Wen, Dong Xin; Yang, Ning; Yang, Man Yuan
2016-08-01
The aim of the study was to explore the effects of re-vegetation on soil microbial functio-nal diversity in purple soils at different re-vegetation stages on sloping-land in Hengyang, Hunan Province, China. By using the spatial series to replace time series, four typical sampling plots, grass (Setaria viridi, GS), frutex and grass (Lagerstroemia indica-Setaria viridi, FG), frutex (Vitex negundo var. cannabifolia+Robinia pseudoacacia, FX), as well as arbor and frutex (Liquidamdar formosana+Melia azedarach-Vitex negundo var. cannabifolia, AF) community were selected to study the soil microbial functional diversity by using the Biolog-ECO micro-plate technique. The four communities in purple soils on sloping-land were similar and denoted four different re-vegetation stages. The results showed that the soil microbial metabolic activity increased after re-vegetation significantly, and the average well color development (AWCD) which represented soil microbial activity and functional diversity followed the order of AF community>FX community>FG community>GS community at different re-vegetation stages, and followed the order of 0-10 cm >10-20 cm in different soil layers. Principal component analysis (PCA) identified that FG and FX community had similar C sources utilization mode and metabolic function, and GS and AF community were diffe-rent. The carbohydrates, amino acids, intermediate metabolites, and secondary metabolites were the main carbon sources separating the two principal component factors. The Shannon species richness index (H), Shannon evenness index (E), Simpson dominance index (D), McIntosh index (U) at four re-vegetation stages were the highest in AF community, the second in FG and FX community, and the lowest in GS community. The results of correlation analysis indicated that the content of soil water content (SWC), soil total organic carbon (STOC), total nitrogen (TN), total phospho-rus (TP) and available phosphorus (AP) had important influence on the soil microbial metabolic function and functional diversity indices. There existed significant correlation between the activities of urease (URE), alk-phosphatase (APE), invertase (INV), catalase (CAT) and the soil microbial metabolic function and functional diversity indices. All the results indicated that re-vegetation could enhance the soil microbial metabolic function, which was beneficial to the reproduction of soil micro-organisms, thereby promoting an increase of soil carbon source utilization intensity.
DOT National Transportation Integrated Search
2012-03-01
"Re-vegetation strategies and programs for highway rights of way in both rural and urban areas are an importatn component of any : highway construction project. Vegetation is ued to stabilize soils to prevent sheet and gully erosion and to help in so...
NASA Astrophysics Data System (ADS)
Tuo, D.; Gao, G.; Fu, B.
2017-12-01
Precipitation is one of the most important limit factor affect soil organic carbon (SOC) and total nitrogen (TN) following re-vegetation; however, the effect of precipitation on the C and N cycling in deep soils is poorly understood. This study was designed to measure SOC and TN stocks and C/N ratio to a depth of 300 cm following re-vegetation along a precipitation gradient (280 to 540 mm yr-1) on the Loess Plateau of China. The results showed that the relationship of soil C-N coupling after cropland abandoned was related to mean annual precipitation (MAP) and soil depth. SOC and TN stocks in the shallow layers of 0-100 cm were 3.8 and 0.41 kg m-2, respectively, and that in the deep layers of 100-300 cm can represent about 62.7-72.5% and 60.2-88.7% to a depth of 0-300 cm, respectively. Positive linearly relationships were obtained between MAP and SOC and TN stocks at most soil layers of 0-300 cm (p < 0.05). The relationships between the MAP and changes of SOC and TN stocks following short-term restoration were highly dependent on soil depth. Changes of SOC and TN stocks after re-vegetation in shallow soils (0-100 cm) were gaining at regional scale, but in deep soils (100-300 cm), which were losing at wetter sites (MAP > 400 mm). The initial soil C loss may be attributed to greater C decomposition and lower belowground C input. The change of C/N ratio had significantly negatively correlation with MAP in each soil depth, except for 0-20 cm, indicating the effect of soil N on C accumulation is higher at drier areas rather than wetter sites. Based on the investigated factors, precipitation, soil water and clay had a dominant control over the spatial distribution of SOC, TN and C/N ratio to a 300 cm soil depth. This information is helpful our understanding of the dynamics of soil C and N of deep soils following re-vegetation in the semiarid regions.
Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011
NASA Astrophysics Data System (ADS)
Liu, Y. B.; Zhou, Y. L.; Ju, W. M.; Wang, S. Q.; Wu, X. C.; He, M. Z.
2013-11-01
In recent years, droughts have frequently hit China's terrestrial ecosystems. How these droughts affected carbon sequestration by China's terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China for the period from 2000 to 2011. Different categories of droughts, as indicated by a standard precipitation index (SPI), extensively hit terrestrial ecosystems in China, particularly in 2001, 2006, 2009 and 2011. The national total NEP exhibited a slight decline of -11.3 Tg C yr-2 during the study period, mainly due to large reductions of NEP in typical drought-hit years 2001, 2006, 2009 and 2011, ranging from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with corresponding annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. In drought years, the reductions of NEP might be caused by a larger decrease in gross primary productivity (GPP) than in respiration (RE) (2001 and 2011), a decrease in GPP and an increase in RE (2009), or a larger increase in RE than in GPP (2006). Droughts had lagged effects of up to 3-6 months on NEP due to different reactions of GPP and RE to droughts. In east humid and warm parts of China, droughts have predominant and short-term lagged influences on NEP. In western cold and arid regions, the effects of droughts on NEP were relatively weaker and might last for a longer period of time.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0-10, 10-20, and 20-40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0-10 cm soil layer to 20-40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0-10 and 10-20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20-40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province.
Yang, Ning; Zou, Dongsheng; Yang, Manyuan; Lin, Zhonggui
2016-01-01
Crust restoration is increasingly being done but we lack quantitative information on soil improvements. The study aimed to elucidate the dynamics involving soil microbial biomass carbon and soil dissolved organic carbon in the re-vegetation chronosequences of a hillslope land with purple soil in Hengyang, Hunan Province. The soil can cause serious disasters with both soil erosion and seasonal drought, and also becomes a typical representative of ecological disaster area in South China. Using the space-for-time method, we selected six typical sampling plots, designated as follows: grassplot community, meadow thicket community, frutex community, frutex and arbor community, arbor community, and top-level vegetation community. These plots were established to analyze the changes in soil microbial biomass carbon, soil microbial quotien, dissolved organic carbon, dissolved organic carbon/soil organic carbon, and soil basal respiration in 0–10, 10–20, and 20–40 cm soil layers. The relationships of these parameters with soils physic-chemical properties were also determined. The ecological environment of the 6 plant communities is similar and typical; they denoted six different successive stages of restoration on hillslopes with purple soils in Hengyang, Hunan Province. The soil microbial biomass carbon and soil basal respiration contents decreased with increasing soil depth but increased with re-vegetation. By contrast, soil microbial quotient increased with increasing soil depth and re-vegetation. From 0–10 cm soil layer to 20–40 cm soil layer, the dissolved organic carbon content decreased in different re-vegetation stages. In the process of re-vegetation, the dissolved organic carbon content increased in the 0–10 and 10–20 cm soil layers, whereas the dissolved organic carbon content decreased after an initial increase in the 20–40 cm soil layers. Meanwhile, dissolved organic carbon/soil organic carbon increased with increasing soil depth but decreased with re-vegetation. Significant correlations existed among soil microbial biomass carbon, soil microbial quotient, dissolved organic carbon, soil basal respiration and soil physic-chemical properties associated with soil fertility. The results showed that re-vegetation was conducive to the soil quality improvement and the accumulation of soil organic carbon pool of the hillslope land with purple soil in Hengyang, Hunan Province. PMID:27977678
Recent ecological transitions in China: greening, browning, and influential factors
NASA Astrophysics Data System (ADS)
Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang
2015-03-01
Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.
Recent ecological transitions in China: greening, browning, and influential factors.
Lü, Yihe; Zhang, Liwei; Feng, Xiaoming; Zeng, Yuan; Fu, Bojie; Yao, Xueling; Li, Junran; Wu, Bingfang
2015-03-04
Ecological conservation and restoration are necessary to mitigate environmental degradation problems. China has taken great efforts in such actions. To understand the ecological transition during 2000-2010 in China, this study analysed trends in vegetation change using remote sensing and linear regression. Climate and socioeconomic factors were included to screen the driving forces for vegetation change using correlation or comparative analyses. Our results indicated that China experienced both vegetation greening (restoration) and browning (degradation) with great spatial heterogeneity. Socioeconomic factors, such as human populations and economic production, were the most significant factors for vegetation change. Nature reserves have contributed slightly to the deceleration of vegetation browning and the promotion of greening; however, a large-scale conservation approach beyond nature reserves was more effective. The effectiveness of the Three-North Shelter Forest Program lay between the two above approaches. The findings of this study highlighted that vegetation trend detection is a practical approach for large-scale ecological transition assessments, which can inform decision-making that promotes vegetation greening via proper socioeconomic development and ecosystem management.
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Peng; Hu, Yigang; Huang, Lei
2016-02-01
Despite the critical roles of plant species' diversity and biological soil crusts (BSCs) in arid and semi-arid ecosystems, the restoration of the diversity of herbaceous species and BSCs are rarely discussed during the process of vegetation restoration of anthropogenically damaged areas in these regions. In this study, the herbaceous plant species composition, along with the BSCs coverage and thicknesses, was investigated at six different re-vegetation type sites, and the natural vegetation site of the Heidaigou open pit coal mine in China's Inner Mongolia Autonomous Region was used as a reference. The highest total species richness (16), as well as the species richness (4.4), occurred in the Tree and Herbaceous vegetation type site. The species composition similarities between the restored sites and the reference site were shown to be very low, and ranged from 0.09 to 0.42. Also, among the restored sites, the similarities of the species were fairly high and similar, and ranged from 0.45 to 0.93. The density and height of the re-vegetated woody plants were significantly correlated with the indexes of the diversity of the species. The Shrub vegetation type site showed the greatest total coverage (80 %) of BSCs and algae crust coverage (48 %). The Shrub and Herbaceous type had the greatest thicknesses of BSCs, with as much as 3.06 mm observed, which was followed by 2.64 mm for the Shrub type. There was a significant correlation observed between the coverage of the total BSCs, and the total vegetation and herbaceous vegetation coverage, as well as between the algae crust coverage and the herbaceous vegetation coverage. It has been suggested that the re-vegetated dwarf woody plant species (such as shrubs and semi-shrubs) should be chosen for the optimal methods of the restoration of herbaceous species diversity at dumping sites, and these should be planted with low density. Furthermore, the effects of vegetation coverage on the colonization and development the BSCs should be considered in order to reconstruct the vegetation in disturbed environments, such as mine dumpsites in arid areas.
NASA Astrophysics Data System (ADS)
Peng, Yu; Wang, Qinghui; Fan, Min
2017-11-01
When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.
Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming
2016-01-01
The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458
NASA Astrophysics Data System (ADS)
Liu, D.; Luan, J.; Lin, M.; Huang, Q.
2017-12-01
Since 1999, China began the Grain for Green program to conserve the forest in the north of China. After 17 years, the vegetation in the north has changed. Vegetation index is an important method to study the regional vegetation change. This study is based on MODIS/Terra NDVI remote sensing data, and analyzes the spatial-temporal changes and the impact factors of the NDVI in August from 2000 to 2016 at pixel scale in Yulin City of Shaanxi Province in China. The results showed that, on about 96.44% of the region in the Yulin city, vegetation index increased, and the area with increasing NDVI between 0-0.02/a accounts for 93.63% of Yulin city. The area with significant increasing trend accounts for 80.72%. The complex linear regression analysis showed that, the meteorological factors play a positive role in the growth and evolution of vegetation, and human activities also make the vegetation index become more uniform. The area, where the human activities restrain the growth and evolution of the vegetation, is 45.04% of the Yulin area. It is mainly distributed in Fugu County which located in the north of Yulin, and most areas of southern and western parts of Yulin. The area where human activities promote the increase of the vegetation index, accounted for 54.96% of the Yulin area, which indicated that on more than half of the region, human activities have played a positive role in the growth of vegetation. In these areas, the effect of forest conservation, and grain for green (i.e. returning farmland to forests, and returning pasturage to natural grassland) is better.
NASA Astrophysics Data System (ADS)
Qiu, Bingwen; Chen, Gong; Tang, Zhenghong; Lu, Difei; Wang, Zhuangzhuang; Chen, Chongchen
2017-11-01
The Three-North Shelter Forest Program (TNSFP) in China has been intensely invested for approximately 40 years. However, the efficacy of the TNSFP has been debatable due to the spatiotemporal complexity of vegetation changes. A novel framework was proposed for characterizing vegetation changes in the TNSFP region through Combining Trend and Temporal Similarity trajectory (COTTS). This framework could automatically and continuously address the fundamental questions on where, what, how and when vegetation changes have occurred. Vegetation trend was measured by a non-parametric method. The temporal similarity trajectory was tracked by the Jeffries-Matusita (JM) distance of the inter-annual vegetation indices temporal profiles and modeled using the logistic function. The COTTS approach was applied to examine the afforestation efforts of the TNSFP using 500 m 8-day composites MODIS datasets from 2001 to 2015. Accuracy assessment from the 1109 reference sites reveals that the COTTS is capable of automatically determining vegetation dynamic patterns, with an overall accuracy of 90.08% and a kappa coefficient of 0.8688. The efficacy of the TNSFP was evaluated through comprehensive considerations of vegetation, soil and wetness. Around 45.78% areas obtained increasing vegetation trend, 2.96% areas achieved bare soil decline and 4.50% areas exhibited increasing surface wetness. There were 4.49% areas under vegetation degradation & desertification. Spatiotemporal heterogeneity of efficacy of the TNSFP was revealed: great vegetation gain through the abrupt dynamic pattern in the semi-humid and humid regions, bare soil decline & potential efficacy in the semi-arid region and remarkable efficacy in functional region of Eastern Ordos.
Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China
Wang, Guodong; Middleton, Beth; Jiang, Ming
2013-01-01
Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.
Past and future effects of climate change on spatially heterogeneous vegetation activity in China
NASA Astrophysics Data System (ADS)
Gao, Jiangbo; Jiao, Kewei; Wu, Shaohong; Ma, Danyang; Zhao, Dongsheng; Yin, Yunhe; Dai, Erfu
2017-07-01
Climate change is a major driver of vegetation activity but its complex ecological relationships impede research efforts. In this study, the spatial distribution and dynamic characteristics of climate change effects on vegetation activity in China from the 1980s to the 2010s and from 2021 to 2050 were investigated using a geographically weighted regression (GWR) model. The GWR model was based on combined datasets of satellite vegetation index, climate observation and projection, and future vegetation productivity simulation. Our results revealed that the significantly positive precipitation-vegetation relationship was and will be mostly distributed in North China. However, the regions with temperature-dominated distribution of vegetation activity were and will be mainly located in South China. Due to the varying climate features and vegetation cover, the spatial correlation between vegetation activity and climate change may be altered. There will be different dominant climatic factors for vegetation activity distribution in some regions such as Northwest China, and even opposite correlations in Northeast China. Additionally, the response of vegetation activity to precipitation will move southward in the next three decades. In contrast, although the high warming rate will restrain the vegetation activity, precipitation variability could modify hydrothermal conditions for vegetation activity. This observation is exemplified in the projected future enhancement of vegetation activity in the Tibetan Plateau and weakened vegetation activity in East and Middle China. Furthermore, the vegetation in most parts of North China may adapt to an arid environment, whereas in many southern areas, vegetation will be repressed by water shortage in the future.
Yang, Yang; Wang, Meie; Chen, Weiping; Li, Yanling; Peng, Chi
2017-07-12
Solid-solution partitioning coefficient (K d ) and plant uptake factor (PUF) largely determine the solubility and mobility of soil Cd to food crops. A four-year regional investigation was conducted in contaminated vegetable and paddy fields of southern China to quantify the variability in K d and PUF. The distributions of K d and PUF characterizing transfers of Cd from soil to vegetable and rice are probabilistic in nature. Dynamics in soil pH and soil Zn greatly affected the variations of K d . In addition to soil pH, soil organic matter had a major influence on PUF variations in vegetables. Heavy leaching of soil Mn caused a higher Cd accumulation in rice grain. Dietary ingestion of 85.5% of the locally produced vegetable and rice would have adverse health risks, with rice consumption contributing 97.2% of the risk. A probabilistic risk analysis based on derived transfer function reveals the amorphous Mn oxide content exerts a major influence on Cd accumulation in rice in pH conditions below 5.5. Risk estimation and field experiments show that to limit the Cd concentration in rice grains, soil management strategies should include improving the pH and soil Mn concentration to around 6.0 and 345 mg kg -1 , respectively. Our work illustrates that re-establishing a balance in trace elements in soils' labile pool provides an effective risk-based approach for safer crop practices.
Yu, Yan; Hu, Senke; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Jinghua; Gao, Song; Yang, Aimin
2017-08-02
A wide range of pesticides is applied for crop protection in vegetable cultivation in China. Regulation of pesticide maximum residue limits (MRLs) in vegetables is established but not fully enforced. And pesticide residues in vegetables were not well monitored. This study conducted the monitoring surveys from 2011 to 2013 to investigate the pesticides in vegetables in the northwest region of China. A multi-residue gas chromatography/mass spectrometry method (GC/MS) was used in determination of pesticides in vegetable samples. The χ 2 test was used to compare the concentration of pesticide residues. A total of 32 pesticide residues were detected in 518 samples from 20 types of vegetables in this study. 7.7% of the detected pesticide residues exceeded the MRLs. The percentages of residues that exceeded the MRLs for leafy, melon and fruit, and root vegetables were 11.2%, 5.1%, and 1.6%, respectively. There was no seasonal difference in the proportion of samples that exceeded the MRLs in different vegetables. A total of 84.3% (27/32) pesticides were detected at concentrations that exceeded MRLs. And of the 27 pesticides that exceeded the MRLs, 11 (40.7%) were banned for use in agriculture. The most frequently detected pesticides were Malathion (9.4%), Dichlorvos (8.7%), and Dimethoate (8.1%). The observed high rate of pesticides detected and high incidence of pesticide detection exceeding their MRLs in the commonly consumed vegetables indicated that the Good Agricultural Practices (GAP) may not be well followed. The management of pesticide use and control should be improved. Well-developed training programs should be initiated to improve pesticide application knowledge for farmers.
Information for forest process models: a review of NRS-FIA vegetation measurements
Charles D. Canham; William H. McWilliams
2012-01-01
The Forest and Analysis Program of the Northern Research Station (NRS-FIA) has re-designed Phase 3 measurements and intensified the sample intensity following a study to balance costs, utility, and sample size. The sampling scheme consists of estimating canopy-cover percent for six vegetation growth habits on 24-foot-radius subplots in four height classes and as an...
Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi
2016-10-07
Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide.
Liu, Zhiyong; Li, Chao; Zhou, Ping; Chen, Xiuzhi
2016-01-01
Climate change significantly impacts the vegetation growth and terrestrial ecosystems. Using satellite remote sensing observations, here we focus on investigating vegetation dynamics and the likelihood of vegetation-related drought under varying climate conditions across China. We first compare temporal trends of Normalized Difference Vegetation Index (NDVI) and climatic variables over China. We find that in fact there is no significant change in vegetation over the cold regions where warming is significant. Then, we propose a joint probability model to estimate the likelihood of vegetation-related drought conditioned on different precipitation/temperature scenarios in growing season across China. To the best of our knowledge, this study is the first to examine the vegetation-related drought risk over China from a perspective based on joint probability. Our results demonstrate risk patterns of vegetation-related drought under both low and high precipitation/temperature conditions. We further identify the variations in vegetation-related drought risk under different climate conditions and the sensitivity of drought risk to climate variability. These findings provide insights for decision makers to evaluate drought risk and vegetation-related develop drought mitigation strategies over China in a warming world. The proposed methodology also has a great potential to be applied for vegetation-related drought risk assessment in other regions worldwide. PMID:27713530
Vegetable Seedling Breeding with Biochar Produced from Invasive Plant Biomass in South West of China
NASA Astrophysics Data System (ADS)
Li, Guitong; Tian, Yanfang; Liu, Cheng; Cao, Jianhua; Lin, Qimei; Zhao, Xiaorong
2015-04-01
Crofton Weed (Ageratina adenophora) is an invasive plant widely colonized in the southwest part of China, such as Yunnan, Guizhou, and Sichuan. It is estimated that the total biomass of this small shrub in China can be as much as 30 million tones. Many methods have been developed to control its malignant expansion, mostly by using its leaves as feed for livestock. Its stem is difficult to use, although it accounts for more than 90% of its total biomass. A biochar production system, using the stems of Crofton Weed as feedstock, was established at Xi-Yu Biological Science and Technology Company, Pan-Zhi-hua, Sichuan Province, China. The system is composed of feeder, hot-air dryer, pyrolyser, activator, steam producer, and biochar-based fertilizer producer. The energy for producing hot-air to pre-dry the feedstock and steam to activate the carbonized material comes from the re-use of the heat yielded from the pyrolysis process. The whole system is in a high level of automation and energy efficiency. With this system, local farmers can improve their income by collecting stems of Crofton Weed and selling them to the producer. It is a practical way to control this kind of invasive plant by offering economic value for the local people. The biochar can be used to produce new seedling substrate by replacing peat to protect wetland resource. The biochar seedling media was produced in a simple way and the effects on growth of vegetable seedlings was evaluated. Results showed that the response of vegetable seeds to the biochar seedling media was different, meaning more detailed studies need to done to find the reasons for some kinds of seeds failed to germinate in the tested biochar seedling media. This research was supported by the Ministry of Science and Technology of China under the Public Industry Science and Technology Project (201103027).
Land suitability assessment on a watershed of Loess Plateau using the analytic hierarchy process.
Yi, Xiaobo; Wang, Li
2013-01-01
In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.
Land Suitability Assessment on a Watershed of Loess Plateau Using the Analytic Hierarchy Process
Yi, Xiaobo; Wang, Li
2013-01-01
In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km2, accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau. PMID:23922723
Afforestation may have little effect on hydrological cycle over the Three-North region of China
NASA Astrophysics Data System (ADS)
Meng, S.; Xie, X.
2017-12-01
Afforestation or reforestation is generally effective to improve environmental conditions, and it may have substantial impact on hydrological cycle by increasing rainfall interception and transpiration. To combat desertification and to control dust storms, China has implemented a few Large-scale afforestation programs since 1980s, including the world's most ambitious afforestation program, the Three-North Forest Shelterbelt (TNFS) program in the arid and semiarid land areas. This afforestation plan covers about 4 million km2 (> 42%) of the land area of China. Although the TNFS program eased environmental problems in the region to some degree, the consequences of large-scale afforestation on hydrological cycles is still controversial. To identify the impact of the afforestation on hydrological cycle at regional scale, we employed a large-scale hydrological model, i.e., the Variable Infiltration Capacity (VIC) model, and satellite remote sensing data sets, i.e., leaf area index (LAI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Global LAnd Surface satellite (GLASS). The VIC modelling was forced with long-term dynamic LAI and gridded atmospheric data. We focused on the period of 2000-2015 when fewer afforestation activities implemented and the vegetation in steady growth stage in the three-north region. The results show that, despite the spatial heterogeneity, LAI in the growing season exhibits a slight increase across the three-north region, which is the contribution of the vegetation growth due to afforestation program. Evapotranspiration (ET) increased at a rate of 3.93 mm/yr over the whole region from 2000 to 2015. The spatial pattern of ET is consistent with the changes in LAI and precipitation, but this does not mean vegetation growth contributed equally. Based on factor-distinguishing simulations, we found that precipitation change has more significant influence on hydrological cycle than vegetation growth. Therefore, the afforestation practices are influential at small-catchment scale, but at regional scale, they may have little effect on the hydrological cycles. For sustainable water resource management, we should pay special attention on climate change rather than the afforestation efforts.
Divergent hydrological response to large-scale afforestation and vegetation greening in China
Ciais, Philippe; Huang, Ling; Wang, Kai; Zhou, Liming
2018-01-01
China has experienced substantial changes in vegetation cover, with a 10% increase in the leaf area index and an ~41.5 million-hectare increase in forest area since the 1980s. Earlier studies have suggested that increases in leaf area and tree cover have led to a decline in soil moisture and runoff due to increased evapotranspiration (ET), especially in dry regions of China. However, those studies often ignored precipitation responses to vegetation increases, which could offset some of the negative impact on soil moisture by increased ET. We investigated 30-year vegetation impacts on regional hydrology by allowing for vegetation-induced changes in precipitation using a coupled land-atmosphere global climate model, with a higher spatial resolution zoomed grid over China. We found high spatial heterogeneity in the vegetation impacts on key hydrological variables across China. In North and Southeast China, the increased precipitation from vegetation greening and the increased forest area, although statistically insignificant, supplied enough water to cancel out enhanced ET, resulting in weak impact on soil moisture. In Southwest China, however, the increase in vegetation cover significantly reduced soil moisture while precipitation was suppressed by the weakened summer monsoon. In Northeast China, the only area where forest cover declined, soil moisture was significantly reduced, by −8.1 mm decade−1, likely because of an intensified anticyclonic circulation anomaly during summer. These results suggest that offline model simulations can overestimate the increase of soil dryness in response to afforestation in North China, if vegetation feedbacks lead to increased precipitation like in our study. PMID:29750196
Vulnerability of forest vegetation to anthropogenic climate change in China.
Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang
2018-04-15
China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.
Vegetation Cover based on Eagleson's Ecohydrological Optimality in Northeast China Transect (NECT)
NASA Astrophysics Data System (ADS)
Cong, Z.; Mo, K.; Qinshu, L.; Zhang, L.
2016-12-01
Vegetation is considered as the indicator of climate, thus the study of vegetation growth and distribution is of great importance to cognize the ecosystem construction and functions. Vegetation cover is used as an important index to describe vegetation conditions. In Eagleson's ecohydrological optimality, the theoretical optimal vegetation cover M* can be estimated by solving water balance equations. In this study, the theory is applied in the Northeast China Transect (NECT), one of International Geosphere-Biosphere Programs (IGBP) terrestrial transects. The spatial distribution of actual vegetation cover M, which is derived from Normalized Vegetation Index (NDVI) from Moderate-resolution Imaging Spectroradiometer (MODIS), shows that there is a significant gradient ranging from 1 in the east forests to 0 in the west desert. The result indicates that the theoretical M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). The reasonable calculated proportion of water balance components further demonstrates the applicability of the ecohydrological optimality theory. M* increases with the increase of LAI, leaf angle, stem fraction and temperature, and decreases with the increase of precipitation amount. This method offers the possibility to analyze the impacts of climate change to vegetation cover quantitatively, thus providing advices for eco-restoration projects.
Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China
NASA Astrophysics Data System (ADS)
Hakkenberg, C.
2012-12-01
NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition to quantifying forest cover change in this section of NW Yunnan, the analysis attempts to qualify that change - distinguishing among distinct disturbance histories and post-recovery successional pathways.
Klotz, Alexander; Georg, Jens; Bučinská, Lenka; Watanabe, Satoru; Reimann, Viktoria; Januszewski, Witold; Sobotka, Roman; Jendrossek, Dieter; Hess, Wolfgang R; Forchhammer, Karl
2016-11-07
The molecular and physiological mechanisms involved in the transition of microbial cells from a resting state to the active vegetative state are critically relevant for solving problems in fields ranging from microbial ecology to infection microbiology. Cyanobacteria that cannot fix nitrogen are able to survive prolonged periods of nitrogen starvation as chlorotic cells in a dormant state. When provided with a usable nitrogen source, these cells re-green within 48 hr and return to vegetative growth. Here we investigated the resuscitation of chlorotic Synechocystis sp. PCC 6803 cells at the physiological and molecular levels with the aim of understanding the awakening process of a dormant bacterium. Almost immediately upon nitrate addition, the cells initiated a highly organized resuscitation program. In the first phase, they suppressed any residual photosynthetic activity and activated respiration to gain energy from glycogen catabolism. Concomitantly, they restored the entire translational apparatus, ATP synthesis, and nitrate assimilation. After only 12-16 hr, the cells re-activated the synthesis of the photosynthetic apparatus and prepared for metabolic re-wiring toward photosynthesis. When the cells reached full photosynthetic capacity after ∼48 hr, they resumed cell division and entered the vegetative cell cycle. An analysis of the transcriptional dynamics during the resuscitation process revealed a perfect match to the observed physiological processes, and it suggested that non-coding RNAs play a major regulatory role during the lifestyle switch in awakening cells. This genetically encoded program ensures rapid colonization of habitats in which nitrogen starvation imposes a recurring growth limitation. Copyright © 2016 Elsevier Ltd. All rights reserved.
What Has Caused Desertification in China?
Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong
2015-11-03
Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors.
What Has Caused Desertification in China?
Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong
2015-01-01
Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors. PMID:26525278
Concentration of heavy metals in vegetables and potential health risk assessment in China.
Zhong, Taiyang; Xue, Dawei; Zhao, Limin; Zhang, Xiuying
2018-02-01
Food safety is an important issue in the world. This study assessed the health risk for the Chinese public when consuming vegetables grown in China, based on 1335 data records from 220 published papers during 2007-2016. The results showed that the average of Pb, Cd, and Hg concentration in vegetables was 0.106, 0.041, and 0.008 mg/kg, which were lower than the maximum allowable concentrations, respectively. Leaf vegetables contained higher heavy metals than root vegetables and fruit vegetables. On a provincial scale, the highest Pb, Cd, and Hg concentrations in vegetables were determined by those in soil and atmosphere. The total health risk index showed that people in Guizhou, Yunnan, Guangxi, Hunan, Guangdong, Hubei provinces in southern China, and Liaoning Province in northeast China, faced a high risk of Pb, Cd, and Hg when consuming vegetables.
Excessive Afforestation and Soil Drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie
2018-03-01
Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.
Preliminary estimation of the realistic optimum temperature for vegetation growth in China.
Cui, Yaoping
2013-07-01
The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.
Preliminary Estimation of the Realistic Optimum Temperature for Vegetation Growth in China
NASA Astrophysics Data System (ADS)
Cui, Yaoping
2013-07-01
The estimation of optimum temperature of vegetation growth is very useful for a wide range of applications such as agriculture and climate change studies. Thermal conditions substantially affect vegetation growth. In this study, the normalized difference vegetation index (NDVI) and daily temperature data set from 1982 to 2006 for China were used to examine optimum temperature of vegetation growth. Based on a simple analysis of ecological amplitude and Shelford's law of tolerance, a scientific framework for calculating the optimum temperature was constructed. The optimum temperature range and referenced optimum temperature (ROT) of terrestrial vegetation were obtained and explored over different eco-geographical regions of China. The results showed that the relationship between NDVI and air temperature was significant over almost all of China, indicating that terrestrial vegetation growth was closely related to thermal conditions. ROTs were different in various regions. The lowest ROT, about 7.0 °C, occurred in the Qinghai-Tibet Plateau, while the highest ROT, more than 22.0 °C, occurred in the middle and lower reaches of the Yangtze River and the Southern China region.
Detection and attribution of vegetation greening trend in China over the last 30 years.
Piao, Shilong; Yin, Guodong; Tan, Jianguang; Cheng, Lei; Huang, Mengtian; Li, Yue; Liu, Ronggao; Mao, Jiafu; Myneni, Ranga B; Peng, Shushi; Poulter, Ben; Shi, Xiaoying; Xiao, Zhiqiang; Zeng, Ning; Zeng, ZhenZhong; Wang, Yingping
2015-04-01
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. We use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41% of the average growing-season LAI trend (LAIGS) estimated by satellite datasets (average trend of 0.0070 yr(-1), ranging from 0.0035 yr(-1) to 0.0127 yr(-1)), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAIGS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAIGS (P < 0.05), and marginally significantly (P = 0.07) correlated with the residual of LAIGS trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO2 concentration and nitrogen deposition, across different provinces. This result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, Ken
2001-11-15
Re-vegetation Plot Study along the Lower Monumental-McNary Transmission Line ROW. The study area sections are located near structures 38/4 and 39/3. The line is a 500kV Single Circuit Transmission Line having an easement width of 165 feet. The proposed work will be accomplished in the indicated sections of the transmission line corridor as indicated on the attached checklist. A summer of 2001 fire burned the subject area leaving the ROW in a bare ground situation. Before, the fire the site was dominated by annual vegetation (cheatgrass) and noxious weeds (yellowstar thistle). As a study of plant succession after the firemore » for a local Boy Scout group, two 100 X 100 foot areas will be identified for study over the next 2-3 years. The two test plots will be identified and permanently marked. One will receive treatment while the other will not be treated and used as a control plot.« less
Wu, Zhitao; Wu, Jianjun; He, Bin; Liu, Jinghui; Wang, Qianfeng; Zhang, Hong; Liu, Yong
2014-10-21
To improve the ecological conditions, the Chinese government adopted six large-scale ecological restoration programs including 'Three-North Shelterbelt Project', "Grain for Green Project" and "Beijing-Tianjin Sand Source Control Project". Meanwhile, these ecologically vulnerable areas have experienced frequent droughts. However, little attention has been paid to the impact of drought on the effectiveness of these programs. Taking Beijing-Tianjin Sand Source Region (BTSSR) as study area, we investigated the role of droughts and ecological restoration program on trends of vegetation activities and to address the question of a possible "drought signal" in assessing effectiveness of ecological restoration program. The results demonstrate the following: (1) Vegetation activity increased in the BTSSR during 2000-2010, with 58.44% of the study area showing an increased NDVI, of which 11.80% had a significant increase at 0.95 confidential level. The decreasing NDVI trends were mainly concentrated in a southwest-to-northeast strip in the study area. (2) Drought was the main driving force for a decreasing trend of vegetation activity in the southwest-to-northeast regions of the BTSSR at the regional and spatial scales. Summer droughts in 2007 and 2009 contributed to the decreasing trend in NDVI. The severe and extreme droughts in summer reduced the NDVI by approximately 13.06% and 23.55%, respectively. (3) The residual analysis result showed that human activities, particularly the ecological restoration programs, have a positive impact on vegetation change. Hence, the decreasing trends in the southwest-to-northeast regions of the BTSSR cannot be explained by the improper ecological restoration program and is partly explained by droughts, especially summer droughts. Therefore, drought offset the ecological restoration program-induced increase in vegetation activity in the BTSSR.
Zhang, Peng; Huang, Lei; Hu, Yi-gang; Zhao, Yang; Wu, Yong-chen
2016-02-01
Nitrogen limitation is common in terrestrial ecosystems, and it is particularly severe in damaged ecosystems in arid regions. Biological soil crusts (BSCs) , as a crucial component of recovered vegetation, play a vital role in nitrogen fixation during the ecological restoration processes of damaged ecosystems in arid and semi-arid regions. In this study, two dominant types of BSCs (i.e., cyanobacterial-algal crusts and moss crusts) that are widely distributed in the re-vegetated area of Heidaigou open pit coal mine were investigated. Samples were collected in the field and their nitrogenase activities (NA) were measured in the laboratory. The responses of NA to different hydro-thermal factors and the relationships between NA and herbs in addition to crust coverage were analyzed. The results indicated that BSCs under reconstructed vegetation at different succession stages, abandoned land and natural vegetation showed values of NA ranging from 9 to 150 µmol C2H4 . m-2 . h-1, and the NA value of algae crust (77 µmol C2H4 . m-2 . h-1) was markedly higher than that of moss crust (17 µmol C2H4 . m-2 . h-1). In the re-vegetated area, cyanobacterial-algal crust and moss crust under shrub-herb had higher NA values than those of crusts under arbor-shrnb and arbor-shrub-herb. The relationship between NA of the two BSCs and soil relative water content (10% - 100%) as well as culture temperature (5-45 °C) were of quadratic function. With elevated water content and cultural temperature, the NA values increased at the initial stage and then decreased, and reached the maximum value at 25 °C of cultural temperature and 60% or 80% of relative water content. The NA of cyanobacterial-algal crust had a significant quadratic function with herb coverage, as NA declined when herb coverage was higher than 20%. A significant negative correlation was observed between the NA of moss crusts and herb coverage. The NA values of the two types of BSCs had a significant positive correlation with crust coverage, since the NA was enhanced when the crust coverage was increased. We concluded that the different NA of the two BSCs in the re-vegetated area of Heidaigou open pit coal mine were caused by the composition of cryptograms. In addition, the differences of hydrothermal conditions and the composition of herb or crust coverage at different succession stages were also the contribution factors. Therefore, BSC construction and nitrogen fixation in re-vegetated areas is an important symbol for sustainable development in ecosystems.
Vegetation carbon sequestration in Chinese forests from 2010 to 2050.
He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui
2017-04-01
Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Y.; Xiao, J.
2017-12-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of vegetation greening particularly afforestation on the hydrologic cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China's land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation greening and browning on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield or weakened the increase in water yield; vegetation browning reduced ET and increased water yield or weakened the decrease in water yield. At the large river basin and national scales, the greening trends had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the greenness changes on ET and water yield varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrologic cycle are needed to account for the feedbacks to the climate.
Cao, Shixiong; Zhang, Junze; Chen, Li; Zhao, Tingyang
2016-12-01
Land degradation is a global environmental problem that jeopardizes human safety and socioeconomic development. To alleviate severe soil erosion and desertification due to deforestation and overgrazing, China has implemented historically unprecedented large-scale afforestation. However, few studies have accounted for the resulting imbalance between water supply (primarily precipitation) and water consumption (evapotranspiration), which will affect ecosystem health and socioeconomic development. We compared the water balance results between restoration by means of afforestation and restoration using the potential natural vegetation to guide future ecological restoration planning and environmental policy development. Based on estimates of water consumption from seven evapotranspiration models, we discuss the consequences for water security using data obtained since 1952 under China's large-scale afforestation program. The models estimated that afforestation will increase water consumption by 559-2354 m 3 /ha annually compared with natural vegetation. Although afforestation is a potentially important approach for environmental restoration, China's current policy has not been tailored to local precipitation conditions, and will have therefore exacerbated water shortages and decrease the ability to achieve environmental policy goals. Our analysis shows how, both in China and around the world, future ecological restoration planning must account for the water balance to ensure effective and sustainable environmental restoration policy. Copyright © 2016. Published by Elsevier Ltd.
International Coordination of and Contributions to Environmental Satellite Programs.
1985-06-01
the international coordination of, and contributions to, environmental satellite programs. It re- views the background and history of international...Earth’s atmos- phere, surface temperature, cloud cover, water-ice boundaries, * and proton and electron flux near the Earth. They have the capability of...Islands Madagascar Sweden Chile Malaysia Switzerland China, People’s Rep. of Mali Syria Colombia Malta Tahiti Costa Rica Martinique Taiwan Curacao
Zhou, Xiang; Yamaguchi, Yasushi; Arjasakusuma, Sanjiwana
2018-03-01
Distinguishing the vegetation dynamics induced by anthropogenic factors and identifying the major drivers can provide crucial information for designing actionable and practical countermeasures to restore degraded grassland ecosystems. Based on the residual trend (RESTREND) method, this study distinguished the vegetation dynamics induced by anthropogenic factors from the effects of climate variability on the Mongolian Plateau during 1993-2012 using vegetation optical depth (VOD) and normalized difference vegetation index (NDVI), which measure vegetation water content in aboveground biomass and chlorophyll abundance in canopy cover respectively; afterwards, the major drivers within different agricultural zones and socio-institutional periods were identified by integrating agricultural statistics with statistical analysis techniques. The results showed that grasslands in Mongolia and the grazing zone of Inner Mongolia Autonomous Region (IMAR), China underwent a significant human-induced decrease in aboveground biomass during 1993-2012 and 1993-2000 respectively, which was attributable to the rapid growth of livestock densities stimulated by livestock privatization and market factors; by contrast, grasslands in these two regions did not experience a concurrent human-induced reduction in canopy greenness. Besides, the results indicated that grasslands in the grazing zone of IMAR underwent a significant human-induced increase in aboveground biomass since 2000, which was attributable to the reduced grazing pressure induced by China's ecological restoration programs; concurrently, grasslands in this region also experienced a remarkable increase in canopy greenness, however, this increase was found not directly caused by the decreased stocking densities. Furthermore, the results revealed that the farming and semi-grazing/farming zone of IMAR underwent a significant human-induced increase in both aboveground biomass and canopy greenness since 2000, which was attributable to the intensified grain production stimulated by market factors, open grazing regulation and confined feeding popularization. These findings suggest that China's grassland restoration practice has important implications for Mongolia to reverse the severe and continuous grassland degradation in the future. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Xu, Ke; Zhou, Yanlian; Zhao, Yuntai
2016-09-01
There has been growing evidence that vegetation greenness has been increasing in many parts of the northern middle and high latitudes including China during the last three to four decades. However, the effects of increasing vegetation greenness particularly afforestation on the hydrological cycle have been controversial. We used a process-based ecosystem model and a satellite-derived leaf area index (LAI) dataset to examine how the changes in vegetation greenness affected annual evapotranspiration (ET) and water yield for China over the period from 2000 to 2014. Significant trends in vegetation greenness were observed in 26.1% of China’s land area. We used two model simulations driven with original and detrended LAI, respectively, to assess the effects of vegetation ‘greening’ and ‘browning’ on terrestrial ET and water yield. On a per-pixel basis, vegetation greening increased annual ET and decreased water yield, while vegetation browning reduced ET and increased water yield. At the large river basin and national scales, the greening trends also had positive effects on annual ET and had negative effects on water yield. Our results showed that the effects of the changes in vegetation greenness on the hydrological cycle varied with spatial scale. Afforestation efforts perhaps should focus on southern China with larger water supply given the water crisis in northern China and the negative effects of vegetation greening on water yield. Future studies on the effects of the greenness changes on the hydrological cycle are needed to account for the feedbacks to the climate.
Long-Term Temporal Trends of Polychlorinated Biphenyls and Their Controlling Sources in China.
Zhao, Shizhen; Breivik, Knut; Liu, Guorui; Zheng, Minghui; Jones, Kevin C; Sweetman, Andrew J
2017-03-07
Polychlorinated biphenyls (PCBs) are industrial organic contaminants identified as persistent, bioaccumulative, toxic (PBT), and subject to long-range transport (LRT) with global scale significance. This study focuses on a reconstruction and prediction for China of long-term emission trends of intentionally and unintentionally produced (UP) ∑ 7 PCBs (UP-PCBs, from the manufacture of steel, cement and sinter iron) and their re-emissions from secondary sources (e.g., soils and vegetation) using a dynamic fate model (BETR-Global). Contemporary emission estimates combined with predictions from the multimedia fate model suggest that primary sources still dominate, although unintentional sources are predicted to become a main contributor from 2035 for PCB-28. Imported e-waste is predicted to play an increasing role until 2020-2030 on a national scale due to the decline of intentionally produced (IP) emissions. Hypothetical emission scenarios suggest that China could become a potential source to neighboring regions with a net output of ∼0.4 t year -1 by around 2050. However, future emission scenarios and hence model results will be dictated by the efficiency of control measures.
NASA Astrophysics Data System (ADS)
Wang, H.
2017-12-01
Seasonal differences in climatic controls of vegetation growth in the Beijing-Tianjin Sand Source Region of China Bin He1 , Haiyan Wan11 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China Corresponding author: Bin He, email addresses: hebin@bnu.edu.cnPhone:+861058806506, Address: Beijing Normal University, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China. Email addresses of co-authors: wanghaiyan@mail.bnu.edu.cnABSTRACTLaunched in 2000, the Beiing-Tainjin Sand Source Controlling Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of the project. Precipitation and related soil moisture conditions typically are considered to be the main drivers of vegetation growth in this arid region. However, by investigating the relationships between vegetation growth and corresponding climatic factors, we identified seasonal variation in the climatic constraints of vegetation growth. In spring, vegetation growth is stimulated mainly by elevated temperature, whereas precipitation is the lead driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. Furthermore, strong biosphere-atmosphere interactions were observed in this region. Spring warming promotes vegetation growth, but also reduces soil moisture. Summer greening has a strong cooling effect on land surface temperature. These results indicate that 1) precipitation-based projections of vegetation growth may be misleading; and 2) the ecological and environment consequences of ecological projects should be comprehensively evaluated. KEYWORDS: vegetation growth, climatic drivers, seasonal variation, BTSSCP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Liming, E-mail: lmwu@scdc.sh.c; Center for Environment and Population Health, Griffith University, Nathan 4111; Rutherford, Shannon
2011-07-15
Health impact assessment (HIA) is a useful tool to predict and estimate the potential health impact associated with programs, projects, and policies by comprehensively identifying relevant health determinants and their consequences. China is undergoing massive and rapid socio-economic changes leading to environment and population health challenges such as a large increase in non-communicable diseases, the emergence and re-emergence of infectious diseases, new health risks associated with environmental pollutants and escalating health inequality. These health issues are affected by multiple determinants which can be influenced by planned policies, programs, and projects. This paper discusses the needs for health impact assessment inmore » China in order to minimize the negative health consequences from projects, programs and policies associated with rapid social and economic development. It first describes the scope of China's current impact assessment system and points out its inadequacy in meeting the requirements of population health protection and promotion. It then analyses the potential use of HIA and why China needs to develop and apply HIA as a tool to identify potential health impacts of proposed programs, projects and policies so as to influence decision-making early in the planning process. Thus, the paper recommends the development of HIA as a useful tool in China to enhance decision-making for the protection and promotion of population health. For this to happen, the paper outlines steps necessary for the establishment and successful implementation of HIA in China: beginning with the establishment of a HIA framework, followed by workforce capacity building, methodology design, and intersectoral collaboration and stakeholder engagement.« less
Attempt at quantifying human-induced land-cover change during the Holocene in central eastern China
NASA Astrophysics Data System (ADS)
Li, Furong; Gaillard, Marie-José; Mazier, Florence; Sugita, Shinya; Xu, Qinghai; Li, Yuecong; Zhou, Zhongze
2016-04-01
China is one of the key regions of the world where agricultural civilizations already flourished several millennia ago. However, the role of human activity in vegetation change is not yet fully understood. As a contribution to the PAGES LandCover6k initiative, this study aims to achieve a first attempt at Holocene land-cover reconstructions in the temperate zone of China using the REVEALS model (Sugita, 2007). Pollen productivity estimates (PPEs) are key parameters required for the model and were lacking so far for major taxa characteristic of ancient cultural landscapes in that part of the world. Remains of traditional agricultural structures and practices are still found in the low mountain ranges of the Shandong province located in central-eastern China. The area was chosen for a study of pollen-vegetation relationships and calculation of pollen productivity estimates. Pollen counts and vegetation data from 37 random sites within an area of 200 x 100 km are used for calculation. The vegetation inventory within 100 meters from the pollen sampling site follows the standard methods of Bunting et al. (2013). Vegetation data beyond 100 meters up to 1.5 km from the pollen sampling site is extracted from satellite images. The PPEs are calculated using the three sub-models of the Extended R-value model and compared with existing PPEs from northern China's biomes and temperate Europe. The PPEs' relevance for reconstruction of past human-induced land-cover change in temperate China are evaluated. Key words China, traditional agricultural landscape, ERV model, pollen productivity estimates References Bunting, M. J., et al. (2013). "Palynological perspectives on vegetation survey: a critical step for model-based reconstruction of Quaternary land cover." Quaternary Science Reviews 82: 41-55. Sugita, S. (2007). "Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition." The Holocene 17(2): 229-241.
NASA Astrophysics Data System (ADS)
Surminski, S.; Holt Andersen, B.; Hohl, R.; Andersen, S.
2012-04-01
Earth Observation Data (EO) can improve climate risk assessment particularly in developing countries where densities of weather stations are low. Access to data that reflects exposure to weather and climate risks is a key condition for any successful risk management approach. This is of particular importance in the context of agriculture and drought risk, where historical data sets, accurate current data about crop growth and weather conditions, as well as information about potential future changes based on climate projections and socio-economic factors are all relevant, but often not available to stakeholders. Efforts to overcome these challenges in using EO data have so far been predominantly focused on developed countries, where satellite-derived Normalized Difference Vegetation Indexes (NDVI) and the MERIS Global Vegetation Indexes (MGVI), are already used within the agricultural sector for assessing and managing crop risks and to parameterize crop yields. This paper assesses how public-private collaboration can foster the application of these data techniques. The findings are based on a pilot project in North-East China where severe droughts frequently impact the country's largest corn and soybeans areas. With support from the European Space Agency (ESA), a consortium of meteorological experts, mapping firms and (re)insurance experts has worked to explore the potential use and value of EO data for managing crop risk and assessing exposure to drought for four provinces in North-East China (Heilongjiang, Jilin, Inner Mongolia and Liaoning). Combining NDVI and MGVI data with meteorological observations to help alleviate shortcomings of NDVI specific to crop types and region has resulted in the development of new drought maps for the time 2000-2011 in digital format at a high resolution (1x1 km). The observed benefits of this data application range from improved risk management to cost effective drought monitoring and claims verification for insurance purposes. This paper concludes by exploring the potential of replicating such a partnership approach to climate risk assessment in other regions. Authors of the paper: Surminski, Swenja (London School of Economics); Holt Andersen, Birgitte (CWare); Hohl, Roman (Swiss Re); Andersen, Søren (COWI)
Detection and attribution of vegetation greening trend in China over the last 30 years
Piao, Shilong; Yin, Guodong; Tan, Jianguang; ...
2014-11-04
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. Here, we use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO 2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41%more » of the average growing-season LAI trend (LAI GS) estimated by satellite datasets (average trend of 0.0070yr -1, ranging from 0.0035yr -1 to 0.0127yr -1), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAI GS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAI GS (P<0.05), and marginally significantly (P=0.07) correlated with the residual of LAI(GS) trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO 2 concentration and nitrogen deposition, across different provinces. In conclusion, this result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.« less
Detection and attribution of vegetation greening trend in China over the last 30 years
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, Shilong; Yin, Guodong; Tan, Jianguang
The reliable detection and attribution of changes in vegetation growth is a prerequisite for the development of strategies for the sustainable management of ecosystems. This is an extraordinary challenge. To our knowledge, this study is the first to comprehensively detect and attribute a greening trend in China over the last three decades. Here, we use three different satellite-derived Leaf Area Index (LAI) datasets for detection as well as five different process-based ecosystem models for attribution. Rising atmospheric CO 2 concentration and nitrogen deposition are identified as the most likely causes of the greening trend in China, explaining 85% and 41%more » of the average growing-season LAI trend (LAI GS) estimated by satellite datasets (average trend of 0.0070yr -1, ranging from 0.0035yr -1 to 0.0127yr -1), respectively. The contribution of nitrogen deposition is more clearly seen in southern China than in the north of the country. Models disagree about the contribution of climate change alone to the trend in LAI GS at the country scale (one model shows a significant increasing trend, whereas two others show significant decreasing trends). However, the models generally agree on the negative impacts of climate change in north China and Inner Mongolia and the positive impact in the Qinghai-Xizang plateau. Provincial forest area change tends to be significantly correlated with the trend of LAI GS (P<0.05), and marginally significantly (P=0.07) correlated with the residual of LAI(GS) trend, calculated as the trend observed by satellite minus that estimated by models through considering the effects of climate change, rising CO 2 concentration and nitrogen deposition, across different provinces. In conclusion, this result highlights the important role of China's afforestation program in explaining the spatial patterns of trend in vegetation growth.« less
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007-Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.
USDA-ARS?s Scientific Manuscript database
Sichuan Basin in southwestern China is a region of great conservation concern due to poor vegetation recovery on steep roadside slopes, yet little is known about the influence of edaphic factors on plant community dynamics of disturbed slopes. A greater understanding of vegetation patterns across va...
Excessive afforestation and soil drying on China's Loess Plateau
NASA Astrophysics Data System (ADS)
Zhang, Shulei; Yang, Dawen
2017-04-01
Afforestation and deforestation are human disturbances to vegetation, which have profound impacts on regional eco-hydrological processes, the water and carbon cycles, and consequently, ecosystem sustainability. Since 1999, large scale revegetation has been carried out across China's Loess Plateau following the "Grain-to-Green Program" implemented by the Chinese government. This revegetation, particularly with forest, has caused negative eco-hydrological consequences, including streamflow decline and soil drying. Here, we have used "ecosystem optimality theory" and satellite observations, to assess the water balance under the climate-defined optimal and actual vegetation cover during 1982-2010 and its responses to future climate change (2011-2050) over the Loess Plateau. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined optimal cover (0.43 on average) in the most recent decade, especially in the middle-to-east Loess Plateau, indicating that it is the widespread over-planting, which is primarily responsible for soil drying in the area. In addition, both the optimal vegetation cover and soil moisture tend to decrease under future climate scenarios. Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable eco-hydrological environment in the region, a revegetation threshold should be urgently set, to limit future planting.
Sun, Jinyu; Wang, Xuhui; Chen, Anping; Ma, Yuecun; Cui, Mengdi; Piao, Shilong
2011-08-01
How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P < 0.01), and two distinct periods with different trends can be identified, 1982-1990 and 1990-2006. NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P < 0.01). Different regions also showed difference in the timing of NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.
Health education and the control of intestinal worm infections in China: a new vision.
McManus, Donald P; Bieri, Franziska A; Li, Yue-Sheng; Williams, Gail M; Yuan, Li-Ping; Henglin, Yang; Du, Zun-Wei; Clements, Archie Ca; Steinmann, Peter; Raso, Giovanna; Yap, Peiling; Magalhães, Ricardo J Soares; Stewart, Donald; Ross, Allen G; Halton, Kate; Zhou, Xiao-Nong; Olveda, Remigio M; Tallo, Veronica; Gray, Darren J
2014-07-24
The transmission of soil-transmitted helminths (STHs) is associated with poverty, poor hygiene behaviour, lack of clean water and inadequate waste disposal and sanitation. Periodic administration of benzimidazole drugs is the mainstay for global STH control but it does not prevent re-infection, and is unlikely to interrupt transmission as a stand-alone intervention. We reported recently on the development and successful testing in Hunan province, PR China, of a health education package to prevent STH infections in Han Chinese primary school students. We have recently commenced a new trial of the package in the ethnically diverse Xishuangbanna autonomous prefecture in Yunnan province and the approach is also being tested in West Africa, with further expansion into the Philippines in 2015. The work in China illustrates well the direct impact that health education can have in improving knowledge and awareness, and in changing hygiene behaviour. Further, it can provide insight into the public health outcomes of a multi-component integrated control program, where health education prevents re-infection and periodic drug treatment reduces prevalence and morbidity.
NASA Astrophysics Data System (ADS)
Huang, Huabing; Liu, Caixia; Wang, Xiaoyi; Biging, Gregory S.; Chen, Yanlei; Yang, Jun; Gong, Peng
2017-07-01
Vegetation height is an important parameter for biomass assessment and vegetation classification. However, vegetation height data over large areas are difficult to obtain. The existing vegetation height data derived from the Ice, Cloud and land Elevation Satellite (ICESat) data only include laser footprints in relatively flat forest regions (<5°). Thus, a large portion of ICESat data over sloping areas has not been used. In this study, we used a new slope correction method to improve the accuracy of estimates of vegetation heights for regions where slopes fall between 5° and 15°. The new method enabled us to use more than 20% additional laser data compared with the existing vegetation height data which only uses ICESat data in relatively flat areas (slope < 5°) in China. With the vegetation height data extracted from ICESat footprints and ancillary data including Moderate Resolution Imaging Spectroradiometer (MODIS) derived data (canopy cover, reflectances and leaf area index), climate data, and topographic data, we developed a wall to wall vegetation height map of China using the Random Forest algorithm. We used the data from 416 field measurements to validate the new vegetation height product. The coefficient of determination (R2) and RMSE of the new vegetation height product were 0.89 and 4.73 m respectively. The accuracy of the product is significantly better than that of the two existing global forest height products produced by Lefsky (2010) and Simard et al. (2011), when compared with the data from 227 field measurements in our study area. The new vegetation height data demonstrated clear distinctions among forest, shrub and grassland, which is promising for improving the classification of vegetation and above-ground forest biomass assessment in China.
Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong
2016-09-01
To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies management and improved agricultural extension service efficiency, which in turn can stabilize vegetable yields and increase farmers' benefits.
Detection and attribution of vegetation growth change in China during the last thirty years
NASA Astrophysics Data System (ADS)
Tan, J.; Wang, X.; Mao, J.; Shi, X.; Peng, S.; Zeng, Z.; Piao, S.
2013-12-01
Enhanced terrestrial vegetation growth in China over the past three decades has been proved by satellite observations. During the same period, China has experienced dramatic land use and land cover changes. Those changes can not only strengthen the vegetation growth by afforestation and agricultural management, but also weaken it by urbanization and overgrazing. Compared to global climate changes, the effect of land use and land cover changes (LULCC) in China vegetation growth is still not clear. A further understanding of the mechanisms for this phenomenon is crucial for projecting future ecosystem dynamics. To investigate the variation of vegetation growth in Chinese provinces and evaluate its responses to external driving factors from 1982 to 2009, two mechanistic terrestrial carbon models (CLM and OCHIDEE) have been applied in this paper. The modeled Leaf Area Index (LAI) from the two models has been increasing, which is consistent to the satellite LAI. On that basis, a series of factorial simulations based on the two models were processed to separate independent contributions of external driving factors to LAI. Besides of climate changing and LULCC, other external driving factors were also considered such as CO2 and nitrogen deposition. The results indicate that the distribution of LAI trend is far from homogeneous at provincial scale and highest LAI trend happened in South China. The dominant influential factor varies in different provinces. Climate-only simulation may not explain the vegetation growth change well in all the provinces. CO2 and LULCC seem to play a more important role in South China which matches the region with sharp increase of LAI. This phenomenon shows that the anthropology-oriented impact cannot be ignored under the background of global climate change and it is vital for further exploration of the effect of human society to vegetation growth.
Early Childhood Intervention in China
ERIC Educational Resources Information Center
Zheng, Yuzhu; Maude, Susan P.; Brotherson, Mary Jane
2015-01-01
With rapid economic development and increasing awareness of the importance of early childhood intervention (ECI), China is re-examining its social and educational practices for young children with disabilities. This re-examination may have a significant impact on young children with disabilities in China. It may also set an example for other…
Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he
2011-04-01
Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.
China is the largest rice producing and consuming country in the world, but rice production has given way to the production of vegetables during the past twenty years. The government has been trying to stop this land-use conversion and increase the area in rice-vegetable rotation...
Luo, Xiaofeng; Gong, Xiao; Zhao, Peizhen; Zou, Xia; Chen, Wen; Ling, Li
2017-07-24
This study examined the re-entry characteristics and related predictors among HIV-infected methadone maintenance treatment (MMT) clients in Guangdong, China. Data on HIV-infected MMT clients was obtained from the clinic MMT registration system in Guangdong. Of the 653 participants, only 9.0% remained in the MMT program until the end of the study. For the drop-outs, 70.0% returned to MMT at least once by the end of the study. Re-entry was independently associated with marital status (OR never married = 2.24, 95% CI: 1.02-4.93; OR married currently = 2.34, 95% CI: 1.05-5.22), being unemployed (OR = 1.92, 95% CI: 1.12-3.27), lower positive percentages of urine tests (OR <40% = 4.08, 95% CI: 2.21-7.54; OR 40%-80% = 2.52, 95% CI: 1.39-4.56), higher maintenance doses (OR = 3.78, 95% CI: 2.21-7.54)and poorer MMT attendance percentages (OR <20% = 282.02, 95% CI: 62.75-1268.11; OR20-49% = 20.75, 95% CI: 10.52-40.93; OR50-79% = 6.07, 95% CI: 3.44-10.73). A higher re-entry frequency was independently associated with lower education level (ORjunior high school = 0.49, 95% CI: 0.26-0.93), average drug use times less than twice (OR = 0.64, 95% CI: 0.41-1.00), lower positive percentages of urine tests (OR = 0.39, 95% CI: 0.22-0.70) and poorer percentages of MMT attendance (OR<20% = 7.24, 95% CI: 2.99-17.55; OR20-49% = 14.30, 95% CI: 5.94-34.42; OR50-79% = 6.15, 95% CI: 2.55-14.85). Re-entry and repeated re-entry were prevalent among HIV-infected MMT clients in Guangdong, underscoring the urgent needs of tailored interventions and health education programs for this population.
Carbon Sequestration in Reforested Areas in China Since 1970
NASA Astrophysics Data System (ADS)
Chen, J.; Liu, J.; Wang, S.; Sun, R.; Shi, X.; Tian, Q.; Xue, J.; Pan, J.; Kang, E.; Zhu, Q.; Zhou, Y.; Yang, L.; Liu, G.; Chen, M.; Thomas, S.; Bryan, R.; Yin, Y.; MacLaren, V.; Zhou, S.; Feng, X.; Wang, C.; Pan, J.
2004-05-01
Since July 2002, a 3-year Canada-China joint project was funded by the Canadian International Development Agency and the Chinese Academy of Sciences to assess the current status of China's forests and the impacts of forestry activities on carbon sequestration. From 1973 to 2001, China's total forested area increased from 122 Mha to 159 Mha, owing to large-scale reforestations for the main purpose of soil erosion control. In this project, four local forest sites in Changbaishan, Heihe, Liping and Xingguo in various regions are chosen for intensive assessments of forest and soil stocks. Ground-based measurements of leaf area index (LAI), net primary productivity (NPP), soil texture, vegetation and soil carbon stocks are used to calibrate models. High-resolution remote sensing images from ASTER and ETM are used to map LAI and NPP of these sites and for upscaling to the whole China based on MODIS and VEGETATION images. Remote sensing techniques and carbon cycle models (BEPS, InTEC) developed in Canada are being adapted to China's ecosystems. Preliminary results suggest that new reforested areas since 1970 are now actively sequester carbon, making the overall forested area as a carbon sink in the last few decades. Efforts are being made to reduce uncertainties in the estimation through incorporating new nation-wide datasets of forest age, soil texture and organic matter, nitrogen deposition, etc. At Changbaishan, Liping and Heihe, integrated assessments are being conducted to investigate the impacts of reforestation (Grain-to-Green) programs on the social and economic status of farmers as well as the ecological environment and land use options to maximize carbon sequestraton.
Ecological and socioeconomic effects of China's policies for ecosystem services.
Liu, Jianguo; Li, Shuxin; Ouyang, Zhiyun; Tam, Christine; Chen, Xiaodong
2008-07-15
To address devastating environmental crises and to improve human well-being, China has been implementing a number of national policies on payments for ecosystem services. Two of them, the Natural Forest Conservation Program (NFCP) and the Grain to Green Program (GTGP), are among the biggest programs in the world because of their ambitious goals, massive scales, huge payments, and potentially enormous impacts. The NFCP conserves natural forests through logging bans and afforestation with incentives to forest enterprises, whereas the GTGP converts cropland on steep slopes to forest and grassland by providing farmers with grain and cash subsidies. Overall ecological effects are beneficial, and socioeconomic effects are mostly positive. Whereas there are time lags in ecological effects, socioeconomic effects are more immediate. Both the NFCP and the GTGP also have global implications because they increase vegetative cover, enhance carbon sequestration, and reduce dust to other countries by controlling soil erosion. The future impacts of these programs may be even bigger. Extended payments for the GTGP have recently been approved by the central government for up to 8 years. The NFCP is likely to follow suit and receive renewed payments. To make these programs more effective, we recommend systematic planning, diversified funding, effective compensation, integrated research, and comprehensive monitoring. Effective implementation of these programs can also provide important experiences and lessons for other ecosystem service payment programs in China and many other parts of the world.
Analysis of Vegetation Index Variations and the Asian Monsoon Climate
NASA Technical Reports Server (NTRS)
Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina
2012-01-01
Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.
Yang, Yan-Zheng; Zhao, Peng-Xiang; Hao, Hong-Ke; Chang, Ming
2012-07-01
By using 1998-2010 SPOT-VGT NDVI images, this paper analyzed the spatiotemporal variation of vegetation in northern Shaanxi. In 1998-2010, the NDVI in northern Shaanxi had an obvious seasonal variation. The average monthly NDVI was the minimum (0.14) in January and the maximum (0.46) in August, with a mean value of 0.28. The average annual NDVI presented an overall increasing trend, indicating that the vegetation in this area was in restoring. Spatially, the restoration of vegetation in this area was concentrated in central south part, and the degradation mainly occurred in the north of the Great Wall. Air temperature and precipitation were the important climate factors affecting the variation of vegetation, with the linear correlation coefficients to NDVI being 0.72 and 0.58, respectively. The regions with better restored vegetation were mainly on the slopes of 15 degrees-25 degrees, indicating that the Program of Conversion of Cropland to Forestland and Grassland had a favorable effect in the vegetation restoration in northern Shaanxi.
Ecohydrological optimality in the Northeast China Transect
NASA Astrophysics Data System (ADS)
Cong, Zhentao; Li, Qinshu; Mo, Kangle; Zhang, Lexin; Shen, Hong
2017-05-01
The Northeast China Transect (NECT) is one of the International Geosphere-Biosphere Program (IGBP) terrestrial transects, where there is a significant precipitation gradient from east to west, as well as a vegetation transition of forest-grassland-desert. It is remarkable to understand vegetation distribution and dynamics under climate change in this transect. We take canopy cover (M), derived from Normalized Difference Vegetation Index (NDVI), as an index to describe the properties of vegetation distribution and dynamics in the NECT. In Eagleson's ecohydrological optimality theory, the optimal canopy cover (M*) is determined by the trade-off between water supply depending on water balance and water demand depending on canopy transpiration. We apply Eagleson's ecohydrological optimality method in the NECT based on data from 2000 to 2013 to get M*, which is compared with M from NDVI to further discuss the sensitivity of M* to vegetation properties and climate factors. The result indicates that the average M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). Results of water balance also match the field-measured data in the references. The sensitivity analyses show that M* decreases with the increase of leaf area index (LAI), stem fraction and temperature, while it increases with the increase of leaf angle and precipitation amount. Eagleson's ecohydrological optimality method offers a quantitative way to understand the impacts of climate change on canopy cover and provides guidelines for ecorestoration projects.
Wang, Wei; Zeng, Wenjing; Chen, Weile; Zeng, Hui; Fang, Jingyun
2013-01-01
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China's temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China. PMID:24058408
Spatiotemporal characteristics of drought and its impact to vegetation activities in China
NASA Astrophysics Data System (ADS)
Wu, Jianjun; Han, Xinyi; Yang, Jianhua
2017-04-01
Drought is considered as a phenomenon with an imbalance of moisture content payments. As the result of climate change with more prolonged precipitation deficit and abnormal high evaporation, drought is expected to increase in frequency and severity. However, the result from self-calibrating Palmer Drought Severity Index (scPDSI) calculated by different ways showed various performance. Here we show that drought in China experienced a slight increase during the 1948-2012 as the results of monthly 1° scPDSI data sets from J. Sheffield (-0.0295 m-1), the monthly 2.5° scPDSI data sets from Dai (-0.0008 m-1) and the monthly 2.5° scPDSI data sets , from NCAR(-0.0006 m-1), and trends from those different scPDSIs show similar spatial patterns in China. The Central China, Northeast, North China, East China and South China have significant drier trend, while the Southwest and Northwest dry more slightly, because almost half area of this two regions such as Qinghai-Tibet Plateau became wetter in last decades. Meanwhile, the vegetation activities express differently because of vegetation types and dry-wet pattern. Vegetation activities in Northeast experienced a significant decrease (-0.0295 yr-1) between 1992-2005, where the land cover is dominated by wet forests and meadow grasslands. the result investigated by land use and land cover change show that the forest decreased drastically in this region, that maybe caused by the serious trend of drought. Key words: scPDSI, drought, trend, vegetation activity, LUCC
Impacts of Land Cover Changes on Climate over China
NASA Astrophysics Data System (ADS)
Chen, L.; Frauenfeld, O. W.
2014-12-01
Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Li, R; Xie, Y
Purpose: Respiration control by hypnosis is a method in reducing the detriment to the healthy organs or organizations for patients during radiotherapy, especially for lung and abdomen cancer (Fig.1). It’s hypothesized that there exists alterations neurological brain activity during the hypnosis state of respiratory motion control in comparison with resting state. Methods: Thirteen healthy volunteers were organized to participate in a hypnosis experiment that consisted of two sectional scans of functional magnetic resonance imaging (fMRI), rest state condition (RSC) scanning and hypnosis state condition (HSC) scanning. In addition, the coronal section of the lung was scanned during both conditions. Duringmore » the hypnosis scan, the volunteers were under the hypnotists’ guidance to keep peace and stable respiration. To evaluate the altered physiological performance of hypnosis in the respiratory control, three conventional indicators ALFF/fALFF (0.01–0.08Hz) and ReHo, were applied to identify the difference. Results: Compared with RSC, HSC showed significant (p<0.05) higher ReHo in superior temporal gyrus, middle temporal gyrus, frontal lobe, middle occipital gyrus, parietal lobe, cerebellum anterior Lobe and lingual gyrus, and left brainstem (Fig.2). While significant lower ReHo in middle frontal gyrus, superior frontal gyrus, inferior semi-lunar lobule, sub-lobar and limbic lobe (Fig.2). As for the ALFF results, significant higher value of HSC was observed in superior temporal gyrus, middle temporal gyrus, middle occipital gyrus, middle occipital gyrus, cerebellum anterior lobe, lingual gyrus, sub-lobar, limbic lobe, and lower in cerebellum posterior lobe, inferior semi-lunar lobule, inferior parietal lobule right middle frontal gyrus, cerebellar tonsil (Fig.3). The results of fALFF were similar to ALFF (Fig.4). The above results demonstrated that most significant regions of brain were uniform between ReHo and ALFF/fALFF. Conclusion: Hypnosis is a new psychological and helpful technology for respiration control. This study provides new insights of neurological brain activity during hypnosis of respiration control. This work is supported by grants from Guangdong Innovative Research Team Program of China (Grant No. 2011S013), National 863 Programs of China (Grant Nos. 2012AA02A604 and 2015AA043203), the National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917)« less
Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.
Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther
2017-01-01
Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.
Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.
Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan
2015-12-01
Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.
NASA Astrophysics Data System (ADS)
Zheng, Xiao; Zhu, Jiaojun
2017-01-01
Afforestation and reforestation activities achieve high attention at the policy agenda as measures for carbon sequestration in order to mitigate climate change. The Three-North Shelter Forest Program, the largest ecological afforestation program worldwide, was launched in 1978 and will last until 2050 in the Three-North regions (accounting for 42.4 % of China's territory). Shelter forests of the Three-North Shelter Forest Program have exhibited severe decline after planting in 1978 due to lack of detailed climatic classification. Besides, a comprehensive assessment of climate adaptation for the current shelter forests was lacking. In this study, the aridity index determined by precipitation and reference evapotranspiration was employed to classify climatic zones for the afforestation program. The precipitation and reference evapotranspiration with 1-km resolution were estimated based on data from the tropical rainfall measuring mission and moderate resolution imaging spectroradiometer, respectively. Then, the detailed climatic classification for the afforestation program was obtained based on the relationship between the different vegetation types and the aridity index. The shelter forests in 2008 were derived from Landsat TM in the Three-North regions. In addition, climatic zones and shelter forests were corrected by comparing with natural vegetation map and field surveys. By overlaying the shelter forests on the climatic zones, we found that 16.30 % coniferous forests, 8.21 % broadleaved forests, 2.03 % mixed conifer-broadleaved forests, and 10.86 % shrubs were not in strict accordance with the climate conditions. These results open new perspectives for potential use of remote sensing techniques for afforestation management.
Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China.
Miao, Yunfa; Jin, Heling; Cui, Jianxin
2016-03-10
Over the past several thousand years, arid and semiarid China has experienced a series of asynchronous desertification events in its semiarid sandy and desert regions, but the precise identification of the driving forces of such events has remained elusive. In this paper we identify two rapid desertification events (RDEs) at ~4.6 ± 0.2 ka BP and ~3.3 ± 0.2 ka BP from the JJ Profile, located in the eastern Mu Us Sandy Lands. These RDEs appear to have occurred immediately following periods marked by persistently frequent and intense fires. We argue that such fire patterns, directly linked to an uncontrolled human use of vegetation as fuel, played a key role in accelerating RDEs by ensuring that the land surface was degraded beyond the threshold required for rapid desertification. This would suggest that the future use of a massive and sustained ecological program of vegetation rehabilitation should reduce the risk of destructive fire.
Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China
Miao, Yunfa; Jin, Heling; Cui, Jianxin
2016-01-01
Over the past several thousand years, arid and semiarid China has experienced a series of asynchronous desertification events in its semiarid sandy and desert regions, but the precise identification of the driving forces of such events has remained elusive. In this paper we identify two rapid desertification events (RDEs) at ~4.6 ± 0.2 ka BP and ~3.3 ± 0.2 ka BP from the JJ Profile, located in the eastern Mu Us Sandy Lands. These RDEs appear to have occurred immediately following periods marked by persistently frequent and intense fires. We argue that such fire patterns, directly linked to an uncontrolled human use of vegetation as fuel, played a key role in accelerating RDEs by ensuring that the land surface was degraded beyond the threshold required for rapid desertification. This would suggest that the future use of a massive and sustained ecological program of vegetation rehabilitation should reduce the risk of destructive fire. PMID:26961705
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.
The Re-Socialisation of Migrants in a Local Community in Shanghai, China
ERIC Educational Resources Information Center
Chang, Bo
2015-01-01
Following China's economic reforms in the early 1990s, the wave of internal North-to-South, West-to-East and rural-to-urban migration has still not subsided. The purpose of this study was to investigate how a local community in Shanghai supported migrants from other provinces in China in the process of their re-socialisation. By examining the…
Tang, L; Lee, A H; Xu, F; Zhang, T; Lei, J; Binns, C W
2014-01-01
The north-western region of China carries a big burden of esophageal cancer with incidence above the national average. This study ascertained the association between fruit and vegetable consumption and the risk of esophageal cancer in this remote part of China. A case-control study was undertaken in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China, between 2008 and 2009. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual fruit and vegetable consumption was obtained by face-to-face interview using a validated semiquantitative food frequency questionnaire. Unconditional logistic regression analyses were performed to assess the strength of the associations. The esophageal cancer patients consumed significantly less fruits (mean 364.3, standard deviation [SD] 497.4 g) and vegetables (mean 711.4, SD 727.9 g) daily than their counterparts without the disease (mean 496.5, SD 634.4 g and mean 894.5, SD 746.1 g, respectively). The adjusted odds ratios were 0.48 (95% confidence interval 0.33-0.71) and 0.46 (95% confidence interval 0.32-0.68) for consuming at least 515 g of fruits and 940 g of vegetables per day, respectively, relative to at most 170 g and 520 g. With respect to nutrients contained in fruits and vegetables, intakes of vitamin C, vitamin E, β-cryptoxanthin, potassium, and magnesium at high levels also reduced the esophageal cancer risk. In conclusion, inverse associations were evident between consumption of fruits and vegetables and the risk of esophageal cancer for adults residing in north-west China. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis.
Wang, Xiaozhong; Zou, Chunqin; Gao, Xiaopeng; Guan, Xilin; Zhang, Wushuai; Zhang, Yueqiang; Shi, Xiaojun; Chen, Xinping
2018-08-01
China accounts for more than half of the world's vegetable production, and identifying the contribution of vegetable production to nitrous oxide (N 2 O) emissions in China is therefore important. We performed a meta-analysis that included 153 field measurements of N 2 O emissions from 21 field studies in China. Our goal was to quantify N 2 O emissions and fertilizer nitrogen (N) based-emission factors (EFs) in Chinese vegetable systems and to clarify the effects of rates and types of N fertilizer in both open-field and greenhouse systems. The results indicated that the intensive vegetable systems in China had an average N 2 O emission of 3.91 kg N 2 O-N ha -1 and an EF of 0.69%. Although the EF was lower than the IPCC default value of 1.0%, the average N 2 O emission was generally greater than in other cropping systems due to greater input of N fertilizers. The EFs were similar in greenhouse vs. open-field systems but N 2 O emissions were about 1.4 times greater in greenhouses. The EFs were not affected by N rate, but N 2 O emissions for both open-field and greenhouse systems increased with N rate. The total and fertilizer-induced N 2 O emissions, as well as EFs, were unaffected by the type of fertilizers in greenhouse system under same N rates. In addition to providing basic information about N 2 O emissions from Chinese vegetable systems, the results suggest that N 2 O emissions could be reduced without reducing yields by treating vegetable systems in China with a combination of synthetic N fertilizer and manure at optimized economic rates. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessing phenological change in China from 1982 to 2006 using AVHRR imagery
USDA-ARS?s Scientific Manuscript database
Long term trends in vegetation phenology indicate ecosystem change due to the combined impacts of human activities and climate. In this study, we used 1982 to 2006 Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (AVHRR NDVI) imagery across China and the TIMESAT progra...
Escobar, Indra Elena C; Santos, Vilma M; da Silva, Danielle Karla A; Fernandes, Marcelo F; Cavalcante, Uided Maaze T; Maia, Leonor C
2015-06-01
The aim of this study was to describe the impact of re-vegetation on the restoration of microbial community structure and soil microbiological properties in sand dunes that had been affected by mining activity. Soil samples were collected during the dry and rainy seasons from a chronosequence (1, 9, 21 years) of re-vegetated dunes using a single preserved dune as a reference. The composition of the fatty acid methyl esters and soil microbial properties were evaluated. The results showed that the changes in microbial community structure were related to seasonal variations: biomarkers of Gram-positive bacteria were higher than Gram-negative bacteria during the dry season, showing that this group of organisms is more tolerant to these stressful conditions. The microbial community structure in the natural dune was less affected by seasonal variation compared to the re-vegetated areas, whereas the opposite was observed for microbiological properties. Thus, in general, the proportion of saprobic fungi was higher in the natural dune, whereas Gram-negative bacteria were proportionally more common in the younger areas. Although over time the re-vegetation allows the recovery of the microbial community and the soil functions, these communities and functions are different from those found in the undisturbed areas.
Zhang, Yan; Yuan, Jianping; Liu, Baoyuan
2002-08-01
Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.
Yang, Sheng-Xiang; Liao, Bin; Yang, Zhi-Hui; Chai, Li-Yuan; Li, Jin-Tian
2016-08-15
Acidification is a major constraint for revegetation of sulphidic metal-contaminated soils, as exemplified by the limited literature reporting the successful phytostabilization of mine soils associated with pH<3 and high acidification potential. In this study, a combination of ameliorants (lime and chicken manure) and five acid-tolerant plant species has been employed in order to establish a self-sustaining vegetation cover on an extremely acid (pH<3) polymetallic pyritic mine waste heap in southern China exhibiting high acidification potential. The results from the first two-year data showed that the addition of the amendments and the establishment of a plant cover were effective in preventing soil acidification. Net acid-generating potential of the mine soil decreased steadily, whilst pH and acid neutralization capacity increased over time. All the five acid-tolerant plants colonized successfully in the acidic metal-contaminated soil and developed a good vegetation cover within six months, and subsequent vegetation development enhanced organic matter accumulation and nutrient element status in the mine soil. The two-year remediation program performed on this extremely acid metalliferous soil indicated that aided phytostabilization can be a practical and effective restoration strategy for such extremely acid mine soils. Copyright © 2016. Published by Elsevier B.V.
Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng
2017-01-01
Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780
Liu, Jun-Hui; Gao, Ji-Xi
2008-09-01
Based on the remote sensing images and the meteorological data in 1986 and 2000, and by using the model of extracting vegetation coverage, the spatiotemporal changes of vegetation coverage in the farming-pastoral ecotone of Northern China in 1986-2000 were studied, with the effects of climate and land use change on the changes analyzed. The results showed that in this ecotone, the area with lower vegetation coverage was increasing, while that with higher vegetation coverage was in adverse. The regions with increasing vegetation coverage were mainly in the east of northeast section, the west of north section, and the west of northwest section of the ecotone, while the vegetation coverage in the other sections was obviously degraded. The vegetation coverage were positively correlated with precipitation and aridity index, but negatively correlated with temperature. The change direction and extent of the vegetation coverage varied with land use types.
Hu, Wenyou; Huang, Biao; Tian, Kang; Holm, Peter E; Zhang, Yanxia
2017-01-01
Recently, greenhouse vegetable production (GVP) has grown rapidly and counts a large proportion of vegetable production in China. In this study, the accumulation, health risk and threshold values of selected heavy metals were evaluated systematically. A total of 120 paired soil and vegetable samples were collected from three typical intensive GVP systems along the Yellow Sea of China. Mean concentrations of Cd, As, Hg, Pb, Cu and Zn in greenhouse soils were 0.21, 7.12, 0.05, 19.81, 24.95 and 94.11 mg kg -1 , respectively. Compared to rootstalk and fruit vegetables, leafy vegetables had relatively high concentrations and transfer factors of heavy metals. The accumulation of heavy metals in soils was affected by soil pH and soil organic matter. The calculated hazard quotients (HQ) of the heavy metals by vegetable consumption decreased in the order of leafy > rootstalk > fruit vegetables with hazard index (HI) values of 0.61, 0.33 and 0.26, respectively. The HI values were all below 1, which indicates that there is a low risk of greenhouse vegetable consumption. Soil threshold values (STVs) of heavy metals in GVP system were established according to the health risk assessment. The relatively lower transfer factors of rootstalk and fruit vegetables and higher STVs suggest that these types of vegetables are more suitable for cultivation in greenhouse soils. This study will provide an useful reference for controlling heavy metals and developing sustainable GVP. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stebich, Martina; Rehfeld, Kira; Schlütz, Frank; Tarasov, Pavel E.; Liu, Jiaqi; Mingram, Jens
2015-09-01
High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.
Estimation of vegetative mercury emissions in China.
Quan, Jiannong; Zhang, Xiaoshan; Shim, Shang Gyoo
2008-01-01
Vegetative mercury emissions were estimated within the framework of Biogenic Emission Inventory System (BEIS3 V3.11). In this estimation, the 19 categories of U.S. Geological Survey landcover data were incorporated to generate the vegetation-specific mercury emissions in a 81-km Lambert Conformal model grid covering the total Chinese continent. The surface temperature and cloud-corrected solar radiation from a Mesoscale Meteorological model (MM5) were retrieved and used for calculating the diurnal variation. The implemented emission factors were either evaluated from the measured mercury flux data for forest, agriculture and water, or assumed for other land fields without available flux data. Annual simulations using the MM5 data were performed to investigate the seasonal emission variation. From the sensitivity analysis using two sets of emission factors, the vegetative mercury emissions in China domain were estimated to range from a lower limit of 79 x 10(3) kg/year to an upper limit of 177 x 10(3) kg/year. The modeled vegetative emissions were mainly generated from the eastern and southern China. Using the estimated data, it is shown that mercury emissions from vegetation are comparable to that from anthropogenic sources during summer. However, the vegetative emissions decrease greatly during winter, leaving anthropogenic sources as the major sources of emission.
Utilizing multisource remotely sensed data to dynamically monitor drought in China
NASA Astrophysics Data System (ADS)
Liu, Sanchao; Li, Wenbo
2011-12-01
Drought is one of major nature disaster in the world and China. China has a vast territory and very different spatio-temporal distribution weather condition. Therefore, drought disasters occur frequently throughout China, which may affect large areas and cause great economic loss every year. In this paper, geostationary meteorological remote sensing data, FY-2C/D/E VISSR and three quantitative remotely sensed models including Cloud Parameters Method (CPM), Vegetation Supply Water Index (VSWI), and Temperature Vegetation Dryness Index (TVDI) have been used to dynamically monitor severe drought in southwest China from 2009 to 2010. The results have effectively revealed the occurrence, development and disappearance of this drought event. The monitoring results can be used for the relevant disaster management departments' decision-making works.
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325
Qiu, Huiling; Chen, Fu; Leng, Xinyan; Fei, Rongmei; Wang, Libo
2014-10-01
Clostridium perfringens is an important pathogen causing sudden death syndrome, necrotic enteritis, and gas gangrene in ruminants, especially some deer species. Père David's deer (Elaphurus davidianus) is one of the world's rare species and is an endangered and protected species in China. Some Père David's deer in the Chinese Shishou Père David's Deer Preserve died due to C. perfringens infection. We investigated the toxin types and C. perfringens enterotoxin-positive (cpe(+)) strains of isolated C. perfringens in Père David's deer in China. We collected 155 fecal samples from the Beijing Nanhaizi Père David's Deer Park and the Jiangsu Dafeng Père David's Deer National Nature Reserve between July 2010 and July 2011. Bacteria isolated using blood agar and mannitol agar plates were identified by Gram staining and nested PCR for 16S rRNA. We isolated C. perfringens from 41 fecal samples and used PCR amplification of five toxin genes to identify the toxinotypes and the cpe(+) strains of C. perfringens. Twenty-one isolates were type A, 15 were type E, and five were type D. Fifteen isolates were cpe(+) strains, including eight that were type A and seven that were type E.
Wang, Yanchun; Qiao, Min; Liu, Yunxia; Zhu, Yongguan
2012-01-01
The possible health risks of heavy metals contamination to local population through food chain were evaluated in Beijing and Tianjin city cluster, China, where have a long history of sewage irrigation. The transfer factors (TF) for heavy metals from soil to vegetables for six elements including Cu, Zn, Pb, Cr, As and Cd were calculated and the pollution load indexes (PLI) were also assessed. Results indicate that only Cd exceeded the maximum acceptable limit in these sites. So far, the heavy metal concentrations in soils and vegetables were all below the permissible limits set by the Ministry of Environmental Protection of China and World Health Organization. The transfer factors of six heavy metals showed the trend as Cd > Zn > Cu > Pb > As > Cr, which were dependent on the vegetable species. The estimated dietary intakes of Cu, Zn, Pb, Cr, As and Cd were far below the tolerable limits and the target hazard quotient (THQ) values were less than 1, which suggested that the health risks of heavy metals exposure through consuming vegetables were generally assumed to be safe.
Huang, Xin-hui; Yu, Fu-ke; Li, Xiao-ying; Zheng, Yuan; Yuan, Hua; Ma, Jian-gang; Wang, Yan-xia; Qi, Dan-hui; Shao, Hong-bo
2014-01-01
Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the “water pump” viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration. PMID:25302337
Huang, Xin-hui; Yu, Fu-ke; Li, Xiao-ying; Zheng, Yuan; Yuan, Hua; Ma, Jian-gang; Wang, Yan-xia; Qi, Dan-hui; Shao, Hong-bo
2014-01-01
Recently, the frequent seasonal drought in Southwest China has brought considerable concerns and continuous heated arguments on the "water pump" viewpoint (i.e., the water demand from Hevea spp. and Eucalyptus spp. can be treated as a water pump) once again. However, such viewpoint just focused on water consumption from vegetation transpiration and its ecoenvironment impacts, which had not considered other attributes of vegetation, namely, water saving and drought resistance, and hydrological regulation (water conservation) into consideration. Thus, in this paper, the synthesized attributes of regional vegetation water use had been mainly discussed. The results showed that the study on such aspects as the characters of water consumption from vegetation transpiration, the potential of water saving and drought resistance, and the effects of hydrological regulation in Southwest China lagged far behind, let alone the report on synthesized attributes of water utilization with the organic combination of the three aspects above or the paralleled analysis. Accordingly, in this paper, the study on the synthesized attributes of water use by regional vegetation in Southwest China was suggested, and the objectives of such a special study were clarified, targeting the following aspects: (i) characters of water consumption from transpiration of regional typical artificial vegetation; (ii) potential of water saving and drought resistance of regional typical artificial vegetation; (iii) effects of hydrological regulation of regional typical artificial vegetation; (iv) synthesized attributes of water use by regional typical artificial vegetation. It is expected to provide a new idea for the scientific assessment on the regional vegetation ecoenvironment effects and theoretical guidance for the regional vegetation reconstruction and ecological restoration.
Cao, Hongbin; Chen, Jianjiang; Zhang, Jun; Zhang, Hui; Qiao, Li; Men, Yi
2010-01-01
Contamination of soil and agricultural products by heavy metals resulting from rapid industrial development has caused major concern. In this study, we investigated heavy metal (Cu, Zn, Pb, Cr, Hg and Cd) concentrations in rice and garden vegetables, as well as in cultivated soils, in a rural-industrial developed region in southern Jiangsu, China, and estimated the potential health risks of metals to the inhabitants via consumption of locally produced rice and garden vegetables. A questionnaire-based survey on dietary consumption rates of foodstuffs showed that rice and vegetables accounted for 64% of total foodstuffs consumed, and over 60% of rice and vegetables were grown in the local region. Average concentrations of Cr, Cu, Zn, Cd, Hg and Pb were 0.75, 2.64, 12.00, 0.014, 0.006 and 0.054 mg/kg dw (dry weight) in rice and were 0.67, 1.18, 4.34, 0.011, 0.002 and 0.058 mg/kg fw (fresh weight) in garden vegetables, respectively. These values were all below the maximum allowable concentration in food in China except for Cr in vegetables. Leafy vegetables had higher metal concentrations than solanaceae vegetables. Average daily intake of Cr, Cu, Zn, Cd, Hg and Pb through the consumption of rice and garden vegetables were 5.66, 16.90, 74.21, 0.10, 0.04 and 0.43 microg/(kg x day), respectively. Although Hazard Quotient values of individual metals were all lower than 1, when all six metal intakes via self-planted rice and garden vegetables were combined, the Hazard Index value was close to 1. Potential health risks from exposure to heavy metals in self-planted rice and garden vegetables need more attention.
All-dielectric frequency selective surface design based on dielectric resonator
NASA Astrophysics Data System (ADS)
Zheng-Bin, Wang; Chao, Gao; Bo, Li; Zhi-Hang, Wu; Hua-Mei, Zhang; Ye-Rong, Zhang
2016-06-01
In this work, we propose an all-dielectric frequency selective surface (FSS) composed of periodically placed high-permittivity dielectric resonators and a three-dimensional (3D) printed supporter. Mie resonances in the dielectric resonators offer strong electric and magnetic dipoles, quadrupoles, and higher order terms. The re-radiated electric and magnetic fields by these multipoles interact with the incident fields, which leads to total reflection or total transmission in some special frequency bands. The measured results of the fabricated FSS demonstrate a stopband fractional bandwidth (FBW) of 22.2%, which is consistent with the simulated result. Project supported by the National Natural Science Foundation of China (Grant Nos. 61201030, 61372045, 61472045, and 61401229), the Science and Technology Project of Jiangsu Province, China (Grant No. BE2015002), the Open Research Program of the State Key Laboratory of Millimeter Waves, China (Grant Nos. K201616 and K201622), and the Nanjing University of Posts and Telecommunications Scientific Foundation, China (Grant No. NY214148).
Fan, Changhua; Li, Bo; Xiong, Zhengqin
2018-01-15
Nitrification inhibitors, a promising tool for reducing nitrous oxide (N 2 O) losses and promoting nitrogen use efficiency by slowing nitrification, have gained extensive attention worldwide. However, there have been few attempts to explore the broad responses of multiple reactive gaseous nitrogen emissions of N 2 O, nitric oxide (NO) and ammonia (NH 3 ) and vegetable yield to nitrification inhibitor applications across intensive vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was performed to assess the efficacies of two nitrification inhibitors, namely, nitrapyrin and dicyandiamide on reactive gaseous nitrogen emissions, vegetable yield and reactive gaseous nitrogen intensity in four typical vegetable soils representing the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. The results showed soil type had significant influences on reactive gaseous nitrogen intensity, with reactive gaseous nitrogen emissions and yield mainly driven by soil factors: pH, nitrate, C:N ratio, cation exchange capacity and microbial biomass carbon. The highest reactive gaseous nitrogen emissions and reactive gaseous nitrogen intensity were in Acrisol while the highest vegetable yield occurred in Phaeozem. Nitrification inhibitor applications decreased N 2 O and NO emissions by 1.8-61.0% and 0.8-79.5%, respectively, but promoted NH 3 volatilization by 3.2-44.6% across all soils. Furthermore, significant positive correlations were observed between inhibited N 2 O+NO and stimulated NH 3 emissions with nitrification inhibitor additions across all soils, indicating that reduced nitrification posed the threat of NH 3 losses. Additionally, reactive gaseous nitrogen intensity was significantly reduced in the Anthrosol and Cambisol due to the reduced reactive gaseous nitrogen emissions and increased yield, respectively. Our findings highlight the benefits of nitrification inhibitors for integrating environment and agronomy in intensive vegetable ecosystems in China. Copyright © 2017. Published by Elsevier B.V.
Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing
2016-01-01
Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108
Food and Nutrients Intake in the School Lunch Program among School Children in Shanghai, China
Huang, Zhenru; Gao, Runying; Bawuerjiang, Nadila; Zhang, Yali; Huang, Xiaoxu; Cai, Meiqin
2017-01-01
This study aimed to evaluate the intake of food and nutrients among primary, middle, and high schools students in Shanghai, and provide recommendations for possible amendments in new school lunch standards of Shanghai. Twenty schools were included in the school lunch menu survey. Of those, seven schools enrolled 5389 students and conducted physical measurement of plate waste and a questionnaire survey. The amount of food and nutrients was compared according to the new China National Dietary Guideline for School Children (2016) and Chinese Dietary Reference Intakes (2013). The provision of livestock and poultry meat in menus was almost 5–8 times the recommended amount. The amount of seafood was less than the recommended amount, and mostly came from half-processed food. The average percentage of energy from fat was more than 30% in students of all grades. The greatest amount of food wasted was vegetables with 53%, 42%, and 31%, respectively, among primary, middle and high school students. Intake of Vitamin A, Vitamin B2, calcium, and iron was about 50% of the recommended proportion. Only 24.0% students were satisfied with the taste of school lunches. Higher proportions of livestock and poultry meat and low intake of vegetables have become integral problems in school lunch programs. Additionally, more attention needs to be paid to the serving size in primary schools with five age groups. PMID:28590431
The Impacts of Typical Drought Events on Terrestrial Vegetation in China
NASA Astrophysics Data System (ADS)
Yang, J.; Wu, J.; Zhou, H.; Han, X.
2018-04-01
In our study, according to the statistical results of standardized precipitation evapotranspiration index (SPEI), we chose two drought events which occurred in the North China during 2001 and in the Southwest China from 2009 to 2010. And two of the Global Land Surface Satellite (GLASS) products had been used to evaluate the impacts of drought on vegetation, including the leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FAPAR). The results show that: (1) In the development process of a drought event, the anomaly of remote sensing parameters (LAI and FAPAR) usually falls firstly and then rises as the drought changes from moderate to severe and then to moderate. This indicates that the effects of drought on vegetation remote sensing parameters are closely related to the severity of drought disaster. (2) The response of different vegetation types to the drought disaster is different. Compared with the forests, the response of grasslands to drought disaster is earlier. For example, the duration affected by drought disaster in grassland is longer 1/3 than the forests in the Southwest China. (3) Irrigation is an effective measure to mitigate the effects of drought. Irrigated croplands are less affected by drought than non-irrigated croplands and grasslands. In the North China, the decrease amplitude of irrigated croplands' remote sensing parameters is about half of non-irrigated croplands'.
NASA Astrophysics Data System (ADS)
Lyu, Anqi; Lu, Huayu; Zeng, Lin; Zhang, Hongyan; Zhang, Enlou; Yi, Shuangwen
2018-04-01
The stable carbon isotopic composition of organic matter of aeolian silt deposits is regarded as an appropriate proxy index of paleovegetation, especially in the Chinese Loess Plateau in central China. In this study, a loess-paleosol sequence in the southeastern Inner Mongolia Autonomous Region in northeastern (NE) China, which is located outside the Chinese Loess Plateau, is chosen to reconstruct the vegetation history since ∼1.08 Ma. Temperature exhibits a threshold value, which determines the growth of C4 plants in this study area. The organic matter of the samples is derived from two different vegetation types, namely, the mixed C3 and C4 plants and the pure C3 plants. The δ13C of the organic matter shows negative values in loess units and higher values in paleosol units. This finding reflects the influence of temperature and summer monsoon intensity on the vegetation dynamics over glacial-interglacial cycles. On a longer time scale, the δ13C values are higher between ∼1.1 and ∼0.9 Ma and after ∼0.35 Ma, and lower between ∼0.9 and ∼0.35 Ma, which may be attributed to a long-term temperature variation. Our analysis shows that regional temperature is the most important limiting factor that forces vegetation changes at the glacial-interglacial time scale in NE China.
Wang, Xibo; Ge, Jianping; Wei, Wendong; Li, Hanshi; Wu, Chen; Zhu, Ge
2016-01-01
Rare earths (RE) are critical materials in many high-technology products. Due to the uneven distribution and important functions for industrial development, most countries import RE from a handful of suppliers that are rich in RE, such as China. However, because of the rapid growth of RE exploitation and pollution of the mining and production process, some of the main suppliers have gradually tended to reduce the RE production and exports. Especially in the last decade, international RE trade has been changing in the trade community and trade volume. Based on complex network theory, we built an unweighted and weighted network to explore the evolution of the communities and identify the role of the major countries in the RE trade. The results show that an international RE trade network was dispersed and unstable because of the existence of five to nine trade communities in the unweighted network and four to eight trade communities in the weighted network in the past 13 years. Moreover, trade groups formed due to the great influence of geopolitical relations. China was often associated with the South America and African countries in the same trade group. In addition, Japan, China, the United States, and Germany had the largest impacts on international RE trade from 2002 to 2014. Last, some policy suggestions were highlighted according to the results.
Wang, Xibo; Ge, Jianping; Wei, Wendong; Li, Hanshi; Wu, Chen; Zhu, Ge
2016-01-01
Rare earths (RE) are critical materials in many high-technology products. Due to the uneven distribution and important functions for industrial development, most countries import RE from a handful of suppliers that are rich in RE, such as China. However, because of the rapid growth of RE exploitation and pollution of the mining and production process, some of the main suppliers have gradually tended to reduce the RE production and exports. Especially in the last decade, international RE trade has been changing in the trade community and trade volume. Based on complex network theory, we built an unweighted and weighted network to explore the evolution of the communities and identify the role of the major countries in the RE trade. The results show that an international RE trade network was dispersed and unstable because of the existence of five to nine trade communities in the unweighted network and four to eight trade communities in the weighted network in the past 13 years. Moreover, trade groups formed due to the great influence of geopolitical relations. China was often associated with the South America and African countries in the same trade group. In addition, Japan, China, the United States, and Germany had the largest impacts on international RE trade from 2002 to 2014. Last, some policy suggestions were highlighted according to the results. PMID:27137779
[Consumption of fruits and vegetables in Chinese adults from 2010 to 2012].
He, Yuna; Zhao, Liyun; Yu, Dongmei; Fang, Hongyun; Yu, Wentao; Guo, Qiya; Wang, Xun; Yang, Xiaoguang; Ma, Guansheng
2016-03-01
To analyze the consumption of fruits and vegetables of Chinese adults. Data were collected from 2010-2012 China National Nutrition and Health Surveillance. Information on fruits and vegetables consumption was collected by using the 24 h recall method for 3 consecutive days. Using the multi-stage stratified cluster randomization sampling method. The participants selected were more than 18 years old of 150 counties from 31 provinces in China. Age and sex standardization was performed based on the China 2009 population published by National Statistics Bureau. The average consumption of vegetables or fruits after weight adjustment for complex sampling was reported to analyze the consumption of fruits and vegetables of Chinese adults (x ± Sx). The average daily consumptions of vegetables and fruits for Chinese residents were (255 ± 6) and (36 ± 3)g/d, respectively. The total consumptions of fruits and vegetables were (291 ± 7)g/d, (295 ± 8)g/d for male, (286 ± 7)g/d for female. Rates on intake of vegetables in Chinese adults during the three survey days were 99.0%-99.8%.Rates on intake of fruits of urban and rural residents were 36.9%-51.5% and 21.3%-30.3%,respectively.The proportion of people whose total amount of vegetables and fruits intake reached 400 g/d were 24%-28% and 13%-23% in urban and rural areas, respectively. In urban and rural areas, the proportion of adults whose consumption reached Chinese dietary guidelines recommended level were 22%-26% and 14%-19% in vegetables, 2%-5% and 1%-2% in fruit, respectively. The consumptions of vegetables and fruits were inadequate in Chinese adults.
NASA Astrophysics Data System (ADS)
A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai
2016-12-01
Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.
Wang, Zhi; Liu, Shi-rong; Sun, Peng-sen; Guo, Zhi-hua; Zhou, Lian-di
2010-10-01
NDVI based on NOAA/AVHRR from 1982 to 2003 are used to monitor variable rules for the growing season in spring of vegetation in the north-south transect of eastern China (NSTEC). The following, mainly, are included: (1) The changing speed of greenness period in spring of most regions in NSTEC is slow and correlation with the year is not distinct; (2) The regions in which greenness period in spring distinctly change mainly presented an advance; (3) The regions in which inter-annual fluctuation of greenness period in spring is over 10 days were found in 3 kinds of areas: the area covered with agricultural vegetation types; the areas covered with evergreen vegetation types; the areas covered with steppe vegetation types; (4) changes of vegetation greenness period in spring have spatio-temporal patterns.
Analysis on concentration variety characteristics of SO2/NO2 in Chengdu city, southwest China
NASA Astrophysics Data System (ADS)
Wang, C.; Xiao, T.; Luo, Q.; WU, L.
2017-12-01
SO2 and NO2, the important gaseous precursors of atmospheric fine particles, are closely related to urban air quality. Chengdu located in the western China, is the capital city of Sichuan province. Though Sichuan province is one of four heavily polluted areas in China, the air pollution research in Chengdu is in a relative lack, when compared to developed cities as Beijing, Guangzhou, etc. This paper, based on characteristics of SO2 and NO2 in Chengdu, shows that: the average concentration of SO2, NO2 was 25.29 (mainly in the rage 10-40 ), 64.41 (mainly in the range 30-80 ), respectively. There is a similar annual and seasonal variation for them, yet significant differences in diurnal variation. Except summer, the air condition in Chengdu is seriously affected by SO2 and NO2, while the latter plays a more significant role. Multiple regression has good fitting performance to the diurnal variation in Chengdu. The purification efficiency of precipitation in different magnitude is also discussed. Key words: Chengdu; Pollution gas; Variety characteristics Acknowledgements: This study was supported by Pollution program in Wenjiang District, National Natural Science Foundation of China Fund Project (91337215,41575066), National Science and Technology Support Program(2015BAC03B05),Special Fund for Meteorological Re-search in the Public Interest (GYHY201406015),National Key Basic Research Program (2013CB733206), and Risk Assessment System of Significant Climate Events in Tibet (14H046), Scientific Research Foundation of CUIT (CRF201606)
Wang, Xilong; Sato, T; Xing, Baoshan; Tao, S
2005-11-01
Consumption of vegetables and fish contaminated with the heavy metals Cu, Zn, Pb, Cd, Hg, and Cr is the most likely route for human exposure in Tianjin, China. Health risks associated with these heavy metals were assessed based on the target hazard quotients (THQs), which can be derived from concentrations of heavy metals in vegetables and fish consumed in four districts (Dong Li, Xi Qing, Jin Nan, and Bei Chen) and the urban area of Tianjin, China. Individual metal THQ (<1) values indicate the relative absence of health risks associated with intake of a single heavy metal through consumption of either contaminated vegetables or fish only. However, consumption of both vegetables and fish would lead to potential health risks especially for children, since individual THQs for vegetables and fish would sum up to almost 1. If individual THQs resulting from crops consumption are considered, the health risks would be greater for children since the THQ values will always be >1. Risk contribution from Cr is minimal compared to the other elements. Hg is the major risk contributor for children in Bei Chen since the THQ contribution amounts to about 45% of the total THQ values due to vegetables and fish consumption. The health risk to adults in Ding Li is ascribed mainly to the intake of Cd by vegetables and fish consumption, which contributes a substantial fraction to the total THQ (about 51%).
Changes in tree growth, biomass and vegetation over a 13-year period in the Swedish sub-Arctic.
Hedenås, Henrik; Olsson, Håkan; Jonasson, Christer; Bergstedt, Johan; Dahlberg, Ulrika; Callaghan, Terry V
2011-09-01
This study was conducted in the Swedish subArctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine-birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types--"birch forest-heath with mosses" and "meadow with low herbs", while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... DEPARTMENT OF HOMELAND SECURITY Bureau of Customs and Border Protection Re-Accreditation and Re... Customs and Border Protection, Department of Homeland Security. ACTION: Notice of re-approval of..., has been re- approved to gauge petroleum and petroleum products, organic chemicals and vegetable oils...
Qin, Guofu; Zou, Keting; Li, Yongbo; Chen, Yan; He, Fengrui; Ding, Guirong
2016-09-01
In this study,an effort has been made to evaluate the pesticide residues in vegetables from western China. Fifty-one pesticides, including organophosphorus, organochlorine, carbamate and pyrethroid, were detected in 369 commonly used vegetables by GC-MS. Concentrations of organophosphorus pesticides were detected ranging from 0.0008 to 18.8200 mg/kg, among which organophosphorus pesticide concentrations exceeded their maximum residue levels (MRLs) in five samples. Carbamate and organochlorine pesticides were determined to have concentrations in the range of 0.0012-0.7928 mg/kg. The residual concentrations of carbamate pesticides in six samples and organochlorine pesticides in four samples exceeded their MRLs. The residual concentrations of five pyrethroid pesticides were within the range of 0.0016-6.0827 mg/kg and the pyrethroid residues in two samples exceeded their MRLs. The results revealed that pesticide residues in 70.73% of the vegetables samples were not detected, while in the rest of vegetables there were one or more pesticide residues and some even exceeded their MRLs, which would threaten the health of consumers. Our work provides significant information for the food safety regulations to control the excessive use of some pesticides on those kinds of vegetables from western China. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
[Fruit and vegetables intake among the Chinese migrant population aged 18 to 59 years old in 2012].
Zhang, Mei; Wang, Linhong; Deng, Qian; Zhao, Yinjun; Huang, Zhengjing; Li, Yichong; Jiang, Yong; Wang, Limin
2014-11-01
To describe the intake of fruit and vegetables among employed migrant population aged 18 to 59 year-olds in China. Data from the Migrant Population Survey related to China Chronic Disease and Risk Factor Surveillance that conducted in 170 counties/districts in 31 provinces, 2012, was used. Information on non-communicable diseases and related risk factors among migrant population were collected through face-to-face questionnaire interview, physical measurement and lab tests. A total of 48 704 subjects aged 18 to 59 years old were included in our study. Sample was standardized by age and sex. Information on average daily fruit and vegetables intake, prevalence of low fruit and vegetables intake, grouped by sex, age, industries, and education level were analyzed. The average daily intakes of vegetables and fruits were 353.7 (95%CI:351.3-356.2) g and 125.1 (95%CI:123.4-126.9) g respectively, among the employed migrant population aged 18-59 years old in China. Prevalence of low fruit and vegetables intake was 44.1% (95% CI:43.5%-44.6% ) among employed migrant population, 46.2% (95% CI: 45.5%-47.0%)for males and 41.2% (95% CI:40.3%-42.0%)for females (χ(2) = 82.19, P < 0.05). Among different professions, the prevalence of low fruit and vegetables intake was the highest among people working in accommodation and restaurants (46.2%, 95%CI:45.0%-47.3%) while the lowest seen among those working in social services (42.5%, 95%CI:41.4%-43.7%,χ(2) = 15.81, P < 0.05). The prevalence of low fruit and vegetables intake showed a decrease along with the increase of education levels (χ(2) = 22.29, P < 0.05). In 2012, more than 40% of the employed migrant population aged 18 to 59 years old in China had low fruit and vegetables intake. Being male and with low education level were risk factors linked with the higher prevalence of low fruit and vegetables intake.
Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G
2010-12-15
Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.
[Advances in plant ecophysiological studies on re-vegetation of degraded ecosystem].
Zhao, Ping
2003-11-01
Natural force and human intervention lead to many local, regional, and sometimes global changes in plant community patterns. Regardless of the cause and intensity of these changes, ecosystem can recover most of their attributes through natural succession, or can be repaired by human assistance. The essentiality of restoration of degraded ecosystem is community succession, a process during which an ecosystem evolves from primary stage to advanced stage, and its structure and function change from simple to complex plant. Ecophysiological study could explain some macroscopical phenomena of the ecology of re-vegetation of degraded ecosystem, and provide a scientific base for assembling pioneering plant community. The advances in plant ecophysiological study on re-vegetation of degraded ecosystems were reviewed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavrakou, T.; Muller, J. F.; Bauwens, M.
2015-10-26
The vertical columns of formaldehyde (HCHO) retrieved from two satellite instruments, the Global Ozone Monitoring Instrument-2 (GOME-2) on Metop-A and the Ozone Monitoring Instrument (OMI) on Aura, are used to constrain global emissions of HCHO precursors from open fires, vegetation and human activities in the year 2010. To this end, the emissions are varied and optimized using the ad-joint model technique in the IMAGESv2 global CTM (chem-ical transport model) on a monthly basis and at the model res-olution. Given the different local overpass times of GOME- 2 (09:30 LT) and OMI (13:30 LT), the simulated diurnal cy-cle of HCHO columnsmore » is investigated and evaluated against ground-based optical measurements at seven sites in Europe, China and Africa. The modeled diurnal cycle exhibits large variability, reflecting competition between photochemistry and emission variations, with noon or early afternoon max-ima at remote locations (oceans) and in regions dominated by anthropogenic emissions, late afternoon or evening max-ima over fire scenes, and midday minima in isoprene-rich re-gions. The agreement between simulated and ground-based columns is generally better in summer (with a clear after-noon maximum at mid-latitude sites) than in winter, and the annually averaged ratio of afternoon to morning columns is slightly higher in the model (1.126) than in the ground-based measurements (1.043).The anthropogenic VOC (volatile organic compound) sources are found to be weakly constrained by the inversions on the global scale, mainly owing to their generally minor contribution to the HCHO columns, except over strongly pol-luted regions, like China. The OMI-based inversion yields total flux estimates over China close to the bottom-up inven-tory (24.6 vs. 25.5 TgVOC yr -1 in the a priori) with, how-ever, pronounced increases in the northeast of China and re-ductions in the south. Lower fluxes are estimated based on GOME-2 HCHO columns (20.6 TgVOC yr -1), in particular over the northeast, likely reflecting mismatches between the observed and the modeled diurnal cycle in this region.« less
Assessing the effects of land use/cover change on carbon dioxide fluxes in a semiarid shrubland
NASA Astrophysics Data System (ADS)
Gong, Tingting; Lei, Huimin; Yang, Dawen; Jiao, Yang; Yang, Hanbo
2017-04-01
Land use/cover change has been generally considered a local environmental issue. Our study focuses on the effects of land use/cover change on the carbon cycle using long-term continuous field observation data, which is measured by the eddy covariance (EC) technique. The study site is at Yulin (38.45N, 109.47E), which is a desert shrubland ecosystem in Mu Us sandland, China. Before June 2012, the vegetation in this site was covered with mixed vegetation: typical desert shrubs (e.g., Salix psammophila and Artemisia ordosica) and grass. After July 2012, a part of the land use/cover condition within the footprint was changed by the local farmers, which converted the land use/cover condition changed first from mixed vegetation to bare soil and then from bare soil to grassland resulting from the re-growing grass. Four-year carbon fluxes are selected and separated into three periods: Period I is from July 1 2011 to June 30 2012 when land use/cover condition did not change; Period II is from July 1 2012 to June 30 2014 when land use/cover condition changed from mixed vegetation (shrubs and grass) to the mix of bare soil and desert shrubs; Period III is from July 1 2014 to June 30 2015 when land use/cover condition changed from the mix of desert shrubs and bare soil to the mix of desert shrubs and re-growing grass. A linear statistical model will be used to evaluate and quantify the effects of land use/cover change on the uptake or release of carbon fluxes (net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP)). Moreover, this study is expected to get insights into how agricultural cultivation influences on the local carbon balance (e.g., how NEE, Reco and GPP respond to the land use/cover change; Is the annual carbon balance changed during the land use/cover change process; and the contribution of land use/cover change on these changes of carbon fluxes).
NASA Astrophysics Data System (ADS)
Claude, Nicolas; El Kadi Abderrezzak, Kamal; Duclercq, Marion; Tassi, Pablo; Leroux, Clément
2017-04-01
The Isère River (France) has been strongly impacted during the 19th and 20th centuries by human activities, such as channelization, sediment dredging and damming. The hydrology and river morphodynamic have been significantly altered, thereby leading to riverbed incision, a decrease in submersion frequency of gravel bars and an intense development of riparian vegetation on the bars. The flood risk has increased due to the reduction of the flow conveyance of the river, and the ecological status of the river has been degraded. To face these issues, a research program involving EDF and French state authorities has been recently initiated. Modification of the current hydrology, mainly controlled by dams, and definition of a new bed cross-sectional profile, are expected to foster the submersion frequency and mobility of the bars, thus limiting the riparian development. To assess the performance of these mitigating solutions, a physical and numerical modelling study has been conducted, applied to a 2 km long reach of the Isère River. The experimental setup consists of an undistorted movable bed designed to ensure the similarity of the Froude number and initial conditions for sediment particle motion. The resulting physical model is 35 m long and 2.6 m wide, with sand mixture composed of three grain size classes. The numerical simulations performed with the Telemac Modelling System (www.opentelemac.org) show, for the current morphology, a limited sediment mobility and submersion for flow discharge lower than 400 m3/s, confirming that the actual conditions in the Isère River promote the development of riparian vegetation. Different new bed geometry profiles have been evaluated using the numerical model. Then two configurations, one based on the creation of deflecting bedforms in the thalweg and one based on the transformation of the long bars into small central bars, have been selected and modelled with the physical model.
Atmospheric Science Data Center
2013-04-16
... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...
Cheng, Zhan-Hong; Zhang, Jin-Tun
2005-09-01
The relationship between tourism development and vegetated landscapes is analyzed for the Luya Mountain Nature Reserve (LMNR), Shanxi, China, in this study. Indices such as Sensitive Level (SL), Landscape Importance Value (LIV), information index of biodiversity (H'), Shade-tolerant Species Proportion (SSP), and Tourism Influencing Index (TII) are used to characterize vegetated landscapes, the impact of tourism, and their relationship. Their relationship is studied by Two-Way Indicator Species Analysis (TWINSPAN) and Detrended Correspondence Analysis (DCA). TWINSPAN gives correct and rapid partition to the classification, and DCA ordination shows the changing tendency of all vegetation types based on tourism development. These results reflect the ecological relationship between tourism development and vegetated landscapes. In Luya Mountain Nature Reserve, most plant communities are in good or medium condition, which shows that these vegetated landscapes can support more tourism. However, the occurrence of the bad condition shows that there is a severe contradiction between tourism development and vegetated landscapes.
Lin, Jia; Zuo, Jiane; Gan, Lili; Li, Peng; Liu, Fenglin; Wang, Kaijun; Chen, Lei; Gan, Hainan
2011-01-01
The biochemical methane potentials for typical fruit and vegetable waste (FVW) and food waste (FW) from a northern China city were investigated, which were 0.30, 0.56 m3 CH4/kgVS (volatile solids) with biodegradabilities of 59.3% and 83.6%, respectively. Individual anaerobic digestion testes of FVW and FW we re conducted at the organic loading rate (OLR) of 3 k g VS/(m3.day) using a lab-scale continuous stirred-tank reactor at 350C. FVW could b e digested stably with the biogas production rate of 2.17 m3/(m3 .day)and methane production yield of 0.42 m3 CH4/kg VS. However, anaerobic digestion process for FW was failed due to acids accumulation. The effects of FVW: FW ratio on co-digestion stability and performance were further investigated at the same OLR. At FVW and FW mixing ratios of 2:1 and 1:1, the performance and operation of the digester were maintained stable, with no accumulation of volatile fatty acids (VFA) and ammonia. Changing the feed to a higher FW content in a ratio of FVW to FW 1:2, resulted in an increase inVFAs concentration to 1100-1200 mg/L, and the methanogenesis was slightly inhibited. At the optimum mixture ratio 1:1 for co-digestion of FVW with FW, the methane production yield was 0.49 m3 CH4/kg VS, and the volatile solids and soluble chemical oxygen demand (sCOD) removal efficiencies were 74.9% and 96.1%, respectively.
Liang, Junrong; Liang, Yun; Duan, Ran; Tian, Kecheng; Zhao, Yong; Tang, Guangpeng; You, Lv; Yang, Guirong; Liu, Xuebin; Chen, Yuhuang; Zeng, Jun; Wu, Shengrong; Luo, Shoujun; Qin, Gang; Hao, Huijing; Jing, Huaiqi
2017-01-01
Background Plague, a Yersinia pestis infection, is a fatal disease with tremendous transmission capacity. However, the mechanism of how the pathogen stays in a reservoir, circulates and then re-emerges is an enigma. Methodology/Principal findings We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed 16-years’ surveillance. Conclusions/Significance The results show the prevalence of plague within the natural plague focus is closely related to the stability of local ecology. Before and during the decade of construction the reservoir on the Nanpan River, no confirmed plague has ever emerged. With the impoundment of reservoir and destruction of drowned farmland and vegetation, the infected rodent population previously dispersed was concentrated together in a flood-free area and turned a rest focus alive. Human plague broke out after the enzootic plague via the flea bite. With the construction completed and ecology gradually of human residential environment, animal population and type of vegetation settling down to a new balance, the natural plague foci returned to a rest period. With the rodent density decreased as some of them died, the flea density increased as the rodents lived near or in local farm houses where had more domestic animals, and human has a more concentrated population. In contrast, in the Himalayan marmot foci of the Qinghai-Tibet Plateau in the Qilian Mountains. There are few human inhabitants and the local ecology is relatively stable; plague is prevalence, showing no rest period. Thus the plague can be significantly affected by ecological shifts. PMID:28257423
Wang, Xin; Wei, Xiaoyu; Song, Zhizhong; Wang, Mingliu; Xi, Jinxiao; Liang, Junrong; Liang, Yun; Duan, Ran; Tian, Kecheng; Zhao, Yong; Tang, Guangpeng; You, Lv; Yang, Guirong; Liu, Xuebin; Chen, Yuhuang; Zeng, Jun; Wu, Shengrong; Luo, Shoujun; Qin, Gang; Hao, Huijing; Jing, Huaiqi
2017-03-01
Plague, a Yersinia pestis infection, is a fatal disease with tremendous transmission capacity. However, the mechanism of how the pathogen stays in a reservoir, circulates and then re-emerges is an enigma. We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed 16-years' surveillance. The results show the prevalence of plague within the natural plague focus is closely related to the stability of local ecology. Before and during the decade of construction the reservoir on the Nanpan River, no confirmed plague has ever emerged. With the impoundment of reservoir and destruction of drowned farmland and vegetation, the infected rodent population previously dispersed was concentrated together in a flood-free area and turned a rest focus alive. Human plague broke out after the enzootic plague via the flea bite. With the construction completed and ecology gradually of human residential environment, animal population and type of vegetation settling down to a new balance, the natural plague foci returned to a rest period. With the rodent density decreased as some of them died, the flea density increased as the rodents lived near or in local farm houses where had more domestic animals, and human has a more concentrated population. In contrast, in the Himalayan marmot foci of the Qinghai-Tibet Plateau in the Qilian Mountains. There are few human inhabitants and the local ecology is relatively stable; plague is prevalence, showing no rest period. Thus the plague can be significantly affected by ecological shifts.
NASA Astrophysics Data System (ADS)
Li, Q.; Wu, H.; Yu, Y.; Sun, A.; Luo, Y.
2017-12-01
Reconstructing patterns of past vegetation change on a large-scale facilitates a better understanding of the interactions and feedbacks between climate change and the terrestrial biosphere. In addition, reducing the uncertainty in predictions of vegetation change under global warming highlights the importance of reconstructing vegetation patterns during past warming intervals. Here, we present a quantitative regional vegetation reconstruction for China during three intervals: Last Glacial Maximum (LGM, 18±2 14C kyr B.P.), early Holocene (8.5±0.5 14C kyr B.P.), and mid-Holocene (6±0.5 14C kyr B.P.). The biomization method, based on 249 pollen records, was used for the reconstructions. The results demonstrate that during the LGM, steppe and desert expanded eastwards and southwards, reaching the present-day temperate deciduous forest (TEDE) zone, and dominated northern China. In contrast, the forest in Eastern China underwent a substantial southwards retreat and the percentage of forest-type sites was at a minimum. In addition, the warm mixed forest (WAMF) and TEDE shifted southwards of 10° N relative to the present-day, and tropical seasonal rain forest (TSFO) was almost absent. At the same time, the forest-steppe boundary shifted southwards to near the middle and lower reaches of Yangtze River. For the early Holocene and mid-Holocene, the TSFO, WAMF, and TEDE shifted northwards by 2-5° relative to today, and the percentage of forest sites increased and reached a maximum in the mid-Holocene. The slight expansion of forest from the early Holocene to the mid-Holocene caused the forest-steppe boundary to shift northwestwards to near the present-day 300 mm isohyet by the mid-Holocene. Our results also indicate that climatic warming since the LGM, which strengthened the East Asian summer monsoon, favored the development of forest in China. This is potentially an important finding for evaluating the possible response of forest in China to future global warming.
Recent Change of Vegetation Growth Trend in China
NASA Technical Reports Server (NTRS)
Peng, Shushi; Chen, Anping; Xu, Liang; Cao, Chunxiang; Fang, Jingyun; Myneni, Ranga B.; Pinzon, Jorge E.; Tucker, COmpton J.; Piao, Shilong
2011-01-01
Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.
2017-07-01
ESRI (Nature Conservancy and Environmental Systems Research Institute). 1994. Field Methods . In Field Methods for Vegetation Mapping: United States...ER D C/ CR RE L TR -1 7- 9 Wetlands Regulatory Assistance Program (WRAP) Testing Methods for Challenging the National Wetland Plant List...Robert W. Lichvar and Jennifer J. Goulet July 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research
Wang, Han; Harrison, Sandy P; Prentice, Iain C; Yang, Yanzheng; Bai, Fan; Togashi, Henrique F; Wang, Meng; Zhou, Shuangxi; Ni, Jian
2018-02-01
Plant functional traits provide information about adaptations to climate and environmental conditions, and can be used to explore the existence of alternative plant strategies within ecosystems. Trait data are also increasingly being used to provide parameter estimates for vegetation models. Here we present a new database of plant functional traits from China. Most global climate and vegetation types can be found in China, and thus the database is relevant for global modeling. The China Plant Trait Database contains information on morphometric, physical, chemical, and photosynthetic traits from 122 sites spanning the range from boreal to tropical, and from deserts and steppes through woodlands and forests, including montane vegetation. Data collection at each site was based either on sampling the dominant species or on a stratified sampling of each ecosystem layer. The database contains information on 1,215 unique species, though many species have been sampled at multiple sites. The original field identifications have been taxonomically standardized to the Flora of China. Similarly, derived photosynthetic traits, such as electron-transport and carboxylation capacities, were calculated using a standardized method. To facilitate trait-environment analyses, the database also contains detailed climate and vegetation information for each site. The data set is released under a Creative Commons BY license. When using the data set, we kindly request that you cite this article, recognizing the hard work that went into collecting the data and the authors' willingness to make it publicly available. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Cui, Q.
2015-12-01
It is well recognised that studies of past fire regimes and their causes (human and/or climatic) are useful to understand the long-term ecological effects of fire on vegetation communities. Further, information on the long-term fire history and its effect on vegetation dynamics may provide useful insights for vegetation management in fragile eco-environment of Western China. The main aim of this study is to quantitatively reconstruct high-resolution fire history in West China based on charcoal records from peatlands in Zoige basin (Tibet) and Altai Mountains (Xinjiang). We investigate the long-term relationships between fire, climate, human-impact and the history of biodiversity based on four Holocene macro- and micro- charcoal records and a synthesis on previously published pollen data and geochemistry data. Three hypotheses based on global charcoal records and former studies on palaeofire carried out in China need to be test by this study: 1) during early-mid Holocene period, fire frequency in the study area is relative low and best explained by the changes of regional climate; 2) during the late Holocene, fire activities in the study area increased might due to impacts of the human activities over the climate changes, and human activities is responsible for the temporal and spatial variations in fire regime; 3) the difference of fire histories can be explained by the difference of vegetation composition at site.
Determination and risk assessment of sixteen polycyclic aromatic hydrocarbons in vegetables.
Li, Huidong; Zhu, Duanwei; Lu, Xiao; Du, Hongxia; Guan, Shuai; Chen, Zilei
2018-01-28
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic environmental pollutants posing a potential risk to human health. This study was constructed to investigate the presence of 16 PAHs in six commonly consumed vegetables collected from the markets in Shandong, China by a quick, easy, cheap, effective, rugged, safe (QuEChERS)-based extraction method coupled with gas chromatography-mass spectrometry (GC-MS). Our results showed that the vegetables were polluted with PAHs at an alarming level, of which celery contained the highest total concentration of PAHs (Σ16 PAH), whereas cucumbers contained the lowest Σ16 PAH. Besides, the dietary exposure of PAHs was assessed in these vegetables based on the maximum Σ16 PAH. The results showed that the populations in Shandong were exposed to 23-213 ng/d of PAHs through these six vegetables, suggesting that vegetables are the major sources of PAHs in the diet. Hence, it is necessary to monitor the PAH levels in vegetables. Our study provides guidance for future legislative actions regarding PAH levels in vegetables in China.
Xie, Yan-Ming; Tian, Feng
2013-07-01
This paper reviewed the situation of regulations and guidelines on post-marketing medicines in the developed countries and in China. The developed countries have accumulated a lot of empirical principles and techniques on postmarketing surveillance (also named pharmacovigilance), therefore, their regulation systems are nearly perfect. In China, the regulations on post-marketing re-evaluation and relative technical guidelines do not cover the whole aspects, even lack in some important aspects, and long-term risk management mechanisms have not been established. So it is urgent to establish new regulations and improve the regulatory system in China based on the existing regulations and guidelines, by learning from the ideas of foreign advanced regulations, then fully integrating them with China's actual conditions, and cooperating with multidisciplinary researchers.
Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo
2012-01-01
Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.
Yang, Yang; Chen, Weiping; Wang, Meie; Peng, Chi
2016-12-01
A regional investigation in the Youxian prefecture, southern China, was conducted to analyze the impact of environmental factors including soil properties and irrigation in conjunction with the use of fertilizers on the accumulation of Cd in vegetables. The Cd transfer potential from soil to vegetable was provided by the plant uptake factor (PUF), which varied by three orders of magnitude and was described by a Gaussian distribution model. The soil pH, content of soil organic matter (SOM), concentrations of Zn in the soil, pH of irrigation water and nitrogenous fertilizers contributed significantly to the PUF variations. A path model analysis, however, revealed the principal control of the PUF values resulted from the soil pH, soil Zn concentrations and SOM. Transfer functions were developed using the total soil Cd concentrations, soil pH, and SOM. They explained 56% of the variance for all samples irrespective of the vegetable genotypes. The transfer functions predicted the probability of exceeding China food safety standard concentrations for Cd in four major consumable vegetables under different soil conditions. Poor production practices in the study area involved usage of soil with pH values ≤ 5.5, especially for the cultivation of Raphanus sativus L., even with soil Cd concentrations below the China soil quality standard. We found the soil standard Cd concentrations for cultivating vegetables was not strict enough for strongly acidic (pH ≤ 5.5) and SOM-poor (SOM ≤ 10 g kg -1 ) soils present in southern China. It is thus necessary to address the effect of environmental variables to generate a suitable Cd threshold for cultivated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Franch, B.; Vermote, E.; Roger, J. C.; Skakun, S.; Becker-Reshef, I.; Justice, C. O.
2017-12-01
Accurate and timely crop yield forecasts are critical for making informed agricultural policies and investments, as well as increasing market efficiency and stability. In Becker-Reshef et al. (2010) and Franch et al. (2015) we developed an empirical generalized model for forecasting winter wheat yield. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season and the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data. These methods were applied to MODIS CMG data in Ukraine, the US and China with errors around 10%. However, the NDVI is saturated for yield values higher than 4 MT/ha. As a consequence, the model had to be re-calibrated in each country and the validation of the national yields showed low correlation coefficients. In this study we present a new model based on the extrapolation of the pure wheat signal (100% of wheat within the pixel) from MODIS data at 1km resolution and using the Difference Vegetation Index (DVI). The model has been applied to monitor the national yield of winter wheat in the United States and Ukraine from 2001 to 2016.
Li, Xue-Wen; Xie, Yun-Feng; Li, Cang-Lin; Zhao, Hui-Nan; Zhao, Hui; Wang, Ning; Wang, Jin-Feng
2014-01-15
One of the largest vegetable cultivation field sites in Northeast China was selected to investigate the occurrence and distribution pattern of fluoroquinolones (FQs) in the soil-vegetable system. A total of 100 surface soil samples and 68 vegetable samples were collected from this study area. The antibiotic concentration was analyzed using high-performance liquid chromatography tandem mass spectrometry. Results indicated the presence of FQs in all soil samples. Ciprofloxacin (CIP) had the highest mean concentration, at 104.4 μg · kg(-1) in the soil, a level that represents a relatively high risk to the environment and to human health. However, in the vegetable samples, norfloxacin (NOR) was significantly higher than CIP and enrofloxacin (ENR), ranging from 18.2 to 658.3 μg · kg(-1). The transfer ability of NOR in soil-vegetables is greater than that of CIP and ENR. Moreover, we found that the solanaceous fruits had a higher antibiotic accumulation ability than the leafy vegetables. Taken together, these data indicate that greater attention should be paid to the region in which vegetables with higher accumulation ability are grown. © 2013.
Desertification Assessment and Monitoring Based on Remote Sensing
NASA Astrophysics Data System (ADS)
Gao, Z.; del Barrio, G.; Li, X.
2016-08-01
The objective of Dragon 3 Project 10367 is the development of techniques research for desertification assessment and monitoring in China using remote sensing data in combination with climate and environmental-related data. The main achievements acquired during the last two years could be summarized as follows:(1) Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) were estimated in Otindag sandy land by comparison of the pixel-invariant (Spectral Mixture Analysis, SMA) and pixel-variable (Multi-Endmember Spectral Mixture Analysis, MESMA, Automated Monte Carlo Unmixing Analysis, AutoMCU) methods, based on GF-1 data and field measured spectral library.(2) Based on GF-1 data, SMA was applied to solve vegetation cover and transitional sandy land detection in Zhenglan Banner, Inner Mongolia, China.(3) By defined a new indictor, Moisture-responded NPP(MNPP), a new method for identification of degraded lands was put forward, and the land degradation in Xinlin Gol league, Inner Mongolia Autonomous Region, China was assessed preliminarily. (4) The 2dRUE proved to be a good indicator for land degradation, based on which, land degradation status in the general potential extent of desertification in China (PEDC) was assessed.
NASA Astrophysics Data System (ADS)
Liu, W.; Ning, T.; Shen, H.; Li, Z.
2017-12-01
Vegetation, climate seasonality and topography are the main impact factors controlling the water and heat balance over a catchment, and they are usually empirically formulated into the controlling parameter in Budyko model. However, their interactions on different time scales have not been fully addressed. Taking 30 catchments in China's Loess Plateau as an example, on annual scale, vegetation coverage was found poorly correlated with climate seasonality index; therefore, they could be both parameterized into the Budyko model. On the long-term scale, vegetation coverage tended to have close relationships with topographic conditions and climate seasonality, which was confirmed by the multi-collinearity problems; in that sense, vegetation information could fit the controlling parameter exclusively. Identifying the dominant controlling factors over different time scales, this study simplified the empirical parameterization of the Budyko formula. Though the above relationships further investigation over the other regions/catchments.
Development and the environmental impact analysis of tidal current energy turbines in China
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Ma, Changlei; Jiang, Bo
2018-02-01
Chinese government pays more attentions to renewable energies (RE) in the context of increasing energy demand and climate change problems. As a promising RE, the utilization of marine renewable energy (MRE) is engaging in the world, including the wave energy and tidal current energy mainly. At the same time, the tidal current energy resources in China are abundant. Thus, the utilization of tidal current energy becomes an inevitable choice for China to meet the challenge of global climate change. The Renewable Energy Law (amendment) and “Twelfth Five-Year” Plan of Renewable Energy Development (2011-2015) were released in recent years in China, the tidal current energy are successfully implemented in China, including the R&D and pilot projects. After the summary of the status of tidal current energy converters in recent years in China, especially the devices being in the open sea test. The environmental impact study in China is also introduced in order to offer reference for the environmental impact assessment of tidal current power generation.
Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China.
Liang, Song; Yang, Changhong; Zhong, Bo; Qiu, Dongchuan
2006-01-01
Despite great strides in schistosomiasis control over the past several decades in Sichuan Province, China the disease has re-emerged in areas where it was previously controlled. We reviewed historical records and found that schistosomiasis had re-emerged in eight counties by the end of 2004 - seven of 21 counties with transmission control and one of 25 with transmission interruption as reported in 2001 were confirmed to have local disease transmission. The average "return time" (from control to re-emergence) was about eight years. The onset of re-emergence was commonly signalled by the occurrence of acute infections. Our survey results suggest that environmental and sociopolitical factors play an important role in re-emergence. The main challenge would be to consolidate and maintain effective control in the longer term until "real" eradication is achieved. This would be possible only by the formulation of a sustainable surveillance and control system. PMID:16501732
NASA Astrophysics Data System (ADS)
Kusserow, Hannelore
2017-12-01
Since the turn of the millennium various scientific publications have been discussing a re-greening of the Sahel after the 1980s drought mainly based on coarse-resolution satellite data. However, the author's own field studies suggest that the situation is far more complex and that both paradigms, the encroaching Sahara
and the re-greening Sahel
, need to be questioned.
This paper discusses the concepts of desertification, resilience, and re-greening by addressing four main aspects: (i) the relevance of edaphic factors for a vegetation re-greening, (ii-iii) the importance of the selected observation period in the debate on Sahel greening or browning, and (iv) modifications in the vegetation pattern as possible indicators of ecosystem changes (shift from originally diffuse to contracted vegetation patterns).
The data referred to in this paper cover a time period of more than 150 years and include the author's own research results from the early 1980s until today. A special emphasis, apart from fieldwork data and remote sensing data, is laid on the historical documents.
The key findings summarised at the end show the following: (i) vegetation recovery predominantly depends on soil types; (ii) when discussing Sahel greening vs. Sahel browning, the majority of research papers only focus on post-drought conditions. Taking pre-drought conditions (before the 1980s) into account, however, is essential to fully understand the situation. Botanical investigations and remote-sensing-based time series clearly show a substantial decline in woody species diversity and cover density compared to pre-drought conditions; (iii) the self-organised patchiness of vegetation is considered to be an important indicator of ecosystem changes.
Song, Xiao-Zong; Zhao, Chang-Xing; Wang, Xiao-Lan; Li, Ji
2009-04-01
Because of intensive vegetable production in plastic greenhouses in northern China, the potential risk of nitrate leaching to groundwater is increasingly apparent, threatening ecosystem services and the sustainability of food production. In the present work, nine drainable lysimeters were installed into vegetable fields, with in-situ loamy soils, in Shouguang City of the north China vegetable base. The experiments were conducted to quantify the magnitude and variability of nitrate leaching to groundwater and to access the fate of total fertilizer-N inputs in the area. The results obtained indicated that: under local conventional agronomic practices, there is a high discrepancy in leaching nitrate-N concentration (ranging from 17 to 457 mg L(-1)), and nitrate losses (152-347 kg N ha(-1)) were observed from 1-m soil profiles in the field. Meanwhile, high fertilizer N application resulted in low N efficiency, with only (33.0+/-13)% (mean+/-S.D.) of input N absorbed by the crops, while additionally nearly half of the total inputs of N were unaccounted in a partial N balance sheet. It is concluded that groundwater pollution associated with greenhouse-based vegetable production had been confirmed in Shouguang, adversely affecting water quality and leading to serial agro-ecological problems.
Zhang, Tianyi; Wang, Hesong
2015-01-01
We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
Qin, Chenxi; Yu, Canqing; Du, Huaidong; Guo, Yu; Bian, Zheng; Lyu, Jun; Zhou, Huiyan; Tan, Yunlong; Chen, Junshi; Chen, Zhengming; Li, Liming
2015-09-01
To describe the differences in diet intake frequency of adults in 10 areas surveyed by China Kadoorie Biobank (CKB) project. CKB project recruited voluntary residents aged 30-79 years from 5 urban areas and 5 rural areas in China. The baseline survey was conducted among 512 891 eligible subjects during 2004-2008. The intake frequencies of 12 food groups were assessed through in-person interviews and analyzed. The results were adjusted for age and sex structure of the study population. Rice was the main cereal consumed every day in urban areas (99.0%) and rural areas (99.9%) in southern China, while wheat was the main cereal consumed every day in rural areas (99.0%) and Qingdao (88.4%) in northern China. Most subjects in Henan (98.8%) consumed other staple food every day. The lowest proportion of daily intake of fresh vegetables was observed in Gansu (74.0%) . In both southern and northern areas, urban subjects had higher proportions of daily intakes of fresh fruits, preserved vegetables, and meat than rural subjects. Similar results were found when comparing the proportions of intakes of poultry and fish/seafood at least 1 day every week. Contrast to southern China (urban: 6.5%, rural: 6.9%) , the proportions of daily intake of fresh eggs were higher in both urban areas (37.1%) and rural areas (14.6%) in northern China. The highest proportions of daily intake of soybean products and dairy products were observed in Harbin (10.0%) and Qingdao (34.3%). The intake of cereal, fresh eggs and soybean products differed between the south and the north of China. The intake of meat, poultry, fish/seafood, fresh fruits, preserved vegetables and dairy products varied considerably between urban areas and rural areas.
Shade tolerance of selected afforestation species on Loess Plateau, China
Naijiang Wang; Yong Wang; Callie J. Schweitzer
2011-01-01
To select tree and vegetation species for afforestation on Loess Plateau of China, we tested the shade tolerance of nine tree and one vine species. We planted 3-year-old seedlings in the greenhouse of the Seedling Nursery at Northwest Agriculture and Forest University in China.
Reduction Patterns of Acute Schistosomiasis in the People's Republic of China
Abe, Eniola Michael; Yang, Kun; Bergquist, Robert; Qian, Ying-Jun; Zhang, Li-Juan; Xu, Zhi-Min; Xu, Jing; Guo, Jia-Gang; Xiao, Ning; Zhou, Xiao-Nong
2014-01-01
Background Despite significant, steady progress in schistosomiasis control in the People's Republic of China over the past 50 years, available data suggest that the disease has re-emerged with several outbreaks of acute infections in the early new century. In response, a new integrated strategy was introduced. Methods This retrospective study was conducted between Jan 2005 and Dec 2012, to explore the effectiveness of a new integrated control strategy that was implemented by the national control program since 2004. Results A total of 1,047 acute cases were recorded between 2005 and 2012, with an annual reduction in prevalence of 97.7%. The proportion of imported cases of schistosomiasis was higher in 2011 and 2012. Nine clusters of acute infections were detected by spatio-temporal analysis between June and November, indicating that the high risk areas located in the lake and marshland regions. Conclusion This study shows that the new integrated strategy has played a key role in reducing the morbidity of schistosomiasis in the People's Republic of China. PMID:24810958
What have we learned from global change manipulative experiments in China? A meta-analysis
Fu, Zheng; Niu, Shuli; Dukes, Jeffrey S.
2015-01-01
Although China has the largest population in the world, a faster rate of warming than the global average, and an active global change research program, results from many of the global change experiments in Chinese terrestrial ecosystems have not been included in global syntheses. Here, we specifically analyze the observed responses of carbon (C) and nitrogen (N) cycling in global change manipulative experiments in China, and compare these responses to those from other regions of the world. Most global change factors, vegetation types, and treatment methods that have been studied or used elsewhere in the world have also been studied and applied in China. The responses of terrestrial ecosystem C and N cycles to N addition and climate warming in China are similar in both direction and intensity to those reported in global syntheses. In Chinese ecosystems as elsewhere, N addition significantly increased aboveground (AGB) and belowground biomass (BGB), litter mass, dissolved organic C, net ecosystem productivity (NEP), and gross ecosystem productivity (GEP). Warming stimulated AGB, BGB and the root-shoot ratio. Increasing precipitation accelerated GEP, NEP, microbial respiration, soil respiration, and ecosystem respiration. Our findings complement and support previous global syntheses and provide insight into regional responses to global change. PMID:26205333
Turning around Low-Performing Private Universities in China: A Perspective of Organisational Ecology
ERIC Educational Resources Information Center
Li, Xiaofan
2012-01-01
While China has a long history of private institutions of higher learning, they disappeared almost entirely after the founding of the People's Republic of China in 1949 and did not re-emerge until the 1980s. Their reappearance is one of the ramifications of economic marketisation and privatisation in China. But private higher education…
Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.
1994-01-01
Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.
Characteristics of Biogenic VOCs Emission and its High-Resolution Emission Inventory in China
NASA Astrophysics Data System (ADS)
Li, L.; Li, Y.; Xie, S.
2017-12-01
Biogenic volatile organic compounds (BVOCs), with high emission and reactivity, can have substantial impacts on the haze and photochemical pollution. It is essential to establish an accurate high-resolution BVOC emission inventory in China for air quality simulation and decision making. Firstly, a semi-static enclosure technique is developed for the field measurements of BVOC emission rates from 50 plant species in China. Using the GC-MS/FID system, 103 VOC species for each plant species are measured. Based on the field measurements in our study and the reported emission rates at home and abroad, a methodology for determining the emission categories of BVOCs is developed using statistical analysis. The isoprene and monoterpene emission rates of 192 plant species/genera in China are determined based on the above emission categories. Secondly, a new vegetation classification with 82 plant functional types (PFTs) is developed based on the most detailed and latest vegetation investigations, China's official statistical data and Vegetation Atlas of China (1:1,000,000). The leaf biomass is estimated based on provincial vegetation volume and production with biomass-apportion models. The WRF model is used to determine meteorological variables at a high spatio-temporal resolution. Using MEAGNv2.1 and the determined emission rates in our study, the high-resolution emission inventories of isoprene, 37 monoterpene species, 32 sesquiterpene species, and other VOCs (OVOCs) from 82 PFTs in China for 1981-2013 are established. The total annual BVOC emissions in 2013 are 55.88 Tg, including 33.87 Tg isoprene, 6.36 Tg monoterpene, 1.29 Tg sesquiterpene, and 14.37 Tg OVOCs. The distribution of isoprene emission fluxes is consistent with the distribution of broadleaf trees, especially tree species with high or higher emission potential. During 1981-2013, China's BVOC emissions have increased by 47.48% at an average rate of 1.80% yr-1. Emissions of isoprene have the largest enhancement, with an average rate of 3.10% yr-1. The increasing BVOC emissions largely originate from the enhanced forest volume and crop production. But the influence of meteorology cannot be ignored. Our study will be very significant for understanding the BVOC emission characteristics and improving the accuracy of air quality simulation in China.
Injury Incidence and Injury Risk Factors Among Soldiers in the United States Army Ordnance School
2009-07-01
binge drinking, less physical activity, less intake of fruits and vegetables, and greater intake of high fat foods.32 (a) In civilian studies...investigating re-injury rates of amateur male soccer players, researchers found an 11 percent re-injury rate for a coach- controlled rehabilitation... intake of fruits and vegetables compared to nonsmokers. 78-80 (b) Another hypothesis to explain the association between injuries and tobacco use
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
Yang, Guo-Jing; Utzinger, Jürg; Zhou, Xiao-Nong
2015-01-01
Changes in the natural environment and agricultural systems induced by economic and industrial development, including population dynamics (growth, urbanization, migration), are major causes resulting in the persistence, emergence and re-emergence of infectious diseases in developing countries. In the face of rapid demographic, economic and social transformations, the People's Republic of China (P.R. China) is undergoing unprecedented environmental and agricultural change. We review emerging and re-emerging diseases such as schistosomiasis, dengue, avian influenza, angiostrongyliasis and soil-transmitted helminthiasis that have occurred in P.R. China due to environmental and agricultural change. This commentary highlights the research priorities and the response strategies, namely mitigation and adaptation, undertaken to eliminate the resurgence of those infectious diseases. Copyright © 2013 Elsevier B.V. All rights reserved.
Lotus (Neumbo nucifera, Gaertn) is the most important aquatic vegetable in China, with a cultivation history of over 3000 years. The emergy, energy, material, and money flows of three lotus root cultivation modes in Wanqingsha, Nansha District, Guangzhou, China were examined usin...
Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China.
Tao, S; Xu, F L; Wang, X J; Liu, W X; Gong, Z M; Fang, J Y; Zhu, L Z; Luo, Y M
2005-04-15
Samples of eight types of vegetables, the rhizosphere soils, and bulk soils were collected from two sites (A and B) in Tianjin, China for the determination of hexachlorocyclohexane isomers (HCHs) and dichlorodiphenyltrichloroethane and metabolites (DDXs). The average concentrations of total HCHs and DDXs in the bulk soils were 3.6 and 80.1 ng/g for site A and 102 and 235 ng/g for site B, respectively. Relative accumulations of HCHs and DDXs in the rhizosphere soil from site A but not site B were demonstrated. The concentrations of total HCHs and DDXs in vegetable roots were 3.6-60 and 4.2-73 ng/g for site A and 15-152 and 7.1-136 ng/g for site B, respectively. Difference in bioaccumulation among various vegetables, especially between tuber and fibrous vegetables was significant. DDXs in spinach and cauliflower from site B and lindane (gamma-HCH) in cauliflower from both sites and violet from site B exceeded the maximum residual limits. Linear correlation of log-transformed HCHs and DDXs contents between the vegetable roots and the rhizosphere soils suggests the direct uptake of HCHs and DDXs.
Shen, Qiu; Liang, Liang; Luo, Xiang; Li, Yanjun; Zhang, Lianpeng
2017-08-25
Drought is a complex natural phenomenon that can cause reduced water supplies and can consequently have substantial effects on agriculture and socioeconomic activities. The objective of this study was to gain a better understanding of the spatial-temporal variation characteristics of vegetative drought and its relationship with meteorological factors in China. The Vegetation Condition Index (VCI) dataset calculated from NOAA/AVHRR images from 1982 to 2010 was used to analyse the spatial-temporal variation characteristics of vegetative drought in China. This study also examined the trends in meteorological factors and their influences on drought using monitoring data collected from 686 national ground meteorological stations. The results showed that the VCI appeared to slowly rise in China from 1982 to 2010. From 1982 to 1999, the VCI rose slowly. Then, around 2000, the VCI exhibited a severe fluctuation before it entered into a relatively stable stage. Drought frequencies in China were higher, showing a spatial distribution feature of "higher in the north and lower in the south". Based on the different levels of drought, the frequencies of mild and moderate drought in four geographical areas were higher, and the frequency of severe drought was higher only in ecologically vulnerable areas, such as the Tarim Basin and the Qaidam Basin. Drought was mainly influenced by meteorological factors, which differed regionally. In the northern region, the main influential factor was sunshine duration, while the other factors showed minimal effects. In the southern region and Tibetan Plateau, the main influential factors were sunshine duration and temperature. In the northwestern region, the main influential factors were wind velocity and station atmospheric pressure.
NASA Astrophysics Data System (ADS)
Song, Hai-Xi; Sun, Xiao-Qi; Lu, Jing; Zhou, Lan
2018-01-01
We study a quantum electrodynamics (QED) system made of a two-level atom and a semi-infinite rectangular waveguide, which behaves as a perfect mirror in one end. The spatial dependence of the atomic spontaneous emission has been included in the coupling strength relevant to the eigenmodes of the waveguide. The role of retardation is studied for the atomic transition frequency far away from the cutoff frequencies. The atom-mirror distance introduces different phases and retardation times into the dynamics of the atom interacting resonantly with the corresponding transverse modes. It is found that the upper state population decreases from its initial as long as the atom-mirror distance does not vanish, and is lowered and lowered when more and more transverse modes are resonant with the atom. The atomic spontaneous emission can be either suppressed or enhanced by adjusting the atomic location for short retardation time. There are partial revivals and collapses due to the photon reabsorbed and re-emitted by the atom for long retardation time. Supported by National Natural Science Foundation of China under Grant Nos. 11374095, 11422540, 11434011, and 11575058, National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103, and Hunan Provincial Natural Science Foundation of China under Grant No. 11JJ7001
Chinese Space Program for Heliophysics
NASA Astrophysics Data System (ADS)
Wu, Ji; Gan, Weiqun; Wang, Chi; Liu, Weining; Yan, Yihua; Liu, Yong; Sun, Lilin; Liu, Ying
As one of the major field of space science, heliophysics research in China has not only long history but also strong research forces. Many space missions have been proposed by the community but with few got support. Since 2006, Chinese Academy of Science has organized a long term strategic study in space science. In 2011, the space science program has been kicked off with several new missions being selected for Phase A study. In this presentation, first a brief review on past programs, such as Double Star, Chang’e, and an introduction on the space science strategic study are given. Under the guidance of this strategic study or roadmap, a few missions have been proposed or re-proposed with new element, such as DSO, KUAFU, MIT, SPORT and ASO-S. Brief introductions of these programs and their current status will be given.
Lou, Tiantian; Huang, Weisu; Wu, Xiaodan; Wang, Mengmeng; Zhou, Liying; Lu, Baiyi; Zheng, Lufei; Hu, Yinzhou
2017-06-01
Sulfur dioxide residues in 20 kinds of products collected from 23 provinces of China (Jilin, Beijing, Shanxi, Shandong, Henan, Hebei, Jiangsu, Anhui, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Chongqing, Sichuan, Gansu, Neimenggu, Xinjiang and Hainan) were analysed, and a health risk assessment was performed. The detection rates of sulfur dioxide residues in fresh vegetables, fresh fruits, dried vegetables and dried fruits were 11.1-95.9%, 12.6-92.3%, 70.3-80.0% and 26.0-100.0%, respectively; the mean concentrations of residues were 2.7-120.8, 3.8-35.7, 26.9-99.1 and 12.0-1120.4 mg kg -1 , respectively. The results indicated that fresh vegetables and dried products are critical products; the daily intakes (EDIs) for children were higher than others; the hazard indexes (HI) for four groups were 0.019-0.033, 0.001-0.005, 0.007-0.016 and 0.002-0.005 at P50, respectively. But the HI was more than 1 at P99 by intake dried fruits and vegetables. Although the risk for consumers was acceptable on the whole, children were the most vulnerable group. Uncertainty and sensitivity analyses indicated that the level of sulfur dioxide residues was the most influential variable in this model. Thus, continuous monitoring and stricter regulation of sulfites using are recommended in China.
NASA Astrophysics Data System (ADS)
Han, Xianming; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Gao, Xiaoxi
2018-06-01
The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI) is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.
Guerin, Greg R; Sparrow, Ben; Tokmakoff, Andrew; Smyth, Anita; Leitch, Emrys; Baruch, Zdravko; Lowe, Andrew J
2017-01-01
Australian rangelands ecosystems cover 81% of the continent but are understudied and continental-scale research has been limited in part by a lack of precise data that are standardised between jurisdictions. We present a new dataset from AusPlots Rangelands that enables integrative rangelands analysis due to its geographic scope and standardised methodology. The method provides data on vegetation and soils, enabling comparison of a suite of metrics including fractional vegetation cover, basal area, and species richness, diversity, and composition. Cover estimates are robust and repeatable, allowing comparisons among environments and detection of modest change. The 442 field plots presented here span a rainfall gradient of 129-1437 mm Mean annual precipitation with varying seasonality. Vegetation measurements include vouchered vascular plant species, growth form, basal area, height, cover and substrate type from 1010 point intercepts as well as systematically recorded absences, which are useful for predictive modelling and validation of remote sensing applications. Leaf and soil samples are sampled for downstream chemical and genomic analysis. We overview the sampling of vegetation parameters and environments, applying the data to the question of how species abundance distributions (SADs) vary over climatic gradients, a key question for the influence of environmental change on ecosystem processes. We found linear relationships between SAD shape and rainfall within grassland and shrubland communities, indicating more uneven abundance in deserts and suggesting relative abundance may shift as a consequence of climate change, resulting in altered diversity and ecosystem function. The standardised data of AusPlots enables such analyses at large spatial scales, and the testing of predictions through time with longitudinal sampling. In future, the AusPlots field program will be directed towards improving coverage of space, under-represented environments, vegetation types and fauna and, increasingly, re-sampling of established plots. Providing up-to-date data access methods to enhance re-use is also a priority.
Evapotranspiration and water yield over China's landmass from 2000 to 2010
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-12-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle, altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China because water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. To constrain uncertainties in ET estimation, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) data set, MODIS land cover, meteorological, and soil data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield were analyzed. The influences of climatic factors (temperature and precipitation) and vegetation (land cover types and LAI) on these variations were assessed. Validations against ET measured at five ChinaFLUX sites showed that the BEPS model was able to simulate daily and annual ET well at site scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China. The correlation between annual ET and precipitation was positive in the arid and semiarid areas of northwest and north China, but negative in the Tibetan Plateau and humid southeast China. The national annual ET varied from 345.5 mm in 2001 to 387.8 mm in 2005, with an average of 369.8 mm during the study period. The overall rate of increase, 1.7 mm yr-1 (R2 = 0.18, p = 0.19), was mainly driven by the increase of total ET in forests. During 2006-2009, precipitation and LAI decreased widely and consequently caused a detectable decrease in national total ET. Annual ET increased over 62.2% of China's landmass, especially in the cropland areas of the southern Haihe River basin, most of the Huaihe River basin, and the southeastern Yangtze River basin. It decreased in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibetan Plateau, the south of Yunnan Province, and Hainan Province. Reduction in precipitation and increase in ET caused vast regions in China, especially the regions south of Yangtze River, to experience significant decreases in water yield, while some sporadically distributed areas experienced increases in water yield. This study shows that the terrestrial water cycles in China's terrestrial ecosystems appear to have been intensified by recent climatic variability and human induced vegetation changes.
Liu, Quan; Cao, Lili; Zhu, Xing-Quan
2014-08-01
Emerging and re-emerging zoonoses are a significant public health concern and cause considerable socioeconomic problems globally. The emergence of severe acute respiratory syndrome (SARS), highly pathogenic avian influenza (HPAI) H5N1, avian influenza H7N9, and severe fever with thrombocytopenia syndrome (SFTS), and the re-emergence of rabies, brucellosis, and other zoonoses have had a significant effect on the national economy and public health in China, and have affected other countries. Contributing factors that continue to affect emerging and re-emerging zoonoses in China include social and environmental factors and microbial evolution, such as population growth, urbanization, deforestation, livestock production, food safety, climate change, and pathogen mutation. The Chinese government has devised new strategies and has taken measures to deal with the challenges of these diseases, including the issuing of laws and regulations, establishment of disease reporting systems, implementation of special projects for major infectious diseases, interdisciplinary and international cooperation, exotic disease surveillance, and health education. These strategies and measures can serve as models for the surveillance and response to continuing threats from emerging and re-emerging zoonoses in other countries. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Challenges and needs for China to eliminate rabies.
Yin, Wenwu; Dong, Jie; Tu, Changchun; Edwards, John; Guo, Fusheng; Zhou, Hang; Yu, Hongjie; Vong, Sirenda
2013-10-02
In China, rabies is a significant public health concern where dogs remain the main reservoir of disease transmission to humans; rabies-related mortality ranks second in the world.We compiled all published articles and official documents on rabies in mainland China to examine challenges and needs to eliminate rabies in the country. The Chinese authorities have identified rabies as a priority, recognized rabies control in dogs as key to control rabies in humans and required intersectoral collaborations. Efforts have been made to respond effectively to the latest re-emergence of rabies, which peaked in 2007 with >3,300 cases. Despite these outcomes and the increasing volume of publications and regulations in the recent years, our review points to some major information gaps to improve rabies control activities and envisage elimination program. An emphasis on laboratory or pathogen-associated and basic epidemiology research in the literature has contrasted with the absence of information to monitor various systems in humans and animals (e.g. quality of surveillance, response and post-exposure prophylaxis). Information is also lacking to appropriately inform policymakers (e.g. economic disease burden, impact of policies) and assist program managers (e.g. comprehensive and strategic guidance for cost-effective prevention and control activities, public education and dog population management).In conclusion, strategic planning is needed to provide a sense of direction, demonstrate feasibility of elimination in China, and develop a research agenda, addressing country's operational needs and constraints. The planning should be a multisectoral effort.
Challenges and needs for China to eliminate rabies
2013-01-01
In China, rabies is a significant public health concern where dogs remain the main reservoir of disease transmission to humans; rabies-related mortality ranks second in the world. We compiled all published articles and official documents on rabies in mainland China to examine challenges and needs to eliminate rabies in the country. The Chinese authorities have identified rabies as a priority, recognized rabies control in dogs as key to control rabies in humans and required intersectoral collaborations. Efforts have been made to respond effectively to the latest re-emergence of rabies, which peaked in 2007 with >3,300 cases. Despite these outcomes and the increasing volume of publications and regulations in the recent years, our review points to some major information gaps to improve rabies control activities and envisage elimination program. An emphasis on laboratory or pathogen-associated and basic epidemiology research in the literature has contrasted with the absence of information to monitor various systems in humans and animals (e.g. quality of surveillance, response and post-exposure prophylaxis). Information is also lacking to appropriately inform policymakers (e.g. economic disease burden, impact of policies) and assist program managers (e.g. comprehensive and strategic guidance for cost-effective prevention and control activities, public education and dog population management). In conclusion, strategic planning is needed to provide a sense of direction, demonstrate feasibility of elimination in China, and develop a research agenda, addressing country’s operational needs and constraints. The planning should be a multisectoral effort. PMID:24088366
Biochar reduces yield-scaled emissions of reactive nitrogen gases from vegetable soils across China
NASA Astrophysics Data System (ADS)
Fan, Changhua; Chen, Hao; Li, Bo; Xiong, Zhengqin
2017-06-01
Biochar amendment to soil has been proposed as a strategy for sequestering carbon, mitigating climate change and enhancing crop productivity. However, few studies have compared the general effect of different feedstock-derived biochars on the various gaseous reactive nitrogen emissions (GNrEs) of N2O, NO and NH3 simultaneously across the typical vegetable soils in China. A greenhouse pot experiment with five consecutive vegetable crops was conducted to investigate the effects of two contrasting biochars, namely wheat straw biochar (Bw) and swine manure biochar (Bm) on GNrEs, vegetable yield and gaseous reactive nitrogen intensity (GNrI) in four typical soils which are representative of the intensive vegetable cropping systems across mainland China: an Acrisol from Hunan Province, an Anthrosol from Shanxi Province, a Cambisol from Shandong Province and a Phaeozem from Heilongjiang Province. Results showed that remarkable GNrE mitigation induced by biochar occurred in Anthrosol and Phaeozem, whereas enhancement of yield occurred in Cambisol and Phaeozem. Additionally, both biochars decreased GNrI through reducing N2O and NO emissions by 36.4-59.1 and 37.0-49.5 % for Bw (except for Cambisol), respectively, and by improving yield by 13.5-30.5 % for Bm (except for Acrisol and Anthrosol). Biochar amendments generally stimulated the NH3 emissions with greater enhancement from Bm than Bw. We can infer that the biochar's effects on the GNrEs and vegetable yield strongly depend on the attributes of the soil and biochar. Therefore, in order to achieve the maximum benefits under intensive greenhouse vegetable agriculture, both soil type and biochar characteristics should be seriously considered before conducting large-scale biochar applications.
Nollen, Nicole L.; Hutcheson, Tresza; Carlson, Susan; Rapoff, Michael; Goggin, Kathy; Mayfield, Carlene; Ellerbeck, Edward
2013-01-01
Mobile technologies hold promise for improving diet and physical activity, but little attention is given to creating programs that adolescents like and will use. This study developed a personal digital assistant (PDA) program to promote increased intake of fruits and vegetables (FV) in predominately low-income, ethnic minority girls. This study used a three-phase community-engaged process, including (i) engagement of a Student Advisory Board (SAB) to determine comfort with PDAs; (ii) early testing of Prototype I and rapid re-design by the SAB and (iii) feasibility testing of Prototype II in a new sample of girls. Phase 1 results showed that girls were comfortable with the PDA. Testing of Prototype I in Phase 2 showed that acceptability was mixed, with girls responding to 47.3% of the prompts. Girls wanted more reminders, accountability in monitoring FV, help in meeting daily goals and free music downloads based on program use. The PDA was reprogrammed and testing of Prototype II in Phase 3 demonstrated marked improvement in use (78.3%), increases in FV intake (1.8 ± 2.6 daily servings) and good overall satisfaction. Findings suggest that mobile technology designed with the early input of youth is a promising way to improve adolescent health behaviors. PMID:22949499
Gan, Yandong; Wang, Lihong; Yang, Guiqiang; Dai, Jiulan; Wang, Renqing; Wang, Wenxing
2017-10-01
A field survey was conducted to investigate the concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in vegetables, corresponding cultivated soils and irrigation waters from 36 open sites in high natural background area of Wuzhou, South China. Redundancy analysis, Spearman's rho correlation analysis and multiple regression analysis were adopted to evaluate the contributions of impacting factors on metal contents in the edible parts of vegetables. This study concluded that leafy and root vegetables had relatively higher metal concentrations and adjusted transfer factor values compared to fruiting vegetables according to nonparametric tests. Plant species, total soil metal content and soil pH value were affirmed as three critical factors with the highest contribution rate among all the influencing factors. The bivariate curve equation models for heavy metals in the edible vegetable tissues were well fitted to predict the metal concentrations in vegetables. The results from this case study also suggested that it could be one of efficient strategies for clean agricultural production and food safety in high natural background area to breed vegetable varieties with low heavy metal accumulation and to enlarge planting scale of these varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Kejing; Zhang, Yuan; An, Youzhi; Jing, Zhuoxin; Wang, Chao
2013-09-01
With the fast urbanization process, how does the vegetation environment change in one of the most economically developed metropolis, Shanghai in East China? To answer this question, there is a pressing demand to explore the non-stationary relationship between socio-economic conditions and vegetation across Shanghai. In this study, environmental data on vegetation cover, the Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery in 2003 were integrated with socio-economic data to reflect the city's vegetative conditions at the census block group level. To explore regional variations in the relationship of vegetation and socio-economic conditions, Ordinary Least Squares (OLS) and Geographically Weighted Regression (GWR) models were applied to characterize mean NDVI against three independent socio-economic variables, an urban land use ratio, Gross Domestic Product (GDP) and population density. The study results show that a considerable distinctive spatial variation exists in the relationship for each model. The GWR model has superior effects and higher precision than the OLS model at the census block group scale. So, it is more suitable to account for local effects and geographical variations. This study also indicates that unreasonable excessive urbanization, together with non-sustainable economic development, has a negative influence of vegetation vigor for some neighborhoods in Shanghai.
Harris, Richard B.; Wenying, Wang; Badinqiuying; Smith, Andrew T.
2015-01-01
Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production. PMID:26208005
Harris, Richard B; Wenying, Wang; Badinqiuying; Smith, Andrew T; Bedunah, Donald J
2015-01-01
Rangeland degradation has been identified as a serious concern in alpine regions of western China on the Qinghai-Tibetan plateau (QTP). Numerous government-sponsored programs have been initiated, including many that feature long-term grazing prohibitions and some that call for eliminating pastoralism altogether. As well, government programs have long favored eliminating plateau pikas (Ochotona curzoniae), assumed to contribute to degraded conditions. However, vegetation on the QTP evolved in the presence of herbivory, suggesting that deleterious effects from grazing are, to some extent, compensated for by reduced plant-plant competition. We examined the dynamics of common steppe ecosystem species as well as physical indicators of rangeland stress by excluding livestock and reducing pika abundance on experimental plots, and following responses for 4 years. We established 12 fenced livestock exclosures within pastures grazed during winter by local pastoralists, and removed pikas on half of these. We established paired, permanent vegetation plots within and outside exclosures and measured indices of erosion and biomass of common plant species. We observed modest restoration of physical site conditions (reduced bare soil, erosion, greater vegetation cover) with both livestock exclusion and pika reduction. As expected in areas protected from grazing, we observed a reduction in annual productivity of plant species avoided by livestock and assumed to compete poorly when protected from grazing. Contrary to expectation, we observed similar reductions in annual productivity among palatable, perennial graminoids under livestock exclusion. The dominant grass, Stipa purpurea, displayed evidence of density-dependent growth, suggesting that intra-specific competition exerted a regulatory effect on annual production in the absence of grazing. Complete grazing bans on winter pastures in steppe habitats on the QTP may assist in the recovery of highly eroded pastures, but may not increase annual vegetative production.
NASA Astrophysics Data System (ADS)
Sigurdsson, B. D.; Magnusson, B.
2010-03-01
When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re), soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp.) colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value) of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.
NASA Spacecraft Shows Location of China Quake
2013-04-22
This image from NASA Terra spacecraft highlights the epicenter of a powerful magnitude 6.6 earthquake which struck Sichuan Province in southwest China on April 20, 2013. Vegetation is displayed in red; clouds and snow are in white.
Bouhlal, Sofia; Issanchou, Sylvie; Chabanet, Claire; Nicklaus, Sophie
2014-12-01
Children's vegetable intake is below the recommended amounts. No studies to date have tested the relevance of using salt or spices to increase children's vegetable acceptance. Our objective was to compare the effect of repeated exposure (RE) and of flavor-flavor learning (FFL) on toddlers' acceptance of a non-familiar vegetable. Two unconditioned stimuli were used: salt and a salt-associated spice. Toddlers attending six nurseries were assigned to 3 groups in a between subject design. Groups were exposed 8 times to a basic salsify puree (0.2% salt w/w; RE group; n = 47), a salty salsify puree (0.5% salt w/w; FFL-Salt group; n = 54) or a spiced salsify puree (0.2% salt and 0.02% nutmeg w/w; FFL-Nutmeg group; n = 50). Acceptance (intake and liking) of the target vegetable (basic salsify puree) and of a control vegetable (carrot puree) was evaluated at pre-exposure, at each exposure of the learning period, at post-exposure, and at 1, 3 and 6 months after exposure. In all groups, intake of the target vegetable increased from pre- to post-exposure. This increase was significantly higher in the RE group (64 ± 11 g) than in the FFL-Salt group (23 ± 11 g) and marginally higher than in the FFL-Nutmeg group (36 ± 11 g). No difference between groups was observed on the increase in liking of the target vegetable from pre- to post-exposure. The increase of the target vegetable intake was still observed after 6 months for all groups. Thus, repeated exposure appears to be the simplest choice to increase vegetable intake on the short and long term in toddlers. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, H.; Xie, Y.; Zhang, Y.
2017-12-01
Context/Purpose: Power generation from renewable energy (RE) could substitute huge amount of fossil energy in the power sector and have substantial co-benefits of air quality and human health improvement. In 2016, China National Renewable Energy Center (CNREC) released China Renewable Energy Outlook, CREO2016 and CREO2017, towards 2030 and 2050, respectively, in which two scenarios are proposed, namely, a conservative "Stated Policy" scenario and a more ambitious "High RE" scenario. This study, together with CNREC, aims to quantify the health and economic benefits of developing renewable energy at the provincial level in China up to 2030 and 2050. Methods: For this purpose, we developed an integrated approach that combines a power dispatch model at CNREC, an air pollutant emission projection model using energy consumption data from the Long-range Energy Alternatives Planning System (LEAP) model, an air quality model (GEOS-Chem at Harvard), an own-developed health model, and a macro economic model (Computable General Equilibrium model). Results: All together, we attempt to quantify how developing RE could reduce the concentration of PM2.5 and ozone in 30 provinces of China, how the human health could be improved in terms of mortality, morbidity and work hour loss, and what is the economic value of the health improvement in terms of increased GDP and the value of statistical life lost. The results show that developing RE as stated in the CREO2016 could prevent chronic mortality of 286 thousand people in China in 2030 alone, the value of saved statistical life is worthy 1200 billion Yuan, equivalent to 1.2% of GDP. In addition, averagely, due to reduced mortality and improved morbidity each person could work additionally by 1.16 hours per year, this could contribute to an increase of GDP by 0.1% in 2030. The assessment up to 2050 is still underway. Interpretation: The results imply that when the external benefit of renewable energy is taken into account, RE could be cost competitive compared with fossil fuel use. In other words, fossil fuel combustion is not so cheap as it appears when considering its external cost in terms of human health damage. Conclusion: Our study finds that developing renewable energy could bring substantial health and economic benefits for China.
Selected non-timber forest products with medicinal applications from Jilin Province in China
Yao Ge Huang; Branka Barl; Gerald Ivanochko
2001-01-01
This paper provides a brief account of the distribution, production, and use of some non-timber forest products such as medicinal plants, medicinal and nutraceutical mushrooms, pharmaceutical insects, and "wild" vegetables in Jilin Province, China. All materials featured in this paper are used in Traditional Chinese Medicine (TCM) inside and outside of China...
Regional effects of vegetation restoration on water yield across the Loess Plateau, China
X. M. Feng; G. Sun; B. J. Fu; C. H. Su; Y. Liu; H. Lamparski
2012-01-01
The general relationships between vegetation and water yield under different climatic regimes are well established at a small watershed scale in the past century. However, applications of these basic theories to evaluate the regional effects of land cover change on water resources remain challenging due to the complex interactions of vegetation and climatic variability...
Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Cohen, Ted; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu
2014-01-03
We compared changes in the spatial clustering of schistosomiasis in Southwest China at the conclusion of and six years following the end of the World Bank Loan Project (WBLP), the control strategy of which was focused on the large-scale use of chemotherapy. Parasitological data were obtained through standardized surveys conducted in 1999-2001 and again in 2007-2008. Two alternate spatial cluster methods were used to identify spatial clusters of cases: Anselin's Local Moran's I test and Kulldorff's spatial scan statistic. Substantial reductions in the burden of schistosomiasis were found after the end of the WBLP, but the spatial extent of schistosomiasis was not reduced across the study area. Spatial clusters continued to occur in three regions: Chengdu Plain, Yangtze River Valley, and Lancang River Valley during the two periods, and regularly involved five counties. These findings suggest that despite impressive reductions in burden, the hilly and mountainous regions of Southwest China remain at risk of schistosome re-emergence. Our results help to highlight specific locations where integrated control programs can focus to speed the elimination of schistosomiasis in China.
Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui
2015-07-08
Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.
Lessons learnt from tropical cyclone losses
NASA Astrophysics Data System (ADS)
Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad
2016-04-01
Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.
NASA Astrophysics Data System (ADS)
Guo, C.; Wu, Y.; Yang, H.; Ni, J.
2015-12-01
Accurate estimation of carbon storage is crucial to better understand the processes of global and regional carbon cycles and to more precisely project ecological and economic scenarios for the future. Southwestern China has broadly and continuously distribution of karst landscapes with harsh and fragile habitats which might lead to rocky desertification, an ecological disaster which has significantly hindered vegetation succession and economic development in karst regions of southwestern China. In this study we evaluated the carbon storage in eight political divisions of southwestern China based on four methods: forest inventory, carbon density based on field investigations, CASA model driven by remote sensing data, and BIOME4/LPJ global vegetation models driven by climate data. The results show that: (1) The total vegetation carbon storage (including agricultural ecosystem) is 6763.97 Tg C based on the carbon density, and the soil organic carbon (SOC) storage (above 20cm depth) is 12475.72 Tg C. Sichuan Province (including Chongqing) possess the highest carbon storage in both vegetation and soil (1736.47 Tg C and 4056.56 Tg C, respectively) among the eight political divisions because of the higher carbon density and larger distribution area. The vegetation carbon storage in Hunan Province is the smallest (565.30 Tg C), and the smallest SOC storage (1127.40 Tg C) is in Guangdong Province; (2) Based on forest inventory data, the total aboveground carbon storage in the woody vegetation is 2103.29 Tg C. The carbon storage in Yunnan Province (819.01 Tg C) is significantly higher than other areas while tropical rainforests and seasonal forests in Yunnan contribute the maximum of the woody vegetation carbon storage (account for 62.40% of the total). (3) The net primary production (NPP) simulated by the CASA model is 68.57 Tg C/yr, while the forest NPP in the non-karst region (account for 72.50% of the total) is higher than that in the karst region. (4) BIOME4 and LPJ models predicted higher carbon storages than the CASA model with various spatial patterns. More investigations should be further performed to clarify processes of carbon cycle in ecosystems on karst terrain and to accelerate the development of a regional dynamic vegetation model which was appropriate for karst ecosystems.
Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai
2016-01-01
Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values’ responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas. PMID:27798642
Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai
2016-01-01
Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas.
NASA Astrophysics Data System (ADS)
Yue, Y.; Tong, X.; Wang, K.; Fensholt, R.; Brandt, M.
2017-12-01
With the aim to combat desertification and improve the ecological environment, mega-engineering afforestation projects have been launched in the karst regions of southwest China around the turn of the new millennium. A positive impact of these projects on vegetation cover has been shown, however, it remains unclear if conservation efforts have been able to effectively restore ecosystem properties and reduce the sensitivity of the karst ecosystem to climate variations at large scales. Here we use passive microwave and optical satellite time series data combined with the ecosystem model LPJ-GUESS and show widespread increase in vegetation cover with a clear demarcation at the Chinese national border contrasting the conditions of neighboring countries. We apply a breakpoint detection to identify permanent changes in vegetation time series and assess the vegetation's sensitivity against climate before and after the breakpoints. A majority (74%) of the breakpoints were detected between 2001 and 2004 and are remarkably in line with the implementation and spatial extent of the Grain to Green project. We stratify the counties of the study area into four groups according to the extent of Grain to Green conservation areas and find distinct differences between the groups. Vegetation trends are similar prior to afforestation activities (1982-2000), but clearly diverge at a later stage, following the spatial extent of conservation areas. Moreover, vegetation cover dynamics were increasingly decoupled from climatic influence in areas of high conservation efforts. Whereas both vegetation resilience and resistance were considerably improved in areas with large conservation efforts thereby showing an increase in ecosystem stability, ongoing degradation and an amplified sensitivity to climate variability was found in areas with limited project implementation. Our study concludes that large scale conservation projects can regionally contribute to a greening Earth and are able to mitigate desertification by increasing the vegetation cover and reducing the ecosystem sensitivity to climate change, however, degradation remains a serious issue in the karst ecosystem of southwest China.
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change. PMID:26237220
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.
Fertilizer effects on attaining vegetation requirements.
DOT National Transportation Integrated Search
2014-02-01
This project was developed to evaluate the effects of varying the substrate and fertilization regimes on the success of complex warm-season grass and forb seedings on recent roadside construction sites. Re-vegetating construction projects is required...
Latitudinal Expansion of the Holocene Optimum in the East Asian Monsoon Region
NASA Astrophysics Data System (ADS)
Zhou, X.; Sun, L.; Zhan, T.; Huang, W.; Zhou, X.; Hao, Q.; He, X.; Zhao, C.; Zhang, J.; Qiao, Y.; Ge, J.; Yan, P.; Shao, D.; Chu, Z.; Yang, W.
2014-12-01
With increasingly abundant high resolution and high precision records of East Asian monsoon, its spatial and temporal dynamics during the Holocene have been extensively studied. However, partly due to the lack of records in high latitude areas and the age uncertainties, these studies characterized a wide range of spatial-temporal patterns of Holocene Optimum (HO). We reconstructed a 14,000-year record of vegetation using sediments from a crater lake in Northeast China. Analyses of the vegetation time series show that HO began around 6,000 a BP in Northeast China, significantly later than generally recognized. By comparison with Holocene records of vegetation in other regions of the East Asia, we found a marked northward shift of initial time of HO from 10,600 a BP in South China to 6,000 a BP in Northeast China, which appeared to be forced by the shrinkage of the northern hemisphere ice-sheet (NHIS) during early to mid Holocene. Finally, we fitted a regression model of initial HO time on latitude, which allows us to make prediction of initial HO time based on their geographical locations. This study reveals a strong relationship between latitude and initial HO times and provides a window towards understanding the joint forcing of high and low latitude factors on regional climate.
[Soil seed bank research of China mining areas: necessity and challenges].
Chang, Qing; Zhang, Da-Wei; Li, Xue; Peng, Jian; Guan, Ai-Nong; Liu, Xiao-Si
2011-05-01
Soil seed bank consists of all living seeds existed in soil and its surface litter, especially in topsoil, and can reflect the characteristics of regional biodiversity. As the base of vegetation restoration and potential greening material, topsoil and its seed bank are the limited and non-renewable resources in mining areas. The study of soil seed bank has become one of the hotspots in the research field of vegetation restoration and land reclamation in China mining areas. Owing to the special characteristics of mining industry, the soil seed bank study of mining areas should not only concern with the seed species, quantities, and their relations with ground surface vegetation, but also make use of the research results on the soil seed bank of other fragile habitats. Besides, a breakthrough should be sought in the thinking ways and research approach. This paper analyzed the particularity of mining area's soil seek bank research, summarized the research progress in the soil seed bank of mining areas and other fragile habitats, and put forward the challenges we are facing with. It was expected that this paper could help to reinforce the soil seed bank research of China mining areas, and provide scientific guidelines for taking great advantage of the significant roles of soil seed bank in land reclamation and vegetation restoration in the future.
Can Community Members Identify Tropical Tree Species for REDD+ Carbon and Biodiversity Measurements?
Zhao, Mingxu; Brofeldt, Søren; Li, Qiaohong; Xu, Jianchu; Danielsen, Finn; Læssøe, Simon Bjarke Lægaard; Poulsen, Michael Køie; Gottlieb, Anna; Maxwell, James Franklin; Theilade, Ida
2016-01-01
Biodiversity conservation is a required co-benefit of REDD+. Biodiversity monitoring is therefore needed, yet in most areas it will be constrained by limitations in the available human professional and financial resources. REDD+ programs that use forest plots for biomass monitoring may be able to take advantage of the same data for detecting changes in the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiversity. If local community members are already assessing the above-ground biomass in a representative network of forest vegetation plots, it may require minimal further effort to collect data on the diversity of trees. We compare community members and trained scientists' data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China. We show that local community members here can collect tree diversity data of comparable quality to trained botanists, at one third the cost. Without access to herbaria, identification guides or the Internet, community members could provide the ethno-taxonomical names for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led survey spent 89% of the expenses at village level as opposed to 23% of funds in the monitoring by botanists. In participatory REDD+ programs in areas where community members demonstrate great knowledge of forest trees, community-based collection of tree diversity data can be a cost-effective approach for obtaining tree diversity information.
Lu Hao; Cen Pan; Peilong Liu; Decheng Zhou; Liangxia Zhang; Zhe Xiong; Yongqiang Liu; Ge Sun
2016-01-01
Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphereâbiosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past...
NASA Astrophysics Data System (ADS)
Dong, Zhicheng; Zhang, Lina; Li, Xueshuang; Lv, Shuangyan; He, Shijie; Liu, Ying; Ma, Xuanxuan
2017-08-01
Anomalous enrichment of soil elements (especially heavy metals) has aroused popular attention in China. In order to discuss distribution characteristics and analyze sources of elements in brown soil, field investigation and sample collection were carried out under different vegetation (cherry, apple, bamboos and pine) in Qixia, a typical apple production base in China. Element contents, pH, electrical conductivity (EC) and magnetic susceptibility (MS) were tested. Results showed that element concentrations were about roughly 2.48 times as China’s background values, while significantly lower than the class ii of National soil Environment Quality Standard (Ni excepted). Meanwhile, vertical distribution and accumulation characteristics of elements in typical brown soil were significantly different under different vegetation. In detail, elements (Zn excepted) of Pine soil accumulated in surface, while they (Cd, Arsenic excepted) increased with depth under other vegetation. Moreover, pH and EC changed like elements, while MS was exactly opposite. It was found that those differences above were mainly caused by human activities (such as improper use of fertilizer, pesticide and inadequate use of organic fertilizer, etc.). Additionally, differences in composition and decomposition rate of vegetation litter also resulted in vertical differentiations of soil elements under different vegetation.
Ecological Restoration Programs Induced Amelioration of the Dust Pollution in North China Plain
NASA Astrophysics Data System (ADS)
Long, X.; Tie, X.; Li, G.; Junji, C.
2017-12-01
With Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product (MCD12Q1), we quantitatively evaluate the ecological restoration programs (ERP) induced land cover change in China by calculating gridded the land use fraction (LUF). We clearly capture two obvious vegetation (grass and forest) protective barriers arise between the dust source region DSR and North China Plain NCP from 2011 to 2013. The WRF-DUST model is applied to investigate the impact of ERPs on dust pollution from 2 to 8 March 2016, corresponding to a national dust storm event over China. Despite some model biases, the WRF-DUST model reasonably reproduced the temporal variations of dust storm event, involving IOA of 0.96 and NMB of 2% for DSR, with IOA of 0.83 and NMB of -15% for downwind area of NCP. Generally, the WRF-DUST model well capture the spatial variations and evolutions of dust storm events with episode-average [PMC] correlation coefficient (R) of 0.77, especially the dust storm outbreak and transport evolution, involving daily average [PMC] R of 0.9 and 0.73 on 4-5 March, respectively. It is found that the ERPs generally reduce the dust pollution in NCP, especially for BTH, involving upper dust pollution control benefits of -15.3% (-21.0 μg m-3) for BTH, and -6.2% (-9.3 μg m-3) for NCP. We are the first to conduct model sensitivity studies to quantitatively evaluate the impacts of the ERPs on the dust pollution in NCP. And our narrative is independently based on first-hand sources, whereas government statistics.
Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China.
Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi
2014-01-01
Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs.
Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China
Chai, Chao; Cheng, Hongzhen; Ge, Wei; Ma, Dong; Shi, Yanxi
2014-01-01
Soils at depths of 0 cm to 10 cm, 10 cm to 20 cm, and 20 cm to 40 cm from 37 vegetable greenhouses in Shandong Peninsula, East China, were collected, and 16 phthalic acid esters (PAEs) were detected using gas chromatography-mass spectrometry (GC-MS). All 16 PAEs could be detected in soils from vegetable greenhouses. The total of 16 PAEs (Σ16PAEs) ranged from 1.939 mg/kg to 35.442 mg/kg, with an average of 6.748 mg/kg. Among four areas, including Qingdao, Weihai, Weifang, and Yantai, the average and maximum concentrations of Σ16PAEs in soils at depths of 0 cm to 10 cm appeared in Weifang, which has a long history of vegetable production and is famous for extensive greenhouse cultivation. Despite the different concentrations of Σ16PAEs, the PAE compositions were comparable. Among the 16 PAEs, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) were the most abundant. Compared with the results on agricultural soils in China, soils that are being used or were used for vegetable greenhouses had higher PAE concentrations. Among PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP) and DnBP exceeded soil allowable concentrations (in US) in more than 90% of the samples, and DnOP in more than 20%. Shandong Peninsula has the highest PAE contents, which suggests that this area is severely contaminated by PAEs. PMID:24747982
Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin
2015-01-01
The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration. PMID:25969988
Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin
2015-01-01
The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.
Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China.
Yang, Qing-Wei; Xu, Yuan; Liu, Shou-Jiang; He, Jin-Feng; Long, Fang-Yan
2011-09-01
Concentration and daily intake (DI) of heavy metals (Pb, Zn, Mn, Cu, Cd and Cr) in market vegetables in Chongqing of China are investigated and their potential health risk for local consumers is simultaneously evaluated by calculating the target hazard quotient (THQ). The results showed that the measured Pb and Cd concentrations exceeded the safety limits given by FAO/WHO and Chinese regulations, indicating serious contamination of market vegetables by these metals. As respective DI values for Pb, Mn and Cd were also above the international guideline bases, health risk to the consumers is obvious. The individual THQ for Pb and Cd in pakchoi and Cd in mustard, and the combined THQ for all metals in each vegetable species excluding cos lettuce were above the threshold 1.0, implying the obviously adverse effect on health. Therefore, attention should be paid particularly to the potential hazardous exposure to vegetable heavy metals, especially for Pb and Cd, over a lifetime for people in Chongqing. Copyright © 2011 Elsevier Inc. All rights reserved.
Zhengchao, Ren; Huazhong, Zhu; Shi, Hua; Xiaoni, Liu
2016-01-01
Rangeland systems play an important role in ecological stabilization and the terrestrial carbon cycle in arid and semiarid regions. However, little is known about the vegetative carbon dynamics and climatic and topographical factors that affect vegetative carbon stock in these rangelands. Our goal was to assess vegetative carbon stock by examining meteorological data in conjunction with NDVI (normalized difference vegetation index) time series datasets from 2001–2012. An improved CASA (Carnegie Ames Stanford Approach) model was then applied to simulate the spatiotemporal dynamic variation of vegetative carbon stock, and analyze its response to climatic and topographical factors. We estimated the vegetative carbon stock of rangeland in Gansu province, China to be 4.4× 1014 gC, increasing linearly at an annual rate of 9.8×1011 gC. The mean vegetative carbon density of the whole rangeland was 136.5 gC m-2. Vegetative carbon density and total carbon varied temporally and spatially and were highly associated with temperature, precipitation and solar radiation. Vegetative carbon density reached the maximal value on elevation at 2500–3500 m, a slope of >30°and easterly aspect. The effect of precipitation, temperature and solar radiation on the vegetative carbon density of five rangeland types (desert and salinized meadow, steppe, alpine meadow, shrub and tussock, and marginal grassland in the forest) depends on the acquired quantity of water and heat for rangeland plants at all spatial scales. The results of this study provide new evidence for explaining spatiotemporal heterogeneity in vegetative carbon dynamics and responses to global change for rangeland vegetative carbon stock, and offer a theoretical and practical basis for grassland agriculture management in arid and semiarid regions.
Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen
2014-05-01
The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.
Xiao, Yingting; Su, Chang; Ouyang, Yifei; Zhang, Bing
2015-03-01
To identify the trends of vegetables and fruits consumption among Chinese adults aged 18 to 44 years old from 1991 to 2011. Twenty four hour dietary recall data from China Health and Nutrition Survey (1991, 1993, 1997, 2000, 2004, 2006, 2009 and 2011) were used to identify the trends of vegetables and fruits consumption among Chinese between 18 and 44 years old. From 1991 to 2011, the proportion of daily consumption of vegetables rarely varied, while the vegetables intake declined significantly; and the proportion of daily consumption and intake of fruits kept increasing as follows. By 2011, the proportion of daily consumption and intake of vegetables and fruits among the respondents were 99.7%, 48.0%, 321.6 g/d, and 90.1 g/d respectively. A significant drop was found in the vegetables intake among the respondents against the vegetables intake as recommended by the Chinese dietary guidelines, up to 50.2% in 2011; a significant rise was found in the fruits intake of the respondents against the fruits intake as recommended by the said guidelines, up to 17.4% in 2011. The average daily intake of vegetables and fruits of young and middle-aged residents (18-44 age group) in nine provinces in China was found lower than that recommended in the Chinese dietary guidelines; in view of the high proportion of people having less vegetables and fruits intake that those recommended by the Chinese dietary guidelines, further measures are expected to encourage their vegetables and fruits intake.
Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong
2010-07-01
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
BPA proposes to clear unwanted vegetation in the rights-of-ways and around tower structures that may impede the operation and maintenance of the subject transmission lines. Work also includes clearing of a small (<1/4 mile) section of access road. All work will be in accordance with the National Electrical Safety Code and BPA standards. See Section 1.1 of the attached checklist for detailed information on each section of the referenced transmission lines. BPA will conduct the vegetation control with the goal of removing tall-growing vegetation that is currently or will soon be a hazard to the transmission lines and where possiblemore » to promote low-growing plant communities in the right-of-way. This project meets the standards and guidelines for the Transmission System Vegetation Management Program Final Environmental Impact Statement (FEIS) and Record of Decision (ROD). The vegetation needing control is mainly Douglas Fir, Alder, and blackberries as indicated in Section 1.2 of the attached checklist. The work involved in the ROW includes: clearing tall growing vegetation that is currently or will soon pose a hazard to the lines; treating the associated stumps and re-sprouts with herbicide to ensure that the roots are killed preventing new sprouts; and selectively eliminating tall growing vegetation before it reaches a height or density to begin competing with low-growing vegetation. All work will take place in existing rights-of-ways and around transmission structures. All work will be accomplished by selective vegetation control methods to assure that there is little potential harm to non-target vegetation and to low-growing plants. The work will provide system reliability and fire protection. Also, all off right-of-way trees that are potentially unstable and will fall within a minimum distance or into the zone where the conductors swing will be removed. Access roads will be treated using mowing and herbicide applications. The work will provide system reliability. The subject transmission lines range from 115kV to 230kV and are made up of accompanying access roads, steel and wooden transmission line structures and associated switching platforms. The minimum clearance ranges from 21 feet for 115kV lines to 23 feet for 230kV lines. ROW easement widths vary along the length of the project. Vegetation control for this project is designed to provide a 3 year maintenance free interval. In summary, the overall vegetation management scheme will be to selectively remove tall growing vegetation then apply selective herbicide treatment using cut stump applications.« less
NASA Astrophysics Data System (ADS)
LIU, X.; Xu, Z.; Peng, D.
2017-12-01
Vegetation growth plays a significant role on runoff variation at high altitude, and precipitation and temperature are both key factors affecting vegetation conditions. As one of the greatest international rivers in China, the Yarlung Zangbo River in the southern Qinghai-Tibetan Plateau was selected, and the spatio-temporal patterns of vegetation were analyzed by using NDVI (Normalized Difference Vegetation Index) during 1998 2014. The relationship between NDVI and precipitation as well as temperature was also investigated in this study. Results showed that the value of NDVI increases with the decrease of elevation and the largest value appears in the broadleaf forest cover. Almost all annual NDVI variations exhibit an increasing tendency, particularly for the broadleaf forest cover. On the viewpoint of statistics, only 29% pixels of NDVI with increasing tendency are of significance for the other cover, while for cultivated vegetation cover, around 82% pixels of NDVI were detected with significant increasing tendency. In addition, vegetation growth showed lagging response to precipitation, and the lag time is around one month. Moreover, in the region with elevation over 5000 m, negative relationship between NDVI and precipitation for alpine vegetation was found. Approximately 75% of NDVI variations are dominated by precipitation and temperature. These findings may provide a reference to investigate runoff variations and strengthen ecological protection for similar high-altitude areas in the future.
Li, Shuai; Liang, Wei; Fu, Bojie; Lü, Yihe; Fu, Shuyi; Wang, Shuai; Su, Huimin
2016-11-01
Recently, relationship between vegetation activity and temperature variability has received much attention in China. However, vegetation-induced changes in water resources through changing land surface energy balance (e.g. albedo), has not been well documented. This study investigates the underlying causes of vegetation change and subsequent impacts on runoff for the Northern Shaanxi Loess Plateau. Results show that satellite-derived vegetation index has experienced a significantly increasing trend during the past three decades, especially during 2000-2012. Large-scale ecological restorations, i.e., the Natural Forest Conservation project and the Grain for Green project, are found to be the primary driving factors for vegetation increase. The increased vegetation coverage induces decrease in surface albedo and results in an increase in temperature. This positive effect can be counteracted by higher evapotranspiration and the net effect is a decrease in daytime land surface temperature. A higher evapotranspiration rate from restored vegetation is the primary reason for the reduced runoff coefficient. Other factors including less heavy precipitation, increased water consumption from town, industry and agriculture also appear to be the important causes for the reduction of runoff. These two ecological restoration projects produce both positive and negative effects on the overall ecosystem services. Thus, long-term continuous monitoring is needed. Copyright © 2016 Elsevier B.V. All rights reserved.
Notable shifting in the responses of vegetation activity to climate change in China
NASA Astrophysics Data System (ADS)
Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng
The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.
Native Vegetation Performance under a Solar PV Array at the National Wind Technology Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Brenda; Macknick, Jordan; McCall, James
Construction activities at most large-scale ground installations of photovoltaic (PV) arrays are preceded by land clearing and re-grading to uniform slope and smooth surface conditions to facilitate convenient construction access and facility operations. The impact to original vegetation is usually total eradication followed by installation of a gravel cover kept clear of vegetation by use of herbicides. The degree to which that total loss can be mitigated by some form of revegetation is a subject in its infancy, and most vegetation studies at PV development sites only address weed control and the impact of tall plants on the efficiency ofmore » the solar collectors from shading.This study seeks to address this void, advancing the state of knowledge of how constructed PV arrays affect ground-level environments, and to what degree plant cover, having acceptable characteristics within engineering constraints, can be re-established.« less
Wang, Hong; Li, Xiaobing; Han, Ruibo; Ge, Yongqin
2006-12-01
In this study, North China was latitudinally divided into five zones, i.e., 32 degrees - 36 degrees N (Zone I), 36 degrees - 40 degrees N (Zone II), 40 degrees - 44 degrees N (Zone III), 44 degrees - 48 degrees N (Zone IV) and 48 degrees - 52 degrees N (Zone V), and the NOAA/ AVHRR NDVI and MSAVI time-series images from 1982 to 1999 were smoothed with Savitzky-Golay filter algorithm. Based on the EOF analysis, the principal components of NDVI and MSAVI for the vegetations in different latitudinal zones of North China were extracted, the annual beginning and ending dates and the length of growth season in 1982 - 1999 were estimated, and the related parameters were linearly fitted, aimed to analyze the variability of vegetation growth season. The results showed that the beginning date of the growth season in different zones tended to be advanced, while the ending date tended to be postponed with increasing latitude. The length of the growth season was also prolonged, with the prolonging time exceeded 10 days.
NASA Astrophysics Data System (ADS)
Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing
2017-08-01
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Yang; Lei, Huimin; Yang, Dawen
Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less
Landsat analysis of the Yangjiatan tungsten district, Hunan Province, People's Republic of China
Carter, W.D.; Kiilsgaard, T.H.
1983-01-01
The Yangjiatan tungsten district at latitude 27??28??? N. and longitude 111??54???E. is located about 140 km southwest of the city of Changsha and 35 km northeast of the town of Shaoyang, southeast Hunan Province, People's Republic of China. The deposits, consisting largely of scheelite in veins (Wang, 1975), are contained in highly folded and faulted sedimentary rocks of Paleozoic, Mesozoic, and Cenozoic age intruded by granitic plutons that are circular in plan view. The major faults and folds trend in a northeasterly direction; whereas, the plutons are clustered in a more easterly trending band across the Landsat image. Landsat image E-2338-02202, acquired December 26, 1975, is number 470 in the "Landsat Image Atlas of the People's Republic of China" printed by the Publishing House of Geology in 1979. A computer-compatible tape of the image was analyzed and used as a demonstration project under a United Nations technical assistance program. Supervised classification of soils, rocks, and vegetation; band ratioing to detect limonite alteration; and edge enhancement were all conducted to demonstrate the flexibility and capability of interactive computer systems. Field evaluation of the results of this work will be conducted by colleagues of the Remote Sensing Center for Geology, Ministry of Geology, in China. ?? 1983.
Li, Bo; Wang, Yanhong; Jiang, Yong; Li, Guochen; Cui, Jiehua; Wang, Ying; Zhang, Hong; Wang, Shicheng; Xu, Sheng; Wang, Ruzhen
2016-12-01
Mining and smelting activities engender soil contamination by metals severely. A field survey was conducted to investigate the present situation and health risk of heavy metals (Cd, Pb, Zn, Cu, Cr, As, and Hg) in soils and vegetables in the surrounding area of an 80-year-old zinc smelter in northeastern China. Soil pH, organic matter (SOM), and cation exchange capacity (CEC) were determined, and their relations with heavy metal contents in edible parts of vegetables were analyzed. Results showed that the smelting had led to the significant contamination of the local soils by Cd and Zn, with average concentrations of 3.88 and 403.89 mg kg -1 , respectively. Concentrations of Cd and Zn in greenhouse soils were much lower than those in open farmland soils. Cd concentrations in vegetable edible parts exceeded the permissible limits severely, while other metal concentrations were much lower than the corresponding standards. Leaf and root vegetables had higher concentrations and bioaccumulation factors (BCFs) of Cd than fruit vegetables. Hazard quotient and hazard index showed that cadmium is imposing a health risk to local residents via vegetable consumption. Cd uptake of some vegetables can be predicted by empirical models with the following parameters: soil pH, SOM, CEC, Zn concentrations, and Cd concentrations. Vegetables such as cabbage, Chinese cabbage, tomato, cucumber, and green bean were screened out as being suitable to grow in the studied area.
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya
2001-10-01
In this paper, similarity reductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m,n) equations) utt=(u^n)xx+(u^m)xxxx, which is a generalized model of Boussinesq equation utt=(u^2)xx+uxxxx and modified Bousinesq equation utt=(u^3)xx+uxxxx, are considered by using the direct reduction method. As a result, several new types of similarity reductions are found. Based on the reduction equations and some simple transformations, we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1,n) equations and B(m,m) equations, respectively. The project supported by National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119
Hu, Junli; Wu, Fuyong; Wu, Shengchun; Sun, Xiaolin; Lin, Xiangui; Wong, Ming Hung
2013-05-01
Five random vegetable farms were selected to investigate the bioaccumulation risk of heavy metals (HMs) by different type of vegetables around the Pearl River Delta (PRD), China. The concentration order of four major HMs in the surface soil samples was Cd
Ji, Cuicui; Jia, Yonghong; Gao, Zhihai; Wei, Huaidong; Li, Xiaosong
2017-01-01
Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement.
Jia, Yonghong; Gao, Zhihai; Wei, Huaidong
2017-01-01
Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates are investigated through comparing the performance of linear and nonlinear spectral mixture models with different endmembers applied to field spectral measurements of two types of typical desert vegetation, namely, Nitraria shrubs and Haloxylon. The main results were as follows. (1) The correct selection of endmembers is important for improving the accuracy of vegetation cover estimates, and in particular, shadow endmembers cannot be neglected. (2) For both the Nitraria shrubs and Haloxylon, the Kernel-based Nonlinear Spectral Mixture Model (KNSMM) with nonlinear parameters was the best unmixing model. In consideration of the computational complexity and accuracy requirements, the Linear Spectral Mixture Model (LSMM) could be adopted for Nitraria shrubs plots, but this will result in significant errors for the Haloxylon plots since the nonlinear spectral mixture effects were more obvious for this vegetation type. (3) The vegetation canopy structure (planophile or erectophile) determines the strength of the nonlinear spectral mixture effects. Therefore, no matter for Nitraria shrubs or Haloxylon, the non-linear spectral mixing effects between the photosynthetic / non-photosynthetic vegetation and the bare soil do exist, and its strength is dependent on the three-dimensional structure of the vegetation canopy. The choice of linear or nonlinear spectral mixture models is up to the consideration of computational complexity and the accuracy requirement. PMID:29240777
Evolution of the vegetation system in the Heihe River basin in the last 2000 years
NASA Astrophysics Data System (ADS)
Li, Shoubo; Zhao, Yan; Wei, Yongping; Zheng, Hang
2017-08-01
The response of vegetation systems to the long-term changes in climate, hydrology, and social-economic conditions in river basins is critical for sustainable river basin management. This study aims to investigate the evolution of natural and crop vegetation systems in the Heihe River basin (HRB) over the past 2000 years. Archived Landsat images, historical land use maps and hydrological records were introduced to derive the long-term spatial distribution of natural and crop vegetation and the corresponding biomass levels. The major findings are that (1) both natural and crop vegetation experienced three development stages: a pre-development stage (before the Republic of China), a rapid development stage (Republic of China - 2000), and a post-development stage (after 2000). Climate and hydrological conditions did not show significant impacts over crop vegetation, while streamflow presented synchronous changes with natural vegetation in the first stage. For the second stage, warmer temperature and increasing streamflow were found to be important factors for the increase in both natural and crop vegetation in the middle reaches of the HRB. For the third stage, positive climate and hydrological conditions, together with policy interventions, supported the overall vegetation increase in both the middle and lower HRB; (2) there was a significantly faster increase in crop biomass than that of native vegetation since 1949, which could be explained by the technological development; and (3) the ratio of natural vegetation to crop vegetation decreased from 16 during the Yuan Dynasty to about 2.2 since 2005. This ratio reflects the reaction of land and water development to a changing climate and altering social-economic conditions at the river basin level; therefore, it could be used as an indicator of water and land management at river basins.
Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang
2015-06-01
There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.
Just Say No to Carbon Emissions (LBNL Science at the Theater)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2018-06-15
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.
Just Say No to Carbon Emissions (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2010-04-26
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency inmore » China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.« less
Mid Term Progress Report: Desertification Assessment and Monitoring in China Based on Remote Sensing
NASA Astrophysics Data System (ADS)
Gao, Zhihai; del Barrio, Gabriel; Li, Xiaosong; Wang, Bengyu; Puigdefabregas, Juan; Sanjuan, Maria E.; Bai, Lina; Wu, Junjun; Sun, Bin; Li, Changlong
2014-11-01
The objective of Dragon 3 Project 10367 is the development of techniques research for desertification assessment and monitoring in China using remote sensing data in combination with climate and environmental-related data. The main achievements acquired since2012could be summarized as follows: (1)Photosynthetic vegetation(PV)and non-photosynthetic vegetation(NPV)fraction were retrieved separately through utilizing Auto Monte Carlo Unmixing technique (AutoMCU), based on BJ-1 data and field measured spectral library. (2) The accuracy of sandy land classification was as high as81.52%when the object-oriented method and Support Vector Machine (SVM) classifiers were used. (3) A new Monthly net primary productivity (NPP)dataset from 2002 to 2010 for the whole China were established with Envisat-MERIS fraction of absorbed photosynthetically active radiation (FPAR) data. (4) The 2dRUE proved to be a good indicator for land degradation, based on which, land degradation status in the general potential extent of desertification in China(PEDC) was assessed preliminarily.
Mid Term Progress Report: Desertification Assessment and Monitoring in China Based on Remote Sensing
NASA Astrophysics Data System (ADS)
Gao, Zhihai; del Barrio, Gabriel; Li, Xiaosong; Wang, Wengyu; Puigdefabregas, Juan; Sanjuan, Maria E.; Bai, Lina; Wu, Junjun; Sun, Bin; Li, Changlong
2014-11-01
The objective of Dragon 3 Project 10367 is the development of techniques research for desertification assessment and monitoring in China using remote sensing data in combination with climate and environmental-related data. The main achievements acquired since 2012 could be summarized as follows:(1) Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) fraction were retrieved separately through utilizing Auto Monte Carlo Unmixing technique (AutoMCU), based on BJ-1 data and field measured spectral library.(2) The accuracy of sandy land classification was as high as 81.52% when the object-oriented method and Support Vector Machine (SVM) classifiers were used.(3) A new Monthly net primary productivity (NPP) dataset from 2002 to 2010 for the whole China were established with Envisat-MERIS fraction of absorbed photosynthetically active radiation (FPAR) data.(4) The 2dRUE proved to be a good indicator for land degradation, based on which, land degradation status in the general potential extent of desertification in China (PEDC) was assessed preliminarily.
Land-atmosphere-aerosol coupling in North China during 2000-2013
NASA Astrophysics Data System (ADS)
Wei, J.; Jin, Q.; Yang, Z. L.; Zhou, L.
2017-12-01
North China is one of the most densely populated regions in the world. To its west, north, and northwest, the world's largest afforestation project has been going on for decades. At the same time, North China has been suffering from air pollution because of its large fossil fuel consumption. Here we show that the changes in land cover and aerosol concentration are coupled with the variations of land surface temperature, cloud cover, and surface solar radiation during the summer 2000-2013. Model experiments show that the interannual variation of aerosol concentration in North China is mainly a result of the varying atmospheric circulation. The increasing vegetation cover due to afforestation has enhanced surface evapotranspiration (ET) and cooled the local surface, and precipitation is observed to be increasing with ET. The model with prescribed increasing vegetation cover can simulate the increasing ET but cannot reproduce the increasing precipitation. Although this may be caused by model biases, the lack of aerosol processes in the model could also be a potential cause.
NASA Astrophysics Data System (ADS)
Zhao, Yongtao; An, Cheng-Bang; Mao, Limi; Zhao, Jiaju; Tang, Lingyu; Zhou, Aifeng; Li, Hu; Dong, Weimiao; Duan, Futao; Chen, Fahu
2015-10-01
Marine Isotope Stage (MIS) 2 is mostly a cold period encompassing the Last Glacial Maximum (LGM), but the regional expression of MIS2 in arid areas of China is not well known. In this paper, we use high-resolution lacustrine pollen and grain-size records from Balikun Lake to infer vegetation, lake evolution, and climate in arid western China during MIS2. Our results suggest that: 1) the regional vegetation around Balikun was mainly dominated by desert and/or desert-steppe, and Balikun Lake was relatively shallow and experienced high aeolian input during MIS2; 2) distinctive runoff from mountain glacial meltwater in the eastern parts of the Balikun basin caused a high relative abundance of Artemisia pollen during the LGM (26.5-19.2 cal kyr BP), while simultaneously the desert areas expanded as indicated by the high abundance of desert shrubs (e.g., Elaeagnaceae, Rhamnaceae, Hippophae). This cold and dry LGM climate triggered a substantial lowering of lake level; 3) an extremely cold and dry climate prevailing from 17.0 to 15.2 cal kyr BP, correlated with Heinrich event 1 (H1), would explain the low vegetation cover found then; and 4) the warm and humid Bølling/Allerød interstadial (BA: ca. 15-ca. 13 cal kyr BP) is clearly recorded in the Balikun region by the development of wetland herb communities (e.g., Poaceae, Cyperaceae, Typha), and the lake level rose due to increased runoff. Our results challenge the traditional view of cold and wet climatic conditions and high lake levels in arid western China during the LGM, and we propose that changes in local temperature modulated by July insolation was an indispensable factor in triggering vegetation evolution in the Balikun region during MIS2.
2008-12-01
34Food and Agricultural Imports from China," 4. 40 in developing equivalent standards to the United States for the inspection meat and poultry ...interview: “With more than 10,000 athletes and 22,000-plus international journalist in Beijing, China, for the 2008 Summer Olympic Games [food safety...of fruits and vegetables, 130 tons of meat , 82 tons of seafood, 21 tons of cheese and 19 tons of eggs…There [was] great pressure on [the Beijing
Jia, Jinpu; Bi, Chunjuan; Zhang, Junfeng; Jin, Xiaopei; Chen, Zhenlou
2018-06-13
Dietary consumption of contaminated vegetables may contribute to polycyclic aromatic hydrocarbon (PAH) exposure in humans; however, this exposure pathway has not been examined thoroughly. This study aims to characterize the concentrations of PAHs in six types of vegetables grown near industrial facilities in Shanghai, China. We analyzed 16 individual PAHs on the US EPA priority list, and the total concentration in vegetables ranged from 65.7 to 458.0 ng g -1 in the following order: leafy vegetables (romaine lettuce, Chinese cabbage and Shanghai green cabbage) > stem vegetables (lettuce) > seed and pod vegetables (broad bean) > rhizome vegetables (daikon). Vegetable species, wind direction, and local anthropogenic emissions were determinants of PAH concentrations in the edible part of the vegetable. Using isomer ratios and principal component analysis, PAHs in the vegetables were determined to be mainly from coal and wood combustion. The sources of PAHs in the six types of vegetables varied. Daily ingestion of PAHs due to dietary consumption of these vegetables ranged from 0.71 to 14.06 ng d -1 kg -1 , with contributions from Chinese cabbage > broad bean > romaine > Shanghai green cabbage > lettuce > daikon. The daily intake doses adjusted by body weight in children were higher than those in teenagers and adults. Moreover, in adults, higher concentrations of PAHs were found in females than in males. For individuals of different age and gender, the incremental lifetime cancer risks (ILCRs) from consuming these six vegetables ranged from 4.47 × 10 -7 to 6.39 × 10 -5 . Most were higher than the acceptable risk level of 1 × 10 -6 . Our findings demonstrate that planting vegetables near industrial facilities may pose potential cancer risks to those who consume the vegetables. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang
2017-01-01
Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics. PMID:28587266
Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang
2017-06-06
Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics.
Ecological Monitoring and Compliance Program 2006 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Anderson; Paul D. Greger; Derek B. Hall
2007-03-01
The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h)more » monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows were avoided during construction activities. Twenty one of the 34 projects had sites within the distribution range of the threatened desert tortoise. NNSA/NSO must comply with the terms and conditions of a permit (called a Biological Opinion) from the U.S. Fish and Wildlife Service (FWS) when conducting work in tortoise habitat. No tortoises were found in or displaced from project areas. No desert tortoises were accidentally injured or killed, nor were any captured or displaced from project sites. One desert tortoise was accidentally killed along a paved road. One site specific re-vegetation plan was submitted this year as required by the desert tortoise habitat re-vegetation plan approved in 2004. This year a total of 1.89 ha (4.69 ac) of tortoise habitat was disturbed. Re-vegetation of habitat at the Bren Tower burn was completed in the spring of 2006. In the summer of 2006, NSTec scientists prepared a Biological Assessment of the security activities that were being conducted at the Device Assembly Facility (DAF). NNSA requested a Biological Opinion from FWS in late 2006. Ecosystem mapping and data management in 2006 focused primarily on two tasks: (a) converting hardcopies of about 17 reports (EMAC annual reports and selected topical reports from 1996 to 2003) into electronic versions (Portable Document Format [PDF] files) to facilitate electronic document exchange, rapid retrieval, duplication, and printing, and (b) conducting an annual vegetation survey to determine wildland fire hazards on the NTS. Copies of the PDF documents were sent to DOE's Office of Scientific and Technical Information website in Oak Ridge, Tennessee, and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Public Reading Facility.« less
Monitoring growth condition of spring maize in Northeast China using a process-based model
NASA Astrophysics Data System (ADS)
Wang, Peijuan; Zhou, Yuyu; Huo, Zhiguo; Han, Lijuan; Qiu, Jianxiu; Tan, Yanjng; Liu, Dan
2018-04-01
Early and accurate assessment of the growth condition of spring maize, a major crop in China, is important for the national food security. This study used a process-based Remote-Sensing-Photosynthesis-Yield Estimation for Crops (RS-P-YEC) model, driven by satellite-derived leaf area index and ground-based meteorological observations, to simulate net primary productivity (NPP) of spring maize in Northeast China from the first ten-day (FTD) of May to the second ten-day (STD) of August during 2001-2014. The growth condition of spring maize in 2014 in Northeast China was monitored and evaluated spatially and temporally by comparison with 5- and 13-year averages, as well as 2009 and 2013. Results showed that NPP simulated by the RS-P-YEC model, with consideration of multi-scattered radiation inside the crop canopy, could reveal the growth condition of spring maize more reasonably than the Boreal Ecosystem Productivity Simulator. Moreover, NPP outperformed other commonly used vegetation indices (e.g., Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) for monitoring and evaluating the growth condition of spring maize. Compared with the 5- and 13-year averages, the growth condition of spring maize in 2014 was worse before the STD of June and after the FTD of August, and it was better from the third ten-day (TTD) of June to the TTD of July across Northeast China. Spatially, regions with slightly worse and worse growth conditions in the STD of August 2014 were concentrated mainly in central Northeast China, and they accounted for about half of the production area of spring maize in Northeast China. This study confirms that NPP is a good indicator for monitoring and evaluating growth condition because of its capacity to reflect the physiological characteristics of crops. Meanwhile, the RS-P-YEC model, driven by remote sensing and ground-based meteorological data, is effective for monitoring crop growth condition over large areas in a near real time.
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m−2 h−1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha−1 yr−1, respectively. After the land conversion, the cumulative CH4 emissions were −0.4 and 1.4 kg C ha−1 yr−1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha−1 yr−1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha−1 yr−1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables. PMID:27195497
Yuan, Ye; Dai, Xiaoqin; Wang, Huimin; Xu, Ming; Fu, Xiaoli; Yang, Fengting
2016-01-01
Compared with CO2, methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases in terms of their global warming potentials. Previous studies have indicated that land-use conversion has a significant impact on greenhouse gas emissions. However, little is known regarding the impact of converting rice (Oryza sativa L.) to vegetable fields, an increasing trend in land-use change in southern China, on CH4 and N2O fluxes. The effects of converting double rice cropping to vegetables on CH4 and N2O fluxes were examined using a static chamber method in southern China from July 2012 to July 2013. The results indicate that CH4 fluxes could reach 31.6 mg C m-2 h-1 under rice before land conversion. The cumulative CH4 emissions for fertilized and unfertilized rice were 348.9 and 321.0 kg C ha-1 yr-1, respectively. After the land conversion, the cumulative CH4 emissions were -0.4 and 1.4 kg C ha-1 yr-1 for the fertilized and unfertilized vegetable fields, respectively. Similarly, the cumulative N2O fluxes under rice were 1.27 and 0.56 kg N ha-1 yr-1 for the fertilized and unfertilized treatments before the land conversion and 19.2 and 8.5 kg N ha-1 yr-1, respectively, after the land conversion. By combining the global warming potentials (GWPs) of both gases, the overall land-use conversion effect was minor (P = 0.36) with fertilization, but the conversion reduced GWP by 63% when rice and vegetables were not fertilized. Increase in CH4 emissions increased GWP under rice compared with vegetables with non-fertilization, but increased N2O emissions compensated for similar GWPs with fertilization under rice and vegetables.
ERIC Educational Resources Information Center
Li, Jun
2017-01-01
Policies are in the epicenter of, if not in the driving seat for, educational development in any societal context. Since the turn of the 21st century alongside China's re-emergence as a global superpower, educational policies in China have witnessed fundamental transformations as they have been maneuvered with ambitious plans for national,…
Daily selenium intake in a moderate selenium deficiency area of Suzhou China
USDA-ARS?s Scientific Manuscript database
Daily dietary selenium (Se) intake in Suzhou China was investigated to determine whether residents were susceptible to Se deficiency. Food samples were purchased from local supermarkets, including vegetables, fruits, meats and seafood. Hair samples were collected from 285 people ranging from 20 to ...
NASA Astrophysics Data System (ADS)
Duan, Liangxia; Huang, Mingbin; Zhang, Luodan
2016-06-01
Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted by the same problems of water scarcity along with the need for vegetation restoration.
Casting a global safety net--a framework for food safety in the age of globalization.
Chyau, James
2009-01-01
In mid-March 2007, Ontario-based Menu Foods Inc. started recalling its "cuts and gravy" style pet food, after receiving information that pets that had eaten the product had fallen ill. Within a week, the company was inundated with complaints and expressions of concern from about 200,000 of its customers. The Food and Drug Administration (FDA) determined in late March 2007 that the most likely culprit in the illness, and in some cases death of the pet animals, was contaminated wheat gluten, a vegetable protein imported from China. One of the FDA identified contaminants was an industrial chemical called melamine. Reports of widespread adulteration of animal feed with melamine in China raised concern of similar contamination in the human food supply. In response, on April 27, 2007, FDA announced the detention of all vegetable proteins imported from China, whether for animal or for human consumption. But, FDA's action came too late. On May 1, 2007, officials from FDA and the U.S. Department of Agriculture (USDA) indicated that between 2.5 to 3 million people in the United States had consumed chickens that had been fed with contaminated vegetable proteins imported from China. The 2007 pet food recall incident provided an ominous early warning that, unless the international community can come up with a better food safety mechanism, more such food contamination disasters could happen in the future.
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800–1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years. PMID:27196048
Evidence of a Cooler Continental Climate in East China during the Warm Early Cenozoic.
Zhang, Qian-Qian; Smith, Thierry; Yang, Jian; Li, Cheng-Sen
2016-01-01
The early Cenozoic was characterized by a very warm climate especially during the Early Eocene. To understand climatic changes in eastern Asia, we reconstructed the Early Eocene vegetation and climate based on palynological data of a borehole from Wutu coal mine, East China and evaluated the climatic differences between eastern Asia and Central Europe. The Wutu palynological assemblages indicated a warm temperate vegetation succession comprising mixed needle- and broad-leaved forests. Three periods of vegetation succession over time were recognized. The changes of palynomorph relative abundance indicated that period 1 was warm and humid, period 2 was relatively warmer and wetter, and period 3 was cooler and drier again. The climatic parameters estimated by the coexistence approach (CA) suggested that the Early Eocene climate in Wutu was warmer and wetter. Mean annual temperature (MAT) was approximately 16°C and mean annual precipitation (MAP) was 800-1400 mm. Comparison of the Early Eocene climatic parameters of Wutu with those of 39 other fossil floras of different age in East China, reveals that 1) the climate became gradually cooler during the last 65 million years, with MAT dropping by 9.3°C. This cooling trend coincided with the ocean temperature changes but with weaker amplitude; 2) the Early Eocene climate was cooler in East China than in Central Europe; 3) the cooling trend in East China (MAT dropped by 6.9°C) was gentler than in Central Europe (MAT dropped by 13°C) during the last 45 million years.
NASA Astrophysics Data System (ADS)
Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen
2018-01-01
Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.
Estimating carbon and showing impacts of drought using satellite data in regression-tree models
Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.
2018-01-01
Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.
NASA Astrophysics Data System (ADS)
Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike
2017-01-01
Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.
Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei
2015-02-01
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.
Zhang, Feng; Zhou, Guangsheng
2017-07-01
We estimated the light use efficiency ( LUE ) via vegetation canopy chlorophyll content ( CCC canopy ) based on in situ measurements of spectral reflectance, biophysical characteristics, ecosystem CO 2 fluxes and micrometeorological factors over a maize canopy in Northeast China. The results showed that among the common chlorophyll-related vegetation indices (VIs), CCC canopy had the most obviously exponential relationships with the red edge position (REP) ( R 2 = .97, p < .001) and normalized difference vegetation index (NDVI) ( R 2 = .91, p < .001). In a comparison of the indicating performances of NDVI, ratio vegetation index (RVI), wide dynamic range vegetation index (WDRVI), and 2-band enhanced vegetation index (EVI2) when estimating CCC canopy using all of the possible combinations of two separate wavelengths in the range 400-1300 nm, EVI2 [1214, 1259] and EVI2 [726, 1248] were better indicators, with R 2 values of .92 and .90 ( p < .001). Remotely monitoring LUE through estimating CCC canopy derived from field spectrometry data provided accurate prediction of midday gross primary productivity ( GPP ) in a rainfed maize agro-ecosystem ( R 2 = .95, p < .001). This study provides a new paradigm for monitoring vegetation GPP based on the combination of LUE models with plant physiological properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Nate; Zhou, Ella; Getman, Dan
2015-10-01
Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further acceleratingmore » such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.« less
The cost of Alzheimer's disease in China and re-estimation of costs worldwide.
Jia, Jianping; Wei, Cuibai; Chen, Shuoqi; Li, Fangyu; Tang, Yi; Qin, Wei; Zhao, Lina; Jin, Hongmei; Xu, Hui; Wang, Fen; Zhou, Aihong; Zuo, Xiumei; Wu, Liyong; Han, Ying; Han, Yue; Huang, Liyuan; Wang, Qi; Li, Dan; Chu, Changbiao; Shi, Lu; Gong, Min; Du, Yifeng; Zhang, Jiewen; Zhang, Junjian; Zhou, Chunkui; Lv, Jihui; Lv, Yang; Xie, Haiqun; Ji, Yong; Li, Fang; Yu, Enyan; Luo, Benyan; Wang, Yanjiang; Yang, Shanshan; Qu, Qiumin; Guo, Qihao; Liang, Furu; Zhang, Jintao; Tan, Lan; Shen, Lu; Zhang, Kunnan; Zhang, Jinbiao; Peng, Dantao; Tang, Muni; Lv, Peiyuan; Fang, Boyan; Chu, Lan; Jia, Longfei; Gauthier, Serge
2018-04-01
The socioeconomic costs of Alzheimer's disease (AD) in China and its impact on global economic burden remain uncertain. We collected data from 3098 patients with AD in 81 representative centers across China and estimated AD costs for individual patient and total patients in China in 2015. Based on this data, we re-estimated the worldwide costs of AD. The annual socioeconomic cost per patient was US $19,144.36, and total costs were US $167.74 billion in 2015. The annual total costs are predicted to reach US $507.49 billion in 2030 and US $1.89 trillion in 2050. Based on our results, the global estimates of costs for dementia were US $957.56 billion in 2015, and will be US $2.54 trillion in 2030, and US $9.12 trillion in 2050, much more than the predictions by the World Alzheimer Report 2015. China bears a heavy burden of AD costs, which greatly change the estimates of AD cost worldwide. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Liu, Juan; Luo, Xuwen; Wang, Jin; Xiao, Tangfu; Chen, Diyun; Sheng, Guodong; Yin, Meiling; Lippold, Holger; Wang, Chunlin; Chen, Yongheng
2017-05-01
Thallium (Tl) is a highly toxic rare element. Severe Tl poisoning can cause neurological brain damage or even death. The present study was designed to investigate contents of Tl and other associated heavy metals in arable soils and twelve common vegetables cultivated around a steel plant in South China, a newly-found initiator of Tl pollution. Potential health risks of these metals to exposed population via consumption of vegetables were examined by calculating hazard quotients (HQ). The soils showed a significant contamination with Tl at a mean concentration of 1.34 mg/kg. The Tl levels in most vegetables (such as leaf lettuce, chard and pak choy) surpassed the maximum permissible level (0.5 mg/kg) according to the environmental quality standards for food in Germany. Vegetables like leaf lettuce, chard, pak choy, romaine lettuce and Indian beans all exhibited bioconcentration factors (BCF) and transfer factors (TF) for Tl higher than 1, indicating a hyperaccumulation of Tl in these plants. Although the elevated Tl levels in the vegetables at present will not immediately pose significant non-carcinogenic health risks to residents, it highlights the necessity of a permanent monitoring of Tl contamination in the steel-making areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Ting Ting; Wu, Long Hua; Chen, Like; Zhang, Hai Bo; Teng, Ying; Luo, Yong Ming
2015-08-01
The contamination of phthalate esters (PAEs) has become a potential threat to the environment and human health because they could be easily released as plasticizers from the daily supply products, especially in polyethylene films. Concentration levels of total six PAEs, nominated as priority pollutants by the US Environmental Protection Agency (USEPA), were investigated in soils and vegetables from four greenhouse areas in suburbs of Nanjing, East China. Total PAEs concentration ranged from 930 ± 840 to 2,450 ± 710 μg kg(-1) (dry weight (DW)) in soil and from 790 ± 630 to 3,010 ± 2,130 μg kg(-1) in vegetables. Higher concentrations of PAEs were found in soils except in Suo Shi (SS) area and in vegetables, especially in potherb mustard and purple tsai-tai samples. Risk assessment mainly based on the exposures of soil ingestion and daily vegetable intake indicated that bis(2-ethylhexyl) phthalate (DEHP) in the samples from Gu Li (GL) and Hu Shu (HS) exhibited the highest hazard to children less than 6-year old. Therefore, the human health risk of the PAEs contamination in soils and vegetables should greatly be of a concern, especially for their environmental estrogen analog effects.
Diverse Responses of Global Vegetation to Climate Changes: Spatial Patterns and Time-lag Effects
NASA Astrophysics Data System (ADS)
Wu, D.; Zhao, X.; Zhou, T.; Huang, K.; Xu, W.
2014-12-01
Global climate changes have enormous influences on vegetation growth, meanwhile, response of vegetation to climate express space diversity and time-lag effects, which account for spatial-temporal disparities of climate change and spatial heterogeneity of ecosystem. Revelation of this phenomenon will help us further understanding the impact of climate change on vegetation. Assessment and forecast of global environmental change can be also improved under further climate change. Here we present space diversity and time-lag effects patterns of global vegetation respond to three climate factors (temperature, precipitation and solar radiation) based on quantitative analysis of satellite data (NDVI) and Climate data (Climate Research Unit). We assessed the time-lag effects of global vegetation to main climate factors based on the great correlation fitness between NDVI and the three climate factors respectively among 0-12 months' temporal lags. On this basis, integrated response model of NDVI and the three climate factors was built to analyze contribution of different climate factors to vegetation growth with multiple regression model and partial correlation model. In the result, different vegetation types have distinct temporal lags to the three climate factors. For the precipitation, temporal lags of grasslands are the shortest while the evergreen broad-leaf forests are the longest, which means that grasslands are more sensitive to precipitation than evergreen broad-leaf forests. Analysis of different climate factors' contribution to vegetation reveal that vegetation are dominated by temperature in the high northern latitudes; they are mainly restricted by precipitation in arid and semi-arid areas (Australia, Western America); in humid areas of low and intermediate latitudes (Amazon, Eastern America), vegetation are mainly influenced by solar radiation. Our results reveal the time-lag effects and major driving factors of global vegetation growth and explain the spatiotemporal variations of global vegetation in last 30 years. Significantly, it is as well as in forecasting and assessing the influences of future climate change on the vegetation dynamics. This work was supported by the High Technology Research and Development Program of China (Grant NO.2013AA122801).
Li, Cheng; Chen, Jiayi; Wang, Jihua; Han, Ping; Luan, Yunxia; Ma, Xupu; Lu, Anxiang
2016-10-15
The increased use of plastic film in greenhouse vegetable production (GVP) could result in phthalate ester (PAE) contamination in vegetables. However, limited information is currently available on their occurrence and associated potential risks in GVP systems. The present study documents the occurrence and composition of 15 PAEs in soil, plastic film, and vegetable samples from eight large-scale GVP bases in Beijing, China. Results showed that PAEs are ubiquitous contaminants in these GVP bases. Total PAE concentrations ranged from 0.14 to 2.13mg/kg (mean 0.99mg/kg) in soils and from 0.15 to 6.94mg/kg (mean 1.49mg/kg) in vegetables. Di (2-ethylhexyl) phthalate, di-n-butyl phthalate, and diisobutyl phthalate were the most abundant components, which accounted for >90% of the total PAEs. This investigation also indicated that the widespread application of plastic film in GVP systems may be the primary source of these PAEs. The non-cancer and carcinogenic risks of target PAEs were estimated based on the exposures of vegetable intake. The hazard quotients of PAE in all vegetable samples were lower than 1 and the carcinogenic risks were also at acceptable levels for consumers. The data in this study can provide valuable information to understand the status of potential pollutants, specifically PAEs, in GVP systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui
2015-01-01
Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243
NASA Astrophysics Data System (ADS)
Zhang, Qi
2017-04-01
Hydrological regime has been widely recognized as one of the major forces determining vegetation distribution in seasonally flooded wetlands. To explore the influences of hydrological conditions on the spatial distribution of wetland vegetation, an experimental transect in Poyang Lake wetland, the largest freshwater lake in China, was selected as a study area. In-situ high time frequency observations of climate, soil moisture, groundwater level and surface water level were simultaneously conducted. Vegetation was sampled periodically to obtain species composition, diversity and biomass. Results show that significant hydrological gradient exists along the experimental transect. Both groundwater level and soil moisture demonstrate high correlation with the distribution of different communities of vegetation. Above- and belowground biomass present Gaussian models along the gradient of groundwater depth in growing seasons. It was found that the optimal average groundwater depths for above- and belowground biomass are 0.8 m and 0.5 m, respectively. Numerical simulations using HYDRUS-1D further indicated that the groundwater depths had significant influences on the water usage by vegetation, which suggested the high dependence of wetland vegetation on groundwater, even in a wet climate zone such as Poyang Lake. The study revealed new knowledge on the interaction of hydrological regime and wetland vegetation, and provided scientific support for an integrated management of balancing wetland ecology and water resources development in Poyang Lake, and other lake floodplain wetlands, with strong human interferences.
Turf-type and early maturing annual ryegrass to establish perennial vegetation : technical report.
DOT National Transportation Integrated Search
2014-04-01
Annual ryegrass (Lolium multiflorum) is not currently recommended by TxDOT as a roadside re-vegetation nurse crop because its late maturity and height are too competitive for establishing perennial or spring plant mixtures. Two available genotypes us...
First report of zucchini tigre mosaic virus infecting several cucurbit plants in China
USDA-ARS?s Scientific Manuscript database
Pumpkin (Cucurbita moschata Duch.), Cucumber (Cucumis sativus Linn.) and Zucchini (Cucurbita pepo Linn.) are important crops in tropical and subtropical regions in the world, and they are popular vegetable crops in China. There are currently 59 viruses known infecting cucurbit plants which including...
NASA Astrophysics Data System (ADS)
Xu, Zhiwei; Mason, Joseph A.; Lu, Huayu
2015-01-01
The response of dune fields to changing environmental conditions can be better understood by investigating how changing vegetation cover affects dune morphodynamics. Significant increases in vegetation and widespread dune stabilization over the years 2000-2012 are evident in high-resolution satellite imagery of the Mu Us dune field in north-central China, possibly a lagged response to changing wind strength and temperature since the 1970s. These trends provide an opportunity to study how dune morphology changes with increasing vegetation stabilization. Vegetation expansion occurs mainly by expansion of pre-existing patches in interdunes. As vegetation spreads from interdunes onto surrounding dunes, it modifies their shapes in competition with wind-driven sand movement, primarily in three ways: 1) vegetation anchoring horns of barchans transforms them to parabolic dunes; 2) vegetation colonizes stoss faces of barchan and transverse dunes, resulting in lower dune height and an elongated stoss face, with shortening of barchan horns; and 3) on transverse dunes, the lee face is fixed by plants that survive sand burial. Along each of these pathways of stabilization, dune morphology tends to change from more barchanoid to more parabolic forms, but that transformation is not always completed before full stabilization. Artificial stabilization leads to an extreme case of "frozen" barchans or transverse dunes with original shapes preserved by rapid establishment of vegetation. Observations in the Mu Us dune field emphasize the point that vegetation growth and aeolian sand transport not only respond to external factors such as climate but also interact with each other. For example, some barchans lose sand mass during vegetation fixation, and actually migrate faster as they become smaller, and vegetation growth on a barchan's lower stoss face may alter sand transport over the dune in a way that favors more rapid stabilization. Conceptual models were generalized for the development of vegetation-stabilized dunes, which should be helpful in better understanding of vegetated dune morphology, model verification and prediction, and guiding practical dune stabilization efforts.
Li, Xinyu; Li, Zhonggen; Lin, Che-Jen; Bi, Xiangyang; Liu, Jinling; Feng, Xinbin; Zhang, Hua; Chen, Ji; Wu, Tingting
2018-06-04
Smelting of nonferrous metals is an important source of heavy metals in surface soil. The crops/vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the contamination level of five heavy metals (Hg, Pb, Zn, Cd and Cu) in ten types of vegetables grown nearby a large scale Pb/Zn smelter in Hunan Province, China and the health risk associated with their consumption are assessed. Based on the data obtained from 52 samples, we find that Pb and Cd contributed to the greatest health risk and leafy vegetables tend to be more contaminated than non-leafy vegetables. Within 4 km radius of the smelter, over 75% of vegetable samples exceeded the national food standard for Pb; over 47% exceeded the Cd standard; and 7% exceeded the Hg standard. Heavy metal concentrations in vegetables measured within the 4 km radius are on average three times more elevated compared to those found at the control area 15 km away. Heavy metals in vegetables have dual sources of root absorption from soil and leaf adsorption from atmosphere. Health risk in terms of the hazard index (HI) at contaminated areas are 3.66 and 3.14 for adults and children, respectively, suggesting adverse health effects would occur. HI for both groups are mainly contributed by Pb (48%) and Cd (40%). Fortunately, vegetable samples collected at the control area are considered safe to consume. Copyright © 2018 Elsevier Inc. All rights reserved.
Nutrient Status and Contamination Risks from Digested Pig Slurry Applied on a Vegetable Crops Field
Zhang, Shaohui; Hua, Yumei; Deng, Liangwei
2016-01-01
The effects of applied digested pig slurry on a vegetable crops field were studied. The study included a 3-year investigation on nutrient characteristics, heavy metals contamination and hygienic risks of a vegetable crops field in Wuhan, China. The results showed that, after anaerobic digestion, abundant N, P and K remained in the digested pig slurry while fecal coliforms, ascaris eggs, schistosoma eggs and hookworm eggs were highly reduced. High Cr, Zn and Cu contents in the digested pig slurry were found in spring. Digested pig slurry application to the vegetable crops field led to improved soil fertility. Plant-available P in the fertilized soils increased due to considerable increase in total P content and decrease in low-availability P fraction. The As content in the fertilized soils increased slightly but significantly (p = 0.003) compared with control. The Hg, Zn, Cr, Cd, Pb, and Cu contents in the fertilized soils did not exceed the maximum permissible contents for vegetable crops soils in China. However, high Zn accumulation should be of concern due to repeated applications of digested pig slurry. No fecal coliforms, ascaris eggs, schistosoma eggs or hookworm eggs were detected in the fertilized soils. PMID:27058548
Verification of watershed vegetation restoration policies, arid China
Zhang, Chengqi; Li, Yu
2016-01-01
Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000–2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies. PMID:27470948
Verification of watershed vegetation restoration policies, arid China
NASA Astrophysics Data System (ADS)
Zhang, Chengqi; Li, Yu
2016-07-01
Verification of restoration policies that have been implemented is of significance to simultaneously reduce global environmental risks while also meeting economic development goals. This paper proposed a novel method according to the idea of multiple time scales to verify ecological restoration policies in the Shiyang River drainage basin, arid China. We integrated modern pollen transport characteristics of the entire basin and pollen records from 8 Holocene sedimentary sections, and quantitatively reconstructed the millennial-scale changes of watershed vegetation zones by defining a new pollen-precipitation index. Meanwhile, Empirical Orthogonal Function method was used to quantitatively analyze spatial and temporal variations of Normalized Difference Vegetation Index in summer (June to August) of 2000-2014. By contrasting the vegetation changes that mainly controlled by millennial-scale natural ecological evolution with that under conditions of modern ecological restoration measures, we found that vegetation changes of the entire Shiyang River drainage basin are synchronous in both two time scales, and the current ecological restoration policies met the requirements of long-term restoration objectives and showed promising early results on ecological environmental restoration. Our findings present an innovative method to verify river ecological restoration policies, and also provide the scientific basis to propose future emphasizes of ecological restoration strategies.
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing
2014-05-01
The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.
Miller, R.L.; Fujii, R.
2010-01-01
Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates. ?? Springer Science+Business Media B.V. 2009.
NASA Astrophysics Data System (ADS)
Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.
2017-12-01
Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local reality into account and to balance the economic and ecological benefits so that the ratio of artificial vegetation and natural restoration can be optimized to realize sustainability of vegetation restoration
The Southwest Regional Gap Analysis Project (SW ReGAP) improves upon previous GAP projects conducted in Arizona, Colorado, Nevada, New Mexico, and Utah to provide a
consistent, seamless vegetation map for this large and ecologically diverse geographic region. Nevada's compone...
Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC
Du, A.; Wu, S.; Sun, D.; Wang, Shaoming; Qu, W.; Markey, R.; Stain, H.; Morgan, J.; Malinovskiy, D.
2004-01-01
Two Re-Os dating reference material molybdenites were prepared. Molybdenite JDC and molybdenite HLP are from a carbonate vein-type molybdenum-(lead)- uranium deposit in the Jinduicheng-Huanglongpu area of Shaanxi province, China. The samples proved to be homogeneous, based on the coefficient of variation of analytical results and an analysis of variance test. The sampling weight was 0.1 g for JDC and 0.025 g for HLP. An isotope dilution method was used for the determination of Re and Os. Sample decomposition and preconcentration of Re and Os prior to measurement were accomplished using a variety of methods: acid digestion, alkali fusion, ion exchange and solvent extraction. Negative thermal ionisation mass spectrometry and inductively coupled plasma-mass spectrometry were used for the determination of Re and 187Os concentration and isotope ratios. The certified values include the contents of Re and Os and the model ages. For HLP, the Re content was 283.8 ?? 6.2 ??g g-1, 187Os was 659 ?? 14 ng g-1 and the Re-Os model age was 221.4 ?? 5.6 Ma. For JDC, the Re content was 17.39 ?? 0.32 ng g-1, 187Os was 25.46 ?? 0.60 ng g-1 and the Re-Os model age was 139.6 ?? 3.8 Ma. Uncertainties for both certified reference materials are stated at the 95% level of confidence. Three laboratories (from three countries: P.R. China, USA, Sweden) joined in the certification programme. These certified reference materials are primarily useful for Re-Os dating of molybdenite, sulfides, black shale, etc.
Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai
2016-01-01
Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21st century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change. PMID:26867481
Yin, Yuanyuan; Tang, Qiuhong; Wang, Lixin; Liu, Xingcai
2016-02-12
Identifying the areas at risk of ecosystem transformation and the main contributing factors to the risk is essential to assist ecological adaptation to climate change. We assessed the risk of ecosystem shifts in China using the projections of four global gridded vegetation models (GGVMs) and an aggregate metric. The results show that half of naturally vegetated land surface could be under moderate or severe risk at the end of the 21(st) century under the middle and high emission scenarios. The areas with high risk are the Tibetan Plateau region and an area extended northeastward from the Tibetan Plateau to northeast China. With the three major factors considered, the change in carbon stocks is the main contributing factor to the high risk of ecosystem shifts. The change in carbon fluxes is another important contributing factor under the high emission scenario. The change in water fluxes is a less dominant factor except for the Tibetan Plateau region under the high emission scenario. Although there is considerable uncertainty in the risk assessment, the geographic patterns of the risk are generally consistent across different scenarios. The results could help develop regional strategies for ecosystem conservation to cope with climate change.
Zhang, Yanwei; Tan, Dongfei; Geng, Yue; Wang, Lu; Peng, Yi; He, Zeying; Xu, Yaping; Liu, Xiaowei
2016-01-01
Field investigations on perfluoroalkyl acid (PFAA) levels in various environmental matrixes were reported, but there is still a lack of PFAA level data for agricultural environments, especially agricultural producing areas, so we collected soil, irrigation water and agricultural product samples from agricultural producing areas in the provinces of Liaoning, Shandong and Sichuan in China. The background pollution from instruments was removed and C4–C18 PFAAs were detected by LC-MS/MS. The concentrations of PFAAs in the top and deep layers of soil were compared, and the levels of PFAAs in different agricultural environments (greenhouses and open agriculture) were analyzed. We found the order of PFAA levels by province was Shandong > Liaoning > Sichuan. A descending trend of PFAA levels from top to deep soil and open to greenhouse agriculture was shown and perfluorobutanoic acid (PFBA) was considered as a marker for source analysis. Bean vegetables contribute highly to the overall PFAA load in vegetables. A significant correlation was shown between irrigation water and agricultural products. The EDI (estimated daily intake) from vegetables should be of concern in China. PMID:27973400
Can Community Members Identify Tropical Tree Species for REDD+ Carbon and Biodiversity Measurements?
Zhao, Mingxu; Brofeldt, Søren; Li, Qiaohong; Xu, Jianchu; Danielsen, Finn; Læssøe, Simon Bjarke Lægaard; Poulsen, Michael Køie; Gottlieb, Anna
2016-01-01
Biodiversity conservation is a required co-benefit of REDD+. Biodiversity monitoring is therefore needed, yet in most areas it will be constrained by limitations in the available human professional and financial resources. REDD+ programs that use forest plots for biomass monitoring may be able to take advantage of the same data for detecting changes in the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiversity. If local community members are already assessing the above-ground biomass in a representative network of forest vegetation plots, it may require minimal further effort to collect data on the diversity of trees. We compare community members and trained scientists’ data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China. We show that local community members here can collect tree diversity data of comparable quality to trained botanists, at one third the cost. Without access to herbaria, identification guides or the Internet, community members could provide the ethno-taxonomical names for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led survey spent 89% of the expenses at village level as opposed to 23% of funds in the monitoring by botanists. In participatory REDD+ programs in areas where community members demonstrate great knowledge of forest trees, community-based collection of tree diversity data can be a cost-effective approach for obtaining tree diversity information. PMID:27814370
2008-01-01
NO OIL FOR THE LAMPS OF CHINA? Gabriel B. Collins and William S. Murray The ubiquitous Made in China stickers and labels on consumer products re-mind...security coop- eration between China and other major oil consumers . ASSUMPTIONS The imperatives of continued economic growth and global interdependence...tanker carrying oil bound for several consumers .23 For example, of a VLCC’s two-million-barrel crude oil cargo, 8 4 N A V A L W A R C O L L E G E R E V
Li, Chao; Kuang, Yaoqiu; Huang, Ningsheng; Zhang, Chao
2013-01-01
It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons·km−2 and 3,820 persons·km−2, and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM) is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term. PMID:23435589
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-01-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg−1) set by the State Environmental Protection Administration of China (SEPA), for soils in China. Conversely, Cd concentrations in the soils exceeded the MAL set by SEPA (0.6 mg kg−) and the European Union (1.5 mg kg−1) by 62-74% and 4-34%, respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8-11 mgkg−1. The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg−1) for leafy vegetables and the MAL for fruity and rooty/tuber vegetables (0.1 mg kg−1) set by FAO/WHO-CODEX.. Likewise, all vegetables except Pisum sativum (0.12 mg kg−1) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. PMID:27939659
Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian
2016-08-01
Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. Copyright © 2016 Elsevier B.V. All rights reserved.
Infectious Diseases, Urbanization and Climate Change: Challenges in Future China.
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2015-09-07
China is one of the largest countries in the world with nearly 20% of the world's population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China's current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country's capacity to deal with emerging and re-emerging infectious diseases in the future.
Roadside vegetation barrier designs to mitigate near-road air pollution impacts
With increasing evidence that exposures to air pollution near large roadways increases risks of a number of adverse human health effects, identifying methods to reduce these exposures has become a public health priority. Roadside vegetation barriers have shown the potential to re...
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Liu, Xiaobo; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2017-03-31
Though there was the significant decrease in the incidence of malaria in central and southwest China during the 1980s and 1990s, there has been a re-emergence of malaria since 2000. A cross-sectional survey was conducted amongst the staff of eleven Centers for Disease Control and Prevention (CDC) in China to gauge their perceptions regarding the impacts of climate change on malaria transmission and its control and prevention. Descriptive analysis was performed to study CDC staff's knowledge, attitudes, perceptions and suggestions for malaria control in the face of climate change. A majority (79.8%) of CDC staff were concerned about climate change and 79.7% believed the weather was becoming warmer. Most participants (90.3%) indicated climate change had a negative effect on population health, 92.6 and 86.8% considered that increasing temperatures and precipitation would influence the transmission of vector-borne diseases including malaria. About half (50.9%) of the surveyed staff indicated malaria had re-emerged in recent years, and some outbreaks were occurring in new geographic areas. The main reasons for such re-emergence were perceived to be: mosquitoes in high-density, numerous imported cases, climate change, poor environmental conditions, internal migrant populations, and lack of health awareness. This study found most CDC staff endorsed the statement that climate change had a negative impact on infectious disease transmission. Malaria had re-emerged in some areas of China, and most of the staff believed that this can be managed. However, high densities of mosquitoes and the continuous increase in imported cases of malaria in local areas, together with environmental changes are bringing about critical challenges to malaria control in China. This study contributes to an understanding of climate change related perceptions of malaria control and prevention amongst CDC staff. It may help to formulate in-house training guidelines, community health promotion programmes and policies to improve the capacity of malaria control and prevention in the face of climate change in China.
Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela
2016-01-27
High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients triggered by global change. The re-visitation approach adopted herein represents a powerful tool for studying climate-related changes in sensitive high-mountain habitats. Published by Oxford University Press on behalf of the Annals of Botany Company.
Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua
2017-02-01
To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p < 0.05). The leaf vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Polinsar Experiments of Multi-Mode X-Band Data Over South Area of China
NASA Astrophysics Data System (ADS)
Lu, L.; Yan, Q.; Duan, M.; Zhang, Y.
2012-08-01
This paper makes the polarimetric and polarimetric interferometric synthetic aperture radar (PolInSAR) experiments with the high-resolution X-band data acquired by Multi-mode airborne SAR system over an area around Linshui, south of China containing tropic vegetation and urban areas. Polarimetric analysis for typical tropic vegetations and man-made objects are presented, some polarimetric descriptors sensitive to vegetations and man-made objects are selected. Then, the PolInSAR information contained in the data is investigated, considering characteristics of the Multi-mode-XSAR dataset, a dual-baseline polarimetric interferometry method is proposed in this paper. The method both guarantees the high coherence on fully polarimetric data and combines the benefits of short and long baseline that helpful to the phase unwrapping and height sensitivity promotion. PolInSAR experiment results displayed demonstrates Multi-mode-XSAR datasets have intuitive capabilities for amount of application of land classification, objects detection and DSM mapping.
Evaluation and Countermeasures on sustainable development of nickel resources in China
NASA Astrophysics Data System (ADS)
Lin, Zhifeng
2017-08-01
Nickel is an important strategic resource in China. With the gradual reduction of nickel re-sources and the increasing competition of the global mineral resources market, the safety of nickel resources in China has been seriously threatened. Therefore, it is very important to evaluate the sustainable develop-ment of nickel resources in China and put forward the corresponding countermeasures. In this paper, the concept and research situation of sustainable development are analyzed. Based on the specific development of nickel resources in China, this paper uses AHP to evaluate the safety of nickel resources in china. Finally, it puts forward the concrete measures to implement the sustainable development strategy of nickel resources in China.
Soil and biomass carbon re-accumulation after landslide disturbances
NASA Astrophysics Data System (ADS)
Schomakers, Jasmin; Jien, Shih-Hao; Lee, Tsung-Yu; Huang-Chuan, Jr.; Hseu, Zeng-Yei; Lin, Zan Liang; Lee, Li-Chin; Hein, Thomas; Mentler, Axel; Zehetner, Franz
2017-07-01
In high-standing islands of the Western Pacific, typhoon-triggered landslides occasionally strip parts of the landscape of its vegetative cover and soil layer and export large amounts of biomass and soil organic carbon (OC) from land to the ocean. After such disturbances, new vegetation colonizes the landslide scars and OC starts to re-accumulate. In the subtropical mountains of Taiwan and in other parts of the world, bamboo (Bambusoideae) species may invade at a certain point in the succession of recovering landslide scars. Bamboo has a high potential for carbon sequestration because of its fast growth and dense rooting system. However, it is still largely unknown how these properties translate into soil OC re-accumulation rates after landslide disturbance. In this study, a chronosequence was established on four former landslide scars in the Central Mountain Range of Taiwan, ranging in age from 6 to 41 years post disturbance as determined by landslide mapping from remote sensing. The younger landslide scars were colonized by Miscanthus floridulus, while after approx. 15 to 20 years of succession, bamboo species (Phyllostachys) were dominating. Biomass and soil OC stocks were measured on the recovering landslide scars and compared to an undisturbed Cryptomeria japonica forest stand in the area. After initially slow re-vegetation, biomass carbon accumulated in Miscanthus stands with mean annual accretion rates of 2 ± 0.5 Mg C ha- 1 yr- 1. Biomass carbon continued to increase after bamboo invasion and reached 40% of that in the reference forest site after 41 years of landslide recovery. Soil OC accumulation rates were 2.0 Mg C ha- 1 yr- 1, 6 to 41 years post disturbance reaching 64% of the level in the reference forest. Our results from this in-situ study suggest that recovering landslide scars are strong carbon sinks once an initial lag period of vegetation re-establishment is overcome.
Gallicchio, Lisa; Matanoski, Genevieve; Tao, Xuguang Grant; Chen, Liwei; Lam, Tram K; Boyd, Kristina; Robinson, Karen A; Balick, Lyssa; Mickelson, Stephanie; Caulfield, Laura E; Herman, James G; Guallar, Eliseo; Alberg, Anthony J
2006-09-01
The incidence rates of nasopharyngeal carcinoma (NPC) are dramatically higher in certain regions of Asia compared to the rest of the world. Few risk factors for NPC are known; however, in contrast to the hypothesized health benefits of nonpreserved vegetables, it is thought that preserved vegetable intake may play a role in contributing to the higher incidence of NPC in high-risk regions. Therefore, the purpose of this study was to systematically review the epidemiologic evidence on the associations between adulthood intake of preserved and nonpreserved vegetables and NPC risk. A search of the epidemiological literature from 1966 to 2004 was performed using several bibliographic databases, including PubMed and the Chinese Biomedical Literature Database System. There were no language restrictions. Meta-analysis was conducted to obtain pooled odds ratios (ORs) for the highest-versus-lowest categories of preserved and nonpreserved vegetable intake. A total of 16 case-control studies were identified in the search. Results showed that highest-versus-lowest preserved vegetable intake was associated with a 2-fold increase in the risk of NPC (Random Effects Odds Ratio (RE OR) 2.04; 95% Confidence Limits (CL) 1.43, 2.92). Conversely, high nonpreserved vegetable intake was associated with 36% decrease in the risk of NPC (RE OR 0.64; 95% CL 0.48, 0.85). Findings for both preserved and nonpreserved vegetables were consistent across vegetable type and by country of study. Further research in high-risk areas to gain insight into the risk associated with preserved vegetables and protection associated with nonpreserved vegetables may advance understanding of NPC and yield clues for prevention. Copyright 2006 Wiley-Liss, Inc.
Macropore Flow and Mass Wasting of Gullies in the Loess Plateau, China
USDA-ARS?s Scientific Manuscript database
Due to the extensive gullying from historically excessive erosion in the loess plateau of China, much of this region is being removed from cropping and converted to native grass and shrub vegetation. The effects of this conversion on soil physical properties that result in preferential flow have not...
USDA-ARS?s Scientific Manuscript database
China’s vegetable production has experienced a rapid growth in recent years. Total production amounted to 522.7 million Mg in 2009, which was more than nine times that in 1980 and represented >50% of the world production.Meanwhile, excessive use of animal manure and chemical fertilizers in vegetab...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
.... APS Qingdao 7. Chiping Shengkang Foodstuff Co., Ltd. 8. CMEC Engineering Machinery Import & Export Co... Grand Agricultural Co., Ltd. 34. Jinxiang Hejia Co., Ltd. 35. Jinxiang Infarm Fruits & Vegetables Co... Foodstuff Co., Ltd. 45. Laizhou Xubin Fruits and Vegetables 46. Linshu Dading Private Agricultural Products...
NASA Astrophysics Data System (ADS)
Fang, Shuangxi; Yujing, Mu
NO X fluxes from three kinds of vegetable lands and a rice field were measured during summer-autumn in the Yangtze Delta, China. The average NO fluxes from the rice fields (RF), celery field (CE), maize field (MA) and cowpea field (CP) were 4.1, 30.8, 54 and 32.2 ng N m -2 s -1, respectively; and the average NO 2 fluxes were -2.12, 0.68, 1.33 and 0.5 ng N m -2 s -1, respectively. The liquid N fertilizer (the mixture of swine excrement and urine) which is widely applied to vegetable lands by Chinese farmers was found to quickly stimulate NO emission, and have significant contribution to NO emission from the investigated vegetable lands. Apparent linearity correlations were found between NO 2 fluxes and the ambient concentrations of the rice fields, with a compensation point of about 2.84 μg m -3. Total emissions of NO during summer-autumn time from this area were roughly estimated to be 4.1 and 8.4 Gg N for rice field and vegetable lands, respectively.
NASA Astrophysics Data System (ADS)
Youssef, Feras; Visser, Saskia M.; Karssenberg, Derek; Erpul, Gunay; Cornelis, Wim M.; Gabriels, Donald; Poortinga, Ate
2012-07-01
Wind erosion is a global environmental problem. Re-vegetating land is a commonly used method to reduce the negative effects of wind erosion. However, there is limited knowledge on the effect of vegetation pattern on wind-blown mass transport. The objective of this study was to investigate the effect of vegetation pattern on this phenomenon within a land unit and at the border between land units. Wind tunnel experiments were conducted with artificial shrubs representing Atriplex halimus. Wind runs at a speed of 11 m s- 1 were conducted and sand translocation was measured after 200-230 s using a graph paper prepared for this purpose. This research showed that: 1) the transport within a land unit is affected by the neighboring land units and by the vegetation pattern within both the unit itself and the neighboring land units; 2) re-vegetation plans for degraded land can take into account the 'streets' effect (zones of erosion areas similar to streets); 3) the effect of neighboring land units includes sheltering effect and the regulation of sediment passing from one land unit to the neighboring land units and 4) in addition to investigation of the general effect of vegetation pattern on erosion and deposition within the region, it is important to investigate the redistribution of sediment at smaller scales depending on the scope of the project.
NASA Astrophysics Data System (ADS)
Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.
2010-10-01
Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.
Ma, Jun; Xiao, Xiangming; Zhang, Yao; Doughty, Russell; Chen, Bangqian; Zhao, Bin
2018-10-15
Accurately estimating spatial-temporal patterns of gross primary production (GPP) is important for the global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatial-temporal dynamics of GPP. However, the accuracy assessment of GPP simulations from LUE models at both spatial and temporal scales remains a challenge. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images with 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPP VPM ) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPP VPM and SIF data over a single year (2010) and multiple years (2007-2014) in most areas of China. GPP VPM is also significantly positive correlated with GOME-2 SIF (R 2 > 0.43) spatially for seasonal scales. However, poor consistency was detected between GPP VPM and SIF data at yearly scale. GPP dynamic trends have high spatial-temporal variation in China during 2007-2014. Temperature, leaf area index (LAI), and precipitation are the most important factors influence GPP VPM in the regions of East Qinghai-Tibet Plateau, Loss Plateau, and Southwestern China, respectively. The results of this study indicate that GPP VPM is temporally and spatially in line with GOME-2 SIF data, and space-borne SIF data have great potential for evaluating LUE-based GPP models. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pang, Xiaobing; Mu, Yujing; Lee, Xinqing; Fang, Shuangxi; Yuan, Juan; Huang, Daikuan
In China, vegetable croplands are characterized by intensive fertilization and cultivation, which produce significant nitrogenous gases to the atmosphere. In this study, nitric oxides (NO X) and nitrous oxide (N 2O) emissions from the croplands cultivated with three typical vegetables had been measured in Yangtze River Delta of China from September 2 to December 16, 2006. The NO fluxes varied in the ranges of 1.6-182.4, 1.4-2901 and 0.5-487 ng Nm -2 s -1 with averages of 33.8 ± 44.2, 360 ± 590 and 76 ± 112 (mean ± SD) ngNm -2 s -1 for cabbage, garlic, and radish fields ( n = 88), respectively. N 2O fluxes from the three vegetable fields were found to occur in pulses and significantly promoted by tillage with average values of 5.8, 8.8, and 4.3 ng Nm -2 h -1 for cabbage, garlic, and radish crops, respectively. Influence of vegetables canopy on the NO emission was investigated and quantified. It was found that on cloudy days the canopy can only shield NO emission from croplands soil while on sunny days it cannot only prevent NO emission but also assimilate NO through the open leaves stomas. Multiple linear regression analysis indicated that soil temperature was the most important factor in controlling NO emission, followed by fertilizer amount and gravimetric soil water content. About 1.2%, 11.56% and 2.56% of applied fertilizers N were emitted as NO-N and N 2O-N from the cabbage, garlic and radish plots, respectively.
Applying Cost Imposition Strategies against China
2015-01-01
Chinese re- sponses and accurate accounting for the monetary and other security costs involved. In the air domain, competition involving China’s ballis...decision makers will find that cost imposition is not a panacea. They should understand the concept beyond its current level of misuse both for the...and accurate accounting for the monetary and other security costs involved. In the air domain, competition involving China???s ballistic and cruise
Zheng, Weiwei; Yu, Huan; Wang, Xia; Qu, Weidong
2012-07-01
Pentachlorophenol (PCP) has been widely used for killing snails in areas of China where schistosomiasis is epidemic. With the re-emergence of schistosomiasis, the warranted production and consumption of PCP has inevitably resulted in persistent environmental contamination by it and its impurities, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). This study aimed to evaluate the contamination status and human burden of PCP and its impurities (PCDD/Fs) in China, considering the previous epidemic and re-emergence of schistosomiasis. We searched studies relevant to PCP occurrence in the environment and in humans in China. Data on snail elimination areas were included to estimate PCP consumption. Relevant publications were analyzed to distinguish PCDD/Fs contamination from PCP usage. PCP contamination was detected ubiquitously in various environmental media and in human samples; environmental levels were generally low, with the exception of some hot spots. In schistosomiasis-epidemic areas, there were significantly higher PCP levels in the environment and in humans than in control areas. Spatial disparities indicated the consistency between serious schistosomiasis epidemic areas and hot spots of PCP contamination. The data suggest an increased trend in PCP contamination of the environment. Specific PCDD/Fs contamination from PCP usage existed even at low environmental levels. The occurrence of PCP in the environment and in humans positively correlated with the epidemic of schistosomiasis. Thyroid-disrupting effects and cancer risk caused by PCP and PCDD/Fs even at low environmental levels in China's schistosomiasis-epidemic areas are of concern. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, Changbin; Qi, Jiaguo; Feng, Zhaodong; Yin, Runsheng; Guo, Biyun; Zhang, Feng; Zou, Songbing
2010-03-01
Land degradation due to erosion is one of the most serious environmental problems in China. To reduce land degradation, the government has taken a number of conservation and restoration measures, including the Sloping Land Conversion Program (SLCP), which was launched in 1999. A logical question is whether these measures have reduced soil erosion at the regional level. The objective of this article is to answer this question by assessing soil erosion dynamics in the Zuli River basin in the Loess Plateau of China from 1999 to 2006. The MMF (Morgan, Morgan and Finney) model was used to simulate changes in runoff and soil erosion over the period of time during which ecological restoration projects were implemented. Some model variables were derived from remotely sensed images to provide improved land surface representation. With an overall accuracy rate of 0.67, our simulations show that increased ground vegetation cover, especially in forestlands and grasslands, has reduced soil erosion by 38.8% on average from 1999 to 2006. During the same time period, however, the change in rainfall pattern has caused a 13.1% +/- 4.3% increase in soil erosion, resulting in a net 25.7% +/- 8.5% reduction in soil erosion. This suggests that China's various ecological restoration efforts have been effective in reducing soil loss.
Neonicotinoid Residues in Fruits and Vegetables: An Integrated Dietary Exposure Assessment Approach.
Lu, Chensheng; Chang, Chi-Hsuan; Palmer, Cynthia; Zhao, Meirong; Zhang, Quan
2018-03-06
Neonicotinoids have become the most widely used insecticides in the world since introduced in the mid 1990s, yet the extent of human exposure and health impacts is not fully understood. In this study, the residues were analyzed of seven neonicotinoids in fruit and vegetable samples collected from two cross-sectional studies: the U.S. Congressional Cafeteria study (USCC) and the Hangzhou China (HZC) study. We then employed a relative potency factor method to integrate all neonicotinoids in each food sample using the respective reference dose values as the basis for summation. The findings were compared with data published by the U.S. Department of Agriculture Pesticide Data Program (USDA/PDP). Imidacloprid and thiamethoxam were the most commonly detected neonicotinoids in fruits and vegetables with 66 and 51% detection in the HZC study and 52 and 53% detection in the USCC study, respectively. The overall frequency of detection for neonicotinoids in the USDA/PDP samples was much lower than those reported here for the USCC or HZC studies, with imidacloprid being the most frequently detected neonicotinoid at 7.3%. The high frequencies of neonicotinoid detection in fruits and vegetables in the USCC and HZC studies give us a snapshot of the ubiquity of neonicotinoid use in global agriculture and make it clear that neonicotinoids have become part of the dietary staple, with possible health implications for individuals.
NASA Astrophysics Data System (ADS)
Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao
2017-04-01
The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.
Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J
2013-09-01
A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Canopy Modeling of Aquatic Vegetation: Construction of Submerged Vegetation Index
NASA Astrophysics Data System (ADS)
Ma, Z.; Zhou, G.
2018-04-01
The unique spectral characteristics of submerged vegetation in wetlands determine that the conventional terrestrial vegetation index cannot be directly employed to species identification and parameter inversion of submerged vegetation. Based on the Aquatic Vegetation Radiative Transfer model (AVRT), this paper attempts to construct an index suitable for submerged vegetation, the model simulated data and a scene of Sentinel-2A image in Taihu Lake, China are utilized for assessing the performance of the newly constructed indices and the existent vegetation indices. The results show that the angle index composed by 525 nm, 555 nm and 670 nm can resist the effects of water columns and is more sensitive to vegetation parameters such as LAI. Furthermore, it makes a well discrimination between submerged vegetation and water bodies in the satellite data. We hope that the new index will provide a theoretical basis for future research.
NASA Astrophysics Data System (ADS)
Ma, J.; Xiao, X.; Zhang, Y.; Chen, B.; Zhao, B.
2017-12-01
Great significance exists in accurately estimating spatial-temporal patterns of gross primary production (GPP) because of its important role in global carbon cycle. Satellite-based light use efficiency (LUE) models are regarded as an efficient tool in simulating spatially time-sires GPP. However, the estimation of the accuracy of GPP simulations from LUE at both spatial and temporal scales is still a challenging work. In this study, we simulated GPP of vegetation in China during 2007-2014 using a LUE model (Vegetation Photosynthesis Model, VPM) based on MODIS (moderate-resolution imaging spectroradiometer) images of 8-day temporal and 500-m spatial resolutions and NCEP (National Center for Environmental Prediction) climate data. Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF) data were used to compare with VPM simulated GPP (GPPVPM) temporally and spatially using linear correlation analysis. Significant positive linear correlations exist between monthly GPPVPM and SIF data over both single year (2010) and multiple years (2007-2014) in China. Annual GPPVPM is significantly positive correlated with SIF (R2>0.43) spatially for all years during 2007-2014 and all seasons in 2010 (R2>0.37). GPP dynamic trends is high spatial-temporal heterogeneous in China during 2007-2014. The results of this study indicate that GPPVPM is temporally and spatially in line with SIF data, and space-borne SIF data have great potential in validating and parameterizing GPP estimation of LUE-based models.
Xu, Min-Yun; Xie, Fan; Wang, Kun
2014-01-01
Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0-50 cm were highest under UG (13.3 kg C m-2 and 1.69 kg N m-2) and lowest under HG (9.8 kg C m-2 and 1.22 kg N m-2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm-2) than under other treatments (725-731 kg N hm-2) in the 0-50 cm. Our results indicate that the pasture management of "take half-leave half" has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region.
Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen
2016-01-01
It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m−2 h−1 for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha−1 and 1.58 kg NO-N ha−1, respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China. PMID:26848094
Zhang, Yaojun; Lin, Feng; Jin, Yaguo; Wang, Xiaofei; Liu, Shuwei; Zou, Jianwen
2016-02-05
It is of great concern worldwide that active nitrogenous gases in the global nitrogen cycle contribute to regional and global-scale environmental issues. Nitrous oxide (N2O) and nitric oxide (NO) are generally interrelated in soil nitrogen biogeochemical cycles, while few studies have simultaneously examined these two gases emission from typical croplands. Field experiments were conducted to measure N2O and NO fluxes in response to chemical N fertilizer application in annual greenhouse vegetable cropping systems in southeast China. Annual N2O and NO fluxes averaged 52.05 and 14.87 μg N m(-2) h(-1) for the controls without N fertilizer inputs, respectively. Both N2O and NO emissions linearly increased with N fertilizer application. The emission factors of N fertilizer for N2O and NO were estimated to be 1.43% and 1.15%, with an annual background emission of 5.07 kg N2O-N ha(-1) and 1.58 kg NO-N ha(-1), respectively. The NO-N/N2O-N ratio was significantly affected by cropping type and fertilizer application, and NO would exceed N2O emissions when soil moisture is below 54% WFPS. Overall, local conventional input rate of chemical N fertilizer could be partially reduced to attain high yield of vegetable and low N2O and NO emissions in greenhouse vegetable cropping systems in China.
Zhu, Dan; Zhou, Gang; Xu, Caiguo; Zhang, Qifa
2016-02-20
Utilization of heterosis has greatly contributed to rice productivity in China and many Asian countries. Superior hybrids usually show heterosis at two stages: canopy development at vegetative stage and panicle development at reproductive stage resulting in heterosis in yield. Although the genetic basis of heterosis in rice has been extensively investigated, all the previous studies focused on yield traits at maturity stage. In this study, we analyzed the genetic basis of heterosis at seedling stage making use of an "immortalized F2" population composed of 105 hybrids produced by intercrossing recombinant inbred lines (RILs) from a cross between Zhenshan 97 and Minghui 63, the parents of Shanyou 63, which is an elite hybrid widely grown in China. Eight seedling traits, seedling height, tiller number, leaf number, root number, maximum root length, root dry weight, shoot dry weight and total dry weight, were investigated using hydroponic culture. We analyzed single-locus and digenic genetic effects at the whole genome level using an ultrahigh-density SNP bin map obtained by population re-sequencing. The analysis revealed large numbers of heterotic effects for seedling traits including dominance, overdominance and digenic dominance (epistasis) in both positive and negative directions. Overdominance effects were prevalent for all the traits, and digenic dominance effects also accounted for a large portion of the genetic effects. The results suggested that cumulative small advantages of the single-locus effects and two-locus interactions, most of which could not be detected statistically, could explain the genetic basis of seedling heterosis of the F1 hybrid. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei
2014-01-01
In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R(2) (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.
Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei
2014-01-01
In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R2 (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China. PMID:24404124
Wu, Hai Bing; Fang, Hai Lan; Peng, Hong Ling
2016-05-01
The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total re-servoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively.
Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying
2016-01-01
Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.
The re-socialisation of migrants in a local community in Shanghai, China
NASA Astrophysics Data System (ADS)
Chang, Bo
2015-04-01
Following China's economic reforms in the early 1990s, the wave of internal North-to-South, West-to-East and rural-to-urban migration has still not subsided. The purpose of this study was to investigate how a local community in Shanghai supported migrants from other provinces in China in the process of their re-socialisation. By examining the component parts of re-socialisation (integration, assimilation and culturalisation), this paper analyses how the learning programmes and services provided in Shanghai's Zhabei District played a role in migrants' adaptation to their new community environment. The author conducted interviews with migrants of both rural and urban origin at two migrant clubs, and complemented her respondents' statements with formal and informal background research. Her findings indicate that participation in educational activity is only one aspect of migrants' re-socialisation. She demonstrates how educational activities merge into a larger community context and are mingled simultaneously with other activities which relate to employment, healthcare, setting up a business, etc. She argues that educational activity loses its backbone if the initial entry-level support given to migrants is not followed up with advanced development activities, such as providing migrants with lifelong learning opportunities tailored to their aptitudes and needs, motivating them to engage in learning which can serve as a pathway towards their career goals, and helping them improve their life circumstances.
Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin
2013-09-01
Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.
Establishment and analysis of High-Resolution Assimilation Dataset of water-energy cycle over China
NASA Astrophysics Data System (ADS)
Wen, Xiaohang; Liao, Xiaohan; Dong, Wenjie; Yuan, Wenping
2015-04-01
For better prediction and understanding of water-energy exchange process and land-atmospheric interaction, the in-situ observed meteorological data which were acquired from China Meteorological Administration (CMA) were assimilated in the Weather Research and Forecasting (WRF) model and the monthly Green Vegetation Coverage (GVF) data, which was calculated by the Normalized Difference Vegetation Index (NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer (EOS-MODIS), Digital Elevation Model (DEM) data of the Shuttle Radar Topography Mission (SRTM) system were also integrated in the WRF model over China. Further, the High-Resolution Assimilation Dataset of water-energy cycle over China (HRADC) was produced by WRF model. This dataset include 25 km horizontal resolution near surface meteorological data such as air temperature, humidity, ground temperature, and pressure at 19 levels, soil temperature and soil moisture at 4 levels, green vegetation coverage, latent heat flux, sensible heat flux, and ground heat flux for 3 hours. In this study, we 1) briefly introduce the cycling 3D-Var assimilation method; 2) Compare results of meteorological elements such as 2 m temperature, precipitation and ground temperature generated by the HRADC with the gridded observation data from CMA, and Global Land Data Assimilation System (GLDAS) output data from National Aeronautics and Space Administration (NASA). It is found that the results of 2 m temperature were improved compared with the control simulation and has effectively reproduced the observed patterns, and the simulated results of ground temperature, 0-10 cm soil temperature and specific humidity were as much closer to GLDAS outputs. Root mean square errors are reduced in assimilation run than control run, and the assimilation run of ground temperature, 0-10 cm soil temperature, radiation and surface fluxes were agreed well with the GLDAS outputs over China. The HRADC could be used in further research on the long period climatic effects and characteristics of water-energy cycle over China.
Chai, Chao; Cheng, Qiqi; Wu, Juan; Zeng, Lusheng; Chen, Qinghua; Zhu, Xiangwei; Ma, Dong; Ge, Wei
2017-08-01
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were analyzed in soil (n=196) and vegetable (n=30) collected from greenhouses, and also in the soil (n=27) collected from agriculture fields close to the greenhouses in Shandong Province, China. The total PAH concentration (∑ 16 PAH) ranged from 152.2µg/kg to 1317.7µg/kg, within the moderate range in agricultural soils of China. Three-ring PAHs were the dominant species, with Phe (16.3%), Ace (13.1%), and Fl (10.5%) as the major compounds. The concentrations of low molecular weight (LMW ≤3 rings) PAHs were high in the east and north of Shandong, while the concentrations of high molecular weight (HMW ≥4 rings) PAHs were high in the south and west of the study area. The PAH level in soils in industrial areas (IN) was higher than those in transport areas (TR) and rural areas (RR). No significant difference in concentration of ∑ 16 PAH and composition was observed in soils of vegetable greenhouses and field soils. PAH concentration exhibited a weakly positive correlation with alkaline nitrogen, available phosphorus in soil, but a weakly negative correlation with soil pH. However, no obvious correlation was observed between PAH concentration and organic matter of soil, or ages of vegetable greenhouses. ∑ 16 PAH in vegetables ranged from 89.9µg/kg to 489.4µg/kg, and LMW PAHs in vegetables positively correlated with those in soils. The sources of PAHs were identified and quantitatively assessed through positive matrix factorization. The main source of PAHs in RR was coal combustion, while the source was traffic in TR and IN. Moreover, petroleum source, coke source, biomass combustion, or mixed sources also contributed to PAH pollution. According to Canadian soil quality guidelines, exposure to greenhouse soils in Shandong posed no risk to human health. Copyright © 2017. Published by Elsevier Inc.
Food groups consumed by infants and toddlers in urban areas of China
Yu, Pan; Denney, Liya; Zheng, Yingdong; Vinyes-Parés, Gerard; Reidy, Kathleen C.; Eldridge, Alison L.; Wang, Peiyu; Zhang, Yumei
2016-01-01
Background Food consumption patterns of young children in China are not well known. Objective Characterised food groups consumed by infants and young children in urban China using data from the Maternal Infant Nutrition Growth (MING) study. Design One 24-h dietary recall was completed for 1,350 infants and young children (436 infants aged 6–11 months and 914 young children aged 12–35 months), who were recruited from maternal and child care centres in eight cities via face-to-face interviews with the primary caregiver. All foods, beverages and supplements reported were assigned to one of 64 food groups categorised into the following: milk and milk products, grains, vegetables, fruits, protein foods and desserts/sweets. The percentage of infants and young children consuming foods from specific food groups was calculated, regardless of the amount consumed. Results Less than half of infants consumed breast milk (47%), whereas 59% of infants consumed infant formula and 53–75% of young children consumed growing-up (fortified) milk. Rice was the number one grain food consumed after 6 months (up to 88%) and the consumption of infant cereal was low. About 50% of infants did not consume any fruits or vegetables, and 38% of young children did not consume any fruits on the day of the recall. Only 40% of all children consumed dark green leafy vegetables and even fewer consumed deep yellow vegetables. Eggs and pork were the most commonly consumed protein foods. Conclusions The data provide important insight for developing detailed food consumption guidelines for this population group. Mothers of infants should be encouraged to continue breastfeeding after the first 6 months. Parents should be advised to offer a wide variety of vegetables and fruits daily, particularly dark green leafy and deep yellow vegetables and colourful fruits. The consumption of fortified infant cereal should be advocated to improve the iron intake of Chinese infants. PMID:26864648
Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance
NASA Astrophysics Data System (ADS)
Xue, Lihong; Yang, Linzhang
Different nitrogen (N) treatments of four common green-leafy vegetable varieties with different leaf color: lettuce ( Lactuca sativa L. var. crispa L.) with yellow green leaves, pakchoi ( Brassica chinensis L.) var. aijiaohuang in Chinese (AJH) with middle green leaves, spinach ( Spinacia oleracea L.) with green leaves and pakchoi ( B. chinensis L.) var. shanghaiqing in Chinese (SHQ) with dark green leaves, were carried out to achieve a wide range of chlorophyll content. The relationship of vegetable leaf hyperspectral response to its chlorophyll content was examined in this study. Almost all reported successful leaf chlorophyll indices in the literature were evaluated for their ability to predict the chlorophyll content in vegetable leaves. Some new indices based on the first derivative curve were also developed, and compared with the chlorophyll indices published. The results showed that most of the indices showed a strong relation with leaf chlorophyll content. In general, modified indices with the blue or near red edge wavelength performed better than their simple counterpart without modification, ratio indices performed a little better than normalized indices when chlorophyll expressed on area basis and reversed when chlorophyll expressed on fresh weight basis. A normalized derivative difference ratio (BND: (D722-D700)/(D722+D700) calibrated by Maire et al. [Maire, G., Francois, C., Dufrene, E., 2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment 89 (1), 1-28]) gave the best results among all published indices in this study (RMSE=22.1 mg m -2), then the mSR-like indices with the RMSE between 22.6 and 23.0 mg m -2. The new indices EBAR (ratio of the area of red and blue, ∑ dRE/∑ dB), EBFN (normalized difference of the amplitude of red and blue, (dRE-dB)/(dRE+dB)) and EBAN (normalized difference of the area of red and blue, (∑ dRE-∑ dB)/(∑ dRE+∑ dB)) calculated with the derivatives also showed a good performance with the RMSE of 23.3, 24.15 and 24.33 mg m -2, respectively. The study suggests that spectral reflectance measurements hold promise for the assessment of chlorophyll content at the leaf level for green-leafy vegetables. Further investigation is needed to evaluate the effectiveness of such techniques on other vegetable varieties or at the canopy level.
Zeng, Defang; Zhou, Saijun; Ren, Bozhi; Chen, Tengshu
2015-01-01
Heavy metal pollution in soils caused by mining and smelting has attracted worldwide attention for its potential health risks to residents. This paper studies the concentrations and accumulations of Sb and As in both soils and vegetables and the human health risks of Sb and As in vegetables from Xikuangshan (XKS) Sb mine, Hunan, China. Results showed that the soils were severely polluted by Sb and As; Sb and As have significant positive correlation. Sb and As concentrations in vegetables were quite different: Coriandrum sativum L. was the highest in Sb, Allium fistulosum L. was the highest in As, and Brassica pekinensis L. was the lowest in both Sb and As; Daucus carota L. and Coriandrum sativum L. showed advantage in accumulating Sb and As; Coriandrum sativum L. had higher capacity of redistributing Sb and As within the plant. Health risk assessment results showed that the hazard quotient (HQ) values of Sb and As in vegetables were in the ranges of 1.61–3.33 and 0.09–0.39, respectively; the chronic daily intake (CDI) and hazard quotient (HQ) values of Sb were over the safe limit recommended by FAO and WHO, indicating that long-term consumption of vegetables from the surrounding soils of XKS mine may bring health risks to residents. PMID:26442167
Wu, Mingquan; Muhammad, Shakir; Chen, Fang; Niu, Zheng; Wang, Changyao
2015-04-01
Wetland ecosystems are very important for ecological diversity and have a strong ability to sequester carbon. Through comparisons with field measured eddy covariance data, we evaluated the relationships between the light use efficiency (LUE) index and the enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and land surface temperature (LST). Consequently, we have proposed a new model for the estimation of gross primary production (GPP) for wetland ecosystems using Moderate Resolution Imaging Spectroradiometer (MODIS) products, including these vegetation indices, LST and the fraction of photosynthetically active radiation (FAPAR) absorbed by the active vegetation. This model was developed and validated for a study site on Chongming Island, Shanghai, China. Our results show that photosynthetically active radiation (PAR) was highly correlated with the LST, with a coefficient of determination (R(2)) of 0.59 (p < 0.001). Vegetation indices, such as EVI, NDVI and LST, were highly correlated with LUE. We found that the product of vegetation indices (VIs) and a modified form of LST (Te) can be used to estimate LUE, with an R(2) of 0.82 (P < 0.0001) and an RMSE of 0.054 kg C per mol PAR. This new model can provide reliable estimates of GPP (R(2) of 0.87 and RMSE of 0.009 kg C m(-2) 8 d(-1) (P < 0.0001)).
Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie
2017-12-12
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10 -6 -10 -4 ). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond.
Liang, Yaya; Yi, Xiaoyun; Dang, Zhi; Wang, Qin; Luo, Houmei; Tang, Jie
2017-01-01
The purpose of this study was to assess heavy metal contamination and health risks for residents in the vicinity of a tailing pond in Guangdong, southern China. Water, soil, rice, and vegetable samples were collected from the area in the vicinity of the tailing pond. Results showed that surface water was just polluted by Ni and As, while groundwater was not contaminated by heavy metals. The concentrations of Pb, Zn, Cu, Cd, Ni, and As in the paddy soil exceeded the standard values but not those of Cr. In vegetable soils, the concentration of heavy metals was above the standard values except for Ni and As. Soil heavy metal concentrations generally decreased with increasing distance from the polluting source. Leafy vegetables were contaminated by Pb, Cr, Cd, and Ni, while the non-leafy vegetables were contaminated only by Cr. There was a significant difference in heavy metal concentrations between leafy vegetables and non-leafy vegetables. Almost all the rice was polluted by heavy metals. Diet was the most significant contributor to non-carcinogenic risk, which was significantly higher than the safe level of 1. The total cancer risk was also beyond the safe range (10−6–10−4). Results revealed that there is a risk of potential health problems to residents in the vicinity of the tailing pond. PMID:29231884
NASA Astrophysics Data System (ADS)
Liu, Qingsheng; Liang, Li; Liu, Gaohuan; Huang, Chong
2017-09-01
Vegetation often exists as patch in arid and semi-arid region throughout the world. Vegetation patch can be effectively monitored by remote sensing images. However, not all satellite platforms are suitable to study quasi-circular vegetation patch. This study compares fine (GF-1) and coarse (CBERS-04) resolution platforms, specifically focusing on the quasicircular vegetation patches in the Yellow River Delta (YRD), China. Vegetation patch features (area, shape) were extracted from GF-1 and CBERS-04 imagery using unsupervised classifier (K-Means) and object-oriented approach (Example-based feature extraction with SVM classifier) in order to analyze vegetation patterns. These features were then compared using vector overlay and differencing, and the Root Mean Squared Error (RMSE) was used to determine if the mapped vegetation patches were significantly different. Regardless of K-Means or Example-based feature extraction with SVM classification, it was found that the area of quasi-circular vegetation patches from visual interpretation from QuickBird image (ground truth data) was greater than that from both of GF-1 and CBERS-04, and the number of patches detected from GF-1 data was more than that of CBERS-04 image. It was seen that without expert's experience and professional training on object-oriented approach, K-Means was better than example-based feature extraction with SVM for detecting the patch. It indicated that CBERS-04 could be used to detect the patch with area of more than 300 m2, but GF-1 data was a sufficient source for patch detection in the YRD. However, in the future, finer resolution platforms such as Worldview are needed to gain more detailed insight on patch structures and components and formation mechanism.
Liang, Jiwei; Zhang, Yanlei; Xue, Aili; Sun, Jianping; Song, Xin; Xue, Bai; Ji, Fuling; Gao, Weiguo; He, Liang; Pang, Zengchang; Qiao, Qing; Ning, Feng
2017-03-01
Fruit, vegetable, seafood, and dairy intake may reduce the risk of type 2 diabetes, but this relationship is unclear. We aimed to examine the associations between fruit, vegetable, seafood, and dairy intake and type 2 diabetes prevalence in a Chinese population. A total of 4,343 individuals aged 35-74 years participated in a population-based cross-sectional study in Qingdao, China. The frequency and quantity of fruit, vegetable, seafood, and dairy intake were determined using a standard food frequency questionnaire. Diabetes was classified according to the WHO/IDF 2006 criteria. Logistic regression analysis was employed to estimate odds ratio (OR) for type 2 diabetes in relation to fruit, vegetable, seafood, and dairy intake in a multivariable model. The multivariate-adjusted ORs (95% confidence interval) for the presence of type 2 diabetes were 0.68 (0.46-0.98), 0.50 (0.37-0.68), and 0.91 (0.66-1.25), respectively, for the highest versus the lowest groups regarding total fruit and vegetable, fruit or vegetable intake in women. The ORs for type 2 diabetes prevalence regarding the quantity of fruit and vegetable, fruit, and yogurt intake were 0.88 (0.78-0.99), 0.71 (0.61-0.82), and 0.56 (0.32-0.98) in women, but not in men. Seafood consumption was inversely associated with diabetes risk in men, but not in women; the corresponding figures were 0.58 (0.35-0.96) and 0.92 (0.63-1.36), respectively. Fruit, vegetable, and yogurt intake in women and seafood intake in men were inversely associated with type 2 diabetes prevalence in this Chinese population. These findings require confirmation in a prospective study.
Contribution of climate and fires to vegetation composition in the boreal forest of China
NASA Astrophysics Data System (ADS)
Venevsky, S.; Wu, C.; Sitch, S.
2017-12-01
Climate is well known as an important determinant of biogeography. Although climate is directly important for vegetation composition in the boreal forests, these ecosystems are strongly sensitive to an indirect effect of climate via fire disturbance. However, the driving balance of fire disturbance and climate on composition is poorly understood. In this study we quantitatively analyzed their individual contributions for the boreal forests of the Heilongjiang province, China and their response to climate change using four warming scenarios (+1.5, 2, 3, and 4°C). This study employs the statistical methods of Redundancy Analysis (RDA) and variation partitioning combined with simulation results from a Dynamic Global Vegetation Model, SEVER-DGVM, and remote sensing datasets of global land cover (GLC2000) and the Global Fire Emissions Database (GFED3). Results show that the vegetation distribution for the present day is mainly determined directly by climate (35%) rather than fire (1%-10.9%). However, with a future global warming of 1.5°C, local vegetation composition will be determined by fires rather than climate (36.3% > 29.3%). Above a 1.5°C warming, temperature will be more important than fires in regulating vegetation distribution although other factors like precipitation can also contribute. The spatial pattern in vegetation composition over the region, as evaluated by Moran's Eigenvector Map (MEM), has a significant impact on local vegetation coverage, i.e. composition at any individual location is highly related to that in its neighborhood. It represents the largest contribution to vegetation distribution in all scenarios, but will not change the driving balance between climate and fires. Our results are highly relevant for forest and wildfires' management.
EMERGY SYNTHESIS OF AN AGRO-FOREST RESTORATION SYSTEM IN LOWER SUBTROPICAL CHINA
The low subtropical zone is the most populated and seriously degraded area in China; therefore, highly efficient restoration of degraded lands is the key to sustainable development of this region. An agro-forest restoration mode consisting of an Acacia mangium forest, a Citrus re...
FIBER ROLLS AS A TOOL FOR RE-VEGETATION OF OIL-BRINE CONTAMINATED WATERSHEDS
We found that fibrijute burlap cylinders filled with organic matter and inoculated with salt tolerant plants and mycorrhizal fungi promoted remediation of an historic brine scar devoid of vegetation since the 1960's. Soils in plots that received a surface treatment of hay, org...
NASA Astrophysics Data System (ADS)
Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.
2010-05-01
Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without strong root turnover activity. A. anomala with its strong root system and ability to survive flooding is considered suitable for re-vegetating the riverbanks to help prevent further erosion, while A. philoxeroides, which discards its weaker roots during prolonged flooding and produces new roots afterwards, does not contribute much to soil stabilization.
NASA Astrophysics Data System (ADS)
Fang, Xuening; Zhao, Wenwu; Wang, Lixin; Feng, Qiang; Ding, Jingyi; Liu, Yuanxin; Zhang, Xiao
2016-08-01
Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80-500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120-140 and 480-500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80-220 cm); (ii) a transition layer (220-400 cm); and (iii) a stable layer (400-500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially for the choice of vegetation types, planting zones, and proper human management measures.
ERIC Educational Resources Information Center
Bold, Mary; Chenoweth, Lillian; Garimella, Nirisha K.
2008-01-01
Projections for the global economy frequently center on the BRIC countries: Brazil, Russia, India, and China. As futurists and economists alike define and re-define both formal and informal coalitions (for example, by broadening the R in BRIC to include all Eastern European economies or instead re-directing the discussion to G-8 countries or to…
NASA Astrophysics Data System (ADS)
Fu, Y.; Liao, H.
2012-12-01
We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2-5% differences in simulated O3 and SOA in summer.
NASA Astrophysics Data System (ADS)
Fu, Yu; Liao, Hong
2012-11-01
We use the MEGAN (Model of emissions of Gases and Aerosols from Nature) module embedded within the global three-dimensional Goddard Earth Observing System chemical transport model (GEOS-Chem) to simulate the interannual variations in biogenic volatile organic compound (BVOC) emissions and concentrations of ozone and secondary organic aerosols (SOA) in China over years 2001-2006. To have better representation of biogenic emissions, we have updated in the model the land cover and leaf area index in China using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements, and we have developed a new classification of vegetation with 21 plant functional types. Estimated annual BVOC emission in China averaged over 2001-2006 is 18.85 Tg C yr-1, in which emissions of isoprene, monoterpenes, and other reactive volatile organic compounds account for 50.9%, 15.0%, and 34.1%, respectively. The simulated BVOC emissions in China have large interannual variations. The values of regionally averaged absolute percent departure from the mean (APDM) of isoprene emissions are in the range of 21-42% in January and 15-28% in July. The APDM values of monoterpene emissions are 14-32% in January and 10-21% in July, which are generally smaller than those of isoprene emissions. Model results indicate that the interannual variations in isoprene emissions are more dependent on variations in meteorological fields, whereas the interannual variations in monoterpene emissions are more sensitive to changes in vegetation parameters. With fixed anthropogenic emissions, as a result of the variations in both meteorological parameters and vegetation, simulated O3 concentrations show interannual variations of 0.8-5 ppbv (or largest APDM values of 4-15%), and simulated SOA shows APDM values of 5-15% in southwestern China in January as well as 10-25% in southeastern and 20-35% in northeastern China in July. On a regional mean basis, the interannual variations in BVOCs alone can lead to 2-5% differences in simulated O3 and SOA in summer.
Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha
2017-01-01
Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1-5, 5-10, 10-20, and 20-30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris → Heteropappus altaicus→ A. sacrorum . The diversity pattern was one of low-high-low, with diversity peaking in the 10-20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation.
Sun, Caili; Chai, Zongzheng; Liu, Guobin; Xue, Sha
2017-01-01
Analyzing the dynamic patterns of species diversity and spatial heterogeneity of vegetation in grasslands during secondary succession could help with the maintenance and management of these ecosystems. Here, we evaluated the influence of secondary succession on grassland plant diversity and spatial heterogeneity of abandoned croplands on the Loess Plateau (China) during four phases of recovery: 1–5, 5–10, 10–20, and 20–30 years. The species composition and dominance of the grassland vegetation changed markedly during secondary succession and formed a clear successional series, with the species assemblage dominated by Artemisia capillaris→ Heteropappus altaicus→ A. sacrorum. The diversity pattern was one of low–high–low, with diversity peaking in the 10–20 year phase, thus corresponding to a hump-backed model in which maximum diversity occurring at the intermediate stages. A spatially aggregated pattern prevailed throughout the entire period of grassland recovery; this was likely linked to the dispersal properties of herbaceous plants and to high habitat heterogeneity. We conclude that natural succession was conducive to the successful recovery of native vegetation. From a management perspective, native pioneer tree species should be introduced about 20 years after abandoning croplands to accelerate the natural succession of grassland vegetation. PMID:28900433
China: An Unlikely Economic Hegemon
2014-01-01
investment, and changing demographics that will re- duce its workforce . China’s Devalued Currency China has engaged in a deliberate policy of devaluing...US currency.30 In a similar vein, China has managed to keep the value of the yuan artificially low by currency restrictions and, until very recently...leading global economic power without the artificial measures Beijing has put in place to fuel the economy? While China’s economy can continue to grow, it
Lin, Yi-Chun; Fly, Alyce D
2016-06-01
Fruit and vegetable consumption of children in the United States falls below recommendations. The U.S. Department of Agriculture Fresh Fruit and Vegetable Program (FFVP) is a national free-fruit and vegetable school distribution program designed to address this problem. This permanent, legislated program provides funding to qualified elementary schools for provision of additional fruit and vegetables outside of school meals. The objective of this study was to understand children's perceptions of FFVP after the intervention and formulate recommendations that may improve success of the intervention. Secondary data were obtained from 5,265 4(th)-6(th) graders at 51 randomly-selected FFVP intervention schools in Indiana. Anonymous questionnaires were completed late in the 2011-2012 academic year. Multilevel logistic regressions were used to determine associations between students' perceptions of program effects (4 close-ended items) and their preference toward the program. Content analysis was applied to a single open-ended item for program comments. Over 47% of students reported greater intake of fruit and vegetables due to FFVP, and over 66% reported liking the program. Student-reported program effects were positively associated with preference for the program (P < 0.01). Themes that emerged during analysis of 3,811 comments, included, students liked: the opportunity to try different kinds of fruit and vegetables, types and flavors of fruits served, and benefits of eating fruit. Fewer students liked the types of vegetables and their benefits. A small group disliked the program citing poor flavor of vegetables and quality of fruits. Important suggestions for the program include serving more dipping sauces for vegetables, cooking vegetables, and providing a greater variety of produce. The degree that students liked FFVP may predict the program's effects on fruit and vegetable intake. FFVP may become more acceptable to students by incorporating their suggestions. Program planners should consider these options for achieving program goals.
Double Up Food Bucks program effects on SNAP recipients' fruit and vegetable purchases.
Steele-Adjognon, Marie; Weatherspoon, Dave
2017-12-12
To encourage the consumption of more fresh fruits and vegetables, the 2014 United Sates Farm Bill allocated funds to the Double Up Food Bucks Program. This program provided Supplemental Nutrition Assistance Program beneficiaries who spent $10 on fresh fruits and vegetables, in one transaction, with a $10 gift card exclusively for Michigan grown fresh fruits and vegetables. This study analyzes how fruit and vegetable expenditures, expenditure shares, variety and purchase decisions were affected by the initiation and conclusion, as well as any persistent effects of the program. Changes in fruit and vegetable purchase behaviors due to Double Up Food Bucks in a supermarket serving a low-income, predominantly Hispanic community in Detroit, Michigan were evaluated using a difference in difference fixed effects estimation strategy. We find that the Double Up Food Bucks program increased vegetable expenditures, fruit and vegetable expenditure shares, and variety of fruits and vegetables purchased but the effects were modest and not sustainable without the financial incentive. Fruit expenditures and the fruit and vegetable purchase decision were unaffected by the program. This study provides valuable insight on how a nutrition program influences a low-income, urban, Hispanic community's fruit and vegetable purchase behavior. Policy recommendations include either removing or lowering the purchase hurdle for incentive eligibility and dropping the Michigan grown requirement to better align with the customers' preferences for fresh fruits and vegetables.
NASA Astrophysics Data System (ADS)
Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua
2015-12-01
Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.
USDA-ARS?s Scientific Manuscript database
During the period from 2011 to 2013, several plant diseases repeatedly occurred in vegetable crops grown in Yuanmou County, Yunnan Province, China. Affected plants included cowpea, sword bean, string bean, tomato, lettuce, and water spinach. The diseased plants exhibited symptoms of witches’-broom...
USDA-ARS?s Scientific Manuscript database
Land use change has significant effects on soil properties and vegetation cover and thus probably affects soil detachment by overland flow. Few studies were conducted to evaluate the effect of restoration models on the soil detachment process in the Loess Plateau in the past decade during which a Gr...
Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei
2013-10-01
Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.
Ge, Yawen; Li, Yuecong; Bunting, M Jane; Li, Bing; Li, Zetao; Wang, Junting
2017-05-15
Vegetation reconstructions from palaeoecological records depend on adequate understanding of relationships between modern pollen, vegetation and climate. A key parameter for quantitative vegetation reconstructions is the Relative Pollen Productivity (RPP). Differences in both environmental and methodological factors are known to alter the RPP estimated significantly, making it difficult to determine whether the underlying pollen productivity does actually vary, and if so, why. In this paper, we present the results of a replication study for the Bashang steppe region, a typical steppe area in northern China, carried out in 2013 and 2014. In each year, 30 surface samples were collected for pollen analysis, with accompanying vegetation survey using the "Crackles Bequest Project" methodology. Sampling designs differed slightly between the two years: in 2013, sites were located completely randomly, whilst in 2014 sampling locations were constrained to be within a few km of roads. There is a strong inter-annual variability in both the pollen and the vegetation spectra therefore in RPPs, and annual precipitation may be a key influence on these variations. The pollen assemblages in both years are dominated by herbaceous taxa such as Artemisia, Amaranthaceae, Poaceae, Asteraceae, Cyperaceae, Fabaceae and Allium. Artemisia and Amaranthaceae pollen are significantly over-represented for their vegetation abundance. Poaceae, Cyperaceae and Fabaceae seem to have under-represented pollen for vegetation with correspondingly lower RPPs. Asteraceae seems to be well-represented, with moderate RPPs and less annual variation. Estimated Relevant Source Area of Pollen (RSAP) ranges from 2000 to 3000m. Different sampling designs have an effect both on RSAP and RPPs and random sample selection may be the best strategy for obtaining robust estimates. Our results have implications for further pollen-vegetation relationship and quantitative vegetation reconstruction research in typical steppe areas and in other open habitats with strong inter-annual variation. Copyright © 2017 Elsevier B.V. All rights reserved.
Outsourcing drug discovery to India and China: from surviving to thriving.
Subramaniam, Swaminathan; Dugar, Sundeep
2012-10-01
Global pharmaceutical companies face an increasingly harsh environment for their primary business of selling medicines. They have to contend with a spiraling decline in the productivity of their R&D programs that is guaranteed to severely diminish their growth prospects. Outsourcing of drug discovery activities to low-cost locations is a growing response to this crisis. However, the upsides to outsourcing are capped by the failure of global pharmaceutical companies to take advantage of the full range of possibilities that this model provides. Companies that radically rethink and transform the way they conduct R&D, such as seeking the benefits of low-cost locations in India and China will be the ones that thrive in this environment. In this article we present our views on how the outsourcing model in drug discovery should go beyond increasing the efficiency of existing drug discovery processes to a fundamental rethink and re-engineering of these processes. Copyright © 2012. Published by Elsevier Ltd.
Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana
2013-12-01
Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were high in the four bases, yet current Chinese standards provide no limit for the concentrations of Cu and Zn; thus a potential health risk concerning these metals exists. © 2013 Elsevier Inc. All rights reserved.
Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong
2011-02-01
Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural vegetation showed the strongest correlation with drought index. There existed definite correlations among the climatic factors. If the correlations among the climatic factors were ignored, the significant level of the correlations between NDVI and climatic factors would be somewhat reduced.
Tips for Eating More Fruits, Vegetables, & Whole Grains
We all know fruits, vegetables, and whole grains are an important part of a healthy diet. But most people don’t eat enough of these healthy powerhouses. An easy way to make sure you’re getting enough of the good stuff is to find new ways to mix them into meals you already enjoy.
Depressional wetland vegetation types: a question of plant commmunity development
Katherine L. Kirkman; Charles P. Goebel; Larry West; Mark B. Drew; Brian Palik
2000-01-01
When wetland restoration includes re-establishing native plant taxa as an objective, an understanding of the variables driving the development of plant communities is necessary. With this in mind, we examined soil and physiographic characteristics of depressional wetlands of three vegetation types (cypressgum swamps, cypress savannas, and grass-sedge marshes) located...
Historic vegetation changes in Lincoln County, New Mexico: The Albuquerque Banquet Presentation
E. Hollis Fuchs
2008-01-01
(Please note, this is an abstract only) Repeat photography will demonstrate that since European settlement commenced, the native vegetation of Lincoln County, New Mexico has dramatically changed. Numerous historic photographs have been re-taken, demonstrating how landscapes and ecosystems have changed, not just between early European settlement until the present, but...
Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan
2013-09-01
Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.
Wang, Cong; Li, Jing; Wu, Shanlong; Xia, Chuanfu
2017-01-01
Remote-sensing phenology detection can compensate for deficiencies in field observations and has the advantage of capturing the continuous expression of phenology on a large scale. However, there is some variability in the results of remote-sensing phenology detection derived from different vegetation parameters in satellite time-series data. Since the enhanced vegetation index (EVI) and the leaf area index (LAI) are the most widely used vegetation parameters for remote-sensing phenology extraction, this paper aims to assess the differences in phenological information extracted from EVI and LAI time series and to explore whether either index performs well for all vegetation types on a large scale. To this end, a GLASS (Global Land Surface Satellite Product)-LAI-based phenology product (GLP) was generated using the same algorithm as the MODIS (Moderate Resolution Imaging Spectroradiometer)-EVI phenology product (MLCD) over China from 2001 to 2012. The two phenology products were compared in China for different vegetation types and evaluated using ground observations. The results show that the ratio of missing data is 8.3% for the GLP, which is less than the 22.8% for the MLCD. The differences between the GLP and the MLCD become stronger as the latitude decreases, which also vary among different vegetation types. The start of the growing season (SOS) of the GLP is earlier than that of the MLCD in most vegetation types, and the end of the growing season (EOS) of the GLP is generally later than that of the MLCD. Based on ground observations, it can be suggested that the GLP performs better than the MLCD in evergreen needleleaved forests and croplands, while the MLCD performs better than the GLP in shrublands and grasslands. PMID:28867773
Attributable causes of colorectal cancer in China.
Gu, Meng-Jia; Huang, Qiu-Chi; Bao, Cheng-Zhen; Li, Ying-Jun; Li, Xiao-Qin; Ye, Ding; Ye, Zhen-Hua; Chen, Kun; Wang, Jian-Bing
2018-01-05
Colorectal cancer is the 4th common cancer in China. Most colorectal cancers are due to modifiable lifestyle factors, but few studies have provided a systematic evidence-based assessment of the burden of colorectal cancer incidence and mortality attributable to the known risk factors in China. We estimated the population attributable faction (PAF) for each selected risk factor in China, based on the prevalence of exposure around 2000 and relative risks from cohort studies and meta-analyses. Among 245,000 new cases and 139,000 deaths of colorectal cancer in China in 2012, we found that 115,578 incident cases and 63,102 deaths of colorectal cancer were attributable to smoking, alcohol drinking, overweight and obesity, physical inactivity and dietary factors. Low vegetable intake was the main risk factor for colorectal cancer with a PAF of 17.9%. Physical inactivity was responsible for 8.9% of colorectal cancer incidence and mortality. The remaining factors, including high red and processed meat intake, low fruit intake, alcohol drinking, overweight/obesity and smoking, accounted for 8.6%, 6.4%, 5.4%, 5.3% and 4.9% of colorectal cancer, respectively. Overall, 45.5% of colorectal cancer incidence and mortality were attributable to the joint effects of these seven risk factors. Tobacco smoking, alcohol drinking, overweight or obesity, physical inactivity, low vegetable intake, low fruit intake, and high red and processed meat intake were responsible for nearly 46% of colorectal cancer incidence and mortality in China in 2012. Our findings could provide a basis for developing guidelines of colorectal cancer prevention and control in China.
7 CFR 1530.100 - General statement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... OF AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM... the Refined Sugar Re-Export Program, the Sugar Containing Products Re-Export Program, and the Polyhydric Alcohol Program. Under these provisions, refiners may enter raw sugar unrestricted by the...
7 CFR 1530.100 - General statement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... OF AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM... the Refined Sugar Re-Export Program, the Sugar Containing Products Re-Export Program, and the Polyhydric Alcohol Program. Under these provisions, refiners may enter raw sugar unrestricted by the...
7 CFR 1530.100 - General statement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... OF AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM... the Refined Sugar Re-Export Program, the Sugar Containing Products Re-Export Program, and the Polyhydric Alcohol Program. Under these provisions, refiners may enter raw sugar unrestricted by the...
7 CFR 1530.100 - General statement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... OF AGRICULTURE THE REFINED SUGAR RE-EXPORT PROGRAM, THE SUGAR CONTAINING PRODUCTS RE-EXPORT PROGRAM... the Refined Sugar Re-Export Program, the Sugar Containing Products Re-Export Program, and the Polyhydric Alcohol Program. Under these provisions, refiners may enter raw sugar unrestricted by the...
Impacts of peatland restoration on dissolved carbon loss from eroded upland peatlands in the UK
NASA Astrophysics Data System (ADS)
Evans, M.; Stimson, A.; Allott, T. E. H. A.; Holland, N.
2012-04-01
Upland blanket peatlands in the UK are severely degraded by extensive gully erosion. Large areas have experienced complete vegetation loss. In the last decade landscape scale approaches to the restoration of eroded and bare peat have been developed in the Peak District National Park in northern England. Bare peat is re-vegetated with a nurse crop of grasses established by the aerial application of lime, seed, and fertiliser. The approach has successfully re-vegetated large areas of eroded bog a nd has been shown to dramatically reduce particulate carbon losses in runoff. The impacts of the treatment on water quality and dissolved carbon loss have not previously been fully assessed. This paper reports results from a small catchment study assessing the impacts of restoration practice in the Peak District. Data from five small catchments are presented one re-vegetated, one intact and three eroded/bare catchments. Bi-weekly water samples have been taken from the catchments between January 2011 and February 2012 and during July 2012 two of the bare sites were treated with lime, seed, and fertiliser. The data show that there are significant spikes in nutrient flux post treatment and marked effects on dissolved carbon which include initial spikes in in DOC concentration but longer term reductions in DOC concentration. Monitoring is ongoing at these sites but the evidence to date points to at least a short term benefit in DOC flux reduction from this form of peatland restoration.
Yap, Peiling; Du, Zun-Wei; Wu, Fang-Wei; Jiang, Jin-Yong; Chen, Ran; Zhou, Xiao-Nong; Hattendorf, Jan; Utzinger, Jürg; Steinmann, Peter
2013-01-01
Post-treatment soil-transmitted helminth re-infection patterns were studied as part of a randomized controlled trial among school-aged children from an ethnic minority group in Yunnan province, People's Republic of China. Children with a soil-transmitted helminth infection (N = 194) were randomly assigned to triple-dose albendazole or placebo and their infection status monitored over a 6-month period using the Kato-Katz and Baermann techniques. Baseline prevalence of Trichuris trichiura, Ascaris lumbricoides, hookworm, and Strongyloides stercoralis were 94.5%, 93.3%, 61.3%, and 3.1%, respectively, with more than half of the participants harboring triple-species infections. For the intervention group (N = 99), the 1-month post-treatment cure rates were 96.7%, 91.5%, and 19.6% for hookworm, A. lumbricoides, and T. trichiura, respectively. Egg reduction rates were above 88% for all three species. Rapid re-infection with A. lumbricoides was observed: the prevalence 4 and 6 months post-treatment was 75.8% and 83.8%, respectively. Re-infection with hookworm and T. trichiura was considerably slower. PMID:23690551
Hansen, A; Xiang, J; Liu, Q; Tong, M X; Sun, Y; Liu, X; Chen, K; Cameron, S; Hanson-Easey, S; Han, G-S; Weinstein, P; Williams, C; Bi, P
2017-11-01
Zoonotic diseases transmitted by arthropods and rodents are a major public health concern in China. However, interventions in recent decades have helped lower the incidence of several diseases despite the country's large, frequently mobile population and socio-economic challenges. Increasing globalization, rapid urbanization and a warming climate now add to the complexity of disease control and prevention and could challenge China's capacity to respond to threats of emerging and re-emerging zoonoses. To investigate this notion, face-to-face interviews were conducted with 30 infectious disease experts in four cities in China. The case study diseases under discussion were malaria, dengue fever and haemorrhagic fever with renal syndrome, all of which may be influenced by changing meteorological conditions. Data were analysed using standard qualitative techniques. The study participants viewed the current disease prevention and control system favourably and were optimistic about China's capacity to manage climate-sensitive diseases in the future. Several recommendations emerged from the data including the need to improve health literacy in the population regarding the transmission of infectious diseases and raising awareness of the health impacts of climate change amongst policymakers and health professionals. Participants thought that research capacity could be strengthened and human resources issues for front-line staff should be addressed. It was considered important that authorities are well prepared in advance for outbreaks such as dengue fever in populous subtropical areas, and a prompt and coordinated response is required when outbreaks occur. Furthermore, health professionals need to remain skilled in the identification of diseases for which incidence is declining, so that re-emerging or emerging trends can be rapidly identified. Recommendations such as these may be useful in formulating adaptation plans and capacity building for the future control and prevention of climate-sensitive zoonotic diseases in China and neighbouring countries. © 2016 Blackwell Verlag GmbH.
Assessment of drought during corn growing season in Northeast China
NASA Astrophysics Data System (ADS)
Zhang, Qi; Hu, Zhenghua
2018-04-01
Northeast China has experienced extensive climate change during the past decades. Corn is the primary production crop in China and is sensitive to meteorological disasters, especially drought. Drought has thus greatly endangered crop production and the country's food security. The majority of previous studies has not highlighted farming adaptation activities undertaken within the changed climate, which should not be neglected. In this study, we assessed drought hazard in the corn vegetation growing period, the reproductive growing period, and the whole growing period based on data for yearly corn phenology, daily precipitation, and temperature gathered at 26 agro-meteorological stations across Northeast China from 1981 to 2009. The M-K trend test was used to detect trends in sowing date and drought. The standardized precipitation evapotranspiration index (SPEI) was used to describe drought. Drought frequency and intensity were used to assess the drought hazard in the region. We found that the sowing date was delayed in the southern part of the study area, coupled with a trend towards a shorter and more humid vegetation growing period. In the northern part of the study area, an earlier sowing date increased the length of the vegetation growing period and the reproductive growing period, while drying trends occurred within the two corn growing periods. We assessed the drought hazard during each growing period: the reproductive growing period faced a more severe drought hazard and was also the period where corn was most sensitive to water stress. Drought hazard during the total growing period was closely related to corn yield.
Xu, Min-yun; Xie, Fan; Wang, Kun
2014-01-01
Overgrazing has been the primary cause of grassland degradation in the semi-arid grasslands of the agro-pastoral transition zone in northern China. However, there has been little evidence regarding grazing intensity impacts on vegetation change and soil C and N dynamics in this region. This paper reports the effects of four grazing intensities namely un-grazed (UG), lightly grazed (LG), moderately grazed (MG) and heavily grazed (HG) on vegetation characteristics and soil properties of grasslands in the Guyuan county in the agro-pastoral transition region, Hebei province, northern China. Our study showed that the vegetation height, canopy cover, plant species abundance and aboveground biomass decreased significantly with increased grazing intensity. Similarly, soil organic carbon (SOC) and total nitrogen (STN) in the 0–50 cm were highest under UG (13.3 kg C m−2 and 1.69 kg N m−2) and lowest under HG (9.8 kg C m−2 and 1.22 kg N m−2). Soil available nitrogen (SAN) was significantly lower under HG (644 kg N hm−2) than under other treatments (725–731 kg N hm−2) in the 0–50 cm. Our results indicate that the pasture management of “take half-leave half” has potential benefits for primary production and livestock grazing in this region. However, grazing exclusion was perhaps the most effective choice for restoring degraded grasslands in this region. Therefore, flexible rangeland management should be adopted in this region. PMID:24819162
NASA Astrophysics Data System (ADS)
Ma, B.; Li, J.; Fan, W.; Ren, H.; Xu, X.
2017-12-01
Leaf area index (LAI) is one of the important parameters of vegetation canopy structure, which can represent the growth condition of vegetation effectively. The accuracy, availability and timeliness of LAI data can be improved greatly, which is of great importance to vegetation-related research, such as the study of atmospheric, land surface and hydrological processes to obtain LAI by remote sensing method. Heihe River Basin is the inland river basin in northwest China. There are various types of vegetation and all kinds of terrain conditions in the basin, so it is helpful for testing the accuracy of the model under the complex surface and evaluating the correctness of the model to study LAI in this area. On the other hand, located in west arid area of China, the ecological environment of Heihe Basin is fragile, LAI is an important parameter to represent the vegetation growth condition, and can help us understand the status of vegetation in the Heihe River Basin. Different from the previous LAI inversion models, the BRDF (bidirectional reflectance distribution function) unified model can be applied for both continuous vegetation and discrete vegetation, it is appropriate to the complex vegetation distribution. LAI is the key input parameter of the model. We establish the inversion algorithm that can exactly retrieve LAI using remote sensing image based on the unified model. First, we determine the vegetation type through the vegetation classification map to obtain the corresponding G function, leaf and surface reflectivity. Then, we need to determine the leaf area index (LAI), the aggregation index (ζ) and the sky scattered light ratio (β) range and the value of the interval, entering all the parameters into the model to calculate the corresponding reflectivity ρ and establish the lookup table of different vegetation. Finally, we can invert LAI on the basis of the established lookup table. The principle of inversion is least squares method. We have produced 1 km LAI products from 2000 to 2014, once every 8 days. The results show that the algorithm owns good stability and can effectively invert LAI in areas with very complex vegetation and terrain conditions.
Jiang, Dafeng; Xin, Chenglong; Li, Wei; Chen, Jindong; Li, Fenghua; Chu, Zunhua; Xiao, Peirui; Shao, Lijun
2015-09-01
This work studies on the quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in edible vegetable oils in Shandong, China. The concentrations of 15 PAHs in 242 samples were determined by high performance liquid chromatography coupled with fluorescence detection. The results indicated that the mean concentration of 15 PAHs in oil samples was 54.37 μg kg(-1). Low molecular weight PAH compounds were the predominant contamination. Especially, the carcinogenic benzo(a)pyrene (BaP) was detected at a mean concentration of 1.28 μg kg(-1), which was lower than the limit of European Union and China. A preliminary evaluation of human health risk assessment for PAHs was accomplished using BaP toxic equivalency factors and the incremental lifetime cancer risk (ILCR). The ILCR values for children, adolescents, adults, and seniors were all larger than 1 × 10(-6), indicating a high potential carcinogenic risk on the dietary exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Yan; Xu, Hao; Wu, Xu; Zhu, Yimei; Gu, Baojing; Niu, Xiaoyin; Liu, Anqin; Peng, Changhui; Ge, Ying; Chang, Jie
2011-05-01
Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha(-1) yr(-1) for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. Copyright © 2011 Elsevier Ltd. All rights reserved.
Muthukumar, T; Sha, Liqing; Yang, Xiaodong; Cao, Min; Tang, Jianwei; Zheng, Zheng
2003-12-01
We examined plants growing in four tropical vegetation types (primary forest, secondary forest, limestone forest and a slash and burn field) in Xishuangbanna, southwest China for mycorrhizal associations. Of the 103 plant species examined (belonging to 47 families), 81 had arbuscular mycorrhizal (AM) associations, while three species possessed orchid mycorrhiza. AM colonization levels ranged between 6% and 91% and spore numbers ranged between 1.36 spores and 25.71 spores per 10 g soil. Mean AM colonization level was higher in primary and secondary forest species than in plant species from limestone forests and a slash and burn field. In contrast, mean AM fungal spore numbers of the primary and limestone forest were lower than in the secondary forest or the slash and burn field. AM fungal spores belonging to Glomus and Acaulospora were the most frequent in soils of Xishuangbanna. AM fungal colonization and spore numbers were significantly correlated to each other and were significantly influenced by vegetation type.
Zhu, Xiao Hong; Li, Bing; Ma, Chun Mei; Zhu, Cheng; Wu, Li; Liu, Hui
2017-01-01
There is significant archaeological evidence marking the collapse of the Shijiahe culture in the middle reaches of the Yangtze River in China during the late Neolithic Period. However, the causes for this cultural collapse remain unclear. Our sedimentary records from a 3.3 m long profile and 76 phytolith and charcoal samples from the Tanjialing archaeological sites provide records of interactions between an ancient culture and vegetation change. During the early Shijiahe culture (c, 4850–4400 cal BP), the climate was warm and humid. Fire was intensively used to clear the vegetation. In the mid-period of the Shijiahe culture (c, 4400–4200 cal BP), the climate became slightly dry-cold and this was accompanied by decreasing water, leading to settlements. From c, 4200 cal BP, severe drought eroded the economic foundation of rice-cultivation. These conditions forced people to abandon the Shijiahe ancient city to find water in other regions, leading to the collapse of the Shijiahe culture. PMID:28542219
Zhu, Xiao Hong; Li, Bing; Ma, Chun Mei; Zhu, Cheng; Wu, Li; Liu, Hui
2017-01-01
There is significant archaeological evidence marking the collapse of the Shijiahe culture in the middle reaches of the Yangtze River in China during the late Neolithic Period. However, the causes for this cultural collapse remain unclear. Our sedimentary records from a 3.3 m long profile and 76 phytolith and charcoal samples from the Tanjialing archaeological sites provide records of interactions between an ancient culture and vegetation change. During the early Shijiahe culture (c, 4850-4400 cal BP), the climate was warm and humid. Fire was intensively used to clear the vegetation. In the mid-period of the Shijiahe culture (c, 4400-4200 cal BP), the climate became slightly dry-cold and this was accompanied by decreasing water, leading to settlements. From c, 4200 cal BP, severe drought eroded the economic foundation of rice-cultivation. These conditions forced people to abandon the Shijiahe ancient city to find water in other regions, leading to the collapse of the Shijiahe culture.
Rehman, Zahir Ur; Khan, Sardar; Brusseau, Mark L; Shah, Mohammad Tahir
2017-02-01
Rapid urbanization and industrialization result in serious contamination of soil with toxic metals such as lead (Pb) and cadmium (Cd), which can lead to deleterious health impacts in the exposed population. This study aimed to investigate Pb and Cd contamination in agricultural soils and vegetables in five different agricultural sites in Pakistan. The metal transfer from soil-to-plant, average daily intake of metals, and health risk index (HRI) were also characterized. The Pb concentrations for all soils were below the maximum allowable limits (MAL 350 mg kg -1 ) set by State Environmental Protection Administration of China (SEPA), for soils in China, while Cd concentrations in the soils were exceeded the MAL (61.7-73.7% and 4.39-34.3%) set by SEPA (0.6 mg kg - ), and European Union, (1.5 mg kg -1 ) respectively. The mean Pb concentration in edible parts of vegetables ranged from 1.8 to 11 mg kg -1 . The Pb concentrations for leafy vegetables were higher than the fruiting and pulpy vegetables. The Pb concentrations exceeded the MAL (0.3 mg kg -1 ) for leafy vegetables and the 0.1 mg kg -1 MAL for fruity and rooty/tuber vegetables set by FAO/WHO-CODEX. Likewise, all vegetables except Pisum sativum (0.12 mg kg -1 ) contained Cd concentrations that exceeded the MAL set by SEPA. The HRI values for Pb and Cd were <1 for both adults and children for most of the vegetable species except Luffa acutangula, Solanum lycopersicum, Benincasa hispada, Momordi charantia, Aesculantus malvaceae, Cucumis sativus, Praecitrullus fistulosus, Brassica oleracea, and Colocasia esculanta for children. Based on these results, consumption of these Pb and Cd contaminated vegetables poses a potential health risk to the local consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, X.; Huang, Z.; Zhao, Y.; Hong, M.
2017-12-01
Natural vegetation and artificial plantation are the most important measures for ecological restoration in soil erosion and landslide hazard-prone regions of China. Previous studies have demonstrated that both measures can significantly change the soil structure and decrease soil and water erosion. Few reports have compared the effects of the two contrasting measures on mechanical and hydrological properties and further tested the differentiate responses of soil structure. In the study areas, two vegetation restoration measures-natural vegetation restoration (NVR) and artificial plantation restoration (APR) compared with control site, with similar topographical and geological backgrounds were selected to investigate the different effects on soil structure based on eight-year ecological restoration projects. The results showed that the surface vegetation played an important role in releasing soil erosion and enhance soil structure stability through change the soil aggregates (SA) and total soil porosity (TSP). The SA<0.25mm content in NVR (36.13%) was higher than that in APR (32.14%). The study indicated that SA and TSP were the principal components (PCs) related to soil structure variation. Soil organic carbon, soil water retention, clay and vegetation biomass were more strongly correlated with the PCs in NVR than those in APR. The study indicated that NVR was more beneficial for soil structure stability than APR. These findings will provide a theoretical basis for the decisions around reasonable land use for ecological restoration and conservation in geological hazard-prone regions.
Fang, Yanyan; Nie, Zhiqiang; Liu, Feng; Die, Qingqi; He, Jie; Huang, Qifei
2014-10-01
Concentrations of heavy metals (As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn) in market vegetables and fishes in Beijing, China, are investigated, and their health risk to local consumers is evaluated by calculating the target hazard quotient (THQ). The heavy metal concentrations in vegetables and fishes ranged from not detectable (ND) to 0.21 mg/kg fresh weight (f.w.) (As), ND to 0.10 mg/kg f.w. (Cd), and n.d to 0.57 mg/kg f.w. (Pb), with average concentrations of 0.17, 0.04, and 0.24 mg/kg f.w., respectively. The measured concentrations of As, Cd, Pb, Cu, Ni, Fe, Mn, and Zn are generally lower than the safety limits given by the Chinese regulation safety and quality standards of agriculture products (GB2762-2012). As, Cd, and Pb contaminations are found in vegetables and fishes. The exceeding standard rates are 19 % for As, 3 % for Cd, and 25 % for Pb. Pb contaminations are found quite focused on the fish samples from traditional agri-product markets. The paper further analyzed the health risk of heavy metals in vegetables and fishes respectively from supermarkets and traditional agri-product markets; the results showed that the fishes of traditional agri-product markets have higher health risk, while the supermarkets have vegetables of higher heavy metal risk, and the supervision should be strengthened in the fish supply channels in traditional agri-product markets.
Frankenfeld, Cara L; Lampe, Johanna W; Shannon, Jackilen; Gao, Dao L; Li, Wenjin; Ray, Roberta M; Chen, Chu; King, Irena B; Thomas, David B
2012-01-01
To evaluate the validity of fruit and vegetable intakes as it relates to plasma carotenoid and vitamin C concentrations in Chinese women, using three classification schemes. Intakes were calculated using an interviewer-administered FFQ. Fruits and vegetables, botanical groups and high-nutrient groups were evaluated. These three classification schemes were compared with plasma carotenoid and vitamin C concentrations from blood samples collected within 1 week of questionnaire completion. Shanghai, China. Participants (n 2031) comprised women who had participated in a case-control study of diet and breast-related diseases nested within a randomized trial of breast self-examination among textile workers (n 266 064) Fruit intake was significantly (P < 0·05) and positively associated with plasma concentrations of α-tocopherol, β-cryptoxanthin, lycopene, α-carotene, β-carotene, retinyl palmitate and vitamin C. Fruit intake was inversely associated with γ-tocopherol and lutein + zeaxanthin concentrations. Vegetable consumption was significantly and positively associated with γ-tocopherol and β-cryptoxanthin concentrations. Each botanical and high-nutrient group was also significantly associated with particular plasma nutrient concentrations. Fruit and vegetable intakes and most plasma nutrient concentrations were significantly associated with season of interview. These results suggest that the manner in which fruits and vegetables are grouped leads to different plasma nutrient exposure information, which may be an important consideration when testing and generating hypotheses regarding disease risk in relation to diet. Interview season should be considered when evaluating the associations of reported intake and plasma nutrients with disease outcomes.
[Purine in common plant food in China].
Rong, Shengzhong; Zou, Lina; Wang, Zhaoxu; Pan, Hongzhi; Yang, Yuexin
2012-01-01
To determine the content of purine in plant food in China with HPLC. HPLC analysis was applied on Waters Atlantis T3 column (4.6mm x 250mm x 5 microm), using 10.0 mmol/L NH4COOH (pH 3.6) and CH3OH (99%/1%) as mobile phase and running at a flow rate of 1.0 ml/min. The column temperature was 30 degrees C, and the detection wavelength was at 254nm. The content of purine varied significantly in different kinds of plant food. The content of purine in dried fungi and dried legumes and legume products was higher than that in other food, the content of purine in vegetables and vegetable products and fruits and fruit products was low. As a whole, the content of purine was: dried fungi and algae > dried legumes and legume products > nuts and fresh > seeds fungi and algae > cereal and cereals products > vegetables and vegetable products > fruit and fruit products > tubers, starches and products. The content of purine of dried fungi and algae and dried legumes and legume products in plant food was high. The content of purine was varied significantly in different kinds of plant food.
NASA Astrophysics Data System (ADS)
Zhang, Zhiming; de Wulf, Robert R.; van Coillie, Frieke M. B.; Verbeke, Lieven P. C.; de Clercq, Eva M.; Ou, Xiaokun
2011-01-01
Mapping of vegetation using remote sensing in mountainous areas is considerably hampered by topographic effects on the spectral response pattern. A variety of topographic normalization techniques have been proposed to correct these illumination effects due to topography. The purpose of this study was to compare six different topographic normalization methods (Cosine correction, Minnaert correction, C-correction, Sun-canopy-sensor correction, two-stage topographic normalization, and slope matching technique) for their effectiveness in enhancing vegetation classification in mountainous environments. Since most of the vegetation classes in the rugged terrain of the Lancang Watershed (China) did not feature a normal distribution, artificial neural networks (ANNs) were employed as a classifier. Comparing the ANN classifications, none of the topographic correction methods could significantly improve ETM+ image classification overall accuracy. Nevertheless, at the class level, the accuracy of pine forest could be increased by using topographically corrected images. On the contrary, oak forest and mixed forest accuracies were significantly decreased by using corrected images. The results also showed that none of the topographic normalization strategies was satisfactorily able to correct for the topographic effects in severely shadowed areas.
Assessment and monitoring of desertification using satellite imagery of MODIS in East Asia
NASA Astrophysics Data System (ADS)
Lin, Meng-Lung; Chu, Chieh-Ming; Shih, Jyh-Yi; Wang, Qiu-Bing; Chen, Cheng-Wu; Wang, Shin; Tao, Yi-Huang; Lee, Yung-Tan
2006-12-01
The desertification in Northwestern China and Mongolia shows the result of conflicts between economic development and natural conservation. Many researches have proven the desert areas are growing in these regions. The variations of bi-weekly NDVI satellite images are used as one of the parameters to evaluate the vegetation dynamics over large scale studies. In this study, remotely sensed satellite images are conducted to provide multi-temporal vegetated and non-vegetated areas in order to assess the status of desertification in East Asia. Spatial data derived from these satellite images are applied to evaluate vegetation dynamics at regional scale to find out the hot spot areas vulnerable to desertification. The results show that the desert areas are mainly distributed over southern Mongolia, central and western Inner-Mongolia, western China (the Taklimakan desert). The desert areas were expanded from 2000 to 2002, were shrunk in 2003, and were expanded from 2003 to 2005 again. The hot spot areas of desertification are mainly distributed over southeastern Mongolia and eastern Inner-Mongolia. The results will help administrators to refine the planning processes in defining the boundaries of protected areas and will facilitate to take decision of the priority areas for conservation of desertification.
[Effects of road construction on regional vegetation types].
Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li
2013-05-01
As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.
Chaos generation by a hybrid integrated chaotic semiconductor laser
NASA Astrophysics Data System (ADS)
Zhang, Ming-Jiang; Niu, Ya-Nan; Zhao, Tong; Zhang, Jian-Zhong; Liu, Yi; Xu, Yu-Hang; Meng, Jie; Wang, Yun-Cai; Wang, An-Bang
2018-05-01
Not Available Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2014DFA50870), the National Natural Science Foundation of China (Grant Nos. 61377089, 61475111, and 61527819), Shanxi Province Natural Science Foundation, China (Grant No. 2015011049), Shanxi Province Youth Science and Technology Foundation, China (Grant No. 201601D021069), Shanxi Scholarship Council of China (Grant No. 2016-036), Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, and Program for Sanjin Scholar, China.
NASA Astrophysics Data System (ADS)
Nie, Hu; Yang, Jianzhou; Zhou, Guangyan; Liu, Chuanzhou; Zheng, Jianping; Zhang, Wen-Xiang; Zhao, Yu-Jie; Wang, Hao; Wu, Yuanbao
2017-11-01
The Songshugou peridotite massif in the Qinling orogenic belt is one of the largest orogenic spinel peridotite bodies in central China, but its origin remains controversial and its age is poorly constrained. We have carried out an integrated study of major and trace element composition, mineral chemistry, platinum group elements (PGE), as well as Re-Os isotope systematics of 1 harzburgite and 12 dunites from the Songshugou peridotite massif. These samples contain high Mg# olivine (90.0-91.3) and Cr# spinel (83.4-96.0). The harzburgite and dunites are characterized by relatively low whole-rock Al2O3 (0.32-0.60 wt.%), CaO (0.26-1.57 wt.%), and Na2O (0.07-0.12 wt.%) concentrations. The studied samples have very low concentrations of middle and heavy rare earth elements and exhibit enrichments in iridium-group platinum-group elements (IPGE) relative to palladium-group PGE. The Songshugou peridotites exhibit variable enrichments of light rare earth elements, large ion lithophile elements, Re, Zr, and Hf, which resulted from reactions with melt after their isolation from the convecting mantle. Combined with previous results, our data suggest that the Songshugou peridotites are highly refractory mantle residues derived from a forearc mantle wedge. 187Os/188Os values of the studied samples vary from 0.12073 to 0.12390, and 187Re/188Os ratios are 0.005-0.081. The average Re-Os model ages (TMA) and maximum Re depletion model age (TRD) of the Songshugou peridotites are ca. 1.2-1.1 Ga, suggesting a tectonic affinity to the South China Block and that the peridotites formed during the assembly of the Rodinia supercontinent. The Songshugou peridotites were sourced from a mantle wedge above a subduction zone, and finally incorporated into the underlying continental lithosphere by exhumation.
A comparison of change detection methods using multispectral scanner data
Seevers, Paul M.; Jones, Brenda K.; Qiu, Zhicheng; Liu, Yutong
1994-01-01
Change detection methods were investigated as a cooperative activity between the U.S. Geological Survey and the National Bureau of Surveying and Mapping, People's Republic of China. Subtraction of band 2, band 3, normalized difference vegetation index, and tasseled cap bands 1 and 2 data from two multispectral scanner images were tested using two sites in the United States and one in the People's Republic of China. A new statistical method also was tested. Band 2 subtraction gives the best results for detecting change from vegetative cover to urban development. The statistical method identifies areas that have changed and uses a fast classification algorithm to classify the original data of the changed areas by land cover type present for each image date.
Development of Palliative Care in China: A Tale of Three Cities.
Yin, Zhenyu; Li, Jinxiang; Ma, Ke; Ning, Xiaohong; Chen, Huiping; Fu, Haiyan; Zhang, Haibo; Wang, Chun; Bruera, Eduardo; Hui, David
2017-11-01
China is the most populous country in the world, but access to palliative care is extremely limited. A better understanding of the development of palliative care programs in China and how they overcome the barriers to provide services would inform how we can further integrate palliative care into oncology practices in China. Here, we describe the program development and infrastructure of the palliative care programs at three Chinese institutions, using these as examples to discuss strategies to accelerate palliative care access for cancer patients in China. Case study of three palliative care programs in Chengdu, Kunming, and Beijing. The three examples of palliative care delivery in China ranged from a comprehensive program that includes all major branches of palliative care in Chengdu, a program that is predominantly inpatient-based in Kunming, and a smaller program at an earlier stage of development in Beijing. Despite the numerous challenges related to the limited training opportunities, stigma on death and dying, and lack of resources and policies to support clinical practice, these programs were able to overcome many barriers to offer palliative care services to patients with advanced diseases and to advance this discipline in China through visionary leadership, collaboration with other countries to acquire palliative care expertise, committed staff members, and persistence. Palliative care is limited in China, although a few comprehensive programs exist. Our findings may inform palliative care program development in other Chinese hospitals. With a population of 1.3 billion, China is the most populous country in the world, and cancer is the leading cause of death. However, only 0.7% of hospitals offer palliative care services, which significantly limits palliative care access for Chinese cancer patients. Here, we describe the program development and infrastructure of three palliative care programs in China, using these as examples to discuss how they were able to overcome various barriers to implement palliative care. Lessons from these programs may help to accelerate the progress of palliative cancer care in China. © AlphaMed Press 2017.
ERIC Educational Resources Information Center
Wu, Jianguo; Singh, Michael
2004-01-01
This paper argues that the re-traditionalisation of 'wishing for dragon children' creates difficulties for China's current education reforms and informs the disquiet expressed by Chinese-Australians about Australian education. We develop this argument around three key propositions. First, we explore Confucianism and the civil service examination…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-09
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-849] Certain Cut-to-Length Carbon... cut-to- length carbon steel plate (``CTL plate'') from the People's Republic of China (``PRC'') for... the File, Re: Antidumping Duty Administrative Review of Certain Cut-to-Length Carbon Steel Plate from...
NASA Astrophysics Data System (ADS)
Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren
2017-08-01
Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.
Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong
2015-01-01
The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181
Initial ecosystem restoration in the highly erodible Kisatchie Sandstone Hills
D. Andrew Scott
2014-01-01
Restoration of the unique and diverse habitats of the Kisatchie Sandstone Hills requires the re-introduction of fire to reduce fuel accumulation and promote herbaceous vegetation, but some soils in the area are extremely erodible, and past fires have resulted in high erosion rates. Overstory and understory vegetation, downed woody fuels, and other stand attributes were...
Modeling and experimental studies of a side band power re-injection locked magnetron
NASA Astrophysics Data System (ADS)
Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang
2016-12-01
A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).
Imperialism with Chinese Characteristics? Reading and Re-Reading China’s 2006 Defense White Paper
2011-09-01
China. This paper grew out of Mr. Metcalf’s desire to help students and new analysts learn how to read Chinese documents and make sense of Chinese...decrease in its military budget and lessening of its global influence, and as China seems to skate through the recent international financial crisis...modification of the fundamental tasks. However, later we will learn of the fundamental importance Chen gives to the nature of the state and that, so long
Muennig, Peter
2014-04-01
Disparities in physical and mental health between advantaged and disadvantaged communities are among the largest threats to population health worldwide. These disparities appear to be growing, probably in part because we do not understand how to address their underlying causes. Many believe the underlying causes are thought to arise directly or indirectly from the psychosocial problems underlying poverty, such as hunger, poor housing, drug use, or crime. One logical solution is therefore to provide more community services targeted at addressing these problems within the most disadvantaged communities. However, to date, data on the efficacy of this approach is lacking. China serves as a possible laboratory for studying the efficacy of community-based programs. This is because the extensive community-based programs present prior to economic reforms in 1978 were removed, and then later re-instated in a quasi-experimental manner. In this issue, Yuying Shen uses multi-level models to explore the impact of this experiment on community mental health in a multi-level associational study. She finds that the quantity (but not their length of time in the community) of such services is positively associated with mental health. This study opens the door to more rigorous analyses that might motivate formal social experiments at the community level worldwide. If successful, such experiments might not only transform what we currently know not just about improving health in disadvantaged communities, but also prove transformative for health policy as a discipline. Copyright © 2014 Elsevier Ltd. All rights reserved.
How many people can China support?
Mu, G
1999-10-01
Dr. Mu Guangzong, associate professor of the People's University of China, disagrees with the assumption that China can only sustain up to 1.6 billion people. This estimate was concluded by a group of researchers from the Chinese Academy of Sciences and 70 other institutions in their study conducted in the late 1980s. Based on the hypothesis that China can produce 830 million tons of grain at maximum, the researchers concluded that the region is able to support 1.66 billion people (assuming 500-550 kg/person/year). However, Dr. Guangzong says that this assumption seriously underestimates China's capabilities. He says that the country can support up to 2.075 billion people, assuming the land can produce 830 million tons of grain at maximum. A further explanation indicates that in order to live a person needs 213 kg of grain, 25 kg of meat, 10 kg of eggs, 6 kg of vegetables, and 8 kg of vegetable oil and sugar each. All these add up to 390-400 kg of grain. In addition, both per capita consumption figures and land productivity are variables subject to technological advances, and there are other sources of food other than the land resources. However, economic development is not just about feeding the population, it is also about providing decent living standards to them. Thus, control of population growth is still important for the country.
Impacts of land cover changes on climate trends in Jiangxi province China.
Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger
2014-07-01
Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.
Yuan, Zi-Qiang; Yu, Kai-Liang; Epstein, Howard; Fang, Chao; Li, Jun-Ting; Liu, Qian-Qian; Liu, Xue-Wei; Gao, Wen-Juan; Li, Feng-Min
2016-01-15
Revegetation facilitated by legume species introduction has been used for soil erosion control on the Loess Plateau, China. However, it is still unclear how vegetation and soil resources develop during this restoration process, especially over the longer term. In this study, we investigated the changes of plant aboveground biomass, vegetation cover, species richness and density of all individuals, and soil total nitrogen, mineral nitrogen, total phosphorus and available phosphorus over 11 years from 2003 to 2013 in three treatments (natural revegetation, Medicago sativa L. introduction and Melilotus suaveolens L. introduction) on the semi-arid Loess Plateau. Medicago significantly increased aboveground biomass and vegetation cover, and soil total nitrogen and mineral nitrogen contents. The Medicago treatment had lower species richness and density of all individuals, lower soil moisture in the deep soil (i.e., 1.4-5m), and lower soil available phosphorus. Melilotus introduction significantly increased aboveground biomass in only the first two years, and it was not an effective approach to improve vegetation biomass and cover, and soil nutrients, especially in later stages of revegetation. Overall, our study suggests that M. sativa can be the preferred plant species for revegetation of degraded ecosystems on the Loess Plateau, although phosphorus fertilizer should be applied for the sustainability of the revegetation. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Ligang; Liang, Yongchao; Jiang, Xin
2008-10-01
A method to effectively remove pigments in fresh vegetables using activated carbon followed cleanup through solid phase extraction (SPE) cartridge to further reduce matrix interference and contamination, was established to determine eight organophosphorous pesticides (OPPs) by gas chromatography (GC) with nitrogen-phosphorus detection (NPD) in this study, and it has been successfully applied for the determination of eight OPPs in various fresh vegetables with the recoveries ranging from 61.8% to 107%. To evaluate eight OPPs residue level, some fresh vegetables retailed at three agricultural product markets (APM) of Nanjing in China were detected, the results showed that phorate in Shanghai green (0.0257 microg g(-1)) and Chinese cabbage (0.0398 microg g(-1)), dimethoate in Shanghai green (0.0466-0.0810 microg g(-1)), Chinese cabbage (0.077 microg g(-1)), and spinach (0.118-0.124 microg g(-1)), methyl-parathion in Shanghai green (0.0903 microg g(-1)), Chinese cabbage (0.157 microg g(-1)), and spinach (0.0924 microg g(-1)), malathion in Shanghai green (0.0342-0.0526 microg g(-1)), chorpyrifos in spinach (0.106-0.204 microg g(-1)), and Chinese cabbage (0.149 microg g(-1)), chlorfenvinfos in carrot (0.094-0.131 microg g(-1)), were found. However, fonofos and fenthion were not detected in all the collected vegetable samples.
Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
Liang, Shouzhen; Shi, Ping; Li, Hongzhong
2016-04-01
Urbanization and its resultant urban heat island provide a means for evaluating the impact of climate warming on vegetation phenology. To predict the possible response of vegetation phenology to rise of temperature, it is necessary to investigate factors influencing vegetation phenology in different climate zones. The start of growing season (SOS) in seven cities located in the middle temperate humid, semi-humid, semi-arid, and arid climate zones in China was extracted based on satellite-derived normalized difference vegetation index (NDVI) data. The dynamics of urban SOS from 2000 to 2009 and the correlations between urban SOS and land surface temperatures (LST), precipitation, and sunshine duration, respectively, were analyzed. The results showed that there were no obvious change trends for urban SOS, and the heat island induced by urbanization can make SOS earlier in urban areas than that in adjacent rural areas. And the impact of altitude on SOS was also not negligible in regions with obvious altitude difference between urban and adjacent rural areas. Precipitation and temperature were two main natural factors influencing urban SOS in the middle temperate zone, but their impacts varied with climate zones. Only in Harbin city with lower sunshine duration in spring, sunshine duration had more significant impact than temperature and precipitation. Interference of human activities on urban vegetation was non-negligible, which can lower the dependence of urban SOS on natural climatic factors.
Grazing effects on soil characteristics and vegetation of grassland in northern China
NASA Astrophysics Data System (ADS)
Wang, Z.; Johnson, D. A.; Rong, Y.; Wang, K.
2016-01-01
Large areas of grassland in the agro-pastoral region of northern China were converted into cropland for grain production, and the remaining grasslands are being overgrazed and seriously degraded. The objective of this study was to evaluate how reductions in grazing intensity affect the soil and vegetation characteristics in grasslands of northern China. Soil heterogeneity and vegetation characteristics were evaluated for ungrazed (UG), moderate grazing (MG), and heavy grazing (HG) sites. Grazing increased diversity, but heavy grazing decreased aboveground biomass and increased the non-grass component. The non-grass proportion of total biomass increased with grazing intensity, which was 8, 16 and 48 % for UG, MG and HG sites, respectively. Species richness at the MG and HG sites was significantly higher than at the UG site (P
Poplar plantation has the potential to alter the water balance in semiarid inner Mongolia
Burkhard Wilske; Long Wei; Shiping Chen; Tonggang Zha; Chenfeng Liu; Wenting Xu; Asko Noormets; Jianhui Haung; Yafen Wei; Jun Chen; Zhiqiang Zhang; Jian Ni; Ge Sun; Kirk Guo; Steve McNulty; Ranjeet John; Xiangguo Han; Guanghui Lin; Jiquan Chen
2009-01-01
Poplar plantation is the most dominant broadleaf forest type in northern China. Since the mid-1990s plantation was intensified to combat desertification along Chinaâs northwestern border, i.e., within Inner Mongolia (IM). This evoked much concern regarding the ecological and environmental effects on areas that naturally grow grass or shrub vegetation. To highlight...
Zhao Xiaoying; Ren Jizhou
2007-01-01
The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...
Ranjeet John; Jiquan Chen; Asko Noormets; Xiangming Xiao; Jianye Xu; Nan Lu; Shiping Chen
2013-01-01
We evaluate the modelling of carbon fluxes from eddy covariance (EC) tower observations in different water-limited land-cover/land-use (LCLU) and biome types in semi-arid Inner Mongolia, China. The vegetation photosynthesis model (VPM) and modified VPM (MVPM), driven by the enhanced vegetation index (EVI) and land-surface water index (LSWI), which were derived from the...
China Report, Economic Affairs, No. 381
1983-09-13
taxes must be levied on the purchase and sales of livestock. Livestock butchery taxes must be imposed on livestock butchers . The regulations also...20 yuan is taxable and any sales below 20 yuan is exempt from taxation. Fire- wood, grass, poultry , eggs, vegetables, melons, fruits, and potatoes...aquatic products, poultry , fresh eggs, beef cattle, mutton sheep, frontier marketed tea, vegetables, cotton, cotton for wadding, silkworm cocoons
Ge Sun; Changqing Zuo; Shiyu Liu; Mingliang Liu; Steven G McNulty; James M. Vose
2008-01-01
Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6-km2 Dakeng watershed located...
Cancer deaths and cases attributable to lifestyle factors and infections in China, 2013.
Islami, F; Chen, W; Yu, X Q; Lortet-Tieulent, J; Zheng, R; Flanders, W D; Xia, C; Thun, M J; Gapstur, S M; Ezzati, M; Jemal, A
2017-10-01
The burden of cancer in China is high, and it is expected to further increase. Information on cancers attributable to potentially modifiable risk factors is essential in planning preventive measures against cancer. We estimated the number and proportion of cancer deaths and cases attributable to ever-smoking, second-hand smoking, alcohol drinking, low fruit/vegetable intake, excess body weight, physical inactivity, and infections in China, using contemporary data from nationally representative surveys and cancer registries. The number of cancer deaths and cases in 2013 were obtained from the National Central Cancer Registry of China and data on most exposures were obtained from the China National Nutrition and Health Survey 2002 or 2006 and Global Adult Tobacco Smoking 2010. We used a bootstrap simulation method to calculate the number and proportion of cancer deaths and cases attributable to risk factors and their corresponding 95% confidence intervals (CIs), allowing for uncertainty in data. Approximately 718 000 (95% CI 702 100-732 200) cancer deaths in men and 283 100 (278 800-288 800) cancer deaths in women were attributable to the studied risk factors, accounting for 52% of all cancer deaths in men and 35% in women. The numbers for incident cancer cases were 952 500 (95% CI 934 200-971 400) in men and 442 700 (437 200-447 900) in women, accounting for 47% of all incident cases in men and 28% in women. The greatest proportions of cancer deaths attributable to risk factors were for smoking (26%), HBV infection (12%), and low fruit/vegetable intake (7%) in men and HBV infection (7%), low fruit/vegetable intake (6%), and second-hand smoking (5%) in women. Effective public health interventions to eliminate or reduce exposure from these risk factors, notably tobacco control and vaccinations against carcinogenic infections, can have considerable impact on reducing the cancer burden in China. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kang, Yongxiang; Łuczaj, Łukasz; Kang, Jin; Zhang, Shijiao
2013-04-15
The aim of the study was to investigate knowledge and use of wild food plants in two mountain valleys separated by Mount Taibai--the highest peak of northern China and one of its biodiversity hotspots, each adjacent to species-rich temperate forest vegetation. Seventy two free lists were collected among the inhabitants of two mountain valleys (36 in each). All the studied households are within walking distance of primary forest vegetation, however the valleys differed in access to urban centers: Houzhenzi is very isolated, and the Dali valley has easier access to the cities of central Shaanxi. Altogether, 185 wild food plant species and 17 fungi folk taxa were mentioned. The mean number of freelisted wild foods was very high in Houzhenzi (mean 25) and slightly lower in Dali (mean 18). An average respondent listed many species of wild vegetables, a few wild fruits and very few fungi. Age and male gender had a positive but very low effect on the number of taxa listed.Twelve taxa of wild vegetables (Allium spp., Amaranthus spp., Caryopteris divaricata, Helwingia japonica, Matteucia struthiopteris, Pteridium aquilinum, Toona sinensis, Cardamine macrophylla, Celastrus orbiculatus, Chenopodium album, Pimpinella sp., Staphylea bumalda &S. holocarpa), two species of edible fruits (Akebia trifoliata, Schisandra sphenanthera) and none of the mushrooms were freelisted by at least half of the respondents in one or two of the valleys. The high number of wild vegetables listed is due to the high cultural position of this type of food in China compared to other parts of the world, as well as the high biodiversity of the village surroundings. A very high proportion of woodland species (42%, double the number of the ruderal species used) among the listed taxa is contrary to the general stereotype that wild vegetables in Asia are mainly ruderal species. The very low interest in wild mushroom collecting is noteworthy and is difficult to explain. It may arise from the easy access to the cultivated Auricularia and Lentinula mushrooms and very steep terrain, making foraging for fungi difficult.
Fang, Shi-Bo; Hu, Hao; Sun, Wan-Chun; Pan, Jian-Jun
2011-01-01
China has experienced rapid urbanization in recent years. The acceleration of urbanization has created wealth and opportunity as well as intensified ecological and environmental problems, especially soil pollution. Our study concentrated on the variation of heavy metal content due to urbanization in the vegetable-growing soil. Laws and other causes of the spatial-temporal variation in heavy metal content of vegetable-growing soils were analyzed for the period of urbanization in Nanjing (the capital of Jiangsu province in China). The levels of Cu, Zn, Pb, Cd and Hg in samples of vegetable-growing soil were detected. The transverse, vertical spatio-temporal variation of heavy metals in soil was analyzed on the base of field investigations and laboratory analysis. The results show that: (1) in soil used for vegetable production, the levels of heavy metals decreased gradually from urban to rural areas; the levels of the main heavy metals in urban areas are significantly higher than suburban and rural areas; (2) the means of the levels of heavy metals, calculated by subtracting the sublayer (15–30 cm) from the toplayer (0–15 cm), are all above zero and large in absolute value in urban areas, but in suburban and rural areas, the means are all above or below zero and small in absolute value. The causes of spatial and temporal variation were analyzed as follows: one cause was associated with mellowness of the soil and the length of time the soil had been used for vegetable production; the other cause was associated with population density and industrial intensity decreasing along the urban to rural gradient (i.e., urbanization levels can explain the distribution of heavy metals in soil to some extent). Land uses should be planned on the basis of heavy metal pollution in soil, especially in urban and suburban regions. Heavily polluted soils have to be expected from food production. Further investigation should be done to determine whether and what kind of agricultural production could be established near urban centers. PMID:21776203
2013-01-01
Background The aim of the study was to investigate knowledge and use of wild food plants in two mountain valleys separated by Mount Taibai – the highest peak of northern China and one of its biodiversity hotspots, each adjacent to species-rich temperate forest vegetation. Methods Seventy two free lists were collected among the inhabitants of two mountain valleys (36 in each). All the studied households are within walking distance of primary forest vegetation, however the valleys differed in access to urban centers: Houzhenzi is very isolated, and the Dali valley has easier access to the cities of central Shaanxi. Results Altogether, 185 wild food plant species and 17 fungi folk taxa were mentioned. The mean number of freelisted wild foods was very high in Houzhenzi (mean 25) and slightly lower in Dali (mean 18). An average respondent listed many species of wild vegetables, a few wild fruits and very few fungi. Age and male gender had a positive but very low effect on the number of taxa listed. Twelve taxa of wild vegetables (Allium spp., Amaranthus spp., Caryopteris divaricata, Helwingia japonica, Matteucia struthiopteris, Pteridium aquilinum, Toona sinensis, Cardamine macrophylla, Celastrus orbiculatus, Chenopodium album, Pimpinella sp., Staphylea bumalda &S. holocarpa), two species of edible fruits (Akebia trifoliata, Schisandra sphenanthera) and none of the mushrooms were freelisted by at least half of the respondents in one or two of the valleys. Conclusion The high number of wild vegetables listed is due to the high cultural position of this type of food in China compared to other parts of the world, as well as the high biodiversity of the village surroundings. A very high proportion of woodland species (42%, double the number of the ruderal species used) among the listed taxa is contrary to the general stereotype that wild vegetables in Asia are mainly ruderal species. The very low interest in wild mushroom collecting is noteworthy and is difficult to explain. It may arise from the easy access to the cultivated Auricularia and Lentinula mushrooms and very steep terrain, making foraging for fungi difficult. PMID:23587149
NASA Astrophysics Data System (ADS)
Feng, Tianjiao; Wei, Wei; Chen, Liding; Yu, Yang
2017-04-01
In the dryland regions, soil moisture is the main factor to determine vegetation growth and ecosystem restoration. Land preparation and vegetation restoration are the principal means for improving soil water content(SWC). Thus, it is important to analyze the coupling role of these two means on soil moisture. In this study, soil moisture were monitored at a semi-arid loess hilly catchment of China, during the growing season of 2014 and 2015. Four different land preparation methods (level ditches, fish-scale pits, adverse grade tablelands and level benches)and vegetation types(Prunus armeniaca, Platycladus orientalis, Platycladus orientalis and Caragana microphylla) were included in the experimental design. Our results showed that: (1)Soil moisture content differed across land preparation types, which is higher for fish-scale pits and decreased in the order of level ditches and adverse grade tablelands.(2) Rainwater harvesting capacity of fish-scale pits is greater than adverse grade tablelands. However the water holding capacity is much higher at soils prepared with the adverse grade tablelands method than the ones prepared by fish-scale pits methods. (3) When land preparation method is similar, vegetation play a key role in soil moisture variation. For example, the mean soil moisture under a Platycladus orientalis field is 26.72% higher than a Pinus tabulaeformis field, with the same land preparation methods. (4)Soil moisture in deeper soil layers is more affected by changes in the vegetation cover while soil moisture in the shallower layers is more affected by the variation in the land preparation methods. Therefore, we suggest that vegetation types such as: Platycladus orientalisor as well as soil preparation methods such as level ditch and fish-scale pit are the most appropriate vegetation cover and land preparation methods for landscape restoration in semi-arid loess hilly area. This conclusion was made based on the vegetation type and land preparation with the best water-holding capacity.
Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui
2013-11-01
Worldwide concern about the occurrence of trace metals in greenhouse vegetable production soils (GVPS) is growing. In this study, a total of 385 surface GVPS samples were collected in Shouguang and four vegetable production bases in Nanjing, Eastern China, for the determination of As and Hg using atomic fluorescence spectrometry and Pb, Cu, Cd, and Zn using inductively coupled plasma-mass spectrometry. Geo-accumulation indices and factor analysis were used to investigate the accumulation and sources of the trace metals in soils in Eastern China. The results revealed that greenhouse production practices increased accumulation of the trace metals, particularly Cd, Zn, and Cu in soils and their accumulation became significant with increasing years of cultivation. Accumulation of Cd and Zn was also found in soils from organic greenhouses. The GVPS was generally less polluted or moderately polluted by As, Cu, Zn, and Pb but heavily polluted by Cd and Hg in some locations. Overall, accumulation of Cd, Zn, and Cu in GVPS was primarily associated with anthropogenic activities, particularly, application of manure. The high level of Hg found in some sites was related to historical heavy application of Hg containing pesticides. However, further identification of Hg sources is needed. To reduce accumulation of the trace metals in GVPS, organic fertilizer application should be suggested through development and implementation of reasonable and sustainable strategies. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dayalu, A.; Munger, J. W.; Wang, Y.; Wofsy, S.; Zhao, Y.; Nielsen, C. P.; Nehrkorn, T.; McElroy, M. B.; Chang, R.
2017-12-01
China has pledged to peak carbon emissions by 2030, but there continues to be significant uncertainty in estimates of its anthropogenic carbon dioxide (CO2) emissions. In this study, we evaluate the performance of three anthropogenic CO2 inventories, two global and one regional, using five years of continuous hourly observations from a site in Northern China. We model five years of continuous hourly observations (2005 to 2009) using the Stochastic Time-Inverted Lagrangian Transport Model (STILT) run in backward time mode driven by high resolution meteorology from the Weather Research and Forecasting Model version 3.6.1 (WRF) with vegetation fluxes prescribed by a simple biosphere model. We calculate regional enhancements to advected background CO2 derived from NOAA CarbonTracker on seasonal and annual bases and use observations to optimize emissions inventories within the site's influence region at these timescales. Finally, we use annual enhancements to examine carbon intensity of provinces in and adjacent to Northern China as CO2 per unit of the region's GDP to evaluate the effects of local and global economic events on CO2 emissions. With the exception of peak growing season where discrepancies are confounded by errors in the vegetation model, we find the regional inventory agrees significantly better with observations than the global inventories at all timescales. Here we use a single measurement site; significant improvements in inventory optimizations can be achieved with a network of measurements stations. This study highlights the importance of China-specific data over global averages in emissions evaluation and demonstrates the value of top-down studies in independently evaluating inventory performance. We demonstrate the framework's ability to resolve differences of at least 20% among inventories, establishing a benchmark for ongoing efforts to decrease uncertainty in China's reported CO2 emissions estimates.
Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe
2016-12-01
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.
Spatial variability of soil and vegetation characteristics in an urban park in Tel-Aviv
NASA Astrophysics Data System (ADS)
Sarah, Pariente; Zhevelev, Helena M.; Oz, Atar
2010-05-01
Mosaic-like spatial patterns, consisting of divers soil microenvironments, characterize the landscapes of many urban parks. These microenvironments may differ in their pedological, hydrological and floral characteristics, and they play important roles in urban ecogeomorphic system functioning. In and around a park covering 50 ha in Tel Aviv, Israel, soil properties and herbaceous vegetation were measured in eight types of microenvironments. Six microenvironments were within the park: area under Ceratonia siliqua (Cs-U), area under Ficus sycomorus (Fi-U), a rest area under F. sycomorus (Re-U), an open area with bare soil (Oa-S), an open area with biological crusts (Oa-C), and an open area with herbaceous vegetation (Oa-V). Outside the park were two control microenvironments, located, respectively, on a flat area (Co-P) and an inclined open area (Co-S). The soil was sampled from two depths (0-2 and 5-10 cm), during the peak of the growing season (March). For each soil sample, moisture content, organic matter content, CaCO3 content, texture, pH, electrical conductivity, and soluble ions contents were determined in 1:1 water extraction. In addition, prior to the soil sampling, vegetation cover, number of species, and species diversity of herbaceous vegetation were measured. The barbecue fires and visitors in each of the microenvironments were counted. Whereas the soil organic matter and vegetation in Fi-U differed from those in the control(Co-P, Co-S), those in Oa-V were similar to those in the control. Fi-U was characterized by higher values of soil moisture, organic matter, penetration depth, and vegetation cover than Cs-U. Open microenvironments within the park (Oa-S, Oa-C, Oa-V) showed lower values of soil penetration than the control microenvironments. In Oa-V unique types of plants such as Capsella bursa-pastoris and Anagallis arvensis, which did not appear in the control microenvironments, were found. This was true also for Fi-U, in which species like Oxalis pes-caprae were found. Significant differences in soil and vegetation properties were found between Re-U and the rest of microenvironments. Differences in levels of human activities, in addition to differences in vegetation types, increased the spatial heterogeneity of soil properties. The rest microenvironment (Re-U) exhibited degraded soil conditions and can be regarded as forming the fragile areas of the park. An urban park offers potential for presence and growth of natural vegetation and, therefore, also for preservation of biodiversity. Natural vegetation, in its role as a part of the urban park, enriches the landscape diversity and thereby may contribute to the enjoyment of the visitors in the park.
Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han
2016-01-01
The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043
NASA Astrophysics Data System (ADS)
Martens, Kristine; Van Camp, Marc; Van Damme, Dirk; Walraevens, Kristine
2013-08-01
Within the European Union, Habitat Directives are developed with the aim of restoration and preservation of endangered species. The level of biodiversity in coastal dune systems is generally very high compared to other natural ecosystems, but suffers from deterioration. Groundwater extraction and urbanisation are the main reasons for the decrease in biodiversity. Many restoration actions are being carried out and are focusing on the restoration of groundwater level with the aim of re-establishing rare species. These actions have different degrees of success. The evaluation of the actions is mainly based on the appearance of red list species. The groundwater classes, developed in the Netherlands, are used for the evaluation of opportunities for vegetation, while the natural variability of the groundwater level and quality are under-estimated. Vegetation is used as a seepage indicator. The existing classification is not valid in the Belgian dunes, as the vegetation observed in the study area is not in correspondence with this classification. Therefore, a new classification is needed. The new classification is based on the variability of the groundwater level on a long term with integration of ecological factors. Based on the new classification, the importance of seasonal and inter-yearly fluctuations of the water table can be deduced. Inter-yearly fluctuations are more important in recharge areas while seasonal fluctuations are dominant in discharge areas. The new classification opens opportunities for relating vegetation and groundwater dynamics.
Soil enzyme activities in Pinus tabuliformis (Carriere) plantations in northern China
Weiwei Wang; Deborah Page-Dumroese; Ruiheng Lv; Chen Xiao; Guolei Li; Yong Liu
2016-01-01
Changes in forest stand structure may alter the activity of invertase, urease, catalase and phenol oxidase after thinning Pinus tabuliformis (Carriére) plantations in Yanqing County of Beijing, China. We examined changes in these soil enzymes as influenced by time since thinning (24, 32, and 40 years since thinning) for 3 seasons (spring, summer and autumn)...
The Vegetation Nitrogen Content and its Latitudinal Patterns in China
NASA Astrophysics Data System (ADS)
Zhao, Hang; He, Nianpeng; Yu, Guirui; Wang, Qiufeng
2017-04-01
Nitrogen is an essential nutrient element in biological life activities, and plays an important role in plant production and growth. Vegetation nitrogen content can be used as an important component in estimating ecosystem nitrogen storage. In the present study, we used a large amount of data from the database of north-south transects of eastern China and published literatures. We explored the nitrogen content of different components of China terrestrial ecosystems and its latitude pattern at the scales of the plots and of 8 eco-regions. The average nitrogen content of the forest ecosystem was 1.797% in the tree leaves, 0.663% in the tree branch, 0.586% in the tree stem, 0.755% in the tree root. In the shrub layer, the average leaf nitrogen content is 1.845%, the average branch content is 0.968% and the average root nitrogen content is 0.995%. In the herb layer, the average nitrogen content of aboveground is 2.463% and 1.279% for underground. The average nitrogen content of aboveground in grassland ecosystem is 2.006% and 0.994% for underground. The average aboveground nitrogen content in desert ecosystem is 1.911%. The average nitrogen contents of the leaves, stems and roots in wetland ecosystem were 1.669%, 0.741% and 0.659%. There were significant differences in nitrogen content among different organs, and it showed that the nitrogen content of leaves > roots > branches > trunks and aboveground component > underground component. The nitrogen content of different components in China terrestrial ecosystems increased with increasing latitude, especially in leaf. These results demonstrated latitudinal patterns of nitrogen content in Chinese terrestrial ecosystems, based on field-measured data, and provided a reference or standard for regional vegetation nitrogen allocation and storage estimations.
Preliminary Study of Late Pleistocene to Early Holocene Plant Food Strategies in China
NASA Astrophysics Data System (ADS)
Hayashi Tang, M.; Liu, X.; Fritz, G.; Zhao, Z.
2017-12-01
In recent decades, studies on the domestication and early cultivation of seed crops have contributed significantly to how we understand human-plant interactions, and their impact on human social organisation and the environment. It is becoming clear, however, that plants have been critical to the human diet for much longer and in more diverse ways than previously assumed. This paper is a preliminary attempt at identifying and addressing early prehistoric plant food strategies in China. In particular, very little is known about the use of vegetatively propagated plants, despite their significant representation in modern crops. Many ingredients of Chinese medicine are also roots and tubers (or vegetative storage organs, VSOs). Unlike seed crops, however, we lack a systematic criterion for examining diagnostic characters of different VSO taxa in the archaeological record. To address this issue, we characterized commonly consumed and historically significant VSOs in China, by studying experimentally charred modern samples under the optical microscope and scanning electron microscope. We then compared the characteristics of these modern VSO samples against plant remains from Late Pleistocene to early Holocene archaeological sites in China, such as Zengpiyan (Guangxi), Zhaoguodong (Guizhou), and Jiahu (Henan) sites. We found that different taxa of VSOs can be differentiated by using multiple lines of evidence, including: shape and size of various cells, texture and arrangement of cell walls, as well as anatomical arrangements of organs, especially the vascular bundles. Though identification can be difficult when fragile cell structures have collapsed or deteriorated, more robust features are often preserved for diagnosis. Our results suggest that the potential for studying the role of vegetatively propagated plants in early human-environmental interactions is overlooked, and can be expanded significantly with further investment in their systematic identification.
Response of seasonal soil freeze depth to climate change across China
NASA Astrophysics Data System (ADS)
Peng, Xiaoqing; Zhang, Tingjun; Frauenfeld, Oliver W.; Wang, Kang; Cao, Bin; Zhong, Xinyue; Su, Hang; Mu, Cuicui
2017-05-01
The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. Despite its importance, the response of soil freeze depth to climate change is largely unknown. This study employs the Stefan solution and observations from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperatures, daily soil temperatures at various depths, mean monthly gridded air temperatures, and the normalized difference vegetation index. Results show that soil freeze depth decreased significantly at a rate of -0.18 ± 0.03 cm yr-1, resulting in a net decrease of 8.05 ± 1.5 cm over 1967-2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm yr-1 in most parts of China during 1950-2009. By investigating potential climatic and environmental driving factors of soil freeze depth variability, we find that mean annual air temperature and ground surface temperature, air thawing index, ground surface thawing index, and vegetation growth are all negatively associated with soil freeze depth. Changes in snow depth are not correlated with soil freeze depth. Air and ground surface freezing indices are positively correlated with soil freeze depth. Comparing these potential driving factors of soil freeze depth, we find that freezing index and vegetation growth are more strongly correlated with soil freeze depth, while snow depth is not significant. We conclude that air temperature increases are responsible for the decrease in seasonal freeze depth. These results are important for understanding the soil freeze-thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.
Epidemiological Study on Metal Pollution of Ningbo in China
Li, Zhou; Su, Hong; Wang, Li; Hu, Danbiao; Zhang, Lijun; Fang, Jian; Jin, Micong; Song, Xin; Shi, Hongbo; Mao, Guochuan
2018-01-01
Background: In order to search for effective control and prevention measures, the status of metal pollution in Ningbo, China was investigated. Methods: Nine of the most common contaminating metals including lead (Pb), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), chromium (Cr), nickel (Ni), zinc (Zn), and mercury (Hg) in samples of vegetables, rice, soil, irrigation water, and human hair were detected using inductively coupled plasma-mass spectrometry (ICP-MS). Three different districts including industrial, suburban and rural areas in Ningbo were studied through a stratified random sample method. Results: (1) Among all of the detected vegetable samples, Cd exceeded the standard limit rates in industrial, suburban and rural areas as high as 43.9%, 27.5% and 5.0%, respectively; indicating the severity of Cd pollution in Ningbo. (2) The pollution index (PI) of Cd and Zn in soil (1.069, 1.584, respectively) suggests that soil is slightly polluted by Cd and Zn. Among all samples, metal contamination levels in soil were all relatively high. (3) A positive correlation was found between the concentrations of Pb, Cd and Cu in vegetables and soil; Pb, Cu, Cr and Ni in vegetables and irrigation water, as well as, Cu and Ni in rice and irrigation water; and, (4) Higher Pb and Cd concentrations were found in student scalp hair in both industrial and suburban areas compared to rural areas. (5) Hg and Pb that are found in human scalp hair may be more easily absorbed from food than any of the other metals. Conclusions: In general, certain harmful metal pollutions were detected in both industrial and suburban areas of Ningbo in China. PMID:29495631
Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China
Song, Daping; Zhuang, Dafang; Jiang, Dong; Fu, Jingying; Wang, Qiao
2015-01-01
The purpose of this study was to assess soil heavy metal contamination and the potential risk for local residents in Suxian county of Hunan Province, southern China. Soil, rice and vegetable samples from the areas near the mining industrial districts were sampled and analyzed. The results indicate that the anthropogenic mining activities have caused local agricultural soil contamination with As, Pb, Cu and Cd in the ranges of 8.47–341.33 mg/kg, 19.91–837.52 mg/kg, 8.41–148.73 mg/kg and 0.35–6.47 mg/kg, respectively. GIS-based mapping shows that soil heavy metal concentrations abruptly diminish with increasing distance from the polluting source. The concentrations of As, Pb, Cu and Cd found in rice were in the ranges of 0.02–1.48 mg/kg, 0.66–5.78 mg/kg, 0.09–6.75 mg/kg, and up to 1.39 mg/kg, respectively. Most of these concentrations exceed their maximum permissible levels for contaminants in foods in China. Heavy metals accumulate to significantly different levels between leafy vegetables and non-leafy vegetables. Food consumption and soil ingestion exposure are the two routes that contribute to the average daily intake dose of heavy metals for local adults. Moreover, the total hazard indices of As, Pb and Cd are greater than or close to the safety threshold of 1. Long-term As, Pb and Cd exposure through the regular consumption of the soil, rice and vegetables in the investigated area poses potential health problems to residents in the vicinity of the mining industry. PMID:26114243
Survey of nitrite content in foods from north-east China.
Yuan, Y; Zhang, T; Zhuang, H; Wang, K; Zheng, Y; Zhang, H; Zhou, B; Liu, J
2010-01-01
This study reports a survey of nitrite in a variety of foods consumed in north-east China and estimates the intake of nitrite for the north-east Chinese consumer. A total of 642 food categories including rice and rice products, flour and flour products, soybean and products, vegetables, fruit, preserved vegetables, cured meat products, dairy products, fish products, salt, and soy sauce were analysed for their content of nitrite. Nitrite content was quite different both between different food categories and within the same food category, ranging from not determined (n.d.) to 19.7 mg kg(-1). A great variation in the content of nitrite was found for all the food products. The average content of nitrite was highest in cured meat products (14.3 mg kg(-1)). Next to that, the nitrite content was high in the order of preserved vegetables (4.1 mg kg(-1)), soybean products (3.5 mg kg(-1)), and dairy products (1.9 mg kg(-1)). The lowest average values of nitrite were detected in soy sauce, rice and rice products, salt and fish products, the contents being 0.1, 0.3, 0.3, and 0.6 mg kg(-1). Calculations on the basis of these results and including dietary surveys show that the average intake of nitrite in north-east China from food was 0.03 mg kg(-1) body weight for an average Chinese person weighing 60 kg, and the data are lower than the established acceptable daily intake (ADI) for nitrite. Cured meat products are normally the major contributor to average nitrite intake of the north-east Chinese population. The second contributor is vegetables.
Peng, Dai-liang; Huang, Jing-feng; Huete, Alfredo R.; Yang, Tai-ming; Gao, Ping; Chen, Yan-chun; Chen, Hui; Li, Jun; Liu, Zhan-yu
2010-01-01
We developed a sophisticated method to depict the spatial and seasonal characterization of net primary productivity (NPP) and climate variables. The role of climate variability in the seasonal variation of NPP exerts delayed and continuous effects. This study expands on this by mapping the seasonal characterization of NPP and climate variables from space using geographic information system (GIS) technology at the pixel level. Our approach was developed in southeastern China using moderate-resolution imaging spectroradiometer (MODIS) data. The results showed that air temperature, precipitation and sunshine percentage contributed significantly to seasonal variation of NPP. In the northern portion of the study area, a significant positive 32-d lagged correlation was observed between seasonal variation of NPP and climate (P<0.01), and the influences of changing climate on NPP lasted for 48 d or 64 d. In central southeastern China, NPP showed 16-d, 48-d, and 96-d lagged correlation with air temperature, precipitation, and sunshine percentage, respectively (P<0.01); the influences of air temperature and precipitation on NPP lasted for 48 d or 64 d, while sunshine influence on NPP only persisted for 16 d. Due to complex topography and vegetation distribution in the southern part of the study region, the spatial patterns of vegetation-climate relationship became complicated and diversiform, especially for precipitation influences on NPP. In the northern part of the study area, all vegetation NPP had an almost similar response to seasonal variation of air temperature except for broad crops. The impacts of seasonal variation of precipitation and sunshine on broad and cereal crop NPP were slightly different from other vegetation NPP. PMID:20349524
Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar
2016-01-01
Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901
Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar
2015-08-01
Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.
Yap, Lorraine; Shu, Su; Zhang, Lei; Liu, Wei; Chen, Yi; Wu, Zunyou; Li, Jianghong; Wand, Handan; Donovan, Basil; Butler, Tony
2017-02-01
There is currently no information about the prevalence of, and factors contributing to psychological distress experienced by re-education through labour camp detainees in China. A cross-sectional face-to-face survey was conducted in three labour camps in Guangxi, China. The questionnaire covered socio-demographic characteristics; sexually transmissible infections (STIs); drug use; psychological distress (K-10); and health service usage and access inside the labour camps. K-10 scores were categorised as ≤30 (low to moderate distress) and >30 or more (highly distressed). Univariate and multivariate logistic regression models identified factors independently associated with high K-10 scores for men and women separately. In total, 755 detainees, 576 (76%) men and 179 (24%) women, participated in the health survey. The study found 11.6% men versus 11.2% women detainees experienced high psychological distress, but no significant gender differences were observed (p> 0.05). Multivariate logistic regression showed that multiple physical health problems were significantly associated with high psychological distress among men. Drug treatment and forensic mental health services need to be established in detention centres in China to treat more than 10% of detainees with drug use and mental health disorders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Nate; Zhou, Ella; Getman, Dan
2015-10-01
This is the Chinese translation of NREL/TP-6A20-64831. Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate. Second, China has dramatically increased its deployment of renewable energy (RE), and is likelymore » to continue further accelerating such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.« less
Vegetation re-establishment on a hardwood forest site denuded by brine
R.S. Walters; L.R. Auchmoody
1989-01-01
Brine from active oil wells seeped through the soil of a forested site in north-western Pennsylvania and killed all vegetation in its path, leaving the affected area unproductive and unsightly. After the brine source was eliminated, herbaceous plants, shrubs and forest tree seedlings became established and developed rapidly. Establishment began in the first year and by...
Development of Palliative Care in China: A Tale of Three Cities
Yin, Zhenyu; Li, Jinxiang; Ma, Ke; Ning, Xiaohong; Chen, Huiping; Fu, Haiyan; Zhang, Haibo; Wang, Chun; Bruera, Eduardo
2017-01-01
Abstract Background. China is the most populous country in the world, but access to palliative care is extremely limited. A better understanding of the development of palliative care programs in China and how they overcome the barriers to provide services would inform how we can further integrate palliative care into oncology practices in China. Here, we describe the program development and infrastructure of the palliative care programs at three Chinese institutions, using these as examples to discuss strategies to accelerate palliative care access for cancer patients in China. Methods. Case study of three palliative care programs in Chengdu, Kunming, and Beijing. Results. The three examples of palliative care delivery in China ranged from a comprehensive program that includes all major branches of palliative care in Chengdu, a program that is predominantly inpatient‐based in Kunming, and a smaller program at an earlier stage of development in Beijing. Despite the numerous challenges related to the limited training opportunities, stigma on death and dying, and lack of resources and policies to support clinical practice, these programs were able to overcome many barriers to offer palliative care services to patients with advanced diseases and to advance this discipline in China through visionary leadership, collaboration with other countries to acquire palliative care expertise, committed staff members, and persistence. Conclusion. Palliative care is limited in China, although a few comprehensive programs exist. Our findings may inform palliative care program development in other Chinese hospitals. Implications for Practice. With a population of 1.3 billion, China is the most populous country in the world, and cancer is the leading cause of death. However, only 0.7% of hospitals offer palliative care services, which significantly limits palliative care access for Chinese cancer patients. Here, we describe the program development and infrastructure of three palliative care programs in China, using these as examples to discuss how they were able to overcome various barriers to implement palliative care. Lessons from these programs may help to accelerate the progress of palliative cancer care in China. PMID:28739870
Pérez-de-Mora, Alfredo; Madejón, Paula; Burgos, Pilar; Cabrera, Francisco; Lepp, Nicholas W; Madejón, Engracia
2011-10-01
We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yu, Huan-Yun; Chang, Chunying; Li, Fangbai; Wang, Qi; Chen, Manjia; Zhang, Jie
2018-06-08
Thallium (Tl), a rare metal, is universally present in the environment with high toxicity and accumulation. Thallium's behavior and fate require further study, especially in the Pearl River Delta (PRD), where severe Tl pollution incidents have occurred. One hundred two pairs of soil and flowering cabbage samples and 91 pairs of soil and lettuce samples were collected from typical farmland protection areas and vegetable bases across the PRD, South China. The contamination levels and spatial distributions of soil and vegetable (flowering cabbages and lettuces) Tl across the PRD were investigated. The relative contributions of soil properties to the bioavailability of Tl in vegetables were evaluated using random forest. Random forest is an accurate learning algorithm and is superior to conventional and correlation-based regression analyses. In addition, the health risks posed by Tl exposure via vegetable intake for residents of the PRD were assessed. The results indicated that rapidly available potassium (K) and total K in soil were the most important factors affecting Tl bioavailability, and the competitive effect of rapidly available K on vegetable Tl uptake was confirmed in this field study. Soil weathering also contributed substantially to Tl accumulation in the vegetables. In contrast, organic matter might not be a major factor affecting the mobility of Tl in most of the lettuce soils. Fe and manganese (Mn) oxides also contributed little to the bioavailability of Tl. A risk assessment suggested that the health risks for Tl exposure through flowering cabbage or lettuce intake were minimal. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang
2012-01-01
SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.
[Monitoring and SWOT analysis of Ascaris eggs pollution in soil of rural China].
Zhu, Hui-hui; Zhou, Chang-hai; Zang, Wei; Zhang, Xue-qiang; Chen, Ying-dan
2014-06-01
To understand the status of Ascaris eggs pollution in soil at national monitoring spots of soil-transmitted nematodiasis, so as to provide the evidence for making countermeasures and evaluating the control effect. Ten households were selected from each of the 22 national monitoring spots annually according to the National Surveillance Program of Soil-Transmitted Nematodiasis (Trial), and the soil samples from vegetable gardens, toilet periphery, courtyards and kitchens were collected and examined by using the modified floatation test with saturated sodium nitrate. Fertilized or unfertilized eggs as well as live or dead fertilized eggs were discriminated and identified. In addition, a SWOT analysis of monitoring of Ascaris eggs pollution in the soil of rural China was carried out. A total of 1 090 households were monitored in 22 monitoring spots from 2006 to 2010. The total detection rate of Ascaris eggs in the soil was 30.73%, and the detection rates of fertilized, unfertilized and live fertilized eggs were 13.21%, 26.42% and 20.28%, respectively. The total detection rates of Ascaris eggs in the vegetable garden, toilet periphery, courtyard and kitchen were 16.51%, 13.49%, 14.22% and 10.73% respectively. The SWOT analysis demonstrated that the monitoring work had both advantages and disadvantages, and was faced with opportunities as well as threats. The pollution status of Ascaris eggs in the soil is still quite severe at some national monitoring spots, and the counter-measures such as implementing hazard-free treatment of stool, improving water supply and sanitation and reforming environment should be taken to protect people from being infected.
Liao, Xiao-Yong; Chong, Zhong-Yi; Yan, Xiu-Lan; Zhao, Dan
2011-03-01
Contamination of urban industrial lands is a new environmental problem in China during the process of upgrade of industrial structure and adjustment of urban layout. It restricts the safe re-use of urban land resources, and threatens the health of surrounding inhabitants. In the paper, the market potential of contaminated-site remediation was known through analysis of spatial distribution of urban industrial sites in China. Remediation technologies in the Occident which were suitable for urban industrial contaminated sites were discussed and compared to evaluate their superiority and inferiority. And then, some advices of remediation technologies for urban industrial contaminated sites in China were proposed.
Yu, Jincong; Wu, Qingfeng; Yang, Chengwu; Vrana, Kent E.; Zhou, Li; Yang, Longyu; Zhang, Hui; Yan, Dong; Li, Jiang; Teng, Shiwei; Gong, Jie; Yan, Yaqiong; Wang, Zengzhen
2016-01-01
Abstract The relationships between parental monitoring (PM), sensation seeking (SS), expected social benefits (ESB), refusal efficacy (RE), and tobacco and alcohol use (TAU) have been well documented among adolescents. However, the mechanisms by which these 4 determinants affect TAU remain unclear. Based on the Theory of Triadic Influence, this study aimed to explore how PM, SS, ESB, and RE simultaneously influenced TAU in Chinese adolescents. From September 2013 to June 2014, we used multistage cluster sampling to select 6269 students from 179 classes of 7 vocational high schools in 3 cities of China. Each student completed a battery of 5 measures: PM, SS, ESB, RE, and TAU. Then, we used structural equation modeling techniques and mediation analyses to investigate the relationships among these 5 measures, with TAU as the final dependent variable. Results demonstrated that the relationship between PM and TAU was fully mediated by ESB and RE (b = −0.18, P < 0.001), that SS influenced TAU directly (b = 0.10, P < 0.001) and indirectly through ESB and RE (b = 0.15, P < 0.001), and that ESB influenced TAU directly (b = 0.09, P < 0.001) and indirectly through RE (b = 0.28, P < 0.001). These findings indicate that the link between PM and SS to TAU among Chinese adolescents can be explained by ESB and RE. These 4 precursory determinants can play an important role in TAU prevention among adolescents in China. PMID:26986098
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhou, Y.; Ju, W.; Chen, J.; Wang, S.; He, H.; Wang, H.; Guan, D.; Zhao, F.; Li, Y.; Hao, Y.
2013-04-01
Terrestrial carbon and water cycles are interactively linked at various spatial and temporal scales. Evapotranspiration (ET) plays a key role in the terrestrial water cycle and altering carbon sequestration of terrestrial ecosystems. The study of ET and its response to climate and vegetation changes is critical in China since water availability is a limiting factor for the functioning of terrestrial ecosystems in vast arid and semiarid regions. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with a newly developed leaf area index (LAI) dataset and other spatial data to simulate daily ET and water yield at a spatial resolution of 500 m over China for the period from 2000 to 2010. The spatial and temporal variations of ET and water yield and influences of temperature, precipitation, land cover types, and LAI on ET were analyzed. The validations with ET measured at 5 typical ChinaFLUX sites and inferred using statistical hydrological data in 10 basins showed that the BEPS model was able to simulate daily and annual ET well at site and basin scales. Simulated annual ET exhibited a distinguishable southeast to northwest decreasing gradient, corresponding to climate conditions and vegetation types. It increased with the increase of LAI in 74% of China's landmass and was positively correlated with temperature in most areas of southwest, south, east, and central China and with precipitation in the arid and semiarid areas of northwest and north China. In the Tibet Plateau and humid southeast China, the increase in precipitation might cause ET to decrease. The national mean annual ET varied from 345.5 mm yr-1 in 2001 to 387.8 mm yr-1 in 2005, with an average of 369.8 mm yr-1 during the study period. The overall increase rate of 1.7 mm yr-2 (r = 0.43 p = 0.19) was mainly driven by the increase of total ET in forests. During the period from 2006 to 2009, precipitation and LAI decreased widely and consequently caused a detectable decrease of national total ET. The temporal patterns of ET varied spatially during the 11 yr study period, increasing in 62.2% of China's landmass, especially in the cropland areas of southern Haihe river basin, most of the Huaihe river basin, and southeastern Yangtze river basin. Decreases of annual ET mainly occurred in parts of northeast, north, northwest, south China, especially in eastern Qinghai-Tibet plateau, the south part of Yunnan province, and Hainan province. Vast regions in China, especially the regions south of Yangtze river, experienced significant decreases in water yield caused by the reduction of precipitation and increase of ET while some areas sporadically distributed in northeast, east, northwest, central, and south China experienced increases in water yield. This study shows that recent climatic variability and human activity induced vegetations changes have intensified the terrestrial water cycles in China's terrestrial ecosystems, which is worthy of further thorough investigation.
Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin
2014-09-01
The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.
Zhuang, Ping; Li, Yingwen; Zou, Bi; Su, Feng; Zhang, Chaosheng; Mo, Hui; Li, Zhian
2016-12-01
A systematic investigation into cadmium (Cd) and lead (Pb) concentrations and their oral bioaccessibility in market vegetables in the Pearl River Delta region were carried out to assess their potential health risks to local residents. The average concentrations of Cd and Pb in six species of fresh vegetables varied within 0.09-37.7 and 2.3-43.4 μg kg -1 , respectively. Cadmium and Pb bioaccessibility were 35-66 % and 20-51 % in the raw vegetables, respectively, and found to be significantly higher than the cooked vegetables with 34-64 % for Cd and 11-48 % for Pb. The results indicated that Cd bioaccessibility was higher in the gastric phase and Pb bioaccessibility was higher in the small intestinal phase (except for fruit vegetables). Cooking slightly reduced the total concentrations and bioaccessibility of Cd and Pb in all vegetables. The bioaccessible estimated daily intakes of Cd and Pb from vegetables were far below the tolerable limits.
Changing fire regimes and the avifauna of California oak woodlands
Kathryn L. Purcell; Scott L. Stephens
2005-01-01
Abstract. Natural and anthropogenic fi re once played an important role in oak woodlands of California. Although lightning-ignited fi res were infrequent, the California Indians used fi re to modify oak woodland vegetation for at least 3,000 yr. These high-frequency, low-intensity fi res likely resulted in little mortality of mature oaks, low but continuous tree...
Christina M. Andruk; Norma L. Fowler
2015-01-01
Decades of fire suppression have significantly altered the vegetation structure and composition of savannas, woodlands, and forests. The presence of endangered species and other species of conservation concern in these fire-suppressed systems makes re-introducing fire more challenging. In oak-juniper woodlands of central Texas, we are presented with the challenge of re...
NASA Astrophysics Data System (ADS)
Long, Xin; Tie, Xuexi; Li, Guohui; Cao, Junji; Feng, Tian; Zhao, Shuyu; Xing, Li; An, Zhisheng
2018-05-01
In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the Green Great Wall
(GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 µm) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15 % in the NCP, with a maximum reduction of -12.4 % (-19.2 µg m-3) in BTH and -7.6 % (-10.1 µg m-3) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP. Because the air pollution is severe in eastern China, especially in the NCP, and the contribution of dust episodes is significant, the reduction of dust concentrations will have important effects on severe air pollution. This study illustrates the considerable contribution of ERPs to the control of air pollution in China, especially in springtime.
Red edge spectral measurements from sugar maple leaves
NASA Technical Reports Server (NTRS)
Vogelmann, J. E.; Rock, B. N.; Moss, D. M.
1993-01-01
Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.
One-dimensional ZnO nanostructure-based optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Kang, Zhuo; Liao, Qingliang; Zhang, Xiaomei; Zhang, Yue
2017-10-01
Not Available Project supported by the National Major Research Program of China (Grant No. 2013CB932602), the National Key Research and Development Program of China (Grant No. 2016YFA0202701), the Program of Introducing Talents of Discipline to Universities, China (Grant No. B14003), the National Natural Science Foundation of China (Grant Nos. 51527802, 51232001, 51602020, 51672026, and 51372020), China Postdoctoral Science Foundation (Grant Nos. 2015M580981 and 2016T90033) Beijing Municipal Science & Technology Commission, China, the State Key Laboratory for Advanced Metals and Materials, China (Grant No. 2016Z-06), the Fundamental Research Funds for the Central Universities, China, and JST in Japan, Research and Education Consortium for Innovation of Advanced Integrated Science.
Zhu, Duo Ju; Wen, Zhong Ming; Zhang, Jing; Tao, Yu; Zeng, Hong Wen; Tang, Yang
2018-02-01
To investigate the effects of the introduction of Robinia pseudoacacia on the functional structure of plant communities, we selected paired-plots of R. pseudoacacia communities and native plant communities across different vegetation zones, i.e., steppe zone, forest-steppe zone, forest zone in hilly-gully region of Loess Plateau, China. We measured several functional characteristics and then compared the functional structures of R. pseudoacacia and native plant communities in different vegetation zones. The results showed that the variation of the functional traits across different vegetation zones were consistent in R. pseudoacacia community and native plant community, including leaf carbon concentration, leaf nitrogen concentration, leaf phosphorus concentration, specific leaf area, and leaf tissue density. The leaf carbon concentration, leaf nitrogen concentration, and specific leaf area of the R. pseudoacacia community were significantly higher than those of the native plant community. The trend of change that the functional diversity indices, i.e., FR ic , FE ve , FD iv , FD is , Rao of the R. pseudoacacia community and the native plant community with vegetation zones were different. The introduction of R. pseudoacacia enhanced the plant community functional diversity in the forest zone but reduced community functional diversity in the steppe zone.
Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau
NASA Astrophysics Data System (ADS)
Chen, Jiquan; John, Ranjeet; Shao, Changliang; Fan, Yi; Zhang, Yaoqi; Amarjargal, Amartuvshin; Brown, Daniel G.; Qi, Jiaguo; Han, Juanjuan; Lafortezza, Raffaele; Dong, Gang
2015-08-01
By applying the concept of the coupled natural and human system (CNH), we compared spatiotemporal changes in livestock (LSK), land cover, and ecosystem production to understand the relative roles that natural and social driving forces have on CNH dynamics on the Mongolia plateau. We used socioeconomic and physical data at prefecture level for Inner Mongolia and Mongolia from 1981 through 2010 to represent changes in net primary productivity (NPP), enhanced vegetation index (EVI), precipitation, annual average temperature, LSK, livestock density (LSKD), land cover change (LCC), gross domestic production (GDP), and population (POP). The ratios such as LSK:NPP, LSKD: EVI, LSKD:albedo, LSK:POP, and LSK:GDP were examined and compared between Inner Mongolia and Mongolia, and structural equation modeling (SEM) was applied to quantify the complex interactions. Substantial differences in LSK, POP, and economic development were found among the biomes and between Inner Mongolia and Mongolia. When various indicators for policy shifts—such as the World Trade Organization (WTO) for China, the Third Campaign to Reclaim Abandoned Agriculture Lands (ATAR-3), and the Grain for Green Program for China (GFG)—were added into our SEM, the results showed significant change in the strength of the above relationships. After China joined the WTO, the relationships in Inner Mongolia between LSKD:LCC and LSKD:NPP were immensely strengthened, whereas relationships in NPP:LCC were weakened. In Mongolia, the ATAR-3 program first appeared to be an insignificant policy, but the Collapse of the Soviet Union enhanced the correlation between LSKD:LCC, weakened the connection of LCC:NPP, and did not affect LSKD:NPP. We conclude that human influences on the Mongolian CNH system exceeded those of the biophysical changes, but that the significance varies in time and per biome, as well as between Inner Mongolia and Mongolia.
Land cover of oases and forest in XinJiang, China retrieved from ASTER data
NASA Astrophysics Data System (ADS)
Buhe, Aosier; Tsuchiya, K.; Kaneko, M.; Ohtaishi, N.; Halik, Mahmut
ASTER aboard NASA’s satellite Terra is a high-resolution multispectral radiometer of 14 bands. The spatial resolution is 15 m in VNIR, 30 m in SWIR and 90 m in TIR spectra, respectively. With the data observed with ASTER, the land cover classification is produced for the Tarim Diversifolious Poplar Protection Area along the Tarim River in the northern Tarim Basin (Taklamakan Desert) in XinJiang, China. The classification of the vegetation (plants) in the arid and semiarid regions using remote-sensing technology is very difficult. Because the cause has low vegetable cover density and the influence of reflection from background soil is large. ASTER data are effective in studying the spectrum characteristics of land cover in arid and semiarid regions. The sensor has several bands in the shortwave infrared wavelength region that is designed for exploration of earth resources and study of the arid and semiarid region natural environment. However, we are not clear combination of which band is the most effective in research of the arid region like the Taklamakan desert in the data of 14 bands of ASTER. The optimum index factor (OIF), based on total variance within bands and correlation coefficient between bands, is a statistical approach to rank all possible three-band combinations. In the process of analyzing the data, the pixel sizes of all the data are converted (layer stacking and re-sampling) into consistent same size of 15 m. The three-band composite with the largest OIF value will have most information (as measured by variance) with the least amount of duplication (as measured by correlation). We used the OIF technique to rank all three-band combinations of ASTER original 14-band data over Tarim River Poplar Protection Area. Our study indicates that RGB color overlay using atmospheric corrected ASTER original bands 2, 3 (VNIR), and 6 (SWIR) has the highest OIF. When NDVI is considered as one ASTER band, highest OIF will have by carrying out bands 3 (VNIR), 4 (SWIR), and NDVI. In this study, we used highest OIF (bands 3, 4, and NDVI) succeeded in extraction of Tarim River Poplar Forest.
NASA Astrophysics Data System (ADS)
Gao, Sen-Pei; Qian, Yan-Nan; Wang, Biao
2015-08-01
Visible converted emissions produced at an excitation of 286 nm in ZnNb2O6 ceramics doped with rare-earth ions (RE = Eu3+, Tm3+, Er3+ or a combination of these ions) were investigated with the aim of increasing the photovoltaic efficiency of solar cells. The structure of RE:ZnNb2O6 ceramics was confirmed by x-ray diffraction patterns. The undoped ZnNb2O6 could emit a blue emission under 286-nm excitation, which is attributed to the self-trapped excitons’ recombination of the efficient luminescence centers of edge-shared NbO6 groups. Upon 286-nm excitation, Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 ceramics showed blue, green, and red emissions, which correspond to the transitions of 5D0 → 7FJ (J = 1-4) (Eu3+), 1G4 → 3H6 (Tm3+), and 2H11/2/4S3/2 → 4I15/2 (Er3+), respectively. The calculated CIE chromaticity coordinates of Eu:ZnNb2O6, Tm:ZnNb2O6, and Er:ZnNb2O6 are (0.50, 0.31), (0.14, 0.19), and (0.29, 0.56), respectively. RE ion-co-doped ZnNb2O6 showed a combination of characteristic emissions. The chromaticity coordinates of Eu/Tm:ZnNb2O6, Eu/Er:ZnNb2O6, and Tm/Er:ZnNb2O6 were calculated to be (0.29, 0.24), (0.45, 0.37), and (0.17, 0.25). Project supported by the National Natural Science Foundation of China (Grant Nos. 10572155 and 10732100) and the Research Fund for the Doctoral Program of Ministry of Education, China (Grant No. 20130171130003).
NASA Astrophysics Data System (ADS)
Li, Zhen; Pan, Jinghu
2018-03-01
Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.
Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai
2016-08-15
This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits. Copyright © 2016 Elsevier Ltd. All rights reserved.
The survival environment of Mammuthus-Coelodonta Fauna in Qinggang, Heilongjiang Province, NE China
NASA Astrophysics Data System (ADS)
Zhao, K.
2017-12-01
The disappearance of world's megafaunal mammal taxa during the late Upper Pleistocene is the subject of considerable scientific interest. Until now, there are still controversy about the environmental background and influence mechanism of the extinction. Northeast of China possesses abundant Mammuthus-Coelodonta Fauna fossil in the Upper Pleistocene sediment, which is an ideal region for the exploration of survival background and disappearance process of megafauna. Qinggang County, Heilongjiang Province is famous for unearthing of Mammuthus primigenius. In this study, we use the pollen records from Yingxiancun section, Qingggang County to reconstruct the survival environment of Mammuthus-Coelodonta Fauna in the area. Our study shows that mammal fossils are found in the lacustrine sediment which belongs to the Gunxiangtun formation in NE China. The vegetation types in the environment are mainly Artemisia, Compositae, Gramineae, Cyperaceae accompanied by few Picea. The pollen assemblages indicate the area was covered by meadow with few conifer forests. As a whole, the vegetation types in Qinggang belong to the Mammoth steppe during Upper Pleistocene in the Eurasian.
Probabilistic model predicts dynamics of vegetation biomass in a desert ecosystem in NW China
Wang, Xin-ping; Schaffer, Benjamin Eli; Yang, Zhenlei; Rodriguez-Iturbe, Ignacio
2017-01-01
The temporal dynamics of vegetation biomass are of key importance for evaluating the sustainability of arid and semiarid ecosystems. In these ecosystems, biomass and soil moisture are coupled stochastic variables externally driven, mainly, by the rainfall dynamics. Based on long-term field observations in northwestern (NW) China, we test a recently developed analytical scheme for the description of the leaf biomass dynamics undergoing seasonal cycles with different rainfall characteristics. The probabilistic characterization of such dynamics agrees remarkably well with the field measurements, providing a tool to forecast the changes to be expected in biomass for arid and semiarid ecosystems under climate change conditions. These changes will depend—for each season—on the forecasted rate of rainy days, mean depth of rain in a rainy day, and duration of the season. For the site in NW China, the current scenario of an increase of 10% in rate of rainy days, 10% in mean rain depth in a rainy day, and no change in the season duration leads to forecasted increases in mean leaf biomass near 25% in both seasons. PMID:28584097
[Relations of landslide and debris flow hazards to environmental factors].
Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui
2009-03-01
To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Li, Qingyun; Huang, Zhuo; Tang, Xianqiang; Zhao, Weihua
2017-05-01
Cascaded exploitation of diversion-type small hydropower (SHP) offers a source of new energy as well as socioeconomic benefits; however, it inevitably causes environmental disturbance and damage. Previous studies on the cumulative effect of cascaded diversion SHP rarely discussed using quantitative analysis method. In this paper, the ecological footprint analysis approach is proposed to assess the positive and negative impacts of cascaded diversion SHP on environment of a small-scale river in Southwest China. Positive impact is defined as ecological supply footprint (ESF), which refers to vegetation protection by replacing firewood with SHP. Negative impact is defined as ecological loss footprint (ELF), which includes fish and net primary productivity loss, vegetation destruction and soil erosion. With the raising in the number (n>4) of diversion SHP stations, the difference between ELF and ESF increases remarkably, suggesting that the adverse impacts of cascaded diversion SHP accumulate in the study area. Compared with vegetation destruction and soil erosion, the cumulative loss of fish and net productivity is the most important aspect of the adverse impacts which needs more attentions.
Study of the Human-Driven Mechanism of LUCC in the Shenfu Mining Area, NW of China
NASA Astrophysics Data System (ADS)
Wang, Tao
2018-03-01
Taking the Shenfu mining area, located in the northwest of China, as an example, temporal and spatial changes of land use/cover and its human-driven mechanism were analyzed based on the land use and MODIS NDVI data. The results show that: (1) by the implementation of the Grain for Green Project (GGP), the area of cultivated land decreased, and grassland increased. By the exploitation of coal and other resources and the development of social and economic levels, the area of construction land increased. (2) The vegetation cover level in the mining area significantly increased from 2000 to 2015, and the implementation of GGP and the increase of precipitation were the main reasons. (3) The driving force of land use to forest land and grassland could increase the level of vegetation cover, such as with the GGP, and the promotion of cultivated land and construction land will lead to the reduction of vegetation cover level, such as with urban expansion and mining area construction caused by population growth and industrial development.
Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun
2006-10-01
Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.
Liang, Yueming; He, Xunyang; Liang, Shichu; Zhang, Wei; Chen, Xiangbi; Feng, Shuzheng; Su, Yirong
2014-03-01
Soil ammonia oxidizers play a critical role in nitrogen cycling and ecological restoration. The composition and structure of soil ammonia oxidizers and their impacting factors were studied in four typical ecosystem soils, tussock (T), shrub (S), secondary forest (SF), and primary forest (PF), during vegetation restoration in the Karst region of Southwest China. The composition and structure of the ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities were characterized by sequencing the amoA and arch-amoA genes, respectively. The diversity of soil ammonia oxidizers (except in S) and plant Shannon diversity index gradually increased with vegetation restoration, and the ammonia oxidizer communities differed significantly (p < 0.001). Amplicons of AOA from the Nitrososphaera cluster dominated all four ecosystem soils. AOB Nitrosospira cluster 3b only appeared in PF and SF soils, while Nitrosospira cluster 3a species were found in all soils. Changes in AOB paralleled the changes in soil ammonium content that occurred with vegetation restoration. Redundancy analysis showed that the distribution of dominant AOB species was linked to pH, soil urease activity, and soil C/N ratio, whereas the distribution of dominant AOA species was mainly influenced by litter nitrogen content and C/N ratio. These results suggested that the composition and structure of the AOB community were more sensitive to changes in vegetation and soil ammonium content, and may be an important indicator of nitrogen availability in Karst ecosystem soils. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management
NASA Technical Reports Server (NTRS)
Tucker, Compton; Puma, Michael
2015-01-01
Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.
Jia, Qin; Zhu, Xuemei; Hao, Yaqiong; Yang, Ziliang; Wang, Qi; Fu, Haihui; Yu, Hongjin
2018-06-01
Concentrations of total mercury (T-Hg) and methylmercury (MeHg) in soil, vegetables, and human hair were measured in a mercury mining area in central China. T-Hg and MeHg concentrations in soil ranged from 1.53 to 1054.97mg/kg and 0.88 to 46.52μg/kg, respectively. T-Hg concentrations was correlated with total organic carbon (TOC) content (R 2 =0.50, p<0.01) and pH values (R 2 =0.21, p<0.05). A significant linear relationship was observed between MeHg concentrations and the abundance of sulfate-reducing bacteria (SRB) (R 2 =0.39, p<0.05) in soil. Soil incubation experiments amended with specific microbial stimulants and inhibitors showed that Hg methylation was derived from SRB activity. T-Hg and MeHg concentrations in vegetables were 24.79-781.02μg/kg and 0.01-0.18μg/kg, respectively; levels in the edible parts were significantly higher than in the roots (T-Hg: p<0.05; MeHg: p<0.01). Hg species concentrations in rhizosphere soil were positively correlated to those in vegetables (p<0.01), indicating that soil was an important source of Hg in vegetables. Risk assessment indicated that the consumption of vegetables could result in higher probable daily intake (PDI) of T-Hg than the provisional tolerable daily intake (PTDI) for both adults and children. In contrast, the PDI of MeHg was lower than the reference dose. T-Hg and MeHg concentrations in hair samples ranged from 1.57 to 12.61mg/kg and 0.04 to 0.94mg/kg, respectively, and MeHg concentration in hair positively related to PDI of MeHg via vegetable consumption (R 2 =0.39, p<0.05), suggesting that vegetable may pose health risk to local residents. Copyright © 2017. Published by Elsevier B.V.
Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana
2014-02-01
The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Mao; Huang, Zhenyuan; Shi, Fushan; Wang, Wenqing
2009-11-01
Well-developed aerial roots of mangroves make it difficult to study how fish utilize the mangrove forest as a habitat. In the present study, we compared the differences in fish assemblages in three major types of habitats of mangrove estuary (vegetated area, treeless mudflat, and creek) of a mangrove bay in Hainan Island, China, at different seasons during two consecutive years. Three types of gears, centipede net, gill net and cast net, were used in the different habitats of mangrove estuary and sampling efficiencies among gears were evaluated. Centipede nets were used in all the three types of habitats and cast nets and gill nets in treeless mudflats and creeks. Fish assemblages were dependent on gears used. Centipede net could efficiently catch fish occurring both inside and outside of vegetated areas efficiently. A total of 115 fish species in 51 families were collected. In terms of numbers of species per family, Gobiidae was the most diverse (17 species), followed by Mugilidae (5 species). Almost all of the fish were juvenile or small fish and few predators were recorded, implying low predation pressure in the bay. ANOVA analysis showed that significant seasonal and spatial variation existed in species richness, abundance, and biomass, which were less in the vegetated areas than those of treeless mudflats and creeks. The attraction of vegetated areas to fish was less than that of creeks and mudflats. Many species were specific to a particular habitat type, 4 species occurring exclusively in the creeks, 45 species occurring exclusively in the treeless mudflats, and 5 species occurring exclusively in the vegetated areas. The results indicated that mangrove estuaries were potentially attractive habitats for juvenile and small fish, but this attraction was accomplished by a connection of vegetated areas, treeless mudflats and creeks, not only by vegetated areas.
ERIC Educational Resources Information Center
Sharif, Marilyn K.; Osterling, Jorge P.
2011-01-01
In the 21st century, the People's Republic of China (PRC) is reemerging and reengaging in the world on all fronts. One area of this reengagement is the huge increase in the number of Chinese students who are studying abroad. This paper discusses and analyzes the academic experiences of the growing number of Chinese international students who are…
ERIC Educational Resources Information Center
Zhao, Weili; Sun, Caiping
2017-01-01
In 2001, China's moral education curriculum reform called for a "returning to life" as a radical shift from its previous empty sermonic pedagogy, hoping to cultivate its twenty-first century children into ethical humans. Accordingly, a notion of "human ecology" appeared in the post-2001 textbook design, which became…
NASA Astrophysics Data System (ADS)
Chen, Jie; Huang, Pu-Man; Han, Xiao-Biao; Pan, Zheng-Zhou; Zhong, Chang-Ming; Liang, Jie-Zhi; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 61574173), the National Key Research and Development Program, China (Grant No. 2016YFB0400105), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the International Science and Technology Collaboration Program of Guangzhou City, China (Grant No. 2016201604030055), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030312011), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015B090903062, 2015B010132007, and 2015B010129010), the Science and Technology Plan of Guangzhou, China (Grant No. 201508010048), the Science and Technology Plan of Foshan, China (Grant No. 201603130003), Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505009), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17), the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University (Grant No. 20167612042080001).
The contribution of China's Grain to Green Programto carbon and water cycles
NASA Astrophysics Data System (ADS)
Yuan, W.
2017-12-01
The Chinese government started implementation of the Grain for Green Project (GGP) in 1999, aiming to convert cropland to forestland to mitigate soil erosion problems in areas across the country. Although the project has generated substantial environmental benefits, such as erosion reduction, carbon sequestration and water quality improvements, the magnitude of these benefits has not yet been well quantified due to the lack of location specific data describing the afforestation efforts. Remote sensing is well suited to detect afforestation locations, a prerequisite for estimating the impacts of the project on carbon and water cycles. In this study, we first examined the practicability of using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product to detect afforestation locations; however, the results showed that the MODIS product failed to distinguish the afforestation areas of GGP. Then, we used a normalized difference vegetation index (NDVI) time series analysis approach for detecting afforestation locations, applying statistical data to determine the NDVI threshold of converted croplands. The technique provided the necessary information for location of afforestation implemented under GGP, explaining 85% of conversion from cropland to forestlands across all provinces. Second, we estimated the changes in carbon fluxes and stocks caused by forests converted from croplands under the GGP using a process-based ecosystem model (i.e., IBIS). Our results showed that the converted areas from croplands to forests under the GGP program could sequester 110.45 Tg C by 2020, and 524.36 Tg C by the end of this century. The sequestration capacity showed substantial spatial variations with large sequestration in southern China. The economic benefits of carbon sequestration from the GGP were also estimated according to the current carbon price. The estimated economic benefits ranged from 8.84 to 44.20 billion from 2000 through 2100, which may exceed the current total investment ($38.99 billion) on the program. As the GGP program continues and forests grow, the impact of this program will be even larger in the future, making a more considerable contribution to China's carbon sink over the upcoming decades.
Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb
2018-05-09
High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hu, Xiu Juan; Xu, Han Qiu; Guo, Yan Bin; Zhang, Bo Bo
2017-01-01
This paper proposed a vegetation health index (VHI) to rapidly monitor and assess vegetation health status in soil and water loss region based on remote sensing techniques and WorldView-2 imagery. VHI was constructed by three factors, i.e., the normalized mountain vegetation index, the nitrogen reflectance index and the reflectance of the yellow band, through the principal component transformation, in order to avoid the deviation induced by subjective method of weighted summation. The Hetian Basin of Changting County in Fujian Province, China, was taken as a test area to assess the vegetation health status in soil and water loss region using VHI. The results showed that the VHI could detect vegetation health status with a total accuracy of 91%. The vegetation of Hetian Basin in good, moderate and poor health status accounted for 10.1%, 49.2% and 40.7%, respectively. The vegetation of the study area was still under an unhealthy status because the soil was poor and the growth of newly planted vegetation was not good in the soil and water loss region.
Miller, Robin L.; Fujii, Roger; Schmidt, Paul E.
2011-01-01
The Sacramento-San Joaquin Delta in California was an historic, vast inland freshwater wetland, where organic soils almost 20 meters deep formed over the last several millennia as the land surface elevation of marshes kept pace with sea level rise. A system of levees and pumps were installed in the late 1800s and early 1900s to drain the land for agricultural use. Since then, land surface has subsided more than 7 meters below sea level in some areas as organic soils have been lost to aerobic decomposition. As land surface elevations decrease, costs for levee maintenance and repair increase, as do the risks of flooding. Wetland restoration can be a way to mitigate subsidence by re-creating the environment in which the organic soils developed. A preliminary study of the effect of hydrologic regime on carbon cycling conducted on Twitchell Island during the mid-1990s showed that continuous, shallow flooding allowing for the growth of emergent marsh vegetation re-created a wetland environment where carbon preservation occurred. Under these conditions annual plant biomass carbon inputs were high, and microbial decomposition was reduced. Based on this preliminary study, the U.S. Geological Survey re-established permanently flooded wetlands in fall 1997, with shallow water depths of 25 and 55 centimeters, to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates over time. Ten years after flooding, elevation gains from organic matter accumulation in areas of emergent marsh vegetation ranged from almost 30 to 60 centimeters, with average annual carbon storage rates approximating 1 kg/m2, while areas without emergent vegetation cover showed no significant change in elevation. Differences in accretion rates within areas of emergent marsh vegetation appeared to result from temporal and spatial variability in hydrologic factors and decomposition rates in the wetlands rather than variability in primary production. Decomposition rates were related to differences in hydrologic conditions, including water temperature, pH, dissolved oxygen concentration, and availability of alternate electron acceptors. The study showed that marsh re-establishment with permanent, low energy, shallow flooding can limit oxidation of organic soils, thus, effectively turning subsiding land from atmospheric carbon sources to carbon sinks, and at the same time reducing flood vulnerability.
Hanna, Nada; Sun, Pan; Sun, Qiang; Li, Xuewen; Yang, Xiwei; Ji, Xiang; Zou, Huiyun; Ottoson, Jakob; Nilsson, Lennart E; Berglund, Björn; Dyar, Oliver James; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia
2018-05-01
To investigate the occurrence of antibiotic residues in different types of environmental samples including water samples in rural Shandong province, China. Further, to characterize the potential ecological risk for development of antibiotic resistance in the environment, and the potential direct human health risk of exposure to antibiotics via drinking water and vegetables. Environmental samples (n = 214) (river water, waste water, drinking water, sediments, manure, soil and edible parts of vegetables) were collected in twelve villages in Shandong province in eastern China. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to determine the concentration of antibiotic residues. The ratio of the measured environmental concentrations (MEC) to the predicted no-effect concentrations (PNEC) was used to evaluate the ecological risk (risk quotient, RQ) for development of antibiotic resistance. The potential risks to human health through exposure to antibiotics in drinking water were assessed by comparing measured environmental concentrations (MEC) and predicted no-effect concentration in drinking water (PNEC DW ), and in vegetables by comparing estimated daily intake (EDI) to ADI. Sulfapyridine, sulfamethoxazole, ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, chloramphenicol, florfenicol, doxycycline, and metronidazole were detected at concentrations ranging between 0.3 and 3.9 ng/L in river water, 1.3 and 12.5 ng/L in waste water, 0.5 and 21.4 ng/L in drinking water, 0.31 and 1.21 μg/kg in river sediment, 0.82 and 1.91 μg/kg in pig manure, 0.1 and 11.68 μg/kg in outlet sediment, 0.5 and 2.5 μg/kg in soil, and 6.3 and 27.2 μg/kg in vegetables. The RQs for resistance development were >1 for enrofloxacin, levofloxacin, and ranged between 0.1 and 1 for ciprofloxacin. MECs/PNEC DW ratios were <1 from exposure to antibiotics through drinking water for both adults and children. EDI/ADI ratios were <0.1 from exposure to antibiotics by vegetable consumption. Antibiotic pollutants were ubiquitous in various environmental compartments of Shandong province of China. Risk estimates indicated a potential for the measured levels of enrofloxacin, levofloxacin and ciprofloxacin in waste water to pose an ecological risk for resistance selection, and further studies are needed to validate this finding. The investigated antibiotics did not appear to pose an appreciable direct human health risk from environmental exposure through drinking water or vegetables consumption. However, they might still pose a risk for resistance development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Yizhen; Wang, Xiangxian; Wang, Ru; Yang, Hua; Qi, Yunping
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61505074), the National Basic Research Program of China (Grant No. 2013CBA01703), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509), and the National Undergraduate Innovation Training Program of China (Grant No. 201610731030).
ERIC Educational Resources Information Center
Nathan, N.; Wiggers, J.; Wyse, R.; Williams, C. M.; Sutherland, R.; Yoong, S. L.; Lecathelinais, C.; Wolfenden, L.
2017-01-01
Implementation of vegetable and fruit programs in schools is less than optimal. This study aimed to identify, using a theoretical framework, factors associated with implementation of a school vegetable and fruit program; that provides a time in class for children to consume a piece of vegetable or fruit they have brought from home. Three hundred…
NASA Astrophysics Data System (ADS)
Wu, Xueke; Li, Huidong; Wang, Zhanhui; Feng, Hao; Zhou, Yulin
2017-06-01
Not Available Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 11605143), the Undergraduate Training Programs for Innovation and Entrepreneurship of Sichuan Province, China (Grant No. 05020732), the National Natural Science Foundation of China (Grant No. 11575055), the Fund from the Department of Education in Sichuan Province of China (Grant No. 15ZB0129), the China National Magnetic Confinement Fusion Science Program (Grant No. 2013GB107001), the National ITER Program of China (Contract No. 2014GB113000), and the Funds of the Youth Innovation Team of Science and Technology in Sichuan Province of China (Grant No. 2014TD0023).
Food and Agricultural Imports from China
2007-07-17
2006. Among the product categories that at least doubled in volume during the period were live animals, wine/ beer , fruit/vegetable juices, wheat...product had complied with safe manufacturing practices (e.g., HACCP for low acid canned foods or seafoods).22 Refusals of Imports from China Of the 720...Phytosanitary Measures,” Choices, 1st quarter 2007. 30 Calvin. 31 Dong. 32 FDA information on HACCP is at [http://www.cfsan.fda.gov/~lrd/haccp.html]. 33
1985-03-14
development of pasteurized milk, yogurt and milk drinks.. We must combine this with the production of all kinds of milk powder (especially that...products, with emphasis on developing beancurd and fermented bean products. We must also develop soybean flour and beanflour products. Fruit and vegetable...Beverage industry: We should develop drinks like fruit juice, vegetable juice, fruit sodapop, soybean milk, fermented soybean milk, mineral water
Insight into the Migration Routes of Plutella xylostella in China Using mtCOI and ISSR Markers
Tian, Lixia; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Wang, Xiangjing; Wu, Qingjun
2015-01-01
The larvae of the diamondback moth, Plutella xylostella, cause major economic losses to cruciferous crops, including cabbage, which is an important vegetable crop in China. In this study, we used the mitochondrial COI gene and 11 ISSR markers to characterize the genetic structure and seasonal migration routes of 23 P. xylostella populations in China. Both the mitochondrial and nuclear markers revealed high haplotype diversity and gene flow among the populations, although some degree of genetic isolation was evident between the populations of Hainan Island and other sampling sites. The dominant haplotypes, LX1 and LX2, differed significantly from all other haplotypes both in terms of the number of individuals with those haplotypes and their distributions. Haplotypes that were shared among populations revealed that P. xylostella migrates from the lower reaches of the Yangtze River to northern China and then to northeastern China. Our results also revealed another potential migration route for P. xylostella, i.e., from southwestern China to both northwestern and southern China. PMID:26098353
Zhang, Chunlai; Shen, Yaping; Li, Qing; Jia, Wenru; Li, Jiao; Wang, Xuesong
2018-06-15
To identify characteristics of aeolian activity and the aeolian environment in China's eastern desert region, this study collected surface sediment samples from the main desert and sandy lands in this region: the Hobq Desert and the Mu Us, Otindag, Horqin, and Hulunbuir sandy lands. We analyzed the grain-size characteristics and their relationships to three key environmental indicators: drift potential, the dune mobility index, and vegetation cover. The main sediment components are fine to medium sands, with poor (Hulunbuir) to moderate (all other areas) sorting, of unimodal to bimodal distribution. This suggests that improved sorting is accomplished by the loss of both relatively coarser and finer grains. Since 2000, China's eastern desert region has generally experienced low wind energy environmental conditions, resulting in decreased dune activity. In the Hobq Desert, however, the dry climate and sparse vegetation, in conjunction with the most widely distributed mobile dune area in the eastern desert region, have led to frequent and intense aeolian activity, including wind erosion, sand transport, and deposition, resulting in conditions for good sediment sorting. In the Mu Us, Otindag, and Horqin sandy lands, mosaic distribution has resulted from wind erosion-dominated and deposition-dominated aeolian environments. In the Hulunbuir Sandy Land, high precipitation, low temperatures, and steppe vegetation have resulted in well-developed soils; however, strong winds and flat terrain have created an aeolian environment dominated by wind erosion. Copyright © 2018. Published by Elsevier B.V.
Esterhuizen, Johan; Njiru, Basilio; Vale, Glyn A; Lehane, Michael J; Torr, Stephen J
2011-09-01
Control of tsetse flies using insecticide-treated targets is often hampered by vegetation re-growth and encroachment which obscures a target and renders it less effective. Potentially this is of particular concern for the newly developed small targets (0.25 high × 0.5 m wide) which show promise for cost-efficient control of Palpalis group tsetse flies. Consequently the performance of a small target was investigated for Glossina fuscipes fuscipes in Kenya, when the target was obscured following the placement of vegetation to simulate various degrees of natural bush encroachment. Catches decreased significantly only when the target was obscured by more than 80%. Even if a small target is underneath a very low overhanging bush (0.5 m above ground), the numbers of G. f. fuscipes decreased by only about 30% compared to a target in the open. We show that the efficiency of the small targets, even in small (1 m diameter) clearings, is largely uncompromised by vegetation re-growth because G. f. fuscipes readily enter between and under vegetation. The essential characteristic is that there should be some openings between vegetation. This implies that for this important vector of HAT, and possibly other Palpalis group flies, a smaller initial clearance zone around targets can be made and longer interval between site maintenance visits is possible both of which will result in cost savings for large scale operations. We also investigated and discuss other site features e.g. large solid objects and position in relation to the water's edge in terms of the efficacy of the small targets.
Seguin, Rebecca A.; Chui, Kenneth K. H.; Clark, Valerie; Corbin, Marilyn A.; Goldberg, Jeanne P.; Heidkamp-Young, Eleanor; Lichtenstein, Alice H.; Wiker, Nancy; Nelson, Miriam E.
2015-01-01
Objectives. We describe the national dissemination of an evidence-based community cardiovascular disease prevention program for midlife and older women using the RE-AIM (reach effectiveness adoption implementation maintenance) framework and share key lessons learned during translation. Methods. In a 2010 to 2014 collaboration between the StrongWomen program and the National Extension Association of Family and Consumer Sciences, we assessed reach, adoption, implementation, and maintenance using survey methods, and we assessed effectiveness using a pretest–posttest within-participants design, with weight change as the primary outcome. Results. Overall reach into the population was 15 per 10 000. Of 85 trained leaders, 41 (48%) adopted the program. During the 12-week intervention, weight decreased by 0.5 kilograms, fruit and vegetable intake increased by 2.1 servings per day, and physical activity increased by 1238 metabolic equivalent (MET)-minutes per week (all P < .001). Average fidelity score was 4.7 (out of possible 5). Eleven of 41 adopting leaders (27%) maintained the program. Conclusions. The StrongWomen–Healthy Hearts program can be implemented with high fidelity in a variety of settings while remaining effective. These data provide direction for program modification to improve impact as dissemination continues. PMID:26469644
NASA Astrophysics Data System (ADS)
Jin, X.; Zhang, Y.
2010-12-01
Evapotranspiration (ET) is a major component in the water balance of semi-arid areas and typically the largest consumer of the incoming energy. Estimation of ET and separation of evaporation and transpiration from ET are important topics in ecohydrological studies. The relationship among soil water evaporation, vegetation transpiration and groundwater depth in the arid area China was quantified by combining remote sensing with groundwater data in this paper. The Yinchuan Plain, located in northwestern China, is the upstream area of the Yellow river between the Helan mountain and the Erdos plateau with a total area of 7790 km2. In recent years, rapid development of the region’s economy has resulted in overuse of groundwater resources and caused the decline of groundwater levels in the regional aquifers. The MODIS NDVI data, the vegetation index maps depicting spatial and temporal variations in vegetation activities, is based on 16-day composites and its spatial resolution is 250 m. To be consistent with the groundwater data, the MODIS NDVI values of April and July 2004 were used to analyze the relationship between groundwater and vegetation in this study. The MODIS Surface-Reflectance Product (MOD 09) and the Aqua MOD 11 product of April and July 2004 were used to estimate daily evaporation. The values of the groundwater depth were obtained at the same resolution of the MOD 9 image by interpolating 520 measured groundwater depths in April and July of 2004 in a 500 m×500 m grid. The meteorological data used in this study includes sea level pressure, air temperature, wind speed, wind direction, relative humidity and pan evaporation. The relationship among soil evaporation, vegetation transpiration and groundwater depth was quantified with the combination of remote sensing and groundwater data. The groundwater depth data for April and July are the indicators for dry season and raining season during a year in the Yinchuan plain and thus were used in this study. Based on the results obtained by analyzing the relationship between ET and groundwater depth, the following important conclusions can be drawn. 1) In July of raining season, NDVI and vegetation fraction decreased with groundwater depth increase and NDVI was smaller than 0.3 (very low vegetation cover) when the groundwater depth was larger than 6 m. 2) The relationship between NDVI and daily ET indicated that there is vegetation cover on the ground when the NDVI is larger than 0.2 in the Yinchuan Plain. 3) The daily soil evaporation varies between 0.5 mm and 2.5 mm, whereas the vegetation transpiration ranges between 0 and 3.4 mm. 4) The threshold depth of the phreatic evaporation from the bare soil in the Yinchuan plain is 4 m and 6 m in dry season and raining season, respectively. The surface evaporation is roughly equal to soil water evaporation when the groundwater depth is larger than the threshold depth.
Study on the vegetation dynamic change using long time series of remote sensing data
NASA Astrophysics Data System (ADS)
Fan, Jinlong; Zhang, Xiaoyu
2010-10-01
The vegetation covering land surface is main component of biosphere which is one of five significant spheres on the earth. The vegetation plays a very important role on the natural environment conservation and improvement to keep human being's living environment evergreen while the vegetation supplies many natural resources to human living and development continuously. Under the background of global warming, vegetation is changing as climate changes. It is not doubt that human activities have great effects on the vegetation dynamic. In general, there are two aspects of the interaction between vegetation and climate, the climatic adaptation of vegetation and the vegetation feedback on climate. On the base of the research on the long term vegetation growth dynamics, it can be found out the vegetation adaptation to climate change. The dynamic change of vegetation is the direct indicator of the ecological environment changes. Therefore, study on the dynamic change of vegetation will be very interest and useful. In this paper, the vegetation change in special region of China will be described in detail. In addition to the methods of the long term in-situ observation of vegetation, remote sensing technologies can also be used to study the long time series vegetation dynamic. The widely used NDVI was often employed to monitor the status of vegetation growth. Actually, NDVI can indicate the vigor and the fractional cover of vegetation effectively. So the long time series of NDVI datasets are a very valuable data source supporting the study on the long term vegetation dynamics. Since 1980, a series of NOAA satellites have been launched successfully, which have already supplied more than 20 years NOAA/AVHRR satellites data. In this paper, we selected Ningxia Hui autonomic region of China as the case study area and used 20 years pathfinder AVHRR NDVI data to carry out the case study on the vegetation dynamics in order to further understand the phenomena of 20 years vegetation dynamics of the whole Ningxia region. Ningxia Hui autonomic region is one of provinces in west china. Ningxia is a small region with square area of about 66, 4000 km2. Ningxia has special land cover with irrigated crop land in north and natural grass land in central and south. In addition to NDVI data, we also collected land cover and land use data and administrative border vector data with the scale of 1:4,000,000 and other data. The results show that (1)vegetation dynamic of Ningxia presents the characters of one season per year with the length of the growth season from the first decade May to the middle decade October and the range of NDVI value 0.05-0.25; the season characters vary with the local area; the max value of NDVI in the central dry area is only 0.2 and the date of reaching the peak of time series NDVI in the irrigation area is the latest while that in the south mountain area is the earliest; the Helan mountain area presents the characters of forest and the range of NDVI is narrower than those in the irrigation area and the south mountain area and higher in winter than those in two area above; in recent 18 years, the length of growth season in whole Ningxia has prolonged one decade, mainly in spring one decade in advance.(2) from 1982 to 1999, the trend of the whole Ningxia mean NDVI is increasing and presents the stable or better of vegetation growth; compared to NDVI in 1980's, NDVI in 1990's has increased already and the anomaly of growth season mean NDVI is mainly negative in 1980's while mainly positive in 1990's; NDVI in the central dry area is the lowest while NDVI in the Helan mountain is the highest; the values of NDVI in the irrigation area, the Helan mountain area and the south mountain area are higher than that of the whole Ningxia; the increasing trend of vegetation dynamic in the irrigation area, the south mountain area and the central dry area is similar with the whole Ningxia while the trend in the Helan mountain area is increasing from 1982-1988 but decreasing after 1988.
Thermal conductivity of nanowires
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Chen, Jie
2018-03-01
Not Available Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0406000), the National Natural Science Foundation of China (Grant Nos. 51506153 and 11334007), the Science and Technology Commission of Shanghai Municipality, China (Grant No. 17ZR1448000), and the National Youth 1000 Talents Program in China and the Startup Grant at Tongji University, China.
Fulbright Summer Seminars Abroad Program, 1990. China's Economic Development: Research Essays.
ERIC Educational Resources Information Center
National Committee on United States-China Relations, New York, NY.
This collection of nine research papers concerning aspects of the economy of China were written by U.S. college and university professors who traveled to China as part of the Fulbright Hays Summer Seminars Abroad Program. The papers include: "The Impact of Economic Reforms on the Status of Women in China" (M. Eysenbach); "China's…
ERIC Educational Resources Information Center
National Committee on United States-China Relations, New York, NY.
This collection of curriculum projects is the result of the authors' participation in a Fulbright summer seminar program in China. The following 16 curriculum projects are in the collection: (1) "Banpo Village: A Prehistoric Dig" (Sandra Bailey); (2) "China: Moving into the New Millennium: A Study of China's Past, Present and…
Corridor connecting giant panda habitats from north to south in the Min Mountains, Sichuan, China.
Yin, Kaipu; Xie, Yan; Wu, Ning
2006-12-01
The giant panda faces severe threats from habitat fragmentation and isolation. Currently, giant panda populations have been fragmented into 30 habitat patches. The disappearance of isolated small populations and studies on the genetic diversity of various populations have shown that small isolated panda populations are at a high risk of dying out completely. Habitat fragmentation has seriously impaired the ability of the giant panda to resist climate changes and other natural disasters, such as large-scale, synchronous bamboo blooming. The Min Mountains have the largest population of pandas in China, numbering 581 individuals and accounting for 52% of the total (1114) in China. Geographic isolation means that giant pandas in the Min Mountains are divided into two populations (population A in the north and population B in the south). Population B, which had only 42 individuals in 1989, is severely threatened by high-density human populations and the loss of genetic diversity. However, we have identified an important corridor connecting the two populations. This paper explains the importance and the feasibility of reestablishing this corridor. Due to the special geographic locations of these two populations (two rivers block the migration of giant pandas between south and north), the corridor is the only passage for giant pandas in the region. Recent studies have also shown an increase of giant panda activity in the area of the corridor. However, vegetation in the corridor has been severely degraded. Bamboo forest must be restored in this area to provide food for the pandas during migration. The effects of human activities must be reduced in order to maintain panda habitat. We believe that a restored corridor will be of great benefit to the survival of giant pandas in the Min Mountains, especially for population B. Successful re-establishment of a corridor will be a valuable model for corridor construction in the future.
Li, Yuanyuan; Wen, Hongyu; Chen, Longqian; Yin, Tingting
2014-01-01
The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation. PMID:25502754
[Geographic patterns and ecological factors correlates of snake species richness in China].
Cai, Bo; Huang, Yong; Chen, Yue-Ying; Hu, Jun-Hua; Guo, Xian-Guang; Wang, Yue-Zhao
2012-08-01
Understanding large-scale geographic patterns of species richness as well its underlying mechanisms are among the most significant objectives of macroecology and biogeography. The ecological hypothesis is one of the most accepted explanations of this mechanism. Here, we studied the geographic patterns of snakes and investigated the relationships between species richness and ecological factors in China at a spatial resolution of 100 km×100 km. We obtained the eigenvector-based spatial filters by Principal Coordinates Neighbor Matrices, and then analyzed ecological factors by multiple regression analysis. The results indicated several things: (1) species richness of snakes showed multi-peak patterns along both the latitudinal and longitudinal gradient. The areas of highest richness of snake are tropics and subtropical areas of Oriental realm in China while the areas of lowest richness are Qinghai-Tibet Plateau, the grasslands and deserts in northern China, Yangtze-Huai Plain, Two-lake Plain, and the Poyang-lake Plain; (2) results of multiple regression analysis explained a total of 56.5% variance in snake richness. Among ecological factors used to explore the species richness patterns, we found the best factors were the normalized difference vegetation index, precipitation in the coldest quarter and temperature annual range ; (3) our results indicated that the model based on the significant variables that (P<0.05) uses a combination of precipitation of coldest quarter, normalized difference vegetation index and temperature annual range is the most parsimonious model for explaining the mechanism of snake richness in China. This finding demonstrates that different ecological factors work together to affect the geographic distribution of snakes in China. Studying the mechanisms that underlie these geographic patterns are complex, so we must carefully consider the choice of impact-factors and the influence of human activities.
Xu, L Y; Wang, M Y; Shi, X Z; Yu, Q B; Shi, Y J; Xu, S X; Sun, W X
2018-08-01
The shift from rice-wheat rotation (RWR) to greenhouse vegetable soils has been widely practiced in China. Several studies have discussed the changes in soil properties with land-use changes, but few studies have sought to address the differences in soil pore properties, especially for fields based on long-term organic fertilization under greenhouse vegetable system from RWR fields. This study uses the X-ray computed tomography (CT) scanning and statistical analysis to compare the long-term effects of the conversion of organic greenhouse vegetable fields (over one year, nine years, and fourteen years) from RWR fields on the soil macropore structure as well as the influencing factors from samples obtained in Nanjing, Jiangsu, China, using the surface soil layer and triplicate samples. The results demonstrated that the macropore structure became more complex and stable, with a higher connectivity, fractal dimension (FD) and a lower degree of anisotropy (DA), as the greenhouse vegetable planting time increased. The total topsoil macroporosity increased considerably, but the rate of increase gradually decelerated with time. The transmission pores (round pores ranging from 50 to 500μm) increased with time, but the biopores (>2000μm) clearly decreased after nine years of use as greenhouse vegetable fields. Soil organic matter (OM) has a significant relationship with the soil pore structure characteristics, especially for the transmission pores. In addition, organic fertilization on the topsoil had a short-term effect on the pores, but the effect stabilized and had a weak influence on the pores over longer periods. These results suggested that organic fertilization was conducive for controlling soil degradation regarding it physical quality for water and oxygen availability in the short term. Copyright © 2018 Elsevier B.V. All rights reserved.
Erosion and vegetation restoration impacts on ecosystem carbon dynamics in South China
Tang, X.; Liu, Shuguang; Zhou, G.
2010-01-01
To quantify the consequences of erosion and vegetation restoration on ecosystem C dynamics (a key element in understanding the terrestrial C cycle), field measurements were collected since 1959 at two experimental sites set up on highly disturbed barren land in South China. One site had received vegetation restoration (the restored site) while the other received no planting and remained barren (the barren site). The Erosion-Deposition Carbon Model (EDCM) was used to simulate the ecosystem C dynamics at both sites. The on-site observations in 2007 showed that soil organic C (SOC) storage in the top 80-cm soil layer at the barren site was 50.3 ± 3.5 Mg C ha−1, half that of the restored site. The SOC and surface soil loss by erosion at the restored site from 1959 to 2007 was 3.7 Mg C ha−1 and 2.2 cm, respectively—one-third and one-eighth that of the barren site. The on-site C sequestration in SOC and vegetation at the restored site was 0.67 and 2.5 Mg C ha−1 yr−1, respectively, from 1959 to 2007, driven largely by tree growth and high atmospheric N deposition in the study area. Simulated findings suggested that higher N deposition resulted in higher on-site SOC storage in the soil profile (with SOC in the top 20-cm layer increasing more significantly), and higher on-site ecosystem C sequestration as long as N saturation was not reached. Lacking human-induced vegetation recovery, the barren site remained as barren land from 1959 to 2007 and the on-site C decrease was 0.28 Mg C ha−1 yr−1 Our study clearly indicated that vegetation restoration and burial by soil erosion provide a large potential C sink in terrestrial ecosystems.
Cai, Quan-Ying; Huang, Hui-Juan; Lü, Huixiong; Mo, Ce-Hui; Zhang, Jun; Zeng, Qiao-Yun; Tian, Jun-Jian; Li, Yan-Wen; Wu, Xiao-Lian
2012-07-01
Low molecular-mass nonylphenol ethoxylates (NPEOs) and 4-nonylphenol (NP) are biodegradation products of higher molecular mass NPEOs used as surface active agents, and they are endocrine-disrupting contaminants. In this study, surface soil (0-20 cm) samples and different vegetable samples were collected from 27 representative vegetable farms located in Shenzhen, Dongguan, and Huizhou within the Pearl River Delta region, South China, and NP and nonylphenol monoethoxylate (NP(1)EO) were analyzed using high-performance liquid chromatography with ultraviolet detection. The results show that NP and NP(1)EO were detected in soil and vegetable samples. The concentrations of NP and NP(1)EO in soil samples ranged from nondetectable (ND) to 7.22 μg kg(-1) dry weight (dw) and from ND to 8.24 μg kg(-1) dw, respectively. The average concentrations of both NP and NP(1)EO in soil samples decreased in the following order: Dongguan > Huizhou > Shenzhen. The levels of NP and NP(1)EO in vegetable samples varied from 1.11 to 4.73 μg kg(-1) dw and from 1.32 to 5.33 μg kg(-1) dw, respectively. The greatest levels of both NP and NP(1)EO were observed in water spinach, and the lowest levels of NP and NP(1)EO were recorded in cowpea. The bioconcentration factors (the ratio of contaminant concentration in plant tissue to soil concentration) of NP and NP(1)EO were <1.0 (mean 0.535 and 0.550, respectively). The occurrences of NP and NP(1)EO in this study are compared with other studies, and their potential sources are discussed.
Soil and vegetation carbon turnover times across forest biomes in eastern China
NASA Astrophysics Data System (ADS)
Wang, Jingsong; Niu, Shuli
2017-04-01
1. Resent studies reveal that terrestrial biosphere is now a net carbon (C) sink for atmospheric C dixoide (CO2), however, whether this C sink can persist with climate change is still uncertain. Such uncertainty comes not only from C input, but also largely from C turnover times in an ecosystem. Knowledge of C turnover times is critical for modelling C cycle and evaluating C sink potential. Our current understanding of how long C can be stored in soils and vegetation and what are their controlling factors are still poorly understood. 2. We used C stocks from 1087 plots in soils and 2753 plots in vegetation and investigated the spatial patterns and controlling factors of C turnover times across the forest transect in the eastern China. 3. Our results showed a clear latitudinal pattern of C turnover times, with the lowest turnover times in the low-latitude zones and highest values in the high-latitude. Mean annual temperature (MAT) and mean annual precipitation (MAP) were the most important controlling factors on the soil C turnover times while forest age accounted for the most majority of variations in the vegetation C turnover times. Our findings also indicated that forest origin (planted forest, natural forest) was also responsible for the variations of vegetation C turnover times while forest type and soil properties were not the dominant controlling factors. 4. Our study highlights different dominant controlling factors on the soils and vegetation C turnover times and different mechanisms underlying above- and below-ground C turnover. The findings can help to better understand and reduce the large uncertainty in predictive models of the coupled carbon-climate system.
ERIC Educational Resources Information Center
Sani, Roberto
2010-01-01
Sustained by rich archival and published material, this paper describes the experience of Father Matteo Ricci in China in the perspective of the general evolution of the Church and European Catholicism between the sixteenth and the seventeenth centuries. Father Matteo Ricci's missionary works are re-read in the light of the more complex urgencies…
2012-01-01
significant poverty, it has the advantage of a vast supply of young workers, and its growth is largely market driven as opposed to state managed , as in...China itself is experiencing a similar slowdown. India’s current challenges to curb high inflation, improve its substandard infrastructure, manage ...re pression. During this time, China supplied Myanmar with roughly $1.2 billion in arms and has continued to jointly develop and operate radar and
Ryan C. Atwell; Lisa A. Schulte; Lynne M. Westphal
2009-01-01
In the last 200 yr, more than 80% of the land in the U.S. Corn Belt agro-ecosystem has been converted from natural perennial vegetation to intensive agricultural production of row crops. Despite research showing how re-integration of perennial vegetation, e.g., cover crops, pasture, riparian buffers, and restored wetlands, at strategic landscape positions can bolster...
Lei, Huang; Zhishan, Zhang
2015-01-01
The below-ground CO2 concentration in some crusted soils or flooded fields is usually ten or hundred times larger than the normal levels. Recently, a large number of studies have focused on elevated CO2 in the atmosphere; however, only few have examined the influence of elevated root zone CO2 on plant growth and vegetation succession. In the present study, a closed-air CO2 enrichment (CACE) system was designed to simulate elevated CO2 concentrations in the root zones. The physio-ecological characteristics of two typical xerophytic shrubs C. korshinskii and A. ordosica in re-vegetated desert areas were investigated at different soil CO2 concentrations from March 2011 to October 2013. Results showed that plant growth, phenophase, photosynthetic rate, stomatal conductance, transpiration rate, and water use efficiency for the two xerophytic shrubs were all increased at first and then decreased with increasing soil CO2 concentrations, and the optimal soil CO2 concentration thresholds for C. korshinskii and A. ordosica were 0.554 and 0.317%, respectively. And A. ordosica was more tolerate to root zone CO2 variation when compared with C. korshinskii, possible reasons and vegetation succession were also discussed.
Yue, Yuemin; Wang, Kelin; Zhang, Bing; Chen, Zhengchao; Jiao, Quanjun; Liu, Bo; Chen, Hongsong
2010-01-01
Remote sensing of local environmental conditions is not accessible if substrates are covered with vegetation. This study explored the relationship between vegetation spectra and karst eco-geo-environmental conditions. Hyperspectral remote sensing techniques showed that there were significant differences between spectral features of vegetation mainly distributed in karst and non-karst regions, and combination of 1,300- to 2,500-nm reflectance and 400- to 680-nm first-derivative spectra could delineate karst and non-karst vegetation groups. Canonical correspondence analysis (CCA) successfully assessed to what extent the variation of vegetation spectral features can be explained by associated eco-geo-environmental variables, and it was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst region. Our study indicates that vegetation spectra is tightly linked to eco-geo-environmental conditions and CCA is an effective means of studying the relationship between vegetation spectral features and eco-geo-environmental variables. Employing a combination of spectral and spatial analysis, it is anticipated that hyperspectral imagery can be used in interpreting or mapping eco-geo-environmental conditions covered with vegetation in karst region.
NASA Astrophysics Data System (ADS)
Dong, L.; Jiang, H.; Yang, L.
2018-04-01
Based on the Landsat images in 2006, 2011 and 2015, and the method of dimidiate pixel model, the Normalized Difference Vegetation Index (NDVI) and the vegetation coverage, this paper analyzes the spatio-temporal variation of vegetation coverage in Changchun, China from 2006 to 2015, and investigates the response of vegetation coverage change to natural and artificial factors. The research results show that in nearly 10 years, the vegetation coverage in Changchun dropped remarkably, and reached the minimum in 2011. Moreover, the decrease of maximum NDVI was significant, with a decrease of about 27.43 %, from 2006 to 2015. The vegetation coverage change in different regions of the research area was significantly different. Among them, the vegetation change in Changchun showed a little drop, and it decreased firstly and then increased slowly in Yushu, Nong'an and Dehui. In addition, the temperature and precipitation change, land reclamation all affect the vegetation coverage. In short, the study of vegetation coverage change contributes scientific and technical support to government and environmental protection department, so as to promote the coordinated development of ecology and economy.
NASA Astrophysics Data System (ADS)
Baranova, Alina; Schickhoff, Udo; Shunli, Wang; Ming, Jin
2015-04-01
Qilian Mountains are the water source region for the low arid reaches of HeiHe river basin (Gansu province, NW China). Due to overstocking and overgrazing during the last decades adverse ecological ef¬fects, in particular on soil properties and hydrological cycle, are to be expected in growing land areas. Vegetation cover is very important to prevent erosion process and to sustain stable subsurface runoff and ground water flow. The aim of this research is to identify plant communities, detecting grazing-induced and spatially differentiated changes in vegetation patterns, and to evaluate status of pasture land degradation.The study area is located in the spring/autumn pasture area of South Qilian Mountains between 2600-3600 m a.s.l., covering five main vegetation types: spruce forest, alpine shrubland, shrubby grassland, mountain grassland, degraded mountain grassland. In order to analyze gradual changes in vegetation patterns along altitudinal and grazing gradients and to classify related plant communities, quantitative and qualitative relevé data were collected (coverage, species composition, abundance of unpalatable plants, plant functional types, etc.). Vegetation was classified using hierarchical cluster analyses. Indirect Detrended Correspondence Analysis (DCA) was used to analyze variation in relationships between vegetation, environmental factors, and grazing impact. According to DCA results, distribution of the plant communities was strongly affected by altitude and exposition. Grassland floristic gradients showed greater dependence on grazing impact, which correlated contrarily with soil organic content, soil moisture and pH. Highest numbers of species richness and alpha diversity were detected in alpine shrubland vegetation type. Comparing the monitoring data for the recent nine years, a trend of deterioration, species successions and shift in dominant species becomes obvious. Species indicating degrading site environmental conditions were identified. Most of the grasslands have become secondary vegetation, with a considerable percentage of unpalatable, toxic and often thorny or spiny shrub and herb species that have a lower grazing value and rarely form a closed vegetation cover, at least in loess slopes. To prevent further degradation of the grassland and to sustain the diversity of the plant species (affecting the carrying capacity pastureland) appropriate pasture management strategy should be implemented.
A new species of Nassarius (Gastropoda: Nassariidae) from the western Pacific Ocean
NASA Astrophysics Data System (ADS)
Zhang, Suping
2013-03-01
This paper describes a new species of Nassarius from the South China Sea, which was recognized when re-sorting the collection of Nassariidae in the Marine Biological Museum, Chinese Academy of Sciences, Qingdao, China. The shells were collected during several investigations, including the National Comprehensive Oceanic Survey in 1958-1959, and the China-Vietnam Co-Investigation on Marine Resource of the Beibu Gulf during 1959-1962. The morphology of the shell and the radula places the new species of Nassarius within the subgenus Zeuxis. It is named Nassarius ( Zeuxis) nanhaiensis sp. nov.
78 FR 57099 - Avocados Grown in South Florida; Increased Assessment Rate
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-17
... and Agreement Division, Fruit and Vegetable Program, AMS, USDA, 1400 Independence Avenue SW., STOP... Agreement Division, Fruit and Vegetable Program, AMS, USDA; Telephone: (863) 324-3375, Fax: (863) 325-8793... Division, Fruit and Vegetable Program, AMS, USDA, 1400 Independence Avenue SW., STOP 0237, Washington, DC...
NASA Astrophysics Data System (ADS)
Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Lai, Jian-Qing; Zhao, Kui-Dong; Yang, Tao
2016-11-01
The Gutian porphyry Cu-Mo deposit is a newly proved porphyry copper deposit in the coastal South China associated with granodioritic porphyries. In this study, zircon U-Pb ages and Hf isotope data, as well as geochemical and Sr-Nd-Pb-Re-Os isotopic compositions, are reported for these intrusions and minerals. Both zircon U-Pb and molybdenite Re-Os dating suggest that the Gutian granodiorite porphyries and related mineralization formed at 160 Ma. The Gutian granodiorites show a low-Mg adakitic geochemical affinity, with relatively high K2O but low Cr and Ni contents. These rocks have initial (87Sr/86Sr)i ratios of 0.7085 to 0.7097, negative εNd(t) values (- 12.5 to - 7.8), (206Pb/204Pb)t ratios of 18.048 to 18.241, (207Pb/204Pb)t ratios of 15.609 to 15.628, and (208Pb/204Pb)t ratios of 38.494 to 38.667. Zircons from the granodiorites have negative εHf(t) values of - 15.7 to - 8.5, which are close to those of Cathaysia crust-derived melts. Geochemical and Sr-Nd-Pb-Hf isotopic compositions suggest that they may be derived from Late Jurassic thickened juvenile lower crust. These lower crustal magma sources may not only contain pre-Proterozoic basement rocks, but also involve Triassic and Middle-Late Jurassic arc magmas within the lower crust, which were likely derived from an enriched mantle source associated with paleo-Pacific Plate subduction from the Middle to Late Jurassic. The Gutian ore-related granodiorites represent a new example for significant contributions of ancient subduction melts and enriched mantle-derived sources for porphyry-type magmatism and Cu-Mo mineralization, which occurred in response to an arc regime during the Middle to Late Jurassic in South China. Supplemental Table S2. Hf isotopic compositions of zircons from the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S3. Statistics for zircon U-Pb ages and Hf isotope compositions from Gutian granodiorites in South China Supplemental Table S4. Major element (wt.%) and trace element (ppm) concentrations of Gutian intrusions in Fujian Province, South China. Supplemental Table S5. Sr and Nd isotopic compositions of the studied rocks from the Gutian porphyry deposit in Fujian Province, South China. Supplemental Table S6. Pb isotopic compositions of the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S7. Re-Os isotopic compositions of molybdenite from the Gutian porphyry deposit in South China.
Multiple organ embolization with vegetation on an elephant trunk graft.
Tashiro, Miwa; Yamamoto, Masaki; Nishimori, Hideaki; Fukutomi, Takashi; Handa, Takemi; Kondo, Nobuo; Orihashi, Kazumasa
2017-01-01
We encountered a rare case of infection in a vascular graft created using the elephant trunk technique. A 65-year-old woman who underwent total arch replacement with the elephant trunk technique was re-admitted with fever. She developed embolization of multiple organs from vegetation attached to the elephant trunk graft which was elucidated by transesophageal echocardiography. Surgery for ruptured jejunal artery aneurysm was performed, and the graft infection healed after long-term antibiotic therapy with the prosthesis left in situ. Graft infection may generate vegetations on an elephant trunk graft. Transesophageal echocardiography is a helpful tool for accurate diagnosis.
Comparison modeling for alpine vegetation distribution in an arid area.
Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun
2016-07-01
Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.
Liu, Qiyong; Xu, Wenbo; Lu, Shan; Jiang, Jiafu; Zhou, Jieping; Shao, Zhujun; Liu, Xiaobo; Xu, Lei; Xiong, Yanwen; Zheng, Han; Jin, Sun; Jiang, Hai; Cao, Wuchun; Xu, Jianguo
2018-02-01
For the past several decades, the infectious disease profile in China has been shifting with rapid developments in social and economic aspects, environment, quality of food, water, housing, and public health infrastructure. Notably, 5 notifiable infectious diseases have been almost eradicated, and the incidence of 18 additional notifiable infectious diseases has been significantly reduced. Unexpectedly, the incidence of over 10 notifiable infectious diseases, including HIV, brucellosis, syphilis, and dengue fever, has been increasing. Nevertheless, frequent infectious disease outbreaks/events have been reported almost every year, and imported infectious diseases have increased since 2015. New pathogens and over 100 new genotypes or serotypes of known pathogens have been identified. Some infectious diseases seem to be exacerbated by various factors, including rapid urbanization, large numbers of migrant workers, changes in climate, ecology, and policies, such as returning farmland to forests. This review summarizes the current experiences and lessons from China in managing emerging and re-emerging infectious diseases, especially the effects of ecology, climate, and behavior, which should have merits in helping other countries to control and prevent infectious diseases.
Infectious Diseases, Urbanization and Climate Change: Challenges in Future China
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2015-01-01
China is one of the largest countries in the world with nearly 20% of the world’s population. There have been significant improvements in economy, education and technology over the last three decades. Due to substantial investments from all levels of government, the public health system in China has been improved since the 2003 severe acute respiratory syndrome (SARS) outbreak. However, infectious diseases still remain a major population health issue and this may be exacerbated by rapid urbanization and unprecedented impacts of climate change. This commentary aims to explore China’s current capacity to manage infectious diseases which impair population health. It discusses the existing disease surveillance system and underscores the critical importance of strengthening the system. It also explores how the growing migrant population, dramatic changes in the natural landscape following rapid urbanization, and changing climatic conditions can contribute to the emergence and re-emergence of infectious disease. Continuing research on infectious diseases, urbanization and climate change may inform the country’s capacity to deal with emerging and re-emerging infectious diseases in the future. PMID:26371017
Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo
2018-02-01
Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.
Qiutong, Xu; Mingkui, Zhang
2017-08-01
Vegetable production in China is suffering increasingly heavy metal damages from various pollution sources including agricultural, industrial and other activities. It is of practical significance to understand the effects of human activities on the accumulation and exchangeability of soil heavy metals in vegetable fields. In this study, seventy-two arable layer samples of vegetable soils were collected from the Shaoxing coastal plain, a representative region of the coastal plain of eastern Zhejiang province, China for characterizing the effects of fertilization methods on accumulation and exchangeable heavy metals in soils (Exchangeable heavy metals in the soil samples were extracted by 0.01molL -1 CaCl 2 ). The different origins of heavy metals in the vegetable soils were investigated by multivariate statistical techniques, including principal component analysis (PCA) and cluster analysis (CA). Marked increases were noted for soil heavy metals due to long-term manure or chemical fertilizer application. Three significant components were extracted by PCA, explaining 78.86% of total variance. Mn, Co, Ni, Fe, and Al were associated in lithogenic components, while an anthropogenic origin was identified for Cu, Cr, Pb, Zn, Cd, Hg. However, As level was due to the geochemical background and was not linked to soil management. The results obtained by cluster analysis elucidated individual relationships between metals and agreed with PCA. Cu, Cr, Pb, and Zn in the soils that were mainly associated with the application of chemical fertilizers, organic manures or other activities regarding soil management. Although the origin of Cd, Hg, and As was also attributed to soil management, other sources like vehicle exhaust or aerial depositions were not discarded as possible contributors. Soil amended with organic fertilizer contained more Cu, Pb, Zn and Cr; whereas the soil amended with chemical fertilizer had more Cd. Application of fertilizers also had significant effect on the concentrations of exchangeable heavy metals. Higher mean concentrations of exchangeable Cd and Pb were found in the soils amended with chemical fertilizers, while those of exchangeable Cu and Zn were found in the soils amended with organic fertilizers. Copyright © 2017 Elsevier Inc. All rights reserved.
Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes.
Andersen, Mikkel R; Kragh, Theis; Sand-Jensen, Kaj
2017-09-13
A common perception in limnology is that shallow lakes are homogeneously mixed owing to their small water volume. However, this perception is largely gained by downscaling knowledge from large lakes to their smaller counterparts. Here we show that shallow vegetated lakes (less than 0.6 m), in fact, undergo recurring daytime stratification and nocturnal mixing accompanied by extreme chemical variations during summer. Dense submerged vegetation effectively attenuates light and turbulence generating separation between warm surface waters and much colder bottom waters. Photosynthesis in surface waters produces oxygen accumulation and CO 2 depletion, whereas respiration in dark bottom waters causes anoxia and CO 2 accumulation. High daytime pH in surface waters promotes precipitation of CaCO 3 which is re-dissolved in bottom waters. Nocturnal convective mixing re-introduces oxygen into bottom waters for aerobic respiration and regenerated inorganic carbon into surface waters, which supports intense photosynthesis. Our results reconfigure the basic understanding of local environmental gradients in shallow lakes, one of the most abundant freshwater habitats globally. © 2017 The Author(s).
Spurgeon, Dale W
2016-04-01
Eradication programs for the boll weevil (Anthonomus grandis grandis Boheman) rely on pheromone-baited traps to trigger insecticide treatments and monitor program progress. A key objective of monitoring in these programs is the timely detection of incipient weevil populations to limit or prevent re-infestation. Therefore, improvements in the effectiveness of trapping would enhance efforts to achieve and maintain eradication. Association of pheromone traps with woodlots and other prominent vegetation are reported to increase captures of weevils, but the spatial scale over which this effect occurs is unknown. The influences of trap distance (0, 10, and 20 m) and orientation (leeward or windward) to brush lines on boll weevil captures were examined during three noncropping seasons (October to February) in the Rio Grande Valley of Texas. Differences in numbers of captured weevils and in the probability of capture between traps at 10 or 20 m from brush, although often statistically significant, were generally small and variable. Variations in boll weevil population levels, wind directions, and wind speeds apparently contributed to this variability. In contrast, traps closely associated with brush (0 m) generally captured larger numbers of weevils, and offered a higher probability of weevil capture compared with traps away from brush. These increases in the probability of weevil capture were as high as 30%. Such increases in the ability of traps to detect low-level boll weevil populations indicate trap placement with respect to prominent vegetation is an important consideration in maximizing the effectiveness of trap-based monitoring for the boll weevil.
Controllable Fabrication of GeSi Nanowires in Diameter of About 10 nm Using the Top-Down Approach
NASA Astrophysics Data System (ADS)
Zeng, Cheng; Li, Yi; Xia, Jin-Song
2017-11-01
Not Available Supported by the State Key Program of the National Natural Science Foundation of China under Grant No 61335002, the National High Technology Research and Development Program of China under Grant No 2015AA016904, the National Natural Science Foundation of China under Grant No 11574102, and the National Basic Research Program of China under Grant Nos 2013CB933303 and 2013CB632104.
Chuai, Xiaowei; Huang, Xianjin; Lu, Qinli; Zhang, Mei; Zhao, Rongqin; Lu, Junyu
2015-11-03
China is undergoing rapid urbanization, enlarging the construction industry, greatly expanding built-up land, and generating substantial carbon emissions. We calculated both the direct and indirect carbon emissions from energy consumption (anthropogenic emissions) in the construction sector and analyzed built-up land expansion and carbon storage losses from the terrestrial ecosystem. According to our study, the total anthropogenic carbon emissions from the construction sector increased from 3,905×10(4) to 103,721.17×10(4) t from 1995 to 2010, representing 27.87%-34.31% of the total carbon emissions from energy consumption in China. Indirect carbon emissions from other industrial sectors induced by the construction sector represented approximately 97% of the total anthropogenic carbon emissions of the sector. These emissions were mainly concentrated in seven upstream industry sectors. Based on our assumptions, built-up land expansion caused 3704.84×10(4) t of carbon storage loss from vegetation between 1995 and 2010. Cropland was the main built-up land expansion type across all regions. The study shows great regional differences. Coastal regions showed dramatic built-up land expansion, greater carbon storage losses from vegetation, and greater anthropogenic carbon emissions. These regional differences were the most obvious in East China followed by Midsouth China. These regions are under pressure for strong carbon emissions reduction.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Cao, Xiaoming; Gao, Wei
2013-03-01
This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, temporal and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.
Zheng, Hao; Gao, Jixi; Teng, Yanguo; Feng, Chaoyang; Tian, Meirong
2015-01-01
Drought and shortages of soil water are becoming extremely severe due to global climate change. A better understanding of the relationship between vegetation type and soil-moisture conditions is crucial for conserving soil water in forests and for maintaining a favorable hydrological balance in semiarid areas, such as the Saihanwula National Nature Reserve in Inner Mongolia, China. We investigated the temporal dynamics of soil moisture in this reserve to a depth of 40 cm under three types of vegetation during a period of rainwater recharge. Rainwater from most rainfalls recharged the soil water poorly below 40 cm, and the rainfall threshold for increasing the moisture content of surface soil for the three vegetations was in the order: artificial Larix spp. (AL) > Quercus mongolica (QM) > unused grassland (UG). QM had the highest mean soil moisture content (21.13%) during the monitoring period, followed by UG (16.52%) and AL (14.55%); and the lowest coefficient of variation (CV 9.6-12.5%), followed by UG (CV 10.9-18.7%) and AL (CV 13.9-21.0%). QM soil had a higher nutrient content and higher soil porosities, which were likely responsible for the higher ability of this cover to retain soil water. The relatively smaller QM trees were able to maintain soil moisture better in the study area. PMID:25781333
Diversity of Cronobacter spp. isolates from the vegetables in the middle-east coastline of China.
Chen, Wanyi; Yang, Jielin; You, Chunping; Liu, Zhenmin
2016-06-01
Cronobacter spp. has caused life-threatening neonatal infections mainly resulted from consumption of contaminated powdered infant formula. A total of 102 vegetable samples from retail markets were evaluated for the presence of Cronobacter spp. Thirty-five presumptive Cronobacter isolates were isolated and identified using API 20E and 16S rDNA sequencing analyses. All isolates and type strains were characterized using enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), and genetic profiles of cluster analysis from this molecular typing test clearly showed that there were differences among isolates from different vegetables. A polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) based on the amplification of the gyrB gene (1258 bp) was developed to differentiate among Cronobacter species. A new PCR-RFLP assay based on the amplification of the gyrB gene using Alu I and Hinf I endonuclease combination is established and it has been confirmed an accurate and rapid subtyping method to differentiate Cronobacter species. Sequence analysis of the gyrB gene was proven to be suitable for the phylogenetic analysis of the Cronobacter strains, which has much better resolution based on SNPs in the identification of Cronobacter species specificity than PCR-RFLP and ERIC-PCR. Our study further confirmed that vegetables are one of the most common habitats or sources of Cronobacter spp. contamination in the middle-east coastline of China.
... Caregiver Stories Connections e-Newsletter Research Registry FCA+(plus) Services Press Media Kit What’s New FCA Blog ... person plenty of water and fruit or vegetable juice even if they say they’re not thirsty. ...