Consistent with mouse chimeras, the majority of 4n cells contribute to the trophectoderm (TE), while the 2n cells are mainly present in the inner cell mass (ICM) of porcine 4n/2n chimeric embryos. Our study established a feasible and efficient approach to produce porcine 4n embryos and 4n/2n chimeric embryos.

  3. Toxicity of chlorine to zebrafish embryos.

    PubMed

    Kent, Michael L; Buchner, Cari; Barton, Carrie; Tanguay, Robert L

    2014-01-16

    Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish Danio rerio research laboratories. Most laboratories use approximately 25 to 50 ppm unbuffered chlorine solution for 5 to 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, but is less effective against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbuffered and buffered chlorine solutions to embryos exposed at 6 or 24 h post-fertilization (hpf) to determine whether higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pH, and chlorine causes elevated pH. Consistent with this, we found that unbuffered chlorine solutions (pH ca. 8-9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf embryos for 5 min with unbuffered chlorine solution at 100 ppm.

  4. Direct visualization of replication dynamics in early zebrafish embryos.

    PubMed

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  5. Vitrification of zebrafish embryo blastomeres in microvolumes.

    PubMed

    Cardona-Costa, J; García-Ximénez, F

    2007-01-01

    Cryopreservation of fish embryos may play an important role in biodiversity preservation and in aquaculture, but it is very difficult. In addition, the cryopreservation of fish embryo blastomeres makes conservation strategies feasible when they are used in germ-line chimaerism, including interspecific chimaerism. Fish embryo blastomere cryopreservation has been achieved by equilibrium procedures, but to our knowledge, no data on vitrification procedures are available. In the present work, zebrafish embryo blastomeres were successfully vitrified in microvolumes: a number of 0.25 microl drops, sufficient to contain all the blastomeres of an embryo at blastula stage (from 1000-cell stage to oblong stage), were placed over a 2.5 cm loop of nylon filament. In this procedure, where intracellular cryoprotectant permeation is not required, blastomeres were exposed to cryoprotectants for a maximum of 25 sec prior vitrification. The assayed cryoprotectants (ethylene glycol, propylene glycol, dimethyl sulphoxide, glycerol and methanol) are all frequently used in fish embryo and blastomere cryopreservation. Methanol was finally rejected because of the excessive concentration required for the vitrification (15M). All other cryoprotectants were prepared (individually) at 5 M in Hanks' buffered salt solution (sigma) plus 20% FBS (vitrification solutions: vs). After direct thawing in Hanks' buffered salt solution plus 20% FBS, acceptable survival rates were obtained with ethylene glycol: 82.8%, propylene glycol: 87.7%, dimethyl sulphoxide: 93.4%, and glycerol: 73.9% (p < 0.05). Dimethyl sulphoxide showed the highest blastomere survival rate and allowed the rescue of as much as 20% of the total blastomeres from each zebrafish blastula embryo.

  6. Developmental toxicity of cartap on zebrafish embryos.

    PubMed

    Zhou, Shengli; Dong, Qiaoxiang; Li, Shaonan; Guo, Jiangfeng; Wang, Xingxing; Zhu, Guonian

    2009-12-13

    Cartap is a widely used insecticide which belongs to a member of nereistoxin derivatives and acts on nicotinic acetylcholine receptor site. Its effects on aquatic species are of grave concern. To explore the potential developmental toxicity of cartap, zebrafish embryos were continually exposed, from 0.5 to 144h post-fertilization, to a range of concentrations of 25-1000microg/l. Results of the experiment indicated that cartap concentrations of 100microg/l and above negatively affected embryo survival and hatching success. Morphological analysis uncovered a large suite of abnormalities such as less melanin pigmentation, wavy notochord, crooked trunk, fuzzy somites, neurogenesis defects and vasculature defects. The most sensitive organ was proved to be the notochord which displayed defects at concentrations as low as 25microg/l. Both sensitivity towards exposure and localization of the defect were stage specific. To elucidate mechanisms concerning notochord, pigmentation, and hatching defects, enzyme assay, RT Q-PCR, and different exposure strategies were performed. For embryos with hatching failure, chorion was verified not to be digested, while removing cartap from exposure at early pre-hatching stage could significantly increase the hatching success. However, cartap was proved, via vitro assay, to have no effect on proteolytic activity of hatching enzyme. These findings implied that the secretion of hatching enzyme might be blocked. We also revealed that cartap inhibited the activity of melanogenic enzyme tyrosinase and matrix enzyme lysyl oxidase and induced expression of their genes. These suggested that cartap could impaired melanin pigmentation of zebrafish embryos through inhibiting tyrosinase activity, while inhibition of lysyl oxidase activity was responsible for notochord undulation, which subsequently caused somite defect, and at least partially responsible for defects in vasculature and neurogenesis.

  7. Patterning of angiogenesis in the zebrafish embryo.

    PubMed

    Childs, Sarah; Chen, Jau-Nian; Garrity, Deborah M; Fishman, Mark C

    2002-02-01

    Little is known about how vascular patterns are generated in the embryo. The vasculature of the zebrafish trunk has an extremely regular pattern. One intersegmental vessel (ISV) sprouts from the aorta, runs between each pair of somites, and connects to the dorsal longitudinal anastomotic vessel (DLAV). We now define the cellular origins, migratory paths and cell fates that generate these metameric vessels of the trunk. Additionally, by a genetic screen we define one gene, out of bounds (obd), that constrains this angiogenic growth to a specific path. We have performed lineage analysis, using laser activation of a caged dye and mosaic construction to determine the origin of cells that constitute the ISV. Individual angioblasts destined for the ISVs arise from the lateral posterior mesoderm (LPM), and migrate to the dorsal aorta, from where they migrate between somites to their final position in the ISVs and dorsal longitudinal anastomotic vessel (DLAV). Cells of each ISV leave the aorta only between the ventral regions of two adjacent somites, and migrate dorsally to assume one of three ISV cell fates. Most dorsal is a T-shaped cell, based in the DLAV and branching ventrally; the second constitutes a connecting cell; and the third an inverted T-shaped cell, based in the aorta and branching dorsally. The ISV remains between somites during its ventral course, but changes to run mid-somite dorsally. This suggests that the pattern of ISV growth ventrally and dorsally is guided by different cues. We have also performed an ENU mutagenesis screen of 750 mutagenized genomes and identified one mutation, obd that disrupts this pattern. In obd mutant embryos, ISVs sprout precociously at abnormal sites and migrate anomalously in the vicinity of ventral somite. The dorsal extent of the ISV is less perturbed. Precocious sprouting can be inhibited in a VEGF morphant, but the anomalous site of origin of obd ISVs remains. In mosaic embryos, obd somite causes adjacent wild

  8. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  9. Tetraploid cells of enhanced green fluorescent protein transgenic mice in tetraploid/diploid-chimeric embryos.

    PubMed

    Ishiguro, Naomi; Kano, Kiyoshi; Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2005-10-01

    We succeeded in noninvasively analyzing the distribution of tetraploid (4n) cells in tetraploid<-->diploid (4n<-->2n) chimeric embryos by using enhanced green fluorescent protein (EGFP) transgenic (Tg) mouse embryos. We also evaluated whether this technique of analyzing 4n-cells in EGFP Tg 4n<-->2n chimeric embryos could be used to determine which characteristics of 4n-cells cause the death of 4n-embryos and restricted distribution of 4n-cells in 4n<-->2n-chimeric embryos after implantation. In our experiments, the distribution of 4n-cells in 4n<-->2n-embryos was normal until an embryonic age of 3.5 days (E3.5). With respect to morphological development, there were no differences between 4n-, diploid (2n), 4n<-->2n-, and diploid/diploid (2n<-->2n) chimeric embryos, but the number of cells in the tetraploid (4n) blastocyst was smaller than expected. This decrease in the number of cells may have caused cell death or reduced the rate of cell division in 4n-cells, and may have restricted the distribution of 4n-cells in 4n<-->2n-chimeric embryos. This study demonstrated the utility of EGFP transgenic mouse embryos for relatively easy and noninvasive study of the sequential distribution of cells in chimeric embryos.

  10. A fully automated robotic system for microinjection of zebrafish embryos.

    PubMed

    Wang, Wenhui; Liu, Xinyu; Gelinas, Danielle; Ciruna, Brian; Sun, Yu

    2007-09-12

    As an important embodiment of biomanipulation, injection of foreign materials (e.g., DNA, RNAi, sperm, protein, and drug compounds) into individual cells has significant implications in genetics, transgenics, assisted reproduction, and drug discovery. This paper presents a microrobotic system for fully automated zebrafish embryo injection, which overcomes the problems inherent in manual operation, such as human fatigue and large variations in success rates due to poor reproducibility. Based on computer vision and motion control, the microrobotic system performs injection at a speed of 15 zebrafish embryos (chorion unremoved) per minute, with a survival rate of 98% (n = 350 embryos), a success rate of 99% (n = 350 embryos), and a phenotypic rate of 98.5% (n = 210 embryos). The sample immobilization technique and microrobotic control method are applicable to other biological injection applications such as the injection of mouse oocytes/embryos and Drosophila embryos to enable high-throughput biological and pharmaceutical research.

  11. Phenotype classification of zebrafish embryos by supervised learning.

    PubMed

    Jeanray, Nathalie; Marée, Raphaël; Pruvot, Benoist; Stern, Olivier; Geurts, Pierre; Wehenkel, Louis; Muller, Marc

    2015-01-01

    Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  12. Cell adhesion in zebrafish embryos is modulated by March 8.

    PubMed

    Kim, Mi Ha; Rebbert, Martha L; Ro, Hyunju; Won, Minho; Dawid, Igor B

    2014-01-01

    March 8 is a member of a family of transmembrane E3 ubiquitin ligases that have been studied mostly for their role in the immune system. We find that March 8 is expressed in the zebrafish egg and early embryo, suggesting a role in development. Both knock-down and overexpression of March 8 leads to abnormal development. The phenotype of zebrafish embryos and Xenopus animal explants overexpressing March 8 implicates impairment of cell adhesion as a cause of the effect. In zebrafish embryos and in cultured cells, overexpression of March 8 leads to a reduction in the surface levels of E-cadherin, a major cell-cell adhesion molecule. Experiments in cell culture further show that E-cadherin can be ubiquitinated by March 8. On the basis of these observations we suggest that March 8 functions in the embryo to modulate the strength of cell adhesion by regulating the localization of E-cadherin.

  13. Neutron induced bystander effect among zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Kobayashi, A.; Suya, N.; Uchihori, Y.; Cheng, S. H.; Konishi, T.; Yu, K. N.

    2015-12-01

    The present paper reported the first-ever observation of neutron induced bystander effect (NIBE) using zebrafish (Danio rerio) embryos as the in vivo model. The neutron exposure in the present work was provided by the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. Two different strategies were employed to induce NIBE, namely, through directly partnering and through medium transfer. Both results agreed with a neutron-dose window (20-50 mGy) which could induce NIBE. The lower dose limit corresponded to the threshold amount of neutron-induced damages to trigger significant bystander signals, while the upper limit corresponded to the onset of gamma-ray hormesis which could mitigate the neutron-induced damages and thereby suppress the bystander signals. Failures to observe NIBE in previous studies were due to using neutron doses outside the dose-window. Strategies to enhance the chance of observing NIBE included (1) use of a mono-energetic high-energy (e.g., between 100 keV and 2 MeV) neutron source, and (2) use of a neutron source with a small gamma-ray contamination. It appeared that the NASBEE facility used in the present study fulfilled both conditions, and was thus ideal for triggering NIBE.

  14. Zebrafish (Danio rerio) embryos as a model for testing proteratogens.

    PubMed

    Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H

    2011-03-15

    Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ≥ 3 dpf. The LC₅₀ and EC₅₀ values were used to calculate the teratogenicity index (TI) for the different substances, and the EC₂₀ values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species.

  15. Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos.

    PubMed

    Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald

    2012-01-01

    Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale.

  16. Miniaturized Embryo Array for Automated Trapping, Immobilization and Microperfusion of Zebrafish Embryos

    PubMed Central

    Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J.; Crosier, Kathryn E.; Cooper, Jonathan M.; Crosier, Philip S.; Wlodkowic, Donald

    2012-01-01

    Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale. PMID:22606275

  17. Myomaker mediates fusion of fast myocytes in zebrafish embryos.

    PubMed

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  18. Automated image-based phenotypic analysis in zebrafish embryos

    PubMed Central

    Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.

    2009-01-01

    Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725

  19. Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing Throughput of Zebrafish Developmental Toxicity Screens

    PubMed Central

    Mandrell, David; Truong, Lisa; Jephson, Caleb; Sarker, Mushfiqur R.; Moore, Aaron; Lang, Christopher; Simonich, Michael T.; Tanguay, Robert L.

    2012-01-01

    The potential of the developing zebrafish model for toxicology and drug discovery is limited by inefficient approaches to manipulating and chemically exposing zebrafish embryos—namely, manual placement of embryos into 96- or 384-well plates and exposure of embryos while still in the chorion, a barrier of poorly characterized permeability enclosing the developing embryo. We report the automated dechorionation of 1600 embryos at once at 4 h postfertilization (hpf) and placement of the dechorionated embryos into 96-well plates for exposure by 6 hpf. The process removed ≥95% of the embryos from their chorions with 2% embryo mortality by 24 hpf, and 2% of the embryos malformed at 120 hpf. The robotic embryo placement allocated 6-hpf embryos to 94.7% ± 4.2% of the wells in multiple 96-well trials. The rate of embryo mortality was 2.8% (43 of 1536) from robotic handling, the rate of missed wells was 1.2% (18 of 1536), and the frequency of multipicks was <0.1%. Embryo malformations observed at 24 hpf occurred nearly twice as frequently from robotic handling (16 of 864; 1.9%) as from manual pipetting (9 of 864; 1%). There was no statistical difference between the success of performing the embryo placement robotically or manually. PMID:22357610

  20. Structured illumination fluorescence correlation spectroscopy for velocimetry in Zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Rossetti, Leone; Sironi, Laura; Freddi, Stefano; D'Alfonso, Laura; Caccia, Michele; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe

    2013-02-01

    The vascular system of Zebrafish embryos is studied by means of Fluorescence Correlation and Image Correlation Spectroscopy. The long term project addresses biologically relevant issues concerning vasculogenesis and cardiogenesis and in particular mechanical interaction between blood flow and endothelial cells. To this purpose we use Zebrafish as a model system since the transparency of its embryos facilitates morphological observation of internal organs in-vivo. The correlation analysis provides quantitative characterization of fluxes in blood vessels in vivo. We have pursued and compared two complementary routes. In a first one we developed a two-spots two-photon setup in which the spots are spaced at adjustable micron-size distances (1-40 μm) along a vessel and the endogenous (autofluorescence) or exogenous (dsRed transgenic erythrocytes) signal is captured with an EM-CCD and cross-correlated. In this way we are able to follow the morphology of the Zebrafish embryo, simultaneously measure the heart pulsation, the velocity of red cells and of small plasma proteins. These data are compared to those obtained by image correlations on Zebrafish vessels. The two methods allows to characterize the motion of plasma fluids and erythrocytes in healthy Zebrafish embryos to be compared in the future to pathogenic ones.

  1. Evaluation of MWNT toxic effects on daphnia and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Olasagasti, Maider; Alvarez, Noelia; Vera, Carolina; Rainieri, Sandra

    2009-05-01

    Organisms of daphnia (Daphnia magna) and zebrafish (Danio rerio) embryos were exposed to a range of different concentrations of COOH-functionalized MWCNT suspended in an aqueous solution of Tween 20. Immobilization of daphnia and growth retardation, inhibition and malformation of zebrafish embryos were the endpoints tested after 24 and 48 hours. Immobilization of daphnia could be observed from 3 to 16 ppm and an increasing mortality of zebrafish embryo was detected at all the concentration tested. To identify more subtle toxic effects, we took advantage of the extensive information available on the zebrafish genome and monitored by RT-PCR the expression patterns of different zebrafish genes that could act as toxicity bio-markers. At some of the concentrations tested, changes in the expression profiles of the genes examined were detected. Our results suggest that MWCNT could potentially represent a risk to human health and environment, therefore a wider range of concentrations and further testing of this molecules should be carried out to define possible limitations in their use.

  2. Toxicity test of xanthone from mangosteen on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Noordin, Muhammad Akram Mohd; Noor, Mahanem Mat; Kamaruddin, Wan Mohd Aizat Wan; Lazim, Azwan Mat; Fazry, Shazrul

    2016-11-01

    Xanthone is a chemical compound identified in mangosteen pericarp. A previous study showed that xanthone has anti-proliferating effect on cancer cells. In this study we investigate the toxicity level of xanthone in zebrafish embryo to for future reference on other animal model. We employed Fish Embryo Toxicity (FET) assay to determine the toxicity level of different concentrations of xanthone. Embryos were observed at 24, 48 and 72 hours post fertilization (hpf) under microscope at 4× magnification. The extract showed toxicity effect on embryo at concentrations of 250, 125 and 62.5 µg/mL. Concentrations at 15.63, 7.81 and 3.91 µg / mL of xanthone did not harm the embryos and showed 100% of survival.

  3. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    SciTech Connect

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.

  4. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  5. Detecting Developmental Neurotoxicants Using Zebrafish Embryos

    EPA Science Inventory

    As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...

  6. Antioxidant Rescue of Selenomethionine-Induced Teratogenesis in Zebrafish Embryos.

    PubMed

    Arnold, M C; Forte, J E; Osterberg, J S; Di Giulio, R T

    2016-02-01

    Selenium (Se) is an essential micronutrient that can be found at toxic concentrations in surface waters contaminated by runoff from agriculture and coal mining. Zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and l-selenomethionine (SeMet) in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). l-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared with controls. SeMet exposure induced a dose-dependent increase in the catalytic subunit of glutamate-cysteine ligase (gclc) and reached an 11.7-fold increase at 100 µg/L. SeMet exposure also reduced concentrations of TGSH, RGSH, and the TGSH:GSSG ratio. Pretreatment with 100 µM N-acetylcysteine significantly reduced deformities in the zebrafish embryos secondarily treated with 400 µg/L SeMet from approximately 50–10 % as well as rescued all three of the significant glutathione level differences seen with SeMet alone. Selenite exposure induced a 6.6-fold increase in expression of the glutathione-S-transferase pi class 2 (gstp2) gene, which is involved in xenobiotic transformation and possibly oxidative stress. These results suggest that aqueous exposure to SeMet can induce significant embryonic teratogenesis in zebrafish that are at least partially attributed to oxidative stress.

  7. Antioxidant rescue of selenomethionine-induced teratogenesis in zebrafish embryos

    PubMed Central

    Arnold, M.C.; Forte, J.E.; Osterberg, J.S.; Di Giulio, R.T.

    2015-01-01

    Selenium (Se) is an essential micronutrient that can be found at toxic concentrations in surface waters contaminated by runoff from agriculture and coal mining. Zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and L-selenomethionine (SeMet) in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). L-selenomethionine, however, induced significantly higher deformity rates at 100 μg/L compared to controls. SeMet exposure induced a dose-dependent increase in the catalytic subunit of glutamate-cysteine ligase (gclc) and reached an 11.7-fold increase at 100 μg/L. SeMet exposure also reduced concentrations of TGSH, RGSH, and the TGSH:GSSG ratio. Pretreatment with 100 μM N-acetylcysteine (NAC) significantly reduced deformities in the zebrafish embryos secondarily treated with 400 μg/L SeMet from approximately 50% to 10% as well as rescued all three of the significant glutathione level differences seen with SeMet alone. Selenite exposure induced a 6.6-fold increase in expression of the glutathione-S-transferase pi class 2 (gstp2) gene, which is involved in xenobiotic transformation and possibly oxidative stress. These results suggest that aqueous exposure to SeMet can induce significant embryonic teratogenesis in zebrafish that are at least partially attributed to oxidative stress. PMID:26498942

  8. Hormetic effect induced by depleted uranium in zebrafish embryos.

    PubMed

    Ng, C Y P; Cheng, S H; Yu, K N

    2016-06-01

    The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.

  9. Isolation and Characterization of Single Cells from Zebrafish Embryos

    PubMed Central

    Samsa, Leigh Ann; Fleming, Nicole; Magness, Scott; Qian, Li; Liu, Jiandong

    2017-01-01

    The zebrafish (Danio rerio) is a powerful model organism to study vertebrate development. Though many aspects of zebrafish embryonic development have been described at the morphological level, little is known about the molecular basis of cellular changes that occur as the organism develops. With recent advancements in microfluidics and multiplexing technologies, it is now possible to characterize gene expression in single cells. This allows for investigation of heterogeneity between individual cells of specific cell populations to identify and classify cell subtypes, characterize intermediate states that occur during cell differentiation, and explore differential cellular responses to stimuli. This study describes a protocol to isolate viable, single cells from zebrafish embryos for high throughput multiplexing assays. This method may be rapidly applied to any zebrafish embryonic cell type with fluorescent markers. An extension of this method may also be used in combination with high throughput sequencing technologies to fully characterize the transcriptome of single cells. As proof of principle, the relative abundance of cardiac differentiation markers was assessed in isolated, single cells derived from nkx2.5 positive cardiac progenitors. By evaluation of gene expression at the single cell level and at a single time point, the data support a model in which cardiac progenitors coexist with differentiating progeny. The method and work flow described here is broadly applicable to the zebrafish research community, requiring only a labeled transgenic fish line and access to microfluidics technologies. PMID:27022828

  10. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos.

    PubMed

    Lemeer, Simone; Jopling, Chris; Gouw, Joost; Mohammed, Shabaz; Heck, Albert J R; Slijper, Monique; den Hertog, Jeroen

    2008-11-01

    The coordinated movement of cells is indispensable for normal vertebrate gastrulation. Several important players and signaling pathways have been identified in convergence and extension (CE) cell movements during gastrulation, including non-canonical Wnt signaling. Fyn and Yes, members of the Src family of kinases, are key regulators of CE movements as well. Here we investigated signaling pathways in early development by comparison of the phosphoproteome of wild type zebrafish embryos with Fyn/Yes knockdown embryos that display specific CE cell movement defects. For quantitation we used differential stable isotope labeling by reductive amination of peptides. Equal amounts of labeled peptides from wild type and Fyn/Yes knockdown embryos were mixed and analyzed by on-line reversed phase TiO(2)-reversed phase LC-MS/MS. Phosphorylated and non-phosphorylated peptides were quantified, and significant changes in protein expression and/or phosphorylation were detected. We identified 348 phosphoproteins of which 69 showed a decrease in phosphorylation in Fyn/Yes knockdown embryos and 72 showed an increase in phosphorylation. Among these phosphoproteins were known regulators of cell movements, including Adducin and PDLIM5. Our results indicate that quantitative phosphoproteomics combined with morpholino-mediated knockdowns can be used to identify novel signaling pathways that act in zebrafish development in vivo.

  11. Development of rat tetraploid and chimeric embryos aggregated with diploid cells.

    PubMed

    Shinozawa, T; Sugawara, A; Matsumoto, A; Han, Y-J; Tomioka, I; Inai, K; Sasada, H; Kobayashi, E; Matsumoto, H; Sato, E

    2006-11-01

    In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.

  12. Strategies for Analyzing Cardiac Phenotypes in the Zebrafish Embryo

    PubMed Central

    Houk, Andrew R.; Yelon, Deborah

    2017-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  13. Toxic Effects of Silica Nanoparticles on Zebrafish Embryos and Larvae

    PubMed Central

    Shi, Huiqin; Tian, Linwei; Guo, Caixia; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-01-01

    Silica nanoparticles (SiNPs) have been widely used in biomedical and biotechnological applications. Environmental exposure to nanomaterials is inevitable as they become part of our daily life. Therefore, it is necessary to investigate the possible toxic effects of SiNPs exposure. In this study, zebrafish embryos were treated with SiNPs (25, 50, 100, 200 µg/mL) during 4–96 hours post fertilization (hpf). Mortality, hatching rate, malformation and whole-embryo cellular death were detected. We also measured the larval behavior to analyze whether SiNPs had adverse effects on larvae locomotor activity. The results showed that as the exposure dosages increasing, the hatching rate of zebrafish embryos was decreased while the mortality and cell death were increased. Exposure to SiNPs caused embryonic malformations, including pericardial edema, yolk sac edema, tail and head malformation. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lower dose (25 and 50 µg/mL SiNPs) produced substantial hyperactivity while the higher doses (100 and 200 µg/mL SiNPs) elicited remarkably hypoactivity in dark periods. In summary, our data indicated that SiNPs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior. PMID:24058598

  14. Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model.

    PubMed

    Tulotta, C; He, S; van der Ent, W; Chen, L; Groenewoud, A; Spaink, H P; Snaar-Jagalska, B E

    2016-01-01

    Tumor angiogenesis and metastasis are key steps of cancer progression. In vitro and animal model studies have contributed to partially elucidating the mechanisms involved in these processes and in developing therapies. Besides the improvements in fundamental research and the optimization of therapeutic regimes, cancer still remains a major health threatening condition and therefore the development of new models is needed. The zebrafish is a powerful tool to study tumor angiogenesis and metastasis, because it allows the visualization of fluorescently labelled tumor cells inducing vessel remodeling, disseminating and invading surrounding tissues in a whole transparent embryo. The embryo model has also been used to address the contribution of the tumor stroma in sustaining tumor angiogenesis and spreading. Simultaneously, new anti-angiogenic drugs and compounds affecting malignant cell survival and migration can be tested by simply adding the compound into the water of living embryos. Therefore the zebrafish model offers the opportunity to gain more knowledge on cancer angiogenesis and metastasis in vivo with the final aim of providing new translational insights into therapeutic approaches to help patients.

  15. Toxic effects of colloidal nanosilver in zebrafish embryos.

    PubMed

    Olasagasti, Maider; Gatti, Antonietta M; Capitani, Federico; Barranco, Alejandro; Pardo, Miguel Angel; Escuredo, Kepa; Rainieri, Sandra

    2014-05-01

    A variety of consumer products containing silver nanoparticles (Ag NPs) are currently marketed. However, their safety for humans and for the environment has not yet been established and no standard method to assess their toxicity is currently available. The objective of this work was to develop an effective method to test Ag NP toxicity and to evaluate the effects of ion release and Ag NP size on a vertebrate model. To this aim, the zebrafish animal model was exposed to a solution of commercial nanosilver. While the exposure of embryos still surrounded by the chorion did not allow a definite estimation of the toxic effects exerted by the compound, the exposure for 48 h of 3-day-old zebrafish hatched embryos afforded a reliable evaluation of the effects of Ag NPs. The effects of the exposure were detected especially at molecular level; in fact, some selected genes expressed differentially after the exposure. The Ag NP toxic performance was due to the combined effect of Ag(+) ion release and Ag NP size. However, the effect of NP size was particularly detectable at the lowest concentration of nanosilver tested (0.01 mg l(-1)) and depended on the solubilization media. The results obtained indicate that in vivo toxicity studies of nanosilver should be performed with ad hoc methods (in this case using hatched embryos) that might be different depending on the type of nanosilver. Moreover, the addition of this compound to commercial products should take into consideration the Ag NP solubilization media.

  16. Transcriptome analysis of zebrafish embryos exposed to deltamethrin.

    PubMed

    Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching

    2016-10-27

    Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol, 2016.

  17. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.

    PubMed

    Akagi, Jin; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald

    2014-01-02

    Zebrafish (Danio rerio) embryo assays have recently come into the spotlight as convenient experimental models in both biomedicine and ecotoxicology. As a small aquatic model organism, zebrafish embryo assays allow for rapid physiological, embryo-, and genotoxic tests of drugs and environmental toxins that can be simply dissolved in water. This protocol describes prototyping and application of an innovative, miniaturized, and polymeric chip-based device capable of immobilizing a large number of living fish embryos for real-time and/or time-lapse microscopic examination. The device provides a physical address designation to each embryo during analysis, continuous perfusion of medium, and post-analysis specimen recovery. Miniaturized embryo array is a new concept of immobilization and real-time drug perfusion of multiple individual and developing zebrafish embryos inside the mesofluidic device. The OpenSource device presented in this protocol is particularly suitable to perform accelerated fish embryo biotests in ecotoxicology and phenotype-based pharmaceutical screening.

  18. Proteomic analysis of zebrafish embryos exposed to simulated-microgravity

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Ma, Wenwen; Wang, Wei; Liu, Cong; Sun, Yeqing

    Microgravity can induce a serial of physiological and pathological changes in human body, such as cardiovascular functional disorder, bone loss, muscular atrophy and impaired immune system function, etc. In this research, we focus on the influence of microgravity to vertebrate embryo development. As a powerful model for studying vertebrate development, zebrafish embryos at 8 hpf (hour past fertilization) and 24 hpf were placed into a NASA developed bioreac-tor (RCCS) to simulate microgravity for 64 and 48 hours, respectively. The same number of control embryos from the same parents were placed in a tissue culture dish at the same temper-ature of 28° C. Each experiment was repeated 3 times and analyzed by two-dimensional (2-D) gel electrophoresis. Image analysis of silver stained 2-D gels revealed that 64 from total 292 protein spots showed quantitative and qualitative variations that were significantly (P<0.05) and reproducibly different between simulate-microgravity treatment and the stationary control samples. 4 protein spots with significant expression alteration (P<0.01) were excised from 2-D gels and analyzed by MALDI-TOF/TOF mass spectra primarily. Of these proteins, 3 down-regulated proteins were identified as bectin 2, centrosomal protein of 135kDa and tropomyosin 4, while the up-regulated protein was identified as creatine kinase muscle B. Other protein spots showed significant expression alteration will be identified successively and the corresponding genes expression will also be measured by Q-PCR method at different development stages. The data presented in this study illustrate that zebrafish embryo can be significantly induced by microgravity on the expression of proteins involved in bone and muscle formation. Key Words: Danio rerio; Simulated-microgravity; Proteomics

  19. The mob as tumor suppressor (mats1) gene is required for growth control in developing zebrafish embryos.

    PubMed

    Yuan, Yuan; Lin, Shuo; Zhu, Zuoyan; Zhang, Wenxia; Lai, Zhi-Chun

    2009-01-01

    The mob as tumor suppressor (mats) family genes are highly conserved in evolution. The Drosophila mats gene functions in the Hippo signaling pathway to control tissue growth by regulating cell proliferation and apoptosis. However, nothing is known about whether mats family genes are required for the normal development of vertebrates. Here we report that zebrafish has three mats family genes. Expression of mats1 is maternally activated and continues during embryogenesis. Through a morpholino-based knockdown approach, we found that mats1 is required for normal embryonic development. Reduction of mats1 function caused developmental delay, a phenotype similar to that of Drosophila mats homozygous mutants. Both cell proliferation and apoptosis were defective in mats1 morphant embryos. Moreover, mats1 morphant cells exhibited a growth advantage in chimeric embryos, similar to mats mutant cells in mosaic tissues in Drosophila. Therefore mats1 plays a critical role in regulating cell proliferation and apoptosis during early development in zebrafish, and the role of mats family genes in growth regulation is conserved in both invertebrates and vertebrates. This work shows that zebrafish can be a good model organism for further analysis of Hippo signaling pathway.

  20. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology.

    PubMed

    Skrzyszowska, Maria; Karasiewicz, Jolanta; Bednarczyk, Marek; Samiec, Marcin; Smorag, Zdzisław; Waś, Bogusław; Guszkiewicz, Andrzej; Korwin-Kossakowski, Maciej; Górniewska, Maria; Szablisty, Ewa; Modliński, Jacek A; Łakota, Paweł; Wawrzyńska, Magdalena; Sechman, Andrzej; Wojtysiak, Dorota; Hrabia, Anna; Mika, Maria; Lisowski, Mirosław; Czekalski, Przemysław; Rzasa, Janusz; Kapkowska, Ewa

    2006-01-01

    The article summarizes results of studies concerning: 1/ qualitative evaluation of pig nuclear donor cells to somatic cell cloning, 2/ developmental potency of sheep somatic cells to create chimera, 3/ efficient production of chicken chimera. The quality of nuclear donor cells is one of the most important factors to determine the efficiency of somatic cell cloning. Morphological criteria commonly used for qualitative evaluation of somatic cells may be insufficient for practical application in the cloning. Therefore, different types of somatic cells being the source of genomic DNA in the cloning procedure were analyzed on apoptosis with the use of live-DNA or plasma membrane fluorescent markers. It has been found that morphological criteria are a sufficient selection factor for qualitative evaluation of nuclear donor cells to somatic cell cloning. Developmental potencies of sheep somatic cells in embryos and chimeric animals were studied using blastocyst complementation test. Fetal fibroblasts stained with vital fluorescent dye and microsurgically placed in morulae or blastocysts were later identified in embryos cultured in vitro. Transfer of Polish merino blastocysts harbouring Heatherhead fibroblasts to recipient ewes brought about normal births at term. Newly-born animals were of merino appearance with dark patches on their noses, near the mouth and on their clovens. This overt chimerism shows that fetal fibroblasts introduced to sheep morulae/blastocysts revealed full developmental plasticity. To achieve the efficient production of chicken chimeras, the blastodermal cells from embryos of the donor breeds, (Green-legged Partridgelike breed or GPxAraucana) were transferred into the embryos of the recipient breed (White Leghorn), and the effect of chimerism on the selected reproductive and physiological traits of recipients was examined. Using the model which allowed identification of the chimerism at many loci, it has been found that 93.9% of the examined birds

  1. The effects of strontium on skeletal development in zebrafish embryo.

    PubMed

    Pasqualetti, Sara; Banfi, Giuseppe; Mariotti, Massimo

    2013-10-01

    The strontium is an alkaline earth metal found in nature as trace element. Chemically similar to calcium, it is known to be involved in the human bone mineral metabolism. The strontium ranelate has been approved in therapy as drug with both anti-resorption and anabolic effects on bone tissues. Since few data in vivo are available, we used Danio rerio as animal model to evaluate the effects of strontium on skeletal development. First, toxicity assay performed on zebrafish embryos estimated the LC50 around 6mM. Since several zebrafish bones are formed from cartilage mineralization, we evaluated whether strontium affects cartilage development during embryogenesis. Strontium does not perturb the development of the cartilage tissues before the endochondral osteogenesis takes place. About the mineralization process, we evidentiated an increase of vertebral mineralization respect to controls at lower strontium concentrations whereas higher concentration inhibited mineral deposition in dose dependent fashion. Our results evidentiated, in addition, that the calcium/strontium rate but not the absolute level of strontium modulates the mineralization process during embryonic osteogenesis. Zebrafish represents an excellent animal model to study the role of micronutrients in the development of the tissues/organs because the ions are not absorbed by intestine but assumed by skin diffusion.

  2. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos.

    PubMed

    van Aerle, Ronny; Lange, Anke; Moorhouse, Alex; Paszkiewicz, Konrad; Ball, Katie; Johnston, Blair D; de-Bastos, Eliane; Booth, Timothy; Tyler, Charles R; Santos, Eduarda M

    2013-07-16

    Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk-, and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24 h of exposure, but with a recovery at 48 h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24 h, but not at 48 h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms.

  3. Molecular Mechanisms of Toxicity of Silver Nanoparticles in Zebrafish Embryos

    PubMed Central

    2013-01-01

    Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk-, and ionic forms on zebrafish embryos (Danio rerio) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24 h of exposure, but with a recovery at 48 h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24 h, but not at 48 h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms. PMID:23758687

  4. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation.

    PubMed

    Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri

    2007-01-01

    The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned

  5. Three-dimensional printed millifluidic devices for zebrafish embryo tests

    PubMed Central

    Zhu, Feng; Skommer, Joanna; Macdonald, Niall P.; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-01-01

    Implementations of Lab-on-a-Chip technologies for in-situ analysis of small model organisms and embryos (both invertebrate and vertebrate) are attracting an increasing interest. A significant hurdle to widespread applications of microfluidic and millifluidic devices for in-situ analysis of small model organisms is the access to expensive clean room facilities and complex microfabrication technologies. Furthermore, these resources require significant investments and engineering know-how. For example, poly(dimethylsiloxane) soft lithography is still largely unattainable to the gross majority of biomedical laboratories willing to pursue development of chip-based platforms. They often turn instead to readily available but inferior classical solutions. We refer to this phenomenon as workshop-to-bench gap of bioengineering science. To tackle the above issues, we examined the capabilities of commercially available Multi-Jet Modelling (MJM) and Stereolithography (SLA) systems for low volume fabrication of optical-grade millifluidic devices designed for culture and biotests performed on millimetre-sized specimens such as zebrafish embryos. The selected 3D printing technologies spanned a range from affordable personal desktop systems to high-end professional printers. The main motivation of our work was to pave the way for off-the-shelf and user-friendly 3D printing methods in order to rapidly and inexpensively build optical-grade millifluidic devices for customized studies on small model organisms. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in poly(methyl methacrylate), we demonstrate that selected SLA technologies can achieve user-friendly and rapid production of prototypes, superior feature reproduction quality, and comparable levels of optical transparency. A caution need to be, however, exercised as majority of tested SLA and MJM resins were found toxic and caused significant developmental abnormalities

  6. Ethical acceptability of research on human-animal chimeric embryos: summary of opinions by the Japanese Expert Panel on Bioethics.

    PubMed

    Mizuno, Hiroshi; Akutsu, Hidenori; Kato, Kazuto

    2015-01-01

    Human-animal chimeric embryos are embryos obtained by introducing human cells into a non-human animal embryo. It is envisaged that the application of human-animal chimeric embryos may make possible many useful research projects including producing three-dimensional human organs in animals and verification of the pluripotency of human ES cells or iPS cells in vivo. The use of human-animal chimeric embryos, however, raises several ethical and moral concerns. The most fundamental one is that human-animal chimeric embryos possess the potential to develop into organisms containing human-derived tissue, which may lead to infringing upon the identity of the human species, and thus impairing human dignity. The Japanese Expert Panel on Bioethics in the Cabinet Office carefully considered the scientific significance and ethical acceptability of the issue and released its "Opinions regarding the handling of research using human-animal chimeric embryos". The Panel proposed a framework of case-by-case review, and suggested that the following points must be carefully reviewed from the perspective of ethical acceptability: (a) Types of animal embryos and types of animals receiving embryo transfers, particularly in dealing with non-human primates; (b) Types of human cells and organs intended for production, particularly in dealing with human nerve or germ cells; and (c) Extent of the period required for post-transfer studies. The scientific knowledge that can be gained from transfer into an animal uterus and from the production of an individual must be clarified to avoid unnecessary generation of chimeric animals. The time is ripe for the scientific community and governments to start discussing the ethical issues for establishing a global consensus.

  7. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos.

    PubMed Central

    Lin, S; Long, W; Chen, J; Hopkins, N

    1992-01-01

    To determine whether embryonic cells transplanted from one zebrafish embryo to another can contribute to the germ line of the recipient, and to determine whether pigmentation can be used as a dominant visible marker to monitor cell transplants, we introduced cells from genetically pigmented (donor) embryos to albino recipients at midblastula stage. By 48 hr many of the resulting chimeras expressed dark pigment in their eyes and bodies, characteristics of donor but not albino embryos. By 4-6 weeks of age pigmentation was observed on the body of 23 of 70 chimeras. In contrast to fully pigmented wild-type fish, pigmentation in chimeras appeared within transverse bands running from dorsal to ventral. Pigmentation patterns differed from one fish to another and in almost every case were different on each side of a single fish. At 2-3 months of age chimeras were mated to albino fish to determine whether pigmented donor cells had contributed to the germ line. Of 28 chimeric fish that have yielded at least 50 offspring each, 5 have given rise to pigmented progeny at frequencies of 1-40%. The donor cells for some chimeras were derived from embryos that, in addition to being pigmented, were transgenic for a lacZ plasmid. Pigmented offspring of some germ-line chimeras inherited the transgene, confirming that they descended from transplanted donor cells. Our ability to make germ-line chimeras suggests that it is possible to introduce genetically engineered cells into zebrafish embryos and to identify the offspring of these cells by pigmentation at 2 days of age. Images PMID:1584786

  8. Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo.

    PubMed

    Zhang, Weibin; Roy, Sudipto

    2017-03-01

    During skeletal muscle development, myocytes aggregate and fuse to form multinucleated muscle fibers. Inhibition of myocyte fusion is thought to significantly derail the differentiation of functional muscle fibers. Despite the purported importance of fusion in myogenesis, in vivo studies of this process in vertebrates are rather limited. Myomaker, a multipass transmembrane protein, has been shown to be the first muscle-specific fusion protein essential for myocyte fusion in the mouse. We have generated loss-of-function alleles in zebrafish myomaker, and found that fusion of myocytes into syncytial fast-twitch muscles was significantly compromised. However, mutant myocytes could be recruited to fuse with wild-type myocytes in chimeric embryos, albeit rather inefficiently. Conversely, overexpression of Myomaker was sufficient to induce hyperfusion among fast-twitch myocytes, and it also induced fusion among slow-twitch myocytes that are normally fusion-incompetent. In line with this, Myomaker overexpression also triggered fusion in another myocyte fusion mutant compromised in the function of the junctional cell adhesion molecule, Jam2a. We also provide evidence that Rac, a regulator of actin cytoskeleton, requires Myomaker activity to induce fusion, and that an approximately 3kb of myomaker promoter sequence, with multiple E-box motifs, is sufficient to direct expression within the fast-twitch muscle lineage. Taken together, our findings underscore a conserved role for Myomaker in vertebrate myocyte fusion. Strikingly, and in contrast to the mouse, homozygous myomaker mutants are viable and do not exhibit discernible locomotory defects. Thus, in the zebrafish, myocyte fusion is not an absolute requirement for skeletal muscle morphogenesis and function.

  9. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation.

    PubMed

    Choi, V W Y; Yu, K N

    2015-01-01

    The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed.

  10. Defense of zebrafish embryos against Streptococcus pneumoniae infection is dependent on the phagocytic activity of leukocytes.

    PubMed

    Rounioja, Samuli; Saralahti, Anni; Rantala, Lilli; Parikka, Mataleena; Henriques-Normark, Birgitta; Silvennoinen, Olli; Rämet, Mika

    2012-02-01

    Severe community acquired pneumonia caused by Streptococcus pneumoniae is the most common cause of death from infection in developing countries. Serotype specific conjugate vaccines have decreased the incidence of invasive infections, but at the same time, disease due to non-vaccine serotypes have increased. New insights into host immune mechanisms against pneumococcus may provide better treatment and prevention strategies. Zebrafish is an attractive vertebrate model for studying host immune responses and infection biology. Here we show that an intravenous challenge with pneumococcus infects zebrafish embryos leading to death in a dose dependent manner. Survival rates correlate with the bacterial burden in the embryos. The production of proinflammatory cytokines is induced in zebrafish after pneumococcal exposure. Importantly, morpholino treated embryos lacking either myeloid cells or the ability to phagocytose bacteria have lowered survival rates compared to wild type embryos after pneumococcal challenge. These data suggest that the survival of zebrafish embryos upon intravenous infection with S. pneumoniae is dependent on the clearance of the bacteria by phagocytosing cells. Additionally, we demonstrate that mutant pneumococci lacking known virulence factors are attenuated in the zebrafish model. Our data demonstrate that zebrafish embryos can be used for study innate immune responses as well as virulence determinants in pneumococcal infections.

  11. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs.

    PubMed

    Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio

    2017-03-09

    Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC50) calculated in zebrafish embryos and lethal doses (LD50) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds.

  12. Zebrafish Embryo as an In Vivo Model for Behavioral and Pharmacological Characterization of Methylxanthine Drugs

    PubMed Central

    Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio

    2017-01-01

    Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC50) calculated in zebrafish embryos and lethal doses (LD50) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds. PMID:28282918

  13. Non-invasive electrocardiogram detection of in vivo zebrafish embryos using electric potential sensors

    NASA Astrophysics Data System (ADS)

    Rendon-Morales, E.; Prance, R. J.; Prance, H.; Aviles-Espinosa, R.

    2015-11-01

    In this letter, we report the continuous detection of the cardiac electrical activity in embryonic zebrafish using a non-invasive approach. We present a portable and cost-effective platform based on the electric potential sensing technology, to monitor in vivo electrocardiogram activity from the zebrafish heart. This proof of principle demonstration shows how electrocardiogram measurements from the embryonic zebrafish may become accessible by using electric field detection. We present preliminary results using the prototype, which enables the acquisition of electrophysiological signals from in vivo 3 and 5 days-post-fertilization zebrafish embryos. The recorded waveforms show electrocardiogram traces including detailed features such as QRS complex, P and T waves.

  14. Robotic injection of zebrafish embryos for high-throughput screening in disease models.

    PubMed

    Spaink, Herman P; Cui, Chao; Wiweger, Malgorzata I; Jansen, Hans J; Veneman, Wouter J; Marín-Juez, Rubén; de Sonneville, Jan; Ordas, Anita; Torraca, Vincenzo; van der Ent, Wietske; Leenders, William P; Meijer, Annemarie H; Snaar-Jagalska, B Ewa; Dirks, Ron P

    2013-08-15

    The increasing use of zebrafish larvae for biomedical research applications is resulting in versatile models for a variety of human diseases. These models exploit the optical transparency of zebrafish larvae and the availability of a large genetic tool box. Here we present detailed protocols for the robotic injection of zebrafish embryos at very high accuracy with a speed of up to 2000 embryos per hour. These protocols are benchmarked for several applications: (1) the injection of DNA for obtaining transgenic animals, (2) the injection of antisense morpholinos that can be used for gene knock-down, (3) the injection of microbes for studying infectious disease, and (4) the injection of human cancer cells as a model for tumor progression. We show examples of how the injected embryos can be screened at high-throughput level using fluorescence analysis. Our methods open up new avenues for the use of zebrafish larvae for large compound screens in the search for new medicines.

  15. Early life stage and genetic toxicity of stannous chloride on zebrafish embryos and adults: toxic effects of tin on zebrafish.

    PubMed

    Şişman, Turgay

    2011-06-01

    Humans are exposed to stannous chloride (SnCl(2)), known as tin chloride, present in packaged food, soft drinks, biocides, dentifrices, etc. Health effects in children exposed to tin and tin compounds have not been investigated yet. Therefore, we evaluated the possible teratogenic effects and genotoxic of SnCl(2) in zebrafish (Danio rerio) adults and their embryos. In the embryo-larval study, SnCl(2) showed embryo toxicity and developmental delay after exposure to the various concentrations of 10-250 μM for 120 h. Teratogenic effects including morphological malformations of the embryos and larvae were observed. The embryos exposed to 100 μM displayed tail deformation at 28 hpf and the larvae exposed to 50 μM showed reduced body growth, smaller head and eyes, bent trunk, mild pericardial edema, and smaller caudal fin at 96 hpf. The results of the teratological study show that SnCl(2) induced a significant decrease in the number of living embryos and larvae. Regarding the chromosome analysis, SnCl(2) induced a dose-dependent increase in the micronucleus (MN) frequency in peripheral erythrocytes of adult zebrafish. In blood cells, the 25 μM dose of SnCl(2) caused a nonsignificant increase in the total chromosomal aberrations, but the high doses significantly increased the total number of chromosomal aberrations compared with the control groups. Overall, the results clearly indicate that SnCl(2) is teratogenic and genotoxic to zebrafish.

  16. Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos.

    PubMed

    Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H

    2012-04-01

    Coumarin and warfarin, two substances which are intensively metabolized in animals and humans, were tested for teratogenicity and embryo lethality in a 3-day in vitro assay using zebrafish embryos. Warfarin is a coumarin derivative, but in contrast to the mother substance warfarin has anticoagulant properties. Both substances produced teratogenic and lethal effects in zebrafish embryos. The LC(50) and EC(50) values for coumarin are 855 μM and 314 μM, respectively; the corresponding values for warfarin are 988 μM and 194 μM. For coumarin, three main or fingerprint endpoints (malformation of head, tail and growth retardation) were identified, whereas malformation of tail was the only fingerprint endpoint of warfarin. The analysis of the ratios between the zebrafish embryo effect concentrations of both substances and human therapeutic plasma concentrations confirmed the teratogenic potential of warfarin, as well as the equivocal status of coumarin.

  17. Multifaceted toxicity assessment of catalyst composites in transgenic zebrafish embryos.

    PubMed

    Jang, Gun Hyuk; Lee, Keon Yong; Choi, Jaewon; Kim, Sang Hoon; Lee, Kwan Hyi

    2016-09-01

    Recent development in the field of nanomaterials has given rise into the inquiries regarding the toxicological characteristics of the nanomaterials. While many individual nanomaterials have been screened for their toxicological effects, composites that accompany nanomaterials are not common subjects to such screening through toxicological assessment. One of the widely used composites that accompany nanomaterials is catalyst composite used to reduce air pollution, which was selected as a target composite with nanomaterials for the multifaceted toxicological assessment. As existing studies did not possess any significant data regarding such catalyst composites, this study focuses on investigating toxicological characteristics of catalyst composites from various angles in both in-vitro and in-vivo settings. Initial toxicological assessment on catalyst composites was conducted using HUVECs for cell viability assays, and subsequent in-vivo assay regarding their direct influence on living organisms was done. The zebrafish embryo and its transgenic lines were used in the in-vivo assays to obtain multifaceted analytic results. Data obtained from the in-vivo assays include blood vessel formation, mutated heart morphology, and heart functionality change. Our multifaceted toxicological assessment pointed out that chemical composites augmented with nanomaterials can too have toxicological threat as much as individual nanomaterials do and alarms us with their danger. This manuscript provides a multifaceted assessment for composites augmented with nanomaterials, of which their toxicological threats have been overlooked.

  18. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae

    PubMed Central

    Hagedorn, Elliott J.; Cillis, Jennifer L.; Curley, Caitlyn R.; Patch, Taylor C.; Li, Brian; Blaser, Bradley W.; Riquelme, Raquel; Zon, Leonard I.; Shah, Dhvanit I.

    2016-01-01

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development. PMID:27341538

  19. Zebrafish embryos sequester and retain petrochemical combustion products: developmental and transcriptome consequences.

    PubMed

    Bui, Allen; Xiao, Rui; Perveen, Zakia; Kleinow, Kevin; Penn, Arthur

    2012-02-01

    Zebrafish embryos are a model for studying effects of environmental stressors on development. Incomplete combustion of the environmentally relevant volatile petrochemical, 1,3-butadiene (BD) yields butadiene soot (BDS) nanoparticles, to which polynuclear aromatic hydrocarbons (PAHs) are adsorbed. In mammalian cells these PAHs are concentrated in lipid droplets and trigger up-regulation of biotransformation, oxidative stress and inflammatory genes. The present study was designed to determine whether: (a) PAH-rich BDS elicits alterations in zebrafish embryo development; (b) BDS-exposed zebrafish embryos sequester PAHs in select tissues; and (c) developmental abnormalities are correlated with altered gene expression patterns. 1-day old zebrafish embryos were exposed for 48 h to BDS (0, 6, 30 or 60 μg/ml) sprinkled on the water surface. PAH localization was tracked by fluorescence. Developmental responses (pericardial edema, yolk sac swelling, axial malformations) were monitored by microscopy. Gene expression changes were assessed by gene microarray and qRT-PCR. Our results show that PAHs localized with endogenous lipids in the yolk sac and in hatching gland cells. PAHs were retained at least 8 days after exposures ended. Dose-dependent pericardial and yolk sac edema and axial malformations were prominent and accompanied by up-regulation of biotransformation and oxidative stress gene cascades. Thus, zebrafish embryos should be useful for predicting the potential for developmental toxicity following exposure to PAH-rich petrochemical soots, e.g., those arising from attempts at oil spill remediation by combustion.

  20. Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae.

    PubMed

    Hagedorn, Elliott J; Cillis, Jennifer L; Curley, Caitlyn R; Patch, Taylor C; Li, Brian; Blaser, Bradley W; Riquelme, Raquel; Zon, Leonard I; Shah, Dhvanit I

    2016-06-11

    Surgical parabiosis of two animals of different genetic backgrounds creates a unique scenario to study cell-intrinsic versus cell-extrinsic roles for candidate genes of interest, migratory behaviors of cells, and secreted signals in distinct genetic settings. Because parabiotic animals share a common circulation, any blood or blood-borne factor from one animal will be exchanged with its partner and vice versa. Thus, cells and molecular factors derived from one genetic background can be studied in the context of a second genetic background. Parabiosis of adult mice has been  used extensively to research aging, cancer, diabetes, obesity, and brain development. More recently, parabiosis of zebrafish embryos has been used to study the developmental biology of hematopoiesis. In contrast to mice, the transparent nature of zebrafish embryos permits the direct visualization of cells in the parabiotic context, making it a uniquely powerful method for investigating fundamental cellular and molecular mechanisms. The utility of this technique, however, is limited by a steep learning curve for generating the parabiotic zebrafish embryos. This protocol provides a step-by-step method on how to surgically fuse the blastulae of two zebrafish embryos of different genetic backgrounds to investigate the role of candidate genes of interest. In addition, the parabiotic zebrafish embryos are tolerant to heat shock, making temporal control of gene expression possible. This method does not require a sophisticated set-up and has broad applications for studying cell migration, fate specification, and differentiation in vivo during embryonic development.

  1. Assessing the toxicity of TBBPA and HBCD by zebrafish embryo toxicity assay and biomarker analysis.

    PubMed

    Hu, Jun; Liang, Yong; Chen, Minjie; Wang, Xiaorong

    2009-08-01

    Tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD) are two of the most widely used brominated flame retardants (BFRs). The biological toxicity effect of TBBPA and HBCD was studied by means of zebrafish embryo toxicity assays in combination with three biomarkers, including superoxide dismutase (SOD), lipid peroxidation, (LPO), and heat shock protein (Hsp70). The standard zebrafish embryo assay showed that high concentrations of TBBPA (> or =0.75 mg/L) can cause lethality or malformation. For HBCD within the concentration range (0.002-10 mg/L), no endpoint was observed. Furthermore, SOD activities of zebrafish embryos exposed to TBBPA were increased with the increasing concentrations. SOD activities in the group treated by HBCD showed an increase followed by a decline. Regardless of TBBPA or HBCD, LPO were increased along with the increase of the concentration. The change pattern of Hsp70 levels was the same with LPO. All these results showed that TBBPA and HBCD could cause oxidative stress and Hsp70 overexpression, inducing acute toxicity to zebrafish embryo in a short-term exposure. The study also indicates that the zebrafish embryo assay in combination with the biomarkers is effective in aquatic environmental toxicology and risk assessment.

  2. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  3. Construction and Evaluation of a Maize Chimeric Promoter with Activity in Kernel Endosperm and Embryo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chimeric promoters contain DNA sequences from different promoters. Chimeric promoters are developed to increase the level of recombinant protein expression, precisely control transgene activity, or to escape homology-based gene silencing. Sets of chimeric promoters, each containing different lengt...

  4. Bystander effect between zebrafish embryos in vivo induced by high-dose X-rays.

    PubMed

    Choi, V W Y; Ng, C Y P; Kobayashi, A; Konishi, T; Suya, N; Ishikawa, T; Cheng, S H; Yu, K N

    2013-06-18

    We employed embryos of the zebrafish, Danio rerio, for our studies on the in vivo bystander effect between embryos irradiated with high-dose X-rays and naive unirradiated embryos. The effects on the naive whole embryos were studied through quantification of apoptotic signals at 25 h post fertilization (hpf) through the terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay followed by counting the stained cells under a microscope. We report data showing that embryos at 5 hpf subjected to a 4-Gy X-ray irradiation could release a stress signal into the medium, which could induce a bystander effect in partnered naive embryos sharing the same medium. We further demonstrated that this bystander effect (induced through partnering) could be successfully suppressed through the addition of the nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) into the medium but not through the addition of the CO liberator tricarbonylchloro(glycinato)ruthenium(II) (CORM-3). This shows that NO was involved in the bystander response between zebrafish embryos induced through X-ray irradiation. We also report data showing that the bystander effect could be successfully induced in naive embryos by introducing them into the irradiated embryo conditioned medium (IECM) alone, i.e., without partnering with the irradiated embryos. The IECM was harvested from the medium that had conditioned the zebrafish embryos irradiated at 5 hpf with 4-Gy X-ray until the irradiated embryos developed into 29 hpf. NO released from the irradiated embryos was unlikely to be involved in the bystander effect induced through the IECM because of the short life of NO. We further revealed that this bystander effect (induced through IECM) was rapidly abolished through diluting the IECM by a factor of 2× or greater, which agreed with the proposal that the bystander effect was an on/off response with a threshold.

  5. Maternal stress-associated cortisol stimulation may protect embryos from cortisol excess in zebrafish

    PubMed Central

    Faught, Erin; Best, Carol; Vijayan, Mathilakath M.

    2016-01-01

    Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress. PMID:26998341

  6. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos.

    PubMed

    Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P; Scholz, Stefan

    2014-01-01

    Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in

  7. Influences of textured substrates on the heart rate of developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Chen, Chia-Yuan

    2013-07-01

    Identification of the effects of different textured substrates on zebrafish (Danio rerio) embryos provides insights into the influence of external stimuli on normal cardiovascular functions in the developmental stages of the embryos. This knowledge can be used in numerous genetic studies using zebrafish as an animal model as well as in bioanalytical assays using digital microfluidics. In this study, zebrafish embryos were systematically positioned and in vivo imaged on four types of silicon substrates. These substrates exhibited surface textures and surface wettability that were well modulated by wet chemical etching. The heart rate of the developing embryos significantly increased by 9.1% upon exposure to textured Si substrates with nanostructured surfaces compared with bare Si substrates. Modulation of surface wettability in the tested substrates also responded to the increase in the heart rate of the embryo; however, the effect of surface wettability on heart rate was slight compared with the effect of texture. In-depth experimental and statistical investigations of heart rate under the effects of substrate textures imply a pathway through which the inner mass of the embryo reacts to external stimuli. These findings contribute to zebrafish-related studies and suggest other factors to consider in the design of nanostructure-based microfluidics and other biomedical devices.

  8. Influences of textured substrates on the heart rate of developing zebrafish embryos.

    PubMed

    Chen, Chia-Yun; Chen, Chia-Yuan

    2013-07-05

    Identification of the effects of different textured substrates on zebrafish (Danio rerio) embryos provides insights into the influence of external stimuli on normal cardiovascular functions in the developmental stages of the embryos. This knowledge can be used in numerous genetic studies using zebrafish as an animal model as well as in bioanalytical assays using digital microfluidics. In this study, zebrafish embryos were systematically positioned and in vivo imaged on four types of silicon substrates. These substrates exhibited surface textures and surface wettability that were well modulated by wet chemical etching. The heart rate of the developing embryos significantly increased by 9.1% upon exposure to textured Si substrates with nanostructured surfaces compared with bare Si substrates. Modulation of surface wettability in the tested substrates also responded to the increase in the heart rate of the embryo; however, the effect of surface wettability on heart rate was slight compared with the effect of texture. In-depth experimental and statistical investigations of heart rate under the effects of substrate textures imply a pathway through which the inner mass of the embryo reacts to external stimuli. These findings contribute to zebrafish-related studies and suggest other factors to consider in the design of nanostructure-based microfluidics and other biomedical devices.

  9. Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage

    SciTech Connect

    Xu, Ting; Zhao, Jing; Hu, Ping; Dong, Zhangji; Li, Jingyun; Zhang, Hongchang; Yin, Daqiang; Zhao, Qingshun

    2014-06-01

    Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed that 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP

  10. Developmental toxicity and oxidative stress induced by gamma irradiation in zebrafish embryos.

    PubMed

    Hu, Miao; Hu, Nan; Ding, Dexin; Zhao, Weichao; Feng, Yongfu; Zhang, Hui; Li, Guangyue; Wang, Yongdong

    2016-11-01

    This study aimed to evaluate the biological effects of gamma irradiation on zebrafish embryos. Different doses of gamma rays (0.01, 0.05, 0.1, 0.5 and 1 Gy) were used to irradiate zebrafish embryos at three developmental stages (stage 1, 6 h post-fertilization (hpf); stage 2, 12 hpf; stage three, 24 hpf), respectively. The survival, malformation and hatching rates of the zebrafish embryos were measured at the morphological endpoint of 96 hpf. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were assayed. Morphology analysis showed that gamma irradiation inhibited hatching and induced developmental toxicity in a dose-dependent manner. Interestingly, after irradiation the malformation rate changed not only in a dose-dependent manner but also in a developmental stage-dependent manner, indicating that the zebrafish embryos at stage 1 were more sensitive to gamma rays than those at other stages. Biochemical analysis showed that gamma irradiation modulated the activities of antioxidant enzymes in a dose-dependent manner. A linear relationship was found between GPx activity and irradiation dose in 0.1-1 Gy group, and GPx was a suitable biomarker for gamma irradiation in the dose range from 0.1 to 1 Gy. Furthermore, the activities of SOD, CAT, GR and GPx of the zebrafish embryos at stage 3 were found to be much higher than those at other stages, indicating that the zebrafish embryos at stage 3 had a greater ability to protect against gamma rays than those at other stages, and thus the activities of antioxidant enzymes changed in a developmental stage-dependent manner.

  11. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication.

    PubMed

    Simmet, Kilian; Reichenbach, Myriam; Reichenbach, Horst-Dieter; Wolf, Eckhard

    2015-12-01

    Multiplication of bovine embryos by the production of aggregation chimeras is based on the concept that few blastomeres of a donor embryo form the inner cell mass (ICM) and thus the embryo proper, whereas cells of a host embryo preferentially contribute to the trophectoderm (TE), the progenitor cells of the embryonic part of the placenta. We aggregated two fluorescent blastomeres from enhanced green fluorescent protein (eGFP) transgenic Day 5 morulae with two Day 4 embryos that did not complete their first cleavage until 27 hours after IVF and tested the effect of phytohemagglutinin-L (PHA) on chimeric embryo formation. The resulting blastocysts were characterized by differential staining of cell lineages using the TE-specific factor CDX2 and confocal laser scanning microscopy to facilitate the precise localization of eGFP-positive cells. The proportions of blastocyst development of sandwich aggregates with (n = 99) and without PHA (n = 46) were 85.9% and 54.3% (P < 0.05), respectively. Epifluorescence microscopy showed that the proportion of blastocysts with eGFP-positive cells in the ICM was higher in the PHA group than in the no-PHA group (40% vs. 16%; P < 0.05). Confocal laser scanning microscopy revealed that the total cell numbers of blastocysts from the PHA group of aggregation chimeras (n = 17; 207.8 ± 67.3 [mean ± standard deviation]) were higher (P < 0.05) than those of embryos without ZP and exposed to PHA (n = 30; 159.6 ± 42.2) and of handling control embryos (n = 19; 176.9 ± 53.3). The same was true for ICM cell counts (56.5 ± 22.0 vs. 37.7 ± 14.2 and 38.7 ± 12.4) and TE cell counts (151.2 ± 58.0 vs. 121.9 ± 37.4 and 138.3 ± 53.0), whereas the ICM/total cell number ratio was not different between the groups. Of the 17 chimeric blastocysts analyzed by confocal laser scanning microscopy, nine had eGFP-positive cells (three of them in the ICM, three in the TE, and three in both lineages). When integration in

  12. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.

    PubMed

    Li, Jin; Zeng, Guofang; Qi, Yawei; Tang, Xudong; Zhang, Jingjing; Wu, Zeyong; Liang, Jie; Shi, Lei; Liu, Hongwei; Zhang, Peihua

    2015-01-01

    Zebrafish is a widely used animal model with well-characterized background in developmental biology. The fate of human adipose-derived stem cells (ADSCs) after their xenotransplantation into the developing embryos of zebrafish is unknown. Therefore, human ADSCs were firstly isolated, and then transduced with lentiviral vector system carrying a green fluorescent protein (GFP) reporter gene, and followed by detection of their cell viability and the expression of cell surface antigens. These GFP-expressing human ADSCs were transplanted into the zebrafish embryos at 3.3-4.3 hour post-fertilization (hpf). Green fluorescent signal, the proliferation and differentiation of human ADSCs in recipient embryos were respectively examined using fluorescent microscopy and immunohistochemical staining. The results indicated that human ADSCs did not change their cell viability and the expression levels of cell surface antigens after GFP transduction. Microscopic examination demonstrated that green fluorescent signals of GFP expressed in the transplanted cells were observed in the embryos and larva fish at post-transplantation. The positive staining of Ki-67 revealed the survival and proliferation of human ADSCs in fish larvae after transplantation. The expression of CD105 was observable in the xenotransplanted ADSCs, but CD31 expression was undetectable. Therefore, our results indicate that human ADSCs xenotransplanted in the zebrafish embryos not only can survive and proliferate at across-species circumstance, but also seem to maintain their undifferentiation status in a short term. This xenograft model of zebrafish embryos may provide a promising and useful technical platform for the investigation of biology and physiology of stem cells in vivo.

  13. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.

  14. Zebrafish Embryo Disinfection with Povidone-Iodine: Evaluating an Alternative to Chlorine Bleach.

    PubMed

    Chang, Carolyn T; Amack, Jeffrey D; Whipps, Christopher M

    2016-07-01

    Mycobacteriosis is a common bacterial infection in laboratory zebrafish caused by several different species and strains of Mycobacterium, including both rapid and slow growers. One control measure used to prevent mycobacterial spread within and between facilities is surface disinfection of eggs. Recent studies have highlighted the effectiveness of povidone-iodine (PVPI) on preventing propagation of Mycobacterium spp. found in zebrafish colonies. We evaluated the effect of disinfection using 12.5-50 ppm PVPI (unbuffered and buffered) on zebrafish exposed at 6 or 24 h postfertilization (hpf) to determine if this treatment is suitable for use in research zebrafish. Our results show that 6 hpf embryos are less sensitive to treatment as fewer effects on mortality, developmental delay, and deformity were observed. We also found that buffered PVPI treatment results in a greater knockdown of Mycobacterium chelonae and Mycobacterium marinum, as well as results in decreased harmful effects on embryos. Treatments of shorter (2 min vs. 5 min) duration were also more effective at killing mycobacteria in addition to resulting in fewer effects on embryo health. In addition, we compared the efficacy of a rinsing regimen to rinsing and disinfecting. Based on the findings of this study, we recommend disinfecting embryos for 2 min with buffered PVPI at 12.5-25 ppm.

  15. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  16. A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos

    PubMed Central

    Poureetezadi, Shahram Jevin; Donahue, Eric K.; Wingert, Rebecca A.

    2014-01-01

    Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications. PMID:25407322

  17. Progress Towards the Development of a Fathead Minnow Embryo Test and Comparison to the Zebrafish Embryo Test for Assessing Acute Fish Toxicity

    EPA Science Inventory

    The Zebrafish Embryo Test (ZFET) for acute fish toxicity is a well developed method nearing adoption as an OECD Test Guideline. Early drafts of the test guideline (TG) envisioned a suite of potential test species to be covered including zebrafish, fathead minnow, Japanese Medaka...

  18. [Interaction between calcium and lead affects the toxicity to embryo of zebrafish (Danio rerio)].

    PubMed

    Chen, Zhong-Zhi; Zhu, Lin; Yao, Kun; Wang, Xiu-Juan; Ding, Jun-Nan

    2009-04-15

    This study tested the hypothesis that increased Ca2+ content increases the sensitivity of the developing embryos and larvae of zebrafish (Danio rerio) to Pb. And the aim of the study was to investigate the extent to which calcium can individually mitigate lead ion toxicity based on the concept of biotic ligand model (BLM). Embryos of the zebrafish were exposed to various Pb concentrations. Chemical characteristics of water and representative toxicological endpoints of zebrafish embryo were recorded. And general growth retardation as a major toxicological endpoint was used for analysis at 72 h due to its sensitivity and facility. The BLM software of Visual MINTEQ (Version 2.5.2) was employed to calculate the chemical speciation in the solution. The results showed that when Ca2+ concentration increased from 0.25 mmol/L to 2.00 mmol/L, the toxicity of lead on embryos of zebrafish (Danio rerio) decreased markedly after 72 h. And a large part of these decrease can be explained by the positive linear relations between EC50{Pb2+}/EC50[Pb]T (expressed as lead ion activity/dissolved total concentration) and activity/total concentration of Ca2+, through which the influence of Ca2+ on toxicity could be predicted. The results support the assumptions of the BLM and associated with competition between lead and calcium for binding on transport and toxic action sites on biological surfaces. However, when Ca2+ concentration increased from 2.00 mmol/L to 4.00 mmol/L, the toxicity of lead on embryos of zebrafish (Danio rerio) seemed to be constant at 72 h.

  19. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

    PubMed

    Xue, Binghua; Li, Yan; He, Yilong; Wei, Renyue; Sun, Ruizhen; Yin, Zhi; Bou, Gerelchimeg; Liu, Zhonghua

    2016-01-01

    Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.

  20. Visualizing Compound Distribution during Zebrafish Embryo Development: The Effects of Lipophilicity and DMSO.

    PubMed

    de Koning, Coco; Beekhuijzen, Manon; Tobor-Kapłon, Marysia; de Vries-Buitenweg, Selinda; Schoutsen, Dick; Leeijen, Nico; van de Waart, Beppy; Emmen, Harry

    2015-12-01

    The predictability of the zebrafish embryo model is highly influenced by internal exposure of the embryo/larva. As compound uptake is likely to be influenced by factors such as lipophilicity, solvent use, and chorion presence, this article focuses on investigating their effects on compound distribution within the zebrafish embryo. To visualize compound uptake and distribution, zebrafish embryos were exposed for 96 hr, starting at 4 hr postfertilization, to water-soluble dyes: Schiff's reagent (logP -4.63), Giemsa stain (logP -0.77), Van Gierson stain (logP 1.64), Cresyl fast violet (logP 3.5), Eosine Y (logP 4.8), Sudan III (logP 7.5), and Oil red O (logP 9.81), with and without 1% dimethyl-sulfoxide (DMSO). Three additional compounds were used to analytically determine the uptake and distribution: Acyclovir (logP -1.56), Zidovudine (logP 0.05), and Metoprolol Tartrate Salt (logP 1.8). Examinations were performed every 24 hr. Both methods (visualization and specific analysis) showed that exposure to higher logP values results in higher compound uptake. Specific analysis showed that for lipophilic compounds >90% of compound is taken up by the embryo. For hydrophilic compounds, >90% of compound within the complete egg could not be associated to embryo or chorion and is probably distributed into the perivitelline space. Overall, internal exposure analyses on at least two occasions (i.e., before and after hatching) is crucial for interpretation of zebrafish embryotoxicity data, especially for compounds with extreme logP values. DMSO did not affect exposure when examined with the visualization method, however, this method might be not sensitive enough to draw hard conclusions.

  1. No Evidence for AID/MBD4-Coupled DNA Demethylation in Zebrafish Embryos

    PubMed Central

    Kaneto, Reiya; Izawa, Toshiaki; Yokoi, Hayato; Hashimoto, Naohiro; Kikuchi, Yutaka

    2014-01-01

    The mechanisms responsible for active DNA demethylation remain elusive in Metazoa. A previous study that utilized zebrafish embryos provided a potent mechanism for active demethylation in which three proteins, AID, MBD4, and GADD45 are involved. We recently found age-dependent DNA hypomethylation in zebrafish, and it prompted us to examine if AID and MBD4 could be involved in the phenomenon. Unexpectedly, however, we found that most of the findings in the previous study were not reproducible. First, the injection of a methylated DNA fragment into zebrafish eggs did not affect either the methylation of genomic DNA, injected methylated DNA itself, or several loci tested or the expression level of aid, which has been shown to play a role in demethylation. Second, aberrant methylation was not observed at certain CpG islands following the injection of antisense morpholino oligonucleotides against aid and mbd4. Furthermore, we demonstrated that zebrafish MBD4 cDNA lacked a coding region for the methyl-CpG binding domain, which was assumed to be necessary for guidance to target regions. Taken together, we concluded that there is currently no evidence to support the proposed roles of AID and MBD4 in active demethylation in zebrafish embryos. PMID:25536520

  2. Aquatic toxicity assessment of single-walled carbon nanotubes using zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pan, Huichin; Lin, Yu-Jun; Li, Meng-Wei; Chuang, Han-Ni; Chou, Cheng-Chung

    2011-07-01

    Zebrafish embryos selected at the 64-cell stage were exposed to various concentrations of amide functionalized single-walled carbon nanotubes (SWCNTs) ranging from 1 to 10 μg/ml dissolved in 1% Pluronic F-68 (a cell culture grade surfactant), and the development of embryos was examined from 24 to 120 hours post fertilization (hpf). Incubation of embryos in 1% F-68 did not induce overt abnormal phenotype as compared to the wild-type; neither did it cause significant mortality during the exposure period. Generally, there was a slight developmental delay in larvae treated with SWCNTs of 5 μg/ml or above. Only larvae exposed to >= 5 μg/ml SWCNTs showed significantly reduced survival rates. About 50% of the embryos exposed to 5 μg/ml showed abnormal phenotypes at 24 hpf as compared to the control group. As development proceeds to 120 hpf, more embryos displayed defective morphology. A slight hatching delay was observed in embryos exposed to concentrations above 5 μg/ml. There was a general reduction of body axes, including narrowed somite and shortened yolk stalk. In addition, pigmentation in the ventral trunk area was less than that observed in control group. The body lengths of the exposed embryos were decreased significantly at 48 hpf (3.11 mm in control vs. 3.00 mm in SWCNTs-exposed embryos). However, exposure to SWCNTs did not affect the number of somites. Other features that were noticed in the SWCNTs-exposed embryos included edema and shrinkage and blebbling of the epidermal lining. Most of these observed phenotypes persisted from 48 hpf through 120 hpf. Overall, the aforementioned results indicate that soluble amide-functionalized SWCNTs are toxic to zebrafish embryos at a minimum concentration of 5 μg/ml.

  3. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    PubMed

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  4. Non-induction of radioadaptive response in zebrafish embryos by neutrons

    PubMed Central

    Ng, Candy Y.P.; Kong, Eva Y.; Kobayashi, Alisa; Suya, Noriyoshi; Uchihori, Yukio; Cheng, Shuk Han; Konishi, Teruaki; Yu, Kwan Ngok

    2016-01-01

    In vivo neutron-induced radioadaptive response (RAR) was studied using zebrafish (Danio rerio) embryos. The Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility at the National Institute of Radiological Sciences (NIRS), Japan, was employed to provide 2-MeV neutrons. Neutron doses of 0.6, 1, 25, 50 and 100 mGy were chosen as priming doses. An X-ray dose of 2 Gy was chosen as the challenging dose. Zebrafish embryos were dechorionated at 4 h post fertilization (hpf), irradiated with a chosen neutron dose at 5 hpf and the X-ray dose at 10 hpf. The responses of embryos were assessed at 25 hpf through the number of apoptotic signals. None of the neutron doses studied could induce RAR. Non-induction of RAR in embryos having received 0.6- and 1-mGy neutron doses was attributed to neutron-induced hormesis, which maintained the number of damaged cells at below the threshold for RAR induction. On the other hand, non-induction of RAR in embryos having received 25-, 50- and 100-mGy neutron doses was explained by gamma-ray hormesis, which mitigated neutron-induced damages through triggering high-fidelity DNA repair and removal of aberrant cells through apoptosis. Separate experimental results were obtained to verify that high-energy photons could disable RAR. Specifically, 5- or 10-mGy X-rays disabled the RAR induced by a priming dose of 0.88 mGy of alpha particles delivered to 5-hpf zebrafish embryos against a challenging dose of 2 Gy of X-rays delivered to the embryos at 10 hpf. PMID:26850927

  5. Combined effects of depleted uranium and ionising radiation on zebrafish embryos.

    PubMed

    Ng, C Y P; Pereira, S; Cheng, S H; Adam-Guillermin, C; Garnier-Laplace, J; Yu, K N

    2015-11-01

    In the environment, living organisms are exposed to a mixture of stressors, and the combined effects are deemed as multiple stressor effects. In the present work, the authors studied the multiple stressor effect in embryos of the zebrafish (Danio rerio) from simultaneous exposure to alpha particles and depleted uranium (DU) through quantification of apoptotic signals at 24 h post-fertilisation (hpf) revealed by vital dye acridine orange staining. In each set of experiments, dechorionated zebrafish embryos were divided into 4 groups, each having 10 embryos: Group (C) in which the embryos did not receive any further treatment; Group (IU) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and were then exposed to 100 µg l(-1) of DU from 5 to 6 hpf; Group (I) in which the embryos received an alpha-particle dose of 0.44 mGy at 5 hpf and Group (U) in which the dechorionated embryos were exposed to 100 µg l(-1) of DU from 5 to 6 hpf. The authors confirmed that an alpha-particle dose of 0.44 mGy and a DU exposure for 1 h separately led to hormetic and toxic effects assessed by counting apoptotic signals, respectively, in the zebrafish. Interestingly, the combined exposure led to an effect more toxic than that caused by the DU exposure alone, so effectively DU changed the beneficial effect (hormesis) brought about by alpha-particle irradiation into an apparently toxic effect. This could be explained in terms of the promotion of early death of cells predisposed to spontaneous transformation by the small alpha-particle dose (i.e. hormetic effect) and the postponement of cell death upon DU exposure.

  6. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos.

    PubMed

    Amsterdam, A; Lin, S; Hopkins, N

    1995-09-01

    The green fluorescent protein (GFP) from the cnidarian Aequorea victoria is capable of producing fluorescence without an exogenously added substrate. Here we demonstrate that a cDNA for GFP driven by a Xenopus elongation factor 1 alpha enhancer-promoter can confer fluorescence upon live zebrafish embryos, either as an injected plasmid or as a transgene after passage through the germline. When injected into zebrafish embryos at the one-cell stage, this construct starts to express detectable GFP after about 4 hr of development at 28 degrees C, about 1 hr after the midblastula transition. Fluorescence can be observed in cells of many tissue types in the embryo for at least 3 weeks after injection. We used three different expression constructs, each employing a modified ef1 alpha enhancer-promoter, to generate 12 transgenic lines. Eight of the 12 lines, including 5 of 5 derived from one construct with an intron, express detectable fluorescence in the F1 and, where tested, in the F2 generation. Most expressing lines showed very similar expression patterns. Generally, fluorescence is not seen in the transgenic embryos before 20 hr postfertilization, at which point it appears uniformly throughout the embryo. Fluorescence is most visible between 24-36 hr, and it becomes less visible after this, except that in many lines strong fluorescence remains visible in the eye for at least 5 days. A single inherited copy of the transgene is sufficient to produce detectable fluorescence in hemizygous F1 and F2 embryos.

  7. ZebIAT, an image analysis tool for registering zebrafish embryos and quantifying cancer metastasis

    PubMed Central

    2013-01-01

    Background Zebrafish embryos have recently been established as a xenotransplantation model of the metastatic behaviour of primary human tumours. Current tools for automated data extraction from the microscope images are restrictive concerning the developmental stage of the embryos, usually require laborious manual image preprocessing, and, in general, cannot characterize the metastasis as a function of the internal organs. Methods We present a tool, ZebIAT, that allows both automatic or semi-automatic registration of the outer contour and inner organs of zebrafish embryos. ZebIAT provides a registration at different stages of development and an automatic analysis of cancer metastasis per organ, thus allowing to study cancer progression. The semi-automation relies on a graphical user interface. Results We quantified the performance of the registration method, and found it to be accurate, except in some of the smallest organs. Our results show that the accuracy of registering small organs can be improved by introducing few manual corrections. We also demonstrate the applicability of the tool to studies of cancer progression. Conclusions ZebIAT offers major improvement relative to previous tools by allowing for an analysis on a per-organ or region basis. It should be of use in high-throughput studies of cancer metastasis in zebrafish embryos. PMID:24267347

  8. Protein‐Functionalized DNA Nanostructures as Tools to Control Transcription in Zebrafish Embryos

    PubMed Central

    Angelin, Alessandro; Kassel, Olivier; Rastegar, Sepand; Strähle, Uwe

    2016-01-01

    Abstract The unique structure‐directing properties of DNA origami nanostructures (DONs) show great potential to specifically manipulate intracellular processes. We report an innovative concept to selectively activate the transcription of a single gene in the developing zebrafish embryo. We reason that engineering a designer transcription factor in which a rigid DON imposes a fixed distance between the DNA‐binding domain (DBD) and the transactivation domain (TAD) would allow the selective activation of a gene harboring the same distance between the corresponding transcription factor binding site and the core promoter. As a test case, a rigid tubular DON was designed to separate the DBD of the GAL4 transcription factor and the VP16 viral protein as a TAD. This construct was microinjected in the yolk of one‐cell‐stage zebrafish embryos, together with a reporter plasmid to assess its functionality. The large DON was efficiently distributed to cells of the developing embryo and showed no signs of toxicity. However, because the DON showed only a cytosolic localization, it did not activate transcription of the reporter gene. Although this work clearly demonstrates that DON microinjection enables the intracellular distribution of multi‐protein architectures in most of the cells of the developing zebrafish embryo, further refinements are necessary to enable selective gene activation in vivo. PMID:28168148

  9. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    PubMed Central

    Kong, E.Y.; Yeung, W.K.; Chan, T.K.Y.; Cheng, S.H.; Yu, K.N.

    2016-01-01

    The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio), as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO) on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf) revealed through acridine orange (AO) staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies. PMID:27529238

  10. Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues.

    PubMed

    van der Plas-Duivesteijn, Suzanne J; Mohammed, Yassene; Dalebout, Hans; Meijer, Annemarie; Botermans, Anouk; Hoogendijk, Jordy L; Henneman, Alex A; Deelder, André M; Spaink, Herman P; Palmblad, Magnus

    2014-03-07

    Spectral libraries provide a sensitive and accurate method for identifying peptides from tandem mass spectra, complementary to searching genome-derived databases or sequencing de novo. Their application requires comprehensive libraries including peptides from low-abundant proteins. Here we describe a method for constructing such libraries using biological differentiation to "fractionate" the proteome by harvesting adult organs and tissues and build comprehensive libraries for identifying proteins in zebrafish (Danio rerio) embryos and larvae (an important and widely used model system). Hierarchical clustering using direct comparison of spectra was used to prioritize organ selection. The resulting and publicly available library covers 14,164 proteins, significantly improved the number of peptide-spectrum matches in zebrafish developmental stages, and can be used on data from different instruments and laboratories. The library contains information on tissue and organ expression of these proteins and is also applicable for adult experiments. The approach itself is not limited to zebrafish but would work for any model system.

  11. Zebrafish (Danio rerio) fed vitamin E deficient diets produce embryos with increased morphologic abnormalities and mortality

    PubMed Central

    Miller, Galen W.; Labut, Edwin M.; Lebold, Katie M.; Floeter, Abby; Tanguay, Robert L.; Traber, Maret G.

    2011-01-01

    Vitamin E (α-tocopherol) is required to prevent fetal resorption in rodents. To study α–tocopherol’s role in fetal development, a non-placental model is required. Therefore, the zebrafish, an established developmental model organism, was studied by feeding the fish a defined diet with or without added α–tocopherol. Zebrafish (age: 4–6 w) were fed the deficient (E-), sufficient (E+), or lab diet up to 1 y. All groups showed similar growth rates. The exponential rate of α–tocopherol depletion up to ~80 day in E- zebrafish was 0.029 ± 0.006 nmol/g, equivalent to a depletion half-life of 25 ± 5 days. From age ~80 d, the E- fish (5 ± 3 nmol/g) contained ~50 times less α–tocopherol than the E+ or lab diet fish (369 ± 131 or 362 ± 107, respectively, P<0.05). E-depleted adults demonstrated decreased startle response suggesting neurologic deficits. Expression of selected oxidative stress and apoptosis genes from livers isolated from the zebrafish fed the three diets were evaluated by quantitative polymerase chain reaction and were not found to vary with vitamin E status. When E-depleted adults were spawned, they produced viable embryos with depleted α–tocopherol concentrations. The E- embryos exhibited a higher mortality (P<0.05) at 24 h post fertilization (hpf) and a higher combination of malformations and mortality (P<0.05) at 120 hpf than embryos from parents fed E+ or lab diets. This study documents for the first time that vitamin E is essential for normal zebrafish embryonic development. PMID:21684137

  12. Developmental toxicity of albendazole and its three main metabolites in zebrafish embryos.

    PubMed

    Carlsson, Gunnar; Patring, Johan; Ullerås, Erik; Oskarsson, Agneta

    2011-07-01

    Albendazole (ABZ) is used as an anthelmintic drug in humans and animals. ABZ has been shown to cause developmental toxicity in experimental animals, however it is not clear if this is caused by the parent compound or a metabolite. Zebrafish embryos were exposed from 1 to 144hpf (hours post fertilization) to investigate the developmental toxicity of ABZ, the first metabolite albendazole sulphoxide and the subsequent metabolites albendazole sulphone (ABZSO(2)) and albendazole-2-aminosulphone (ABZSO(2)NH(2)). The results showed that ABZ caused malformations of head and tail and embryonic lethality from 0.3μM. In contrast, the metabolites did not display developmental toxicity at any tested concentration. Dechorionation did not influence the developmental toxic potential of ABZ and ABZSO, indicating that bioavailability was not a limiting factor. Chemical analysis showed that at sublethal concentrations, most of ABZ was metabolized to ABZSO. The results demonstrate that in zebrafish embryos ABZ rather than ABZSO displays developmental toxicity.

  13. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles.

  14. Differential scanning calorimetry studies of intraembryonic freezing and cryoprotectant penetration in zebrafish (Danio rerio) embryos.

    PubMed

    Liu, X H; Zhang, T; Rawson, D M

    2001-08-01

    Nucleation temperatures of intraembryonic water and cryoprotectant penetration in zebrafish embryos were studied using differential scanning calorimetry. The effects of embryo developmental stage, dechorionation, partial removal of yolk, cooling rate, and cryoprotectant treatment on the temperatures of intraembryonic freezing were investigated. Embryo stages were found to have a significant effect on the nucleation temperatures of intact embryos. Freeze onset temperatures of -11.9 +/- 1.5, -15.6 +/- 0.3, and -20.5 +/- 0.1 degrees C were obtained for intact embryos at 6-somite, prim-6, and high-pec stages, respectively. After dechorionation, the freeze onset temperatures of intraembryonic water shifted to significantly lower temperatures, being -23.5 +/- 0.8, -18.7 +/- 0.7, -24.9 +/- 0.8 degrees C for 6-somite, prim-6, and high-pec stages, respectively. Yolk-reduced high-pec stage embryos showed significantly lower nucleation temperatures with an average onset at -27.9 +/- 0.4 degrees C. The effect of cryoprotectant treatment on the nucleation temperatures of intraembryonic water varies among different embryo stages and different cryoprotectants. Thirty-minute treatment with 2 M methanol significantly decreased the nucleation temperatures of dechorionated 6-somite embryos whilst no temperature decrease was observed for prim-6 or yolk-reduced high-pec embryos. Thirty-minute exposure to 1 M propylene glycol did not significantly affect the nucleation temperatures of dechorionated 6-somite, prim-6, or yolk-reduced high-pec embryos. In order to increase the permeability of embryos to cryoprotectants, the yolk sacs of dechorionated embryos at 6-somite or prim-6 embryos were punctured with a sharp micro-needle before exposure to cryoprotectants. The punctured prim-6 embryos showed significantly lower temperatures of intraembryonic freezing after 30 min of exposure to 2 M methanol following the multi-punctures. The nucleation temperatures of punctured 6-somite or prim-6

  15. Biological response of zebrafish embryos after short-term exposure to thifluzamide

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Liu, Wenxian; Mu, Xiyan; Qi, Suzhen; Fu, Bin; Wang, Chengju

    2016-12-01

    Thifluzamide is a new amide fungicide, and its extensive application may have toxic effects on zebrafish. To better understand the underlying mechanism, we investigated in detail the potential toxic effects of thifluzamide on zebrafish embryos. In the present study, embryos were exposed to 0, 0.19, 1.90, and 2.85 mg/L thifluzamide for 4 days. Obvious pathological changes were found upon a histological exam, and negative changes in mitochondrial structure were observed under Transmission Electron Microscopy (TEM), which qualitatively noted the toxic effects of thifluzamide on embryos. Moreover, we quantitatively evaluated the enzyme activities [succinate dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspases], the contents of malonaldehyde (MDA) and interleukin-8 (IL-8) and the expression levels of the related genes. This study suggests that the negative changes in mitochondrial structure and SDH activity might be responsible for oxidative damage, cell apoptosis and inflammation, which would facilitate the action of these factors in cell death and might play a crucial role during toxic events. In addition to providing the first description of the mechanism of the toxic effects of thifluzamide on embryos, this study also represents a step towards using embryos to assess mitochondrial metabolism and disease.

  16. Biological response of zebrafish embryos after short-term exposure to thifluzamide

    PubMed Central

    Yang, Yang; Liu, Wenxian; Mu, Xiyan; Qi, Suzhen; Fu, Bin; Wang, Chengju

    2016-01-01

    Thifluzamide is a new amide fungicide, and its extensive application may have toxic effects on zebrafish. To better understand the underlying mechanism, we investigated in detail the potential toxic effects of thifluzamide on zebrafish embryos. In the present study, embryos were exposed to 0, 0.19, 1.90, and 2.85 mg/L thifluzamide for 4 days. Obvious pathological changes were found upon a histological exam, and negative changes in mitochondrial structure were observed under Transmission Electron Microscopy (TEM), which qualitatively noted the toxic effects of thifluzamide on embryos. Moreover, we quantitatively evaluated the enzyme activities [succinate dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), caspases], the contents of malonaldehyde (MDA) and interleukin-8 (IL-8) and the expression levels of the related genes. This study suggests that the negative changes in mitochondrial structure and SDH activity might be responsible for oxidative damage, cell apoptosis and inflammation, which would facilitate the action of these factors in cell death and might play a crucial role during toxic events. In addition to providing the first description of the mechanism of the toxic effects of thifluzamide on embryos, this study also represents a step towards using embryos to assess mitochondrial metabolism and disease. PMID:27924917

  17. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    PubMed Central

    Thomas, J. K.; Janz, D. M.

    2016-01-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes. PMID:27210033

  18. Embryo Microinjection of Selenomethionine Reduces Hatchability and Modifies Oxidant Responsive Gene Expression in Zebrafish

    NASA Astrophysics Data System (ADS)

    Thomas, J. K.; Janz, D. M.

    2016-05-01

    In previous studies we demonstrated that exposure to selenomethionine (SeMet) causes developmental toxicities in zebrafish (Danio rerio). The objectives of this study were to establish a dose-response relationship for developmental toxicities in zebrafish after embryo microinjection of Se (8, 16 or 32 μg/g dry mass of eggs) in the form of SeMet, and to investigate potential underlying mechanism(s) of SeMet-induced developmental toxicities. A dose-dependent increase in frequencies of mortality and total deformities, and reduced hatchability were observed in zebrafish exposed to excess Se via embryo microinjection. The egg Se concentration causing 20% mortality was then used to investigate transcript abundance of proteins involved in antioxidant protection and methylation. Excess Se exposure modified gene expression of oxidant-responsive transcription factors (nuclear factor erythroid 2-related factor nrf2a and nrf2b), and enzymes involved in cellular methylation (methionine adenosyltransferase mat1a and mat2ab) in zebrafish larvae. Notably, excess Se exposure up-regulated transcript abundance of aryl hydrocarbon receptor 2 (ahr2), a signalling pathway involved in the toxicity of dioxin-related compounds. Our findings suggest that oxidative stress or modification of methylation, or a combination of these mechanisms, might be responsible for Se-induced developmental toxicities in fishes.

  19. Basagran(®) induces developmental malformations and changes the bacterial community of zebrafish embryos.

    PubMed

    Oliveira, Jacinta M M; Galhano, Victor; Henriques, Isabel; Soares, Amadeu M V M; Loureiro, Susana

    2017-02-01

    This study aimed to assess the effects of Basagran(®) on zebrafish (Danio rerio) embryos. The embryos were exposed to Basagran(®) at concentrations ranging from 120.0 to 480.6 mg/L, and the effects on embryo development (up to 96 h) and bacterial communities of 96 h-larvae were assessed. The embryo development response was time-dependent and concentration-dependent (106.35 < EC50 < 421.58 mg/L). The sensitivity of embryo-related endpoints decreased as follows: blood clotting in the head and/or around the yolk sac > delay or anomaly in yolk sac absorption > change in swimming equilibrium > development of pericardial and/or yolk sac oedema > scoliosis. A PCR-DGGE analysis was used to evaluate changes in the structure, richness, evenness and diversity of bacterial communities after herbicide exposure. A herbicide-induced structural adjustment of bacterial community was observed. In this study, it was successfully demonstrated that Basagran(®) affected zebrafish embryos and associated bacterial communities, showing time-dependent and concentration-dependent embryos' developmental response and structural changes in bacterial community. Thus, this work provides for the first time a complementary approach, which is useful to derive robust toxicity thresholds considering the embryo-microbiota system as a whole. The aquatic hazard assessment will be strengthened by combining current ecotoxicological tests with molecular microbiology tools.

  20. Developmental toxic effects of monocrotophos, an organophosphorous pesticide, on zebrafish (Danio rerio) embryos.

    PubMed

    Pamanji, Rajesh; Bethu, M S; Yashwanth, B; Leelavathi, S; Venkateswara Rao, J

    2015-05-01

    The present study examined the response of zebrafish embryos exposed to different concentrations (10, 20, 30, 40, 50, and 60 mg/L) of monocrotophos under static conditions for 96 h. We found that mortality had occurred within 48 h at all test concentrations, later insignificant mortality was observed. Monocrotophos (MCP) can be rated as moderately toxic to the Zebrafish embryos with a 96-h median lethal concentration (LC50) of 37.44 ± 3.32 mg/L. In contrast, it greatly affected the development of zebrafish embryos by inducing several developmental abnormalities like pericardial edema, altered heart development, spinal and vertebral anomalies in a concentration-dependent manner. A significant percent reduction in length by 9-48% and heart beats by 18-51% was observed in hatchlings exposed to LC10 and LC50 concentrations at 96 h when compared to controls. The process of looping formation of heart at embryonic stage was greatly affected by the LC50 concentration of MCP. The neurotoxic potentiality of MCP was assessed by using a marker enzyme, acetylcholinesterase in both in vitro and in vivo experiments. MCP was found to be the most potent inhibitor of AChE in vitro with an IC50 value of 4.3 × 10(-4) M. The whole-body AChE enzyme activity in vivo was significantly inhibited during the exposure tenure with the maximum inhibition of 62% at 24 h.

  1. High-content screen using zebrafish (Danio rerio) embryos identifies a novel kinase activator and inhibitor.

    PubMed

    Geldenhuys, Werner J; Bergeron, Sadie A; Mullins, Jackie E; Aljammal, Rowaa; Gaasch, Briah L; Chen, Wei-Chi; Yun, June; Hazlehurst, Lori A

    2017-02-28

    In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10μM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078μM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525μM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.

  2. Identification of phenolic compounds in red wine extract samples and zebrafish embryos by HPLC-ESI-LTQ-Orbitrap-MS.

    PubMed

    Vallverdú-Queralt, Anna; Boix, Nuria; Piqué, Ester; Gómez-Catalan, Jesús; Medina-Remon, Alexander; Sasot, Gemma; Mercader-Martí, Mercè; Llobet, Juan M; Lamuela-Raventos, Rosa M

    2015-08-15

    The zebrafish embryo is a highly interesting biological model with applications in different scientific fields, such as biomedicine, pharmacology and toxicology. In this study, we used liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (HPLC/ESI-LTQ-Orbitrap-MS) to identify the polyphenol compounds in a red wine extract and zebrafish embryos. Phenolic compounds and anthocyanin metabolites were determined in zebrafish embryos previously exposed to the red wine extract. Compounds were identified by injection in a high-resolution system (LTQ-Orbitrap) using accurate mass measurements in MS, MS(2) and MS(3) modes. To our knowledge, this research constitutes the first comprehensive identification of phenolic compounds in zebrafish by HPLC coupled to high-resolution mass spectrometry.

  3. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish

    PubMed Central

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-01-01

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development (mbp and syn2a) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain. PMID:28036051

  4. AHR2 morpholino knockdown reduces the toxicity of total particulate matter to zebrafish embryos.

    PubMed

    Massarsky, Andrey; Bone, Audrey J; Dong, Wu; Hinton, David E; Prasad, G L; Di Giulio, Richard T

    2016-10-15

    The zebrafish embryo has been proposed as a 'bridge model' to study the effects of cigarette smoke on early development. Previous studies showed that exposure to total particulate matter (TPM) led to adverse effects in developing zebrafish, and suggested that the antioxidant and aryl hydrocarbon receptor (AHR) pathways play important roles. This study investigated the roles of these two pathways in mediating TPM toxicity. The study consisted of four experiments. In experiment I, zebrafish embryos were exposed from 6h post fertilization (hpf) until 96hpf to TPM0.5 and TPM1.0 (corresponding to 0.5 and 1.0μg/mL equi-nicotine units) in the presence or absence of an antioxidant (N-acetyl cysteine/NAC) or a pro-oxidant (buthionine sulfoximine/BSO). In experiment II, TPM exposures were performed in embryos that were microinjected with nuclear factor erythroid 2-related factor 2 (Nrf2), AHR2, cytochrome P450 1A (CYP1A), or CYP1B1 morpholinos, and deformities were assessed. In experiment III, embryos were exposed to TPM, and embryos/larvae were collected at 24, 48, 72, and 96hpf to assess several genes associated with the antioxidant and AHR pathways. Lastly, experiment IV assessed the activity and protein levels of CYP1A and CYP1B1 after exposure to TPM. We demonstrate that the incidence of TPM-induced deformities was generally not affected by NAC/BSO treatments or Nrf2 knockdown. In contrast, AHR2 knockdown reduced, while CYP1A or CYP1B1 knockdowns elevated the incidence of some deformities. Moreover, as shown by gene expression the AHR pathway, but not the antioxidant pathway, was induced in response to TPM exposure, providing further evidence for its importance in mediating TPM toxicity.

  5. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.

    PubMed

    Asharani, P V; Lianwu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2011-03-01

    Nanoparticles have diverse applications in electronics, medical devices, therapeutic agents and cosmetics. While the commercialization of nanoparticles is rapidly expanding, their health and environmental impact is not well understood. Toxicity assays of silver, gold, and platinum nanoparticles, using zebrafish embryos to study their developmental effects were carried out. Gold (Au-NP, 15-35 nm), silver (Ag-NP, 5-35 nm) and platinum nanoparticles (Pt-NP, 3-10 nm) were synthesized using polyvinyl alcohol (PVA) as a capping agent. Toxicity was recorded in terms of mortality, hatching delay, phenotypic defects and metal accumulation. The addition of Ag-NP resulted in a concentration-dependant increase in mortality rate. Both Ag-NP and Pt-NP induced hatching delays, as well as a concentration dependant drop in heart rate, touch response and axis curvatures. Ag-NP also induced other significant phenotypic changes including pericardial effusion, abnormal cardiac morphology, circulatory defects and absence or malformation of the eyes. In contrast, Au-NP did not show any indication of toxicity. Uptake and accumulation of nanoparticles in embryos was confirmed by inductively coupled plasma optical emission spectroscopy (ICP-OES), which revealed detectable levels in embryos within 72 hpf. Ag-NP and Au-NP were taken up by the embryos in relatively equal amounts whereas lower Pt concentrations were observed in embryos exposed to Pt-NP. This was probably due to the small size of the Pt nanoparticles compared to Ag-NP and Au-NP, thus resulting in fewer metal atoms being retained in the embryos. Among the nanoparticles studied, Ag-NPs were found to be the most toxic and Au-NPs the non-toxic. The toxic effects exhibited by the zebrafish embryos as a consequence of nanoparticle exposure, accompanied by the accumulation of metals inside the body calls for urgent further investigations in this field.

  6. A representative retinoid X receptor antagonist UVI3003 induced teratogenesis in zebrafish embryos.

    PubMed

    Zheng, Liang; Xu, Ting; Li, Daoji; Zhou, Junliang

    2015-03-01

    Retinoid X receptor (RXR) interfering activity has been detected in different water resources. To study RXR disruptor-induced toxicological effects on vertebrates, embryos of zebrafish (Danio rerio) were exposed to a representative RXR antagonist UVI3003. Results showed that the teratogenic index (LC50 /EC50 ) of UVI3003 was as high as 5.4. UVI3003 induced multiple malformations of embryos, including deformed fins, reduced brains, small jaws, bent tails and edema in hearts, the degree of which became more severe with increasing exposure concentration. Although no significant difference was observed in the hatching rates between the exposure group and control, the whole body length was significantly reduced by 6.5% and 8.9% when exposed to 200 and 300 µg l(-1) of UVI3003, respectively. The heart rate also significantly decreased by 8.8-50.2% during exposure. Further experiments revealed that the pharyngula stage was the most sensitive development phase in terms of embryo response to UVI3003. The results demonstrated severe teratogenicity of RXR antagonist in zebrafish embryos and provided important data for ecotoxicological evaluation of RXR antagonists.

  7. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    PubMed

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-09-04

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.

  8. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    PubMed Central

    Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  9. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos.

    PubMed

    Hartnett, Lori; Glynn, Catherine; Nolan, Catherine M; Grealy, Maura; Byrnes, Lucy

    2010-01-01

    The insulin-like growth factor (IGF) family is essential for normal embryonic growth and development and it is highly conserved through vertebrate evolution. However, the roles that the individual members of the IGF family play in embryonic development have not been fully elucidated. This study focuses on the role of IGF-2 in zebrafish embryonic development. Two igf-2 genes, igf-2a and igf-2b, are present in the zebrafish genome. Antisense morpholinos were designed to knock down both igf-2 genes. The neural and cardiovascular defects in IGF-2 morphant embryos were then examined further using wholemount in situ hybridisation, TUNEL analysis and O-dianisidine staining. Knockdown of igf-2a or igf-2b resulted in ventralised embryos with reduced growth, reduced eyes, disrupted brain structures and a disrupted cardiovascular system, with igf-2b playing a more significant role in development. During gastrulation, igf-2a and igf-2b are required for development of anterior neural structures and for regulation of genes critical to dorsal-ventral patterning. As development proceeds, igf-2a and igf-2b play anti-apoptotic roles. Gene expression analysis demonstrates that igf-2a and igf-2b play overlapping roles in angiogenesis and cardiac outflow tract development. Igf-2b is specifically required for cardiac valve development and cardiac looping. Injection of a dominant negative IGF-1 receptor led to similar defects in angiogenesis and cardiac valve development, indicating IGF-2 signals through this receptor to regulate cardiovascular development. This is the first study describing two functional igf-2 genes in zebrafish. This work demonstrates that igf-2a and igf-2b are critical to neural and cardiovascular development in zebrafish embryos. The finding that igf-2a and igf-2b do not act exclusively in a redundant manner may explain why both genes have been stably maintained in the genome.

  10. Piwi-like 2 mediates fibroblast growth factor signaling during gastrulation of zebrafish embryo.

    PubMed

    Zhao, Jun; Sun, Huaqin; Deng, Wenqian; Li, Dan; Liu, Yanyan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2010-09-01

    Piwi (P-element-induced wimpy testis) proteins have been shown to play important roles in maintenance of germ line stem cells, germ cell proliferation and differentiation, and control of Piwi-interacting RNAs (PiRNAs). PiRNAs comprise a broad class of small noncoding RNAs that function as an endogenous defense system against transposable elements. Fibroblast growth factor (Fgf) signals, mediated partly by no tail gene (ntl), are responsible for patterning embryo and mesoderm formation. To understand the function of Piwi proteins, we used zebrafish as a model system. In zebrafish, piwi-like 2 gene (piwil2) is also required for germ cell differentiation and meiosis. Here we report that piwil2 knockdown is able to inhibit the expression of fibroblast growth factor 8a (fgf8a). In contrast, injection with piwil2 mRNA enhances fgf8a expression. Knockdown of piwil2 reduces the inductive effect of fgf8a on dorsalized phenotype, in which embryos extend to an oval shape at the end of epiboly stage. Coinjection with fgf8a and piwil2 mRNAs led to more seriously dorsalized phenotype than coinjection with fgf8a mRNA and piwil2-cMO. In addition, knockdown of piwil2 inhibits the inductive effect of fgf8a on ntl, whereas overexpression of piwil2 enhances the inductive effect of fgf8a on ntl. We also demonstrate that piwil2 positively regulates ntl expression at bud stage, while piwil2 negatively regulates ntl expression at 24 hours post-fertilization. Thus, the functional consequences of piwil2 expression vary during early development of zebrafish embryo. Taken together, we suggest that zebrafish piwil2 is a mediator of Fgf signals in gastrula period.

  11. Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos.

    PubMed

    Handley-Goldstone, Heather M; Grow, Matthew W; Stegeman, John J

    2005-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant that causes altered heart morphology, circulatory impairment, edema, hemorrhage, and early life stage mortality in fish. TCDD toxicity is dependent, in large part, on the aryl hydrocarbon receptor (AHR), but understanding of the molecular mechanism of cardiovascular embryotoxicity remains incomplete. To identify genes potentially involved in cardiovascular effects, we constructed custom cDNA microarrays consisting of 4896 zebrafish adult heart cDNA clones and over 200 genes with known developmental, toxicological and housekeeping roles. Gene expression profiles were obtained for 3-day-old zebrafish after early embryonic exposure to either 0.5 or 5.0 nM TCDD. In all, 516 clones were significantly differentially expressed (p < 0.005) under at least one treatment condition; 123 high-priority clones were selected for further investigation. Cytochromes P450 1A and 1B1, and other members of the AHR gene battery, were strongly and dose-dependently induced by TCDD. Importantly, altered expression of cardiac sarcomere components, including cardiac troponin T2 and multiple myosin isoforms, was consistent with the hypothesis that TCDD causes dilated cardiomyopathy. Observed increases in expression levels of mitochondrial energy transfer genes also may be related to cardiomyopathy. Other TCDD-responsive genes included fatty acid and steroid metabolism enzymes, ribosomal and signal-transduction proteins, and 18 expressed sequence tags (ESTs) with no known protein homologs. As the first broad-scale study of TCDD-modulated gene expression in a non-mammalian system, this work provides an important perspective on mechanisms of TCDD toxicity.

  12. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    PubMed Central

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  13. Establishment of Three Francisella Infections in Zebrafish Embryos at Different Temperatures

    PubMed Central

    Brudal, Espen; Ulanova, Lilia S.; O. Lampe, Elisabeth; Rishovd, Anne-Lise; Winther-Larsen, Hanne C.

    2014-01-01

    Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells. PMID:24614659

  14. The larvicide pyriproxyfen blamed during the Zika virus outbreak does not cause microcephaly in zebrafish embryos

    PubMed Central

    Dzieciolowska, Stefania; Larroque, Anne-Laure; Kranjec, Elizabeth-Ann; Drapeau, Pierre; Samarut, Eric

    2017-01-01

    Although the zika virus (ZIKV) has now been strongly correlated with emerging cases of microcephaly in the Americas, suspicions have been raised regarding the use of pyriproxyfen, a larvicide that prevents mosquito development, in drinking water. The effects of this compound on neurodevelopment have not yet been addressed specifically in vertebrates. As a result, we aimed at addressing the effects, if any, of pyriproxyfen on neurodevelopment in the zebrafish embryo as a vertebrate model. Using zebrafish transgenic lines expressing GFP in different cell populations (elavl3 in newborn neurons, gfap and nestin in neural stem cells), we focused on the analysis of whole embryonic brain volume after confocal 3D-reconstruction and the quantification of purified neural stem cells during early neurodevelopment by FACS-cell sorting from whole in vivo embryos. Interestingly, though lethal at very high doses, pyriproxyfen did not cause brain malformation nor any significant changes in the number of observed stem cells in the developing central nervous system. Our data indicate that pyriproxyfen does not affect central nervous system development in zebrafish, suggesting that this larvicide on its own, may not be correlated with the increase in microcephaly cases reported recently. PMID:28051181

  15. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    SciTech Connect

    Shi Xiongjie; Du Yongbing; Lam, Paul K.S.; Wu, Rudolf S.S.; Zhou Bingsheng

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential

  16. Halogenated carbazoles induce cardiotoxicity in developing zebrafish (Danio rerio) embryos.

    PubMed

    Fang, Mingliang; Guo, Jiehong; Chen, Da; Li, An; Hinton, David E; Dong, Wu

    2016-10-01

    Halogenated carbazoles are increasingly identified as a novel class of environmental contaminants. However, no in vivo acute toxicity information on those compounds was available. In the present study, an in vivo zebrafish embryonic model (Danio rerio) was used to investigate the developmental toxicity of those halogenated carbazoles. The results suggested that acute toxicity was structure-dependent. Two of the 6 tested carbazoles, 2,7-dibromocarbazole (27-DBCZ) and 2,3,6,7-tetrachlorocarbazole, showed obvious developmental toxicity at nanomolar levels. The typical phenotypes were similar to dioxin-induced cardiotoxicity, including swollen yolk sac, pericardial sac edema, elongated and unlooped heart, and lower jaw shortening. During embryonic development 27-DBCZ also induced a unique pigmentation decrease. Gene expression and protein staining of cytochrome P4501A (CYP1A) showed that both halogenated carbazoles could induce CYP1A expression at the micromolar level and primarily in the heart area, which was similar to dioxin activity. Further, aryl hydrocarbon receptor-(AhR)2 gene knockdown with morpholino confirmed that the acute cardiotoxicity is AhR-dependent. In conclusion, the results demonstrate that halogenated carbazoles represent yet another class of persistent organic pollutants with dioxin-like activity in an in vivo animal model. Environ Toxicol Chem 2016;35:2523-2529. © 2016 SETAC.

  17. Selective disruption of vascular endothelium of zebrafish embryos by ultrafast laser microsurgical treatment

    PubMed Central

    Woo, Suk-Yi; Moon, Heh-Young; Kim, Tag Gyum; Lee, Heung Soon; Sidhu, Mehra S.; Kim, Changho; Jeon, Jae-Phil; Jeoung, Sae Chae

    2015-01-01

    In this work, we demonstrate that ultrafast laser irradiation could selectively disrupt vascular endothelium of zebrafish embryos in vivo. Ultrafast lasers minimize the collateral damage in the vicinity of the laser focus and eventually reduce coagulation in the tissues. We have also found that the threshold fluence for lesion formation of the vascular endothelium strongly depends on the developmental stage of the embryos. The threshold laser fluence required to induce apparent lesions in the vascular structure for Somite 14, 20 and 25 stages is about 5 J/cm2 ~7 J/cm2, which is much lower than that for the later development stages of Prim 16 and Prim 20 of 30 J/cm2 ~50 J/cm2. The proposed method for treating the vascular cord of zebrafish embryos in the early stage of development has potential as a selective and effective method to induce a fatal lesion in the vascular endothelium without damaging the developed blood vessels. PMID:26713187

  18. Vitamin D receptor signaling is required for heart development in zebrafish embryo.

    PubMed

    Kwon, Hye-Joo

    2016-02-12

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development.

  19. Embryotoxicity and genotoxicity evaluation of sediments from Yangtze River estuary using zebrafish (Danio rerio) embryos.

    PubMed

    Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling

    2016-03-01

    Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.

  20. Real-time prediction of cell division timing in developing zebrafish embryo

    PubMed Central

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D.; Ikeda, Kazushi; Sato, Thomas N.

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  1. Real-time prediction of cell division timing in developing zebrafish embryo.

    PubMed

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D; Ikeda, Kazushi; Sato, Thomas N

    2016-09-06

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation-thus, presenting a new opportunity for in vivo experimental systems.

  2. Polymethoxy-1-alkenes from Aphanizomenon ovalisporum Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Jaja-Chimedza, Asha; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2012-01-01

    Cyanobacteria are recognized producers of a wide array of toxic or otherwise bioactive secondary metabolites. The present study utilized the zebrafish (Danio rerio) embryo as an aquatic animal model of vertebrate development to identify, purify and characterize lipophilic inhibitors of development (i.e., developmental toxins) from an isolate of the freshwater cyanobacterial species, Aphanizomenon ovalisporum.Bioassay-guided fractionation led to the purification, and subsequent chemical characterization, of an apparent homologous series of isotactic polymethoxy-1-alkenes (1–6), including three congeners (4–6) previously identified from the strain, and two variants previously identified from other species (2 and 3), as well as one apparently novel member of the series (1). Five of the PMAs in the series (1–5) were purified in sufficient quantity for comparative toxicological characterization, and toxicity in the zebrafish embryo model was found to generally correlate with relative chain length and/or methoxylation. Moreover, exposure of embryos to a combination of variants indicates an apparent synergistic interaction between the congeners. Although PMAs have been identified previously in cyanobacteria, this is the first report of their apparent toxicity. These results, along with the previously reported presence of the PMAs from several cyanobacterial species, suggest a possibly widespread distribution of the PMAs as toxic secondary metabolites and warrants further chemical and toxicological investigation. PMID:23170087

  3. Real-time prediction of cell division timing in developing zebrafish embryo

    NASA Astrophysics Data System (ADS)

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D.; Ikeda, Kazushi; Sato, Thomas N.

    2016-09-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems.

  4. Acoustic radiation force impulse (ARFI) imaging of zebrafish embryo by high-frequency coded excitation sequence.

    PubMed

    Park, Jinhyoung; Lee, Jungwoo; Lau, Sien Ting; Lee, Changyang; Huang, Ying; Lien, Ching-Ling; Kirk Shung, K

    2012-04-01

    Acoustic radiation force impulse (ARFI) imaging has been developed as a non-invasive method for quantitative illustration of tissue stiffness or displacement. Conventional ARFI imaging (2-10 MHz) has been implemented in commercial scanners for illustrating elastic properties of several organs. The image resolution, however, is too coarse to study mechanical properties of micro-sized objects such as cells. This article thus presents a high-frequency coded excitation ARFI technique, with the ultimate goal of displaying elastic characteristics of cellular structures. Tissue mimicking phantoms and zebrafish embryos are imaged with a 100-MHz lithium niobate (LiNbO₃) transducer, by cross-correlating tracked RF echoes with the reference. The phantom results show that the contrast of ARFI image (14 dB) with coded excitation is better than that of the conventional ARFI image (9 dB). The depths of penetration are 2.6 and 2.2 mm, respectively. The stiffness data of the zebrafish demonstrate that the envelope is harder than the embryo region. The temporal displacement change at the embryo and the chorion is as large as 36 and 3.6 μm. Consequently, this high-frequency ARFI approach may serve as a remote palpation imaging tool that reveals viscoelastic properties of small biological samples.

  5. Repeated, noninvasive, high resolution spectral domain optical coherence tomography imaging of zebrafish embryos

    PubMed Central

    Kagemann, Larry; Ishikawa, Hiroshi; Zou, Jian; Charukamnoetkanok, Puwat; Wollstein, Gadi; Townsend, Kelly A.; Gabriele, Michelle L.; Bahary, Nathan; Wei, Xiangyun; Fujimoto, James G.

    2008-01-01

    Purpose To demonstrate a new imaging method for high resolution spectral domain optical coherence tomography (SD-OCT) for small animal developmental imaging. Methods Wildtype zebrafish that were 24, 48, 72, and 120 h post fertilization (hpf) and nok gene mutant (48 hpf) embryos were imaged in vivo. Three additional embryos were imaged twice, once at 72 hpf and again at 120 hpf. Images of the developing eye, brain, heart, whole body, proximal yolk sac, distal yolk sac, and tail were acquired. Three-dimensional OCT data sets (501×180 axial scans) were obtained as well as oversampled frames (8,100 axial scans) and repeated line scans (180 repeated frames). Scan volumes ranged from 750×750 µm to 3×3 mm, each 1.8 mm thick. Three-dimenstional data sets allowed construction of C-mode slabs of the embryo. Results SD-OCT provided ultra-high resolution visualization of the eye, brain, heart, ear, and spine of the developing embryo as early as 24 hpf, and allowed development to be documented in each of these organ systems in consecutive sessions. Repeated line scanning with averaging optimized the visualization of static and dynamic structures contained in SD-OCT images. Structural defects caused by a mutation in the nok gene were readily observed as impeded ocular development, and enlarged pericardial cavities. Conclusions SD-OCT allowed noninvasive, in vivo, ultra-high resolution, high-speed imaging of zebrafish embryos in their native state. The ability to measure structural and functional features repeatedly on the same specimen, without the need to sacrifice, promises to be a powerful tool in small animal developmental imaging. PMID:19052656

  6. Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos.

    PubMed

    Pietri, Thomas; Manalo, Elise; Ryan, Joel; Saint-Amant, Louis; Washbourne, Philip

    2009-10-01

    Characterizing connectivity in the spinal cord of zebrafish embryos is not only prerequisite to understanding the development of locomotion, but is also necessary for maximizing the potential of genetic studies of circuit formation in this model system. During their first day of development, zebrafish embryos show two simple motor behaviors. First, they coil their trunks spontaneously, and a few hours later they start responding to touch with contralateral coils. These behaviors are contemporaneous until spontaneous coils become infrequent by 30 h. Glutamatergic neurons are distributed throughout the embryonic spinal cord, but their contribution to these early motor behaviors in immature zebrafish is still unclear. We demonstrate that the kinetics of spontaneous coiling and touch-evoked responses show distinct developmental time courses and that the touch response is dependent on AMPA-type glutamate receptor activation. Transection experiments suggest that the circuits required for touch-evoked responses are confined to the spinal cord and that only the most rostral part of the spinal cord is sufficient for triggering the full response. This rostral sensory connection is presumably established via CoPA interneurons, as they project to the rostral spinal cord. Electrophysiological analysis demonstrates that these neurons receive short latency AMPA-type glutamatergic inputs in response to ipsilateral tactile stimuli. We conclude that touch responses in early embryonic zebrafish arise only after glutamatergic synapses connect sensory neurons and interneurons to the contralateral motor network via a rostral loop. This helps define an elementary circuit that is modified by the addition of sensory inputs, resulting in behavioral transformation.

  7. Transcriptional responses of zebrafish embryos exposed to potential sonic hedgehog pathway interfering compounds deviate from expression profiles of cyclopamine.

    PubMed

    Büttner, Anita; Busch, Wibke; Klüver, Nils; Giannis, Athanassios; Scholz, Stefan

    2012-04-01

    The molecular responses of two small molecules, SANT-2 and GANT-61, potentially interfering with the sonic hedgehog pathway (Shh) have been studied in zebrafish embryos by microarray analysis. For both compounds and the positive reference cyclopamine previous reporter gene assays for the transcription factor Gli1 have indicated an inhibition of the hedgehog signaling pathway. In zebrafish embryos a typical phenotype (cyclopia) associated with Shh interference was only observed for cyclopamine. Furthermore, only cyclopamine led to the repression of genes specifically associated with hedgehog signaling and confirmed published microarray data. In contrast to these data hspb11 was additionally identified as the most pronounced down-regulated genes for exposure to cyclopamine. No or different effects on gene expression patterns were provoked by SANT-2 or GANT-61, respectively. Reasons for the discrepancies between cellular reporter and the zebrafish embryo assay and potential implications for the identification of compounds interfering with specific developmental pathways are discussed.

  8. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  9. Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio rerio) embryos.

    PubMed

    Girardi, Felipe A; Bruch, Gisele E; Peixoto, Carolina S; Dal Bosco, Lidiane; Sahoo, Sangram K; Gonçalves, Carla O F; Santos, Adelina P; Furtado, Clascídia A; Fantini, Cristiano; Barros, Daniela M

    2017-02-01

    Single-wall carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) are promising materials for biomedical applications such as diagnostic devices and controlled drug-release systems. However, several questions about their toxicological profile remain unanswered. Thus, the aim of this study was to investigate the action of SWCNT-PEG in Danio rerio zebrafish embryos at the molecular, physiological and morphological levels. The SWCNT used in this study were synthesized by the high-pressure carbon monoxide process, purified and then functionalized with distearoyl phosphatidylethanolamine block copolymer-PEG (molecular weight 2 kDa). The characterization process was carried out with low-resolution transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy. Individual zebrafish embryos were exposed to the SWCNT-PEG. Toxic effects occurred only at the highest concentration tested (1 ppm) and included high mortality rates, delayed hatching and decreased total larval length. For all the concentrations tested, the alkaline comet assay revealed no genotoxicity, and Raman spectroscopy measurements on the histological slices revealed no intracellular nanotubes. The results shown here demonstrate that SWCNT-PEG has low toxicity in zebrafish embryos, but more studies are needed to understand what mechanisms are involved. However, the presence of residual metals is possibly among the primary mechanisms responsible for the toxic effects observed, because the purification process was not able to remove all metal contamination, as demonstrated by the thermogravimetric analysis. More attention must be given to the toxicity of these nanomaterials before they are used in biomedical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  11. Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish.

    PubMed

    Teng, Zinan; Sun, Chen; Liu, Shousheng; Wang, Hongmiao; Zhang, Shicui

    2014-10-01

    The function and mechanism of chitinases in early embryonic development remain largely unknown. We show here that recombinant chitinase-3 (rChi3) is able to hydrolyze the artificial chitin substrate, 4-methylumbelliferyl-β-D-N,N',N″-triacetylchitotrioside, and to bind to and inhibit the growth of the fungus Candida albicans, implicating that Chi3 plays a dual function in innate immunity and chitin-bearing food digestion in zebrafish. This is further corroborated by the expression profile of Chi3 in the liver and gut, which are both immune- and digestion-relevant organs. Compared with rChi3, rChi3-CD lacking CBD still retains partial capacity to bind to C. albicans, but its enzymatic and antifungal activities are significantly reduced. By contrast, rChi3-E140N with the putative catalytic residue E140 mutated shows little affinity to chitin, and its enzymatic and antifungal activities are nearly completely lost. These suggest that both enzymatic and antifungal activities of Chi3 are dependent on the presence of CBD and E140. We also clearly demonstrate that in zebrafish, both the embryo extract and the developing embryo display antifungal activity against C. albicans, and all the findings point to chitinase-3 (Chi3) being a newly-identified factor involved in the antifungal activity. Taken together, a dual function in both innate immunity and food digestion in embryo is proposed for zebrafish Chi3. It also provides a new angle to understand the immune role of chitinases in early embryonic development of animals.

  12. Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos.

    PubMed

    Hsieh, Yueh-Chun; Chang, Mau-Sun; Chen, Jeou-Yuan; Yen, Jeffrey Jong-Young; Lu, I-Ching; Chou, Chih-Ming; Huang, Chang-Jen

    2003-05-16

    The BH3-only proapoptotic protein, BAD, was cloned from zebrafish embryos and its properties were characterized. Zebrafish BAD (zBAD) is a protein with 147 amino acids that contains a BH3 domain and a putative 14-3-3 binding site with the sequence of RPRSRS(84)AP, corresponding to S(136) in mouse BAD (mBAD). zBAD shares 34%, 28%, and 29% amino acid sequence identity to the human, mouse, and rat BAD, respectively. RT-PCR analysis revealed that the expression of zBAD gene is found in various parts of zebrafish tissues. The treatment with the z-VAD fmk, a broad-range caspase inhibitor, in COS-1 cells significantly increased the expression of zebrafish BAD fusion proteins (GFP-zBAD and HA-zBAD), indicating that zebrafish BAD fusion proteins may be cleaved by caspase(s). zBAD was shown to induce apoptosis when it was overexpressed in COS-1 cells. In addition, zBAD was also expressed in muscle cells under the muscle-specific promoter from zebrafish alpha-actin gene. Abnormality in the skeletal muscles and the loss of green fluorescence signal in the same region were observed. Taken together, our results indicate that zBAD could induce apoptosis in vitro and in vivo and may have biological implications in apoptosis during zebrafish development.

  13. In Vivo Quantitative Study of Sized-Dependent Transport and Toxicity of Single Silver Nanoparticles Using Zebrafish Embryos

    PubMed Central

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Desai, Tanvi; Cherukui, Pavan K.; Xu, Xiao-Hong Nancy

    2012-01-01

    Nanomaterials possess distinctive physicochemical properties (e.g., small sizes, high surface area-to-volume ratios) and promise a wide variety of applications, ranging from design of high quality consumer products to effective disease diagnosis and therapy. These properties can lead to toxic effects, potentially hindering advance in nanotechnology. In this study, we have synthesized and characterized purified and stable (non-aggregation) silver nanoparticles (Ag NPs, 41.6±9.1 nm in average diameters), and utilized early-developing (cleavage-stage) zebrafish embryos (critical aquatic and eco- species) as in vivo model organisms to probe diffusion and toxicity of Ag NPs. We found that single Ag NPs (30–72 nm diameters) passively diffused into the embryos through chorionic pores via random Brownian motion and stayed inside the embryos throughout their entire development (120 hours-post-fertilization, hpf). Dose and size dependent toxic effects of the NPs on embryonic development were observed, showing the possibility of tuning biocompatibility and toxicity of the NPs. At lower concentrations of the NPs (≤ 0.02 nM), 75–91% of embryos developed to normal zebrafish. At the higher concentrations of NPs (≥ 0.20 nM), 100% of embryos became dead. At the concentrations in between (0.02–0.2 nM), embryos developed to various deformed zebrafish. Number and sizes of individual Ag NPs embedded in tissues of normal and deformed zebrafish at 120 hpf were quantitatively analyzed, showing deformed zebrafish with higher number of larger NPs than normal zebrafish, and size-dependent nanotoxicity. By comparing with our previous studies of smaller Ag NPs (11.6±3.5 nm), the results further demonstrate striking size-dependent nanotoxicity that, at the same molar concentration, the larger Ag NPs (41.6±9.1 nm) are more toxic than the smaller Ag NPs (11.6±3.5 nm). PMID:22486336

  14. Transcriptomic Changes in Zebrafish Embryos and Larvae Following Benzo[a]pyrene Exposure

    PubMed Central

    Fang, Xiefan; Corrales, Jone; Thornton, Cammi; Clerk, Tracy; Scheffler, Brian E.; Willett, Kristine L.

    2015-01-01

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene expression. Herein, we performed a genome-wide transcriptional analysis and discovered differential gene expression and splicing in developing zebrafish. Adult zebrafish were exposed to control or 42.0 ± 1.9 µg/l BaP for 7 days. Eggs were collected and raised in control conditions or continuously exposed to BaP until 3.3 and 96 h post–fertilization (hpf). RNA sequencing (RNA-Seq) was conducted on zebrafish embryos and larvae. Data were analyzed to identify differentially expressed (DE) genes (changed at the gene or transcript variant level) and genes with differential exon usage (DEU; changed at the exon level). At 3.3 hpf, BaP exposure resulted in 8 DE genes and 51 DEU genes. At 96 hpf, BaP exposure altered expression in 1153 DE genes and 159 DEU genes. Functional ontology analysis by Ingenuity Pathway Analysis revealed that many disease pathways, including organismal death, growth failure, abnormal morphology of embryonic tissue, congenital heart disease, and adverse neuritogenesis, were significantly enriched for the DE and DEU genes, providing novel insights on the mechanisms of action of BaP-induced developmental toxicities. Collectively, we discovered substantial transcriptomic changes at the gene, transcript variant, and exon levels in developing zebrafish after early life BaP waterborne exposure, and these changes may lead to long-term adverse physiological consequences. PMID:26001963

  15. Zebrafish (Danio rerio) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases.

    PubMed

    Rezzola, Sara; Paganini, Giuseppe; Semeraro, Francesco; Presta, Marco; Tobia, Chiara

    2016-07-01

    Pathological angiogenesis of the retina is a main cause of blindness. Therapeutic approaches targeting vascular endothelial growth factor, a main angiogenesis inducer in retinal vascular diseases, show significant limitations. Thus, experimental models of retinal neovascularization remain crucial for investigating novel anti-angiogenic strategies and bringing them to patients. Recent observations have shown that eye neovascularization in zebrafish (Danio rerio) embryo may represent a novel target for the identification of angiogenesis inhibitors. This review highlights the use of zebrafish embryo as an innovative model system for the screening of anti-angiogenic molecules to be employed for the treatment of angiogenesis-dependent eye diseases.

  16. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization.

    PubMed

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A

    2014-07-17

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  17. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions

    SciTech Connect

    Teraoka, Hiroki . E-mail: hteraoka@rakuno.ac.jp; Urakawa, Satsuki; Nanba, Satomi; Nagai, Yuhki; Wu Dong; Imagawa, Tomohiro; Tanguay, Robert L.; Svoboda, Kurt; Handley-Goldstone, Heather M.; Stegeman, John J.; Hiraga, Takeo

    2006-04-01

    Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 {mu}g/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC{sub 5} values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, {alpha}-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism.

  18. Spatial distribution and characterization of non-apical progenitors in the zebrafish embryo central nervous system

    PubMed Central

    Norris, Joseph

    2017-01-01

    Studies of non-apical progenitors (NAPs) have been largely limited to the developing mammalian cortex. They are postulated to generate the increase in neuron numbers that underlie mammalian brain expansion. Recently, NAPs have also been reported in the retina and central nervous system of non-mammalian species; in the latter, however, they remain poorly characterized. Here, we characterize NAP location along the zebrafish central nervous system during embryonic development, and determine their cellular and molecular characteristics and renewal capacity. We identified a small population of NAPs in the spinal cord, hindbrain and telencephalon of zebrafish embryos. Live-imaging analysis revealed at least two types of mitotic behaviour in the telencephalon: one NAP subtype retains the apical attachment during division, while another divides in a subapical position disconnected from the apical surface. All NAPs observed in spinal cord lost apical contact prior to mitoses. These NAPs express HuC and produce two neurons from a single division. Manipulation of Notch activity reveals that neurons and NAPs in the spinal cord use similar regulatory mechanisms. This work suggests that the majority of spinal NAPs in zebrafish share characteristics with basal progenitors in mammalian brains. PMID:28148823

  19. Comparative analysis of goitrogenic effects of phenylthiourea and methimazole in zebrafish embryos.

    PubMed

    Fetter, Eva; Baldauf, Lisa; Da Fonte, Dillon F; Ortmann, Julia; Scholz, Stefan

    2015-11-01

    Craniofacial malformations, reduced locomotion and induction of genes encoding for enzymes involved in thyroid hormone synthesis were assessed using methimazole and N-phenylthiourea in zebrafish embryos. Gene expression, the most sensitive endpoint (EC50_MMI=372-765μM, EC50_PTU=7.6-8.6μM), was analysed in wild-type and in a transgenic strain, tg(tg:mCherry), expressing mCherry fluorescence protein under the control of the thyroglobulin gene. Reduction of locomotion and craniofacial malformations were observed at one or two orders of magnitude above concentrations affecting gene expression, respectively. Both effects could be linked to the malformations caused by reduced thyroxin levels. Our results show that due to the presence of the autoregulatory loop of the hypothalamus-pituitary-thyroid axis, various molecular initiating events of thyroid disruption are amenable for the zebrafish embryo. We propose the tg(tg:mCherry) bioassay as a sensitive tool in medium scale screening of goitrogens, given the minimal effort for sample preparation and analysis of gene expression.

  20. Developmental toxicity of CdTe QDs in zebrafish embryos and larvae

    NASA Astrophysics Data System (ADS)

    Duan, Junchao; Yu, Yongbo; Li, Yang; Yu, Yang; Li, Yanbo; Huang, Peili; Zhou, Xianqing; Peng, Shuangqing; Sun, Zhiwei

    2013-07-01

    Quantum dots (QDs) have widely been used in biomedical and biotechnological applications. However, few studies focus on the assessing toxicity of QDs exposure in vivo. In this study, zebrafish embryos were treated with CdTe QDs (4 nm) during 4-96 h post-fertilization (hpf). Mortality, hatching rate, malformation, heart rate, and QDs uptake were detected. We also measured the larval behavior to analyze whether QDs had persistent effects on larvae locomotor activity at 144 hpf. The results showed that as the exposure dosages increased, the hatching rate and heart rate of zebrafish embryos were decreased, while the mortality increased. Exposure to QDs caused embryonic malformations, including head malformation, pericardial edema, yolk sac edema, bent spine, and yolk not depleted. QDs fluorescence was mainly localized in the intestines region. The larval behavior testing showed that the total swimming distance was decreased in a dose-dependent manner. The lowest dose (2.5 nM QDs) produced substantial hyperactivity while the higher doses groups (5, 10, and 20 nM QDs) elicited remarkably hypoactivity in dark periods. In summary, the data of this article indicated that QDs caused embryonic developmental toxicity, resulted in persistent effects on larval behavior.

  1. Intrinsic Expression of a Multiexon Type 3 Deiodinase Gene Controls Zebrafish Embryo Size

    PubMed Central

    Guo, Cuicui; Chen, Xia; Song, Huaidong; Maynard, Michelle A.; Zhou, Yi; Lobanov, Alexei V.; Gladyshev, Vadim N.; Ganis, Jared J.; Wiley, David; Jugo, Rebecca H.; Lee, Nicholas Y.; Castroneves, Luciana A.; Zon, Leonard I.; Scanlan, Thomas S.; Feldman, Henry A.

    2014-01-01

    Thyroid hormone is a master regulator of differentiation and growth, and its action is terminated by the enzymatic removal of an inner-ring iodine catalyzed by the selenoenzyme type 3 deiodinase (dio3). Our studies of the zebrafish reveal that the dio3 gene is duplicated in this species and that embryonic deiodination is an important determinant of embryo size. Although both dio3 paralogs encode enzymatically active proteins with high affinity for thyroid hormones, their anatomic patterns of expression are markedly divergent and only embryos with knockdown of dio3b, a biallelically expressed selenoenzyme expressed in the developing central nervous system, manifest severe thyroid hormone-dependent growth restriction at 72 hours post fertilization. This indicates that the embryonic deficiency of dio3, once considered only a placental enzyme, causes microsomia independently of placental physiology and raises the intriguing possibility that fetal abnormalities in human deiodination may present as intrauterine growth retardation. By mapping the gene structures and enzymatic properties of all four zebrafish deiodinases, we also identify dio3b as the first multiexon dio3 gene, containing a large intron separating its open reading frame from its selenocysteine insertion sequence (SECIS) element. PMID:25004091

  2. Intrinsic expression of a multiexon type 3 deiodinase gene controls zebrafish embryo size.

    PubMed

    Guo, Cuicui; Chen, Xia; Song, Huaidong; Maynard, Michelle A; Zhou, Yi; Lobanov, Alexei V; Gladyshev, Vadim N; Ganis, Jared J; Wiley, David; Jugo, Rebecca H; Lee, Nicholas Y; Castroneves, Luciana A; Zon, Leonard I; Scanlan, Thomas S; Feldman, Henry A; Huang, Stephen A

    2014-10-01

    Thyroid hormone is a master regulator of differentiation and growth, and its action is terminated by the enzymatic removal of an inner-ring iodine catalyzed by the selenoenzyme type 3 deiodinase (dio3). Our studies of the zebrafish reveal that the dio3 gene is duplicated in this species and that embryonic deiodination is an important determinant of embryo size. Although both dio3 paralogs encode enzymatically active proteins with high affinity for thyroid hormones, their anatomic patterns of expression are markedly divergent and only embryos with knockdown of dio3b, a biallelically expressed selenoenzyme expressed in the developing central nervous system, manifest severe thyroid hormone-dependent growth restriction at 72 hours post fertilization. This indicates that the embryonic deficiency of dio3, once considered only a placental enzyme, causes microsomia independently of placental physiology and raises the intriguing possibility that fetal abnormalities in human deiodination may present as intrauterine growth retardation. By mapping the gene structures and enzymatic properties of all four zebrafish deiodinases, we also identify dio3b as the first multiexon dio3 gene, containing a large intron separating its open reading frame from its selenocysteine insertion sequence (SECIS) element.

  3. Interactions of Hydroxyapatite with Proteins and Its Toxicological Effect to Zebrafish Embryos Development

    PubMed Central

    Xu, Zhen; Zhang, Ya-Lei; Song, Cao; Wu, Ling-Ling; Gao, Hong-Wen

    2012-01-01

    The increased application of nanomaterials has raised the level of public concern regarding possible toxicities caused by exposure to nanostructures. The interactions of nanosized hydroxyapatite (HA) with cytochrome c and hemoglobin were investigated by zeta-potential, UV-vis, fluorescence and circular dichroism. The experimental results indicated that the interactions were formed via charge attraction and hydrogen bond and obeyed Langmuir adsorption isotherm. The two functional proteins bridged between HA particles to aggregate into the coralloid form, where change of the secondary structure of proteins occurred. From effects of nanosized HA, SiO2 and TiO2 particles on the zebrafish embryos development, they were adsorbed on the membrane surface confirmed by the electronic scanning microscopy. Nano-HA aggregated into the biggest particles around the membrane protein and then caused a little toxicity to development of zebrafish embryos. The SiO2 particles were distributed throughout the outer surface and caused jam of membrane passage, delay of the hatching time and axial malformation. Maybe owing to the oxygen free radical activity, TiO2 caused some serious deformity characters in the cardiovascular system. PMID:22509249

  4. Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts.

    PubMed

    Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V

    2013-10-17

    Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.

  5. Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts

    PubMed Central

    Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V

    2013-01-01

    Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the ‘cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death. PMID:24136230

  6. Waste nitrogen metabolism and excretion in zebrafish embryos: effects of light, ammonia, and nicotinamide.

    PubMed

    Bucking, Carol; Lemoine, Christophe M R; Walsh, Patrick J

    2013-08-01

    Bony fish primarily excrete ammonia as adults however the persistence of urea cycle genes may reflect a beneficial role for urea production during embryonic stages in protecting the embryo from toxic effects of ammonia produced from a highly nitrogenous yolk. This study aimed to examine the dynamic scope for changes in rates of urea synthesis and excretion in one such species (zebrafish, Danio rerio) by manipulating the intrinsic developmental rate (by alteration of light:dark cycles), as well as by direct chemical manipulation via ammonia injection (to potentially activate urea production) and nicotinamide exposure (to potentially inhibit urea production). Continuous dark exposure delayed development in embryos as evidenced by delayed appearance of hallmark anatomical features (heartbeat, eye pigmentation, body pigmentation, lateral line, fin buds) at 30 and 48 hr post-fertilization, as well by a lower hatching rate compared to embryos reared in continuous light. Both ammonia and urea excretion were similarly effected and were generally higher in embryos continuously exposed to light. Ammonia injection resulted in significant increases (up to fourfold) of urea N excretion and no changes to ammonia excretion rates along with modest increases in yolk ammonia content during 2-6 hr post-injection. Nicotinamide (an inhibitor of urea synthesis in mammals) reduced the ammonia-induced increase in urea excretion and led to retention of ammonia in the yolk and body of the embryo. Our results indicate that there is a relatively rapid and large scope for increases in urea production/excretion rates in developing embryos. Potential mechanisms for these increases are discussed.

  7. Evaluation of cytotoxicity and genotoxicity of insecticide carbaryl to flounder gill cells and its teratogenicity to zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pandey, Manish Raj; Guo, Huarong

    2015-04-01

    In this study, we determined the cytotoxicity and genotoxicity of carbamate insecticide carbaryl to flounder gill (FG) cells and its teratogenicity to zebrafish embryos. The cytotoxicity of carbaryl to FG cells was determined with methods including MTT and neutral red uptaking (NRU), lactate dehydrogenase (LDH) releasing and Hoechst 33342 and propidium idodide (PI) double staining. Moderate cytotoxicity in a concentration-dependent manner was observed. The 24 h-IC50 value of 53.48 ± 1.21, 59.13 ± 1.19 and 46.21 ± 1.24 mg L-1 carbaryl was obtained through MTT, NRU and LDH assays, respectively. Double fluorescence staining demonstrated that carbaryl induced the death of FG cells mainly through necrosis. There was no significant genotoxicity found in the FG cells exposed to the highest testing concentration of carbaryl (20 mg L-1, P > 0.05) as was demonstrated by Comet assay. Zebrafish embryos exposed to carbaryl at concentrations ≥10 mg L-1 displayed moderate toxic effects on the survival, spontaneous movement, hatching, heart rates of the embryos and their development, which were evidenced by yolk and pericardial sac edemas, body length reduction and tail flexure in time- and concentration-dependent manners at specific stages. The 24 h-, 48 h- and 96 h-LC50 values of carbaryl to zebrafish embryos were 41.80 ± 1.10, 17.80 ± 1.04 and 14.46 ± 1.05 mg L-1, respectively. These results suggested that carbaryl is moderately toxic to FG cells cultured in vitro and zebrafish embryos, and the FG cells were similar to zebrafish embryos in their sensitivity to carbaryl as 24 h-IC50 and LC50 indicated.

  8. Thymosin Beta4 Regulates Cardiac Valve Formation Via Endothelial-Mesenchymal Transformation in Zebrafish Embryos

    PubMed Central

    Shin, Sun-Hye; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo; Cha, Hee-Jae; Lee, You Mie

    2014-01-01

    Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT. PMID:24732964

  9. Cortisol Regulates Acid Secretion of H+-ATPase-rich Ionocytes in Zebrafish (Danio rerio) Embryos

    PubMed Central

    Lin, Chia-Hao; Shih, Tin-Han; Liu, Sian-Tai; Hsu, Hao-Hsuan; Hwang, Pung-Pung

    2015-01-01

    Systemic acid-base regulation is vital for physiological processes in vertebrates. Freshwater (FW) fish live in an inconstant environment, and thus frequently face ambient acid stress. FW fish have to efficiently modulate their acid secretion processes for body fluid acid-base homeostasis during ambient acid challenge; hormonal control plays an important role in such physiological regulation. The hormone cortisol was previously proposed to be associated with acid base regulation in FW fish; however, the underlying mechanism has not been fully described. In the present study, mRNA expression of acid-secreting related transporters and cyp11b (encoding an enzyme involved in cortisol synthesis) in zebrafish embryos was stimulated by treatment with acidic FW (AFW, pH 4.0) for 3 d. Exogenous cortisol treatment (20 mg/L, 3 d) resulted in upregulated expression of transporters related to acid secretion and increased acid secretion function at the organism level in zebrafish embryos. Moreover, cortisol treatment also significantly increased the acid secretion capacity of H+-ATPase-rich cells (HRCs) at the cellular level. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR) morpholino (MO) suppressed the expression of acid-secreting related transporters, and decreased acid secretion function at both the organism and cellular levels; on the other hand, mineralocorticoid receptor (MR) MO did not induce any effects. Such evidence supports the hypothesized role of cortisol in fish acid-base regulation, and provides new insights into the roles of cortisol; cortisol-GR signaling stimulates zebrafish acid secretion function through transcriptional/translational regulation of the transporters and upregulation of acid secretion capacity in each acid-secreting ionocyte. PMID:26635615

  10. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  11. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis

  12. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    PubMed Central

    2012-01-01

    Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that

  13. Toxicity of different-sized copper nano- and submicron particles and their shed copper ions to zebrafish embryos.

    PubMed

    Hua, Jing; Vijver, Martina G; Ahmad, Farooq; Richardson, Michael K; Peijnenburg, Willie J G M

    2014-08-01

    Three sizes of copper nanoparticles (Cu NPs; 25 nm, 50 nm, and 100 nm), 1 submicron-sized particle, and Cu(NO3 )2 were added to the culture buffer of zebrafish embryos from 24 h postfertilization to 120 h postfertilization. In suspensions of Cu NPs and the Cu submicron-sized particle, the main contribution to the toxicity to zebrafish embryos was from the particle form of Cu particles (Cu NPparticle , >71%) rather than from dissolved Cu from the Cu particles (Cu NPion ). All particles tested as well as copper nitrate inhibited hatching, altered behavioral responses, and increased the incidence of malformations. Different kinds of abnormalities were observed in the morphology and behavior of the zebrafish embryos, depending on the particle size of the Cu suspensions tested. The median lethal concentrations of Cu NPparticle (25 nm, 50 nm, and 100 nm), the submicron-sized particle, and copper nitrate were 0.58 mg/L, 1.65 mg/L, 1.90 mg/L, 0.35 mg/L, and 0.70 mg/L, respectively. Submicron-sized particles and copper nitrate were more toxic than Cu NPs, and smaller Cu NPs were more toxic than larger Cu NPs. Dissolution of Cu NPs and the subsequent ion toxicity was not the primary mechanism of Cu NP toxicity in zebrafish embryos.

  14. Genes for embryo development are packaged in blocks of multivalent chromatin in zebrafish sperm.

    PubMed

    Wu, Shan-Fu; Zhang, Haiying; Cairns, Bradley R

    2011-04-01

    In mature human sperm, genes of importance for embryo development (i.e., transcription factors) lack DNA methylation and bear nucleosomes with distinctive histone modifications, suggesting the specialized packaging of these developmental genes in the germline. Here, we explored the tractable zebrafish model and found conceptual conservation as well as several new features. Biochemical and mass spectrometric approaches reveal the zebrafish sperm genome packaged in nucleosomes and histone variants (and not protamine), and we find linker histones high and H4K16ac absent, key factors that may contribute to genome condensation. We examined several activating (H3K4me2/3, H3K14ac, H2AFV) and repressing (H3K27me3, H3K36me3, H3K9me3, hypoacetylation) modifications/compositions genome-wide and find developmental genes packaged in large blocks of chromatin with coincident activating and repressing marks and DNA hypomethylation, revealing complex "multivalent" chromatin. Notably, genes that acquire DNA methylation in the soma (muscle) are enriched in transcription factors for alternative cell fates. Remarkably, whereas H3K36me3 is located in the 3' coding region of heavily transcribed genes in somatic cells, H3K36me3 is present in the promoters of "silent" developmental regulators in sperm, suggesting different rules for H3K36me3 in the germline and soma. We also reveal the chromatin patterns of transposons, rDNA, and tDNAs. Finally, high levels of H3K4me3 and H3K14ac in sperm are correlated with genes activated in embryos prior to the mid-blastula transition (MBT), whereas multivalent genes are correlated with activation at or after MBT. Taken together, gene sets with particular functions in the embryo are packaged by distinctive types of complex and often atypical chromatin in sperm.

  15. Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish Embryos

    PubMed Central

    Lulla, Aaron; Barnhill, Lisa; Bitan, Gal; Ivanova, Magdalena I.; Nguyen, Binh; O’Donnell, Kelley; Stahl, Mark C.; Yamashiro, Chase; Klärner, Frank-Gerrit; Schrader, Thomas; Sagasti, Alvaro; Bronstein, Jeff M.

    2016-01-01

    Background: Exposure to the commonly used dithiocarbamate (DTC) pesticides is associated with an increased risk of developing Parkinson disease (PD), although the mechanisms by which they exert their toxicity are not completely understood. Objective: We studied the mechanisms of ziram’s (a DTC fungicide) neurotoxicity in vivo. Methods: Zebrafish (ZF) embryos were utilized to determine ziram’s effects on behavior, neuronal toxicity, and the role of synuclein in its toxicity. Results: Nanomolar-range concentrations of ziram caused selective loss of dopaminergic (DA) neurons and impaired swimming behavior. Because ziram increases α-synuclein (α-syn) concentrations in rat primary neuronal cultures, we investigated the effect of ziram on ZF γ-synuclein 1 (γ1). ZF express 3 synuclein isoforms, and ZF γ1 appears to be the closest functional homologue to α-syn. We found that recombinant ZF γ1 formed fibrils in vitro, and overexpression of ZF γ1 in ZF embryos led to the formation of neuronal aggregates and neurotoxicity in a manner similar to that of α-syn. Importantly, knockdown of ZF γ1 with morpholinos and disruption of oligomers with the molecular tweezer CLR01 prevented ziram’s DA toxicity. Conclusions: These data show that ziram is selectively toxic to DA neurons in vivo, and this toxicity is synuclein-dependent. These findings have important implications for understanding the mechanisms by which pesticides may cause PD. Citation: Lulla A, Barnhill L, Bitan G, Ivanova MI, Nguyen B, O’Donnell K, Stahl MC, Yamashiro C, Klärner FG, Schrader T, Sagasti A, Bronstein JM. 2016. Neurotoxicity of the Parkinson disease-associated pesticide ziram is synuclein-dependent in zebrafish embryos. Environ Health Perspect 124:1766–1775; http://dx.doi.org/10.1289/EHP141 PMID:27301718

  16. Silver nanoparticles: in vivo toxicity in zebrafish embryos and a comparison to silver nitrate

    NASA Astrophysics Data System (ADS)

    Mosselhy, Dina A.; He, Wei; Li, Dan; Meng, Yaping; Feng, Qingling

    2016-08-01

    The wide antimicrobial administration of silver nanoparticles (AgNPs) has raised the risks associated with their exposure. However, there is lack of robust toxicological data for the applied AgNPs to be in line with their wide antimicrobial applications. This study therefore set out to assess the in vivo toxicity of two different sizes of AgNPs using zebrafish embryos ( Danio rerio) as a brilliant in vivo model. The pivotal role of size of AgNPs in the toxicity was highlighted, wherein the smaller AgNPs (Ag-9 nm) exhibited more embryo toxicities than the larger particles (Ag-30 nm). Much uncertainty still exists about whether the cause of in vivo toxicity of AgNPs is the physicochemical properties of AgNPs or the released silver ions (Ag+). Therefore, another purpose of this study is to compare the toxicity of AgNPs with silver nitrate (AgNO3) in terms of mortality, hatchability and cardiac rates, and a series of phenotypic endpoints of zebrafish embryos. Collectively, the present results point towards the remarkable size-dependent toxicity of AgNPs. Wherein, the smaller AgNPs (9 ± 2 nm) induce increased mortality rates and decreased hatchability rates than the larger particles (30 ± 5 nm) in a dose-dependent manner. Besides, AgNPs and AgNO3 induce holistic different toxic mortality and hatchability rates. We have also found striking discrepancies in the phenotypic defects that were induced by AgNPs and AgNO3. The significant phenotypic defect induced by AgNPs is the axial deformity, while it is the deposition of Ag+ on the embryonic chorion for AgNO3. Therefore, it is proposed that AgNPs and AgNO3 induce different in vivo toxicities.

  17. Metabolic profile analysis of a single developing zebrafish embryo via monitoring of oxygen consumption rates within a microfluidic device.

    PubMed

    Huang, Shih-Hao; Huang, Kuo-Sheng; Yu, Chu-Hung; Gong, Hong-Yi

    2013-01-01

    A combination of a microfluidic device with a light modulation system was developed to detect the oxygen consumption rate (OCR) of a single developing zebrafish embryo via phase-based phosphorescence lifetime detection. The microfluidic device combines two components: an array of glass microwells containing Pt(II) octaethylporphyrin as an oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids above the microwells to controllably seal the microwells of interest. The total basal respiration (OCR, in pmol O2/min/embryo) of a single developing zebrafish embryo inside a sealed microwell has been successfully measured from the blastula stage (3 h post-fertilization, 3 hpf) through the hatching stage (48 hpf). The total basal respiration increased in a linear and reproducible fashion with embryonic age. Sequentially adding pharmacological inhibitors of bioenergetic pathways allows us to perform respiratory measurements of a single zebrafish embryo at key developmental stages and thus monitor changes in mitochondrial function in vivo that are coordinated with embryonic development. We have successfully measured the metabolic profiles of a single developing zebrafish embryo from 3 hpf to 48 hpf inside a microfluidic device. The total basal respiration is partitioned into the non-mitochondrial respiration, mitochondrial respiration, respiration due to adenosine triphosphate (ATP) turnover, and respiration due to proton leak. The changes in these respirations are correlated with zebrafish embryonic development stages. Our proposed platform provides the potential for studying bioenergetic metabolism in a developing organism and for a wide range of biomedical applications that relate mitochondrial physiology and disease.

  18. Toxicity assessment and bioaccumulation in zebrafish embryos exposed to carbon nanotubes suspended in Pluronic® F-108

    PubMed Central

    Wang, Ruhung; Meredith, Alicea N.; Lee, Michael; Deutsch, Dakota; Miadzvedskaya, Lizaveta; Braun, Elizabeth; Pantano, Paul; Harper, Stacey; Draper, Rockford

    2015-01-01

    Carbon nanotubes (CNTs) are often suspended in Pluronic® surfactants by sonication, which may confound toxicity studies because sonication of surfactants can create degradation products that are toxic to mammalian cells. Here, we present a toxicity assessment of Pluronic® F-108 with and without suspended CNTs using embryonic zebrafish as an in vivo model. Pluronic® sonolytic degradation products were toxic to zebrafish embryos just as they were to mammalian cells. When the toxic Pluronic® fragments were removed, there was little effect of pristine multi-walled CNTs (pMWNTs), carboxylated MWNTs (cMWNTs) or pristine single-walled carbon nanotubes (pSWNTs) on embryo viability and development, even at high concentrations. A gel electrophoretic method coupled with Raman imaging was developed to measure the bioaccumulation of CNTs by zebrafish embryos, and dose-dependent uptake of CNTs was observed. These data indicate that embryos accumulate pMWNTs, cMWNTs and pSWNTs yet there is very little embryo toxicity. PMID:26559437

  19. Guarding Embryo Development of Zebrafish by Shell Engineering: A Strategy to Shield Life from Ozone Depletion

    PubMed Central

    Wang, Ben; Liu, Peng; Tang, Yanyan; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2010-01-01

    Background The reduced concentration of stratospheric ozone results in an increased flux of biologically damaging mid-ultraviolet radiation (UVB, 280 to 320 nm) reaching earth surfaces. Environmentally relevant levels of UVB negatively impact various natural populations of marine organisms, which is ascribed to suppressed embryonic development by increased radiation. Methodology/Principal Findings Inspired by strategies in the living systems generated by evolution, we induce an extra UVB-adsorbed coat on the chorion (eggshell surrounding embryo) of zebrafish, during the blastula period. Short and long UV exposure experiments show that the artificial mineral-shell reduces the UV radiation effectively and the enclosed embryos become more robust. In contrast, the uncoated embryos cannot survive under the enhanced UVB condition. Conclusions We suggest that an engineered shell of functional materials onto biological units can be developed as a strategy to shield lives to counteract negative changes of global environment, or to provide extra protection for the living units in biological research. PMID:20376356

  20. Analyzing In Vivo Cell Migration using Cell Transplantations and Time-lapse Imaging in Zebrafish Embryos.

    PubMed

    Giger, Florence A; Dumortier, Julien G; David, Nicolas B

    2016-04-29

    Cell migration is key to many physiological and pathological conditions, including cancer metastasis. The cellular and molecular bases of cell migration have been thoroughly analyzed in vitro. However, in vivo cell migration somehow differs from in vitro migration, and has proven more difficult to analyze, being less accessible to direct observation and manipulation. This protocol uses the migration of the prospective prechordal plate in the early zebrafish embryo as a model system to study the function of candidate genes in cell migration. Prechordal plate progenitors form a group of cells which, during gastrulation, undergoes a directed migration from the embryonic organizer to the animal pole of the embryo. The proposed protocol uses cell transplantation to create mosaic embryos. This offers the combined advantages of labeling isolated cells, which is key to good imaging, and of limiting gain/loss of function effects to the observed cells, hence ensuring cell-autonomous effects. We describe here how we assessed the function of the TORC2 component Sin1 in cell migration, but the protocol can be used to analyze the function of any candidate gene in controlling cell migration in vivo.

  1. Indole Alkaloids from Fischerella Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Walton, Katherine; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2014-01-01

    Cyanobacteria are recognized producers of toxic or otherwise bioactive metabolite associated, in particular, with so-called “harmful algal blooms” (HABs) and eutrophication of freshwater systems. In the present study, two apparently teratogenic indole alkaloids from a freshwater strain of the widespread cyanobacterial genus, Fischerella (Stigonemataceae), were isolated by bioassay-guided fractionation, specifically using the zebrafish (Danio rerio) embryo, as a model of vertebrate development. The two alkaloids include the previously known 12-epi-hapalindole H isonitrile (1), and a new nitrile-containing variant, 12-epi-ambiguine B nitrile (2). Although both compounds were toxic to developing embryos, the former compound was shown to be relatively more potent, and to correlate best with the observed embryo toxicity. Related indole alkaloids from Fischerella, and other genera in the Stigonemataceae, have been widely reported as antimicrobial compounds, specifically in association with apparent allelopathy. However, this is the first report of their vertebrate toxicity, and the observed teratogenicity of these alkaloids supports a possible contribution to the toxicity of this widespread cyanobacterial family, particularly in relation to freshwater HABs and eutrophication. PMID:25533520

  2. Phase variance optical coherence microscopy for label-free imaging of the developing vasculature in zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Trinh, Le A.; Fingler, Jeff; Fraser, Scott E.

    2016-12-01

    A phase variance optical coherence microscope (pvOCM) has been created to image blood flow in the microvasculature of zebrafish embryos, without the use of exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2.8 μm in tissue and imaging depth of more than 100 μm. Images of 2 to 5 days postfertilization zebrafish embryos identified the detailed anatomical structure based on OCM intensity contrast. Phase variance contrast offered visualization of blood flow in the arteries, veins, and capillaries. The pvOCM images of the vasculature were confirmed by direct comparisons with fluorescence microscopy images of transgenic embryos in which the vascular endothelium is labeled with green fluorescent protein. The ability of pvOCM to capture activities of regional blood flow permits it to reveal functional information that is of great utility for the study of vascular development.

  3. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos.

  4. The goldfish hAT-family transposon Tgf2 is capable of autonomous excision in zebrafish embryos.

    PubMed

    Cheng, Luo-Dan; Jiang, Xia-Yun; Tian, Yu-Mei; Chen, Jie; Zou, Shu-Ming

    2014-02-15

    The goldfish (Carassius auratus) Tgf2 transposon is a vertebrate DNA transposon that belongs to the hAT transposon family. In this study, we constructed plasmids containing either the full-length Tgf2 transposon (pTgf2 plasmid) or a partially-deleted Tgf2 transposon (ΔpTgf2 plasmid), and microinjected these plasmids into fertilized zebrafish (Danio rerio) eggs at the one- to two-cell stage. DNA extracted from the embryos was analyzed by PCR to assess transient excision, if any, of the exogenous plasmid and to verify whether Tgf2 is an autonomous transposon. The results showed that excision-specific bands were not detected in embryos injected with the ΔpTgf2 plasmid, while bands of 300-500bp were detected in embryos injected with pTgf2, which indicated that the full-length Tgf2-containing plasmid could undergo autonomous excision in zebrafish embryos. DNA cloned from 24 embryos injected with pTgf2 was sequenced, and the results suggested that Tgf2 underwent self-excision in zebrafish embryos. Cloning and PCR analysis of DNA extracted from embryos co-injected with ΔpTgf2 and in vitro-transcribed transposase mRNA indicated that partially-deleted-Tgf2-containing ΔpTgf2 plasmid also underwent excision, in the presence of functional transposase mRNA. DNA cloned from 25 embryos co-injected with ΔpTgf2 and transposase mRNA was sequenced, and the results suggested that partially-deleted Tgf2 transposons plasmids were excised. These results demonstrated that excisions of Tgf2 transposons were mediated by the Tgf2 transposase, which in turn confirmed that Tgf2 is an autonomous transposon.

  5. Heat-shock protein 90α1 is required for organized myofibril assembly in skeletal muscles of zebrafish embryos

    PubMed Central

    Du, Shao Jun; Li, Huiqing; Bian, Yuehong; Zhong, Yongwang

    2008-01-01

    Heat-shock protein 90α (Hsp90α) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90α in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90α genes, Hsp90α1, and Hsp90α2. Hsp90α1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90α1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90α1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90α2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90α1. Biochemical analyses revealed that knockdown of Hsp90α1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90α1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments. PMID:18182494

  6. Dynamic Analysis of BMP-Responsive Smad Activity in Live Zebrafish Embryos

    PubMed Central

    Laux, Derek W.; Febbo, Jennifer A.; Roman, Beth L.

    2015-01-01

    Bone morphogenetic proteins (BMPs) are critical players in development and disease, regulating such diverse processes as dorsoventral patterning, palate formation, and ossification. These ligands are classically considered to signal via BMP receptor-specific Smad proteins 1, 5, and 8. To determine the spatiotemporal pattern of Smad1/5/8 activity and thus canonical BMP signaling in the developing zebrafish embryo, we generated a transgenic line expressing EGFP under the control of a BMP responsive element. EGFP is expressed in many established BMP signaling domains and is responsive to alterations in BMP type I receptor activity and smad1 and smad5 expression. This transgenic Smad1/5/8 reporter line will be useful for determining ligand and receptor requirements for specific domains of BMP activity, as well as for genetic and pharmacological screens aimed at identifying enhancers or suppressors of canonical BMP signaling. PMID:21337466

  7. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo.

    PubMed

    Ikegami, R; Hunter, P; Yager, T D

    1999-05-15

    In this study, we demonstrate the developmental activation, in the zebrafish embryo, of a surveillance mechanism which triggers apoptosis to remove damaged cells. We determine the time course of activation of this mechanism by exposing embryos to camptothecin, an agent which specifically inhibits topoisomerase I within the DNA replication complex and which, as a consequence of this inhibition, also produces strand breaks in the genomic DNA. In response to an early (pre-gastrula) treatment with camptothecin, apoptosis is induced at a time corresponding approximately to mid-gastrula stage in controls. This apoptotic response to a block of DNA replication can also be induced by early (pre-MBT) treatment with the DNA synthesis inhibitors hydroxyurea and aphidicolin. After camptothecin treatment, a high proportion of cells in two of the embryo's three mitotic domains (the enveloping and deep cell layers), but not in the remaining domain (the yolk syncytial layer), undergoes apoptosis in a cell-autonomous fashion. The first step in this response is an arrest of the proliferation of all deep- and enveloping-layer cells. These cells continue to increase in nuclear volume and to synthesize DNA. Eventually they become apoptotic, by a stereotypic pathway which involves cell membrane blebbing, "margination" and fragmentation of nuclei, and cleavage of the genomic DNA to produce a nucleosomal ladder. Fragmentation of nuclei can be blocked by the caspase-1,4,5 inhibitor Ac-YVAD-CHO, but not by the caspase-2,3,7[, 1] inhibitor Ac-DEVD-CHO. This suggests a functional requirement for caspase-4 or caspase-5 in the apoptotic response to camptothecin. Recently, Xenopus has been shown to display a developmental activation of the capability for stress- or damaged-induced apoptosis at early gastrula stage. En masse, our experiments suggest that the apoptotic responses in zebrafish and Xenopus are fundamentally similar. Thus, as for mammals, embryos of the lower vertebrates exhibit the

  8. Bioconcentration pattern and induced apoptosis of bisphenol A in zebrafish embryos at environmentally relevant concentrations.

    PubMed

    Wu, Minghong; Pan, Chenyuan; Chen, Zhong; Jiang, Lihui; Lei, Penghui; Yang, Ming

    2017-03-01

    Bisphenol A (BPA) is a well-known endocrine-disrupting chemical that is ubiquitously present in the environment. In the present study, 4-h post-fertilization (hpf) zebrafish embryos were exposed to various environmentally relevant concentrations of BPA (0.1, 1, 10, 100, and 1000 μg/L) until 72 and 168 hpf, and the accumulation pattern of BPA and its potential to induce toxicity through apoptosis were determined. Compared to BPA concentrations in larvae at 168 hpf, BPA concentrations in embryos exposed until 72 hpf were at relatively higher levels (p < 0.05) with higher bioconcentration factor (BCF) values. The nonlinear fitting analysis indicated that the BCF values of BPA in fish embryos/larvae were significantly correlated to the log10-transformed BPA exposure concentrations in water in an inverse concentration-dependent manner. Fish accumulated more BPA as the exposure concentrations increased; however, their accumulation capacity of BPA declined and tended to be saturated in the high exposure groups of BPA. Moreover, caspase-3 activity was significantly induced upon BPA exposure at 0.1, 1, 10, and 100 μg/L BPA at 72 hpf, and also at 10 and 100 μg/L BPA at 168 hpf. Correspondingly, exposure to 10 and 100 μg/L of BPA significantly increased the DNA fragmentation in the extracted DNA at 168 hpf as determined by DNA ladder analysis. In addition, the expression patterns of four genes related to apoptosis including caspase-3, bax, p53, and c-jun were significantly up-regulated (p < 0.05) in fish embryos/larvae upon BPA exposure at 72 and 168 hpf. Our results revealed that low and environmentally relevant concentrations of BPA could be significantly accumulated in zebrafish and induced apoptosis with involvement of the regulation of caspase-3 and other apoptosis-related genes.

  9. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    SciTech Connect

    Hermsen, Sanne A.B.; Pronk, Tessa E.; Brandhof, Evert-Jan van den; Ven, Leo T.M. van der; Piersma, Aldert H.

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  10. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos

    PubMed Central

    Jank, Thomas; Eckerle, Stephanie; Steinemann, Marcus; Trillhaase, Christoph; Schimpl, Marianne; Wiese, Sebastian; van Aalten, Daan M. F.; Driever, Wolfgang; Aktories, Klaus

    2015-01-01

    Yersinia species cause zoonotic infections, including enterocolitis and plague. Here we studied Yersinia ruckeri antifeeding prophage 18 (Afp18), the toxin component of the phage tail-derived protein translocation system Afp, which causes enteric redmouth disease in salmonid fish species. Here we show that microinjection of the glycosyltransferase domain Afp18G into zebrafish embryos blocks cytokinesis, actin-dependent motility and cell blebbing, eventually abrogating gastrulation. In zebrafish ZF4 cells, Afp18G depolymerizes actin stress fibres by mono-O-GlcNAcylation of RhoA at tyrosine-34; thereby Afp18G inhibits RhoA activation by guanine nucleotide exchange factors, and blocks RhoA, but not Rac and Cdc42 downstream signalling. The crystal structure of tyrosine-GlcNAcylated RhoA reveals an open conformation of the effector loop distinct from recently described structures of GDP- or GTP-bound RhoA. Unravelling of the molecular mechanism of the toxin component Afp18 as glycosyltransferase opens new perspectives in studies of phage tail-derived protein translocation systems, which are preserved from archaea to human pathogenic prokaryotes. PMID:26190758

  11. Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: A Potential Model of Retinopathy of Prematurity

    PubMed Central

    Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2–4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  12. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    PubMed

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression.

  13. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  14. Assessment of functional competence of endothelial cells from human pluripotent stem cells in zebrafish embryos.

    PubMed

    Orlova, Valeria V; Drabsch, Yvette; ten Dijke, Peter; Mummery, Christine L

    2014-01-01

    Human pluripotent stem cells (hPSCs) are proving to be a valuable source of endothelial cells (ECs), pericytes, and vascular smooth muscle cells (vSMCs). Although an increasing number of phenotypic markers are becoming available to determine the phenotypes of these cells in vitro, the ability to integrate and form functional vessels in the host organism, typically mouse, remains critical for the assessment of EC functional competence. However, current mouse models require relatively large numbers of cells that might be difficult to derive simultaneously from multiple hPSCs lines. Therefore, there is an urgent need for new functional assays that are robust and can be performed with small numbers of cells. Here we describe a novel zebrafish xenograft model to test functionality of hPSC-derived ECs. The assay can be performed in 10 days and requires only ~100-400 human cells per embryo. Thus, the zebrafish xenograft model can be useful for the accurate and rapid assessment of functionality of hPSC-derived ECs in a lower vertebrate model that is widely viewed by regulatory authorities as a more acceptable alternative to adult mice.

  15. Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos.

    PubMed

    Fong, Henry C H; Ho, Jeff C H; Cheung, Angela H Y; Lai, K P; Tse, William K F

    2016-12-01

    Benozophenone (BP) type UV filters are extensively used in the personal care products to provide protection against the harmful effects of UV radiation. BPs are one of the primary components in the UV filter family, in which benophenone-2 (BP2) is widely used as a UV filter reagent in the sunscreen. Humans used these personal care products directly on skin and the chemicals will be washed away to the water system. BP2 has been identified as one of the endocrine disruptor chemicals, which can inference the synthesis, metabolism, and action of endogenous hormones. Environmentally, it has been found to contaminate water worldwide. In this study, we aimed to unfold the possible developmental toxicology of this chemical. Zebrafish are used as the screening model to perform in situ hybridization staining to investigate the effects of BP2 on segmentation, brain regionalization, and facial formation at four developmental stages (10-12 somite, prim-5, 2 and 5 days post-fertilization). Results showed 40 μM (9.85 mg L(-1)) or above BP2 exposure in zebrafish embryos for 5 days resulted in lipid accumulation in the yolk sac and facial malformation via affecting the lipid processing and the expression of cranial neural crest cells respectively. To conclude, the study alarmed its potential developmental toxicities at high dosage exposure.

  16. Detection of exposure effects of mixtures of heavy polycyclic aromatic hydrocarbons in zebrafish embryos.

    PubMed

    Barranco, Alejandro; Escudero, Laura; Sanz Landaluze, Jon; Rainieri, Sandra

    2017-03-01

    In this study we evaluated the exposure effects of mixtures of five polycyclic aromatic hydrocarbons (PAHs); namely, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene and chrysene on zebrafish embryos. Supplementation of the exposure media with 0.45% dimethyl sulfoxide and 50 ppm of Tween 20 could guarantee the solubilization and stabilization of the PAHs up to 24 h without affecting the embryos development. The exposure effects were tested by detecting the differential expression of a number of genes related to the aryl hydrocarbon receptor gene battery. Effects were detectable already after 6 h of exposure. After 24 h of exposure, all PAHs, except for benzo[a]anthracene, acted as potent inducers of the gene cyp1a1. Benzo[k]fluoranthene was the major inducer; the effect caused by the mixture at the lower concentration tested (1 ng ml(-1) ) was dominated by its presence. However, in the mixture at the highest concentration tested (10 ng ml(-1) ) it caused less induction and was not dominant. No significant bioaccumulation values were detected on embryos exposed to the PAHs tested in this study; however, the results obtained, indicated that PAHs undergo a very rapid metabolization inside the embryos, and that those biotransformation products yield changes on the expression of genes involved in the aryl hydrocarbon receptor pathway. Future work should focus on identification of the PAH metabolization products and on the effect of these metabolites on toxicity. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    PubMed Central

    Sun, Yan; Zhang, Gong; He, Zizi; Wang, Yajie; Cui, Jianlin; Li, Yuhao

    2016-01-01

    Copper oxide nanoparticles (CuO NPs) are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. PMID:27022258

  18. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    PubMed Central

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-01-01

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. PMID:28208665

  19. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg(2+) (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl2) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg(2+) concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg(2+) caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl2 exposure (especially in the 16μg/L Hg(2+) group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish.

  20. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.

    PubMed

    Groh, Ksenia J; Dalkvist, Trine; Piccapietra, Flavio; Behra, Renata; Suter, Marc J-F; Schirmer, Kristin

    2015-02-01

    The toxicity of silver nanoparticles (AgNP) to aquatic organisms, including zebrafish (Danio rerio), has been demonstrated, but differing opinions exist on the contribution of the physical properties of the particles themselves and the free dissolved silver ions (Ag(+)) to the observed effects. High concentrations of chloride ions (Cl(-)) in the routinely used exposure media can cause precipitation of Ag(+) as AgCl, as well as complexation of silver in diverse soluble chlorocomplexes, thus masking the contribution of dissolved silver to AgNP toxicity. In the present study, we formulated a zebrafish exposure medium with a low chloride content and exposed zebrafish embryos to AgNO3 or carbonate-coated AgNP. The severity of toxicity caused by both silver forms depended on the time of exposure start, with younger embryos being most sensitive. Toxicity caused by both AgNO3 and AgNP was of the same order of magnitude when compared based on the total dissolved silver concentration and could be prevented by addition of the Ag(+) chelator cysteine. Further, we have analyzed the data from several previous studies to evaluate the influence of interactions between Ag(+) and Cl(-) on silver toxicity to zebrafish embryos. Our analysis demonstrates that the acute toxicity of AgNP to zebrafish embryos is largely mediated by Ag(+). The influence of particle size and coating can at least partially be explained by the differences in Ag(+) dissolution. High Cl(-) levels in the exposure medium indeed have a pivotal influence on the resulting toxicity of AgNP, appearing to significantly attenuate toxicity in several studies. This consideration should influence the choice of exposure medium to be used when evaluating and comparing AgNP toxicity.

  1. Development of a pheasant interspecies primordial germ cell transfer to chicken embryo: effect of donor cell sex on chimeric semen production.

    PubMed

    Kang, S J; Choi, J W; Park, K J; Lee, Y M; Kim, T M; Sohn, S H; Lim, J M; Han, J Y

    2009-09-01

    This study was conducted to evaluate whether the sex of donor primordial germ cells (PGCs) influences production of chimeric semen from recipient hatchlings produced by interspecies transfer between pheasant (Phasianus colchicus) and chicken (Gallus gallus). Pheasant PGCs were retrieved from 7-d-old embryos and subsequently transferred into circulatory blood of 2.5-d-old (Stage 17) embryos. The sex of embryos was discerned 3 to 6 days after laying, and in preliminary study, overall rate of embryo survival after sexing was 74.6% with male-to-female ratio of 0.49 to 0.51. In Experiment 1, magnetic-activated cell sorting (MACS) using QCR1 antibody was effective for enriching the population of male and female PGCs in gonadal cells (9.2- to 12.5-fold and 10.8- to 19.5-fold increase, respectively). In Experiment 2, an increase in the number of hatchlings producing chimeric semen was detected after the homosexual transfer of male-to-male compared with that after the heterosexual transfer of female-to-male (68% to 88%). Significant increase was found in the frequency of chimeric semen production (0.96 to 1.68 times); production of pheasant progenies by artificial insemination using chimeric semen was also increased in the homosexual transfer (0 to 3 cases). In conclusion, the homosexual PGC transfer of male-to-male yielded better rate of generating pheasant progenies after test cross-reproduction than that of the heterosexual transfer of female-to-male, which could improve the efficiency of interspecies germ cell transfer system.

  2. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  3. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Lin, Bencheng; Hu, Chuanlu; Zhang, Huashan; Lin, Zhiqing; Xi, Zhuge

    2014-08-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture.

  4. River waters induced neurotoxicity in an embryo-larval zebrafish model.

    PubMed

    García-Cambero, Jesús Pablo; Catalá, Myriam; Valcárcel, Yolanda

    2012-10-01

    Some investigations have revealed an increased release of psychoactive drugs into the aquatic environments near big cities. However, despite the alert generated by the presence of such neurotoxic compounds, there is a lack of studies evaluating the impact on living organisms. One solution consists in the development of bioassays able to address specific risks, such as neurotoxicity, but on the other hand suitable to assess complex matrices like river samples. The objective of this work was to assess surface water toxicity by means of a zebrafish embryo-larval combined toxicity assay, which is based on a variety of toxicological endpoints, especially those related to neurodevelopment. For such a purpose, we selected the Tagus River in which a previous monitoring study revealed the presence of psychoactive drugs. Results showed that most of the toxicological endpoints evaluated remained unaltered in the exposed embryos, except for the tail length that was larger in the exposed larvae, and the locomotor activity in the 6-day larvae, which was decreased in four groups of exposure (n=5 sampling points). In the absence of systemic toxicity, changes in larval locomotion are indicative of neurotoxicity. This result suggests that the Tagus River can convey neurotoxic compounds at levels that may represent an early and specific threat over the aquatic species of vertebrates, what can have dramatic consequences under the ecological point of view.

  5. Steroid androgen 17α-methyltestosterone induces malformations and biochemical alterations in zebrafish embryos.

    PubMed

    Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe

    2016-06-01

    The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l).

  6. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos

    PubMed Central

    2014-01-01

    Environmental pollutants co-exist and exhibit interaction effects that are different from those associated with a single pollutant. As one of the more commonly manufactured nanomaterials, titanium dioxide nanoparticles (TiO2-NPs) are most likely to bind to other contaminants in water. In this paper, we aimed to study the combined toxicological effects of TiO2-NPs and bisphenol A (BPA) on organism. First, in vitro adsorption experiments were conducted to determine the adsorptive interaction between TiO2-NPs and BPA. Second, zebrafish embryo toxicity tests were performed to monitor for changes in the toxicological effects associated with the two chemicals. The study results demonstrated that adsorptive interactions exist between the two chemicals and increased toxicity effects which included an advanced toxicological effect time, decreased survival, increased morphological abnormalities, and delayed embryo hatching. Also, we suggest that the mode of combined action has a synergistic effect. Based on this, we postulate that concomitant exposure to TiO2-NPs and BPA increased BPA bioavailability and uptake into cells and organisms. Further studies are required to understand the mechanisms of interactions of this mixture. PMID:25177222

  7. Carotenoid glycosides from cyanobacteria are teratogenic in the zebrafish (Danio rerio) embryo model.

    PubMed

    Jaja-Chimedza, Asha; Sanchez, Kristel; Gantar, Miroslav; Gibbs, Patrick; Schmale, Michael; Berry, John P

    2017-05-01

    Toxigenicity of cyanobacteria is widely associated with production of several well-described toxins that pose recognized threats to human and ecosystem health as part of both freshwater eutrophication, and episodic blooms in freshwater and coastal habitats. However, a preponderance of evidence indicates contribution of additional bioactive, and potentially toxic, metabolites. In the present study, the zebrafish (Danio rerio) embryo was used as a model of vertebrate development to identify, and subsequently isolate and characterize, teratogenic metabolites from two representative strains of C. raciborskii. Using this approach, three chemically related carotenoids - and specifically the xanthophyll glycosides, myxol 2'-glycoside (1), 4-ketomyxol 2'-glycoside (2) and 4-hydroxymyxol 2'-glycoside (3) - which are, otherwise, well known pigment molecules from cyanobacteria were isolated as potently teratogenic compounds. Carotenoids are recognized "pro-retinoids" with retinoic acid, as a metabolic product of the oxidative cleavage of carotenoids, established as both key mediator of embryo development and, consequently, a potent teratogen. Accordingly, a comparative toxicological study of chemically diverse carotenoids, as well as apocarotenoids and retinoids, was undertaken. Based on this, a working model of the developmental toxicity of carotenoids as pro-retinoids is proposed, and the teratogenicity of these widespread metabolites is discussed in relation to possible impacts on aquatic vertebrate populations.

  8. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  9. Effect of chemical stress and ultraviolet radiation in the bacterial communities of zebrafish embryos.

    PubMed

    Oliveira, Jacinta M M; Almeida, Ana Rita; Pimentel, Tânia; Andrade, Thayres S; Henriques, Jorge F; Soares, Amadeu M V M; Loureiro, Susana; Gomes, Newton C M; Domingues, Inês

    2016-01-01

    This study aimed to assess the effect of ultraviolet radiation (UVR) and chemical stress (triclosan-TCS; potassium dichromate-PD; prochloraz-PCZ) on bacterial communities of zebrafish (Danio rerio) embryos (ZEBC). Embryos were exposed to two UVR intensities and two chemical concentrations not causing mortality or any developmental effect (equivalent to the No-Observed-Effect Concentration-NOEC; NOEC diluted by 10-NOEC/10). Effects on ZEBC were evaluated using denaturing gradient gel electrophoresis (DGGE) and interpreted considering structure, richness and diversity. ZEBC were affected by both stressors even at concentrations/doses not affecting the host-organism (survival/development). Yet, some stress-tolerant bacterial groups were revealed. The structure of the ZEBC was always affected, mainly due to xenobiotic presence. Richness and diversity decreased after exposure to NOEC of PD. Interactive effects occurred for TCS and UVR. Aquatic microbiota imbalance might have repercussions for the host/aquatic system, particularly in a realistic scenario/climate change perspective therefore, future ecotoxicological models should consider xenobiotics interactions with UVR.

  10. The Effects of Carbaryl on the Development of Zebrafish (Danio rerio) Embryos

    PubMed Central

    Schock, Elizabeth N.; Ford, Windsor C.; Midgley, Kirsten J.; Fader, Joseph G.; Giavasis, Michael N.

    2012-01-01

    Abstract In the United States, Sevin™ brand insecticide is one of the most commonly used insecticides. The active ingredient in Sevin™, carbaryl (1-napthyl-N-methylcarbamate), is a known acetylcholinesterase (AChE) inhibitor that prevents the breakdown of acetylcholine to acetate and choline at the synapse. While carbaryl successfully causes the death of insects by paralysis, it has also been shown to have negative effects on the development of several nontarget species. To study the effects of carbaryl on nontarget species, zebrafish (Danio rerio) were used, as they are a good model for both toxicology and development studies. Our study suggests that carbaryl induces changes in morphology, specifically in embryo size and shape. Additionally, carbaryl causes defects in heart formation that is characterized by a decrease in heart rate and a developmental delay/defect in cardiac looping. A significant decrease in the number of spinal cord neurons present was also observed. Further investigation showed that there was an increase in cell death in carbaryl-treated embryos. The results indicate that carbaryl may have a greater environmental impact than initially intended. Our study, which was conducted solely by undergraduates at a liberal arts college, indicates that carbaryl may be detrimental to the development of nontarget species. PMID:23094693

  11. 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos.

    PubMed

    Shi, Guohui; Cui, Qianqian; Pan, Yitao; Sheng, Nan; Sun, Sujie; Guo, Yong; Dai, Jiayin

    2017-04-01

    As an alternative to perfluorooctanesulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (commercial name: F-53B) has been used as a mist suppressant in Chinese electroplating industries for over 30 years. It has been found in the environment and fish, and one acute assay indicated F-53B was moderately toxic. However, the toxicological information on this compound was incomplete and insufficient for assessment of their environment impact. The object of this study was to examine the developmental toxicity of F-53B using zebrafish embryos. Zebrafish embryos were incubated in 6-well plates with various concentrations of F-53B (1.5, 3, 6, and 12mg/L) from 6 to 132h post fertilization (hpf). Results showed that F-53B exposure induced developmental toxicity, including delayed hatching, increased occurrence of malformations, and reduced survival. Malformations, including pericardial and yolk sac edemas, abnormal spines, bent tails, and uninflated swim bladders, appeared at 84 hpf, and increased with time course and dose. A decrease in survival percentages was noted in the 6 and 12mg/L F-53B-treated groups at 132 hpf. Continuous exposure to 3mg/L F-53B resulted in high accumulation levels in zebrafish embryos, suggesting an inability for embryos to eliminate this compound and a high cumulative risk to fish. We also examined the cardiac function of embryos at specific developmental stages following exposure to different concentrations, and found that F-53B induced cardiac toxicity and reduced heart rate. Even under low F-53B concentration, o-dianisidine staining results showed significant decrease of relative erythrocyte number at 72 hpf before the appearance of observed effects of F-53B on the heart. To elucidate the underlying molecular changes, genes involved in normal cardiac development were analyzed using real-time qPCR in the whole-body of zebrafish embryos. F-53B inhibited the mRNA expression of β-catenin (ctnnb2) and wnt3a. The mRNA levels of

  12. The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos.

    PubMed

    Almond, Kelly M; Trombetta, Louis D

    2016-03-01

    A substitute for the organotins has been the use of metal pyrithiones, principally zinc and copper (CuPT) as antifouling agents. Zebrafish, Danio rerio, embryos were exposed after fertilization to increasing concentrations of CuPT (2, 4, 8, 12, 16, 32 and 64 μg/L) for 24 h. Morphological abnormalities at 30, 96 and 120 hours post fertilization (hpf) were recorded. Abnormalities at concentrations of 12 μg/L and higher were observed. Notochords became severely twisted as concentrations increased. These distortions of the notochord originated in the tail at the lower concentrations and proceeded rostrally with increasing dose. Edema was observed in the cardiac and yolk sac regions at the 12 and 16 μg/L CuPT concentrations. Light microscopy showed disorganization of muscle fibers, disruption and distortion of the transverse myoseptum and vacuolization of the myocyte. Hatching was measured every 12 h for 5 days following the 24 h exposure. Hatching decreased in a dose dependent manner. At 120 hpf, 47 % of the 64 μg/L CuPT treated embryos hatched. Inductively coupled plasma atomic absorbance spectrophotometry (ICPAAS) revealed copper bioaccumulation in whole embryo tissue and was significantly elevated in 32 and 64 μg/L CuPT treatment groups as compared to controls. Lipid peroxidation end products were significantly increased in animals exposed to 32 and 64 μg/L of CuPT. These data demonstrate that oxidative stress may play a role in the toxicity. The abnormalities and deformities observed in fish larvae would significantly decrease survival in polluted aqua-systems and question the use of this product as an antifouling agent.

  13. Zebrafish (Danio rerio) fed vitamin E-deficient diets produce embryos with increased morphologic abnormalities and mortality.

    PubMed

    Miller, Galen W; Labut, Edwin M; Lebold, Katie M; Floeter, Abby; Tanguay, Robert L; Traber, Maret G

    2012-05-01

    Vitamin E (α-tocopherol) is required to prevent fetal resorption in rodents. To study α-tocopherol's role in fetal development, a nonplacental model is required. Therefore, the zebrafish, an established developmental model organism, was studied by feeding the fish a defined diet with or without added α-tocopherol. Zebrafish (age, 4-6 weeks) were fed the deficient (E-), sufficient (E+) or lab diet up to 1 years. All groups showed similar growth rates. The exponential rate of α-tocopherol depletion up to ~80 day in E- zebrafish was 0.029±0.006 nmol/g, equivalent to a depletion half-life of 25±5 days. From age ~80 days, the E- fish (5±3 nmol/g) contained ~50 times less α-tocopherol than the E+ or lab diet fish (369±131 or 362±107, respectively; P<.05). E-depleted adults demonstrated decreased startle response suggesting neurologic deficits. Expression of selected oxidative stress and apoptosis genes from livers isolated from the zebrafish fed the three diets were evaluated by quantitative polymerase chain reaction and were not found to vary with vitamin E status. When E-depleted adults were spawned, they produced viable embryos with depleted α-tocopherol concentrations. The E- embryos exhibited a higher mortality (P<.05) at 24 h post-fertillization and a higher combination of malformations and mortality (P<.05) at 120 h post-fertillization than embryos from parents fed E+ or lab diets. This study documents for the first time that vitamin E is essential for normal zebrafish embryonic development.

  14. Effects of cyanobacterial lipopolysaccharides from microcystis on glutathione-based detoxification pathways in the zebrafish (Danio rerio) embryo.

    PubMed

    Jaja-Chimedza, Asha; Gantar, Miroslav; Mayer, Gregory D; Gibbs, Patrick D L; Berry, John P

    2012-06-01

    Cyanobacteria ("blue-green algae") are recognized producers of a diverse array of toxic secondary metabolites. Of these, the lipopolysaccharides (LPS), produced by all cyanobacteria, remain to be well investigated. In the current study, we specifically employed the zebrafish (Danio rerio) embryo to investigate the effects of LPS from geographically diverse strains of the widespread cyanobacterial genus, Microcystis, on several detoxifying enzymes/pathways, including glutathione-S-transferase (GST), glutathione peroxidase (GPx)/glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT), and compared observed effects to those of heterotrophic bacterial (i.e., E. coli) LPS. In agreement with previous studies, cyanobacterial LPS significantly reduced GST in embryos exposed to LPS in all treatments. In contrast, GPx moderately increased in embryos exposed to LPS, with no effect on reciprocal GR activity. Interestingly, total glutathione levels were elevated in embryos exposed to Microcystis LPS, but the relative levels of reduced and oxidized glutathione (i.e., GSH/GSSG) were, likewise, elevated suggesting that oxidative stress is not involved in the observed effects as typical of heterotrophic bacterial LPS in mammalian systems. In further support of this, no effect was observed with respect to CAT or SOD activity. These findings demonstrate that Microcystis LPS affects glutathione-based detoxification pathways in the zebrafish embryo, and more generally, that this model is well suited for investigating the apparent toxicophore of cyanobacterial LPS, including possible differences in structure-activity relationships between heterotrophic and cyanobacterial LPS, and teleost fish versus mammalian systems.

  15. Evaluation of cytotoxicity, genotoxicity and embryotoxicity of insecticide propoxur using flounder gill (FG) cells and zebrafish embryos.

    PubMed

    Pandey, Manish Raj; Guo, Huarong

    2014-04-01

    Cytotoxicity, genotoxicity and embryotoxicity of carbamate insecticide propoxur were evaluated using flounder gill (FG) cells and zebrafish embryos. The cytotoxicity of propoxur in FG cells was analyzed by MTT, neutral red uptake (NRU), lactate dehydrogenase (LDH) release and Hoechst 33342 and propidium iodide double staining, and acute cytotoxic effects were observed in a concentration-dependent manner. The 24h-IC50 values of 89.96 ± 1.04, 103.4 ± 1.14 and 86.59 ± 1.13 μg/ml propoxur were obtained by MTT, NRU and LDH assays, respectively. The lethal effects were induced in FG cells mainly through necrosis but not apoptosis as evidenced by double fluorescence staining. Comet assay showed weak genotoxic effects and statistically significant DNA damages were recorded in the cells exposed to highest tested concentration of 75 μg/ml propoxur (p<0.05). Propoxur exerted obvious acute toxic effects on the survival, spontaneous movement, hatching and heart rate, and development (yolk and pericardial sac edema) of zebrafish embryos in both time- and concentration-dependent manner only at ⩾ 100 μg/ml. The corresponding 24h-, 48 h- and 96 h-LC50 values of propoxur in zebrafish embryos were 166.4 ± 1.06, 146.3 ± 1.07 and 134.8 ± 1.06 μg/ml, respectively. The above data obtained suggest a low acute toxicity of propoxur to the in vitro cultured FG cells and zebrafish embryos.

  16. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    PubMed

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (<2.5-fold) in the GST isoforms, ahr2 and AOE genes response. However, expression of cyp1a and cyp3a65 mRNA was markedly and consistently induced by high doses of atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes.

  17. Light-controlled cellular internalization and cytotoxicity of nucleic acid-binding agents. Studies in vitro and in zebrafish embryos

    PubMed Central

    Penas, Cristina; Sánchez, Mateo I.; Guerra-Varela, Jorge; Sanchez-Piñón, Laura; Vázquez, M. Eugenio; Mascareñas, José L.

    2016-01-01

    We have synthesized oligoarginine conjugates of selected DNA-binding agents (a bisbenzamidine, acridine and thiazole orange) and demonstrated that the DNA binding and cell internalization properties of such conjugates can be inhibited by appending a negatively charged oligoglutamic tail through a photolabile linker. Irradiation with UV light releases the parent octaarginine conjugates, thus restoring their cell internalization and biological activity. Preliminary assays using zebrafish embryos demonstrates the potential of this prodrug strategy for controlling in vivo cytotoxicity. PMID:26534774

  18. The impact of endocrine-disrupting chemicals on oxidative stress and innate immune response in zebrafish embryos.

    PubMed

    Xu, Hai; Yang, Ming; Qiu, Wenhui; Pan, Chenyuan; Wu, Minghong

    2013-08-01

    Bisphenol A (BPA) and nonylphenol (NP) are well known endocrine-disrupting chemicals (EDCs) ubiquitous in the aquatic environment and are an ecotoxicological risk for the health of aquatic organisms. Limited attention has been given to the immunotoxicity of these chemicals. The present study revealed a concentration-dependent increase of reactive oxygen species content and an induced expression of redox-sensitive transcription factors in zebrafish embryos after exposure to various concentrations of BPA, NP, and BPA/NP mixture for 4 h to 168 h postfertilization. Transcription of genes related to the immune response, including IFNγ, IL1β, IL10, Mx, TNFα, CC-chemokine, and CXCL-clc, were significantly up-regulated on exposure to EDCs. A significant induction of concentrations of proinflammatory mediator, nitric oxide, accompanied by an increase in the activity of nitric oxide synthase (NOS) and an upregulation of inducible NOS gene expression, was detected in zebrafish embryos on exposures to EDCs. To elucidate the potential mechanisms by which BPA and NP activate the innate immune response, expression profiles of genes related to the Toll-like receptors (TLRs) signaling pathway were examined. Expressions of TLR3, TRIF, MyD88, SARM, IRAK4, and TRAF6 were altered on exposure to EDCs. The authors' results demonstrate that exposure to BPA and NP significantly affects the expression of genes related to immune response in zebrafish embryos following oxidative stress.

  19. Effects of cigarette smoke residues from textiles on fibroblasts, neurocytes and zebrafish embryos and nicotine permeation through human skin.

    PubMed

    Hammer, Timo R; Fischer, Kirsten; Mueller, Marina; Hoefer, Dirk

    2011-09-01

    Toxic substances from cigarette smoke can attach to carpets, curtains, clothes or other surfaces and thus may pose risks to affected persons. The phenomenon itself and the potential hazards are discussed controversially, but scientific data are rare. The objective of this study was to examine the potential of textile-bound nicotine for permeation through human skin and to assess the effects of cigarette smoke extracts from clothes on fibroblasts, neurocytes and zebrafish embryos. Tritiated nicotine from contaminated cotton textiles penetrated through adult human full-thickness skin as well as through a 3D in vitro skin model in diffusion chambers. We also observed a significant concentration-dependent cytotoxicity of textile smoke extracts on fibroblast viability and structure as well as on neurocytes. Early larval tests with zebrafish embryos were used as a valid assay for testing acute vertebrate toxicity. Zebrafish development was delayed and most of the embryos died when exposed to smoke extracts from textiles. Our data show that textiles contaminated with cigarette smoke represent a potential source of nicotine uptake and can provoke adverse health effects.

  20. Growth inhibition and coordinated physiological regulation of zebrafish (Danio rerio) embryos upon sublethal exposure to antidepressant amitriptyline.

    PubMed

    Yang, Ming; Qiu, Wenhui; Chen, Jingsi; Zhan, Jing; Pan, Chenyuan; Lei, Xiangjie; Wu, Minghong

    2014-06-01

    Amitriptyline is a tricyclic antidepressant used for decades. It is present at low detectable concentrations in the aquatic environment, but relative few studies have focused on its ecotoxicological effects on non-target aquatic animals. The present study conducted an acute toxicity test of waterborne amitriptyline exposure using zebrafish (Danio rerio) embryos 4 to 124 h-post-fertilization. Time-dependent lethal concentrations were firstly determined and at mg/L levels. Effects of amitriptyline on zebrafish embryos were then evaluated under amitriptyline exposure at sublethal concentrations of 1, 10, 100 ng/L, 1, 10, 100 μg/L and 1mg/L. Our results showed that amitriptyline significantly reduced the hatching time and body length of embryos after exposure in a concentration-dependent manner. Our study also revealed that the exposure evoked a coordinated modulation of physiological and biochemical parameters in exposed zebrafish embryos, including alterations of adrenocorticotropic hormone (ACTH) level, oxidative stress and antioxidant parameters, as well as nitric oxide (NO) production and total nitric oxide synthase (TNOS) activity. A U-shaped concentration-dependent response curve was observed in ACTH level in response to amitriptyline exposure. However, both U-shaped and inversed U-shaped curves were indicated in the responses of antioxidant parameters, including total antioxidant capacity, antioxidant enzyme activities (catalase, superoxide dismutase and peroxidase), glutathione content and glutathione reductase activity. Correspondingly, hydroxyl radical formation and lipid peroxidation indices changed in similar U-shaped concentration-dependent patterns, which together the results of antioxidant parameters suggested induction of oxidative stress in embryos exposed to amitriptyline at high concentrations. Moreover, NO production and TNOS activity were both significantly affected by amitriptyline exposure. Notably, significant correlations between these

  1. Short-Term Exposure of Zebrafish Embryos to Arecoline Leads to Retarded Growth, Motor Impairment, and Somite Muscle Fiber Changes

    PubMed Central

    Peng, Wei-Hau; Lee, Yen-Chia; Chau, Yat-Pang

    2015-01-01

    Abstract The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription–polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction. PMID:25549301

  2. Teratogenic and toxic effects of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (higher Basidiomycetes), on zebrafish embryo as model.

    PubMed

    Dulay, Rich Milton R; Kalaw, Sofronio P; Reyes, Renato G; Alfonso, Noel F; Eguchi, Fumio

    2012-01-01

    This paper highlights the teratogenic and toxic effects of Ganoderma lucidum (Lingzhi or Reishi mushroom) extract on zebrafish embryos. Hatchability, malformations, and lethality rate of zebrafish embryos were assessed to provide valuable information regarding the potential teratogenic activity of G. lucidum. Hatching was completed 48 h post treatment application (hpta) at 1% or lower concentrations of extract and embryo water. The hatching rate of embryos treated with 5% or higher concentrations was significantly lower (p> 0.05) than the control. Tail malformation was the most marked morphological abnormality in embryos at 72 hpta, which was obviously caused by 1% extract (55.56% tail malformation) and was observed in all embryos exposed to 5% of extract. Growth retardation was evident in embryos exposed to 5%, 10%, and 20%. However, lethal effect of extract of G. lucidum was dependent on dose and time of exposure. Mortality rates of embryos treated with 5% (44.44%) or higher concentrations of the extract was significantly higher (p > 0.05) than that of the control embryos at 72 hpta. These results suggest that G. lucidum extract has lethal and sub-lethal effects on zebrafish embryos.

  3. Dynamic analysis of angiogenesis in transgenic zebrafish embryos using a 3D multilayer chip-based technology

    NASA Astrophysics Data System (ADS)

    Akagi, Jin; Zhu, Feng; Hall, Chris J.; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh; Mitchell, Arnan; Crosier, Kathryn E.; Crosier, Philip S.; Wlodkowic, Donald

    2013-03-01

    Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micro-mechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo trapping suction manifold, drug delivery manifold and optically transparent indium tin oxide (ITO) heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves and miniaturized fluorescent USB microscope. Our results show that the innovative device has 100% embryo trapping efficiency while supporting normal embryo development for up to 72 hours in a confined microfluidic environment. We also present data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational anti-angiogenic agents in transgenic zebrafish Tg(fli1a:EGFP) line. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the Lab-on-a-Chip systems a step closer to realization of complete analytical automation.

  4. Nanosilver-coated socks and their toxicity to zebrafish (Danio rerio) embryos.

    PubMed

    Gao, Jiejun; Sepúlveda, Maria S; Klinkhamer, Christopher; Wei, Alexander; Gao, Yu; Mahapatra, Cecon T

    2015-01-01

    Silver nanoparticles (AgNPs) are being incorporated and are known to be released from various consumer products such as textiles. However, no data are available on the toxicity of AgNPs released from any of these commercial products. In this study, we quantified total silver released from socks into wash water by inductively coupled plasma mass spectrometry (ICP-MS) and determined the presence of AgNPs using transmission electron microscopy (TEM). We then exposed zebrafish (Danio rerio) embryos for 72 h to either this leachate ("sock-AgNP") or to the centrifugate ("spun-AgNP") free of AgNPs and compared their toxicity to that of ionic silver (Ag(+)). Our data suggest that AgNPs do get released into the wash water, and centrifugation eliminated AgNPs but did not decrease total silver concentrations, indicating that most of the silver in the sock-AgNP solution was in the ionic form. All embryos died during the first 24 h when exposed to undiluted sock-AgNP and spun-AgNP solutions resulting in significantly lower LC50 values (0.14 and 0.26 mg L(-1)) compared to AgNO3 (0.80 mg L(-1)). Similarly, at 72 hpf, both sock-derived solutions were more potent at affecting hatching and inducing abnormal development. These results suggest that both sock-AgNP and spun-AgNP solutions were more toxic than AgNO3. Previous studies have consistently shown the opposite, i.e., AgNPs are about 10 times less toxic that Ag(+). All together our results show that the high toxicity induced by the leachate of these socks is likely not caused by AgNPs or Ag(+). More studies are needed to evaluate the toxicity of the myriad of AgNP-coated commercial products that are now estimated to be close to 500.

  5. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view

    PubMed Central

    Xu, Ting; Zhao, Jing; Xu, Zhifa; Pan, Ruijie; Yin, Daqiang

    2016-01-01

    Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk. PMID:27181905

  6. Expression profiling identifies novel Hh/Gli-regulated genes in developing zebrafish embryos.

    PubMed

    Bergeron, Sadie A; Milla, Luis A; Villegas, Rosario; Shen, Meng-Chieh; Burgess, Shawn M; Allende, Miguel L; Karlstrom, Rolf O; Palma, Verónica

    2008-02-01

    The Hedgehog (Hh) signaling pathway plays critical instructional roles during embryonic development. Misregulation of Hh/Gli signaling is a major causative factor in human congenital disorders and in a variety of cancers. The zebrafish is a powerful genetic model for the study of Hh signaling during embryogenesis, as a large number of mutants that affect different components of the Hh/Gli signaling system have been identified. By performing global profiling of gene expression in different Hh/Gli gain- and loss-of-function scenarios we identified known (e.g., ptc1 and nkx2.2a) and novel Hh-regulated genes that are differentially expressed in embryos with altered Hh/Gli signaling function. By uncovering changes in tissue-specific gene expression, we revealed new embryological processes that are influenced by Hh signaling. We thus provide a comprehensive survey of Hh/Gli-regulated genes during embryogenesis and we identify new Hh-regulated genes that may be targets of misregulation during tumorigenesis.

  7. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: individual gene expression and pathway regulation.

    PubMed

    Hermsen, Sanne A B; Pronk, Tessa E; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Piersma, Aldert H

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, d-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity.

  8. The developmental effects of pentachlorophenol on zebrafish embryos during segmentation: A systematic view

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Zhao, Jing; Xu, Zhifa; Pan, Ruijie; Yin, Daqiang

    2016-05-01

    Pentachlorophenol (PCP) is a typical toxicant and prevailing pollutant whose toxicity has been broadly investigated. However, previous studies did not specifically investigate the underlying mechanisms of its developmental toxicity. Here, we chose zebrafish embryos as the model, exposed them to 2 different concentrations of PCP, and sequenced their entire transcriptomes at 10 and 24 hours post-fertilization (hpf). The sequencing analysis revealed that high concentrations of PCP elicited systematic responses at both time points. By combining the enrichment terms with single genes, the results were further analyzed using three categories: metabolism, transporters, and organogenesis. Hyperactive glycolysis was the most outstanding feature of the transcriptome at 10 hpf. The entire system seemed to be hypoxic, although hypoxia-inducible factor-1α (HIF1α) may have been suppressed by the upregulation of prolyl hydroxylase domain enzymes (PHDs). At 24 hpf, PCP primarily affected somitogenesis and lens formation probably resulting from the disruption of embryonic body plan at earlier stages. The proposed underlying toxicological mechanism of PCP was based on the crosstalk between each clue. Our study attempted to describe the developmental toxicity of environmental pollutants from a systematic view. Meanwhile, some features of gene expression profiling could serve as markers of human health or ecological risk.

  9. MicroXRF tomographic visualization of zinc and iron in the zebrafish embryo at the onset of the hatching period

    SciTech Connect

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Shin, Chong Hyun; Fahrni, Christoph J.

    2016-01-01

    Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.

  10. Cynodon dactylon and Sida acuta extracts impact on the function of the cardiovascular system in zebrafish embryos.

    PubMed

    Kannan, Rajaretinam Rajesh; Vincent, Samuel Gnana Prakash

    2012-03-01

    The aim of the present study was to screen cardioactive herbs from Western Ghats of India. The heart beat rate (HBR) and blood flow during systole and diastole were tested in zebrafish embryos. We found that Cynodon dactylon (C. dactylon) induced increases in the HBR in zebrafish embryos with a HBR of (3.968±0.344) beats/s, which was significantly higher than that caused by betamethosone [(3.770±0.344) beats/s]. The EC50 value of C. dactylon was 3.738 µg/mL. The methanolic extract of Sida acuta (S. acuta) led to decreases in the HBR in zebrafish embryos [(1.877±0.079) beats/s], which was greater than that caused by nebivolol (positive control). The EC50 value of Sida acuta was 1.195 µg/mL. The untreated embryos had a HBR of (2.685±0.160) beats/s at 3 d post fertilization (dpf). The velocities of blood flow during the cardiac cycle were (2,291.667±72.169) µm/s for the control, (4,250±125.000) µm/s for C. dactylon and (1,083.333±72.169) µm/s for S. acuta. The LC50 values were 32.6 µg/mL for C. dactylon and 20.9 µg/mL for S. acuta. In addition, the extracts exhibited no chemical genetic effects in the drug dosage range tested. In conclusion, we developed an assay that can measure changes in cardiac function in response to herbal small molecules and determine the cardiogenic effects by microvideography.

  11. Comparative toxicity of lead (Pb(2+)), copper (Cu(2+)), and mixtures of lead and copper to zebrafish embryos on a microfluidic chip.

    PubMed

    Li, Yinbao; Yang, Xiujuan; Chen, Zuanguang; Zhang, Beibei; Pan, Jianbin; Li, Xinchun; Yang, Fan; Sun, Duanping

    2015-03-01

    Investigations were conducted to determine acute effects of Pb(2+) and Cu(2+) presented individually and collectively on zebrafish embryos. Aquatic safety testing requires a cheap, fast, and highly efficient platform for real-time evaluation of single and mixture of metal toxicity. In this study, we have developed a microfluidic system for phenotype-based evaluation of toxic effects of Pb(2+) and Cu(2+) using zebrafish (Danio rerio) embryos. The microfluidic chip is composed of a disc-shaped concentration gradient generator and 24 culture chambers, which can generate one blank solution, seven mixture concentrations, and eight single concentrations for each metal solution, thus enabling the assessment of zebrafish embryos. To test the accuracy of this new chip platform, we have examined the toxicity and teratogenicity of Pb(2+) and Cu(2+) on embryos. The individual and combined impact of Pb(2+) and Cu(2+) on zebrafish embryonic development was quantitatively assessed by recording a series of physiological indicators, such as spontaneous motion at 22 hours post fertilization (hpf), mortality at 24 hpf, heartbeat and body length at 96 hpf, etc. It was found that Pb(2+) or Cu(2+) could induce deformity and cardiovascular toxicity in zebrafish embryos and the mixture could induce more severe toxicity. This chip is a multiplexed testing apparatus that allows for the examination of toxicity and teratogenicity for substances and it also can be used as a potentially cost-effective and rapid aquatic safety assessment tool.

  12. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development

    PubMed Central

    O’Shields, Britton; McArthur, Andrew G.; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J.

    2014-01-01

    The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologues. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1–2 cell stage) followed by transcriptomic profiling using an Agilent 4 × 44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28 hpf and 36 hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. PMID:24751692

  13. Effects of Dechlorane Plus exposure on axonal growth, musculature and motor behavior in embryo-larval zebrafish.

    PubMed

    Chen, Xiangping; Dong, Qiaoxiang; Chen, Yuanhong; Zhang, Zhenxuan; Huang, Changjiang; Zhu, Yaxian; Zhang, Yong

    2017-03-10

    Developmental neurobehavioral toxicity of Dechlorane Plus (DP) was investigated using the embryo-larval stages of zebrafish (Danio rerio). Normal fertilized embryos were waterborne exposed to DP at 15, 30, 60 μg/L beginning from 6 h post-fertilization (hpf). Larval teratology, motor activity, motoneuron axonal growth and muscle morphology were assessed at different developmental stages. Results showed that DP exposure significantly altered embryonic spontaneous movement, reduced touch-induced movement and free-swimming speed and decreased swimming speed of larvae in response to dark stimulation. These changes occurred at DP doses that resulted no significant teratogenesis in zebrafish. Interestingly, in accord with these behavioral anomalies, DP exposure significantly inhibited axonal growth of primary motoneuron and induced apoptotic cell death and lesions in the muscle fibers of zebrafish. Furthermore, DP exposure at 30 μg/L and 60 μg/L significantly increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation, as well as the mRNA transcript levels of apoptosis-related genes bax and caspase-3. Together, our data indicate that DP induced neurobehavioral deficits may result from combined effects of altered neuronal connectivity and muscle injuries.

  14. Zebrafish embryos as in vivo test tubes to unravel cell-specific mechanisms of neurogenesis during neurodevelopment and in diseases.

    PubMed

    Samarut, Éric

    2016-01-01

    Zebrafish has become a model of choice for developmental studies in particular for studying neural development and related mechanisms involved in diseases. Indeed, zebrafish provides a fast, handy and accurate model to perform functional genomics on a gene or network of genes of interest. Recently, we successfully purified neural stem cells (NSCs) by fluorescence-activated cell sorting (FACS) from whole embryos in order to analyze cell-specific transcriptomic effects by RNA sequencing. As a result, our work sheds light on signaling pathways that are more likely to be involved in our morpholino-induced neurogenesis phenotype. This cell purification strategy brings zebrafish to a higher level since it now allows one to investigate cell-specific effects of a genetic condition of interest (knockout, knock-down, gain-of-function etc.) at the genomic, transcriptomic and proteomic levels in a genuine in vivo context. With this new potential, there is no doubt that zebrafish will be of a major model with which to unravel complex underlying molecular mechanisms of neurological disorders such as epilepsy, autism spectrum disorders and schizophrenia.

  15. Teratogenicity of Ochratoxin A and the Degradation Product, Ochratoxin α, in the Zebrafish (Danio rerio) Embryo Model of Vertebrate Development.

    PubMed

    Haq, Mehreen; Gonzalez, Nelson; Mintz, Keenan; Jaja-Chimedza, Asha; De Jesus, Christopher Lawrence; Lydon, Christina; Welch, Aaron; Berry, John P

    2016-02-05

    Ochratoxins, and particularly ochratoxin A (OTA), are toxic fungal-derived contaminants of food and other agricultural products. Growing evidence supports the degradation of OTA by chemical, enzymatic and/or microbial means as a potential approach to remove this mycotoxin from food products. In particular, hydrolysis of OTA to ochratoxin α (OTα) and phenylalanine is the presumptive product of degradation in most cases. In the current study, we employed the zebrafish (Danio rerio) embryo, as a model of vertebrate development to evaluate, the teratogenicity of OTA and OTα. These studies show that OTA is potently active in the zebrafish embryo toxicity assay (ZETA), and that toxicity is both concentration- and time-dependent with discernible and quantifiable developmental toxicity observed at nanomolar concentrations. On the other hand, OTα had no significant effect on embryo development at all concentrations tested supporting a decreased toxicity of this degradation product. Taken together, these results suggest that ZETA is a useful, and highly sensitive, tool for evaluating OTA toxicity, as well as its degradation products, toward development of effective detoxification strategies. Specifically, the results obtained with ZETA, in the present study, further demonstrate the toxicity of OTA, and support its degradation via hydrolysis to OTα as an effective means of detoxification.

  16. Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos.

    PubMed

    Desai, Kunjan; Spikings, Emma; Zhang, Tiantian

    2015-08-01

    Methanol is a widely used cryoprotectant (CPA) in cryopreservation of fish embryos, however little is known about its effect at the molecular level. This study investigated the effect of methanol on sox gene and protein expression in zebrafish embryos (50% epiboly) when they were chilled for 3 h and subsequently warmed and cultured to the hatching stages. Initial experiments were carried out to evaluate the chilling tolerance of 50% epiboly embryos which showed no significant differences in hatching rates for up to 6 h chilling in methanol (0.2-, 0.5- and 1 M). Subsequent experiments in embryos that had been chilled for 3 h in 1 M methanol and warmed and cultured up to the hatching stages found that sox2 and sox3 gene expression were increased significantly in hatched embryos that had been chilled compared to non-chilled controls. Sox19a gene expression also remained above control levels in the chilled embryos at all developmental stages tested. Whilst stable sox2 protein expression was observed between non-chilled controls and embryos chilled for 3 h with or without MeOH, a surge in sox19a protein expression was observed in embryos chilled for 3 h in the presence of 1 M MeOH compared to non-chilled controls and then returned to control levels by the hatching stage. The protective effect of MeOH was increased with increasing concentrations. Effect of methanol at molecular level during chilling was reported here first time which could add new parameter in selection of cryoprotectant while designing cryopreservation protocol.

  17. Body Mass Parameters, Lipid Profiles and Protein Contents of Zebrafish Embryos and Effects of 2,4-Dinitrophenol Exposure

    PubMed Central

    Hachicho, Nancy; Reithel, Sarah; Miltner, Anja; Heipieper, Hermann J.; Küster, Eberhard; Luckenbach, Till

    2015-01-01

    Morphology and physiology of fish embryos undergo dramatic changes during their development until the onset of feeding, supplied only by endogenous yolk reserves. For obtaining an insight how these restructuring processes are reflected by body mass related parameters, dry weights (dw), contents of the elements carbon and nitrogen and lipid and protein levels were quantified in different stages within the first four days of embryo development of the zebrafish (Danio rerio). The data show age dependent changes in tissue composition. Dry weights decreased significantly from 79μgdw/egg at 0hours post fertilization (hpf) to 61 μgdw/egg after 96 hpf. The amounts of total carbon fluctuated between 460 mg g-1 and 540 mg g-1 dw, nitrogen was at about 100 mg g-1 dw and total fatty acids were between 48–73 mg g-1 dw. In contrast to these parameters that remained relatively constant, the protein content, which was 240 mg g-1 at 0 hpf, showed an overall increase of about 40%. Comparisons of intact eggs and dechorionated embryos at stages prior to hatching (24, 30, 48 hpf) showed that the differences seen for dry weight and for carbon and nitrogen contents became smaller at more advanced stages, consistent with transition of material from the chorion to embryo tissue. Further, we determined the effect of 2,4-dinitrophenol at a subacutely toxic concentration (14 μM, LC10) as a model chemical challenge on the examined body mass related parameters. The compound caused significant decreases in phospholipid and glycolipid fatty acid contents along with a decrease in the phospholipid fatty acid unsaturation index. No major changes were observed for the other examined parameters. Lipidomic studies as performed here may thus be useful for determining subacute effects of lipophilic organic compounds on lipid metabolism and on cellular membranes of zebrafish embryos. PMID:26292096

  18. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio).

    PubMed

    Wang, Huili; Che, Baoguang; Duan, Ailian; Mao, Jingwen; Dahlgren, Randy A; Zhang, Minghua; Zhang, Hongqin; Zeng, Aibing; Wang, Xuedong

    2014-10-01

    This study evaluated the effects of β-diketone antibiotics (DKAs) on the development of embryo-larval zebrafish (Danio rerio). When exposure to DKAs, developmental malformations, such as hatching delay, curved body axis, pericardial edema, uninflated swim bladder and yolk sac edema, were observed at 120 h postfertilization (hpf). The estimated 120 hpf nominal concentrations of no observed effect concentration and lowest observed effect concentration for DKAs were 18.75 and 37.50 mg/L, respectively, suggesting that DKAs have much lower toxicity than other persistent pollutants. Following DKA exposure, embryonic heart rates were significantly reduced as compared to the controls at 48 and 60 hpf. The peak bending motion frequency appeared 1 h earlier than in control embryos. The 2.34 and 9.38-mg/L treatment groups had a higher basal swim rate than control groups at 120 hpf in both light and light-to-dark photoperiod experiments. The occurrence of high speed swim rates was enhanced approximately threefold to sevenfold in the 2.34 and 9.38 mg/L treatments compared to the control. Glutathione (GSH) concentrations in the 2.34 and 9.38-mg/L treatments were significantly higher than the control at 72 hpf, suggesting that GSH production was induced at the end of the hatching period. When exposed to DKAs, zebrafish superoxide dismutase enzyme (SOD) activities were significantly inhibited in the early embryonic period, demonstrating that the clearing ability in zebrafish was lower than the generation rate of free radicals. In summary, the combined DKAs were developmentally toxic to zebrafish in their early life stages and had the ability to impair individual behaviors that are of great importance in the assessment of their ecological fitness.

  19. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    PubMed

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  20. Adsorption characteristics of nano-TiO2 onto zebrafish embryos and its impacts on egg hatching.

    PubMed

    Shih, Yu-Jen; Su, Chia-Chi; Chen, Chiu-Wen; Dong, Cheng-Di; Liu, Wen-Sheng; Huang, C P

    2016-07-01

    The characteristics of nanoparticles (NPs) uptake may fundamentally alter physicochemical effects of engineered NPs on aquatic organisms, thereby yielding different ecotoxicology assessment results. The adsorption behavior of nano-TiO2 (P-25) on zebrafish embryos in Holtfreter's medium (pH 7.2, I ∼ 7.2 × 10(-2) M) and the presence of sodium alginate (100 mg/L) as dispersant was investigated. Zebrafish embryos (total 100) were exposed to nano-TiO2 at different concentrations (e.g., 0, 10, 20, 60, 120 mg/L) in batch-mode assay. The adsorption capacity of nano-TiO2 on fish eggs was determined by measuring the Ti concentration on the egg surface using ICP-OES analysis. Results showed that the adsorption capacity increased rapidly in the first hour, and then declined to reach equilibrium in 8 h. The adsorption characteristics was visualized as a three-step process of rapid initial layer formation, followed by break-up of aggregates and finally rearrangement of floc structures; the maximum adsorption capacity was the sum of an inner rigid layers of aggregates of 0.81-0.84 μg-TiO2/#-egg and an outer softly flocculated layers of 1.01 μg-TiO2/#-egg. The Gibbs free energy was 543.29-551.26 and 100.75 kJ/mol, respectively, for the inner-layer and the outer-layer aggregates. Adsorption capacity at 0.5-1.0 μg-TiO2/#-egg promoted egg hatching; but hatching was inhibited at higher adsorption capacity. Results clearly showed that the configuration of TiO2 aggregates could impact the hatching efficiency of zebrafish embryos.

  1. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network.

    PubMed

    Díaz-Casado, María E; Lima, Elena; García, José A; Doerrier, Carolina; Aranda, Paula; Sayed, Ramy Ka; Guerra-Librero, Ana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-08-01

    Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease.

  2. Initial specification of the epibranchial placode in zebrafish embryos depends on the fibroblast growth factor signal.

    PubMed

    Nikaido, Masataka; Doi, Kazunao; Shimizu, Takashi; Hibi, Masahiko; Kikuchi, Yutaka; Yamasu, Kyo

    2007-02-01

    In vertebrates, cranial sensory ganglia are mainly derived from ectodermal placodes, which are focal thickenings at characteristic positions in the embryonic head. Here, we provide the first description of the early development of the epibranchial placode in zebrafish embryos using sox3 as a molecular marker. By the one-somite stage, we saw a pair of single sox3-expressing domains appear lateral to the future hindbrain. The sox3 domain, which is referred to here as the early lateral placode, is segregated during the early phase of segmentation to form a pax2a-positive medial area and a pax2a-negative lateral area. The medial area subsequently developed to form the otic placode, while the lateral area was further segregated along the anteroposterior axis, giving rise to four sox3-positive subdomains by 26 hr postfertilization. Given their spatial relationship with the expression of the markers for the epibranchial ganglion, as well as their positions and temporal changes, we propose that these four domains correspond to the facial, glossopharyngeal, vagal, and posterior lateral line placodes in an anterior-to-posterior order. The expression of sox3 in the early lateral placode was absent in mutants lacking functional fgf8, while implantation of fibroblast growth factor (FGF) beads restored the sox3 expression. Using SU5402, which inhibits the FGF signal, we were able to demonstrate that formation of both the early lateral domains and later epibranchial placodes depends on the FGF signal operating at the beginning of somitogenesis. Together, these data provide evidence for the essential role of FGF signals in the development of the epibranchial placodes.

  3. Is UV radiation changing the toxicity of compounds to zebrafish embryos?

    PubMed

    Almeida, Ana Rita; Andrade, Thayres S; Burkina, Viktoriia; Fedorova, Ganna; Loureiro, Susana; Soares, Amadeu M V M; Domingues, Inês

    2015-12-01

    At ecosystems level, environmental parameters such as temperature, pH, dissolved oxygen concentration and intensity of UV radiation (UVR) have an important role on the efficiency of organisms' physiological and behavioral performances and consequently on the capacity of response to contaminants. Insignificant alterations of these parameters may compromise this response. In addition, these parameters can additionally alter chemical compounds by inducing their degradation, producing thereafter other metabolites. Understanding the combined effects of chemicals and environmental parameters is absolutely necessary for an adequate prediction of risk in aquatic environments. According to this scenario, this work aims at studying the combined toxicity of UVR and three xenobiotics: the biocide triclosan (TCS), the metal chromium (as potassium dichromate, PD) and the fungicide prochloraz (PCZ). To achieve this goal zebrafish (Danio rerio) embryos (3h post fertilization (hpf)) were exposed to several concentrations of each chemical combined with different UV intensities; mortality and eggs were recorded every 24h for the all test duration (96 h). Results showed different response patterns depending on the toxicant, stress levels and duration of exposure. The combination of UVR and TCS indicated a dose ratio deviation where synergism was observed when UVR was the dominant stressor (day 2). The combination of UVR and PD presented a dose level dependency at day 3 indicating antagonism at low stress levels, changing with time where at day 4, a dose ratio deviation showed statistically that synergism occurred at higher PD concentrations. Finally, UVR combined with PCZ indicated a dose ratio at day 3 and dose level deviation at day 4 of exposure, suggesting a synergistic response when PCZ is the dominant stressor in the combination. The obtained results in this study highlighted the importance of taking into account the possible interaction of stressors and time of exposure to

  4. Effects of low-level hexabromocyclododecane (HBCD) exposure on cardiac development in zebrafish embryos.

    PubMed

    Wu, Meifang; Zuo, Zhenghong; Li, Bowen; Huang, Lixing; Chen, Meng; Wang, Chonggang

    2013-10-01

    Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. In the present study, zebrafish embryos were exposed to HBCD at the low concentrations of 0, 2, 20 and 200 nM. The results showed HBCD exposure resulted in an increase in heart rate and cardiac arrhythmia after exposure for 72 h, though the survival rate and the whole malformation rate were not significantly affected. These results demonstrated that the heart might be a target of HBCD. Low-level HBCD exposure may not share the same mechanisms as exposure to high concentrations, since no obvious increase of apoptotic cells around the heart was observed in the HBCD-treated groups. It was observed that the expression of Tbx5 and Nkx2.5 was significantly elevated by HBCD treatment in a dose-dependent manner using real-time quantitative PCR, which may be mainly responsible for the alteration of heart rate, given that Tbx5 and Nkx2.5 are two factors regulating ventricle conduction. The mRNA expression of RyR2 and Atp2a2b (SERCA2a) was up-regulated in the exposure group, which may be one of reasons to affect the normal heart rate, since SERCA2a and RyR2 play an important role in calcium ion transport of cadiomyocytes. However, HBCD exposure did not significantly change the expression of Actc1l, Tnnt2, and Myh6, which are mainly muscle contractile genes that play key roles in the formation of cardiac structure. These results were consistent with the lack of effect seen on the other measurements of cardiac function, end diastolic volume, end-systolic volume, stroke volume, and cardiac output.

  5. Acetyl L-carnitine protects motor neurons and Rohon-Beard sensory neurons against ketamine-induced neurotoxicity in zebrafish embryos.

    PubMed

    Cuevas, Elvis; Trickler, William J; Guo, Xiaoqing; Ali, Syed F; Paule, Merle G; Kanungo, Jyotshna

    2013-01-01

    Ketamine, a non-competitive antagonist of N-methyl-D-aspartate (NMDA) type glutamate receptors is commonly used as a pediatric anesthetic. Multiple studies have shown ketamine to be neurotoxic, particularly when administered during the brain growth spurt. Previously, we have shown that ketamine is detrimental to motor neuron development in the zebrafish embryos. Here, using both wild type (WT) and transgenic (hb9:GFP) zebrafish embryos, we demonstrate that ketamine is neurotoxic to both motor and sensory neurons. Drug absorption studies showed that in the WT embryos, ketamine accumulation was approximately 0.4% of the original dose added to the exposure medium. The transgenic embryos express green fluorescent protein (GFP) localized in the motor neurons making them ideal for evaluating motor neuron development and toxicities in vivo. The hb9:GFP zebrafish embryos (28 h post fertilization) treated with 2 mM ketamine for 20 h demonstrated significant reductions in spinal motor neuron numbers, while co-treatment with acetyl L-carnitine proved to be neuroprotective. In whole mount immunohistochemical studies using WT embryos, a similar effect was observed for the primary sensory neurons. In the ketamine-treated WT embryos, the number of primary sensory Rohon-Beard (RB) neurons was significantly reduced compared to that in controls. However, acetyl L-carnitine co-treatment prevented ketamine-induced adverse effects on the RB neurons. These results suggest that acetyl L-carnitine protects both motor and sensory neurons from ketamine-induced neurotoxicity.

  6. Caffeine-induced effects on heart rate in zebrafish embryos and possible mechanisms of action: an effective system for experiments in chemical biology.

    PubMed

    Rana, Neha; Moond, Mamta; Marthi, Amarnath; Bapatla, Swetha; Sarvepalli, Tejasudha; Chatti, Kiranam; Challa, Anil Kumar

    2010-03-01

    Zebrafish embryos are well suited as a model system to perform chemical biology experiments effectively in educational settings. We studied the effect of caffeine on heart rate (HR) and other phenotypes of zebrafish embryos using visual microscopy and simple imaging. Acute treatment with millimolar concentrations of caffeine in embryo medium caused a dose-dependent decrease in HR in 2-3-day-old zebrafish embryos, ultimately resulting in complete HR cessation. A characteristic pattern of decrease in HR was observed, with an initial acute drop in HR and a period of stabilization followed by complete cessation. The effects of caffeine were not reversed by cotreatment with ruthenium red and adenosine, agents known to be antagonistic to caffeine, or by changes in calcium concentration in embryo medium. Apparent cardiac arrhythmia and a typical kinking effect in the trunk/tail region were also observed because of caffeine treatment. Our results, taken together with previous reports, raise the possibility that caffeine exerts its effects on embryonic HR of zebrafish by inhibition of ether-a-go-go potassium channels. However, further experimentation is required to dissect the molecular basis of caffeine action. We demonstrate that such experiments can be used to explore the effect of small molecules, such as caffeine, on cardiovascular phenotypes and to encourage experimental design in chemical biology.

  7. Effects of cyanobacterium Fischerella ambigua isolates and cell free culture media on zebrafish (Danio rerio) embryo development.

    PubMed

    Wright, Anthony D; Papendorf, Olaf; König, Gabriele M; Oberemm, Axel

    2006-10-01

    The toxic effects of several species of fresh water cyanobacteria, notably Microcystis species and associated toxins, the microcystins, Anabaena species (anatoxin), Nodularia sp. (nodularin), and Cylindrospermopsis raciborskii (cylindrospermopsin), are well known. Little, however, is known about the effects of secondary metabolites other than alkaloids. Early life stage tests with zebrafish (Danio rerio) were used to detect bioactive properties of compounds released by healthy cyanobacteria (Fischerella ambigua), particularly on the early developmental stages of fish. This approach, using F. ambigua is probably most valuable as it shows the toxicity of healthy growing cyanobacteria. The effects of cyanobacterial secondary metabolites on the embryonic stages of fish are of considerable interest as many aquatic creatures, particularly fish, are unable to avoid the potential toxins that may be released by undesirable algal blooms or as a result of allelopathic effects. In the current study, the zebrafish (D. rerio) was used as a model experimental system to investigate the effects of ambigols A and C, tjipanazole D and C, 2,4-dichlorobenzoic acid, cell free culture media, and media extracts of a terrestrial/fresh water strain of the cyanobacterium F. ambigua on embryo development. Fish embryo tests performed with the cell free culture medium showed that after 3h of exposure to undiluted culture medium all fish embryos died. At a tenfold dilution the process of epiboly (formation of the gastrula) was retarded in all embryos, lesions were observed, and their general development was significantly arrested, finally followed by death. The same tests performed with extracts (dichloromethane, n-butanol, and residual cell free culture medium) of the cell free culture medium, ambigol A, ambigol C, 2,4-dichlorobenzoic acid and tjipanazole D showed only ambigol A to have an influence on zebrafish development at concentrations>or=1 mg/l (2.06 microM). After 55 h all embryos

  8. Inhibitory Effects of Red Wine on Lipid Oxidation in Fish Oil Emulsion and Angiogenesis in Zebrafish Embryo.

    PubMed

    Sun, Haiyan; Zhang, Yulin; Shen, Yixiao; Zhu, Yongchao; Wang, Hua; Xu, Zhimin

    2017-03-01

    The capabilities of red wine against lipid oxidation and angiogenesis were evaluated by using a fish oil emulsion system and an in vivo zebrafish embryos model, respectively. The red wine contained 12 different antioxidant phenolics which levels were led by anthocyanins (140.46 mg/L), catechin (55.08 mg/L), and gallic acid (46.76 mg/L). The diversity of the phenolics in red wine was greater than the tea, coffee, or white wine selected as a peer control in this study. The total phenolics concentration of red wine was 305.53 mg/L, although the levels of tea, coffee, and white wine were 85.59, 76.85, and 26.57 mg/L, respectively. The activity of red wine in scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals was approximately 4 times higher than the tea and 8 times than the coffee or white wine. The red wine showed the highest capability in preventing long chain PUFA oxidation in the fish oil emulsion. Because of the outstanding antioxidant activity of red wine, the red wine dried extract was used to monitor its inhibitory effect against angiogenesis by using transgenic zebrafish embryos (Tg[fli1:egfp](y1) ) with fluorescent blood vessels. After incubated in 100 μg/mL of the extract solution for 26 h pf, each of the embryos had a lower number of intersegmental vessel than the control embryo. The inhibition rate of red wine extract against growing of angiogenic blood vessel reached 100%.

  9. Development of inter-family nuclear transplant embryos by transplanting the nuclei from the loach blastulae into the non-enucleated zebrafish eggs

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Shicui; Yuan, Jinduo; Li, Hongyan

    2003-03-01

    The developmental fate of the pronuclei in recombined embryos obtained by transplanting the donor nuclei into the non-enucleated eggs remains controversial in the case of fish. In the present study, the nuclei from the loach blastulae were transplanted into non-enucleated zebrafish eggs, the resulting 9 inter-family nuclear transplant embryos developed to larval stages. Although the development timing of the nuclear transplants resembled that of zebrafish, chromosome examination revealed that most of the recombined embryos were diploids with karyotype characteristic of loach, which was also proved by RAPD analysis. Moreover, 3 out of the 9 larval fish formed barb rudiments specific to loach. It was therefore concluded that the nuclear transplant larval fish were inter-family nucleo-cytoplasmic hybrids; and that only the donor nuclei were involved in the development of the nuclear transplant embryos, while the pronuclei in the non-enucleated eggs were likely automatically eliminated during the development.

  10. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos

    PubMed Central

    Tan, Xungang; Rotllant, Josep; Li, Huiqing; DeDeyne, Patrick; Du, Shao Jun

    2006-01-01

    Histone modification has emerged as a fundamental mechanism for control of gene expression and cell differentiation. Recent studies suggest that SmyD1, a novo SET domain-containing protein, may play a critical role in cardiac muscle differentiation. However, its role in skeletal muscle development and its mechanism of actions remains elusive. Here we report that SmyD1a and SmyD1b, generated by alternative splicing of SmyD1 gene, are histone methyltransferases that play a key role in skeletal and cardiac muscle contraction. SmyD1a and SmyD1b are specifically expressed in skeletal and cardiac muscles of zebrafish embryos. Knockdown of SmyD1a and SmyD1b expression by morpholino antisense oligos resulted in malfunction of skeletal and cardiac muscles. The SmyD1 morphant embryos (embryos injected with morpholino oligos) could not swim and had no heartbeat. Myofibril organization in the morphant embryos was severely disrupted. The affected myofibers appeared as immature fibers with centrally located nuclei. Together, these data indicate that SmyD1a and SmyD1b are histone methyltransferases and play a critical role in myofibril organization during myofiber maturation. PMID:16477022

  11. The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos

    PubMed Central

    Bestman, Jennifer E.; Stackley, Krista D.; Rahn, Jennifer J.; Williamson, Tucker J.; Chan, Sherine S. L.

    2015-01-01

    The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease. PMID:25771346

  12. The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos.

    PubMed

    Bestman, Jennifer E; Stackley, Krista D; Rahn, Jennifer J; Williamson, Tucker J; Chan, Sherine S L

    2015-01-01

    The etiology of mitochondrial disease is poorly understood. Furthermore, treatment options are limited, and diagnostic methods often lack the sensitivity to detect disease in its early stages. Disrupted oxidative phosphorylation (OXPHOS) that inhibits ATP production is a common phenotype of mitochondrial disorders that can be induced in zebrafish by exposure to 2,4-dinitrophenol (DNP), a FDA-banned weight-loss agent and EPA-regulated environmental toxicant, traditionally used in research labs as an uncoupler of OXPHOS. Despite the DNP-induced OXPHOS inhibition we observed using in vivo respirometry, the development of the DNP-treated and control zebrafish were largely similar during the first half of embryogenesis. During this period, DNP-treated embryos induced gene expression of mitochondrial and nuclear genes that stimulated the production of new mitochondria and increased glycolysis to yield normal levels of ATP. DNP-treated embryos were incapable of sustaining this mitochondrial biogenic response past mid-embryogenesis, as shown by significantly lowered ATP production and ATP levels, decreased gene expression, and the onset of developmental defects. Examining neural tissues commonly affected by mitochondrial disease, we found that DNP exposure also inhibited motor neuron axon arbor outgrowth and the proper formation of the retina. We observed and quantified the molecular and physiological progression of mitochondrial dysfunction during development with this new model of OXPHOS dysfunction, which has great potential for use in diagnostics and therapies for mitochondrial disease.

  13. A role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo.

    PubMed

    Urven, Lance E; Yabe, Taijiro; Pelegri, Francisco

    2006-10-15

    Cytokinesis in early zebrafish embryos involves coordinated changes in the f-actin- and microtubule-based cytoskeleton, and the recruitment of adhesion junction components to the furrow. We show that exposure to inhibitors of non-muscle myosin II function does not affect furrow ingression during the early cleavage cycles but interferes with the recruitment of pericleavage f-actin and cortical beta-catenin aggregates to the furrow, as well as the remodeling of the furrow microtubule array. This remodeling is in turn required for the distal aggregation of the zebrafish germ plasm. Embryos with reduced myosin activity also exhibit at late stages of cytokinesis a stabilized contractile ring apparatus that appears as a ladder-like pattern of short f-actin cables, supporting a role for myosin function in the disassembly of the contractile ring after furrow formation. Our studies support a role for myosin function in furrow maturation that is independent of furrow ingression and which is essential for the recruitment of furrow components and the remodeling of the cytoskeleton during cytokinesis.

  14. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury

    PubMed Central

    Mora-Zamorano, Francisco X.; Svoboda, Kurt R.; Carvan, Michael J.

    2016-01-01

    This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine. PMID:27123921

  15. Impacts of oxidative stress on acetylcholinesterase transcription, and activity in embryos of zebrafish (Danio rerio) following Chlorpyrifos exposure.

    PubMed

    Rodríguez-Fuentes, Gabriela; Rubio-Escalante, Fernando J; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Schlenk, Daniel

    2015-01-01

    Organophosphate pesticides cause irreversible inhibition of AChE which leads to neuronal overstimulation and death. Thus, dogma indicates that the target of OP pesticides is AChE, but many authors postulate that these compounds also disturb cellular redox processes, and change the activities of antioxidant enzymes. Interestingly, it has also been reported that oxidative stress plays also a role in the regulation and activity of AChE. The aims of this study were to determine the effects of the antioxidant, vitamin C (VC), the oxidant, t-butyl hydroperoxide (tBOOH) and the organophosphate Chlorpyrifos (CPF), on AChE gene transcription and activity in zebrafish embryos after 72h exposure. In addition, oxidative stress was evaluated by measuring antioxidant enzymes activities and transcription, and quantification of total glutathione. Apical effects on the development of zebrafish embryos were also measured. With the exception of AChE inhibition and enhanced gene expression, limited effects of CPF on oxidative stress and apical endpoints were found at this developmental stage. Addition of VC had little effect on oxidative stress or AChE, but increased pericardial area and heartbeat rate through an unknown mechanism. TBOOH diminished AChE gene expression and activity, and caused oxidative stress when administered alone. However, in combination with CPF, only reductions in AChE activity were observed with no significant changes in oxidative stress suggesting the adverse apical endpoints in the embryos may have been due to AChE inhibition by CPF rather than oxidative stress. These results give additional evidence to support the role of prooxidants in AChE activity and expression.

  16. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression.

    PubMed

    Klüver, Nils; Yang, Lixin; Busch, Wibke; Scheffler, Katja; Renner, Patrick; Strähle, Uwe; Scholz, Stefan

    2011-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe) mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.

  17. A high-throughput lab-on-a-chip interface for zebrafish embryo tests in drug discovery and ecotoxicology

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald

    2013-12-01

    Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.

  18. Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo

    SciTech Connect

    Teraoka, Hiroki Kubota, Akira; Dong, Wu; Kawai, Yusuke; Yamazaki, Koji; Mori, Chisato; Harada, Yoshiteru; Peterson, Richard E.; Hiraga, Takeo

    2009-01-01

    Previously, we reported that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) evoked developmental toxicity required activation of aryl hydrocarbon receptor type 2 (AHR2), using zebrafish embryos. However, the downstream molecular targets of AHR2 activation are largely unknown and are the focus of the present investigation. TCDD induces cyclooxygenase 2 (COX2), a rate-limiting enzyme for prostaglandin synthesis in certain cells. In the present study, we investigated the role of the COX2-thromboxane pathway in causing a specific endpoint of TCDD developmental toxicity in the zebrafish embryo, namely, a decrease in regional blood flow in the dorsal midbrain. It was found that the TCDD-induced reduction in mesencephalic vein blood flow was markedly inhibited by selective COX2 inhibitors, NS-398 and SC-236, and by a general COX inhibitor, indomethacin, but not by a selective COX1 inhibitor, SC-560. Gene knock-down of COX2 by two different types of morpholino antisense oligonucleotides, but not by their negative homologs, also protected the zebrafish embryos from mesencephalic vein circulation failure caused by TCDD. This inhibitory effect of TCDD on regional blood flow in the dorsal midbrain was also blocked by selective antagonists of the thromboxane receptor (TP). Treatment of control zebrafish embryos with a TP agonist also caused a reduction in mesencephalic vein blood flow and it too was blocked by a TP antagonist, without any effect on trunk circulation. Finally, gene knock-down of thromboxane A synthase 1 (TBXS) with morpholinos but not by the morpholinos' negative homologs provided significant protection against TCDD-induced mesencephalic circulation failure. Taken together, these results point to a role of the prostanoid synthesis pathway via COX2-TBXS-TP in the local circulation failure induced by TCDD in the dorsal midbrain of the zebrafish embryo.

  19. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs.

  20. Generating Chimeric Mice by Using Embryos from Nonsuperovulated BALB/c Mice Compared with Superovulated BALB/c and Albino C57BL/6 Mice

    PubMed Central

    Esmail, Michael Y; Qi, Peimin; Connor, Aurora Burds; Fox, James G; García, Alexis

    2016-01-01

    The reliable generation of high-percentage chimeras from gene-targeted C57BL/6 embryonic stem cells has proven challenging, despite optimization of cell culture and microinjection techniques. To improve the efficiency of this procedure, we compared the generation of chimeras by using 3 different inbred, albino host, embryo-generating protocols: BALB/cAnNTac (BALB/c) donor mice superovulated at 4 wk of age, 12-wk-old BALB/c donor mice without superovulation, and C57BL/6NTac-Tyrtm1Arte (albino B6) mice superovulated at 4 wk of age. Key parameters measured included the average number of injectable embryos per donor, the percentage of live pups born from the total number of embryos transferred to recipients, and the number of chimeric pups with high embryonic-stem–cell contribution by coat color. Although albino B6 donors produced significantly more injectable embryos than did BALB/c donors, 12-wk-old BALB/c donor produced high-percentage (at least 70%) chimeras more than 2.5 times as often as did albino B6 mice and 20 times more efficiently than did 4-wk-old BALB/c donors. These findings clearly suggest that 12-wk-old BALB/c mice be used as blastocyst donors to reduce the number of mice used to generate each chimera, reduce the production of low-percentage chimeras, and maximize the generation of high-percentage chimeras from C57BL/6 embryonic stem cells. PMID:27423145

  1. The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene.

    PubMed

    Tian, Jingjing; Hu, Jia; Chen, Mingli; Yin, Huancai; Miao, Peng; Bai, Pengli; Yin, Jian

    2017-03-02

    Previous studies in our lab have revealed that both P-glycoprotein (Pgp) and multi-resistance associated protein (Mrp) 1 played important roles in the detoxification of heavy metals and polycyclic aromatic hydrocarbon (PAH) in zebrafish embryos. This paper aims to extend this research by using mrp1-deficient model to illustrate the individual function of Mrp1. In this respect, CRISPR/Cas9 system was employed to generate a frameshift mutation in zebrafish mrp1 causing premature translational stops in Mrp1. Significant reduction on the efflux function of Mrps was found in mutant zebrafish embryos, which correlated well with the significantly enhanced accumulation and toxicity of cadmium chloride (CdCl2) and benzo[a]pyrene (BαP), indicating the protective role of the corresponding protein. The different alteration on the accumulation and toxicity of Cd(2+) and BαP could be attributed to the fact that Cd(2+) and its metabolites were mainly excreted by Mrp1, while BαP was primarily pumped out by Pgp. More importantly, the compensation mechanism for the absence of Mrp1, including elevated glutathione (GSH) level and up-regulated expression of pgp and mrp2 were also found. Thus, mrp1-deficient zebrafish embryo could be a useful tool in the investigation of Mrp1 functions in the early life stages of aquatic organisms. However, compensation mechanism should be taken into consideration in the interpretation of results obtained with mrp1-deficient fish.

  2. Screening Estrogenic Activities of Chemicals or Mixtures In Vivo Using Transgenic (cyp19a1b-GFP) Zebrafish Embryos

    PubMed Central

    Brion, François; Le Page, Yann; Piccini, Benjamin; Cardoso, Olivier; Tong, Sok-Keng; Chung, Bon-chu; Kah, Olivier

    2012-01-01

    The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective. PMID:22586461

  3. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos.

    PubMed

    Brion, François; Le Page, Yann; Piccini, Benjamin; Cardoso, Olivier; Tong, Sok-Keng; Chung, Bon-chu; Kah, Olivier

    2012-01-01

    The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.

  4. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component.

    PubMed

    Stoop, Esther J M; Schipper, Tim; Rosendahl Huber, Sietske K; Nezhinsky, Alexander E; Verbeek, Fons J; Gurcha, Sudagar S; Besra, Gurdyal S; Vandenbroucke-Grauls, Christina M J E; Bitter, Wilbert; van der Sar, Astrid M

    2011-07-01

    The hallmark of tuberculosis (TB) is the formation of granulomas, which are clusters of infected macrophages surrounded by additional macrophages, neutrophils and lymphocytes. Although it has long been thought that granulomas are beneficial for the host, there is evidence that mycobacteria also promote the formation of these structures. In this study, we aimed to identify new mycobacterial factors involved in the initial stages of granuloma formation. We exploited the zebrafish embryo Mycobacterium marinum infection model to study initiation of granuloma formation and developed an in vivo screen to select for random M. marinum mutants that were unable to induce granuloma formation efficiently. Upon screening 200 mutants, three mutants repeatedly initiated reduced granuloma formation. One of the mutants was found to be defective in the espL gene, which is located in the ESX-1 cluster. The ESX-1 cluster is disrupted in the Mycobacterium bovis BCG vaccine strain and encodes a specialized secretion system known to be important for granuloma formation and virulence. Although espL has not been implicated in protein secretion before, we observed a strong effect on the secretion of the ESX-1 substrates ESAT-6 and EspE. We conclude that our zebrafish embryo M. marinum screen is a useful tool to identify mycobacterial genes involved in the initial stages of granuloma formation and that we have identified a new component of the ESX-1 secretion system. We are confident that our approach will contribute to the knowledge of mycobacterial virulence and could be helpful for the development of new TB vaccines.

  5. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine.

    PubMed

    Adeyemi, Joseph A; da Cunha Martins-Junior, Airton; Barbosa, Fernando

    2015-01-01

    Arsenic and atrazine are common environmental contaminants probably due to their extensive use as pesticides on agricultural farmlands. In this study, zebrafish embryos were exposed to 0.8mM arsenic, 0.1mM atrazine or mixture of both for 96h, and various indices which are indicative of teratogenicity (egg coagulation, growth retardation, edema formation, hatching success, scoliosis), genotoxicity (DNA tail moments) and oxidative stress (lipid peroxidation and reduced glutathione (GSH) levels, catalase and glutathione peroxidase activities) were determined. The negative control were exposed to 0.5% DMSO while the positive control group were exposed to 4mg/L 3,4 dichloroaniline. Egg coagulation was highest in the positive control (85%), followed by the group that was exposed to mixture of arsenic and atrazine (30%) and least in the arsenic-exposed group (20%). The incidences of edema (59%) and growth retardation (35.2%) were more frequent in the group that was exposed to contaminant mixture and least in atrazine-exposed group where incidences of both edema and growth retardation were 15%. The incidence of scoliosis ranged between 20% in arsenic-exposed group and 10% in atrazine-exposed group. Hatching success was generally high in all the groups ranging between 95% in atrazine-exposed group and 88% in the group that was exposed to mixture of arsenic and atrazine. There was no evidence of teratogenic effect in the negative control group. DNA tail moments and lipid peroxidation levels increased significantly while GSH levels and catalase activity decreased significantly in contaminant-exposed groups, especially the mixture compared to the negative control. There was no significant change in GPx activity in the exposed groups compared to the negative control. The results of this study demonstrate that both arsenic and atrazine are potentially teratogenic and genotoxic, and can cause oxidative stress in zebrafish embryos, and these effects are potentiated by toxic

  6. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    SciTech Connect

    Strecker, Ruben; Weigt, Stefan; Braunbeck, Thomas

    2013-04-15

    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.

  7. Effects of pharmaceuticals and personal care products (PPCPs) on multixenobiotic resistance (MXR) related efflux transporter activity in zebrafish (Danio rerio) embryos.

    PubMed

    Cunha, V; Burkhardt-Medicke, K; Wellner, P; Santos, M M; Moradas-Ferreira, P; Luckenbach, T; Ferreira, M

    2017-02-01

    Certain ATP binding cassette (ABC) transporter proteins, such as zebrafish Abcb4, are efflux pumps acting as a cellular defence against a wide range of different, potentially toxic chemical compounds thus mediating so called multixenobiotic resistance (MXR). Certain chemicals target MXR proteins and, as so called chemosensitisers, inhibit the activity of these proteins thus increasing the toxicity of other chemicals that would normally be effluxed. In this study 14 pharmaceuticals and personal care products (PPCPs) that are being increasingly detected in aquatic systems, were assessed for interference with the MXR system of zebrafish (Danio rerio). Concentration dependent effects of test compounds were recorded with the dye accumulation assay using zebrafish embryos and in ATPase assays with recombinant zebrafish Abcb4. In the dye accumulation assay embryos at 24h post fertilisation (hpf) were exposed to 8µm rhodamine 123 along with test compounds for 2h. The rhodamine 123 tissue levels upon the exposure served as a measure for MXR transporter efflux activity of the embryo (low rhodamine levels - high activity; high levels - low activity). The known ABC protein inhibitors MK571, vinblastine and verapamil served as positive controls. All tested PPCPs affected rhodamine 123 accumulation in embryos. For seven compounds rhodamine tissue levels were either both decreased and increased depending on the compound concentration indicating both stimulation and inhibition of rhodamine 123 efflux by those compounds, only increased (inhibition, six compounds) or only decreased (stimulation, one compound). Recombinant zebrafish Abcb4 was obtained with the baculovirus expression system and PPCPs were tested for stimulation/inhibition of basal transporter ATPase activity and for inhibition of the transporter ATPase activity stimulated with verapamil. Eight of the tested PPCPs showed effects on Abcb4 ATPase activity indicating that their effects in the dye accumulation assay may

  8. ZebraBeat: a flexible platform for the analysis of the cardiac rate in zebrafish embryos

    PubMed Central

    De Luca, Elisa; Zaccaria, Gian Maria; Hadhoud, Marwa; Rizzo, Giovanna; Ponzini, Raffaele; Morbiducci, Umberto; Santoro, Massimo Mattia

    2014-01-01

    Heartbeat measurement is important in assesssing cardiac function because variations in heart rhythm can be the cause as well as an effect of hidden pathological heart conditions. Zebrafish (Danio rerio) has emerged as one of the most useful model organisms for cardiac research. Indeed, the zebrafish heart is easily accessible for optical analyses without conducting invasive procedures and shows anatomical similarity to the human heart. In this study, we present a non-invasive, simple, cost-effective process to quantify the heartbeat in embryonic zebrafish. To achieve reproducibility, high throughput and flexibility (i.e., adaptability to any existing confocal microscope system and with a user-friendly interface that can be easily used by researchers), we implemented this method within a software program. We show here that this platform, called ZebraBeat, can successfully detect heart rate variations in embryonic zebrafish at various developmental stages, and it can record cardiac rate fluctuations induced by factors such as temperature and genetic- and chemical-induced alterations. Applications of this methodology may include the screening of chemical libraries affecting heart rhythm and the identification of heart rhythm variations in mutants from large-scale forward genetic screens.

  9. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...

  10. Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo.

    PubMed

    Wang, Wen-Der; Wang, Yin; Wen, Hui-Ju; Buhler, Donald R; Hu, Chin-Hwa

    2004-07-01

    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that can be activated by a diverse synthetic and naturally-occurring chemicals, such as the halogenated aromatic hydrocarbons (HAHs) and the non-halogenated polycyclic aromatic hydrocarbons (PAHs). The liganded AHR modulates the genetic activity of a variety of xenobiotic-responsive genes, including cytochrome P4501A1 (CYP1A1). The tyrosinase inhibitor 1-phenyl-2-thiourea (PTU) is widely used in zebrafish research to suppress pigmentation in developing embryos/fry. Here we showed that 0.2 mM PTU induced a basal level of CYP1A1 transcription in zebrafish embryonic integument as early as 24 h postfertilization (hpf) stage. Subsequently, PTU induced CYP1A1 transcription in blood vessels at 36 hpf. During larval stage, the liver and all pharyngeal arch vessels of PTU-treated embryos exhibited CYP1A1 transcription as well. Comparing to TCDD, PTU induces CYP1A1 transcription with much lower efficacy in zebrafish embryos. Coincubating the embryos with PTU and TCDD led to repressing TCDD-induced CYP1A1 transcription. Mechanistic studies indicated that both of PTU- and TCDD-mediated CYP1A1 transcriptions are modulated by the same AHR-ARNT signaling pathway.

  11. Transgenic (cyp19a1b-GFP) zebrafish embryos as a tool for assessing combined effects of oestrogenic chemicals.

    PubMed

    Petersen, Karina; Fetter, Eva; Kah, Olivier; Brion, François; Scholz, Stefan; Tollefsen, Knut Erik

    2013-08-15

    Endocrine disrupting chemicals and especially oestrogen receptor (ER) agonists have been extensively studied over the years due to their potential effects on sexual development and reproduction in vertebrates, notably fish. As ER agonists can exist as complex mixtures in the aquatic environment, evaluating the impact of combined exposure on oestrogenic effects has become increasingly important. Use of predictive models such as concentration addition (CA) and independent action (IA) has allowed assessment of combined estrogenic effects of complex multi-compound mixtures of ER agonists in various fish in vitro and in vivo experimental models. The present work makes use of a transgenic zebrafish strain, tg(cyp19a1b-GFP), which expresses the green fluorescent protein (GFP) under the control of the cyp19a1b (brain aromatase or aromatase B) gene to determine the oestrogenic potency of ER agonists alone or in mixtures. In these studies, tg(cyp19a1b-GFP) zebrafish embryos were exposed for four days (from one to five days post fertilization) to five different oestrogenic chemicals; 17α-ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), bisphenol A (BPA) and 4-tert-octylphenol (OP), and three mixtures of up to four of these compounds. The mixture of BPA, OP and E2 was also tested with primary cultures of rainbow trout hepatocytes by analysing the ER-mediated induction of the oestrogenic biomarker vitellogenin in order to compare the performance of the two methods for assessing oestrogenic effects of complex mixtures. The three tested mixtures were predominantly acting in an additive manner on the expression of GFP. Additivity was indicated by the overlap of the 95% confidence interval of the concentration response curves for the observed data with the CA and IA prediction models, and model deviation ratios within a factor of two for a majority of the mixture concentrations. However, minor deviations determined as more than additive effects for the mixture of EE2, E1

  12. Synthesis of low and high chlorinated toxaphene and comparison of their toxicity by zebrafish (Danio rerio) embryo test.

    PubMed

    Kapp, Thomas; Kammann, Ulrike; Vobach, Michael; Vetter, Walter

    2006-11-01

    Toxaphene, also known as camphechlor, is a persistent organochlorine pesticide of complex composition. It is technically produced by photochlorination of camphene with elemental chlorine gas under ultraviolet irradiation. In the present work, a novel, laboratory-scale synthesis using sulfuryl chloride as a chlorinating reagent is described. This approach allowed the degree of chlorination of the resulting mixtures to be arbitrarily adjusted by varying the reaction conditions. Both the compositions and the chlorine contents of the low- and high-chlorinated mixtures acquired using this method were similar to those of environmentally altered toxaphene and technical toxaphene, respectively. For comparison of these mixtures regarding toxicity, they were subjected to the zebrafish (Danio rerio) embryo test. Median effective concentrations (EC50s) were calculated based on the presence of lethal and nonlethal embryonic malformations. Surprisingly, low-chlorinated toxaphene, comprising compounds that also are present in environmentally transformed toxaphene, exhibited a twofold-higher toxicity (according to the EC50 for nonlethal effects) toward the test organisms compared with high-chlorinated toxaphene, the composition of which resembled that of the technical product. Although the effective concentrations in the embryo test were much higher than those in aquatic ecosystems burdened with toxaphene, the present results lead to the assumption that toxaphene is becoming more toxic during transformation in the environment. A decrease in the total amount of toxaphene during environmental breakdown would then be compensated for, at least in part, by the higher toxicity of weathered toxaphene in sediments, soils, and biota of contaminated ecosystems.

  13. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos.

    PubMed

    Pozzi, Paolo; Sironi, Laura; D'Alfonso, Laura; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe; Pallavicini, Piersandro; Cotelli, Franco; Foglia, Efrem A

    2014-06-01

    Biomedical issues in vasculogenesis and cardiogenesis require methods to follow hemodynamics with high spatial (micrometers) and time (milliseconds) resolution. At the same time, we need to follow relevant morphogenetic processes on large fields of view. Fluorescence cross-correlation spectroscopy coupled to scanning or wide-field microscopy meets these needs but has limited flexibility in the excitation pattern. To overcome this limitation, we develop here a two-photon two-spots setup coupled to an all-reflective near-infrared (NIR) optimized scanning system and to an electron multiplying charge-coupled device. Two NIR laser spots are spaced at adjustable micron-size distances (1 to 50 μm) by means of a Twyman-Green interferometer and repeatedly scanned on the sample, allowing acquisition of information on flows at 4 ms-3 μm time-space resolution in parallel on an extended field of view. We analyze the effect of nonhomogeneous and variable flow on the cross-correlation function by numerical simulations and show exemplary application of this setup in studies of blood flow in zebrafish embryos in vivo. By coupling the interferometer with the scanning mirrors and by computing the cross-correlation function of fluorescent red blood cells, we are able to map speed patterns in embryos' vessels.

  14. Electron multiplying charge-coupled device-based fluorescence cross-correlation spectroscopy for blood velocimetry on zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Pozzi, Paolo; Sironi, Laura; D'Alfonso, Laura; Bouzin, Margaux; Collini, Maddalena; Chirico, Giuseppe; Pallavicini, Piersandro; Cotelli, Franco; Foglia, Efrem A.

    2014-06-01

    Biomedical issues in vasculogenesis and cardiogenesis require methods to follow hemodynamics with high spatial (micrometers) and time (milliseconds) resolution. At the same time, we need to follow relevant morphogenetic processes on large fields of view. Fluorescence cross-correlation spectroscopy coupled to scanning or wide-field microscopy meets these needs but has limited flexibility in the excitation pattern. To overcome this limitation, we develop here a two-photon two-spots setup coupled to an all-reflective near-infrared (NIR) optimized scanning system and to an electron multiplying charge-coupled device. Two NIR laser spots are spaced at adjustable micron-size distances (1 to 50 μm) by means of a Twyman-Green interferometer and repeatedly scanned on the sample, allowing acquisition of information on flows at 4 ms-3 μm time-space resolution in parallel on an extended field of view. We analyze the effect of nonhomogeneous and variable flow on the cross-correlation function by numerical simulations and show exemplary application of this setup in studies of blood flow in zebrafish embryos in vivo. By coupling the interferometer with the scanning mirrors and by computing the cross-correlation function of fluorescent red blood cells, we are able to map speed patterns in embryos' vessels.

  15. Sodium cholate-templated blue light-emitting Ag subnanoclusters: in vivo toxicity and imaging in zebrafish embryos.

    PubMed

    Chandirasekar, Shanmugam; Chandrasekaran, Chandramouli; Muthukumarasamyvel, Thangavel; Sudhandiran, Ganapasam; Rajendiran, Nagappan

    2015-01-28

    We report a novel green chemical approach for the synthesis of blue light-emitting and water-soluble Ag subnanoclusters, using sodium cholate (NaC) as a template at a concentration higher than the critical micelle concentration (CMC) at room temperature. However, under photochemical irradiation, small anisotropic and spherically shaped Ag nanoparticles (3-11 nm) were obtained upon changing the concentration of NaC from below to above the CMC. The matrix-assisted laser desorption ionization time-of-flight and electrospray ionization mass spectra showed that the cluster sample was composed of Ag4 and Ag6. The optical properties of the clusters were studied by UV-visible and luminescence spectroscopy. The lifetime of the synthesized fluorescent Ag nanoclusters (AgNCs) was measured using a time-correlated single-photon counting technique. High-resolution transmission electron microscopy was used to assess the size of clusters and nanoparticles. A protocol for transferring nanoclusters to organic solvents is also described. Toxicity and bioimaging studies of NaC templated AgNCs were conducted using developmental stage zebrafish embryos. From the survival and hatching experiment, no significant toxic effect was observed at AgNC concentrations of up to 200 μL/mL, and the NC-stained embryos exhibited blue fluorescence with high intensity for a long period of time, which shows that AgNCs are more stable in living system.

  16. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  17. Zebrafish embryos as an alternative to animal experiments--a commentary on the definition of the onset of protected life stages in animal welfare regulations.

    PubMed

    Strähle, Uwe; Scholz, Stefan; Geisler, Robert; Greiner, Petra; Hollert, Henner; Rastegar, Sepand; Schumacher, Axel; Selderslaghs, Ingrid; Weiss, Carsten; Witters, Hilda; Braunbeck, Thomas

    2012-04-01

    Worldwide, the zebrafish has become a popular model for biomedical research and (eco)toxicology. Particularly the use of embryos is receiving increasing attention, since they are considered as replacement method for animal experiments. Zebrafish embryos allow the analysis of multiple endpoints ranging from acute and developmental toxicity determination to complex functional genetic and physiological analysis. Particularly the more complex endpoints require the use of post-hatched eleutheroembryo stages. According to the new EU Directive 2010/63/EU on the protection of animals used for scientific purposes, the earliest life-stages of animals are not defined as protected and, therefore, do not fall into the regulatory frameworks dealing with animal experimentation. Independent feeding is considered as the stage from which free-living larvae are subject to regulations for animal experimentation. However, despite this seemingly clear definition, large variations exist in the interpretation of this criterion by national and regional authorities. Since some assays require the use of post-hatched stages up to 120 h post fertilization, the literature and available data are reviewed in order to evaluate if this stage could still be considered as non-protected according to the regulatory criterion of independent feeding. Based on our analysis and by including criteria such as yolk consumption, feeding and swimming behavior, we conclude that zebrafish larvae can indeed be regarded as independently feeding from 120 h after fertilization. Experiments with zebrafish should thus be subject to regulations for animal experiments from 120 h after fertilization onwards.

  18. Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong

    2017-02-01

    Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.

  19. The antiangiogenic effects of polyisoprenylated cysteinyl amide inhibitors in HUVEC, chick embryo and zebrafish is dependent on the polyisoprenyl moiety

    PubMed Central

    Nkembo, Augustine T.; Ntantie, Elizabeth; Salako, Olufisayo O.; Amissah, Felix; Poku, Rosemary A.; Latinwo, Lekan M.; Lamango, Nazarius S.

    2016-01-01

    Angiogenesis is essential for solid tumor growth, therapeutic resistance and metastasis, the latest accounting for 90% of cancer deaths. Although angiogenesis is essential for the malignant transformations in solid tumors and therefore is an attractive target, few drugs are available that block tumor angiogenesis. The focus has been to block signaling by receptor tyrosine kinases (RTKs), such as for vascular endothelial growth factor (VEGF), whose activation abrogate apoptosis and promote angiogenesis. The polyisoprenylated cysteinyl amide inhibitors (PCAIs) were designed to modulate aberrant polyisoprenylated small G-proteins such as mutant Ras whose constitutive activation promotes RTKs signaling. Since polyisoprenylation is essential for protein-protein interactions and functions of G-proteins, we hypothesized that the PCAIs would disrupt the monomeric G-protein signaling thereby effectively inhibiting angiogenesis. In this study we determined the effects of PCAIs on human umbilical vein endothelial cells (HUVEC) tube formation, cell viability, cell migration and invasion as well as in vivo using the chick chorioallantoic membrane (CAM) and zebrafish models. At sub- to low micromolar concentrations, the PCAIs inhibit the native and VEGF-stimulated cell migration and invasion as well as tube formation and angiogenesis in CAM and zebrafish embryos. The concentrations that block the angiogenic processes were lower than those that induce cell death. Since angiogenesis is essential for tumor growth but otherwise limited to wound healing, feeding fat cells and uterine wall repair in adults, it is conceivable that these compounds can be developed into safer therapeutics for cancers and retinal neovascularization that leads to loss of vision. PMID:27626690

  20. Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult

    PubMed Central

    2013-01-01

    Background Teleost fish display widespread post-embryonic neurogenesis originating from many different proliferative niches that are distributed along the brain axis. During the development of the central nervous system (CNS) different cell types are produced in a strict temporal order from increasingly committed progenitors. However, it is not known whether diverse neural stem and progenitor cell types with restricted potential or stem cells with broad potential are maintained in the teleost fish brain. Results To study the diversity and output of neural stem and progenitor cell populations in the zebrafish brain the cerebellum was used as a model brain region, because of its well-known architecture and development. Transgenic zebrafish lines, in vivo imaging and molecular markers were used to follow and quantify how the proliferative activity and output of cerebellar progenitor populations progress. This analysis revealed that the proliferative activity and progenitor marker expression declines in juvenile zebrafish before they reach sexual maturity. Furthermore, this correlated with the diminished repertoire of cell types produced in the adult. The stem and progenitor cells derived from the upper rhombic lip were maintained into adulthood and they actively produced granule cells. Ventricular zone derived progenitor cells were largely quiescent in the adult cerebellum and produced a very limited number of glia and inhibitory inter-neurons. No Purkinje or Eurydendroid cells were produced in fish older than 3 months. This suggests that cerebellar cell types are produced in a strict temporal order from distinct pools of increasingly committed stem and progenitor cells. Conclusions Our results in the zebrafish cerebellum show that neural stem and progenitor cell types are specified and they produce distinct cell lineages and sub-types of brain cells. We propose that only specific subtypes of brain cells are continuously produced throughout life in the teleost fish

  1. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    María Lacave, José; Retuerto, Ander; Vicario-Parés, Unai; Gilliland, Douglas; Oron, Miriam; Cajaraville, Miren P.; Orbea, Amaia

    2016-08-01

    Due to the increasing commercialization of consumer and industrial products containing nanoparticles (NPs), an increase in the introduction of these materials into the environment is expected. NP toxicity to aquatic organisms depends on multiple biotic and abiotic factors, resulting in an unlimited number of combinations impossible to test in practice. The zebrafish embryo model offers a useful screening tool to test and rank the toxicity of nanomaterials according to those diverse factors. This work aims to study the acute and sublethal toxicity of a set of metal-bearing NPs displaying different properties, in comparison to that of the ionic and bulk forms of the metals, in order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag l-1 for Ag NPs of 20 nm, and a significant increase in the malformation prevalence in embryos exposed to 0.1 mg Cd l-1 of CdS NPs of ˜4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not observed during early embryo development due to the protective effect of the chorion. But effects on larvae could be expected, since deposition of fluorescent SiO2 NPs over the gill lamella and excretion through the intestine were observed after hatching. In other cases, such as for gold NPs, the toxicity could be attributed to the presence of additives (sodium citrate) in the NP suspension, as they displayed a similar toxicity when tested separately. Overall, the results indicated that toxicity to zebrafish embryos depends primarily on the chemical composition and, thus, the solubility of the NPs. Other characteristics, such as size, played a secondary role. This was supported by the observation that ionic forms of the metals were always more toxic than the nano forms, and bulk forms were the least toxic to the developing zebrafish embryos.

  2. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos

    PubMed Central

    Etard, Christelle; Roostalu, Urmas; Strähle, Uwe

    2010-01-01

    The chaperones Unc45b and Hsp90a are essential for folding of myosin in organisms ranging from worms to humans. We show here that zebrafish Unc45b, but not Hsp90a, binds to the putative cytidine deaminase Apobec2 (Apo2) in an interaction that requires the Unc45/Cro1p/She4p-related (UCS) and central domains of Unc45b. Morpholino oligonucleotide-mediated knockdown of the two related proteins Apo2a and Apo2b causes a dystrophic phenotype in the zebrafish skeletal musculature and impairs heart function. These phenotypic traits are shared with mutants of unc45b, but not with hsp90a mutants. Apo2a and -2b act nonredundantly and bind to each other in vitro, which suggests a heteromeric functional complex. Our results demonstrate that Unc45b and Apo2 proteins act in a Hsp90a-independent pathway that is required for integrity of the myosepta and myofiber attachment. Because the only known function of Unc45b is that of a chaperone, Apo2 proteins may be clients of Unc45b but other yet unidentified processes cannot be excluded. PMID:20440001

  3. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study.

    PubMed

    Michiels, Ellen D G; Vergauwen, Lucia; Hagenaars, An; Fransen, Erik; Dongen, Stefan Van; Van Cruchten, Steven J; Bervoets, Lieven; Knapen, Dries

    2017-03-02

    Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: "Scheppelijke Nete" (SN) and "Kneutersloop" (K), and a ditch (D), which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to "D" or "reconstituted D" water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance.

  4. Impairment of Cargo Transportation Caused by gbf1 Mutation Disrupts Vascular Integrity and Causes Hemorrhage in Zebrafish Embryos.

    PubMed

    Chen, Jing; Wu, Xiaotong; Yao, Likun; Yan, Lu; Zhang, Lin; Qiu, Juhui; Liu, Xingfeng; Jia, Shunji; Meng, Anming

    2017-02-10

    ADP-ribosylation factor GTPases are activated by guanine nucleotide exchange factors including Gbf1 (Golgi brefeldin A-resistant factor 1) and play important roles in regulating organelle structure and cargo-selective vesicle trafficking. However, the developmental role of Gbf1 in vertebrates remains elusive. In this study, we report the zebrafish mutant line tsu3994 that arises from N-ethyl-N-nitrosourea (ENU)-mediated mutagenesis and is characterized by prominent intracerebral and trunk hemorrhage. The mutant embryos develop hemorrhage accompanied by fewer pigments and shorter caudal fin at day 2 of development. The hemorrhage phenotype is caused by vascular breakage in a cell autonomous fashion. Positional cloning identifies a T → G nucleotide substitution in the 23rd exon of the gbf1 locus, resulting in a leucine → arginine substitution (L1246R) in the HDS2 domain. The mutant phenotype is mimicked by gbf1 knockouts and morphants, suggesting a nature of loss of function. Experimental results in mammalian cells show that the mutant form Gbf1(L1246R) is unable to be recruited to the Golgi apparatus and fails to activate Arf1 for recruiting COPI complex. The hemorrhage in tsu3994 mutants can be prevented partially and temporally by treating with the endoplasmic reticulum stress/apoptosis inhibitor tauroursodeoxycholic acid or by knocking down the proapoptotic gene baxb Therefore, endothelial endoplasmic reticulum stress and subsequent apoptosis induced by gbf1 deficiency may account for the vascular collapse and hemorrhage.

  5. Linking Genomo- and Pathotype: Exploiting the Zebrafish Embryo Model to Investigate the Divergent Virulence Potential among Cronobacter spp.

    PubMed Central

    Eshwar, Athmanya K.; Tall, Ben D.; Gangiredla, Jayanthi; Gopinath, Gopal R.; Patel, Isha R.; Neuhauss, Stephan C. F.; Stephan, Roger; Lehner, Angelika

    2016-01-01

    Bacteria belonging to the genus Cronobacter have been recognized as causative agents of life-threatening systemic infections primarily in premature, low-birth weight and immune-compromised neonates. Apparently not all Cronobacter species are linked to infantile infections and it has been proposed that virulence varies among strains. Whole genome comparisons and in silico analysis have proven to be powerful tools in elucidating potential virulence determinants, the presence/absence of which may explain the differential virulence behaviour of strains. However, validation of these factors has in the past been hampered by the availability of a suitable neonatal animal model. In the present study we have used zebrafish embryos to model Cronobacter infections in vivo using wild type and genetically engineered strains. Our experiments confirmed the role of the RepF1B-like plasmids as “virulence plasmids” in Cronobacter and underpinned the importantce of two putative virulence factors—cpa and zpx—in in vivo pathogenesis. We propose that by using this model in vivo infection studies are now possible on a large scale level which will boost the understanding on the virulence strategies employed by these pathogens. PMID:27355472

  6. In vivo analysis of formation and endocytosis of the Wnt/β-Catenin signaling complex in zebrafish embryos

    PubMed Central

    Hagemann, Anja I. H.; Kurz, Jennifer; Kauffeld, Silke; Chen, Qing; Reeves, Patrick M.; Weber, Sabrina; Schindler, Simone; Davidson, Gary; Kirchhausen, Tomas; Scholpp, Steffen

    2014-01-01

    ABSTRACT After activation by Wnt/β-Catenin ligands, a multi-protein complex assembles at the clustering membrane-bound receptors and intracellular signal transducers into the so-called Lrp6-signalosome. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt–Fz–Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The μ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2μ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2μ2-mediated endocytosis is important to maintain Wnt/β-catenin signaling in vertebrates. PMID:25074807

  7. Evaluating Complex Mixtures in the Zebrafish Embryo by Reconstituting Field Water Samples: A Metal Pollution Case Study

    PubMed Central

    Michiels, Ellen D. G.; Vergauwen, Lucia; Hagenaars, An; Fransen, Erik; Dongen, Stefan Van; Van Cruchten, Steven J.; Bervoets, Lieven; Knapen, Dries

    2017-01-01

    Accurately assessing the toxicity of complex, environmentally relevant mixtures remains an important challenge in ecotoxicology. The goal was to identify biological effects after exposure to environmental water samples and to determine whether the observed effects could be explained by the waterborne metal mixture found in the samples. Zebrafish embryos were exposed to water samples of five different sites originating from two Flemish (Mol and Olen, Belgium) metal contaminated streams: “Scheppelijke Nete” (SN) and “Kneutersloop” (K), and a ditch (D), which is the contamination source of SN. Trace metal concentrations, and Na, K, Mg and Ca concentrations were measured using ICP-MS and were used to reconstitute site-specific water samples. We assessed whether the effects that were observed after exposure to environmental samples could be explained by metal mixture toxicity under standardized laboratory conditions. Exposure to “D” or “reconstituted D” water caused 100% mortality. SN and reconstituted SN water caused similar effects on hatching, swim bladder inflation, growth and swimming activity. A canonical discriminant analysis confirmed a high similarity between both exposure scenarios, indicating that the observed toxicity was indeed primarily caused by metals. The applied workflow could be a valuable approach to evaluate mixture toxicity that limits time and costs while maintaining biological relevance. PMID:28257097

  8. Shaped 3D singular spectrum analysis for quantifying gene expression, with application to the early zebrafish embryo.

    PubMed

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field.

  9. Abnormal vasculature interferes with optic fissure closure in lmo2 mutant zebrafish embryos.

    PubMed

    Weiss, Omri; Kaufman, Rivka; Michaeli, Natali; Inbal, Adi

    2012-09-15

    Ocular coloboma is a potentially blinding congenital eye malformation caused by failure of optic fissure closure during early embryogenesis. The optic fissure is a ventral groove that forms during optic cup morphogenesis, and through which hyaloid artery and vein enter and leave the developing eye, respectively. After hyaloid artery and vein formation, the optic fissure closes around them. The mechanisms underlying optic fissure closure are poorly understood, and whether and how this process is influenced by hyaloid vessel development is unknown. Here we show that a loss-of-function mutation in lmo2, a gene specifically required for hematopoiesis and vascular development, results in failure of optic fissure closure in zebrafish. Analysis of ocular blood vessels in lmo2 mutants reveals that some vessels are severely dilated, including the hyaloid vein. Remarkably, reducing vessel size leads to rescue of optic fissure phenotype. Our results reveal a new mechanism leading to coloboma, whereby malformed blood vessels interfere with eye morphogenesis.

  10. Dynamic phosphorylation of Histone Deacetylase 1 by Aurora kinases during mitosis regulates zebrafish embryos development

    PubMed Central

    Loponte, Sara; Segré, Chiara V.; Senese, Silvia; Miccolo, Claudia; Santaguida, Stefano; Deflorian, Gianluca; Citro, Simona; Mattoscio, Domenico; Pisati, Federica; Moser, Mirjam A.; Visintin, Rosella; Seiser, Christian; Chiocca, Susanna

    2016-01-01

    Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology. PMID:27458029

  11. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections.

    PubMed

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-02-19

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11-37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals.

  12. Identification of the Zinc Finger Protein ZRANB2 as a Novel Maternal Lipopolysaccharide-binding Protein That Protects Embryos of Zebrafish against Gram-negative Bacterial Infections*

    PubMed Central

    Wang, Xia; Du, Xiaoyuan; Li, Hongyan; Zhang, Shicui

    2016-01-01

    Zinc finger ZRANB2 proteins are widespread in animals, but their functions and mechanisms remain poorly defined. Here we clearly demonstrate that ZRANB2 is a newly identified LPS-binding protein present abundantly in the eggs/embryos of zebrafish. We also show that recombinant ZRANB2 (rZRANB2) acts as a pattern recognition receptor capable of identifying the bacterial signature molecule LPS as well as binding the Gram-negative bacteria Escherichia coli, Vibrio anguilarum, and Aeromonas hydrophila and functions as an antibacterial effector molecule capable of directly killing the bacteria. Furthermore, we reveal that N-terminal residues 11–37 consisting of the first ZnF_RBZ domain are indispensable for ZRANB2 antimicrobial activity. Importantly, microinjection of rZRANB2 into early embryos significantly enhanced the resistance of the embryos against pathogenic A. hydrophila challenge, and this enhanced bacterial resistance was markedly reduced by co-injection of anti-ZRANB2 antibody. Moreover, precipitation of ZRANB2 in the embryo extracts by preincubation with anti-ZRANB2 antibody caused a marked decrease in the antibacterial activity of the extracts against the bacteria tested. In addition, the N-terminal peptide Z1/37 or Z11/37 with in vitro antibacterial activity also promoted the resistance of embryos against A. hydrophila, but the peptide Z38/198 without in vitro antibacterial activity did not. Collectively, these results indicate that ZRANB2 is a maternal LPS-binding protein that can protect the early embryos of zebrafish against pathogenic attacks, a novel role ever assigned to ZRANB2 proteins. This work also provides new insights into the immunological function of the zinc finger proteins that are widely distributed in various animals. PMID:26740623

  13. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA expression in zebrafish embryos

    SciTech Connect

    Jenny, Matthew J.; Aluru, Neelakanteswar; Hahn, Mark E.

    2012-10-15

    Although many drugs and environmental chemicals are teratogenic, the mechanisms by which most toxicants disrupt embryonic development are not well understood. MicroRNAs, single-stranded RNA molecules of ∼ 22 nt that regulate protein expression by inhibiting mRNA translation and promoting mRNA sequestration or degradation, are important regulators of a variety of cellular processes including embryonic development and cellular differentiation. Recent studies have demonstrated that exposure to xenobiotics can alter microRNA expression and contribute to the mechanisms by which environmental chemicals disrupt embryonic development. In this study we tested the hypothesis that developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known teratogen, alters microRNA expression during zebrafish development. We exposed zebrafish embryos to DMSO (0.1%) or TCDD (5 nM) for 1 h at 30 hours post fertilization (hpf) and measured microRNA expression using several methods at 36 and 60 hpf. TCDD caused strong induction of CYP1A at 36 hpf (62-fold) and 60 hpf (135-fold) as determined by real-time RT-PCR, verifying the effectiveness of the exposure. MicroRNA expression profiles were determined using microarrays (Agilent and Exiqon), next-generation sequencing (SOLiD), and real-time RT-PCR. The two microarray platforms yielded results that were similar but not identical; both showed significant changes in expression of miR-451, 23a, 23b, 24 and 27e at 60 hpf. Multiple analyses were performed on the SOLiD sequences yielding a total of 16 microRNAs as differentially expressed by TCDD in zebrafish embryos. However, miR-27e was the only microRNA to be identified as differentially expressed by all three methods (both microarrays, SOLiD sequencing, and real-time RT-PCR). These results suggest that TCDD exposure causes modest changes in expression of microRNAs, including some (miR-451, 23a, 23b, 24 and 27e) that are critical for hematopoiesis and cardiovascular

  14. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    PubMed

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.

  15. Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae.

    PubMed

    Kienle, Cornelia; Köhler, Heinz-R; Gerhardt, Almut

    2009-09-01

    In order to assess the combined toxicity of environmental chemicals with different modes of action in acute (2 h) and subchronic (11 d) exposures, embryos and larvae of Danio rerio were exposed to a heavy metal salt, nickel chloride (NiCl2), the insecticide chlorpyrifos (CHP) and their binary mixtures. Chlorpyrifos is an acetylcholine esterase inhibitor, which is likely to affect behaviour of the organism. NiCl2 targets the active sites of enzymes and is regarded as an unspecific toxicant for aquatic organisms. Several endpoints, such as locomotor activity, morphological abnormalities, and mortality of D. rerio embryos and larvae were studied. During acute exposures to > or =0.25 mg/L of chlorpyrifos, locomotor activity tended to increase. However, this activity decreased significantly at > or =7.5 mg Ni/L. Subchronic exposures to CHP resulted in behavioural changes at much lower concentrations (> or =0.01 mg/L) and considerably earlier than the observed increase in morphological abnormalities and mortality (LC(50) (10 d): 0.43 mg/L). Combined CHP and NiCl2 mixtures led to an antagonistic deviation from the concept of independent action, in the case of locomotor activity. Compared to developmental or survival parameters, behaviour was the most sensitive endpoint for CHP exposure in this study; therefore we recommend this parameter to complement already established endpoints.

  16. Toxicity assessment and vitellogenin expression in zebrafish (Danio rerio) embryos and larvae acutely exposed to bisphenol A, endosulfan, heptachlor, methoxychlor and tetrabromobisphenol A.

    PubMed

    Chow, Wing Shan; Chan, Winson Ka-Lun; Chan, King Ming

    2013-07-01

    Organochlorine pesticides and brominated flame retardants, such as tetrabromobisphenol A and polybrominated diphenyl ethers, pose an environmental hazard owing to their persistence, low solubility and estrogenic effects, and concerns have been raised regarding their effects on aquatic biota. In the present study, zebrafish embryos and larvae were used as a model to investigate the sublethal and lethal effects of three different organochlorine pesticides, namely methoxychlor, endosulfan and heptachlor, as well as the flame retardant tetrabromobisphenol A, and its precursor compound bisphenol A. Preliminary data for chemical exposure tests were obtained by determining the 96 h median effective concentration EC50 (hatching rate) and 96 h median lethal concentration LC50 . Quantitative polymerase chain reaction was used to investigate the gene expression levels of the biomarker vitellogenin (vtg1) after 96 h exposures to 10, 25, 50 and 75% of the 96 h EC50 value for embryos and 96 h LC50 value for larvae. The use of vtg1 mRNA induction in zebrafish embryos and larvae was found to be a sensitive biomarker of exposure to these organic compounds, and was helpful in elucidating their adverse effects and setting water quality guidelines.

  17. RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos.

    PubMed

    Miranda-Rodríguez, Jerónimo Roberto; Salas-Vidal, Enrique; Lomelí, Hilda; Zurita, Mario; Schnabel, Denhi

    2017-01-01

    Zebrafish germ plasm is composed of mRNAs such as vasa and nanos and of proteins such as Bucky ball, all of which localize symmetrically in four aggregates at the distal region of the first two cleavage furrows. The coordination of actin microfilaments, microtubules and kinesin is essential for the correct localization of the germ plasm. Rho-GTPases, through their effectors, coordinate cytoskeletal dynamics. We address the participation of RhoA and its effector ROCK in germ plasm localization during the transition from two- to eight-cell embryos. We found that active RhoA is enriched along the cleavage furrow during the first two division cycles, whereas ROCK localizes at the distal region of the cleavage furrows in a similar pattern as the germ plasm mRNAs. Specific inhibition of RhoA and ROCK affected microtubules organization at the cleavage furrow; these caused the incorrect localization of the germ plasm mRNAs. The incorrect localization of the germ plasm led to a dramatic change in the number of germ cells during the blastula and 24hpf embryo stages without affecting any other developmental processes. We demonstrate that the Rho/ROCK pathway is intimately related to the determination of germ cells in zebrafish embryos.

  18. Acetyl L-carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An in vivo assessment.

    PubMed

    Guo, Xiaoqing; Dumas, Melanie; Robinson, Bonnie L; Ali, Syed F; Paule, Merle G; Gu, Qiang; Kanungo, Jyotshna

    2017-02-01

    Verapamil is a Ca(2)(+) channel blocker and is highly prescribed as an anti-anginal, antiarrhythmic and antihypertensive drug. Ketamine, an antagonist of the Ca(2)(+) -permeable N-methyl-d-aspartate-type glutamate receptors, is a pediatric anesthetic. Previously we have shown that acetyl l-carnitine (ALCAR) reverses ketamine-induced attenuation of heart rate and neurotoxicity in zebrafish embryos. Here, we used 48 h post-fertilization zebrafish embryos that were exposed to relevant drugs for 2 or 4 h. Heart beat and overall development were monitored in vivo. In 48 h post-fertilization embryos, 2 mm ketamine reduced heart rate in a 2 or 4 h exposure and 0.5 mm ALCAR neutralized this effect. ALCAR could reverse ketamine's effect, possibly through a compensatory mechanism involving extracellular Ca(2)(+) entry through L-type Ca(2)(+) channels that ALCAR is known to activate. Hence, we used verapamil to block the L-type Ca(2)(+) channels. Verapamil was more potent in attenuating heart rate and inducing morphological defects in the embryos compared to ketamine at specific times of exposure. ALCAR reversed cardiotoxicity and developmental toxicity in the embryos exposed to verapamil or verapamil plus ketamine, even in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, an inhibitor of intracellular Ca(2)(+) release suggesting that ALCAR acts via effectors downstream of Ca(2)(+) . In fact, ALCAR's protective effect was blunted by oligomycin A, an inhibitor of adenosine triphosphate synthase that acts downstream of Ca(2)(+) during adenosine triphosphate generation. We have identified, for the first time, using in vivo studies, a downstream effector of ALCAR that is critical in abrogating ketamine- and verapamil-induced developmental toxicities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Acetyl L-carnitine targets adenosine triphosphate synthase in protecting zebrafish embryos from toxicities induced by verapamil and ketamine: An in vivo assessment

    PubMed Central

    Guo, Xiaoqing; Dumas, Melanie; Robinson, Bonnie L.; Ali, Syed F.; Paule, Merle G.; Gu, Qiang; Kanungo, Jyotshna

    2016-01-01

    Verapamil is a Ca2+ channel blocker and is highly prescribed as an anti-anginal, antiarrhythmic and antihypertensive drug. Ketamine, an antagonist of the Ca2+-permeable N-methyl-D-aspartate-type glutamate receptors, is a pediatric anesthetic. Previously we have shown that acetyl L-carnitine (ALCAR) reverses ketamine-induced attenuation of heart rate and neurotoxicity in zebrafish embryos. Here, we used 48 h post-fertilization zebrafish embryos that were exposed to relevant drugs for 2 or 4 h. Heart beat and overall development were monitored in vivo. In 48 h post-fertilization embryos, 2 mM ketamine reduced heart rate in a 2 or 4 h exposure and 0.5 mM ALCAR neutralized this effect. ALCAR could reverse ketamine’s effect, possibly through a compensatory mechanism involving extracellular Ca2+ entry through L-type Ca2+ channels that ALCAR is known to activate. Hence, we used verapamil to block the L-type Ca2+ channels. Verapamil was more potent in attenuating heart rate and inducing morphological defects in the embryos compared to ketamine at specific times of exposure. ALCAR reversed cardiotoxicity and developmental toxicity in the embryos exposed to verapamil or verapamil plus ketamine, even in the presence of 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester, an inhibitor of intracellular Ca2+ release suggesting that ALCAR acts via effectors downstream of Ca2+. In fact, ALCAR’s protective effect was blunted by oligomycin A, an inhibitor of adenosine triphosphate synthase that acts downstream of Ca2+ during adenosine triphosphate generation. We have identified, for the first time, using in vivo studies, a downstream effector of ALCAR that is critical in abrogating ketamine- and verapamil-induced developmental toxicities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. PMID:27191126

  20. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  1. Methyl tert butyl ether targets developing vasculature in zebrafish (Danio rerio) embryos

    PubMed Central

    Bonventre, Josephine A.; White, Lori A.; Cooper, Keith R.

    2015-01-01

    Disruption of vascular endothelial growth factor (VEGF) signaling during early development results in abnormal angiogenesis and increased vascular lesions. Embryonic exposure to 0.625 to 10 mM methyl tert butyl ether (MTBE), a highly water soluble gasoline additive, resulted in a dose dependent increase in pooled blood in the common cardinal vein (CCV), cranial hemorrhages and abnormal intersegmental vessels (ISVs). The EC50s for the lesions ranked in terms of likelihood to occur with MTBE exposure were: pooled blood in the CCV, 3.2 mM [95 % CI: 2.2 – 4.7] > cranial hemorrhage, 11 mM [5.9 – 20.5] > abnormal ISV, 14.5 mM [6.5 – 32.4]. Organ systems other than the vascular system appear to develop normally, which suggests MTBE toxicity targets developing blood vessels. Equal molar concentrations (0.625 to 10 mM) of the primary metabolites, tertiary butyl alcohol (TBA) and formaldehyde, did not result in vascular lesions, which suggested that the parent compound is responsible for the toxicity. Stage specific exposures were carried out to determine the developmental period most sensitive to MTBE vascular disruption. Embryos treated until 6-somites or treated after Prim-5 stages did not exhibit a significant increase in lesions, while embryos treated between 6-somites and Prim-5 had a significant increase in vascular lesions (p ≤ 0.05). During the critical window for MTBE-induced vascular toxicity, expression of vegfa, vegfc, and flk1/kdr were significantly decreased 50, 70 and 40%, respectively. This is the first study to characterize disruption in vascular development following embryonic exposure to MTBE. The unique specificity of MTBE to disrupt angiogenesis may be mediated by the down regulation of critical genes in the VEGF pathway. PMID:21684239

  2. Developmental toxicity, EROD, and CYP1A mRNA expression in zebrafish embryos exposed to dioxin-like PCB126.

    PubMed

    Liu, Han; Nie, Fang-Hong; Lin, Hong-Ying; Ma, Yi; Ju, Xiang-Hong; Chen, Jin-Jun; Gooneratne, Ravi

    2016-02-01

    Dioxin-like PCB126 is a persistent organic pollutant that causes a range of syndromes including developmental toxicity. Dioxins have a high affinity for aryl hydrocarbon receptor (AhR) and induce cytochrome P4501A (CYP1A). However, the role of CYP1A activity in developmental toxicity is less clear. To better understand dioxin induced developmental toxicity, we exposed zebrafish (Danio rerio) embryos to PCB126 at concentrations of 0, 16, 32, 64, and 128 μg L(-1) from 3-h post-fertilization (hpf) to 168 hpf. The embryonic survival rate decreased at 144 and 168 hpf. The fry at 96 hpf displayed gross developmental malformations, including pericardial and yolk sac edema, spinal curvature, abnormal lower jaw growth, and non-inflated swim bladder. The pericardial and yolk sac edema rate significantly increased and the heart rate declined from 96 hpf compared with the controls. PCB126 did not alter the hatching rate. To elucidate the mechanism of PCB126-induced developmental toxicity, we conducted ethoxyresorufin-O-deethylase (EROD) in vivo assay to determine CYP1A enzyme activity, and real-time PCR to study the induction of CYP1A mRNA gene expression in embryo/larval zebrafish at 24, 72, 96, and 132 hpf. In vivo EROD activity was induced by PCB126 at 16 μg L(-1) concentration as early as 72 hpf but significant increases were observed only in zebrafish exposed to 64 and 128 μg L(-1) doses (p < 0.005) at 72, 96, and 132 hpf. Induction of CYP1A mRNA expression was significantly upregulated in zebrafish exposed to 32 and 64 μg L(-1) at 24, 72, 96, and 132 hpf. Overall, the severe pericardial and yolk sac edema and reduced heart rate suggest that heart defects are a sensitive endpoint, and the general trend of dose-dependent increase in EROD activity and induction of CYP1A mRNA gene expression provide evidence that the developmental toxicity of PCB126 to zebrafish embryos is mediated by activation of AhR.

  3. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure☛

    PubMed Central

    Corrales, J.; Fang, X.; Thornton, C.; Mei, W.; Barbazuk, W.B.; Duke, M.; Scheffler, B.E.; Willett, K.L.

    2014-01-01

    Benzo[a]pyrene (BaP) is an established carcinogen and reproductive and developmental toxicant. BaP exposure in humans and animals has been linked to infertility and multigenerational health consequences. DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and mapping of methylation patterns has become an important tool for understanding pathologic gene expression events. The goal of this study was to investigate aberrant changes in promoter DNA methylation in zebrafish embryos and larvae following a parental and continued embryonic waterborne BaP exposure. A total of 21 genes known for their role in human diseases were selected to measure percent methylation by multiplex deep sequencing. At 96 hours post fertilization (hpf) compared to 3.3 hpf, dazl, nqo1, sox3, cyp1b1, and gstp1 had higher methylation percentages while c-fos and cdkn1a had decreased CG methylation. BaP exposure significantly reduced egg production and offspring survival. Moreover, BaP decreased global methylation and altered CG, CHH, and CHG methylation both at 3.3 and 96 hpf. CG methylation changed by 10% or more due to BaP in six genes (c-fos, cdkn1a, dazl, nqo1, nrf2, and sox3) at 3.3 hpf and in ten genes (c-fos, cyp1b1, dazl, gstp1, mlh1, nqo1, pten, p53, sox2, and sox3) at 96 hpf. BaP also induced gene expression of cyp1b1 and gstp1 at 96 hpf which were found to be hypermethylated. Further studies are needed to link aberrant CG, CHH, and CHG methylation to heritable epigenetic consequences associated with disease in later life. PMID:24576477

  4. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos

    PubMed Central

    Chung, Eunah; Genco, Maria C.; Megrelis, Laura; Ruderman, Joan V.

    2011-01-01

    Estrogen regulates numerous developmental and physiological processes. Most effects are mediated by estrogen receptors (ERs), which function as ligand-regulated transcription factors. Estrogen also regulates the activity of GPR30, a membrane-associated G protein-coupled receptor. Many different types of environmental contaminants can activate ERs; some can bind GPR30 as well. There is growing concern that exposure to some of these compounds, termed xenoestrogens, is interfering with the behavior and reproductive potential of numerous wildlife species, as well as affecting human health. Here, we investigated how two common, environmentally pervasive chemicals affect the in vivo expression of a known estrogen target gene in the brain of developing zebrafish embryos, aromatase AroB, which converts androgens to estrogens. We confirm that, like estrogen, the well-studied xenoestrogen bisphenol A (BPA, a plastics monomer), induces strong brain-specific overexpression of aromatase. Experiments using ER- and GPR30-selective modulators argue that this induction is largely through nuclear ERs. BPA induces dramatic overexpression of AroB RNA in the same subregions of the developing brain as estrogen. The antibacterial triclocarban (TCC) by itself stimulates AroB expression only slightly, but TCC strongly enhances the overexpression of AroB that is induced by exogenous estrogen. Thus, both BPA and TCC have the potential to elevate levels of aromatase and, thereby, levels of endogenous estrogens in the developing brain. In contrast to estrogen, BPA-induced AroB overexpression was suppressed by TCC. These results indicate that exposures to combinations of certain hormonally active pollutants can have outcomes that are not easily predicted from their individual effects. PMID:22006313

  5. Relative developmental toxicity of short-chain chlorinated paraffins in Zebrafish (Danio rerio) embryos.

    PubMed

    Liu, Lihua; Li, Yifan; Coelhan, Mehmet; Chan, Hing Man; Ma, Wanli; Liu, Liyan

    2016-12-01

    Short-chain chlorinated paraffins (SCCPs) are ubiquitous in the environment and might cause adverse environmental and human health effects. Little is known about the relative toxicity of different SCCP compounds especially during development. The objective of this study was to characterize and compare effects of seven SCCP groups at environmentally relevant levels, using a zebrafish (Danio rerio) model. Observations on malformation, survival rates at 96 h post fertilization (hpf), and hatching rates at 72 hpf indicated that the C10- groups (C10H18Cl4, 1,2,5,6,9,10-C10H16Cl6 and C10H15Cl7) were more toxic than the C12- groups (C12H22Cl4, C12H19Cl7 and 1,1,1,3,10,12,12,12-C12H18Cl8) and Cereclor 63L. The C10- groups were also more potent than C12- groups and Cereclor 63L in decreasing thyroid hormone levels. Among the three compounds within the C10- group, the compounds with less chlorine content had stronger effects on sub-lethal malformations but less effects on triiodothyronine (T3) and tetraiodothyronine (T4). Only C10H18Cl4 significantly decreased the mRNA expression of tyr, ttr, dio2 and dio3 at a dose-dependent manner suggesting that the specific mode of actions differ with different congeners. The mechanisms of disruption of thyroid status by different SCCPs could be different. C10H18Cl4 might inhibit T3 production through the inhibition effect on dio2. These results indicate that SCCP exposure could alter gene expression in the hypothalamic-pituitary-thyroid (HPT) axis and thyroid hormone levels. The mechanisms of disruption of thyroid status by different SCCPs could be different. Our results on the relative developmental toxicities of SCCPs will be useful to reach a better understanding of SCCP toxicity supporting environmental risk evaluation and regulation and used as a guidance for environmental monitoring of SCCPs in the future.

  6. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia

    2014-08-01

    Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.

  7. Expression of GPR177 (Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat tissues, zebrafish embryos, and cultured human cells.

    PubMed

    Jin, Jay; Morse, Megan; Frey, Colleen; Petko, Jessica; Levenson, Robert

    2010-09-01

    GPR177 is an evolutionarily conserved transmembrane protein necessary for Wnt protein secretion. Little is currently known, however, regarding expression of GPR177, especially in vertebrate species. We have developed an antiserum against GPR177, and used it to examine expression of GPR177 in human tissue culture cells, adult mouse, and rat tissues, as well as developing zebrafish embryos. In rodents, GPR177 is expressed in virtually all tissue types and brain regions examined. In zebrafish, GPR177 polypeptides are expressed throughout embryogenesis, and are detectable as early as 1 hr post-fertilization. In situ hybridization analysis reveals that gpr177 mRNA expression is prominent in embryonic zebrafish brain and ear. Structural studies suggest that GPR177 is modified by N-linked sugars, and that the protein contains an even number of transmembrane segments. The relatively ubiquitous expression of GPR177 suggests that this protein may serve to regulate Wnt secretion in a variety of embryonic and adult tissue types.

  8. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    SciTech Connect

    Ganeshkumar, Moorthy; Sastry, Thotapalli Parvathaleswara; Sathish Kumar, Muniram; Dinesh, Murugan Girija; Kannappan, Sudalyandi; Suguna, Lonchin

    2012-09-15

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  9. Analysis of the Enantioselective Effects of PCB95 in Zebrafish (Danio rerio) Embryos through Targeted Metabolomics by UPLC-MS/MS

    PubMed Central

    Xu, Nana; Mu, Pengqian; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qian, Yongzhong; Qiu, Jing

    2016-01-01

    As persistent organic pollutants, polychlorinated biphenyls (PCBs) accumulate in the bodies of animals and humans, resulting in toxic effects on the reproductive, immune, nervous, and endocrine systems. The biological and toxicological characteristics of enantiomers of chiral PCBs may differ, but these enantioselective effects of PCBs have not been fully characterized. In this study, we performed metabolomics analysis, using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to investigate the enantioselective toxic effects of PCB95 in zebrafish (Danio rerio) embryos after exposure to three dose levels of 0.1, 1, and 10 μg/L for 72 h. Multivariate analysis directly reflected the metabolic perturbations caused by PCB95. The effects of (-)-PCB95 and (+)-PCB95 were more prominent than those of the racemate in zebrafish embryos. A total of 26 endogenous metabolites were selected as potential marker metabolites with variable importance at projection values larger than 1 and significant differences (p<0.05). These metabolites included amino acids, organic acids, nucleosides, betaine, and choline. The changes in these biomarkers were dependent on the enantiomer-specific structures of PCB95. Fifteen metabolic pathways were significantly affected, and several nervous and immune system-related metabolites were significantly validated after exposure. These metabolic changes indicated that the toxic effects of PCB95 may be associated with the interaction of PCB95 with the nervous and immune systems, thus resulting in disruption of energy metabolism and liver function. PMID:27500732

  10. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells

    PubMed Central

    Biava, Pier M.; Canaider, Silvia; Facchin, Federica; Bianconi, Eva; Ljungberg, Liza; Rotilio, Domenico; Burigana, Fabio; Ventura, Carlo

    2015-01-01

    In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adipose-derived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration. PMID:26201607

  11. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells.

    PubMed

    Biava, Pier M; Canaider, Silvia; Facchin, Federica; Bianconi, Eva; Ljungberg, Liza; Rotilio, Domenico; Burigana, Fabio; Ventura, Carlo

    2015-01-01

    In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.

  12. Cytotoxicity and molecular effects of biocidal disinfectants (quaternary ammonia, glutaraldehyde, poly(hexamethylene biguanide) hydrochloride PHMB) and their mixtures in vitro and in zebrafish eleuthero-embryos.

    PubMed

    Christen, Verena; Faltermann, Susanne; Brun, Nadja Rebecca; Kunz, Petra Y; Fent, Karl

    2017-02-21

    Frequently used biocidal disinfectants, including quaternary ammonium compounds (QAC), glutaraldehyde and poly(hexamethylene biguanide) hydrochloride (PHMB), occur in the aquatic environment but their potential effects in fish are poorly known, in particular when occurring as mixtures. To investigate their joint activity, we assessed the cytotoxicity of three QACs (BAC, barquat and benzalkonium chloride), glutaraldehyde andPHMB by the MTT assay individually, followed by assessing binary and ternary mixtures in zebrafish liver cells (ZFL) and human liver cells (Huh7). We also analysed molecular effects by quantitative PCR in vitro and in zebrafish eleuthero-embryos employing a targeted gene expression approach. QACs displayed strong cytotoxicity in both cell lines with EC50 values in the low μg/ml range, while glutaraldehyde and PHMB were less cytotoxic. Most of the binary and both ternary mixtures showed synergistic activity at all equi-effective concentrations. A mixture containing all five compounds mixed at their no observed effect concentrations showed strong cytotoxicity, suggesting a synergistic interaction. Additionally, we determined transcriptional alterations of target genes related to endoplasmatic reticulum (ER) stress, general stress, inflammatory action and apoptosis. Induction of ER stress genes occurred at non-cytotoxic concentrations of barquat, glutaraldehyde and BAC in ZFL cells. Barquat and BAC induced tumor necrosis factor alpha (tnf-α). Similar transcriptional alterations were found in vivo upon exposure of zebrafish eleuthero-embryos for 120h. Glutaraldehyde led to induction of ER stress genes and tnf-α, while BAC additionally induced genes indicative of apoptosis, which was also the case with benzalkonium chloride at the highest concentration. We demonstrated strong cytotoxicity of QACs, and synergistic activity of binary, ternary and quintuple mixtures. Barquat and BAC let to induction of ER stress and inflammation in vitro, and BAC and

  13. Effects of Ru(CO)3Cl-glycinate on the developmental toxicities induced by X-ray and carbon-ion irradiation in zebrafish embryos.

    PubMed

    Zhou, Rong; Song, Jing'e; Si, Jing; Zhang, Hong; Liu, Bin; Gan, Lu; Zhou, Xin; Wang, Yupei; Yan, Junfang; Zhang, Qianjing

    The inhibitory effects of carbon monoxide (CO), generated by Ru(CO)3Cl-glycinate [CO-releasing molecule (CORM-3)], on developmental toxicity in zebrafish embryos induced by ionizing radiation with different linear energy transfer (LET) were studied. Zebrafish embryos at 5h post-fertilization were irradiated with X-ray (low-LET) and carbon-ion (high-LET) with or without pretreatment of CORM-3 1h before irradiation. CORM-3 pre-treatment showed a significant inhibitory effect on X-ray irradiation-induced developmental toxicity, but had little effect on carbon-ion irradiation-induced developmental toxicity. X-ray irradiation-induced significant increase in ROS levels and cell apoptosis could be modified by CORM-3 pretreatment. However, embryos exposed to carbon-ion irradiation showed significantly increase of cell apoptosis without obvious ROS generation, which could not be attenuated by CORM-3 pretreatment. CORM-3 could inhibit apoptosis induced by ionizing radiation with low-LET as an effective ROS scavenger. The expression of pro-apoptotic genes increased significantly after X-ray irradiation, but increased expression was reduced markedly when CORM-3 was applied before irradiation. Moreover, the protein levels of P53 and γ-H2AX increased markedly after X-ray irradiation, which could be modified by the presence of CORM-3. The protective effect of CORM-3 on X-ray irradiation occurred mainly by suppressing ROS generation and DNA damage, and thus inhibiting the activation of P53 and the mitochondrial apoptotic pathway, leading to the attenuation of cell apoptosis and consequently alleviating X-ray irradiation-induced developmental toxicity at lethal and sub-lethal levels.

  14. Epicatechin gallate, a naturally occurring polyphenol, alters the course of infection with β-lactam-resistant Staphylococcus aureus in the zebrafish embryo

    PubMed Central

    Stevens, Christina S.; Rosado, Helena; Harvey, Robert J.; Taylor, Peter W.

    2015-01-01

    (-)-epicatechin gallate (ECg) substantially modifies the properties of Staphylococcus aureus and reversibly abrogates β-lactam resistance in methicillin/oxacillin resistant (MRSA) isolates. We have determined the capacity of ECg to alter the course of infection in zebrafish embryos challenged with epidemic clinical isolate EMRSA-16. At 30 h post fertilization (hpf), embryos were infected by injection of 1–5 × 103 colony forming units (CFU) of EMRSA-16 into the circulation valley or yolk sac. Infection by yolk sac injection was lethal with a challenge dose above 3 × 103 CFU, with no survivors at 70 hpf. In contrast, survival at 70 hpf after injection into the circulation was 83 and 44% following challenge with 3 × 103 and 1–5 × 103 CFU, respectively. No significant increases in survival were noted when infected embryos were maintained in medium containing 12.5–100 μg/mL ECg with or without 4 or 16 μg/mL oxacillin. However, when EMRSA-16 was grown in medium containing 12.5 μg/mL ECg and the bacteria used to infect embryos by either the circulation valley or yolk sac, there were significant increases in embryo survival in both the presence and absence of oxacillin. ECg-modified and unmodified, GFP-transformed EMRSA-16 bacteria were visualized within phagocytic cells in the circulation and yolk sac; pre-treatment with ECg also significantly increased induction of the respiratory burst and suppressed increases in IL-1β expression typical of infection with untreated EMRSA-16. We conclude that exposure to ECg prior to infection reduces the lethality of EMRSA-16, renders cells more susceptible to elimination by immune processes and compromises their capacity to establish an inflammatory response in comparison to non-exposed bacteria. PMID:26441953

  15. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway.

    PubMed

    Formstone, Caroline J; Mason, Ivor

    2005-06-15

    The seven-transmembrane protocadherin, Flamingo, functions in a number of processes during Drosophila development, including planar cell polarity (PCP). To assess the role(s) of Flamingo1/Celsr1 (Fmi1) during vertebrate embryogenesis we have exploited the zebrafish system, identifying two Fmi1 orthologues (zFmi1a and zFmi1b) and employing morpholinos to induce mis-splicing of zebrafish fmi1 mRNAs, to both imitate mutations identified in Drosophila flamingo and generate novel aberrant Flamingo proteins. We demonstrate that in the zebrafish gastrula, Fmi1 proteins function in concert with each other and with the vertebrate PCP proteins, Wnt11 and Strabismus, to mediate convergence and extension during gastrulation, without altering early dorso-ventral patterning. We show that zebrafish Fmi1a promotes extension of the entire antero-posterior axis of the zebrafish gastrula including prechordal plate and ventral diencephalic precursors. However, while we show that control over axial extension is autonomous, we find that Fmi1a is not required within lateral cells undergoing dorsal convergence.

  16. Determination of the expression pattern of the dual promoter of zebrafish fushi tarazu factor-1a following microinjections into zebrafish one cell stage embryos.

    PubMed

    von Hofsten, J; Modig, C; Larsson, A; Karlsson, J; Olsson, P-E

    2005-05-15

    The zebrafish fushi tarazu factor-1a (ff1a) is a transcription factor belonging to the NR5A subgroup of nuclear receptors. The NR5A receptors bind DNA as monomers and are considered to be orphans due to their ability to promote transcription of downstream genes without ligands. In zebrafish, four ff1 homologues (Ff1a, Ff1b, Ff1c, and Ff1d) have been identified so far. The gene coding for Ff1a is driven by two separate promoters, and give rise to four splice variants. Ff1a is expressed in the somites and pronephric ducts during somitogenesis and in the brain, liver, and mandibular arch during later embryonic stages. In adults the gene is highly expressed in gonads, liver, and intestine, but can be detected in most tissues. The broad variety of embryonic expression domains indicates several important developmental features. One of the mammalian fushi tarazu factor-1 genes, steroidogenic factor-1 (SF-1), is essential for the development of gonads and adrenals. SF-1 is together with Sox9, WT1, and GATA4 a positive transcriptional regulator of human anti-mullerian hormone (AMH) and thereby linked to the male sex-determining pathway. The zebrafish ff1a dual promoter contains several GATA binding sites and E-boxes, a site for DR4, XFD2, MyoD, Snail, HNF3, S8, and an HMG-box recognition site for Sox9. In a first attempt to dissect the ff1a promoter in vivo we have produced first generation transgenes in order to determine the correlation between the expression of the endogenous ff1a gene and the microinjected ff1a dual promoter coupled to the pEGFP reporter vector. Our results show that the microinjected constructs are expressed in the correct tissues.

  17. Comparative effects of nodularin and microcystin-LR in zebrafish: 2. Uptake and molecular effects in eleuthero-embryos and adult liver with focus on endoplasmic reticulum stress.

    PubMed

    Faltermann, Susanne; Grundler, Verena; Gademann, Karl; Pernthaler, Jakob; Fent, Karl

    2016-02-01

    Microcystin (MC) and nodularin are structurally similar cyanobacterial toxins that inhibit protein phosphatases. Additional modes of action are poorly known, in particular for nodularin. In our associated work, we showed that active cellular uptake is mediated by the organic anion transporting polypeptide drOatp1d1 in zebrafish (Faltermann et al., 2016). Here, we assessed the transcriptional expression of three genes encoding three uptake transporters during embryonic development from 24h post fertilization (hpf) to 168 hpf. Transcripts of drOatp1d1 and drOatp2b1 are present at 24 hpf. The abundance increased after hatching and remained about constant up to 168 hpf. Transcripts of drOatp2b1 were most abundant, while drOapt1f transcripts showed very low relative abundance compared to drOatp1d1 and drOatp2b1. We further demonstrated the uptake of fluorescent labeled MC-LR in eleuthero-embryos and its accumulation in the glomerulus of the pronephros. An important molecular effect of MC-LR in human liver cells is the induction of endoplasmic reticulum (ER)-stress. Here, we investigated, whether MC-LR and nodularin similarly lead to induction of ER-stress in zebrafish by analyzing changes of mRNA levels of genes indicative of ER-stress. In zebrafish liver organ cultures short- and long-term exposures to 0.15 and 0.3 μmol L(-1) MC-LR, and 0.5 and 1 μM L(-1) nodularin led to significant transcriptional induction of several ER-stress marker genes, including the chaperone glucose regulated protein 78 (bip), the spliced form of x-box binding protein (xbp-1s), the CCAAT-enhancer-binding protein homologous protein (chop) and activating transcription factor 4 (atf4). Furthermore, strong transcriptional changes occurred for tumor necrosis factor alpha (tnfa) and dual specificity phosphatase 5 (dusp5), associated with mitogen activated protein kinase (MAPK) pathway. However, no alterations in transcript levels of pro-apoptotic genes Bcl-2 like protein 4 (bax) and p53 occurred

  18. Biphasic and triphasic dose responses in zebrafish embryos to low-dose 150 kV X-rays with different levels of hardness

    PubMed Central

    Kong, Eva Yi; Cheng, Shuk Han; Yu, Kwan Ngok

    2016-01-01

    The in vivo low-dose responses of zebrafish (Danio rerio) embryos to 150 kV X-rays with different levels of hardness were examined through the number of apoptotic events revealed at 24 h post fertilization by vital dye acridine orange staining. Our results suggested that a triphasic dose response was likely a common phenomenon in living organisms irradiated by X-rays, which comprised an ultra-low-dose inhibition, low-dose stimulation and high-dose inhibition. Our results also suggested that the hormetic zone (or the stimulation zone) was shifted towards lower doses with application of filters. The non-detection of a triphasic dose response in previous experiments could likely be attributed to the use of hard X-rays, which shifted the hormetic zone into an unmonitored ultra-low-dose region. In such cases where the subhormetic zone was missed, a biphasic dose response would be reported instead. PMID:26951078

  19. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  20. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males

    SciTech Connect

    Zucchi, Sara; Bluethgen, Nancy; Ieronimo, Andrea; Fent, Karl

    2011-01-15

    Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. In eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.

  1. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    PubMed

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu(+)/Cu(2+) and Fe(2+)/Fe(3+) redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  2. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay.

    PubMed

    Olivares, Christopher I; Field, Jim A; Simonich, Michael; Tanguay, Robert L; Sierra-Alvarez, Reyes

    2016-04-01

    Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology.

  3. Loss of Smyhc1 or Hsp90α1 Function Results in Different Effects on Myofibril Organization in Skeletal Muscles of Zebrafish Embryos

    PubMed Central

    Codina, Marta; Li, Junling; Gutiérrez, Joaquim; Kao, Joseph P. Y.; Du, Shao Jun

    2010-01-01

    Background Myofibrillogenesis requires the correct folding and assembly of sarcomeric proteins into highly organized sarcomeres. Heat shock protein 90α1 (Hsp90α1) has been implicated as a myosin chaperone that plays a key role in myofibrillogenesis. Knockdown or mutation of hsp90α1 resulted in complete disorganization of thick and thin filaments and M- and Z-line structures. It is not clear whether the disorganization of these sarcomeric structures is due to a direct effect from loss of Hsp90α1 function or indirectly through the disorganization of myosin thick filaments. Methodology/Principal Findings In this study, we carried out a loss-of-function analysis of myosin thick filaments via gene-specific knockdown or using a myosin ATPase inhibitor BTS (N-benzyl-p-toluene sulphonamide) in zebrafish embryos. We demonstrated that knockdown of myosin heavy chain 1 (myhc1) resulted in sarcomeric defects in the thick and thin filaments and defective alignment of Z-lines. Similarly, treating zebrafish embryos with BTS disrupted thick and thin filament organization, with little effect on the M- and Z-lines. In contrast, loss of Hsp90α1 function completely disrupted all sarcomeric structures including both thick and thin filaments as well as the M- and Z-lines. Conclusion/Significance Together, these studies indicate that the hsp90α1 mutant phenotype is not simply due to disruption of myosin folding and assembly, suggesting that Hsp90α1 may play a role in the assembly and organization of other sarcomeric structures. PMID:20049323

  4. The classification of motor neuron defects in the zebrafish embryo toxicity test (ZFET) as an animal alternative approach to assess developmental neurotoxicity.

    PubMed

    Muth-Köhne, Elke; Wichmann, Arne; Delov, Vera; Fenske, Martina

    2012-07-01

    Rodents are widely used to test the developmental neurotoxicity potential of chemical substances. The regulatory test procedures are elaborate and the requirement of numerous animals is ethically disputable. Therefore, non-animal alternatives are highly desirable, but appropriate test systems that meet regulatory demands are not yet available. Hence, we have developed a new developmental neurotoxicity assay based on specific whole-mount immunostainings of primary and secondary motor neurons (using the monoclonal antibodies znp1 and zn8) in zebrafish embryos. By classifying the motor neuron defects, we evaluated the severity of the neurotoxic damage to individual primary and secondary motor neurons caused by chemical exposure and determined the corresponding effect concentration values (EC₅₀). In a proof-of-principle study, we investigated the effects of three model compounds thiocyclam, cartap and disulfiram, which show some neurotoxicity-indicating effects in vertebrates, and the positive controls ethanol and nicotine and the negative controls 3,4-dichloroaniline (3,4-DCA) and triclosan. As a quantitative measure of the neurotoxic potential of the test compounds, we calculated the ratios of the EC₅₀ values for motor neuron defects and the cumulative malformations, as determined in a zebrafish embryo toxicity test (zFET). Based on this index, disulfiram was classified as the most potent and thiocyclam as the least potent developmental neurotoxin. The index also confirmed the control compounds as positive and negative neurotoxicants. Our findings demonstrate that this index can be used to reliably distinguish between neurotoxic and non-neurotoxic chemicals and provide a sound estimate for the neurodevelopmental hazard potential of a chemical. The demonstrated method can be a feasible approach to reduce the number of animals used in developmental neurotoxicity evaluation procedures.

  5. GRG5/AES Interacts with T-Cell Factor 4 (TCF4) and Downregulates Wnt Signaling in Human Cells and Zebrafish Embryos

    PubMed Central

    Costa, Ângela M. Sousa; Pereira-Castro, Isabel; Ricardo, Elisabete; Spencer, Forrest; Fisher, Shannon; da Costa, Luís Teixeira

    2013-01-01

    Transcriptional control by TCF/LEF proteins is crucial in key developmental processes such as embryo polarity, tissue architecture and cell fate determination. TCFs associate with β-catenin to activate transcription in the presence of Wnt signaling, but in its absence act as repressors together with Groucho-family proteins (GRGs). TCF4 is critical in vertebrate intestinal epithelium, where TCF4-β-catenin complexes are necessary for the maintenance of a proliferative compartment, and their abnormal formation initiates tumorigenesis. However, the extent of TCF4-GRG complexes’ roles in development and the mechanisms by which they repress transcription are not completely understood. Here we characterize the interaction between TCF4 and GRG5/AES, a Groucho family member whose functional relationship with TCFs has been controversial. We map the core GRG interaction region in TCF4 to a 111-amino acid fragment and show that, in contrast to other GRGs, GRG5/AES-binding specifically depends on a 4-amino acid motif (LVPQ) present only in TCF3 and some TCF4 isoforms. We further demonstrate that GRG5/AES represses Wnt-mediated transcription both in human cells and zebrafish embryos. Importantly, we provide the first evidence of an inherent repressive function of GRG5/AES in dorsal-ventral patterning during early zebrafish embryogenesis. These results improve our understanding of TCF-GRG interactions, have significant implications for models of transcriptional repression by TCF-GRG complexes, and lay the groundwork for in depth direct assessment of the potential role of Groucho-family proteins in both normal and abnormal development. PMID:23840876

  6. Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo.

    PubMed

    Lin, Tzung-Yi; Chou, Chi-Fu; Chung, Hsin-Yu; Chiang, Chia-Yin; Li, Chung-Hao; Wu, Jen-Leih; Lin, Han-Jia; Pai, Tun-Wen; Hu, Chin-Hwa; Tzou, Wen-Shyong

    2014-01-01

    The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.

  7. Hypoxia-Inducible Factor 2 Alpha Is Essential for Hepatic Outgrowth and Functions via the Regulation of leg1 Transcription in the Zebrafish Embryo

    PubMed Central

    Lin, Tzung-Yi; Chou, Chi-Fu; Chung, Hsin-Yu; Chiang, Chia-Yin; Li, Chung-Hao; Wu, Jen-Leih; Lin, Han-Jia; Pai, Tun-Wen; Hu, Chin-Hwa; Tzou, Wen-Shyong

    2014-01-01

    The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment. PMID:25000307

  8. Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos

    PubMed Central

    2016-01-01

    Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) is a high-production volume organophosphate-based plasticizer and flame retardant widely used within the United States. Using zebrafish as a model, the objectives of this study were to determine whether (1) TDCIPP inhibits DNA methyltransferase (DNMT) within embryonic nuclear extracts; (2) uptake of TDCIPP from 0.75 h postfertilization (hpf, 2-cell) to 2 hpf (64-cell) or 6 hpf (shield stage) leads to impacts on the early embryonic DNA methylome; and (3) TDCIPP-induced impacts on cytosine methylation are localized to CpG islands within intergenic regions. Within this study, 5-azacytidine (5-azaC, a DNMT inhibitor) was used as a positive control. Although 5-azaC significantly inhibited zebrafish DNMT, TDCIPP did not affect DNMT activity in vitro at concentrations as high as 500 μM. However, rapid embryonic uptake of 5-azaC and TDCIPP from 0.75 to 2 hpf resulted in chemical- and chromosome-specific alterations in cytosine methylation at 2 hpf. Moreover, TDCIPP exposure predominantly resulted in hypomethylation of positions outside of CpG islands and within intragenic (exon) regions of the zebrafish genome. Overall, these findings provide the foundation for monitoring DNA methylation dynamics within zebrafish as well as identifying potential associations among TDCIPP exposure, adverse health outcomes, and DNA methylation status within human populations. PMID:27574916

  9. In Vivo Screening Using Transgenic Zebrafish Embryos Reveals New Effects of HDAC Inhibitors Trichostatin A and Valproic Acid on Organogenesis

    PubMed Central

    Li, Ling; Bonneton, François; Tohme, Marie; Bernard, Laure; Chen, Xiao Yong; Laudet, Vincent

    2016-01-01

    The effects of endocrine disrupting chemicals (EDCs) on reproduction are well known, whereas their developmental effects are much less characterized. However, exposure to endocrine disruptors during organogenesis may lead to deleterious and permanent problems later in life. Zebrafish (Danio rerio) transgenic lines expressing the green fluorescent protein (GFP) in specific organs and tissues are powerful tools to uncover developmental defects elicited by EDCs. Here, we used seven transgenic lines to visualize in vivo whether a series of EDCs and other pharmaceutical compounds can alter organogenesis in zebrafish. We used transgenic lines expressing GFP in pancreas, liver, blood vessels, inner ear, nervous system, pharyngeal tooth and pectoral fins. This screen revealed that four of the tested chemicals have detectable effects on different organs, which shows that the range of effects elicited by EDCs is wider than anticipated. The endocrine disruptor tetrabromobisphenol-A (TBBPA), as well as the three drugs diclofenac, trichostatin A (TSA) and valproic acid (VPA) induced abnormalities in the embryonic vascular system of zebrafish. Moreover, TSA and VPA induced specific alterations during the development of pancreas, an observation that was confirmed by in situ hybridization with specific markers. Developmental delays were also induced by TSA and VPA in the liver and in pharyngeal teeth, resulting in smaller organ size. Our results show that EDCs can induce a large range of developmental alterations during embryogenesis of zebrafish and establish GFP transgenic lines as powerful tools to screen for EDCs effects in vivo. PMID:26900852

  10. Histone deacetylase is required for the activation of Wnt/β-catenin signaling crucial for heart valve formation in zebrafish embryos.

    PubMed

    Kim, Young-Seop; Kim, Myoung-Jin; Koo, Tae-Hee; Kim, Jun-Dae; Koun, Soonil; Ham, Hyung Jin; Lee, You Mie; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin

    2012-06-22

    During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.

  11. A zebrafish embryo behaves both as a "cortical shell-liquid core" structure and a homogeneous solid when experiencing mechanical forces.

    PubMed

    Liu, Fei; Wu, Dan; Chen, Ken

    2014-12-01

    Mechanical properties are vital for living cells, and various models have been developed to study the mechanical behavior of cells. However, there is debate regarding whether a cell behaves more similarly to a "cortical shell-liquid core" structure (membrane-like) or a homogeneous solid (cytoskeleton-like) when experiencing stress by mechanical forces. Unlike most experimental methods, which concern the small-strain deformation of a cell, we focused on the mechanical behavior of a cell undergoing small to large strain by conducting microinjection experiments on zebrafish embryo cells. The power law with order of 1.5 between the injection force and the injection distance indicates that the cell behaves as a homogenous solid at small-strain deformation. The linear relation between the rupture force and the microinjector radius suggests that the embryo behaves as membrane-like when subjected to large-strain deformation. We also discuss the possible reasons causing the debate by analyzing the mechanical properties of F-actin filaments.

  12. Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos.

    PubMed

    Leung, Christina F; Miller, Andrew L; Korzh, Vladimir; Chong, Shang-Wei; Sleptsova-Freidrich, Inna; Webb, Sarah E

    2009-09-01

    Localized Ca(2+) signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca(2+)](i) to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo-2) or Ca(2+) (NP-ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP(3) receptor-mediated Ca(2+) release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP(3) receptor-mediated stochastic Ca(2+) signaling in the formed somites.

  13. Benzotriazole UV-stabilizers and benzotriazole: Antiandrogenic activity in vitro and activation of aryl hydrocarbon receptor pathway in zebrafish eleuthero-embryos.

    PubMed

    Fent, Karl; Chew, Geraldine; Li, Jun; Gomez, Elena

    2014-06-01

    Benzotriazole UV-stabilizers (BUVs) are applied in materials for protection against UV-irradiation. They are widely used, bioaccumulate and share structural similarities to benzotriazole. Benzotriazole (1HBT) finds application as corrosion inhibitor in dishwashing detergents, antifreeze (vehicles) and aircraft de-icing agent. BUVs and 1HBT are persistent and ubiquitous in the aquatic environment, but there is little understanding of the ecotoxicological implications. Here, we comparatively analyze the hormonal activity in vitro and effects in zebrafish eleuthero-embryos in vivo. 2-(2-Hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-(3-t-butyl-2-hydroxy-5-methylphenyl)-5-chlorobenzotriazole (UV-326), UV-327, UV-328, UV-329 and UV-320 showed no estrogenicity (YES assay) and androgenicity (YAS assay). However, UV-P and 1HBT showed significant antiandrogenic activity. We assessed the transcription profiles of up to 26 genes associated with different toxicological pathways in zebrafish eleuthero-embryos to elucidate potential modes of action of UV-P, UV-326 and 1HBT. Embryos were experimentally exposed for 144hpf to three measured concentrations of 15.8, 70.8, and 690μg/L UV-P, 7.5, 31.7, and 84.3μg/L UV-326 and 7.9, 97.3 and 1197.3μg/L 1HBT. Among the 26 transcripts, the induction of the aryl hydrocarbon receptor (AHR) pathway by UV-P and UV-326 was the most significant finding. UV-P led to dose-related induction of AHR1, ARNT2 and cyp1a1, as well as of phase II enzymes glutathione-S-transferase (gstp1) and ugt1a. UV-326 led to a significant induction of cyp1a1 and AHR2, but down-regulation of gstp1 at 84μg/L. Only little transcriptional alterations occurred in genes related to apoptosis, oxidative stress, hormone receptors, and steroidogenesis including aromatase. 1HBT led to only a few expressional changes at 1197μg/L. Our data lead to the conclusion that UV-P and UV-326 activate the AHR-pathway, whereas 1HBT shows only little transcriptional alterations. It

  14. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

    PubMed Central

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  15. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos.

    PubMed

    Duan, Junchao; Yu, Yang; Li, Yang; Wang, Yapei; Sun, Zhiwei

    2016-05-01

    Given the severe situation of world-wide particulate matter air pollution, it is urgent to explore the combined effects of particulate matter components on cardiovascular system. Using zebrafish model, this study was aimed to determine whether the low level co-exposure to silica nanoparticles (SiNPs) and benzo[a]pyrene (B[a]P) had a pronounced cardiovascular toxicity than the single exposure to either SiNPs or B[a]P alone. The FTIR and TGA analysis showed that the co-exposure system possessed of high absorption and thermal stability. Embryos exposed to SiNPs or B[a]P alone did not show cardiac toxicity phenotype at the NOAEL level. However, embryos co-exposed to SiNPs and B[a]P exhibited pericardial edema and bradycardia. While ROS generation remained unaffected, the co-exposure induced significant neutrophil-mediated inflammation and caused erythrocyte aggregation in caudal vein of embryos. Microarray analysis and STC analysis were performed to screen the cardiovascular-related differential expression genes and the expression trend of genes in each group. The co-exposure of SiNPs and B[a]P significantly enhanced the expression of proinflammatory and procoagulant genes. Moreover, the co-exposure markedly increased the phosphorylated AP-1/c-Jun and induced TF expression, but not NF-κB p65. This study for the first time demonstrated the inflammatory response and blood hypercoagulable state were triggered by the combination of SiNPs and B[a]P at low level exposure.

  16. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay

    SciTech Connect

    Chen, G.-D.; Chou, C.-M.; Hwang, S.-P.L.; Wang, F.-F.; Chen, Y.-C.; Hung, C.-C.; Chen, Jeou-Yuan . E-mail: bmchen@ibms.sinica.edu.tw; Huang, C.-J. . E-mail: cjibc@gate.sinica.edu.tw

    2006-05-26

    We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements.

  17. Zinc and cadmium accumulation in single zebrafish ( Danio rerio) embryos — A total reflection X-ray fluorescence spectrometry application

    NASA Astrophysics Data System (ADS)

    Mages, Margarete; Bandow, Nicole; Küster, Eberhard; Brack, Werner; von Tümpling, Wolf

    2008-12-01

    Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 µg/g with a median of 5740 µg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 µg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.

  18. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    NASA Astrophysics Data System (ADS)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  19. Size does matter - Determination of the critical molecular size for the uptake of chemicals across the chorion of zebrafish (Danio rerio) embryos.

    PubMed

    Pelka, Katharina E; Henn, Kirsten; Keck, Andreas; Sapel, Benjamin; Braunbeck, Thomas

    2016-12-21

    In order to identify the upper limits of the molecular size of chemicals to cross the chorion of zebrafish, Danio rerio, differently sized, non-toxic and chemically inert polyethylene glycols (PEGs; 2000-12,000Da) were applied at concentrations (9.76mM) high enough to provoke osmotic pressure. Whereas small PEGs were expected to be able to cross the chorion, restricted uptake of large PEGs was hypothesized to result in shrinkage of the chorion. Due to a slow, but gradual uptake of PEGs over time, molecular size-dependent equilibration in conjunction with a regain of the spherical chorion shape was observed. Thus, the size of molecules able to cross the chorion could be narrowed down precisely to ≤4000Da, and the time-dependency of the movement across the chorion could be described. To account for associated alterations in embryonic development, fish embryo toxicity tests (FETs) according to OECD test guideline 236 (OECD, 2013) were performed with special emphasis to changes in chorion shape. FETs revealed clear-cut size-effects: the higher the actual molecular weight (=size) of the PEG, the more effects (both acutely toxic and sublethal) were found. No effects were seen with PEGs of 2000 and 3000Da. In contrast, PEG 8000 and PEG 12,000 were found to be most toxic with LC50 values of 16.05 and 16.40g/L, respectively. Likewise, the extent of chorion shrinkage due to increased osmotic pressure strictly depended on PEG molecular weight and duration of exposure. A reflux of water and PEG molecules into the chorion and a resulting re-shaping of the chorion could only be observed for eggs exposed to PEGs ≤4000Da. Results clearly indicate a barrier function of the zebrafish chorion for molecules larger than 3000 to 4,000Da.

  20. Evaluation of the detoxication efficiencies for acrylonitrile wastewater treated by a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process: Acute toxicity and zebrafish embryo toxicity.

    PubMed

    Na, Chunhong; Zhang, Ying; Deng, Minjie; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-07-01

    Acrylonitrile (ACN) wastewater generated during ACN production has been reported to be toxic to many aquatic organisms. However, few studies have evaluated toxicity removal of ACN wastewater during and after the treatment process. In this study, the detoxication ability of an ACN wastewater treatment plant (WWTP) was evaluated using Daphnia magna, Danio rerio and zebrafish embryo. This ACN WWTP has a combined anaerobic oxic-aerobic biological fluidized tank (A/O-ABFT) process upgraded from the traditional anaerobic oxic (A/O) process. Moreover, the potential toxicants of the ACN wastewaters were identified by gas chromatography-mass spectrometry (GC-MS). The raw ACN wastewater showed high acute and embryo toxicity. 3-Cyanopyridine, succinonitrile and a series of nitriles were detected as the toxic contributors of ACN wastewater. The A/O process was effective for the acute and embryo toxicity removal, as well as the organic toxicants. However, the A/O effluent still showed acute and embryo toxicity which was attributed by the undegraded and the newly generated toxicants during the A/O process. The residual acute and embryo toxicity as well as the organic toxicants in the A/O effluent were further reduced after going through the downstream ABFT process system. The final effluent displayed no significant acute and embryo toxicity, and less organic toxicants were detected in the final effluent. The upgrade of this ACN WWTP results in the improved removal efficiencies for acute and embryo toxicity, as well as the organic toxicants.

  1. Microbially mediated O-methylation of bisphenol A results in metabolites with increased toxicity to the developing zebrafish (Danio rerio) embryo.

    PubMed

    McCormick, Jessica M; Van Es, Theo; Cooper, Keith R; White, Lori A; Häggblom, Max M

    2011-08-01

    Bisphenol A (BPA) is used in the manufacture of plastics, and has been identified in various environmental matrices, including human serum and breast milk. The prevalence of BPA in the environment and the potential exposure to humans underscores the need to more fully understand the fate of BPA in the environment and the resulting effects and toxicity to humans and other organisms. Here we demonstrate that Mycobacterium species, including Mycobacterium vanbaalenii strain PYR-1, are able to O-methylate BPA to its mono- and dimethyl ether derivatives (BPA MME and BPA DME, respectively). The O-methylation of BPA results in metabolites with increased toxicity as shown from differences in survival and occurrence of developmental lesions in developing zebrafish embryos exposed to BPA, BPA MME, and BPA DME. The mono- and dimethyl ether derivatives were more toxic than BPA, resulting in increased mortality at 5 (LC(50) = 0.66 and 1.2 mg L(-1)) and 28 (LC(50) = 0.38, <0.5 mg L(-1)) days post fertilization. Furthermore, exposure to either of the O-methylated metabolites resulted in an increase in the incidence of developmental lesions as compared to BPA exposure. These data illustrate a new mechanism for microbial transformation of BPA, producing metabolites warranting further study to understand their prevalence and effects in the environment.

  2. Low-dose neutron dose response of zebrafish embryos obtained from the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Kong, E. Y.; Konishi, T.; Kobayashi, A.; Suya, N.; Cheng, S. H.; Yu, K. N.

    2015-09-01

    The dose response of embryos of the zebrafish, Danio rerio, irradiated at 5 h post fertilization (hpf) by 2-MeV neutrons with ≤100 mGy was determined. The neutron irradiations were made at the Neutron exposure Accelerator System for Biological Effect Experiments (NASBEE) facility in the National Institute of Radiological Sciences (NIRS), Chiba, Japan. A total of 10 neutron doses ranging from 0.6 to 100 mGy were employed (with a gamma-ray contribution of 14% to the total dose), and the biological effects were studied through quantification of apoptosis at 25 hpf. The responses for neutron doses of 10, 20, 25, and 50 mGy approximately fitted on a straight line, while those for neutron doses of 0.6, 1 and 2.5 mGy exhibited neutron hormetic effects. As such, hormetic responses were generically developed by different kinds of ionizing radiations with different linear energy transfer (LET) values. The responses for neutron doses of 70 and 100 mGy were significantly below the lower 95% confidence band of the best-fit line, which strongly suggested the presence of gamma-ray hormesis.

  3. The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae☆

    PubMed Central

    Berry, John P.; Gantar, Miroslav; Gibbs, Patrick D.L.; Schmale, Michael C.

    2008-01-01

    The zebrafish (Danio rerio) embryo has emerged as an important model of vertebrate development. As such, this model system is finding utility in the investigation of toxic agents that inhibit, or otherwise interfere with, developmental processes (i.e. developmental toxins), including compounds that have potential relevance to both human and environmental health, as well as biomedicine. Recently, this system has been applied increasingly to the study of microbial toxins, and more specifically, as an aquatic animal model, has been employed to investigate toxins from marine and freshwater microalgae, including those classified among the so-called “harmful algal blooms” (HABs). We have developed this system for identification and characterization of toxins from cyanobacteria (i.e. “blue-green algae”) isolated from the Florida Everglades and other freshwater sources in South and Central Florida. Here we review the use of this system as it has been applied generally to the investigation of toxins from marine and freshwater microalgae, and illustrate this utility as we have applied it to the detection, bioassay-guided fractionation and subsequent characterization of developmental toxins from freshwater cyanobacteria. PMID:17020820

  4. An Assessment of the Long-Term Effects of Simulated Microgravity on Cranial Neural Crest Cells in Zebrafish Embryos with a Focus on the Adult Skeleton

    PubMed Central

    Edsall, Sara C.; Franz-Odendaal, Tamara A.

    2014-01-01

    It is becoming increasingly important to address the long-term effects of exposure to simulated microgravity as the potential for space tourism and life in space become prominent topics amongst the World’s governments. There are several studies examining the effects of exposure to simulated microgravity on various developmental systems and in various organisms; however, few examine the effects beyond the juvenile stages. In this study, we expose zebrafish embryos to simulated microgravity starting at key stages associated with cranial neural crest cell migration. We then analyzed the skeletons of adult fish. Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements. Additionally, we investigated the effects on the juvenile skull and body pigmentation. This study determines for the first time the long-term effects of embryonic exposure to simulated microgravity on the developing skull and highlights the importance of studies investigating the effects of altered gravitational forces. PMID:24586670

  5. Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model.

    PubMed

    García-Cambero, J P; García-Cortés, H; Valcárcel, Y; Catalá, M

    2015-12-30

    Several studies have found cocaine and its main active metabolite benzoylecgonine (BE) in the aquatic environment and drinking water, derived from its consumption by humans as well as the inability of water treatment processes to eliminate it. A few studies have already investigated the ecotoxicology of BE to aquatic invertebrates, but none has still addressed the effects of BE on aquatic vertebrates or vascular plants. The goal of this publication is to provide information on the toxicity of environmental concentrations of BE during animal and vascular plant development, in order to contribute to a better understanding of the potential risk of this substance for the environment. BE induced alterations in mitochondrial activity and DNA levels of fern spores at environmental concentrations (1 ng L(-1)), which could disrupt gametophyte germination. However, BE at concentrations ranging from 1 ng L(-1) to 1 mg L(-1) did not disturb morphogenesis, hatching, heartbeat rate or larval motility in a zebrafish embryo-larval model. Adverse effects on ferns agree with the allelophathic role described for alkaloids and their unspecific interference with plant germination. Therefore, the anthropogenic dispersion of alkaloid allelochemicals may pose a risk for biodiversity and irrigated food production that should be further investigated.

  6. Effects of nickel chloride and oxygen depletion on behaviour and vitality of zebrafish (Danio rerio, Hamilton, 1822) (Pisces, Cypriniformes) embryos and larvae.

    PubMed

    Kienle, Cornelia; Köhler, H-R; Filser, Juliane; Gerhardt, Almut

    2008-04-01

    We examined acute (2 h exposure of 5-day-old larvae) and subchronic (exposure from fertilization up to an age of 11 days) effects of NiCl(2).6H2O on embryos and larvae of zebrafish (Danio rerio), both alone and in combination with oxygen depletion. The following endpoints were recorded: acute exposure: locomotory activity and survival; subchronic exposure: hatching rate, deformations, locomotory activity (at 5, 8 and 11 days) and mortality. In acute exposures nickel chloride (7.5-15 mg Ni/L) caused decreasing locomotory activity. Oxygen depletion (or=10 mg Ni/L resulted in delayed hatching at an age of 96 h, in decreased locomotory activity at an age of 5 days, and increased mortality at an age of 11 days (LC20=9.5 mg Ni/L). The observed LOEC for locomotory activity (7.5 mg Ni/L) is in the range of environmentally relevant concentrations. Since locomotory activity was already affected by acute exposure, this parameter is recommended to supplement commonly recorded endpoints of toxicity.

  7. Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos.

    PubMed

    Tu, Wenqing; Xu, Chao; Lu, Bin; Lin, Chunmian; Wu, Yongming; Liu, Weiping

    2016-01-15

    Synthetic pyrethroids (SPs) have the potential to disrupt the thyroid endocrine system in mammals; however, little is known of the effects of SPs and underlying mechanisms in fish. In the current study, embryonic zebrafish were exposed to various concentrations (1, 3 and 10 μg/L) of bifenthrin (BF) or λ-cyhalothrin (λ-CH) until 72 h post fertilization, and body condition, bioaccumulation, thyroid hormone levels and transcription of related genes along the hypothalamus-pituitary-thyroid (HPT) axis examined. Body weight was significantly decreased in the λ-CH exposure groups, but not the BF exposure groups. BF and λ-CH markedly accumulated in the larvae, with concentrations ranging from 90.7 to 596.8 ng/g. In both exposure groups, alterations were observed in thyroxine (T4) and triiodothyronine (T3) levels. In addition, the majority of the HPT axis-related genes examined, including CRH, TSHβ, TTR, UGT1ab, Pax8, Dio2 and TRα, were significantly upregulated in the presence of BF. Compared to BF, λ-CH induced different transcriptional regulation patterns of the tested genes, in particular, significant stimulation of TTR, Pax8, Dio2 and TRα levels along with concomitant downregulation of Dio1. Molecular docking analyses revealed that at the atomic level, BF binds to thyroid hormone receptor (TRα) protein more potently than λ-CH, consequently affecting HPT axis signal transduction. In vitro and in silico experiments disclosed that during the early stages of zebrafish development, BF and λ-CH have the potential to disrupt thyroid endocrine system.

  8. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    PubMed Central

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  9. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    PubMed Central

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  10. Expression of the T85A mutant of zebrafish aquaporin 3b improves post-thaw survival of cryopreserved early mammalian embryos.

    PubMed

    Bedford-Guaus, Sylvia J; Chauvigné, François; Mejía-Ramírez, Eva; Martí, Mercè; Ventura-Rubio, Antoni; Raya, Ángel; Cerdà, Joan; Veiga, Anna

    2016-12-01

    While vitrification has become the method of choice for preservation of human oocytes and embryos, cryopreservation of complex tissues and of large yolk-containing cells, remains largely unsuccessful. One critical step in such instances is appropriate permeation while avoiding potentially toxic concentrations of cryoprotectants. Permeation of water and small non-charged solutes, such as those used as cryoprotectants, occurs largely through membrane channel proteins termed aquaporins (AQPs). Substitution of a Thr by an Ala residue in the pore-forming motif of the zebrafish (Dario rerio) Aqp3b paralog resulted in a mutant (DrAqp3b-T85A) that when expressed in Xenopus or porcine oocytes increased their permeability to ethylene glycol at pH 7.5 and 8.5. The main objective of this study was to test whether ectopic expression of DrAqp3b-T85A also conferred higher resistance to cryoinjury. For this, DrAqp3b-T85A + eGFP (reporter) cRNA, or eGFP cRNA alone, was microinjected into in vivo fertilized 1-cell mouse zygotes. Following culture to the 2-cell stage, appropriate membrane expression of DrAqp3b-T85A was confirmed by immunofluorescence microscopy using a primary specific antibody directed against the C-terminus of DrAqp3b. Microinjected 2-cell embryos were then cryopreserved using a fast-freezing rate and low concentration (1.5 M) of ethylene glycol in order to highlight any benefits from DrAqp3b-T85A expression. Notably, post-thaw survival rates were higher (P<0.05) for T85A-eGFP-injected than for -uninjected or eGFP-injected embryos (73±7.3 vs. 28±7.3 or 14±6.7, respectively). We propose that ectopic expression of mutant AQPs may provide an avenue to improve cryopreservation results of large cells and tissues in which current vitrification protocols yield low survival.

  11. Study of charge-dependent transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish embryos and single nanoparticle plasmonic spectroscopy.

    PubMed

    Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Xu, Xiao-Hong Nancy

    2013-06-17

    Nanomaterials possess unusually high surface area-to-volume ratios and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameter) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs(+ζ)), negatively (Ag-CALNNS NPs(-2ζ)), and more negatively charged NPs (Ag-CALNNE NPs(-4ζ)), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral, and negative charges on the surface of the NPs at pH 4-10. We have studied their charge-dependent transport into early developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs(+ζ) (positively charged) are the most biocompatible while the Ag-CALNNE NPs(-4ζ) (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups, and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single

  12. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-07-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model.

  13. Carbon Quantum Dots for Zebrafish Fluorescence Imaging

    PubMed Central

    Kang, Yan-Fei; Li, Yu-Hao; Fang, Yang-Wu; Xu, Yang; Wei, Xiao-Mi; Yin, Xue-Bo

    2015-01-01

    Carbon quantum dots (C-QDs) are becoming a desirable alternative to metal-based QDs and dye probes owing to their high biocompatibility, low toxicity, ease of preparation, and unique photophysical properties. Herein, we describe fluorescence bioimaging of zebrafish using C-QDs as probe in terms of the preparation of C-QDs, zebrafish husbandry, embryo harvesting, and introduction of C-QDs into embryos and larvae by soaking and microinjection. The multicolor of C-QDs was validated with their imaging for zebrafish embryo. The distribution of C-QDs in zebrafish embryos and larvae were successfully observed from their fluorescence emission. the bio-toxicity of C-QDs was tested with zebrafish as model and C-QDs do not interfere to the development of zebrafish embryo. All of the results confirmed the high biocompatibility and low toxicity of C-QDs as imaging probe. The absorption, distribution, metabolism and excretion route (ADME) of C-QDs in zebrafish was revealed by their distribution. Our work provides the useful information for the researchers interested in studying with zebrafish as a model and the applications of C-QDs. The operations related zebrafish are suitable for the study of the toxicity, adverse effects, transport, and biocompatibility of nanomaterials as well as for drug screening with zebrafish as model. PMID:26135470

  14. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    PubMed Central

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-01-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI). PMID:27188464

  15. Craniofacial abnormalities and altered wnt and mmp mRNA expression in zebrafish embryos exposed to gasoline oxygenates ETBE and TAME

    PubMed Central

    Bonventre, Josephine A.; White, Lori A.; Cooper, Keith R.

    2015-01-01

    Gasoline additives ethyl tert butyl ether (ETBE) and tertiary amyl methyl ether (TAME) are used world wide, but the consequence of developmental exposure to these hydrophilic chemicals is unknown for aquatic vertebrates. The effect of ETBE and TAME on zebrafish embryos was determined following OCED 212 guidelines, and their toxicity was compared to structurally related methyl tert-butyl ether (MTBE), which is known to target developing vasculature. LC50s for ETBE and TAME were 14 mM [95% CI = 10 to 20] and 10 mM [CI = 8 to 12.5], respectively. Both chemicals caused dose dependent developmental lesions (0.625 to 10 mM), which included pericardial edema, abnormal vascular development, whole body edema, and craniofacial abnormalities. The lesions were suggestive of a dysregulation of WNT ligands and matrix metalloproteinase (MMP) protein families based on their roles in development. Exposure to 5 mM ETBE significantly (p ≤ 0.05) decreased relative mRNA transcript levels of mmp-9 and wnt3a, while 2.5 and 5 mM TAME significantly decreased wnt3a, wnt5a, and wnt8a. TAME also significantly decreased mmp-2 and -9 mRNA levels at 5 mM. ETBE and TAME were less effective in altering the expression of vascular endothelial growth factor-a and -c, which were the only genes tested that were significantly decreased by MTBE. This is the first study to characterize the aquatic developmental toxicity following embryonic exposure to ETBE and TAME. Unlike MTBE, which specifically targets angiogenesis, ETBE and TAME disrupt multiple organ systems and significantly alter the mRNA transcript levels of genes required for general development. PMID:22609741

  16. Aryl phosphate esters within a major PentaBDE replacement product induce cardiotoxicity in developing zebrafish embryos: potential role of the aryl hydrocarbon receptor.

    PubMed

    McGee, Sean P; Konstantinov, Alex; Stapleton, Heather M; Volz, David C

    2013-05-01

    Firemaster 550 (FM550) is an additive flame retardant formulation of brominated and aryl phosphate ester (APE) components introduced as a major replacement product for the commercial polybrominated diphenyl ether mixture (known as PentaBDE) used primarily in polyurethane foam. However, little is known about the potential effects of FM550-based ingredients during early vertebrate development. Therefore, we first screened the developmental toxicity of each FM550 component using zebrafish as an animal model. Based on these initial screening assays, we found that exposure to the brominated components as high as 10µM resulted in no significant effects on embryonic survival or development, whereas exposure to triphenyl phosphate (TPP) or mono-substituted isopropylated triaryl phosphate (mono-ITP)-two APEs comprising almost 50% of FM550-resulted in targeted effects on cardiac looping and function during embryogenesis. As these cardiac abnormalities resembled aryl hydrocarbon receptor (AHR) agonist-induced phenotypes, we then exposed developing embryos to TPP or mono-ITP in the presence or absence of an AHR antagonist (CH223191) or AHR2-specific morpholino. Based on these studies, we found that CH223191 blocked heart malformations following exposure to mono-ITP but not TPP, whereas AHR2 knockdown failed to block the cardiotoxic effects of both components. Finally, using a cell-based human AHR reporter assay, we found that mono-ITP (but not TPP) exposure resulted in a significant increase in human AHR-driven luciferase activity at similar nominal concentrations as a potent reference AHR agonist (β-naphthoflavone). Overall, our findings suggest that two major APE components of FM550 induce severe cardiac abnormalities during early vertebrate development.

  17. Exposure time to caffeine affects heartbeat and cell damage-related gene expression of zebrafish Danio rerio embryos at early developmental stages.

    PubMed

    Abdelkader, Tamer Said; Chang, Seo-Na; Kim, Tae-Hyun; Song, Juha; Kim, Dong Su; Park, Jae-Hak

    2013-11-01

    Caffeine is white crystalline xanthine alkaloid that is naturally found in some plants and can be produced synthetically. It has various biological effects, especially during pregnancy and lactation. We studied the effect of caffeine on heartbeat, survival and the expression of cell damage related genes, including oxidative stress (HSP70), mitochondrial metabolism (Cyclin G1) and apoptosis (Bax and Bcl2), at early developmental stages of zebrafish embryos. We used 100 µm concentration based on the absence of locomotor effects. Neither significant mortality nor morphological changes were detected. We monitored hatching at 48 h post-fertilization (hpf) to 96 hpf. At 60 and 72 hpf, hatching decreased significantly (P < 0.05); however, the overall hatching rate at 96 hpf was 94% in control and 93% in caffeine treatment with no significant difference (P > 0.05). Heartbeats per minute were 110, 110 and 112 in control at 48, 72 and 96 hpf, respectively. Caffeine significantly increased heartbeat - 122 and 136 at 72 and 96 hpf, respectively. Quantitative RT-PCR showed significant up-regulation after caffeine exposure in HSP70 at 72 hpf; in Cyclin G1 at 24, 48 and 72 hpf; and in Bax at 48 and 72 hpf. Significant down-regulation was found in Bcl2 at 48 and 72 hpf. The Bax/Bcl2 ratio increased significantly at 48 and 72 hpf. We conclude that increasing exposure time to caffeine stimulates oxidative stress and may trigger apoptosis via a mitochondrial-dependent pathway. Also caffeine increases heartbeat from early phases of development without affecting the morphology and survival but delays hatching. Use of caffeine during pregnancy and lactation may harm the fetus by affecting the expression of cell-damage related genes.

  18. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    PubMed Central

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D.; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5-72 hours post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite - were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may interact with human RARs, we then exposed Chinese hamster ovary cells stably transfected with chimeric human RARα-, RARβ-, or RARγ to TPP in the presence of RA, and found that TPP significantly inhibited RA-induced luciferase activity in a concentration-dependent manner. Overall, our findings suggest that zebrafish RARs may be involved in mediating TPP-induced developmental toxicity, a mechanism of action that may have relevance to humans. PMID:25725299

  19. The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows.

    PubMed

    Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Stephens, Dane A; Rawlings, Jane M; Belanger, Scott E; Oris, James T

    2015-06-01

    The fish embryo toxicity (FET) test has been proposed as an alternative to the larval growth and survival (LGS) test. The objectives of the present study were to evaluate the sensitivity of the FET and LGS tests in fathead minnows (Pimephales promelas) and zebrafish (Danio rerio) and to determine if the inclusion of sublethal metrics as test endpoints could enhance test utility. In both species, LGS and FET tests were conducted using 2 simulated effluents. A comparison of median lethal concentrations determined via each test revealed significant differences between test types; however, it could not be determined which test was the least and/or most sensitive. At the conclusion of each test, developmental abnormalities and the expression of genes related to growth and toxicity were evaluated. Fathead minnows and zebrafish exposed to mock municipal wastewater-treatment plant effluent in a FET test experienced an increased incidence of pericardial edema and significant alterations in the expression of genes including insulin-like growth factors 1 and 2, heat shock protein 70, and cytochrome P4501A, suggesting that the inclusion of these endpoints could enhance test utility. The results not only show the utility of the fathead minnow FET test as a replacement for the LGS test but also provide evidence that inclusion of additional endpoints could improve the predictive power of the FET test.

  20. Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection.

    PubMed

    Lee, Kun-Hsiung

    2014-01-01

    The generation of a fertile embryonic stem cell (ESC)-derived or F0 (100 % coat color chimerism) mice is the final criterion in proving that the ESC is truly pluripotent. Many methods have been developed to produce chimeric mice. To date, the most popular methods for generating chimeric embryos is well sandwich aggregation between zona pellucida (ZP) removed (denuded) 2.5-day post-coitum (dpc) embryos and ESC clumps, or direct microinjection of ESCs into the cavity (blastocoel) of 3.5-dpc blastocysts. However, due to systemic limitations and the disadvantages of conventional microinjection, aggregation, and coculturing, two novel methods (vial coculturing and hypertonic microinjection) were developed in recent years at my laboratory.Coculturing 2.5-dpc denuded embryos with ESCs in 1.7-mL vials for ~3 h generates chimeras that have significantly high levels of chimerism (including 100 % coat color chimerism) and germline transmission. This method has significantly fewer instrumental and technological limitations than existing methods, and is an efficient, simple, inexpensive, and reproducible method for "mass production" of chimeric embryos. For laboratories without a microinjection system, this is the method of choice for generating chimeric embryos. Microinjecting ESCs into a subzonal space of 2.5-dpc embryos can generate germline-transmitted chimeras including 100 % coat color chimerism. However, this method is adopted rarely due to the very small and tight space between ZP and blastomeres. Using a laser pulse or Piezo-driven instrument/device to help introduce ESCs into the subzonal space of 2.5-dpc embryos demonstrates the superior efficiency in generating ESC-derived (F0) chimeras. Unfortunately, due to the need for an expensive instrument/device and extra fine skill, not many studies have used either method. Recently, ESCs injected into the large subzonal space of 2.5-dpc embryos in an injection medium containing 0.2-0.3 M sucrose very efficiently generated

  1. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions.

    PubMed

    Webb, Sarah E; Cheung, Chris C Y; Chan, Ching Man; Love, Donald R; Miller, Andrew L

    2012-01-01

    1. Evidence is accumulating for a role for Ca²⁺ signalling in the differentiation and development of embryonic skeletal muscle. 2. Imaging of intact, normally developing transgenic zebrafish that express the protein component of the Ca²⁺-sensitive complex aequorin, specifically in skeletal muscle, show that two distinct periods of spontaneous synchronised Ca²⁺ transients occur in the trunk: one at approximately 17.5-19.5 h post-fertilization (h.p.f.; termed signalling period SP1) and the other after approximately 23 h.p.f. (termed SP2). These periods of intense Ca²⁺ signalling activity are separated by a quiet period. 3. Higher-resolution confocal imaging of embryos loaded with the fluorescent Ca²⁺ reporter calcium green-1 dextran shows that the Ca²⁺ signals are generated almost exclusively in the slow muscle cells, the first muscle cells to differentiate, with distinct nuclear and cytoplasmic components. 4. Here, we show that coincidental with the SP1 Ca²⁺ signals, dystrophin becomes localized to the vertical myoseptae of the myotome. Introduction of a dmd morpholino (dmd-MO) resulted in no dystrophin being expressed in the vertical myoseptae, as well as a disruption of myotome morphology and sarcomere organization. In addition, the Ca²⁺ signalling signatures of dmd-MO-injected embryos or homozygous sapje mutant embryos were abnormal such that the frequency, amplitude and timing of the Ca²⁺ signals were altered compared with controls. 5. Our new data suggest that, in addition to a structural role, dystrophin may function in the regulation of [Ca²⁺](i) during the early stages of slow muscle cell differentiation when the Ca²⁺ signals generated in these cells coincide with the first spontaneous contractions of the trunk.

  2. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids.

    PubMed

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  3. Zebrafish as a model for human osteosarcoma.

    PubMed

    Mohseny, A B; Hogendoorn, P C W

    2014-01-01

    For various reasons involving biological comparativeness, expansive technological possibilities, accelerated experimental speed, and competitive costs, zebrafish has become a comprehensive model for cancer research. Hence, zebrafish embryos and full-grown fish have been instrumental for studies of leukemia, melanoma, pancreatic cancer, bone tumors, and other malignancies. Although because of its similarities to human osteogenesis zebrafish appears to be an appealing model to investigate osteosarcoma, only a few osteosarcoma specific studies have been accomplished yet. Here, we review interesting related and unrelated reports of which the findings might be extrapolated to osteosarcoma. More importantly, rational but yet unexplored applications of zebrafish are debated to expand the window of opportunities for future establishment of osteosarcoma models. Accordingly technological advances of zebrafish based cancer research, such as robotic high-throughput multicolor injection systems and advanced imaging methods are discussed. Furthermore, various use of zebrafish embryos for screening drug regimens by combinations of chemotherapy, novel drug deliverers, and immune system modulators are suggested. Concerning the etiology, the high degree of genetic similarity between zebrafish and human cancers indicates that affected regions are evolutionarily conserved. Therefore, zebrafish as a swift model system that allows for the investigation of multiple candidate gene-defects is presented.

  4. Microgavage of Zebrafish Larvae

    PubMed Central

    Cocchiaro, Jordan L.; Rawls, John F.

    2013-01-01

    The zebrafish has emerged as a powerful model organism for studying intestinal development1-5, physiology6-11, disease12-16, and host-microbe interactions17-25. Experimental approaches for studying intestinal biology often require the in vivo introduction of selected materials into the lumen of the intestine. In the larval zebrafish model, this is typically accomplished by immersing fish in a solution of the selected material, or by injection through the abdominal wall. Using the immersion method, it is difficult to accurately monitor or control the route or timing of material delivery to the intestine. For this reason, immersion exposure can cause unintended toxicity and other effects on extraintestinal tissues, limiting the potential range of material amounts that can be delivered into the intestine. Also, the amount of material ingested during immersion exposure can vary significantly between individual larvae26. Although these problems are not encountered during direct injection through the abdominal wall, proper injection is difficult and causes tissue damage which could influence experimental results.We introduce a method for microgavage of zebrafish larvae. The goal of this method is to provide a safe, effective, and consistent way to deliver material directly to the lumen of the anterior intestine in larval zebrafish with controlled timing. Microgavage utilizes standard embryo microinjection and stereomicroscopy equipment common to most laboratories that perform zebrafish research. Once fish are properly positioned in methylcellulose, gavage can be performed quickly at a rate of approximately 7-10 fish/ min, and post-gavage survival approaches 100% depending on the gavaged material. We also show that microgavage can permit loading of the intestinal lumen with high concentrations of materials that are lethal to fish when exposed by immersion. To demonstrate the utility of this method, we present a fluorescent dextran microgavage assay that can be used to

  5. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles

    SciTech Connect

    Jong, Esther de; Barenys, Marta; Hermsen, Sanne A.B.; Verhoef, Aart; Ossendorp, Bernadette C.; Bessems, Jos G.M.; Piersma, Aldert H.

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds, flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.

  6. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles.

    PubMed

    de Jong, Esther; Barenys, Marta; Hermsen, Sanne A B; Verhoef, Aart; Ossendorp, Bernadette C; Bessems, Jos G M; Piersma, Aldert H

    2011-06-01

    The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.

  7. Adaxial cell migration in the zebrafish embryo is an active cell autonomous property that requires the Prdm1a transcription factor.

    PubMed

    Ono, Yosuke; Yu, Weimiao; Jackson, Harriet E; Parkin, Caroline A; Ingham, Philip W

    2015-01-01

    Adaxial cells, the progenitors of slow-twitch muscle fibres in zebrafish, exhibit a stereotypic migratory behaviour during somitogenesis. Although this process is known to be disrupted in various mutants, its precise nature has remained unclear. Here, using in vivo imaging and chimera analysis, we show that adaxial cell migration is a cell autonomous process, during which cells become polarised and extend filopodia at their leading edge. Loss of function of the Prdm1a transcription factor disrupts the polarisation and migration of adaxial cells, reflecting a role that is independent of its repression of sox6 expression. Expression of the M- and N-cadherins, previously implicated in driving adaxial cell migration, is largely unaffected by loss of Prdm1a function, suggesting that differential cadherin expression is not sufficient for adaxial cell migration.

  8. Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...

  9. Chimeric Pestivirus Experimental Vaccines.

    PubMed

    Reimann, Ilona; Blome, Sandra; Beer, Martin

    2016-01-01

    Chimeric pestiviruses have shown great potential as marker vaccine candidates against pestiviral infections. Exemplarily, we describe here the construction and testing of the most promising classical swine fever vaccine candidate "CP7_E2alf" in detail. The description is focused on classical cloning technologies in combination with reverse genetics.

  10. Use of RecA fusion proteins to induce genomic modifications in zebrafish

    PubMed Central

    Liao, Hsin-Kai; Essner, Jeffrey J.

    2011-01-01

    The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA–DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB. PMID:21266475

  11. Use of RecA fusion proteins to induce genomic modifications in zebrafish.

    PubMed

    Liao, Hsin-Kai; Essner, Jeffrey J

    2011-05-01

    The bacterial recombinase RecA forms a nucleic acid-protein filament on single-stranded (ss) DNA during the repair of double-strand breaks (DSBs) that efficiently undergoes a homology search and engages in pairing with the complementary DNA sequence. We utilized the pairing activity of RecA-DNA filaments to tether biochemical activities to specific chromosomal sites. Different filaments with chimeric RecA proteins were tested for the ability to induce loss of heterozygosity at the golden locus in zebrafish after injection at the one-cell stage. A fusion protein between RecA containing a nuclear localization signal (NLS) and the DNA-binding domain of Gal4 (NLS-RecA-Gal4) displayed the most activity. Our results demonstrate that complementary ssDNA filaments as short as 60 nucleotides coated with NLS-RecA-Gal4 protein are able to cause loss of heterozygosity in ∼3% of the injected embryos. We demonstrate that lesions in ∼9% of the F0 zebrafish are transmitted to subsequent generations as large chromosomal deletions. Co-injection of linear DNA with the NLS-RecA-Gal4 DNA filaments promotes the insertion of the DNA into targeted genomic locations. Our data support a model whereby NLS-RecA-Gal4 DNA filaments bind to complementary target sites on chromatin and stall DNA replication forks, resulting in a DNA DSB.

  12. Interspecies Chimerism with Mammalian Pluripotent Stem Cells.

    PubMed

    Wu, Jun; Platero-Luengo, Aida; Sakurai, Masahiro; Sugawara, Atsushi; Gil, Maria Antonia; Yamauchi, Takayoshi; Suzuki, Keiichiro; Bogliotti, Yanina Soledad; Cuello, Cristina; Morales Valencia, Mariana; Okumura, Daiji; Luo, Jingping; Vilariño, Marcela; Parrilla, Inmaculada; Soto, Delia Alba; Martinez, Cristina A; Hishida, Tomoaki; Sánchez-Bautista, Sonia; Martinez-Martinez, M Llanos; Wang, Huili; Nohalez, Alicia; Aizawa, Emi; Martinez-Redondo, Paloma; Ocampo, Alejandro; Reddy, Pradeep; Roca, Jordi; Maga, Elizabeth A; Esteban, Concepcion Rodriguez; Berggren, W Travis; Nuñez Delicado, Estrella; Lajara, Jeronimo; Guillen, Isabel; Guillen, Pedro; Campistol, Josep M; Martinez, Emilio A; Ross, Pablo Juan; Izpisua Belmonte, Juan Carlos

    2017-01-26

    Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.

  13. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos.

    PubMed

    Cobbina, Samuel Jerry; Xu, Hai; Zhao, Ting; Mao, Guanghua; Zhou, Zhaoxiang; Wu, Xueshan; Liu, Hongyang; Zou, Yanmin; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    Concerns over the potential health effects of mixtures of low concentration heavy metals on living organisms keep growing by the day. However, the toxicity of low concentration metal mixtures on the immune system of fish species has rarely been investigated. In this study, the zebrafish model was employed to investigate the effect on innate immune and antioxidant-related gene expressions, on exposure to environmentally relevant concentrations of individual and mixtures of Pb (0.01 mg/L), Hg (0.001 mg/L), As (0.01 mg/L) and Cd (0.005 mg/L). Messenger-RNA (mRNA) levels of IL1β, TNF-α, IFNγ, Mx, Lyz, C3B and CXCL-Clc which are closely associated with the innate immune system were affected after exposing zebrafish embryos to metals for 120 h post fertilization (hpf). Individual and mixtures of metals exhibited different potentials to modulate innate-immune gene transcription. IL1β genes were significantly up regulated on exposure to Pb + As (2.01-fold) and inhibited on exposure to Pb + Hg + Cd (0.13-fold). TNF-α was significantly inhibited on exposure to As (0.40-fold) and Pb + As (0.32-fold) compared to control. Metal mixtures generally up regulated IFNγ compared to individual metals. Additionally, antioxidant genes were affected, as CAT and GPx gene expressions generally increased, whiles Mn-SOD and Zn/Cu-SOD reduced. Multivariate analysis showed that exposure to individual metals greatly influenced modulation of innate immune genes; whiles metal mixtures influenced antioxidant gene expressions. This suggests that beside oxidative stress, there may be other pathways influencing gene expressions of innate immune and antioxidant-related genes. Low concentration heavy metals also affect expression of development-related (wnt8a and vegf) genes. Altogether, the results of this study clearly demonstrate that low concentration individual and mixtures of metals in aquatic systems will greatly influence the immune system. It is indicative that mechanisms associated with

  14. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).

    PubMed

    Ross, C N; French, J A; Ortí, G

    2007-04-10

    The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.

  15. Zebrafish Assays of Ciliopathies

    PubMed Central

    Zaghloul, Norann A.; Katsanis, Nicholas

    2013-01-01

    In light of the growing list of human disorders associated with their dysfunction, primary cilia have recently come to attention as being important regulators of developmental signaling pathways and downstream processes. These organelles, present on nearly every vertebrate cell type, are highly conserved structures allowing for study across a range of species. Zebrafish, in particular, have emerged as useful organisms in which to explore the consequences of ciliary dysfunction and to model human ciliopathies. Here, we present a range of useful techniques that allow for investigation of various aspects of ciliary function. The described assays capitalize on the hallmark gastrulation defects associated with ciliary defects as well as relative ease of visualization of cilia in whole-mount embryos. Further, we describe our recently developed assay for querying functionality of human gene variants in live developing embryos. Finally, a current catalog of known zebrafish ciliary mutant lines is included. The techniques presented here provide a basic toolkit for in vivo investigation of both the biological and genetic mechanisms underlying a growing class of human diseases. PMID:21951534

  16. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

    PubMed

    Jacob, Vinitha; Chernyavskaya, Yelena; Chen, Xintong; Tan, Poh Seng; Kent, Brandon; Hoshida, Yujin; Sadler, Kirsten C

    2015-02-01

    UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis.

  17. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    PubMed

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  18. Dynamic glucoregulation and mammalian-like responses to metabolic and developmental disruption in zebrafish

    PubMed Central

    Jurczyk, Agata; Roy, Nicole; Bajwa, Rabia; Gut, Philipp; Lipson, Kathryn; Yang, Chaoxing; Covassin, Laurence; Racki, Waldemar J.; Rossini, Aldo A.; Phillips, Nancy; Stainier, Didier Y. R.; Greiner, Dale L.; Brehm, Michael A.; Bortell, Rita; diIorio, Philip

    2010-01-01

    Zebrafish embryos are emerging as models of glucose metabolism. However, patterns of endogenous glucose levels, and the role of the islet in glucoregulation, are unknown. We measured absolute glucose levels in zebrafish and mouse embryos, and demonstrate similar, dynamic glucose fluctuations in both species. Further, we show that chemical and genetic perturbations elicit mammalian-like glycemic responses in zebrafish embryos. We show that glucose is undetectable in early zebrafish and mouse embryos, but increases in parallel with pancreatic islet formation in both species. In zebrafish, increasing glucose is associated with activation of gluconeogenic phosphoenolpyruvate carboxykinase1 (pck1) transcription. Non-hepatic Pck1 protein is expressed in mouse embryos. We show, using RNA in situ hybridization, that zebrafish pck1 mRNA is similarly expressed in multiple cell types prior to hepatogenesis. Further, we demonstrate that the Pck1 inhibitor 3-mercaptopicolinic acid suppresses normal glucose accumulation in early zebrafish embryos. This shows that pre- and extra-hepatic pck1 is functional, and provides glucose locally to rapidly developing tissues. To determine if the primary islet is glucoregulatory in early fish embryos, we injected pdx1-specific morpholinos into transgenic embryos expressing GFP in beta cells. Most morphant islets were hypomorphic, not agenetic, but embryos still exhibited persistent hyperglycemia. We conclude from these data that the early zebrafish islet is functional, and regulates endogenous glucose. In summary, we identify mechanisms of glucoregulation in zebrafish embryos that are conserved with embryonic and adult mammals. These observations justify use of this model in mechanistic studies of human metabolic disease. PMID:20965191

  19. Behavorial assessments of larval zebrafish neurotoxicology

    EPA Science Inventory

    Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...

  20. Analysis of myostatin gene structure, expression and function in zebrafish.

    PubMed

    Xu, Cheng; Wu, Gang; Zohar, Yonathan; Du, Shao-Jun

    2003-11-01

    Myostatin is a member of the TGF-beta family that functions as a negative regulator of skeletal muscle development and growth in mammals. Recently, Myostatin has also been identified in fish; however, its role in fish muscle development and growth remains unknown. We have reported here the isolation and characterization of myostatin genomic gene from zebrafish and analysis of its expression in zebrafish embryos, larvae and adult skeletal muscles. Our data showed that myostatin was weakly expressed in early stage zebrafish embryos, and strongly expressed in swimming larvae, juvenile and skeletal muscles of adult zebrafish. Transient expression analysis revealed that the 1.2 kb zebrafish myostatin 5' flanking sequence could direct green fluorescent protein (GFP) expression predominantly in muscle cells, suggesting that the myostatin 5' flanking sequence contained regulatory elements required for muscle expression. To determine the biological function of Myostatin in fish, we generated a transgenic line that overexpresses the Myostatin prodomain in zebrafish skeletal muscles using a muscle-specific promoter. The Myostatin prodomain could act as a dominant negative and inhibit Myostatin function in skeletal muscles. Transgenic zebrafish expressing the Myostatin prodomain exhibited no significant change in myogenic gene expression and differentiation of slow and fast muscle cells at their embryonic stage. The transgenic fish, however, exhibited an increased number of myofibers in skeletal muscles, but no significant difference in fiber size. Together, these data demonstrate that Myostatin plays an inhibitory role in hyperplastic muscle growth in zebrafish.

  1. Cyp1a reporter zebrafish reveals target tissues for dioxin.

    PubMed

    Kim, Kun-Hee; Park, Hye-Jeong; Kim, Jin Hee; Kim, Suhyun; Williams, Darren R; Kim, Myeong-Kyu; Jung, Young Do; Teraoka, Hiroki; Park, Hae-Chul; Choy, Hyon E; Shin, Boo Ahn; Choi, Seok-Yong

    2013-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the unintentional byproduct of various industrial processes, is classified as human carcinogen and could disrupt reproductive, developmental and endocrine systems. Induction of cyp1a1 is used as an indicator of TCDD exposure. We sought to determine tissues that are vulnerable to TCDD toxicity using a transgenic zebrafish (Danio rerio) model. We inserted a nuclear enhanced green fluorescent protein gene (EGFP) into the start codon of a zebrafish cyp1a gene in a fosmid clone using DNA recombineering. The resulting recombineered fosmid was then used to generate cyp1a reporter zebrafish, embryos of which were exposed to TCDD. Expression pattern of EGFP in the reporter zebrafish mirrored that of endogenous cyp1a mRNA. In addition, exposure of the embryos to TCDD at as low as 10 pM for 72 h, which does not elicit morphological abnormalities of embryos, markedly increased GFP expression. Furthermore, the reporter embryos responded to other AhR ligands as well. Exposure of the embryos to TCDD revealed previously reported (the cardiovascular system, liver, pancreas, kidney, swim bladder and skin) and unreported target tissues (retinal bipolar cells, otic vesicle, lateral line, cloaca and pectoral fin bud) for TCDD. Transgenic cyp1a reporter zebrafish we have developed can further understanding of ecotoxicological relevance and human health risks by TCDD. In addition, they could be used to identify agonists of AhR and antidotes to TCDD toxicity.

  2. Methods for generating and colonizing gnotobiotic zebrafish

    PubMed Central

    Pham, Linh N.; Kanther, Michelle; Semova, Ivana; Rawls, John F.

    2008-01-01

    Vertebrates are colonized at birth by complex and dynamic communities of microorganisms that can contribute significantly to host health and disease. The ability to raise animals in the absence of microorganisms has been a powerful tool for elucidating the relationships between animal hosts and their microbial residents. The optical transparency of the developing zebrafish and relative ease of generating germ-free zebrafish makes it an attractive model organism for gnotobiotic research. Here we provide a protocol for: generating zebrafish embryos; deriving and rearing germ-free zebrafish; and colonizing zebrafish with microorganisms. Using these methods, we typically obtain 80–90% sterility rates in our germ-free derivations with 90% survival in germ-free animals and 50–90% survival in colonized animals through larval stages. Obtaining embryos for derivation requires approximately 1–2 hours with a 3–8 hour incubation period prior to derivation. Derivation of germ-free animals takes 1–1.5 hours, and daily maintenance requires 1–2 hours. PMID:19008873

  3. Evaluating alterations in Zebrafish retino-tectal projections as an indication of developmental neurotoxicity

    EPA Science Inventory

    The U.S. EPA is developing alternative screening methods to identify putative developmental neurotoxicants and prioritize chemicals for additional testing. One method developmentally exposes zebrafish embryos and assesses nervous system structure at 2 days post-fertilization (dpf...

  4. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies.

  5. Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish

    EPA Science Inventory

    Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...

  6. Zebrafish – As an Integrative Model for Twenty-first Century Toxicity Testing

    EPA Science Inventory

    The zebrafish embryo is a useful small model for investigating vertebrate development because of its transparency, low cost, transgenic and morpholino capabilities, conservation of cell signaling, and concordance with mammalian developmental phenotypes. From these advantages, the...

  7. A MULTIFACETED, MEDIUM-THROUGHPUT APPROACH FOR DETECTING AND CHARACTERIZING DEVELOPMENTAL NEUROTOXICITY USING ZEBRAFISH.

    EPA Science Inventory

    To address the EPA's need to prioritize hundreds to thousands of chemicals for testing, we are developing a rapid, cost-effective in vivo screen for developmental neurotoxicity using zebrafish (Danio rerio), a small freshwater fish with external fertilization. Zebrafish embryos d...

  8. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  9. Functionally conserved effects of rapamycin exposure on zebrafish.

    PubMed

    Sucularli, Ceren; Shehwana, Huma; Kuscu, Cem; Dungul, Dilay Ciglidag; Ozdag, Hilal; Konu, Ozlen

    2016-05-01

    Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well‑known anti‑cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta‑analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose‑dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin‑modulated functional pathways between zebrafish and mice, in addition to the dose‑dependent growth curves of zebrafish embryos upon rapamycin exposure.

  10. In vitro development of zebrafish vascular networks.

    PubMed

    Ibrahim, Muhammad; Richardson, Michael K

    2017-02-09

    A major limitation to culturing tissues and organs is the lack of a functional vascular network in vitro. The zebrafish possess many useful properties which makes it a promising model for such studies. Unfortunately, methods of culturing endothelial cells from this species are not well characterised. Here, we tried two methods (embryoid body culture and organ explants from transgenic zebrafish kdrl:GFP embryos) to develop in vitro vascular networks. In the kdrl:GFP line, endothelial cells expresses green fluorescent protein, which allows to track the vascular development in live cultures. We found that embryoid bodies showed significantly longer and wider branches of connected endothelial cells when grown in a microfluidic system than in static culture. Similarly, sprouting of kdrl:GFP(+) cells from the tissue explants was observed in a 3D hydrogel matrix. This study is a step towards the development of zebrafish vascular networks in vitro.

  11. A development of chimeric VEGFR2 TK inhibitor based on two ligand conformers from PDB: 1Y6A complex--medicinal chemistry consequences of a TKs analysis.

    PubMed

    Lintnerová, Lucia; García-Caballero, Melissa; Gregáň, Fridrich; Melicherčík, Milan; Quesada, Ana R; Dobiaš, Juraj; Lác, Ján; Sališová, Marta; Boháč, Andrej

    2014-01-24

    VEGFR2 is an important mediator of angiogenesis and influences fate of some cancer stem cells. Here we analysed all 34 structures of VEGFR2 TK available from PDB database. From them a complex PDB: 1Y6A has an exceptional AAZ ligand bound to TK in form of two conformers (U- and S-shaped). This observation inspired us to develop three chimeric bispyridyl VEGFR2 inhibitors by combining structural features of both AAZ conformers and/or their relative ligand AAX (PDB: 1Y6B). Our most interesting inhibitor 22SYM has an enzymatic VEGFR2 TK activity (IC50: 15.1 nM) comparable or better to the active compounds from clinical drugs Nexavar and Sutent. 22SYM inhibits growth, migration and tube formation of endothelial cells (EC) and selectively induces EC apoptosis. 22SYM also inhibits in vivo angiogenesis in Zebrafish embryo assay. Additionally to the above results, we proved here that tyrosine kinases in an inactive form possessing Type I inhibitors can adopt both a closed or an opened conformation of kinase A-loop independently on their DFG-out arrangement. We proposed here that an activity of certain Type I inhibitors (e.g. 22SYM-like) in complex with DFG-out TK can be negatively influenced by collisions with a dynamically moving TK A-loop.

  12. Developmental nephrotoxicity of aristolochic acid in a zebrafish model

    SciTech Connect

    Ding, Yu-Ju; Chen, Yau-Hung

    2012-05-15

    Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100 ± 2.24% vs. 10 ppm AA treatment for 3–5 h: 71.48 ± 18.84% ∼ 39.41 ± 15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury. -- Highlights: ► Zebrafish were used to evaluate aristolochic acid (AA)-induced nephrotoxicity. ► AA-treated zebrafish embryos exhibited deformed heart as well as malformed kidney. ► Kidney is more sensitive to AA injury than the heart.

  13. Protocadherin-17 Function in Zebrafish Retinal Development

    PubMed Central

    Chen, Yun; Londraville, Richard; Brickner, Sarah; El-Shaar, Lana; Fankhauser, Kelsee; Dearth, Cassandra; Fulton, Leah; Sochacka, Alicja; Bhattarai, Sunil; Marrs, James A.; Liu, Qin

    2012-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the retina. Most studies have focused on examining functions of classic cadherins (e.g. N-cadherin) in retinal development. There is little information on the function of protocadherins in the development of the vertebrate visual system. We previously showed that protocadherin-17 mRNA was expressed in developing zebrafish retina during critical stages of the retinal development. To gain insight into protocadherin-17 function in the formation of the retina, we analyzed eye development and differentiation of retinal cells in zebrafish embryos injected with protocadherin-17 specific antisense morpholino oligonucleotides (MOs). Protocadherin-17 knockdown embryos (pcdh17 morphants) had significantly reduced eyes due mainly to decreased cell proliferation. Differentiation of several retinal cell types (e.g. retinal ganglion cells) was also disrupted in the pcdh17 morphants. Phenotypic rescue was achieved by injection of protocadherin-17 mRNA. Injection of a vivo-protocadherin-17 MO into one eye of embryonic zebrafish resulted in similar eye defects. Our results suggest that protocadherin-17 plays an important role in the normal formation of the zebrafish retina. PMID:22927092

  14. Zebrafish phenotypic screen identifies novel Notch antagonists.

    PubMed

    Velaithan, Vithya; Okuda, Kazuhide Shaun; Ng, Mei Fong; Samat, Norazwana; Leong, Sze Wei; Faudzi, Siti Munirah Mohd; Abas, Faridah; Shaari, Khozirah; Cheong, Sok Ching; Tan, Pei Jean; Patel, Vyomesh

    2017-04-01

    Zebrafish represents a powerful in vivo model for phenotype-based drug discovery to identify clinically relevant small molecules. By utilizing this model, we evaluated natural product derived compounds that could potentially modulate Notch signaling that is important in both zebrafish embryogenesis and pathogenic in human cancers. A total of 234 compounds were screened using zebrafish embryos and 3 were identified to be conferring phenotypic alterations similar to embryos treated with known Notch inhibitors. Subsequent secondary screens using HEK293T cells overexpressing truncated Notch1 (HEK293TΔE) identified 2 compounds, EDD3 and 3H4MB, to be potential Notch antagonists. Both compounds reduced protein expression of NOTCH1, Notch intracellular domain (NICD) and hairy and enhancer of split-1 (HES1) in HEK293TΔE and downregulated Notch target genes. Importantly, EDD3 treatment of human oral cancer cell lines demonstrated reduction of Notch target proteins and genes. EDD3 also inhibited proliferation and induced G0/G1 cell cycle arrest of ORL-150 cells through inducing p27(KIP1). Our data demonstrates the utility of the zebrafish phenotypic screen and identifying EDD3 as a promising Notch antagonist for further development as a novel therapeutic agent.

  15. Microfluidic-aided genotyping of zebrafish in the first 48 h with 100% viability.

    PubMed

    Samuel, Raheel; Stephenson, Regan; Roy, Paula; Pryor, Rob; Zhou, Luming; Bonkowsky, Joshua L; Gale, Bruce K

    2015-04-01

    This paper introduces an innovative method for genotyping 1-2 days old zebrafish embryos, without sacrificing the life/health of the embryos. The method utilizes microfluidic technology to extract and collect a small amount of genetic material from the chorionic fluid or fin tissue of the embryo. Then, using conventional DNA extraction, PCR amplification, and high resolution melt analysis with fluorescent DNA detection techniques, the embryo is genotyped. The chorionic fluid approach was successful 78% of the time while the fin clipping method was successful 100% of the time. Chorionic fluid was shown to only contain DNA from the embryo and not from the mother. These results suggest a novel method to genotype zebrafish embryos that can facilitate high-throughput screening, while maintaining 100% viability of the embryo.

  16. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome

    PubMed Central

    Miller, Galen W.; Truong, Lisa; Barton, Carrie L.; Labut, Edwin M.; Lebold, Katie M.; Traber, Maret G.; Tanguay, Robert L.

    2014-01-01

    The composition of the typical commercial diet fed to zebrafish can dramatically vary. By utilizing defined diets we sought to answer two questions: 1) How does the embryonic zebrafish transcriptome change when the parental adults are fed a commercial lab diet compared with a sufficient, defined diet (E+)? 2) Does a vitamin Edeficient parental diet (E−) further change the embryonic transcriptome? We conducted a global gene expression study using embryos from zebrafish fed a commercial (Lab), an E+ or an E− diet. To capture differentially expressed transcripts prior to onset of overt malformations observed in E− embryos at 48 h post-fertilization (hpf), embryos were collected from each group at 36 hpf. Lab embryos differentially expressed (p < 0.01) 946 transcripts compared with the E+ embryos, and 2656 transcripts compared with the E− embryos. The differences in protein, fat and micronutrient intakes in zebrafish fed the Lab compared with the E + diet demonstrate that despite overt morphologic consistency, significant differences in gene expression occurred. Moreover, functional analysis of the significant transcripts in the E−embryos suggested perturbed energy metabolism, leading to overt malformations and mortality. Thus, these findings demonstrate that parental zebrafish diet has a direct impact on the embryonic transcriptome. PMID:24657723

  17. Chimeric enzymes with improved cellulase activities

    DOEpatents

    Xu, Qi; Baker, John O; Himmel, Michael E

    2015-03-31

    Nucleic acid molecules encoding chimeric cellulase polypeptides that exhibit improved cellulase activities are disclosed herein. The chimeric cellulase polypeptides encoded by these nucleic acids and methods to produce the cellulases are also described, along with methods of using chimeric cellulases for the conversion of cellulose to sugars such as glucose.

  18. Zebrafish: A marvel of high-throughput biology for 21st century toxicology

    PubMed Central

    Bugel, Sean M.; Tanguay, Robert L.; Planchart, Antonio

    2015-01-01

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing. PMID:25678986

  19. Molecular characterization and functions of zebrafish ABCC2 in cellular efflux of heavy metals.

    PubMed

    Long, Yong; Li, Qing; Zhong, Shan; Wang, Youhui; Cui, Zongbin

    2011-05-01

    Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5μM mercury or 5μM lead. Moreover, exposure to 0.125-1μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals.

  20. Host-Pathogen Interactions Made Transparent with the Zebrafish Model

    PubMed Central

    Meijer, Annemarie H; Spaink, Herman P

    2011-01-01

    The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening. PMID:21366518

  1. Phenylthiourea disrupts thyroid function in developing zebrafish.

    PubMed

    Elsalini, Osama A; Rohr, Klaus B

    2003-01-01

    Thyroid hormone (T4) can be detected in thyroid follicles in wild-type zebrafish larvae from 3 days of development, when the thyroid has differentiated. In contrast, embryos or larvae treated with goitrogens (substances such as methimazole, potassium percholorate, and 6-n-propyl-2-thiouracil) are devoid of thyroid hormone immunoreactivity. Phenythiourea (PTurea; also commonly known as PTU) is widely used in zebrafish research to suppress pigmentation in developing embryos/fry. PTurea contains a thiocarbamide group that is responsible for goitrogenic activity in methimazole and 6-n-propyl-2-thiouracil. In the present study, we show that commonly used doses of 0.003% PTurea abolish T4 immunoreactivity of the thyroid follicles of zebrafish larvae. As development of the thyroid gland is not affected, these data suggest that PTurea blocks thyroid hormone production. Like other goitrogens, PTurea causes delayed hatching, retardation and malformation of embryos or larvae with increasing doses. At doses of 0.003% PTurea, however, toxic side effects seem to be at a minimum, and the maternal contribution of the hormone might compensate for compromised thyroid function during the first days of development.

  2. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    PubMed

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.

  3. Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension

    PubMed Central

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-01-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. PMID:21305690

  4. Imaging and 3D reconstruction of cerebrovascular structures in embryonic zebrafish.

    PubMed

    Ethell, Douglas W; Cameron, D Joshua

    2014-04-22

    Zebrafish are a powerful tool to study developmental biology and pathology in vivo. The small size and relative transparency of zebrafish embryos make them particularly useful for the visual examination of processes such as heart and vascular development. In several recent studies transgenic zebrafish that express EGFP in vascular endothelial cells were used to image and analyze complex vascular networks in the brain and retina, using confocal microscopy. Descriptions are provided to prepare, treat and image zebrafish embryos that express enhanced green fluorescent protein (EGFP), and then generate comprehensive 3D renderings of the cerebrovascular system. Protocols include the treatment of embryos, confocal imaging, and fixation protocols that preserve EGFP fluorescence. Further, useful tips on obtaining high-quality images of cerebrovascular structures, such as removal the eye without damaging nearby neural tissue are provided. Potential pitfalls with confocal imaging are discussed, along with the steps necessary to generate 3D reconstructions from confocal image stacks using freely available open source software.

  5. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases

    PubMed Central

    Bragato, Cinzia; Gaudenzi, Germano; Blasevich, Flavia; Pavesi, Giulio; Maggi, Lorenzo; Giunta, Michele; Cotelli, Franco; Mora, Marina

    2016-01-01

    Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo. PMID:26842864

  6. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  7. Cadmium affects retinogenesis during zebrafish embryonic development

    SciTech Connect

    Hen Chow, Elly Suk; Yu Hui, Michelle Nga; Cheng, Chi Wa; Cheng, Shuk Han

    2009-02-15

    Ocular malformations are commonly observed in embryos of aquatic species after exposure to toxicants. Using zebrafish embryos as the model organism, we showed that cadmium exposure from sphere stage (4 hpf) to end of segmentation stage (24 hpf) induced microphthalmia in cadmium-treated embryos. Embryos with eye defects were then assessed for visual abilities. Cadmium-exposed embryos were behaviorally blind, showing hyperpigmentation and loss of camouflage response to light. We investigated the cellular basis of the formation of the small eyes phenotype and the induction of blindness by studying retina development and retinotectal projections. Retinal progenitors were found in cadmium-treated embryos albeit in smaller numbers. The number of retinal ganglion cells (RGC), the first class of retinal cells to differentiate during retinogenesis, was reduced, while photoreceptor cells, the last batch of retinal neurons to differentiate, were absent. Cadmium also affected the propagation of neurons in neurogenic waves. The neurons remained in the ventronasal area and failed to spread across the retina. Drastically reduced RGC axons and disrupted optic stalk showed that the optic nerves did not extend from the retina beyond the chiasm into the tectum. Our data suggested that impairment in neuronal differentiation of the retina, disruption in RGC axon formation and absence of cone photoreceptors were the causes of microphthalmia and visual impairment in cadmium-treated embryos.

  8. Toxicity of silver nanoparticles in zebrafish models.

    PubMed

    Asharani, P V; Lian Wu, Yi; Gong, Zhiyuan; Valiyaveettil, Suresh

    2008-06-25

    This study was initiated to enhance our insight on the health and environmental impact of silver nanoparticles (Ag-np). Using starch and bovine serum albumin (BSA) as capping agents, silver nanoparticles were synthesized to study their deleterious effects and distribution pattern in zebrafish embryos (Danio rerio). Toxicological endpoints like mortality, hatching, pericardial edema and heart rate were recorded. A concentration-dependent increase in mortality and hatching delay was observed in Ag-np treated embryos. Additionally, nanoparticle treatments resulted in concentration-dependent toxicity, typified by phenotypes that had abnormal body axes, twisted notochord, slow blood flow, pericardial edema and cardiac arrhythmia. Ag(+) ions and stabilizing agents showed no significant defects in developing embryos. Transmission electron microscopy (TEM) of the embryos demonstrated that nanoparticles were distributed in the brain, heart, yolk and blood of embryos as evident from the electron-dispersive x-ray analysis (EDS). Furthermore, the acridine orange staining showed an increased apoptosis in Ag-np treated embryos. These results suggest that silver nanoparticles induce a dose-dependent toxicity in embryos, which hinders normal development.

  9. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system.

    PubMed

    Schmidt, Hayden R; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The ki values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, kr, in both zebrafish and human AChE. However, differences between the Kox and k2 constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, Ki and αKi, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure.

  10. Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage

    EPA Science Inventory

    The zebrafish (Danio rerio) embryo has been increasingly used as a model to evaluate toxicity of manufactured nanomaterials. Many studies indicate that the embryo chorion may protect animals from toxic effects of nanomaterials, suggesting that post-hatch life stages may be more s...

  11. Life-stage dependent response in zebrafish (Danio rerio) to phototoxicity of TiO2 nanoparticles

    EPA Science Inventory

    The Zebrafish, and especially its embryo stage, has been increasingly used as a model to evaluate toxicity of manufactured nanomaterials. However, many studies have indicated that the chorion may protect developing embroys from the toxic effects of nanomaterials, suggesting that ...

  12. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  13. Molecular analysis and heavy metal detoxification of ABCC1/MRP1 in zebrafish.

    PubMed

    Long, Yong; Li, Qing; Cui, Zongbin

    2011-03-01

    ABCC1/MRP1 belongs to the ATP-binding cassette superfamily and its elevated expression is closely associated with the multidrug resistance of various tumor cells. In normal tissues, ABCC1 confers resistance to a wide variety of xenobiotics and toxicants, demonstrating its important roles in tissue defense. Here, we report the cloning and functional characterization of abcc1 gene in zebrafish. This gene is localized on zebrafish chromosome 3 and contains a 4,557 bp open-reading frame. The deduced polypeptide is composed of 1,518 amino acids, which shares 70% identity with human ABCC1. Phylogenetic analysis revealed that ABCC1 proteins from thirteen vertebrate species are highly conserved during evolution. Transcriptional expression of zebrafish abcc1 gene in developing embryos was examined by whole-mount in situ hybridization and real-time PCR. Transcripts of zebrafish abcc1 gene were detectable in four-cell stage embryos, indicating that this gene is maternally expressed. ABCC1 mRNAs were ubiquitously distributed in embryos before 12 h post-fertilization (hpf) and mainly localized in eyes and brain from 24 to 72 hpf, and in gills from 96 to 120 hpf. In addition, zebrafish abcc1 gene was highly expressed in 1-hpf embryos and detected in all adult tissues examined, with highest expression in testis and lowest in heart and liver. Exposure of ZF4 cells and embryos to CdCl(2)·2.5H(2)O, HgCl(2), Pb(NO(3))(2), or Na(3)AsO(4)·12H(2)O significantly induced transcriptional expression of abcc1 gene. Furthermore, overexpression of abcc1 improved the survival rates of embryos exposed to Cd, Hg or As, while overexpression of a abcc1 mutant (ABCC1-G1420D) sensitized zebrafish embryos to toxic metals. These data indicate that zebrafish ABCC1 has crucial roles in heavy metals detoxification.

  14. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  15. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  16. Targeted Mutagenesis in Zebrafish Using Customized Zinc Finger Nucleases

    PubMed Central

    Foley, Jonathan E.; Maeder, Morgan L.; Pearlberg, Joseph; Joung, J. Keith; Peterson, Randall T.; Yeh, Jing-Ruey J.

    2009-01-01

    Zebrafish mutants have traditionally been obtained using random mutagenesis or retroviral insertions, methods that cannot be targeted to a specific gene and require laborious gene mapping and sequencing. Recently, we and others have shown that customized zinc finger nucleases (ZFNs) can introduce targeted frame-shift mutations with high efficiency, thereby enabling directed creation of zebrafish gene mutations. Here we describe a detailed protocol for constructing ZFN expression vectors, for generating and introducing ZFN-encoding RNAs into zebrafish embryos, and for identifying ZFN-generated mutations in targeted genomic sites. All of our vectors and methods are compatible with previously described Zinc Finger Consortium reagents for constructing engineered zinc finger arrays. Using these methods, zebrafish founders carrying targeted mutations can be identified within four months. PMID:20010934

  17. The genetics of ocular disorders: insights from the zebrafish.

    PubMed

    Morris, Ann C

    2011-09-01

    Proper formation of the vertebrate eye requires a precisely coordinated sequence of morphogenetic events that integrate the developmental contributions of the skin ectoderm, neuroectoderm, and head mesenchyme. Disruptions in this process result in ocular malformations or retinal degeneration and can cause significant visual impairment. The zebrafish is an excellent vertebrate model for the study of eye development and disease due to the transparency of the embryo, its ex utero development, and its amenability to forward genetic screens. This review will present an overview of the genetic methodologies utilized in the zebrafish, a description of several zebrafish models of congenital ocular diseases, and a discussion of the utility of the zebrafish for assessing the pathogenicity of candidate disease alleles.

  18. Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.

    PubMed

    Liu, Chunhai; Khazanehdari, Kamal A; Baskar, Vijaya; Saleem, Shazia; Kinne, Joerg; Wernery, Ulrich; Chang, Il-Kuk

    2012-04-01

    The present study aimed to investigate the differentiation of chicken (Gallus gallus domesticus) primordial germ cells (PGCs) in duck (Anas domesticus) gonads. Chimeric ducks were produced by transferring chicken PGCs into duck embryos. Transfer of 200 and 400 PGCs resulted in the detection of a total number of 63.0 ± 54.3 and 116.8 ± 47.1 chicken PGCs in the gonads of 7-day-old duck embryos, respectively. The chimeric rate of ducks prior to hatching was 52.9% and 90.9%, respectively. Chicken germ cells were assessed in the gonad of chimeric ducks with chicken-specific DNA probes. Chicken spermatogonia were detected in the seminiferous tubules of duck testis. Chicken oogonia, primitive and primary follicles, and chicken-derived oocytes were also found in the ovaries of chimeric ducks, indicating that chicken PGCs are able to migrate, proliferate, and differentiate in duck ovaries and participate in the progression of duck ovarian folliculogenesis. Chicken DNA was detected using PCR from the semen of chimeric ducks. A total number of 1057 chicken eggs were laid by Barred Rock hens after they were inseminated with chimeric duck semen, of which four chicken offspring hatched and one chicken embryo did not hatch. Female chimeric ducks were inseminated with chicken semen; however, no fertile eggs were obtained. In conclusion, these results demonstrated that chicken PGCs could interact with duck germinal epithelium and complete spermatogenesis and eventually give rise to functional sperm. The PGC-mediated germline chimera technology may provide a novel system for conserving endangered avian species.

  19. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  20. Quaternary and tertiary aldoxime antidotes for organophosphate exposure in a zebrafish model system

    SciTech Connect

    Schmidt, Hayden R.; Radić, Zoran; Taylor, Palmer; Fradinger, Erica A.

    2015-04-15

    The zebrafish is rapidly becoming an important model system for screening of new therapeutics. Here we evaluated the zebrafish as a potential pharmacological model for screening novel oxime antidotes to organophosphate (OP)-inhibited acetylcholinesterase (AChE). The k{sub i} values determined for chlorpyrifos oxon (CPO) and dichlorvos (DDVP) showed that CPO was a more potent inhibitor of both human and zebrafish AChE, but overall zebrafish AChE was less sensitive to OP inhibition. In contrast, aldoxime antidotes, the quaternary ammonium 2-PAM and tertiary amine RS-194B, showed generally similar overall reactivation kinetics, k{sub r}, in both zebrafish and human AChE. However, differences between the K{sub ox} and k{sub 2} constants suggest that zebrafish AChE associates more tightly with oximes, but has a slower maximal reactivation rate than human AChE. Homology modeling suggests that these kinetic differences result from divergences in the amino acids lining the entrance to the active site gorge. Although 2-PAM had the more favorable in vitro reactivation kinetics, RS-194B was more effective antidote in vivo. In intact zebrafish embryos, antidotal treatment with RS-194B rescued embryos from OP toxicity, whereas 2-PAM had no effect. Dechorionation of the embryos prior to antidotal treatment allowed both 2-PAM and RS-194B to rescue zebrafish embryos from OP toxicity. Interestingly, RS-194B and 2-PAM alone increased cholinergic motor activity in dechorionated embryos possibly due to the reversible inhibition kinetics, K{sub i} and αK{sub i}, of the oximes. Together these results demonstrate that the zebrafish at various developmental stages provides an excellent model for investigating membrane penetrant antidotes to OP exposure. - Highlights: • Zebrafish AChE shares significant structural similarities with human AChE. • OP-inhibited zebrafish and human AChE exhibit similar reactivation kinetics. • The zebrafish chorion is permeable to BBB penetrant and not

  1. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish

    SciTech Connect

    Christen, Verena; Capelle, Martinus; Fent, Karl

    2013-10-15

    Silver nanoparticles (AgNPs) find increasing applications, and therefore humans and the environment are increasingly exposed to them. However, potential toxicological implications are not sufficiently known. Here we investigate effects of AgNPs (average size 120 nm) on zebrafish in vitro and in vivo, and compare them to human hepatoma cells (Huh7). AgNPs are incorporated in zebrafish liver cells (ZFL) and Huh7, and in zebrafish embryos. In ZFL cells AgNPs lead to induction of reactive oxygen species (ROS), endoplasmatic reticulum (ER) stress response, and TNF-α. Transcriptional alterations also occur in pro-apoptotic genes p53 and Bax. The transcriptional profile differed in ZFL and Huh7 cells. In ZFL cells, the ER stress marker BiP is induced, concomitant with the ER stress marker ATF-6 and spliced XBP-1 after 6 h and 24 h exposure to 0.5 g/L and 0.05 g/L AgNPs, respectively. This indicates the induction of different pathways of the ER stress response. Moreover, AgNPs induce TNF-α. In zebrafish embryos exposed to 0.01, 0.1, 1 and 5 mg/L AgNPs hatching was affected and morphological defects occurred at high concentrations. ER stress related gene transcripts BiP and Synv are significantly up-regulated after 24 h at 0.1 and 5 mg/L AgNPs. Furthermore, transcriptional alterations occurred in the pro-apoptotic genes Noxa and p21. The ER stress response was strong in ZFL cells and occurred in zebrafish embryos as well. Our data demonstrate for the first time that AgNPs lead to induction of ER stress in zebrafish. The induction of ER stress can have several consequences including the activation of apoptotic and inflammatory pathways. - Highlights: • Effects of silver nanoparticles (120 nm AgNPs) are investigated in zebrafish. • AgNPs induce all ER stress reponses in vitro in zebrafish liver cells. • AgNPs induce weak ER stress in zebrafish embryos. • AgNPs induce oxidative stress and transcripts of pro-apoptosis genes.

  2. Mechanisms of tolerance induced via mixed chimerism.

    PubMed

    Sykes, Megan

    2007-05-01

    Mixed hematopoietic chimerism provides a powerful means of inducing robust, donor-specific tolerance. In this article, the minimal requirements for achieving mixed chimerism, the development of new reagents that promote its achievement, and the mechanisms by which peripheral and intrathymic tolerance are achieved via mixed chimerism are discussed. An emerging understanding of these mechanisms, along with the development of new immunosuppressive reagents, is allowing advancement toward clinical application of this approach.

  3. Zygotes segregate entire parental genomes in distinct blastomere lineages causing cleavage-stage chimerism and mixoploidy

    PubMed Central

    Destouni, Aspasia; Zamani Esteki, Masoud; Catteeuw, Maaike; Tšuiko, Olga; Dimitriadou, Eftychia; Smits, Katrien; Kurg, Ants; Salumets, Andres; Van Soom, Ann; Voet, Thierry; Vermeesch, Joris R.

    2016-01-01

    Dramatic genome dynamics, such as chromosome instability, contribute to the remarkable genomic heterogeneity among the blastomeres comprising a single embryo during human preimplantation development. This heterogeneity, when compatible with life, manifests as constitutional mosaicism, chimerism, and mixoploidy in live-born individuals. Chimerism and mixoploidy are defined by the presence of cell lineages with different parental genomes or different ploidy states in a single individual, respectively. Our knowledge of their mechanistic origin results from indirect observations, often when the cell lineages have been subject to rigorous selective pressure during development. Here, we applied haplarithmisis to infer the haplotypes and the copy number of parental genomes in 116 single blastomeres comprising entire preimplantation bovine embryos (n = 23) following in vitro fertilization. We not only demonstrate that chromosome instability is conserved between bovine and human cleavage embryos, but we also discovered that zygotes can spontaneously segregate entire parental genomes into different cell lineages during the first post-zygotic cleavage division. Parental genome segregation was not exclusively triggered by abnormal fertilizations leading to triploid zygotes, but also normally fertilized zygotes can spontaneously segregate entire parental genomes into different cell lineages during cleavage of the zygote. We coin the term “heterogoneic division” to indicate the events leading to noncanonical zygotic cytokinesis, segregating the parental genomes into distinct cell lineages. Persistence of those cell lines during development is a likely cause of chimerism and mixoploidy in mammals. PMID:27197242

  4. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  5. Novel use of zebrafish as a vertebrate model to screen radiation protectors and sensitizers

    SciTech Connect

    McAleer, Mary Frances . E-mail: adam.dicker@mail.tju.edu; Davidson, Christian; Davidson, William Robert; Yentzer, Brad; Farber, Steven A.; Rodeck, Ulrich; Dicker, Adam P.

    2005-01-01

    Purpose: Zebrafish (Danio rerio) embryos provide a unique vertebrate model to screen therapeutic agents easily and rapidly because of their relatively close genetic relationship to humans, ready abundance and accessibility, short embryonal development, and optical clarity. To validate zebrafish embryos as a screen for radiation modifiers, we evaluated the effects of ionizing radiation in combination with a known radioprotector (free radical scavenger Amifostine) or radiosensitizing agent (tyrosine kinase inhibitor AG1478). Methods and materials: Viable zebrafish embryos were exposed to 0-10 Gy single-fraction 250 kVp X-rays with or without either Amifostine (0-4 mM) or AG1478 (0-10 {mu}M) at defined developmental stages from 1-24 h postfertilization (hpf). Embryos were examined for morphologic abnormalities and viability until 144 hpf. Results: Radiation alone produced a time- and dose-dependent perturbation of normal embryonic development and survival with maximal sensitivity at doses {>=}4 Gy delivered before 4 hpf. Amifostine markedly attenuated this effect, whereas AG1478 enhanced teratogenicity and lethality, particularly at therapeutically relevant (2-6 Gy) radiation doses. Conclusions: Collectively, these data validate the use of zebrafish as a vertebrate model to assess the effect of radiation alone or with radiation response modulators. Zebrafish embryos may thus provide a rapid, facile system to screen novel agents ultimately intended for human use in the context of therapeutic or accidental radiation exposure.

  6. Microfluidic EmbryoSort technology: towards in flow analysis, sorting and dispensing of individual vertebrate embryos

    NASA Astrophysics Data System (ADS)

    Fuad, Nurul M.; Wlodkowic, Donald

    2013-12-01

    The demand to reduce the numbers of laboratory animals has facilitated the emergence of surrogate models such as tests performed on zebrafish (Danio rerio) or African clawed frog's (Xenopus levis) eggs, embryos and larvae. Those two model organisms are becoming increasingly popular replacements to current adult animal testing in toxicology, ecotoxicology and also in drug discovery. Zebrafish eggs and embryos are particularly attractive for toxicological analysis due their size (diameter 1.6 mm), optical transparency, large numbers generated per fish and very straightforward husbandry. The current bottleneck in using zebrafish embryos for screening purposes is, however, a tedious manual evaluation to confirm the fertilization status and subsequent dispensing of single developing embryos to multitier plates to perform toxicity analysis. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present a proofof- concept design of a continuous flow embryo sorter capable of analyzing, sorting and dispensing objects ranging in size from 1.5 - 2.5 mm. The prototypes were fabricated in polymethyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining. The application of additive manufacturing processes to prototype Lab-on-a-Chip sorters using both fused deposition manufacturing (FDM) and stereolithography (SLA) were also explored. The operation of the device was based on a revolving receptacle capable of receiving, holding and positioning single fish embryos for both interrogation and subsequent sorting. The actuation of the revolving receptacle was performed using a DC motor and/or microservo motor. The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers.

  7. Chromatin modification in zebrafish development.

    PubMed

    Cayuso Mas, Jordi; Noël, Emily S; Ober, Elke A

    2011-01-01

    The generation of complex organisms requires that an initial population of cells with identical gene expression profiles can adopt different cell fates during development by progressively diverging transcriptional programs. These programs depend on the binding of transcritional regulators to specific genomic sites, which in turn is controlled by modifications of the chromatin. Chromatin modifications may occur directly upon DNA by methylation of specific nucleotides, or may involve post-translational modification of histones. Local regulation of histone post-translational modifications regionalizes the genome into euchromatic regions, which are more accessible to DNA-binding factors, and condensed heterochromatic regions, inhibiting the binding of such factors. In addition, these modifications may be required in a genome-wide fashion for processes such as DNA replication or chromosome condensation. From an embryologist's point of view chromatin modifications are intensively studied in the context of imprinting and have more recently received increasing attention in understanding the basis of pluripotency and cellular differentiation. Here, we describe recently uncovered roles of chromatin modifications in zebrafish development and regeneration, as well as available resources and commonly used techniques. We provide a general introduction into chromatin modifications and their respective functions with a focus on gene transcription, as well as key aspects of their roles in the early zebrafish embryo, neural development, formation of the digestive system and tissue regeneration.

  8. Vertebrate embryos as tools for anti-angiogenic drug screening and function.

    PubMed

    Beedie, Shaunna L; Diamond, Alexandra J; Fraga, Lucas Rosa; Figg, William D; Vargesson, Neil

    2016-11-22

    The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.

  9. Regulation of hypocretin (orexin) expression in embryonic zebrafish.

    PubMed

    Faraco, Juliette H; Appelbaum, Lior; Marin, Wilfredo; Gaus, Stephanie E; Mourrain, Philippe; Mignot, Emmanuel

    2006-10-06

    Hypocretins/orexins are neuropeptides involved in the regulation of sleep and energy balance in mammals. Conservation of gene sequence, hypothalamic localization of cell bodies, and projection patterns in adult zebrafish suggest that the architecture and function of the hypocretin system are conserved in fish. We report on the complete genomic structure of the zebrafish and Tetraodon hypocretin genes and the complete predicted hypocretin protein sequences from five teleosts. Using whole mount in situ hybridization, we have traced the development of hypocretin cells in zebrafish from onset of expression at 22 h post-fertilization through the first week of development. Promoter elements of similar size from zebrafish and Tetraodon were capable of driving efficient and specific expression of enhanced green fluorescent protein in developing zebrafish embryos, thus defining a minimal promoter region able to accurately mimic the native hypocretin pattern. This enhanced green fluorescent protein expression also revealed a complex pattern of projections within the hypothalamus, to the midbrain, and to the spinal cord. To further analyze the promoter, a series of deletion and substitution constructs were injected into embryos, and resulting promoter activity was monitored in the first week of development. A critical region of 250 base pairs was identified containing a core 13-base pair element essential for hypocretin expression.

  10. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  11. Myristoylation profiling in human cells and zebrafish

    PubMed Central

    Broncel, Malgorzata; Serwa, Remigiusz A; Ciepla, Paulina; Krause, Eberhard; Dallman, Margaret J.; Magee, Anthony I.; Tate, Edward W.

    2015-01-01

    Human cells (HEK 293, HeLa, MCF-7) and zebrafish embryos were metabolically tagged with an alkynyl myristic acid probe, lysed with an SDS buffer and tagged proteomes ligated to multifunctional capture reagents via copper-catalyzed alkyne azide cycloaddition (CuAAC). This allowed for affinity enrichment and high-confidence identification, by delivering direct MS/MS evidence for the modification site, of 87 and 61 co-translationally myristoylated proteins in human cells and zebrafish, respectively. The data have been deposited to ProteomeXchange Consortium (Vizcaíno et al., 2014 Nat. Biotechnol., 32, 223–6) (PXD001863 and PXD001876) and are described in detail in Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic protein lipidation during vertebrate development׳ by Broncel et al., Angew. Chem. Int. Ed. PMID:26217820

  12. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  13. Cadherin-6 Function in Zebrafish Retinal Development

    PubMed Central

    Liu, Qin; Londraville, Richard; Marrs, James A.; Wilson, Amy L.; Mbimba, Thomas; Murakami, Tohru; Kubota, Fumitaka; Zheng, Weiping; Fatkins, David G.

    2008-01-01

    Cadherin cell adhesion molecules play crucial roles in vertebrate development including the development of the visual system. Most studies have focused on examining functions of classical type I cadherins (e.g. cadherin-2) in visual system development. There is little information on the function of classical type II cadherins (e.g. cadherin-6) in the development of the vertebrate visual system. To gain insight into cadherin-6 role in the formation of the retina, we analyzed differentiation of retinal ganglion cells, amacrine cells and photoreceptors in zebrafish embryos injected with cadherin-6 specific antisense morpholino oligonucleotides. Differentiation of the retinal neurons in cadherin-6 knockdown embryos (cdh6 morphants) was analyzed using multiple markers. We found that expression of transcription factors important for retinal development was greatly reduced, and expression of Notch-Delta genes and proneural gene ath5 was altered in the cdh6 morphant retina. The retinal lamination was present in the morphants, although the morphant eyes were significantly smaller than control embryos due mainly to decreased cell proliferation. Differentiation of the retinal ganglion cells, amacrine cells and photoreceptors was severely disrupted in the cdh6 morphants due to a significant delay in neuronal differentiation. Our results suggest that cadherin-6 plays an important role in the normal formation of the zebrafish retina. PMID:18506771

  14. BDE 49 and developmental toxicity in zebrafish

    PubMed Central

    McClain, Valerie; Stapleton, Heather M.; Gallagher, Evan

    2011-01-01

    The polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants. Human health concerns of these agents have largely centered upon their potential to elicit reproductive and developmental effects. Of the various congeners, BDE 49 (2,2’,4,5’-tetrabromodiphenyl ether) has been poorly studied, despite the fact that it is often detected in the tissues of fish and wildlife species. Furthermore, we have previously shown that BDE 49 is a metabolic debromination product of BDE 99 hepatic metabolism in salmon, carp and trout, underscoring the need for a better understanding of biological effects. In the current study, we investigated the developmental toxicity of BDE 49 using the zebrafish (Danio rerio) embryo larval model. Embryo and larval zebrafish were exposed to BDE 49 at either 5 hours post fertilization (hpf) or 24 hpf and monitored for developmental and neurotoxicity. Exposure to BDE 49 at concentrations of 4 µM- 32 µM caused a dose-dependent loss in survivorship at 6 days post fertilization (dpf). Morphological impairments were observed prior to the onset of mortality, the most striking of which included severe dorsal curvatures of the tail. The incidence of dorsal tail curvatures was dose and time dependent. Exposure to BDE 49 caused cardiac toxicity as evidenced by a significant reduction in zebrafish heart rates at 6 dpf but not earlier, suggesting that cardiac toxicity was non-specific and associated with physiological stress. Neurobehavioral injury from BDE 49 was evidenced by an impairment of touch-escape responses observed at 5 dpf. Our results indicate that BDE 49 is a developmental toxicant in larval zebrafish that can cause morphological abnormalities and adversely affect neurobehavior. The observed toxicities from BDE 49 were similar in scope to those previously reported for the more common tetrabrominated congener, BDE 47, and also for other lower brominated PBDEs, suggest that these compounds may share similarities in risk to

  15. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method.

    PubMed

    Kondoh, G; Yamamoto, Y; Yoshida, K; Suzuki, Y; Osuka, S; Nakano, Y; Morita, T; Takeda, J

    1999-05-13

    Production of germ-line competent chimeric mice from embryonic stem (ES) cells is an inevitable step in establishing gene-manipulated mouse lineages. A common method used for creating chimeric mice is the injection of ES cells into the blastocoelic cavity (blastocyst injection). The aggregation method is an alternative way to introduce ES cells to the host embryo which is less difficult than blastocyst injection. Here we re-examined the condition of embryo-ES cell coculture on the aggregation method and found improvement of germ-line competent chimeric production by a simple modification of the coculture medium. Moreover, R1 ES cell and its 10 gene-manipulated subclones were tested by this method. Although all ES cell clones showed good morphology and a normal karyotype, the efficiency of chimeric development and germ-line transmission varied among clones and were classified into three grades according to germ-line competency. In the first group (class A), both the incidence of chimera with high ES cell contribution and the rate of germ-line transmission were fairly high. Germ-line competent chimeras were obtained but with rather low efficiency in the second group (class B), while another group (class C) showed an absence of high ES cell-contributed chimeras and no germ-line transmission. These results suggest the usefulness of this modified aggregation method to predict the potency of ES cell clones for germ-line competency.

  16. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development

    PubMed Central

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A.; Pype, Casper; Van Peer, Els M.; Casteleyn, Christophe R.; Van Ginneken, Chris J.; Wilson, Joanna; Van Cruchten, Steven J.

    2017-01-01

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)—a group of drug-metabolizing enzymes—in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis. PMID:28117738

  17. Systemic Fluorescence Imaging of Zebrafish Glycans with Bioorthogonal Chemistry.

    PubMed

    Agarwal, Paresh; Beahm, Brendan J; Shieh, Peyton; Bertozzi, Carolyn R

    2015-09-21

    Vertebrate glycans constitute a large, important, and dynamic set of post-translational modifications that are notoriously difficult to manipulate and image. Although the chemical reporter strategy has been used in conjunction with bioorthogonal chemistry to image the external glycosylation state of live zebrafish and detect tumor-associated glycans in mice, the ability to image glycans systemically within a live organism has remained elusive. Here, we report a method that combines the metabolic incorporation of a cyclooctyne-functionalized sialic acid derivative with a ligation reaction of a fluorogenic tetrazine, allowing for the imaging of sialylated glycoconjugates within live zebrafish embryos.

  18. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment.

  19. Nicotine alters the expression of molecular markers of endocrine disruption in zebrafish.

    PubMed

    Kanungo, Jyotshna; Cuevas, Elvis; Guo, Xiaoqing; Lopez, Aida G; Ramirez-Lee, Manuel A; Trickler, William; Paule, Merle G; Ali, Syed F

    2012-09-27

    Nicotine, a drug of abuse, has been reported to have many adverse effects on the developing nervous system. In rodents, chronic nicotine exposure inhibits estrogen-mediated neuroprotection against cerebral ischemia in females suggesting that nicotine could disrupt endocrine targets. Zebrafish have been used as a model system for examining mechanisms underlying nicotinic effects on neuronal development. Here, using zebrafish embryos, we demonstrate that nicotine alters the expression of the validated endocrine disruption (ED) biomarkers, vitellogenin (vtg 1 and vtg 2) and cytochrome p450 aromatase (cyp19a1a and cyp19a1b) at the transcriptional level. Increased expression of three of these molecular markers (vtg 1, vtg 2 and cyp19a1b) in response to 17β-estradiol (E2) was more pronounced in 48hpf (hours post-fertilization) embryos than in the 24hpf embryos. While 24hpf embryos were non-responsive in this regard to 25μM nicotine, a similar exposure of the 48hpf embryos for 24h significantly down-regulated the expression of all four ED biomarker genes indicating that nicotine's anti-estrogenic effects are detectable in the 48hpf zebrafish embryos. These results provide direct molecular evidence that nicotine is an endocrine disruptor in zebrafish.

  20. Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture.

    PubMed

    Bueno, Maria A; Gomez, Arancha; Sepulveda, Federico; Seguí, José M; Testillano, Pilar S; Manzanera, José A; Risueño, Maria-Carmen

    2003-08-01

    Microspore-derived embryos produced from cork oak anther cultures after long-term incubations (up to 10-12 months) were analysed in order to determine the genetic variability and ploidy level stability, as well as morphology, developmental pattern and cellular organisation. Most of the embryos from long-term anther cultures were haploid (90.7%), corresponding to their microspore origin. The presence of a low percentage of diploid embryos (7.4%) was observed. Microsatellite analysis of haploid embryos, indicated different microspores origins of the same anther. In the diploid embryos, homozygosity for different alleles was detected from anther wall tissues, excluding the possibility of clonal origin. The maintenance of a high proportion of haploid embryos, in long-term anther cultures, is similar in percentage to that reported in embryos originating after 20 days of plating (Bueno et al. 1997). This suggests that no significant alterations in the ploidy level occurred during long incubations (up to 12 months). These results suggest that ploidy changes are rare in this in vitro system, and do not significantly increase during long-term cultures. Microscopical studies of the microspore embryos in various stages revealed a healthy and well developed anatomy with no aberrant or chimeric structures. The general morphology of embryos appearing at different times after plating, looked similar to that of earlier embryos, as well as the zygotic embryos, indicating that they represent high quality material for cork oak breeding.

  1. montalcino, a Zebrafish Model for Variegate Porphyria

    PubMed Central

    Dooley, Kimberly A.; Fraenkel, Paula G.; Langer, Nathaniel B.; Schmid, Bettina; Davidson, Alan J.; Weber, Gerhard; Chiang, Ken; Foott, Helen; Dwyer, Caitlin; Wingert, Rebecca A.; Zhou, Yi; Paw, Barry H.; Zon, Leonard I.

    2008-01-01

    Objective Inherited or acquired mutations in the heme biosynthetic pathway lead to a debilitating class of diseases collectively known as porphyrias, with symptoms that can include anemia, cutaneous photosensitivity, and neurovisceral dysfunction. In a genetic screen for hematopoietic mutants, we isolated a zebrafish mutant, montalcino (mno), which displays hypochromic anemia and porphyria. The objective of this study was to identify the defective gene and characterize the phenotype of the zebrafish mutant. Methods Genetic linkage analysis was utilized to identify the region harboring the mno mutation. Candidate gene analysis together with RT-PCR was utilized to identify the genetic mutation, which was confirmed via allele specific oligo hybridizations. Whole mount in situ hybridizations and 0-dianisidine staining were used to characterize the phenotype of the mno mutant. mRNA and morpholino microinjections were performed to phenocopy and/or rescue the mutant phenotype. Results Homozygous mno mutant embryos have a defect in the protoporphyrinogen oxidase (ppox) gene, which encodes the enzyme that catalyzes the oxidation of protoporphyrinogen. Homozygous mutant embryos are deficient in hemoglobin, and by 36 hpf are visibly anemic and porphyric. The hypochromic anemia of mno embryos was partially rescued by human ppox, providing evidence for the conservation of function between human and zebrafish ppox. Conclusion In humans, mutations in ppox result in variegate porphyria. At present, effective treatment for acute attacks requires the administration intravenous hemin and/or glucose. Thus, mno represents a powerful model for investigation, and a tool for future screens aimed at identifying chemical modifiers of variegate porphyria. PMID:18550261

  2. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    EPA Pesticide Factsheets

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  3. Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish.

    PubMed

    Li, Mengmeng; Wang, Xuejie; Zhu, Jingai; Zhu, Shasha; Hu, Xiaoshan; Zhu, Chun; Guo, Xirong; Yu, Zhangbin; Han, Shuping

    2014-12-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.

  4. Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development

    PubMed Central

    Liu, Qin; Dalman, Mark; Chen, Yun; Akhter, Mashal; Brahmandam, Sravya; Patel, Yesha; Lowe, Josef; Thakkar, Mitesh; Gregory, Akil-Vuai; Phelps, Daryllanae; Riley, Caitlin; Londraville, Richard L.

    2012-01-01

    Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day