Science.gov

Sample records for chinese bellflower root

  1. Chinese bellflower root anaphylaxis: IgE-binding components and cross-reactivity with mugwort and birch.

    PubMed

    Kim, Sae-Hoon; Lee, Sang-Min; Park, Heung-Woo; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok

    2009-09-01

    A 56-year-old man who had suffered from seasonal rhinitis in spring and autumn experienced recurrent generalized urticaria and an oral burning sensation after eating several cooked herbs for 3 months. A skin-prick test showed positive responses to various pollens, celery, Chinese bellflower, and arrowroot. The Chinese bellflower-specific IgE ELISA OD value was 1.547. Oral challenge with unprocessed raw Chinese bellflower root provoked oral burning sensation, eyelid swelling, generalized urticaria, and hypotension. In an ELISA inhibition test, IgE binding to Chinese bellflower was significantly inhibited by Chinese bellflower, mugwort, and birch pollen extract. SDS-PAGE and immunoblot assay revealed nine IgE-binding components, and common protein bands were detected in the range of 40~55 kDa (Chinese bellflower-mugwort-birch) and 14 kDa (Chinese bellflower-birch). Chinese bellflower root can cause anaphylaxis and may have cross-reactivity with mugwort and birch. PMID:19721867

  2. Chinese bellflower root anaphylaxis: IgE-binding components and cross-reactivity with mugwort and birch.

    PubMed

    Kim, Sae-Hoon; Lee, Sang-Min; Park, Heung-Woo; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok

    2009-09-01

    A 56-year-old man who had suffered from seasonal rhinitis in spring and autumn experienced recurrent generalized urticaria and an oral burning sensation after eating several cooked herbs for 3 months. A skin-prick test showed positive responses to various pollens, celery, Chinese bellflower, and arrowroot. The Chinese bellflower-specific IgE ELISA OD value was 1.547. Oral challenge with unprocessed raw Chinese bellflower root provoked oral burning sensation, eyelid swelling, generalized urticaria, and hypotension. In an ELISA inhibition test, IgE binding to Chinese bellflower was significantly inhibited by Chinese bellflower, mugwort, and birch pollen extract. SDS-PAGE and immunoblot assay revealed nine IgE-binding components, and common protein bands were detected in the range of 40~55 kDa (Chinese bellflower-mugwort-birch) and 14 kDa (Chinese bellflower-birch). Chinese bellflower root can cause anaphylaxis and may have cross-reactivity with mugwort and birch.

  3. Dynamics of fine roots in five Chinese temperate forests.

    PubMed

    Quan, Xiankuai; Wang, Chuankuan; Zhang, Quanzhi; Wang, Xingchang; Luo, Yiqi; Bond-Lamberty, Ben

    2010-07-01

    We used a minirhizotron method to investigate spatial and temporal dynamics of fine roots (diameter < or =2 mm) in five Chinese temperate forests: Mongolian oak forest, aspen-birch forest, hardwood forest, Korean pine plantation and Dahurian larch plantation. Fine root dynamics were significantly influenced by forest type, soil layer, and sampling time. The grand mean values varied from 1.99 to 3.21 mm cm(-2) (root length per minirhizotron viewing area) for the fine root standing crop; from 6.7 to 11.6 microm cm(-2) day(-1) for the production; and from 3.2 to 6.1 microm cm(-2) day(-1) for the mortality. All forests had a similar seasonal "sinusoidal" pattern of standing crop, and a "unimodal" pattern of production. However, the seasonal dynamics of the mortality were largely unsynchronized with those of the production. The minimum values of standing crop, production and mortality occurred in March for all forests, whereas the maximum values and occurrence time differed among forest types. The standing crop, production and mortality tended to decrease with soil depth. The different spatiotemporal patterns of fine roots among the forests highlight the need for forest-specific measurements and modeling of fine root dynamics and forest carbon allocation. PMID:20217175

  4. Dynamics of fine roots in five Chinese temperate forests

    SciTech Connect

    Quan, Xiankuai; Wang, Chuankuan; Zhang, Q.; Wang, X.; Luo, Y.; Bond-Lamberty, Benjamin

    2010-07-01

    Quantifying fine root production and mortality is crucially needed for modeling forest ecosystem carbon cycling, but the fine root dynamics are poorly understood in Chinese temperate forests. We used a minirhizotron method to investigate spatial and temporal dynamics of fine roots (diameter ≤ 2 mm) in five representative temperate forests in northeastern China. Our specific objectives were to: (1) compare standing crop, production and mortality of fine roots among the five stands; (2) examine fine root phenology for the stands; and (3) examine vertical distribution patterns of fine roots for the stands. Fine root dynamics were significantly affected by forest type, soil layer, sampling time and their interactions. The mean values of fine root standing crop varied from 8.0 to 12.8 mm cm-2; those of production varied from 0.027 to 0.046 mm cm-2 d-1; and those of mortality varied from 0.013 to 0.024 mm cm-2 d-1. All stands had a similar seasonal “sinusoidal” pattern of fine root standing crop, and a “unimodal” pattern of production. However, the seasonal dynamics of the mortality was unsynchronized with that of the production. The minimum values of standing crop, production and mortality occurred in March for all stands, while the maximum values and occurring time differed among forest types. The occurrence of the maximum standing crop varied from DOY (day of year) 222 for the oak stand to DOY 271 for the aspen-birch stand; that of the maximum production varied from DOY 188 for the pine and hardwood stands to DOY 239 for the larch stand; and that of the maximum mortality varied from DOY 222 for the oak and aspen-birch stands to DOY 287 for the larch stand. The standing crop, production and mortality of fine roots tended to decrease with soil depths, of which the relative contribution at 0 -10 cm depth averaged 38%, 46%, and 58% of total, respectively. The fact that the production was approximate twice as great as the mortality suggested a net carbon input to

  5. Phenol removal by peroxidases extracted from Chinese cabbage root

    SciTech Connect

    Rhee, H.I.; Jeong, Y.H.

    1995-12-31

    More than four million tons of Chinese cabbages are produced in Korea. Most of them are used as raw materials for Kimchi, but root parts of them are discarded as agricultural wastes. A trial for the application of agricultural waste to industrial waste water treatment was made as an effort to the efficient use of natural resources and to reduce water pollution problem simultaneously. Peroxidases of both solid and liquid phases were obtained from Chinese cabbage roots by using commercial juicer. The differences in peroxidase activity among the various cultivars of Chinese cabbages in Korea were little and electrophoretic patterns of various peroxidases will be discussed. The optimum pH and temperature for enzyme activity will be discussed also. Since peroxidases are distributed into 66% in liquid (juice) and 34% in solid phase (pulp), enzymes from both phases were applied to investigate the enzymatic removal of phenol from waste water. After phenol solution at 150 ppm being reacted with liquid phase enzyme (1,800 unit/1) for 3 hours in a batch stirred reactor, 96% of phenol could be removed through polymerization and precipitation. Also, phenol could be removed from initial 120 ppm to final 5 ppm by applying solid phase enzyme in an air lift reactor (600 unit/1). Almost equivalent efficiencies of phenol removal were observed between two systems, even though only one third of the enzymes in batch stirred reactor was applied in air lift reactor. The possible reason for this phenomenon is because peroxidases exist as immobilized forms in solid phase.

  6. [Effects of Chinese onion' s root exudates on cucumber seedlings growth and rhizosphere soil microorganisms].

    PubMed

    Yang, Yang; Liu, Shou-wei; Pan, Kai; Wu, Feng-zhi

    2013-04-01

    Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06). The root exudates of the Chinese onion cultivars also increased the bacterial community diversity in rhizosphere soil. The cloning and sequencing results indicated that the differential bacteria bands were affiliated with Actinobacteria, Proteobacteria, and Anaerolineaceae, and Anaerolineaceae only occurred in the rhizosphere soil in the treatment of high allelopathy potential Chinese onion (L-06). It was suggested that high concentration (10 mL per plant) of root exudates from high allelopathy potential Chinese onion (L-06) could benefit the increase of bacterial community diversity in cucumber seedlings rhizosphere soil.

  7. [Effects of Chinese onion' s root exudates on cucumber seedlings growth and rhizosphere soil microorganisms].

    PubMed

    Yang, Yang; Liu, Shou-wei; Pan, Kai; Wu, Feng-zhi

    2013-04-01

    Taking the Chinese onion cultivars with different allelopathy potentials as the donor and cucumber as the accepter, this paper studied the effects of Chinese onion' s root exudates on the seedlings growth of cucumber and the culturable microbial number and bacterial community structure in the seedlings rhizosphere soil. The root exudates of the Chinese onion cultivars could promote the growth of cucumber seedlings, and the stimulatory effect increased with the increasing concentration of the root exudates. However, at the same concentrations of root exudates, the stimulatory effect had no significant differences between the Chinese onion cultivars with strong and weak allelopathy potential. The root exudates of the Chinese onion cultivars increased the individual numbers of bacteria and actinomyces but decreased those of fungi and Fusarium in rhizosphere soil, being more significant for the Chinese onion cultivar with high allelopathy potential (L-06). The root exudates of the Chinese onion cultivars also increased the bacterial community diversity in rhizosphere soil. The cloning and sequencing results indicated that the differential bacteria bands were affiliated with Actinobacteria, Proteobacteria, and Anaerolineaceae, and Anaerolineaceae only occurred in the rhizosphere soil in the treatment of high allelopathy potential Chinese onion (L-06). It was suggested that high concentration (10 mL per plant) of root exudates from high allelopathy potential Chinese onion (L-06) could benefit the increase of bacterial community diversity in cucumber seedlings rhizosphere soil. PMID:23898672

  8. Temporal-spatially transformed synthesis and formation mechanism of gold bellflowers.

    PubMed

    Lin, Jing; Zhang, Molly G; Tang, Yuxia; Wen, Bronte; Hu, Hao; Song, Jibing; Liu, Yijing; Huang, Peng; Chen, Xiaoyuan

    2016-04-14

    Anisotropic gold nanostructures with unique plasmonic properties, specifically the strong absorption of light in the near-infrared region (650-900 nm) due to the excitation of plasmon oscillations, have been widely employed as photothermal conversion agents (PTCAs) for cancer photothermal therapy (PTT). However, the reported PTCAs show suboptimal photothermal conversion efficiency (η), even gold nanocages (η = 63%), which limits their biomedical applications. Herein, we fabricated gold bellflowers (GBFs) with an ultrahigh photothermal conversion efficiency (η = 74%) via a novel liquid/liquid/gas triphasic interface system, using chloroauric acid as a gold source, and o-phenetidine as a reducing agent. The well-defined GBFs with multiple-branched petals show adjustable localized surface plasmon resonance (LSPR) from 760 to 1100 nm by tuning the petal length and circular bottom diameter. Originating from the monophasic and biphasic systems used in the creation of gold nanourchins (GNUs) and gold microspheres (GMPs) respectively, the triphasic interface system successfully produced GBFs. The possible formation mechanisms of GNUs, GMPs, and GBFs in the different systems were also investigated and discussed. We found that the formation mechanism of GNUs and GBFs followed classical crystallization, while the formation of GMPs followed non-classical crystallization.

  9. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    PubMed

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.

  10. Temporal-spatially transformed synthesis and formation mechanism of gold bellflowers

    PubMed Central

    Lin, Jing; Zhang, Molly G.; Tang, Yuxia; Wen, Bronte; Hu, Hao; Song, Jibing; Liu, Yijing; Huang, Peng; Chen, Xiaoyuan

    2015-01-01

    Anisotropic gold nanostructures with unique plasmonic properties, specifically the strong absorption of light in near-infrared region (650∼900 nm) due to the excitation of plasmon oscillations, have been widely employed as photothermal conversion agents (PTCAs) for cancer photothermal therapy (PTT). However, the reported PTCAs bear suboptimal photothermal conversion efficiency (η), even gold nanocage (η = 63%), which limits their biomedical applications. Herein, we fabricated gold bellflowers (GBFs) with ultrahigh photothermal conversion efficiency (η = 74%) via a novel liquid/liquid/gas triphasic interface system, using chloroauric acid as a gold source, and o-phenetidine as a reducing agent. The well-defined GBFs with multiple-branched petals show adjustable localized surface plasmon resonance (LSPR) from 760 to 1100 nm by tuning the petal length and circular bottom diameter. Originating from the monophasic and biphasic systems used in the creation of gold nanourchins (GNUs) and gold microspheres (GMPs) respectively, the triphasic interface system successfully produced GBFs. The possible formation mechanisms of GNUs, GMPs, and GBFs in the different systems were also investigated and discussed. We found the formation mechanism of GNUs and GBFs followed classical crystallization, while the formation of GMPs followed non-classical crystallization. PMID:26525291

  11. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    PubMed

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity. PMID:26990796

  12. Triphase interface synthesis of plasmonic gold bellflowers as near-infrared light mediated acoustic and thermal theranostics.

    PubMed

    Huang, Peng; Rong, Pengfei; Lin, Jing; Li, Wanwan; Yan, Xuefeng; Zhang, Molly Gu; Nie, Liming; Niu, Gang; Lu, Jie; Wang, Wei; Chen, Xiaoyuan

    2014-06-11

    We present a novel gold bellflower (GBF) platform with multiple-branched petals, prepared by a liquid-liquid-gas triphase interface system, for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Upon near-infrared (NIR) laser irradiation, the GBFs, with strong NIR absorption, showed very strong PA response and an ultrahigh photothermal conversion efficiency (η, ∼74%) among the reported photothermal conversion agents. The excellent performance in PAI and PTT is mainly attributed to the unique features of the GBFs: (i) multiple-branched petals with an enhanced local electromagnetic field, (ii) long narrow gaps between adjacent petals that induce a strong plasmonic coupling effect, and (iii) a bell-shaped nanostructure that can effectively amplify the acoustic signals during the acoustic propagation. Besides the notable PTT and an excellent PAI effect, the NIR-absorbing GBFs may also find applications in NIR light-triggered drug delivery, catalysis, surface enhanced Raman scattering, stealth, antireflection, IR sensors, telecommunications, and the like.

  13. Estrogenic activities of extracts of Chinese licorice (Glycyrrhiza uralensis) root in MCF-7 breast cancer cells.

    PubMed

    Hu, Chunyan; Liu, Huaqing; Du, Juan; Mo, Baoqing; Qi, Hong; Wang, Xinru; Ye, Shengai; Li, Zhong

    2009-02-01

    Despite the wide use of Chinese licorice root (Glycyrrhiza uralensis) for the treatment of menopausal complaints, little is known on its potential estrogenic properties, and available information relative to its effects on cell proliferation is contradictory. In this study, the estrogenic properties of licorice root were evaluated in vitro by use of several assays. The effects of increasing concentrations of a DMSO extract of licorice root on the growth of MCF-7 breast cancer cells were biphasic. The extract showed an ER-dependent growth-promoting effect at low concentrations and an ER-independent anti-proliferative activity at high concentrations. In further experiments, licorice root was sequentially extracted to yield four fractions: hexane, EtOAc, methanol and H(2)O. Only the EtOAc extract had effects on cell proliferation similar to the DMSO extract. The hexane extract had no effect on cell growth. In contrast, the methanol and water extracts showed an ER-independent, growth-promoting effect. Similar to its effects on cell proliferation, the EtOAc extract had a biphasic effect on S phase cell cycle distribution and the level of PCNA protein. This extract-induced transactivation of endogenous ERalpha in MCF-7 cells, supported by inducing down-regulation of ERalpha protein and mRNA levels, and up-regulation of ERalpha target genes pS2 and GREB1. These results suggest that the activity of licorice root and the balance between increased risk for cancer and prevention of estrogen-dependent breast cancer may depend on the amount of dietary intake.

  14. Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress

    PubMed Central

    Ma, Zhihui; Huang, Binlong; Xu, Shanshan; Chen, Yu; Cao, Guangqiu; Ding, Guochang; Lin, Sizu

    2016-01-01

    Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+. PMID:27270726

  15. Ion Flux in Roots of Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) under Aluminum Stress.

    PubMed

    Ma, Zhihui; Huang, Binlong; Xu, Shanshan; Chen, Yu; Cao, Guangqiu; Ding, Guochang; Lin, Sizu

    2016-01-01

    Chinese fir is a tall, fast-growing species that is unique to southern China. In Chinese fir plantations, successive plantings have led to a decline in soil fertility, and aluminum toxicity is thought to be one of the main reasons for this decline. In this study, Non-invasive Micro-test Technology was used to study the effect of aluminum stress on the absorption of 4 different ions in the roots of the Chinese fir clone FS01. The results are as follows: with increased aluminum concentration and longer periods of aluminum stress, the H+ ion flow gradually changed from influx into efflux; there was a large variation in the K+ efflux, which gradually decreased with increasing duration of aluminum stress; and 1 h of aluminum stress uniformly resulted in Ca2+ influx, but it changed from influx to efflux after a longer period of aluminum stress. Changes in the different concentrations of aluminum had the largest influence on Mg2+. PMID:27270726

  16. Chemical and Biological Assessment of Angelica Roots from Different Cultivated Regions in a Chinese Herbal Decoction Danggui Buxue Tang

    PubMed Central

    Zhang, Wendy L.; Zheng, Ken Y. Z.; Zhu, Kevin Y.; Zhan, Janis Y. X.; Bi, Cathy W. C.; Chen, J. P.; Dong, Tina T. X.; Choi, Roy C. Y.; Lau, David T. W.; Tsim, Karl W. K.

    2013-01-01

    Roots of Angelica sinensis (Danggui) have been used in promoting blood circulation as herbal medicine for over 2000 years in China. Another species of Angelica roots called A. gigas is being used in Korea. To reveal the efficiency of different Angelica roots, the chemical and biological properties of Angelica roots from different cultivated regions were compared. Roots of A. sinensis contained higher levels of ferulic acid, Z-ligustilide, and senkyunolide A, while high amounts of butylphthalide and Z-butylenephthalide were found in A. gigas roots. The extracts deriving from A. gigas roots showed better effects in osteogenic and estrogenic properties than that of A. sinensis from China. However, this difference was markedly reduced when the Angelica roots were being prepared in a Chinese herbal decoction together with Astragali Radix as Danggui Buxue Tang. In contrast, the herbal decoction prepared from A. sinensis roots showed better responses in cell cultures. In addition, the extracts of A. gigas roots showed strong cell toxicity both as single herb and as Danggui Buxue Tang. This result revealed the distinct properties of Angelica roots from China and Korea suggesting the specific usage of herb in preparing a unique herbal decoction. PMID:23476692

  17. [Eco-toxicological effects of heavy metals on the inhibition of seed germination and root elongation of Chinese cabbages in soils].

    PubMed

    Song, Yufang; Xu, Huaxia; Ren, Liping; Gong, Ping; Zhou, Qixing

    2002-01-30

    The Eco-toxicity effects of individual Cu, Zn, Pb and Cd on the inhibition of seed germination and root elongation of Chinese cabbages (Brassica pekimensis) were tested in four types of soils (red loam soils, meadow brown soils, chestnut soils and dark brown soils) and water solution. The combined effects of heavy metals pollution were determined with meadow brown soils. Results indicated that with same concentration, the inhibition rates of heavy metals on root elongation of Chinese cabbages are stronger than that on the seed germination. The inhibition effects of heavy metals on the root elongation of Chinese cabbages in soils are much lower than that in water, indicating that soils play an important role of buffering on heavy metals pollution. Inhibition rates of heavy metals on the root elongation (IRHMRE) of Chinese cabbages are significantly negative related with the contents of organic matter (OR) and Kjedahl-nitrogen (K-N) in soils, however, there is no significant related between IRHMRE and soil pH, so does the content of T-K. In the concentrations that result in the irritated effect in the single form of Cu, Zn, Pb and Cd pollution, synergic effects are produced significantly when four heavy metals are combined. As the results, the threshold values that result in the inhibition effects on root elongation in Chinese cabbages decrease markedly.

  18. Age estimation in northern Chinese children by measurement of open apices in tooth roots.

    PubMed

    Guo, Yu-Cheng; Yan, Chun-Xia; Lin, Xing-Wei; Zhou, Hong; Li, Ju-Ping; Pan, Feng; Zhang, Zhi-Yong; Wei, Lai; Tang, Zheng; Chen, Teng

    2015-01-01

    The aim of this study was to assess the accuracy of Cameriere's methods on dental age estimation in the northern Chinese population. A sample of orthopantomographs of 785 healthy children (397 girls and 388 boys) aged between 5 and 15 years was collected. The seven left permanent mandibular teeth were evaluated with Cameriere's method. The sample was split into a training set to develop a Chinese-specific prediction formula and a test set to validate this novel developed formula. Following the training dataset study, the variables gender (g), x 3 (canine teeth), x 4 (first premolar), x 7 (second molar), N 0, and the first-order interaction between s and N 0 contributed significantly to the fit, yielding the following linear regression formula: Age = 10.202 + 0.826 g - 4.068x 3 - 1.536x 4 - 1.959x 7 + 0.536 N 0 - 0.219 s [Symbol: see text] N 0, where g is a variable, 1 for boys and 0 for girls. The equation explained 91.2 % (R (2) = 0.912) of the total deviance. By analyzing the test dataset, the accuracy of the European formula and Chinese formula was determined by the difference between the estimated dental age (DA) and chronological age (CA). The European formula verified on the collected Chinese children underestimated chronological age with a mean difference of around -0.23 year, while the Chinese formula underestimated the chronological age with a mean difference of -0.04 year. Significant differences in mean differences in years (DA - CA) and absolute difference (AD) between the Chinese-specific prediction formula and Cameriere's European formula were observed. In conclusion, a Chinese-specific prediction formula based on a large Chinese reference sample could ameliorate the age prediction accuracy in the age group of children.

  19. Why Chinese People Play Western Classical Music: Transcultural Roots of Music Philosophy

    ERIC Educational Resources Information Center

    Huang, Hao

    2012-01-01

    This paper addresses the complex relationship between Confucian values and music education in East Asia, particularly its history in China. How does one account for the present "cultural fever" of Western classical music that has infected more than 100 million Chinese practitioners? It is proposed that Western classical music finds transcultural…

  20. The Roots of the Challenge: Undergraduate Chinese Students Adjusting to American College Life

    ERIC Educational Resources Information Center

    Tung, Mei-Ling

    2016-01-01

    Recent economic development in China not only has improved the overall living standards of Chinese people, but it has also created a new middle class. Another impact of the economic development is the increasing demand for educated workers. Subsequently, the demand for quality higher education has also increased. With more than 50% of the world's…

  1. De novo characterization of the root transcriptome of a traditional Chinese medicinal plant Polygonum cuspidatum.

    PubMed

    Hao, DaCheng; Ma, Pei; Mu, Jun; Chen, ShiLin; Xiao, PeiGen; Peng, Yong; Huo, Li; Xu, LiJia; Sun, Chao

    2012-05-01

    Various active components have been extracted from the root of Polygonum cuspidatum. However, the genetic basis for their activity is virtually unknown. In this study, 25600002 short reads (2.3 Gb) of P. cuspidatum root transcriptome were obtained via Illumina HiSeq 2000 sequencing. A total of 86418 unigenes were assembled de novo and annotated. Twelve, 18, 60 and 54 unigenes were respectively mapped to the mevalonic acid (MVA), methyl-D-erythritol 4-phosphate (MEP), shikimate and resveratrol biosynthesis pathways, suggesting that they are involved in the biosynthesis of pharmaceutically important anthraquinone and resveratrol. Eighteen potential UDP-glycosyltransferase unigenes were identified as the candidates most likely to be involved in the biosynthesis of glycosides of secondary metabolites. Identification of relevant genes could be important in eventually increasing the yields of the medicinally useful constituents of the P. cuspidatum root. From the previously published transcriptome data of 19 non-model plant taxa, 1127 shared orthologs were identified and characterized. This information will be very useful for future functional, phylogenetic and evolutionary studies of these plants.

  2. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation*

    PubMed Central

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-01-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively. PMID:26238545

  3. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation.

    PubMed

    Zang, Yun-xiang; Ge, Jia-li; Huang, Ling-hui; Gao, Fei; Lv, Xi-shan; Zheng, Wei-wei; Hong, Seung-beom; Zhu, Zhu-jun

    2015-08-01

    Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.

  4. Incidence of C-shaped root canal systems in mandibular second molars in the native Chinese population by analysis of clinical methods.

    PubMed

    Wang, Yan; Guo, Jing; Yang, Hai-Bing; Han, Xuan; Yu, Ying

    2012-09-01

    The aims of the study were to investigate the incidence of C-shaped root canal systems in mandibular second molars in a native Chinese population using radiography and clinical examination under microscope and to compare the relative efficacies of these methods. For the recognition of C-shaped root canal system, 1 146 mandibular second molars were selected and examined. Teeth with C-shaped canal systems were categorized by using the radiographic classification criteria and the modified Melton's method. C-shaped canals were identified in 397 (34.64%) mandibular second molars by radiography (type I, 31.23%; type II, 38.29%; type III, 30.48%). Clinical examination showed that 449 (39.18%) cases exhibited C-shaped canal systems (C1, 22.94%; C2, 48.11%; C3a, 15.59%; C3b, 13.36%). As for the result of the radiographic and clinical combined examination, C-shaped root canals were found in 473 (41.27%) mandibular second molars (C1, 21.78%; C2, 45.67%; C3a, 16.70%; C3b, 15.86%). The incidence of C-shaped root canal diagnosed by radiographic method was statistically different from that by clinical examination and the combined examination (P<0.05). The study indicated a high incidence of C-shaped canal system in a Chinese population. The combination of microscopic and radiographic examination is an effective method in identifying the C-shaped root canal system.

  5. Over-expression of Chinese cabbage calreticulin 1, BrCRT1, enhances shoot and root regeneration, but retards plant growth in transgenic tobacco.

    PubMed

    Jin, Zheng-Lu; Hong, Joon Ki; Yang, Kyung Ae; Koo, Ja Choon; Choi, Young Ju; Chung, Woo Sik; Yun, Dae-Jin; Lee, Sang Yeol; Cho, Moo Je; Lim, Chae Oh

    2005-10-01

    Calreticulin (CRT) is a ubiquitously expressed, high capacity Ca(2+)-binding protein that is involved in intracellular Ca(2+) homeostasis and molecular chaperoning in the endoplasmic reticulum (ER). A cDNA encoding a calreticulin, BrCRT1 (Brassica rapa Calreticulin 1), has been isolated from Chinese cabbage (B. rapa subsp. pekinensis) flower bud. Constitutive over-expression of the BrCRT1 gene promotes robust shoot production and root formation at sub-optimal concentrations of BA/NAA, which are important factors controlling plant regeneration in tissue culture. In contrast, the suppressed BrCRT1 line exhibited a slight reduction of shoot and root regeneration. In spite of enhanced regeneration in tissue culture, the seedling and plant growth rate was inhibited in soil. The steady state level of BrCRT1 transcripts was sensitive to exogenous auxins and cytokinins, and rapidly accumulated within 30 min, and this induction required de novo protein synthesis. Together with the results of transgenic tobacco plants and mRNA analysis in Chinese cabbage, our data suggest that BrCRT1 genes may up-regulate the competency of vegetative tissue to respond to hormonal signals involved in shoot and root regeneration processes.

  6. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    PubMed

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots.

  7. Diversity of indigenous endophytic bacteria associated with the roots of Chinese cabbage (Brassica campestris L.) cultivars and their antagonism towards pathogens.

    PubMed

    Haque, Md Azizul; Yun, Han Dae; Cho, Kye Man

    2016-05-01

    The study aimed to reveal the diversity of endophytic bacteria in the roots of Chinese cabbage (CC) cultivated in two areas in Korea, namely, Seosang-gun (SS) and Haenam-gun (HN), and also in a transgenic plant (TP) from the laboratory. A total of 653 colonies were isolated from the interior of CC roots, comprising 118, 302, and 233 isolates from SS, HN, and TP samples, respectively. Based on 16S rRNA gene sequence analysis, the isolates belonged to four major phylogenetic groups: high-G+C Gram-positive bacteria (HGC-GPB), low-G+C Gram-positive bacteria (LGC-GPB), Proteobacteria, and Bacteriodetes. The most dominant groups in the roots of the SS, HN, and TP cultivars were LGC-GPB (48.3%), Proteobacteria (50.2%), and HGC-GPB (38.2%), respectively. Importantly, most of the isolates that produced cell-walldegrading enzymes belonged to the genus Bacillus. Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, TPR07), and Bacillus subtilis (TPR03) showed high antagonism against the tested food-borne pathogenic bacteria. In addition, Bacillus sp. (HNR03, TPR06), Bacillus pumilus (SSR07, HNR11, HNR17, TPR11), Microbacterium oxidans (SSR09, TPR04), Bacillus cereus HNR10, Pseudomonas sp. HNR13, and Bacillus subtilis (TPR02, TPR03) showed strong antagonistic activity against the fungi Phythium ultimum, Phytophthora capsici, Fusarium oxysporum, and Rhizoctonia solani. The endophytes isolated from the TP cultivar showed the strongest antagonistic reactions against pathogens. This study is the first report on endophytic bacteria from Chinese cabbage roots. PMID:27095454

  8. Plant leaf and root N, P levels and their relationship to geographical and climate factors in a Chinese grassland transect

    NASA Astrophysics Data System (ADS)

    Yu, H.

    2015-12-01

    Nitrogen (N) and phosphorus (P) are generally considered the two most limiting and essential elements for the function of plants and ecosystems. Ecological stoichiometry of plant N and P provides the dominant means for investigating plant nutrient, and it may provide insights for fields as diverse as global carbon modeling, global climate change, and macroecology. Here we measured N and P contents and their ratios for 132 leaf samples and 120 root samples collected at 132 sites along the 5000km long China Grassland Transect (CGT) that traverses the Inner Mongolian and Qinghai-Tibet Plateaus. The aim was to explore the patterns of leaf N, P and root N, P and their ratio (N/P) respectively in relation to variability in geography, temperature and precipitation, and also the patterns of the relative N and P contents in leaf and root (leaf N(P)/ root N(P)). Results show that: 1) with decreasing longitude and latitude, increasing altitude and mean annual precipitation, leaf N and P increased, N/P decreased. 2) root N increased with increasing longitude, latitude, mean annual temperature, root P only increased with longitude. The patterns of root N,P were not in accord with the patterns of leaf N, P. 3) leaf and root relative N and P increased with increasing latitude and decreasing altitude, and relative N content also increased with decreasing mean annual temperature and increasing mean annual precipitation. Leaf and root relative N and P content reflected the distribution characteristics of the elements in relation to variability in geographical and climate factors. When there was more precipitation, or lower temperature, more N would be distributed to root. Lastly, we speculated that the ratio of leaf and root relative N and relative P content should be a fixed value, and our study was 0.81±0.51.

  9. Corrupt practices in chinese medical care: the root in public policies and a call for Confucian-market approach.

    PubMed

    Fan, Ruiping

    2007-06-01

    This paper argues that three salient corrupt practices that mark contemporary Chinese health care, namely the over-prescription of indicated drugs, the prescription of more expensive forms of medication and more expensive diagnostic work-ups than needed, and illegal cash payments to physicians-i.e., red packages-result not from the introduction of the market to China, but from two clusters of circumstances. First, there has been a loss of the Confucian appreciation of the proper role of financial reward for good health care. Second, misguided governmental policies have distorted the behavior of physicians and hospitals. The distorting policies include (1) setting very low salaries for physicians, (2) providing bonuses to physicians and profits to hospitals from the excessive prescription of drugs and the use of more expensive drugs and unnecessary expensive diagnostic procedures, and (3) prohibiting payments by patients to physicians for higher quality care. The latter problem is complicated by policies that do not allow the use of governmental insurance and funds from medical savings accounts in private hospitals as well as other policies that fail to create a level playing field for both private and government hospitals. The corrupt practices currently characterizing Chinese health care will require not only abolishing the distorting governmental policies but also drawing on Confucian moral resources to establish a rightly directed appreciation of the proper place of financial reward in the practice of medicine. PMID:18018995

  10. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    PubMed

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market.

  11. A comparative study on the traditional Indian Shodhana and Chinese processing methods for aconite roots by characterization and determination of the major components

    PubMed Central

    2013-01-01

    Background Aconitum is an indispensable entity of the traditional medicine therapy in Ayurveda and Traditional Chinese medicine (TCM), in spite of its known fatal toxicity characteristics. The prolonged use of this drug, irrespective of its known lethal effects, is governed by the practice of effective detoxification processes that have been used for decades. However, the processing methods of Ayurveda and TCM are different, and no comparative study has been carried out to evaluate their differences. The objective of the present study was to carry out comparative chemical profiling of the roots of Aconitum heterophyllum Wall, A. carmichaelii Debx., and A. kusnezoffii Reichb. after application of two detoxification methods used in Ayurveda and one method used in TCM . Results Analysis of the processed samples was carried out by ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). The results obtained in the study demonstrate that all three processing methods used in Ayurveda and TCM effectively extract the diester diterpenoid alkaloids and led to their conversion into monoester diterpenoid alkaloids. The efficiency of the processes in reduction of toxic alkaloid contents can be stated as: Processing with water > Shodhana with cow milk > Shodhana with cow urine. The analysis method was validated as per ICH-Q2R1 guidelines and all the parameters were found to comply with the recommendations stated in the guidelines. Conclusions There have been no reports till date, to compare the processing methods used in Ayurveda with the methods used in TCM for detoxification of aconite roots. Our study demonstrates that, these methods used in both the traditional systems of medicine, efficiently detoxify the aconite roots. Amongst the three selected procedures, the TCM method of decoction with water is the most efficient. Through experimental evidences, we prove the conversion of toxic diester diterpenoid

  12. [Influencing factors on culture of medicinal plants adventitious roots].

    PubMed

    Yin, Shuang-Shuang; Gao, Wen-Yuan; Wang, Juan; Liu, Hui; Zuo, Bei-Mei

    2012-12-01

    With the modernization of traditional Chinese medicine, medicinal plants resources cannot meet the request of Chinese medicine industry. Medicinal plants adventitious roots culture in a large scale is an important way to achieve Chinese medicine industrialization. However, how to establish good adventitious roots culture system is its key, such as plant hormones, explant, sucrose, innoculum and salt strength.

  13. [Influencing factors on culture of medicinal plants adventitious roots].

    PubMed

    Yin, Shuang-Shuang; Gao, Wen-Yuan; Wang, Juan; Liu, Hui; Zuo, Bei-Mei

    2012-12-01

    With the modernization of traditional Chinese medicine, medicinal plants resources cannot meet the request of Chinese medicine industry. Medicinal plants adventitious roots culture in a large scale is an important way to achieve Chinese medicine industrialization. However, how to establish good adventitious roots culture system is its key, such as plant hormones, explant, sucrose, innoculum and salt strength. PMID:23627161

  14. Root Hairs

    PubMed Central

    Grierson, Claire; Nielsen, Erik; Ketelaarc, Tijs; Schiefelbein, John

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair specification in Arabidopsis is determined by position-dependent signaling and molecular feedback loops causing differential accumulation of a WD-bHLH-Myb transcriptional complex. The initiation of root hairs is dependent on the RHD6 bHLH gene family and auxin to define the site of outgrowth. Root hair elongation relies on polarized cell expansion at the growing tip, which involves multiple integrated processes including cell secretion, endomembrane trafficking, cytoskeletal organization, and cell wall modifications. The study of root hair biology in Arabidopsis has provided a model cell type for insights into many aspects of plant development and cell biology. PMID:24982600

  15. Infection of Plasmodiophora brassicae in Chinese cabbage.

    PubMed

    Ji, R; Zhao, L; Xing, M; Shen, X; Bi, Q; Peng, S; Feng, H

    2014-12-19

    Brassica crops infected by Plasmodiophora brassicae can produce root galls (clubroots) and be prevented from growing normally. To understand the series of changes that occur in the host root during root gall production, the resistance character of 21 Chinese cabbage lines were identified and then resistant and susceptible lines were used for infection observation. Hydroponic technology system was used for plants growing, and the infection process of P. brassicae in the roots of resistant and susceptible Chinese cabbage was examined based on morphology and microscopic characteristics using micoscope. In susceptible Chinese cabbage, the root hair infection stage occurred over approximately 7 days after inoculation, the cortical infection happened over approximatly 14 days after inoculation, and clubroots formed in approximately 30 days after inoculation. However, in resistant Chinese cabbage, the pathogen could be prevented and maintained in the root hair infection stage. This research provides a foundation for the subsequent studies of cabbage resistance of P. brassicae.

  16. Comparison of two extraction methods for the determination of 135 pesticides in Corydalis Rhizoma, Chuanxiong Rhizoma and Angelicae Sinensis Radix by liquid chromatography-triple quadrupole-mass spectrometry. Application to the roots and rhizomes of Chinese herbal medicines.

    PubMed

    Liu, Jie; Tong, Ling; Li, Dongxiang; Meng, Wenting; Sun, Wanyang; Zhao, Yunli; Yu, Zhiguo

    2016-04-01

    In this study, two simple pretreatment methods were comprehensively evaluated for the determination of 135 pesticide residues in roots and rhizomes of Chinese herbal medicines (CHMs). The studied methodologies are (a) solid-phase extraction (SPE) and (b) Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS). For SPE, extraction solvents, SPE cartridges and types and volume of eluent were accessed and optimized. For QuEChERS, different versions, acetic acid concentration and dispersive solid-phase extraction (dSPE) sorbent materials were tested. SPE and QuEChERS were estimated in recovery range, the number of pesticides that were recovered ranging from 90% to 110% and expenses in Corydalis Rhizoma, Chuanxiong Rhizoma and Angelicae Sinensis Radix. QuEChERS method showed better performance than SPE. The method showed good linearity over the range assayed 0.9986-0.9999 (1-80ng/mL for 124 pesticides, 1-50ng/mL for 10 pesticides, 1-20ng/mL for satisfar). The matrix effect was compensated by matrix-based calibration curves with internal standard. The average recoveries of all pesticides were ranging from 70% to 120% at three levels of 10, 50 and 100ng/g with relative standard deviations less than 20%. The limits of quantification of the 135 pesticides in three matrices were 1-5ng/g, which were below the maximum residue levels (MRLs) established by the European Union. The verified QuEChERS method was successfully applied to the analysis of 65 actual samples from eight different types of roots and rhizomes of CHMs. Angelicae Sinensis Radix was the most susceptible to pesticides among these samples, and the most frequently detected pesticide was carbendazim with levels below MRLs. Metalaxyl, phorate, atrazine, diniconazole, coumaphos and paclobutrazol were also detected in some samples. PMID:26990739

  17. The Chinese negotiation.

    PubMed

    Graham, John L; Lam, N Mark

    2003-10-01

    Most Westerners preparing for a business trip to China like to arm themselves with a list of etiquette how-tos. "Carry a boatload of business cards," tipsters say. "Bring your own interpreter." "Speak in short sentences." "Wear a conservative suit." Such advice can help get companies in the door and even through the first series of business transactions. But it won't sustain the prolonged, year-in, year-out associations Chinese and Western businesses can now achieve. The authors' work with dozens of companies and thousands of American and Chinese executives over the past 20 years has demonstrated that a superficial adherence to etiquette rules gets executives only so far. They have witnessed communication breakdowns between American and Chinese businesspeople time and time again. The root cause: the American side's failure to understand the much broader context of Chinese culture and values, a problem that too often leaves Western negotiators flummoxed and flailing. American and Chinese approaches often appear incompatible. Americans see Chinese negotiators as inefficient, indirect, and even dishonest, while the Chinese see American negotiators as aggressive, impersonal, and excitable. Such perceptions have deep cultural origins. Yet those who know how to navigate these differences can develop thriving, mutually profitable, and satisfying business relationships. Four cultural threads have bound the Chinese people together for some 5,000 years, and these show through in Chinese business negotiations. They are agrarianism, morality, the Chinese pictographic language, and wariness of strangers. Most Western businesspeople often find those elements mysterious and confusing. But ignore them at any time during the negotiation process, and the deal can easily fall apart. PMID:14521100

  18. Automated Root Tracking with "Root System Analyzer"

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  19. Root gravitropism

    NASA Technical Reports Server (NTRS)

    Masson, P. H.

    1995-01-01

    When a plant root is reoriented within the gravity field, it responds by initiating a curvature which eventually results in vertical growth. Gravity sensing occurs primarily in the root tip. It may involve amyloplast sedimentation in the columella cells of the root cap, or the detection of forces exerted by the mass of the protoplast on opposite sides of its cell wall. Gravisensing activates a signal transduction cascade which results in the asymmetric redistribution of auxin and apoplastic Ca2+ across the root tip, with accumulation at the bottom side. The resulting lateral asymmetry in Ca2+ and auxin concentration is probably transmitted to the elongation zone where differential cellular elongation occurs until the tip resumes vertical growth. The Cholodny-Went theory proposes that gravity-induced auxin redistribution across a gravistimulated plant organ is responsible for the gravitropic response. However, recent data indicate that the gravity-induced reorientation is more complex, involving both auxin gradient-dependent and auxin gradient-independent events.

  20. Root canal

    MedlinePlus

    Endodontic therapy ... the root of a tooth. Generally, there is pain and swelling in the area. The infection can ... You may have some pain or soreness after the procedure. An over-the-counter anti-inflammatory drug, such as ibuprofen or naproxen, can help relieve ...

  1. Chinese Americans.

    ERIC Educational Resources Information Center

    Lyman, Stanford M.

    This book on the Chinese Americans focuses on such aspects of intergroup relations, community characteristics, social problems, acculturation, racial and social discrimination, and economic opportunities for the ethnic group as: the Chinese diaspora; forerunners of overseas Chinese community organization; Chinese community organization in the…

  2. Things Chinese.

    ERIC Educational Resources Information Center

    Law, Yip Wang

    Presented in this booklet are brief descriptions of items and activities that are symbolic of Chinese culture. Some of the items and activities described include a traditional Chinese child's outfit, dolls, sandalwood fans, writing and printing materials and techniques, toys and crafts, a Chinese abacus, and eating utensils. Several recipes for…

  3. Chinese Literature

    ERIC Educational Resources Information Center

    Hsu, Kai-yu

    The earliest recorded Chinese literature that has survived consists of folk songs mixed with verses and rhymes. Two factors determined the general pattern of subsequent development in Chinese literature: the nature of the written Chinese language and the establishment of the Confucian school as the orthodoxy in literary criticism. By 1800 there…

  4. Root responses to flooding.

    PubMed

    Sauter, Margret

    2013-06-01

    Soil water-logging and submergence pose a severe threat to plants. Roots are most prone to flooding and the first to suffer from oxygen shortage. Roots are vital for plant function, however, and maintenance of a functional root system upon flooding is essential. Flooding-resistant plants possess a number of adaptations that help maintain oxygen supply to the root. Plants are also capable of initiating organogenesis to replace their original root system with adventitious roots if oxygen supply becomes impossible. This review summarizes current findings on root development and de novo root genesis in response to flooding.

  5. Chinese Calligraphy.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.

    This unit is designed to introduce secondary or post-secondary students to the ancient art of Chinese calligraphy through step-by-step instructions on writing Chinese characters. Because each character is made up of a series of single brush strokes, it is believed that if students learn to recognize these as components of completed characters, the…

  6. Chinese Cooking.

    ERIC Educational Resources Information Center

    Kane, Tony

    This unit, intended for secondary level students, is a general introduction to Chinese cooking. It is meant to inform students about the origins of Chinese cooking styles in their various regional manifestations, and it can be used to discuss how and why different cultures develop different styles of cooking. The first part of the unit, adapted…

  7. The Root Pressure Phenomenon

    ERIC Educational Resources Information Center

    Marsh, A. R.

    1972-01-01

    Describes experiments demonstrating that root pressure in plants is probably controlled by a circadian rhythm (biological clock). Root pressure phenomenon plays significant part in water transport in contradiction with prevalent belief. (PS)

  8. Using Square Roots

    ERIC Educational Resources Information Center

    Wilson, William Wynne

    1976-01-01

    This article describes techniques which enable the user of a comparatively simple calculator to perform calculations of cube roots, nth roots, trigonometric, and inverse trigonometric functions, logarithms, and exponentials. (DT)

  9. Discrete square root smoothing.

    NASA Technical Reports Server (NTRS)

    Kaminski, P. G.; Bryson, A. E., Jr.

    1972-01-01

    The basic techniques applied in the square root least squares and square root filtering solutions are applied to the smoothing problem. Both conventional and square root solutions are obtained by computing the filtered solutions, then modifying the results to include the effect of all measurements. A comparison of computation requirements indicates that the square root information smoother (SRIS) is more efficient than conventional solutions in a large class of fixed interval smoothing problems.

  10. Corky root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corky root rot (corchosis) was first reported in Argentina in 1985, but the disease was presumably present long before that. The disease occurs in most alfalfa-growing areas of Argentina but is more common in older stands. In space-planted alfalfa trials scored for root problems, corky root rot was ...

  11. WHY ROOTING FAILS.

    SciTech Connect

    CREUTZ,M.

    2007-07-30

    I explore the origins of the unphysical predictions from rooted staggered fermion algorithms. Before rooting, the exact chiral symmetry of staggered fermions is a flavored symmetry among the four 'tastes.' The rooting procedure averages over tastes of different chiralities. This averaging forbids the appearance of the correct 't Hooft vertex for the target theory.

  12. Rooting Gene Trees without Outgroups: EP Rooting

    PubMed Central

    Sinsheimer, Janet S.; Little, Roderick J. A.; Lake, James A.

    2012-01-01

    Gene sequences are routinely used to determine the topologies of unrooted phylogenetic trees, but many of the most important questions in evolution require knowing both the topologies and the roots of trees. However, general algorithms for calculating rooted trees from gene and genomic sequences in the absence of gene paralogs are few. Using the principles of evolutionary parsimony (EP) (Lake JA. 1987a. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol. 4:167–181) and its extensions (Cavender, J. 1989. Mechanized derivation of linear invariants. Mol Biol Evol. 6:301–316; Nguyen T, Speed TP. 1992. A derivation of all linear invariants for a nonbalanced transversion model. J Mol Evol. 35:60–76), we explicitly enumerate all linear invariants that solely contain rooting information and derive algorithms for rooting gene trees directly from gene and genomic sequences. These new EP linear rooting invariants allow one to determine rooted trees, even in the complete absence of outgroups and gene paralogs. EP rooting invariants are explicitly derived for three taxon trees, and rules for their extension to four or more taxa are provided. The method is demonstrated using 18S ribosomal DNA to illustrate how the new animal phylogeny (Aguinaldo AMA et al. 1997. Evidence for a clade of nematodes, arthropods, and other moulting animals. Nature 387:489–493; Lake JA. 1990. Origin of the metazoa. Proc Natl Acad Sci USA 87:763–766) may be rooted directly from sequences, even when they are short and paralogs are unavailable. These results are consistent with the current root (Philippe H et al. 2011. Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–260). PMID:22593551

  13. Deep rooting in winter wheat: rooting nodes of deep roots in two cultivars with deep and shallow root systems.

    PubMed

    Araki, H; Iijima, M

    2001-09-01

    Deep rooting of wheat has been suggested that it influences the tolerance to various environmental stresses. In this study, the nodes from which the deepest penetrated roots had emerged were examined in winter wheat. The wheat was grown in long tubes with or without mechanical stress and in large root boxes. The length and growth angle of each axile root were examined to analyze the difference in the vertical distribution of the roots between the two wheat cultivars, one with a deep and one with a shallow root system. In Shiroganekomugi, a Japanese winter wheat cultivar with a shallow root system, the rooting depths of the seminal and nodal roots decreased as the rooting nodes advanced acropetally. Six out of nine deepest roots were seminal root in the non-mechanical stress conditions. In Mutsubenkei, a Japanese winter wheat cultivar with a deep root system, grown in root boxes, not only the seminal roots but also the coleoptilar and the first nodal roots penetrated to a depth of more than 1.3 m in the root box, and became the deepest roots. In both cultivars, the seminal roots became the deepest roots under the mechanical stress conditions. There were no clear tendencies in the root growth angles among the rooting nodes in the wheat root system. This indicates that the length of the axile roots can explain the differences in the rooting depths among axile roots in a wheat root system. On the other hand, the axile roots of Mutsubenkei elongated significantly more vertically than those of Shiroganekomugi. This suggests that not only seminal but also nodal roots exhibit strong positive gravitropism and penetrate deeply in a cultivar with a deep root system. In wheat cultivars, it is likely that the extent of its Root Depth Index results partly from the gravitropic responses of both seminal and nodal roots.

  14. Parasiticidal effects of Morus alba root bark extracts against Ichthyophthirius multifiliis infecting grass carp

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyophthirius multifiliis (Ich) is an important fish parasite that can result in significant losses in aquaculture. In order to find efficacious drugs to control Ich, the root bark of Morus alba, a traditional Chinese medicine, was evaluated for its antiprotozoal activity. The M. alba root bark w...

  15. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  16. Mandarin Chinese Dictionary: English-Chinese.

    ERIC Educational Resources Information Center

    Wang, Fred Fangyu

    This dictionary is a companion volume to the "Mandarin Chinese Dictionary (Chinese-English)" published in 1967 by Seton Hall University. The purpose of the dictionary is to help English-speaking students produce Chinese sentences in certain cultural situations by looking up the English expressions. Natural, spoken Chinese expressions within the…

  17. Chinese Connections

    ERIC Educational Resources Information Center

    Skilling, William C.

    2012-01-01

    When L. Brooks Patterson, the executive of Oakland County, Michigan, publicly called for the county to become the first in America to teach Mandarin Chinese in every public school district, the Oxford Community Schools responded immediately. Over the past four years, the school district of 5,030 students in southeastern Michigan has elevated the…

  18. Relations of fine-root morphology on (137)Cs uptake by fourteen Brassica species.

    PubMed

    Aung, Han Phyo; Aye, Yi Swe; Mensah, Akwasi Dwira; Omari, Richard Ansong; Djedidi, Salem; Oikawa, Yosei; Ohkama-Ohtsu, Naoko; Yokoyama, Tadashi; Bellingrath-Kimura, Sonoko Dorothea

    2015-12-01

    Fourteen Brassica species consisting of seven leafy vegetables and seven root vegetables were examined for (137)Cs uptake differences in relation to their fine-root morphological characters. A pot experiment was conducted from November 2014 to February 2015 in a Phytroton using a contaminated soil of Fukushima prefecture. Leafy vegetables showed bigger root diameters, larger root surface area and larger root volume. Consequently, leafy vegetables had higher (137)Cs uptake compared to root vegetables. Among the three fine-root parameters, only root surface area was observed as a significant contributing factor to higher (137)Cs uptake in terms of transfer factor (TF, dry weight basis). Kakina exhibited higher (137)Cs TF value (0.20) followed by Chinese cabbage (0.18) and mizuna (0.17). Lower TF values were observed in turnip (0.059), rutabaga (Kitanoshou) (0.062) and radish (Ha daikon) (0.064). PMID:26355648

  19. Relations of fine-root morphology on (137)Cs uptake by fourteen Brassica species.

    PubMed

    Aung, Han Phyo; Aye, Yi Swe; Mensah, Akwasi Dwira; Omari, Richard Ansong; Djedidi, Salem; Oikawa, Yosei; Ohkama-Ohtsu, Naoko; Yokoyama, Tadashi; Bellingrath-Kimura, Sonoko Dorothea

    2015-12-01

    Fourteen Brassica species consisting of seven leafy vegetables and seven root vegetables were examined for (137)Cs uptake differences in relation to their fine-root morphological characters. A pot experiment was conducted from November 2014 to February 2015 in a Phytroton using a contaminated soil of Fukushima prefecture. Leafy vegetables showed bigger root diameters, larger root surface area and larger root volume. Consequently, leafy vegetables had higher (137)Cs uptake compared to root vegetables. Among the three fine-root parameters, only root surface area was observed as a significant contributing factor to higher (137)Cs uptake in terms of transfer factor (TF, dry weight basis). Kakina exhibited higher (137)Cs TF value (0.20) followed by Chinese cabbage (0.18) and mizuna (0.17). Lower TF values were observed in turnip (0.059), rutabaga (Kitanoshou) (0.062) and radish (Ha daikon) (0.064).

  20. Temporal and Spatial Profiling of Root Growth Revealed Novel Response of Maize Roots under Various Nitrogen Supplies in the Field

    PubMed Central

    Peng, Yunfeng; Li, Xuexian; Li, Chunjian

    2012-01-01

    A challenge for Chinese agriculture is to limit the overapplication of nitrogen (N) without reducing grain yield. Roots take up N and participate in N assimilation, facilitating dry matter accumulation in grains. However, little is known about how the root system in soil profile responds to various N supplies. In the present study, N uptake, temporal and spatial distributions of maize roots, and soil mineral N (Nmin) were thoroughly studied under field conditions in three consecutive years. The results showed that in spite of transient stimulation of growth of early initiated nodal roots, N deficiency completely suppressed growth of the later-initiated nodal roots and accelerated root death, causing an early decrease in the total root length at the rapid vegetative growth stage of maize plants. Early N excess, deficiency, or delayed N topdressing reduced plant N content, resulting in a significant decrease in dry matter accumulation and grain yield. Notably, N overapplication led to N leaching that stimulated root growth in the 40–50 cm soil layer. It was concluded that the temporal and spatial growth patterns of maize roots were controlled by shoot growth and local soil Nmin, respectively. Improving N management involves not only controlling the total amount of chemical N fertilizer applied, but also synchronizing crop N demand and soil N supply by split N applications. PMID:22624062

  1. Surface Disinfestation of Resting Spores of Plasmodiophora brassicae Used to Infect Hairy Roots of Brassica spp.

    PubMed

    Asano, T; Kageyama, K; Hyakumachi, M

    1999-04-01

    ABSTRACT Resting spores of Plasmodiophora brassicae were surface-disinfested by treatment with 2% chloramine-T for 20 min and then with an antibiotic solution (1,000 ppm of colistin sulfate, 1,000 ppm of vancomycin hydrochloride, and 6,000 ppm of cefotaxime sodium) for 1 day. The disinfested resting spores were used to inoculate hairy roots of cabbage (Brassica oleracea var. capitata cv. Fuji Wase), Chinese cabbage (B. pekinensis cv. Musou Hakusai), turnip (B. rapa var. rapifera cv. Wase Okabu), and rape (B. napus line Dc 119). Differences among hosts in susceptibility to clubroot in hairy roots were evident. Chinese cabbage and turnip hairy roots supported the highest percentages of root hair infection (53.3 to 80%) and the greatest production of zoosporangial groups (8.5 to 32.5 per root). Moreover, gall formation was observed only on Chinese cabbage and turnip hairy roots. The morphology of zoo-sporangia, plasmodia, and resting spores in diseased hairy roots was found to be identical to that in infected intact plants by both light and scanning electron microscopy. Pathogenicity tests confirmed the infectivity of resting spores produced in hairy roots. Thus, the hairy root culture technique should prove useful as a dual culture system for P. brassicae.

  2. Triterpene and Flavonoid Biosynthesis and Metabolic Profiling of Hairy Roots, Adventitious Roots, and Seedling Roots of Astragalus membranaceus.

    PubMed

    Park, Yun Ji; Thwe, Aye Aye; Li, Xiaohua; Kim, Yeon Jeong; Kim, Jae Kwang; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2015-10-14

    Astragalus membranaceus is an important traditional Chinese herb with various medical applications. Astragalosides (ASTs), calycosin, and calycosin-7-O-β-d-glucoside (CG) are the primary metabolic components in A. membranaceus roots. The dried roots of A. membranaceus have various medicinal properties. The present study aimed to investigate the expression levels of genes related to the biosynthetic pathways of ASTs, calycosin, and CG to investigate the differences between seedling roots (SRs), adventitious roots (ARs), and hairy roots (HRs) using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR study revealed that the transcription level of genes involved in the AST biosynthetic pathway was lowest in ARs and showed similar patterns in HRs and SRs. Moreover, most genes involved in the synthesis of calycosin and CG exhibited the highest expression levels in SRs. High-performance liquid chromatography (HPLC) analysis indicated that the expression level of the genes correlated with the content of ASTs, calycosin, and CG in the three different types of roots. ASTs were the most abundant in SRs. CG accumulation was greater than calycosin accumulation in ARs and HRs, whereas the opposite was true in SRs. Additionally, 40 metabolites were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). Principal component analysis (PCA) documented the differences among SRs, ARs, and HRs. PCA comparatively differentiated among the three samples. The results of PCA showed that HRs were distinct from ARs and SRs on the basis of the dominant amounts of sugars and clusters derived from closely similar biochemical pathways. Also, ARs had a higher concentration of phenylalanine, a precursor for the phenylpropanoid biosynthetic pathway, as well as CG. TCA cycle intermediates levels including succinic acid and citric acid indicated a higher amount in SRs than in the others.

  3. Chinese Geography through Chinese Cuisine

    ERIC Educational Resources Information Center

    Lipman, Jonathan

    2010-01-01

    China has the world's largest population, now over 1.3 billion, but its land area (much of it high mountains or desert) is about the same as that of the United States, which has less than one-fourth as many people. So Chinese farmers have learned to use every inch of their fertile land intensively. Pressure on the land has required extremely…

  4. Irrational Square Roots

    ERIC Educational Resources Information Center

    Misiurewicz, Michal

    2013-01-01

    If students are presented the standard proof of irrationality of [square root]2, can they generalize it to a proof of the irrationality of "[square root]p", "p" a prime if, instead of considering divisibility by "p", they cling to the notions of even and odd used in the standard proof?

  5. Trees and Roots.

    ERIC Educational Resources Information Center

    Jones, Lethonee A.

    Constructing a family history can be significant in helping persons understand and appreciate the root system that supports and sustains them. Oral history can be a valuable resource in family research as Alex Haley demonstrated in writing "Roots." The major difficulty of using oral tradition in tracing a family history is that family members with…

  6. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  7. Chinese restaurant syndrome

    MedlinePlus

    Chinese restaurant syndrome is a set of symptoms that some people have after eating Chinese food. A food additive ... Chinese restaurant syndrome is most often diagnosed based on the symptoms. The health care provider may ask the following ...

  8. Chinese Culture and Leadership.

    ERIC Educational Resources Information Center

    Wong, Kam-Cheung

    2001-01-01

    Describes essential characteristics of Chinese philosophical tradition; Discusses Western perspectives on value leadership in education, particularly moral leadership. Discuses moral leadership from a Chinese philosophical perspective, especially Confucianism. Draws implications for using Chinese cultural and philosophical traditions to develop…

  9. Mandibular first molar with single root and single root canal

    PubMed Central

    Munavalli, Anil; Kambale, Sharnappa; Ramesh, Sachhi; Ajgaonkar, Nishant

    2015-01-01

    Mandibular molars demonstrate considerable anatomic complexities and abnormalities with respect to number of roots and root canals. Clinicians should be aware that there is a possibility of the existence of a fewer number of roots and root canals than the normal root canal anatomy. Mandibular first molar with a single root and single canal was diagnosed with the aid of dental operating microscope and multiple angled radiographs. This case report presents a rare case of successful endodontic management of mandibular first molar with a single root and root canal. PMID:26180424

  10. Root hydrotropism: an update.

    PubMed

    Cassab, Gladys I; Eapen, Delfeena; Campos, María Eugenia

    2013-01-01

    While water shortage remains the single-most important factor influencing world agriculture, there are very few studies on how plants grow in response to water potential, i.e., hydrotropism. Terrestrial plant roots dwell in the soil, and their ability to grow and explore underground requires many sensors for stimuli such as gravity, humidity gradients, light, mechanical stimulations, temperature, and oxygen. To date, extremely limited information is available on the components of such sensors; however, all of these stimuli are sensed in the root cap. Directional growth of roots is controlled by gravity, which is fixed in direction and intensity. However, other environmental factors, such as water potential gradients, which fluctuate in time, space, direction, and intensity, can act as a signal for modifying the direction of root growth accordingly. Hydrotropism may help roots to obtain water from the soil and at the same time may participate in the establishment of the root system. Current genetic analysis of hydrotropism in Arabidopsis has offered new players, mainly AHR1, NHR1, MIZ1, and MIZ2, which seem to modulate how root caps sense and choose to respond hydrotropically as opposed to other tropic responses. Here we review the mechanism(s) by which these genes and the plant hormones abscisic acid and cytokinins coordinate hydrotropism to counteract the tropic responses to gravitational field, light or touch stimuli. The biological consequence of hydrotropism is also discussed in relation to water stress avoidance.

  11. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  12. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  13. Reading with Roots

    ERIC Educational Resources Information Center

    Gibson, Margaret I.

    1986-01-01

    Recommends a method of teaching Russian vocabulary that focuses on new words in context and on their structure: root, prefix, suffix, sound changes, and borrowings. Sources for teachers are given in the bibliography. (LMO)

  14. Posterior meniscal root injuries

    PubMed Central

    Moatshe, Gilbert; Chahla, Jorge; Slette, Erik; Engebretsen, Lars; Laprade, Robert F

    2016-01-01

    Meniscal root tears (MRTs) are defined as radial tears within 1 cm of the meniscal root insertion, or an avulsion of the insertion of the meniscus. These injuries change joint loading due to failure of the meniscus to convert axial loads into hoop stresses, resulting in joint overloading and degenerative changes in the knee. Meniscal root repair is recommended in patients without advanced osteoarthritis (Outerbridge 3–4), in order to restore joint congruence and loading and therefore to avoid the long-term effect of joint overloading. Several techniques have been described. Improved knee function has been reported after meniscal root repair, but there are still conflicting reports on whether surgical treatment can prevent osteoarthritis. PMID:27347730

  15. Roots in plant ecology.

    PubMed

    Cody, M L

    1986-09-01

    In 1727 the pioneer vegetation scientist Stephen Hales realized that I much that was of importance to his subject material took place below on ground. A good deal of descriptive work on plant roots and root systems was done in the subsequent two centuries; in crop plants especially, the gross morphology of root systems was well known by the early 20th century. These descriptive studies were extended to natural grasslands by Weaver and his associates and to deserts by Cannon by the second decade of this century, but since that time the study of subterranean growth form appears to have lapsed, as a recent review by Kummerow indicates. Nevertheless, growth form is an important aspect of plant ecology, and subterranean growth form is especially relevant to the study of vegetation in and areas (which is the main subject of this commentary). Moreover, there is a real need for more research to be directed towards understanding plant root systems in general. PMID:21227785

  16. The phenomenology of rooting.

    PubMed

    Kerievsky, Bruce Stephen

    2010-09-01

    This paper examines the attractions of passionate involvement in wanting particular outcomes, which is popularly known as rooting. The author's lifelong personal experience is the source of his analysis, along with the insights provided by spiritual literature and especially the work of Dr. Thomas Hora, with whom the author studied for 30 years. The phrase "choiceless awareness," utilized by J. Krishnamurti, and attained via meditation, is seen as the means of transcending a rooting mode of being in the world.

  17. Chinese Calendar and Chinese Telegraphic Code.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    This manual contains: (1) Chinese calendars for the hundred years from 1881 to 1980; and (2) the Chinese telegraphic code. Each page in Part One presents the calendar for each year in both Chinese and English. There are 97 charts in Part Two representing the telegraphic code. (AMH)

  18. Root architecture impacts on root decomposition rates in switchgrass

    NASA Astrophysics Data System (ADS)

    de Graaff, M.; Schadt, C.; Garten, C. T.; Jastrow, J. D.; Phillips, J.; Wullschleger, S. D.

    2010-12-01

    Roots strongly contribute to soil organic carbon accrual, but the rate of soil carbon input via root litter decomposition is still uncertain. Root systems are built up of roots with a variety of different diameter size classes, ranging from very fine to very coarse roots. Since fine roots have low C:N ratios and coarse roots have high C:N ratios, root systems are heterogeneous in quality, spanning a range of different C:N ratios. Litter decomposition rates are generally well predicted by litter C:N ratios, thus decomposition of roots may be controlled by the relative abundance of fine versus coarse roots. With this study we asked how root architecture (i.e. the relative abundance of fine versus coarse roots) affects the decomposition of roots systems in the biofuels crop switchgrass (Panicum virgatum L.). To understand how root architecture affects root decomposition rates, we collected roots from eight switchgrass cultivars (Alamo, Kanlow, Carthage, Cave-in-Rock, Forestburg, Southlow, Sunburst, Blackwell), grown at FermiLab (IL), by taking 4.8-cm diameter soil cores from on top of the crown and directly next to the crown of individual plants. Roots were carefully excised from the cores by washing and analyzed for root diameter size class distribution using WinRhizo. Subsequently, root systems of each of the plants (4 replicates per cultivar) were separated in 'fine' (0-0.5 mm), 'medium' (0.5-1 mm) and 'coarse' roots (1-2.5 mm), dried, cut into 0.5 cm (medium and coarse roots) and 2 mm pieces (fine roots), and incubated for 90 days. For each of the cultivars we established five root-treatments: 20g of soil was amended with 0.2g of (1) fine roots, (2) medium roots, (3) coarse roots, (4) a 1:1:1 mixture of fine, medium and coarse roots, and (5) a mixture combining fine, medium and coarse roots in realistic proportions. We measured CO2 respiration at days 1, 3, 7, 15, 30, 60 and 90 during the experiment. The 13C signature of the soil was -26‰, and the 13C signature

  19. [Phytoavailability and chemical speciation of cadmium in different Cd-contaminated soils with crop root return].

    PubMed

    Zhang, Jing; Yu, Ling-Ling; Xin, Shu-Zhen; Su, De-Chun

    2013-02-01

    Pot experiments were conducted under greenhouse condition to investigate the effects of crop root return on succeeding crops growth, Cd uptake and soil Cd speciation in Cd-contaminated soil and artificial Cd-contaminated soil. The results showed that the amount of root residue returned to soil by corn and kidney bean growth successive for 3 times was 0.4%-1.1%. The Cd returned to soil by root residue was 1.3%-3.5% to the total soil Cd. There was no significant difference in the shoot dry weights of winter wheat and Chinese cabbage grown on the 2 Cd-contaminated soils with and without root return. While Cd concentration of Chinese cabbage increased significantly in the Cd-contaminated soil with corn or kidney bean root return. Light fraction of soil organic matter increased with root return in both of the Cd-contaminated soils. The percentage of Cd in the light fraction of soil organic matter increased with root return in the artificial Cd-contaminated soil. Soil carbonates-bound Cd concentration decreased significantly with corn root return in the Cd-contaminated soil. Soil exchangeable Cd concentration decreased and soil Fe-Mn oxide-bound Cd concentration increased significantly with kidney bean root return in the artificial Cd-contaminated soil.

  20. The "Green" Root Beer Laboratory

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    No, your students will not be drinking green root beer for St. Patrick's Day--this "green" root beer laboratory promotes environmental awareness in the science classroom, and provides a venue for some very sound science content! While many science classrooms incorporate root beer-brewing activities, the root beer lab presented in this article has…

  1. Glutamate signalling in roots.

    PubMed

    Forde, Brian G

    2014-03-01

    As a signalling molecule, glutamate is best known for its role as a fast excitatory neurotransmitter in the mammalian nervous system, a role that requires the activity of a family of ionotropic glutamate receptors (iGluRs). The unexpected discovery in 1998 that Arabidopsis thaliana L. possesses a family of iGluR-related (GLR) genes laid the foundations for an assessment of glutamate's potential role as a signalling molecule in plants that is still in progress. Recent advances in elucidating the function of Arabidopsis GLR receptors has revealed similarities with iGluRs in their channel properties, but marked differences in their ligand specificities. The ability of plant GLR receptors to act as amino-acid-gated Ca(2+) channels with a broad agonist profile, combined with their expression throughout the plant, makes them strong candidates for a multiplicity of amino acid signalling roles. Although root growth is inhibited in the presence of a number of amino acids, only glutamate elicits a specific sequence of changes in growth, root tip morphology, and root branching. The recent finding that the MEKK1 gene is a positive regulator of glutamate sensitivity at the root tip has provided genetic evidence for the existence in plants of a glutamate signalling pathway analogous to those found in animals. This short review will discuss the most recent advances in understanding glutamate signalling in roots, considering them in the context of previous work in plants and animals.

  2. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems.

  3. Global Patterns of Vertical Root Distributions and Maximum Rooting Depths

    NASA Astrophysics Data System (ADS)

    Schenk, H. J.; Jackson, R. B.

    2001-05-01

    Plant roots are important pathways in global biogeochemical cycles. Roots transport water from the soil to the atmosphere and carbon from the atmosphere into the soil, redistribute nutrients and water in the soil profile, and contribute to the weathering of soil minerals. Data on the vertical distribution and maximum depths of roots in the soil profile are needed to quantify these and other processes. The global coverage of such root data is uneven, which makes it desirable to estimate global root distributions and maximum rooting depths from measurements of aboveground vegetation structure, soil parameters, and climatic variables. We analyzed root two databases compiled from the literature to determine the biotic and abiotic factors that influence vertical root distributions in global ecosystems and maximum rooting depths of individual plants. The first database included 520 vertical root profiles from 286 geographic locations. The second database included 1350 rooting depths for individual plants species from water-limited systems globally. Vertical root distributions were characterized by interpolated 50% and 95% rooting depths (the depths above which 50% or 95% of all roots are located). The 95% rooting depths increased with decreasing latitude from 80\\deg to 30\\deg, but showed no clear trend in the tropics. Mean annual evapotranspiration, precipitation, and length of the warm season were all positively correlated with rooting depths. Globally, more than 90% of all profiles had at least 50% of all roots in the upper 0.3 m of the soil profile (incl. organic horizons) and 95% of all roots in the upper 2 m. Deeper 50% and 95% rooting depths were mainly found in water-limited ecosystems. Median rooting depths of individual plants in water-limited ecosystems increased with increasing precipitation from less than 1 m in deserts with <50 mm of mean annual precipitation to about 2 m in climates with 650 to 750 mm mean annual precipitation. Maximum rooting depths were

  4. Wired to the roots

    PubMed Central

    Kumar, Amutha Sampath; Bais, Harsh P.

    2012-01-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don’t know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses. PMID:23073006

  5. Cultural and Social Interpretation of Chinese Addressing Strategies

    ERIC Educational Resources Information Center

    Yin, Yahui

    2010-01-01

    This paper examines the influence of Chinese cultural factors on the addressing terms, together with the history of their use, the social dynamics involved in their use. Through the examination of exact terms, the author demonstrates to the reader, the deeply rooted cultural factors behind it and different ways that these terms can be used,…

  6. Leveraging Chinese Culture for Effective Organizational Leadership: The China Case

    ERIC Educational Resources Information Center

    Wang, Jia

    2008-01-01

    This article examined organizational leadership in the context of China. Taking a cultural perspective, this literature review traced the cultural roots of Chinese leadership and analyzed the cultural impact on leadership practice in organizations. It further provided general guidelines for leadership development in China, followed by…

  7. The Roots of Reading.

    ERIC Educational Resources Information Center

    Montoya, Colleen, Ed.

    2002-01-01

    This newsletter covers educational issues affecting schools in the Western Regional Educational Laboratory's 4-state region (Arizona, California, Nevada, and Utah) and nationwide. The following articles appear in the Volume 4, Number 1 issue: (1) "The Roots of Reading"; (2) "Breaking the Code: Reading Literacy in K-3"; (3) "Improving Secondary…

  8. Great Plains Roots.

    ERIC Educational Resources Information Center

    Frey, Jennifer

    2001-01-01

    Sandy White Hawk, Sicangu Lakota, was adopted by white missionaries as an infant and suffered child abuse. After 33 years, she found her birth family and formed First Nations Orphans Association, which uses songs and ceremonies to help adoptees return to their roots. Until the 1970s, federal agencies and welfare organizations facilitated removal…

  9. Happy (Chinese) New Year!

    ERIC Educational Resources Information Center

    Johnson, Georgia G.

    1979-01-01

    Suggestions are made for a classroom celebration of Chinese New Year, including discussion of the Chinese calendar and customs, a short list of appropriate children's stories, and food ideas, including a recipe for fortune cookies. (SJL)

  10. Advances in root reinforcement experiments

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Niedda, Marcello

    2013-04-01

    Root reinforcement is considered in many situations an important effect of vegetation for slope stability. In the past 20 years many studies analyzed root reinforcement in laboratory and field experiments, as well as through modeling frameworks. Nearby the important contribution of roots to shear strength, roots are recognized to impart stabilization also through lateral (parallel to slope) redistribution of forces under tension. Lateral root reinforcement under tensile solicitations (such as in the upper part of a shallow landslide) was documented and discussed by some studies. The most common method adopted to measure lateral root reinforcement are pullout tests where roots (single or as bundle) are pulled out from a soil matrix. These conditions are indeed representative for the case where roots within the mass of a landslide slip out from the upper stable part of the slope (such in a tension crack). However, there is also the situation where roots anchored at the upper stable part of the slope slip out from the sliding soil mass. In this last case it is difficult to quantify root reinforcement and no study discussed this mechanism so far. The main objective of this study is to quantify the contribution of roots considering the two presented cases of lateral root reinforcement discussed above - roots slipping out from stable soil profile or sliding soil matrix from anchored roots-, and discuss the implication of the results for slope stability modeling. We carried out a series of laboratory experiments for both roots pullout and soil sliding mechanisms using a tilting box with a bundle of 15 roots. Both Douglas (Pseudotsuga menziesii) roots and soil were collected from the study area in Sardinia (Italy), and reconstructed in laboratory, filling the root and soil layer by layer up to 0.4 meter thickness. The results show that the ratio between pullout force and force transferred to the root during soil sliding range from 0.5 to 1. This results indicate that

  11. Hairy roots are more sensitive to auxin than normal roots

    PubMed Central

    Shen, Wen Hui; Petit, Annik; Guern, Jean; Tempé, Jacques

    1988-01-01

    Responses to auxin of Lotus corniculatus root tips or protoplasts transformed by Agrobacterium rhizogenes strains 15834 and 8196 were compared to those of their normal counterparts. Three different types of experiments were performed, involving long-term, medium-term, or short-term responses to a synthetic auxin, 1-naphthaleneacetic acid. Root tip elongation, proton excretion by root tips, and transmembrane electrical potential difference of root protoplasts were measured as a function of exogenous auxin concentration. The sensitivity of hairy root tips or protoplasts to exogenous auxin was found to be 100-1000 times higher than that of untransformed material. PMID:16593928

  12. Aquaporins and root water relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  13. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  14. Diagravitropism in corn roots.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  15. Springback in root gravitropism.

    PubMed

    Leopold, A C; Wettlaufer, S H

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation. PMID:11537456

  16. Springback in root gravitropism

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalamic [correction of naphthylphthalmaic] acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a memory' effect carried over from a prior gravistimulation.

  17. Diagravitropism in corn roots

    NASA Technical Reports Server (NTRS)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  18. MANDARIN CHINESE DICTIONARY.

    ERIC Educational Resources Information Center

    WANG, FRED FANGYU

    IN RESPONSE TO THE NEEDS OF THE GROWING NUMBER OF AMERICAN HIGH SCHOOL AND COLLEGE STUDENTS LEARNING CHINESE, SETON HALL UNIVERSITY UNDERTOOK A CONTRACT WITH THE U.S. OFFICE OF EDUCATION TO COMPILE A BILINGUAL POCKET-SIZE DICTIONARY FOR BEGINNING STUDENTS OF SPOKEN MANDARIN CHINESE. THE PRESENT WORK IS THE CHINESE TO ENGLISH SECTION IN PRELIMINARY…

  19. Computers and Chinese Linguistics.

    ERIC Educational Resources Information Center

    Kierman, Frank A.; Barber, Elizabeth

    This survey of the field of Chinese language computational linguistics was prepared as a background study for the Chinese Linguistics Project at Princeton. Since the authors' main purpose was "critical reconnaissance," quantitative emphasis is on systems with which they are most familiar. The complexity of the Chinese writing system has presented…

  20. Chinese Folktales for Children.

    ERIC Educational Resources Information Center

    Kwok, Irene

    This bilingual text contains ten traditional Chinese folktales which have been rewritten for children. Each story deals with interpersonal relationships and/or stresses the Chinese way of life. Each page of text is given first in English and then in Chinese and is illustrated with a full-page drawing. The titles of the folktales are: (1) "One…

  1. Root tips moving through soil

    PubMed Central

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  2. Saponin accumulation in the seedling root of Panax notoginseng

    PubMed Central

    2011-01-01

    Background Panax notoginseng is an important Chinese medicinal plant. Dammarene-type triterpenoid saponins are main pharmacologically effective compounds in P. notoginseng. This study aims to investigate the formation and accumulation of saponins in P. notoginseng roots during germination and juvenile stage. Methods P. notoginseng seeds were collected and stored in wet sand. After germination, the seedlings were transplanted into a soil nursery bed and cultivated for one year. During this period, samples were collected every month and the concentrations of ginsengnosides Rg1, Re, Rb1, Rd and notoginsengnoside R1 were determined by HPLC. Results There was little saponin in the P. notoginseng seed. The chemical composition of seed was different from that of root. After germination, Rb1, Rg1, Re, Rd and R1 appeared successively in the seedling root. And in the five-month-old root, all these five main saponins came into existence. The accumulation of saponins in P. notoginseng root was affected by seasons. Conclusion The accumulation of saponins showed a time-dependent increase after germination of P. notoginseng. PMID:21255468

  3. Philosophical Roots of Cosmology

    NASA Astrophysics Data System (ADS)

    Ivanovic, M.

    2008-10-01

    We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.

  4. The Roots of Beowulf

    NASA Technical Reports Server (NTRS)

    Fischer, James R.

    2014-01-01

    The first Beowulf Linux commodity cluster was constructed at NASA's Goddard Space Flight Center in 1994 and its origins are a part of the folklore of high-end computing. In fact, the conditions within Goddard that brought the idea into being were shaped by rich historical roots, strategic pressures brought on by the ramp up of the Federal High-Performance Computing and Communications Program, growth of the open software movement, microprocessor performance trends, and the vision of key technologists. This multifaceted story is told here for the first time from the point of view of NASA project management.

  5. Matching roots to their environment

    PubMed Central

    White, Philip J.; George, Timothy S.; Gregory, Peter J.; Bengough, A. Glyn; Hallett, Paul D.; McKenzie, Blair M.

    2013-01-01

    Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers. Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future. PMID:23821619

  6. Geophysical Imaging of Root Architecture and Root-soil Interaction

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Dafflon, B.; Hubbard, S. S.

    2015-12-01

    Roots play a critical role in controlling water and nutrient uptake, soil biogeochemical processes, as well as the physical anchorage for plants. While important processes, such as root hydraulic redistribution for optimal growth and survival have been recognized, representation of roots in climate models, e.g. its carbon storage, carbon resilience, root biomass, and role in regulating water and carbon fluxes across the rhizosphere and atmosphere interface is still challenging. Such a challenge is exacerbated because of the large variations of root architecture and function across species and locations due to both genetic and environmental controls and the lack of methods for quantifying root mass, distribution, dynamics and interaction with soils at field scales. The scale, complexity and the dynamic nature of plant roots call for minimally invasive methods capable of providing quantitative estimation of root architecture, dynamics over time and interactions with the soils. We present a study on root architecture and root-soil interactions using geophysical methods. Parameters and processes of interests include (1) moisture dynamics around root zone and its interaction with plant transpiration and environmental controls and (2) estimation of root structure and properties based on geophysical signals. Both pot and field scale studies were conducted. The pot scale experiments were conducted under controlled conditions and were monitored with cross-well electrical resistivity tomography (ERT), TDR moisture sensors and temperature probes. Pots with and without a tree were compared and the moisture conditions were controlled via a self regulated pumping system. Geophysical monitoring revealed interactions between roots and soils under dynamic soil moisture conditions and the role of roots in regulating the response of the soil system to changes of environmental conditions, e.g. drought and precipitation events. Field scale studies were conducted on natural trees using

  7. Photophobic behavior of maize roots.

    PubMed

    Burbach, Christian; Markus, Katharina; Zhang, Yin; Schlicht, Markus; Baluška, František

    2012-07-01

    Primary roots of young maize seedlings showed peculiar growth behavior when challenged by placing them on a slope, or if whole seedlings were turned upside down. Importantly, this behavior was dependent on the light conditions. If roots were placed on slopes in the dark, they performed "crawling" behavior and advanced rapidly up the slope. However, as soon as these roots were illuminated, their crawling movements along their horizontal paths slowed down, and instead tried to grow downwards along the gravity vector. A similar light-induced switch in the root behavior was observed when roots were inverted, by placing them in thin glass capillaries. As long as they were kept in the darkness, they showed rapid growth against the gravity vector. If illuminated, these inverted roots rapidly accomplished U-turns and grew down along the gravity vector, eventually escaping from the capillaries upon reaching their open ends. De-capped roots, although growing vigorously, did not display these light-induced photophobic growth responses. We can conclude that intact root cap is essential for the photophobic root behavior in maize.

  8. Photophobic behavior of maize roots

    PubMed Central

    Burbach, Christian; Markus, Katharina; Zhang, Yin; Schlicht, Markus; Baluška, František

    2012-01-01

    Primary roots of young maize seedlings showed peculiar growth behavior when challenged by placing them on a slope, or if whole seedlings were turned upside down. Importantly, this behavior was dependent on the light conditions. If roots were placed on slopes in the dark, they performed “crawling” behavior and advanced rapidly up the slope. However, as soon as these roots were illuminated, their crawling movements along their horizontal paths slowed down, and instead tried to grow downwards along the gravity vector. A similar light-induced switch in the root behavior was observed when roots were inverted, by placing them in thin glass capillaries. As long as they were kept in the darkness, they showed rapid growth against the gravity vector. If illuminated, these inverted roots rapidly accomplished U-turns and grew down along the gravity vector, eventually escaping from the capillaries upon reaching their open ends. De-capped roots, although growing vigorously, did not display these light-induced photophobic growth responses. We can conclude that intact root cap is essential for the photophobic root behavior in maize. PMID:22751294

  9. Photophobic behavior of maize roots.

    PubMed

    Burbach, Christian; Markus, Katharina; Zhang, Yin; Schlicht, Markus; Baluška, František

    2012-07-01

    Primary roots of young maize seedlings showed peculiar growth behavior when challenged by placing them on a slope, or if whole seedlings were turned upside down. Importantly, this behavior was dependent on the light conditions. If roots were placed on slopes in the dark, they performed "crawling" behavior and advanced rapidly up the slope. However, as soon as these roots were illuminated, their crawling movements along their horizontal paths slowed down, and instead tried to grow downwards along the gravity vector. A similar light-induced switch in the root behavior was observed when roots were inverted, by placing them in thin glass capillaries. As long as they were kept in the darkness, they showed rapid growth against the gravity vector. If illuminated, these inverted roots rapidly accomplished U-turns and grew down along the gravity vector, eventually escaping from the capillaries upon reaching their open ends. De-capped roots, although growing vigorously, did not display these light-induced photophobic growth responses. We can conclude that intact root cap is essential for the photophobic root behavior in maize. PMID:22751294

  10. A Split-Root Technique for Measuring Root Water Potential

    PubMed Central

    Adeoye, Kingsley B.; Rawlins, Stephen L.

    1981-01-01

    Water encounters various resistances in moving along a path of decreasing potential energy from the soil through the plant to the atmosphere. The reported relative magnitudes of these pathway resistances vary widely and often these results are conflicting. One reason for such inconsistency is the difficulty in measuring the potential drop across various segments of the soil-plant-atmosphere continuum. The measurement of water potentials at the soil-root interface and in the root xylem of a transpiring plant remains a challenging problem. In the divided root experiment reported here, the measured water potential of an enclosed, nonabsorbing branch of the root system of young corn (Bonanza) plants to infer the water potential of the remaining roots growing in soil was used. The selected root branch of the seedling was grown in a specially constructed Teflon test tube into which a screen-enclosed thermocouple psychrometer was inserted and sealed to monitor the root's water potential. The root and its surrounding atmosphere were assumed to be in vapor equilibrium. Images PMID:16661886

  11. The roots of predictivism.

    PubMed

    Barnes, Eric Christian

    2014-03-01

    In The Paradox of Predictivism (2008, Cambridge University Press) I tried to demonstrate that there is an intimate relationship between predictivism (the thesis that novel predictions sometimes carry more weight than accommodations) and epistemic pluralism (the thesis that one important form of evidence in science is the judgments of other scientists). Here I respond to various published criticisms of some of the key points from Paradox from David Harker, Jarret Leplin, and Clark Glymour. Foci include my account of predictive novelty (endorsement novelty), the claim that predictivism has two roots, the prediction per se and predictive success, and my account of why Mendeleev's predictions carried special weight in confirming the Periodic Law of the Elements. PMID:24984449

  12. New roots for agriculture: exploiting the root phenome.

    PubMed

    Lynch, Jonathan P; Brown, Kathleen M

    2012-06-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.

  13. New roots for agriculture: exploiting the root phenome

    PubMed Central

    Lynch, Jonathan P.; Brown, Kathleen M.

    2012-01-01

    Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the ‘fitness landscape’ for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities. PMID:22527403

  14. Two New Anthraquinones from the Roots of Prismatomeris connata.

    PubMed

    Wang, Chun-Xiang; Zhao, Sa-Na; Feng, Shi-Xiu; Zhang, Xiao-Ping; Chen, Tao

    2016-04-01

    Two new anthraquinones, 4-hydroxy-1,2,3-trimethoxy-7-hydroxymethylanthracene-9,10-dione (1) and 1,2,3-trimethoxy-7-hydroxymethylanthracene-9,10- dione (2), were isolated from the roots of Prismatomeris connata, a Chinese medicinal herb. Their structures were elucidated by spectroscopic analysis. Compound 1 exhibited cytotoxicity against a panel of H1229, HTB 179, A549 and H520 lung tumor cell lines with IC50 values ranging from 12.3 to 20 µM.

  15. Mexicanolide-Type Limonoids from the Roots of Trichilia sinensis.

    PubMed

    Liu, Shou-Bai; Mei, Wen-Li; Chen, Hui-Qin; Guo, Zhi-Kai; Dai, Hao-Fu; Wang, Zhu-Nian

    2016-01-01

    Four new mexicanolide-type limonoids 1-4, along with two known limonoids 5-6, were isolated from the ethanolic extracts of roots of the Traditional Chinese Medicine Trichilia sinensis. Their structures were unambiguously determined by analysis of spectroscopic data, including 1D and 2D NMR as well as MS, and by comparison with literature data. In addition, the acetylcholinesterase (AChE) inhibitory activity of compounds 1-6 was evaluated by the Ellman method. All these compounds showed weak AChE inhibitory activity, with the inhibition percentages ranging from 18.5% to 27.8%. PMID:27589710

  16. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  17. History of Chinese medicinal wine.

    PubMed

    Xia, Xun-Li

    2013-07-01

    Chinese medicinal wine is one type of a favorable food-drug product invented by Chinese ancestors for treating and preventing diseases, promoting people's health and corporeity, and enriching people's restorative culture. In the course of development of the millenary-old Chinese civilization, Chinese medicinal wine has made incessant progress and evolution. In different historical periods, Chinese medicinal wine presented different characteristics in basic wine medical applications, prescriptions, etc. There are many medical and Materia Medica monographs which have systemically and specifically reported on Chinese medicinal wine in past Chinese dynasties. By studying leading medical documents, this article made an outline review on the invention, development, and characteristics of Chinese medicinal wine.

  18. Theon's Ladder for Any Root

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Wright, Marcus; Orchard, Michael

    2005-01-01

    Theon's ladder is an ancient algorithm for calculating rational approximations for the square root of 2. It features two columns of integers (called a ladder), in which the ratio of the two numbers in each row is an approximation to the square root of 2. It is remarkable for its simplicity. This algorithm can easily be generalized to find rational…

  19. Project Work on Plant Roots.

    ERIC Educational Resources Information Center

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  20. Gut and Root Microbiota Commonalities

    PubMed Central

    Ramírez-Puebla, Shamayim T.; Servín-Garcidueñas, Luis E.; Jiménez-Marín, Berenice; Bolaños, Luis M.; Rosenblueth, Mónica; Martínez, Julio; Rogel, Marco Antonio; Ormeño-Orrillo, Ernesto

    2013-01-01

    Animal guts and plant roots have absorption roles for nutrient uptake and converge in harboring large, complex, and dynamic groups of microbes that participate in degradation or modification of nutrients and other substances. Gut and root bacteria regulate host gene expression, provide metabolic capabilities, essential nutrients, and protection against pathogens, and seem to share evolutionary trends. PMID:23104406

  1. Determinants and Polynomial Root Structure

    ERIC Educational Resources Information Center

    De Pillis, L. G.

    2005-01-01

    A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…

  2. Lead chelation to immobilised Symphytum officinale L. (comfrey) root tannins.

    PubMed

    Chin, Lily; Leung, David W M; Harry Taylor, H

    2009-07-01

    Reported correlations between tannin level and metal accumulation within plant tissues suggest that metal-chelating tannins may help plants to tolerate toxic levels of heavy metal contaminants. This paper supports such correlations using a new method that demonstrated the ability of plant tannins to chelate heavy metals, and showed that the relative levels of tannins in tissues were quantitatively related to lead chelation in vitro. Using this in vitro metal chelation method, we showed that immobilised tannins prepared from lateral roots of Symphytum officinale L., that contained high tannin levels, chelated 3.5 times more lead than those from main roots with lower tannin levels. This trend was confirmed using increasing concentrations of tannins from a single root type, and using purified tannins (tannic acid) from Chinese gallnuts. This study presents a new, simple, and reliable method that demonstrates direct lead-tannin chelation. In relation to phytoremediation, it also suggests that plant roots with more 'built-in' tannins may advantageously accumulate more lead. PMID:19477483

  3. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster.

    PubMed

    Danjon, Frédéric; Caplan, Joshua S; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately.

  4. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  5. Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers.

    PubMed

    Lu, Gang; Cao, Jiashu; Yu, Xiaolin; Xiang, Xun; Chen, Hang

    2008-01-01

    Root growth and thickening plays a key role in the final productivity and even the quality of storage roots in root crops. This study was conducted to identify and map quantitative trait loci (QTLs) affecting root morphological traits in Brassica rapa by using molecular markers. An F2 population was developed from a cross between Chinese cabbage (Brassica rapa ssp. chinensis) and turnip (B. rapa ssp. rapifera), which differed greatly in root characters. A genetic map covering 1837.1 cM, with 192 marker loci and 11 linkage groups, was constructed by using this F2 population. The F3 families derived from F2 plants were grown in the field and evaluated for taproot traits (thickness, length, and weight). QTL analysis via simple interval mapping detected 18 QTLs for the 3 root traits, including 7 QTLs for taproot thickness, 5 QTLs for taproot length, and 6 QTLs for taproot weight. Individually, the QTLs accounted for 8.4-27.4% of the phenotypic variation. The 2 major QTLs, qTRT4b for taproot thickness and qTRW4 for taproot weight, explained 27.4% and 24.8% of the total phenotypic variance, respectively. The QTLs for root traits, firstly detected in Brassica crops, may provide a basis for marker-assisted selection to improve productivity in root-crop breeding.

  6. Chinese by Choice

    ERIC Educational Resources Information Center

    Beem, Kate

    2008-01-01

    A 2004 College Board survey revealed that school districts around America wanted to offer Chinese, but finding qualified teachers was a problem, says Selena Cantor, director of Chinese Language and Culture Initiatives for the College Board. So last year, a new College Board program brought guest teachers from China to school districts in 31…

  7. Chinese Foods; Teacher's Handbook.

    ERIC Educational Resources Information Center

    Huang, Joe, Ed.

    Different styles of Chinese cooking, traditional food items, cooking utensils, serving techniques, and the nutritional value of Chinese cooking are described in this teaching guide. Lesson plans for the preparation of simple dishes are presented. Recipes, a shopping guide to San Francisco's Chinatown, a guide to sources of supplies, and a…

  8. On Developing Business Chinese.

    ERIC Educational Resources Information Center

    Hong, Wei

    1996-01-01

    Examines the significance of foreign languages for business, particularly Business Chinese, in the 1990s; its curriculum requirements; and the impact of business languages on international business. The article proposes a developmental plan for Business Chinese at the college level including goals, course materials, learning activities, and…

  9. Chinese Children's Songs.

    ERIC Educational Resources Information Center

    Kwok, Irene, Comp.

    Singing can be an enjoyable and effective way to motivate children to learn a second language. This booklet consists of contemporary and folk songs that are related to Chinese festivals, transportation, the family, seasons, Christmas and other topics. Each page gives the music to a song with the words in Chinese and in English. The songs are…

  10. The Application of the Chinese Sense of "Balance" to Agreements Signed between Chinese and Foreign Institutions in the Chinese Higher Education Sector: Adding Depth to a Popular Cultural Concept

    ERIC Educational Resources Information Center

    Willis, Mike

    2004-01-01

    The Chinese sense of "balance" has been widely researched in the literature from several perspectives including culture (where it has been traced back to Confucian, neo-Confucian and Taoist roots), and business and market entry (where it has been linked to issues such as the development of trust, relationship building, and guanxi between foreign…

  11. ENGLISH STRESSES AND CHINESE TONES IN CHINESE SENTENCES.

    ERIC Educational Resources Information Center

    CHENG, CHIN-CHUAN

    CHINESE SPEAKERS IN THE UNITED STATES USUALLY SPEAK CHINESE WITH ENGLISH WORDS INSERTED. IN MANDARIN CHINESE, A TONE-SANDHI RULE CHANGES A THIRD TONE PRECEDING ANOTHER THIRD TONE TO A SECOND TONE. THE THIRD TONE IS LOW--THE THREE OTHER TONES ARE HIGH. IT IS THE (-HIGH) FEATURE THAT PROVOKES CHINESE TONE SANDHI. USING THE TONE-SANDHI RULE, THE…

  12. Growing Up the Chinese Way: Chinese Child and Adolescent Development.

    ERIC Educational Resources Information Center

    Lau, Sing, Ed.

    This volume is a collection of current research by noted scholars on Chinese child development. The volume re-examines long-held beliefs and preconceptions about Chinese culture, draws forth incompatible pictures and contradictory facts about Chinese children, and draws attention to new problems of the modern Chinese family. The chapters of the…

  13. Gravisensing in roots

    NASA Astrophysics Data System (ADS)

    Perbal, G.

    1999-01-01

    The mode of gravisensing in higher plants is not yet elucidated. Although, it is generally accepted that the amyloplasts (statoliths) in the root cap cells (statocytes) are responsible for susception of gravity. However, the hypothesis that the whole protoplast acts as gravisusceptor cannot be dismissed. The nature of the sensor that is able to transduce and amplify the mechanical energy into a biochemical factor is even more controversial. Several cell structures could potentially serve as gravireceptors: the endoplasmic reticulum, the actin network, the plasma membrane, or the cytoskeleton associated with this membrane. The nature of the gravisusceptors and gravisensors is discussed by taking into account the characteristics of the gravitropic reaction with respect to the presentation time, the threshold acceleration, the reciprocity rule, the deviation from the sine rule, the movement of the amyloplasts, the pre-inversion effect, the response of starch free and intermediate mutants and the effects of cytochalasin treatment. From this analysis, it can be concluded that both the amyloplasts and the protoplast could be the gravisusceptors, the former being more efficient than the latter since they can focus pressure on limited areas. The receptor should be located in the plasma membrane and could be a stretch-activated ion channel.

  14. Try to Be a Hero: Community Service Learning as a Pedagogy for Moral-Political Education and Leadership Development in the Chinese University

    ERIC Educational Resources Information Center

    Waite, Paul Daniel

    2009-01-01

    Based on ten months of ethnographic fieldwork, including more than 65 in-depth interviews with Chinese university students and higher education administrators, this study examines the roots of an emerging community service learning movement in mainland China. The dissertation focuses on a case study of a pioneering Chinese Party State-sponsored…

  15. Random root movements in weightlessness

    NASA Technical Reports Server (NTRS)

    Johnsson, A.; Karlsson, C.; Iversen, T. H.; Chapman, D. K.

    1996-01-01

    The dynamics of root growth was studied in weightlessness. In the absence of the gravitropic reference direction during weightlessness, root movements could be controlled by spontaneous growth processes, without any corrective growth induced by the gravitropic system. If truly random of nature, the bending behavior should follow so-called 'random walk' mathematics during weightlessness. Predictions from this hypothesis were critically tested. In a Spacelab ESA-experiment, denoted RANDOM and carried out during the IML-2 Shuttle flight in July 1994, the growth of garden cress (Lepidium sativum) roots was followed by time lapse photography at 1-h intervals. The growth pattern was recorded for about 20 h. Root growth was significantly smaller in weightlessness as compared to gravity (control) conditions. It was found that the roots performed spontaneous movements in weightlessness. The average direction of deviation of the plants consistently stayed equal to zero, despite these spontaneous movements. The average squared deviation increased linearly with time as predicted theoretically (but only for 8-10 h). Autocorrelation calculations showed that bendings of the roots, as determined from the 1-h photographs, were uncorrelated after about a 2-h interval. It is concluded that random processes play an important role in root growth. Predictions from a random walk hypothesis as to the growth dynamics could explain parts of the growth patterns recorded. This test of the hypothesis required microgravity conditions as provided for in a space experiment.

  16. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    NASA Astrophysics Data System (ADS)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  17. Aluminum Toxicity in Roots 1

    PubMed Central

    Ryan, Peter R.; Shaff, Jon E.; Kochian, Leon V.

    1992-01-01

    The inhibition of root growth by aluminum (Al) is well established, yet a unifying mechanism for Al toxicity remains unclear. The association between cell growth and endogenously generated ionic currents measured in many different systems, including plant roots, suggests that these currents may be directing growth. A vibrating voltage microelectrode system was used to measure the net ionic currents at the apex of wheat (Triticum aestivum L.) roots from Al-tolerant and Al-sensitive cultivars. We examined the relationship between these currents and Al-induced inhibition of root growth. In the Al-sensitive cultivar, Scout 66, 10 micromolar Al (pH 4.5) began to inhibit the net current and root elongation within 1 to 3 hours. These changes occurred concurrently in 75% of experiments. A significant correlation was found between current magnitude and the rate of root growth when data were pooled. No changes in either current magnitude or growth rate were observed in similar experiments using the Al-tolerant cultivar Atlas 66. Measurements with ion-selective microelectrodes suggested that H+ influx was responsible for most of the current at the apex, with smaller contributions from Ca2+ and Cl− fluxes. In 50% of experiments, Al began to inhibit the net H+ influx in Scott 66 roots at the same time that growth was affected. However, in more than 25% of cases, Al-induced inhibition of growth rate occurred before any sustained decrease in the current or H+ flux. Although showing a correlation between growth and current or H+ fluxes, these data do not suggest a mechanistic association between these processes. We conclude that the inhibition of root growth by Al is not caused by the reduction in current or H+ influx at the root apex. PMID:16668988

  18. ADVANCED CHINESE. YALE LINGUISTIC SERIES.

    ERIC Educational Resources Information Center

    DE FRANCIS, JOHN; AND OTHERS

    THE THIRD IN A SERIES OF TEXTS PREPARED AT SETON HALL UNIVERSITY, THIS ADVANCED TEXT PRESUPPOSES MASTERY OF "BEGINNING CHINESE,""BEGINNING CHINESE READER," AND LESSONS 1 TO 6 OF "INTERMEDIATE CHINESE READER." A COMPANION VOLUME TO THIS ONE, "CHARACTER TEXT FOR ADVANCED CHINESE," PROVIDES READING PRACTICE AND REPETITION OF THE 904 NEW CHARACTERS…

  19. Chinese Language Guide. Level I.

    ERIC Educational Resources Information Center

    Bay Area Bilingual Education League, Berkeley, CA.

    This comprehensive Chinese language development guide for bilingual Chinese-English educators contains fifteen objectives along with related learning activities to be taught in the Chinese bilingual program. The guide emphasizes audio-lingual skill development and involves Chinese games, songs, foods, and holidays. (Author/AM)

  20. Preparing for Chinese New Year.

    ERIC Educational Resources Information Center

    Lew, Gordon

    This is one of a series of elementary readers written in Cantonese and English, designed to familiarize children with the traditional major Chinese festivals celebrated by the Chinese in America. The booklet follows the activities of a Chinese-American family in its preparations for the Chinese New Year. (CLK)

  1. Hypocotyl adventitious root organogenesis differs from lateral root development

    PubMed Central

    Verstraeten, Inge; Schotte, Sébastien; Geelen, Danny

    2014-01-01

    Wound-induced adventitious root (AR) formation is a requirement for plant survival upon root damage inflicted by pathogen attack, but also during the regeneration of plant stem cuttings for clonal propagation of elite plant varieties. Yet, adventitious rooting also takes place without wounding. This happens for example in etiolated Arabidopsis thaliana hypocotyls, in which AR initiate upon de-etiolation or in tomato seedlings, in which AR initiate upon flooding or high water availability. In the hypocotyl AR originate from a cell layer reminiscent to the pericycle in the primary root (PR) and the initiated AR share histological and developmental characteristics with lateral roots (LRs). In contrast to the PR however, the hypocotyl is a determinate structure with an established final number of cells. This points to differences between the induction of hypocotyl AR and LR on the PR, as the latter grows indeterminately. The induction of AR on the hypocotyl takes place in environmental conditions that differ from those that control LR formation. Hence, AR formation depends on differentially regulated gene products. Similarly to AR induction in stem cuttings, the capacity to induce hypocotyl AR is genotype-dependent and the plant growth regulator auxin is a key regulator controlling the rooting response. The hormones cytokinins, ethylene, jasmonic acid, and strigolactones in general reduce the root-inducing capacity. The involvement of this many regulators indicates that a tight control and fine-tuning of the initiation and emergence of AR exists. Recently, several genetic factors, specific to hypocotyl adventitious rooting in A. thaliana, have been uncovered. These factors reveal a dedicated signaling network that drives AR formation in the Arabidopsis hypocotyl. Here we provide an overview of the environmental and genetic factors controlling hypocotyl-born AR and we summarize how AR formation and the regulating factors of this organogenesis are distinct from LR

  2. Towards a multidimensional root trait framework: a tree root review.

    PubMed

    Weemstra, Monique; Mommer, Liesje; Visser, Eric J W; van Ruijven, Jasper; Kuyper, Thomas W; Mohren, Godefridus M J; Sterck, Frank J

    2016-09-01

    Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework.

  3. IAA transport in corn roots includes the root cap

    SciTech Connect

    Hasenstein, K.H. )

    1989-04-01

    In earlier reports we concluded that auxin is the growth regulator that controls gravicurvature in roots and that the redistribution of auxin occurs within the root cap. Since other reports did not detect auxin in the root cap, we attempted to confirm the IAA does move through the cap. Agar blocks containing {sup 3}H-IAA were applied to the cut surface of 5 mm long apical segments of primary roots of corn (mo17xB73). After 30 to 120 min radioactivity (RA) of the cap and root tissue was determined. While segments suspended in water-saturated air accumulated very little RA in the cap, application of 0.5 {mu}1 of dist. water to the cap (=controls) increased RA of the cap dramatically. Application to the cap of 0.5 {mu}1 of sorbitol or the Ca{sup 2+} chelator EGTA reduced cap RA to 46% and 70% respectively compared to water, without affecting uptake. Control root segments gravireacted faster than non-treated or osmoticum or EGTA treated segments. The data indicate that both the degree of hydration and calcium control the amount of auxin moving through the cap.

  4. Different attitudes toward humor between Chinese and American students: evidence from the Implicit Association Test.

    PubMed

    Jiang, Feng; Yue, Xiao Dong; Lu, Su

    2011-08-01

    Although cross-cultural research indicates that Chinese people demonstrate less humor than do Americans, little research addresses the reasons. This cross-cultural difference may be largely due to different implicit attitudes toward humor held by Chinese and Americans, deeply rooted in the two cultural traditions. Both self-report evaluation and the Implicit Association Test (IAT) were used to compare Chinese and American attitudes toward humor. Although 60 Chinese undergraduate students showed no significant difference from 33 American exchange students in explicit attitudes toward humor, the former associated humor more frequently with unpleasant adjectives and seriousness with pleasant adjectives on the IAT; the opposite pattern was found for the American group. This indicated a negative implicit attitude toward humor among the Chinese students.

  5. Ultrasonic cleaning of root canals

    NASA Astrophysics Data System (ADS)

    Verhaagen, Bram; Boutsioukis, Christos; Jiang, Lei-Meng; Macedo, Ricardo; van der Sluis, Luc; Versluis, Michel

    2011-11-01

    A crucial step during a dental root canal treatment is irrigation, where an antimicrobial fluid is injected into the root canal system to eradicate all bacteria. Agitation of the fluid using an ultrasonically vibrating miniature file has shown significant improvement in cleaning efficacy over conventional syringe irrigation. However, the physical mechanisms underlying the cleaning process, being acoustic streaming, cavitation or chemical activity, and combinations thereof, are not fully understood. High-speed imaging allows us to visualize the flow pattern and cavitation in a root canal model at microscopic scales, at timescales relevant to the cleaning processes (microseconds). MicroPIV measurements of the induced acoustic streaming are coupled to the oscillation characteristics of the file as simulated numerically and measured with a laser vibrometer. The results give new insight into the role of acoustic streaming and the importance of the confinement for the cleaning of root canals.

  6. Swarming Behavior in Plant Roots

    PubMed Central

    Ciszak, Marzena; Comparini, Diego; Mazzolai, Barbara; Baluska, Frantisek; Arecchi, F. Tito; Vicsek, Tamás; Mancuso, Stefano

    2012-01-01

    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming. PMID:22272246

  7. Tense and Aspect in Mandarin Chinese and Spanish: Contrasts Manifested in the Mandarin Translation of Javier Marias' Corazón Tan Blanco

    ERIC Educational Resources Information Center

    Hung, Yu-Ju

    2016-01-01

    Mandarin Chinese and Spanish are both considered aspect languages for the simple reason that they both mark grammatical aspect morphologically: the former attaches a particle expressing only aspectual meaning to the root of a verb, while the latter attaches a suffix expressing both aspectual and tense meaning to the root of a verb. Since tense…

  8. Root Patterns in Heterogeneous Soils

    NASA Astrophysics Data System (ADS)

    Dara, A.; Moradi, A. B.; Carminati, A.; Oswald, S. E.

    2010-12-01

    Heterogeneous water availability is a typical characteristic of soils in which plant roots grow. Despite the intrinsic heterogeneity of soil-plant water relations, we know little about the ways how plants respond to local environmental quality. Furthermore, increasing use of soil amendments as partial water reservoirs in agriculture calls for a better understanding of plant response to soil heterogeneity. Neutron radiography is a non-invasive imaging that is highly sensitive to water and root distribution and that has high capability for monitoring spatial and temporal soil-plant water relations in heterogeneous systems. Maize plants were grown in 25 x 30 x 1 cm aluminum slabs filled with sandy soil. On the right side of the compartments a commercial water absorbent (Geohumus) was mixed with the soil. Geohumus was distributed with two patterns: mixed homogeneously with the soil, and arranged as 1-cm diameter aggregates (Fig. 1). Two irrigation treatments were applied: sufficient water irrigation and moderate water stress. Neutron radiography started 10 days after planting and has been performed twice a day for one week. At the end of the experiment, the containers were opened, the root were removed and dry root weight in different soil segments were measured. Neutron radiography showed root growth tendency towards Geohumus treated parts and preferential water uptake from Geohumus aggregates. Number and length of fine lateral roots were lower in treated areas compared to the non-treated zone and to control soil. Although corn plants showed an overall high proliferation towards the soil water sources, they decreased production of branches and fine root when water was more available near the main root parts. However there was 50% higher C allocation in roots grown in Geohumus compartments, as derived by the relative dry weight of root. The preferential C allocation in treated regions was higher when plants grew under water stress. We conclude that in addition to the

  9. Roots: Its Impact and Implications

    PubMed Central

    Jefferson, Roland S.

    1979-01-01

    What is contained in Roots, the 587-page narrative that captured an entire world population? The answer is not simple, nor is it overly complex, but rather an admixture of significant psychological, sociological, and timing factors that served to ignite the fuse of human fascination for the unknown, the hidden truths, the obscure, and the forbidden. This paper analyzes the impact and implications of Roots on many facets of American society. PMID:480399

  10. Disappeared roots: a case report.

    PubMed

    Arathi, R; Kundabala, M; Karen, B

    2008-03-01

    Tooth resorption is a perplexing problem for all dental practitioners. The etiologic factors are vague, the diagnoses are educated guesses and, often, the chosen treatment does not prevent the rapid disappearance of the calcified dental tissues. This becomes all the more confusing if the tooth in question is a pulpally involved young permanent tooth. Presented in this report is the case of an upper first young permanent molar that underwent complete root resorption following root canal therapy and obturation. PMID:18408271

  11. Root Caries in Older Adults.

    PubMed

    Gregory, Dick; Hyde, Susan

    2015-08-01

    Older adults are retaining an increasing number of natural teeth, and nearly half of all individuals aged 75 and older have experienced root caries. Root caries is a major cause of tooth loss in older adults, and tooth loss is the most significant negative impact on oral health-related quality of life for the elderly. The need for improved preventive efforts and treatment strategies for this population is acute.

  12. Root Caries in Older Adults.

    PubMed

    Gregory, Dick; Hyde, Susan

    2015-08-01

    Older adults are retaining an increasing number of natural teeth, and nearly half of all individuals aged 75 and older have experienced root caries. Root caries is a major cause of tooth loss in older adults, and tooth loss is the most significant negative impact on oral health-related quality of life for the elderly. The need for improved preventive efforts and treatment strategies for this population is acute. PMID:26357814

  13. Root nodulation of Sesbania rostrata.

    PubMed Central

    Ndoye, I; de Billy, F; Vasse, J; Dreyfus, B; Truchet, G

    1994-01-01

    The tropical legume Sesbania rostrata can be nodulated by Azorhizobium caulinodans on both its stem and its root system. Here we investigate in detail the process of root nodulation and show that nodules develop exclusively at the base of secondary roots. Intercellular infection leads to the formation of infection pockets, which then give rise to infection threads. Concomitantly with infection, cortical cells of the secondary roots dedifferentiate, forming a meristem which has an "open-basket" configuration and which surrounds the initial infection site. Bacteria are released from the tips of infection threads into plant cells via "infection droplets," each containing several bacteria. Initially, nodule differentiation is comparable to that of indeterminate nodules, with the youngest meristematic cells being located at the periphery and the nitrogen-fixing cells being located at the nodule center. Because of the peculiar form of the meristem, Sesbania root nodules develop uniformly around a central axis. Nitrogen fixation is detected as early as 3 days following inoculation, while the nodule meristem is still active. Two weeks after inoculation, meristematic activity ceases, and nodules then show the typical histology of determinate nodules. Thus, root nodule organogenesis in S. rostrata appears to be intermediate between indeterminate and determinate types. Images PMID:8106317

  14. Traditional Chinese Biotechnology

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Wang, Dong; Fan, Wen Lai; Mu, Xiao Qing; Chen, Jian

    The earliest industrial biotechnology originated in ancient China and developed into a vibrant industry in traditional Chinese liquor, rice wine, soy sauce, and vinegar. It is now a significant component of the Chinese economy valued annually at about 150 billion RMB. Although the production methods had existed and remained basically unchanged for centuries, modern developments in biotechnology and related fields in the last decades have greatly impacted on these industries and led to numerous technological innovations. In this chapter, the main biochemical processes and related technological innovations in traditional Chinese biotechnology are illustrated with recent advances in functional microbiology, microbial ecology, solid-state fermentation, enzymology, chemistry of impact flavor compounds, and improvements made to relevant traditional industrial facilities. Recent biotechnological advances in making Chinese liquor, rice wine, soy sauce, and vinegar are reviewed.

  15. Chinese implicit leadership theory.

    PubMed

    Ling, W; Chia, R C; Fang, L

    2000-12-01

    In a 1st attempt to identify an implicit theory of leadership among Chinese people, the authors developed the Chinese Implicit Leadership Scale (CILS) in Study 1. In Study 2, they administered the CILS to 622 Chinese participants from 5 occupation groups, to explore differences in perceptions of leadership. Factor analysis yielded 4 factors of leadership: Personal Morality, Goal Efficiency, Interpersonal Competence, and Versatility. Social groups differing in age, gender, education level, and occupation rated these factors. Results showed no significant gender differences, and the underlying cause for social group differences was education level. All groups gave the highest ratings to Interpersonal Competence, reflecting the enormous importance of this factor, which is consistent with Chinese collectivist values.

  16. Chinese Musical Prodigies.

    ERIC Educational Resources Information Center

    Kwok, Carolyn; Harris, R. Carl

    1989-01-01

    The article describes several young Chinese musical prodigies as well as principles of the Shanghai Music Conservatory's middle and primary schools which provide intensive musical training to musically gifted students. (DB)

  17. Plant root-microbe communication in shaping root microbiomes.

    PubMed

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.

  18. Plant root-microbe communication in shaping root microbiomes.

    PubMed

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production. PMID:26729479

  19. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  20. How Can Science Education Foster Students' Rooting?

    ERIC Educational Resources Information Center

    Østergaard, Edvin

    2015-01-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to "prevent" (further) uprooting and efforts to "promote" rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the…

  1. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  2. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  3. On the Problems Existed in Chinese Art Education and the Way Out

    ERIC Educational Resources Information Center

    Yue, Youxi

    2009-01-01

    Nowadays Chinese art education has mostly four problems: The first one is to make art education skilling; The second is to make art education moralization; The third is to make art education mechanization; The fourth is to make art education marginalization. The root of the problems has two aspects: First, the actuality of education system affects…

  4. Chinese Visiting Scholars' Academic Socialization in US Institutions of Higher Education: A Qualitative Study

    ERIC Educational Resources Information Center

    Xue, Mo; Chao, Xia; Kuntz, Aaron M.

    2015-01-01

    Socialization as a theoretical concept has been increasingly applied to higher education over the past several decades. However, little research examines international visiting scholars' overseas academic socialization experiences. Rooted in socialization theory, this one-year qualitative study explores 15 Chinese visiting scholars' lived…

  5. [Allelopathy of garlic root exudates].

    PubMed

    Zhou, Yan-Li; Wang, Yan; Li, Jin-Ying; Xue, Yan-Jie

    2011-05-01

    By the method of water culture, the root exudates of Cangshan garlic and Caijiapo garlic were collected to study their allelopathic effects on the seed germination and seedling growth of lettuce, and on the development of pathogens Fusarium oxysporum f. sp. cucumerinum and F. oxysporium f. sp. niveum. The root exudates of the two garlic cultivars promoted the lettuce seed germination and seedling growth at low concentrations (0.1 and 0.2 g x mL(-1)), but showed inhibitory effects at high concentrations (0.4 and 0.6 g x mL(-1)), with the inhibitory effects being stronger for the root exudates of Caijiapo garlic. The two garlic cultivars' root exudates also had inhibitory effects on the mycelia growth and spore germination of the pathogens, and the effects increased with increasing concentration of the exudates, being stronger for Caijiapo garlic than for Cangshan garlic. F. oxysporum f. sp. cucumerinum was more sensitive to the inhibitory effects of the root exudates of the two garlic cultivars, as compared to F. oxysporium f. sp. niveum.

  6. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  7. Chinese health beliefs of older Chinese in Canada.

    PubMed

    Lai, Daniel W L; Surood, Shireen

    2009-02-01

    Objectives. This study examines the cultural health beliefs held by older Chinese in Canada. Methods. Chinese surnames are randomly selected from the local Chinese telephone directories. Telephone screening is then conducted to identify eligible Chinese people 55 years of age or older to take part in a face-to-face interview to complete a structured survey questionnaire. Results. The results of exploratory factor analysis indicate that the health beliefs of the older Chinese are loaded onto three factors related to beliefs about traditional health practices, beliefs about traditional Chinese medicine, and beliefs about preventive diet. Education, religion, country of origin, length of residency in Canada, and city of residency are the major correlates of the various Chinese health beliefs scales. Discussion. The findings support the previous prescriptive knowledge about Chinese health beliefs and illustrate the intragroup sociocultural diversity that health practitioners should acknowledge in their practice.

  8. Association of azospirillum with grass roots.

    PubMed

    Umali-Garcia, M; Hubbell, D H; Gaskins, M H; Dazzo, F B

    1980-01-01

    The association between grass roots and Azospirillum brasilense Sp 7 was investigated by the Fahraeus slide technique, using nitrogen-free medium. Young inoculated roots of pearl millet and guinea grass produced more mucilaginous sheath (mucigel), root hairs, and lateral roots than did uninoculated sterile controls. The bacteria were found within the mucigel that accumulated on the root cap and along the root axes. Adherent bacteria were associated with granular material on root hairs and fibrillar material on undifferentiated epidermal cells. Significantly fewer numbers of azospirilla attached to millet root hairs when the roots were grown in culture medium supplemented with 5 mM potassium nitrate. Under these growth conditions, bacterial attachment to undifferentiated epidermal cells was unaffected. Aseptically collected root exudate from pearl millet contained substances which bound to azospirilla and promoted their adsorption to the root hairs. This activity was associated with nondialyzable and proteasesensitive substances in root exudate. Millet root hairs adsorbed azospirilla in significantly higher numbers than cells of Rhizobium, Pseudomonas, Azotobacter, Klebsiella, or Escherichia. Pectolytic activities, including pectin transeliminase and endopolygalacturonase, were detected in pure cultures of A. brasilense when this species was grown in a medium containing pectin. These studies describe colonization of grass root surfaces by A. brasilense and provide a possible explanation for the limited colonization of intercellular spaces of the outer root cortex.

  9. ROOT I/O Improvements

    NASA Astrophysics Data System (ADS)

    Canal, Ph

    2012-12-01

    In the past year, the development of ROOT I/O has focused on improving the existing code and increasing the collaboration with the experiments’ experts. Regular I/O workshops have been held to share and build upon the various experiences and points of view. The resulting improvements in ROOT I/O span many dimensions including reduction and more control over the memory usage, reduction in CPU usage as well as optimization of the file size and the hardware I/O utilization. Many of these enhancements came as a result of an increased collaboration with the experiments’ development teams and their direct contributions both in code and quarterly ROOT I/O workshops.

  10. Descendant root volume varies as a function of root type: estimation of root biomass lost during uprooting in Pinus pinaster

    PubMed Central

    Danjon, Frédéric; Caplan, Joshua S.; Fortin, Mathieu; Meredieu, Céline

    2013-01-01

    Root systems of woody plants generally display a strong relationship between the cross-sectional area or cross-sectional diameter (CSD) of a root and the dry weight of biomass (DWd) or root volume (Vd) that has grown (i.e., is descendent) from a point. Specification of this relationship allows one to quantify root architectural patterns and estimate the amount of material lost when root systems are extracted from the soil. However, specifications of this relationship generally do not account for the fact that root systems are comprised of multiple types of roots. We assessed whether the relationship between CSD and Vd varies as a function of root type. Additionally, we sought to identify a more accurate and time-efficient method for estimating missing root volume than is currently available. We used a database that described the 3D root architecture of Pinus pinaster root systems (5, 12, or 19 years) from a stand in southwest France. We determined the relationship between CSD and Vd for 10,000 root segments from intact root branches. Models were specified that did and did not account for root type. The relationships were then applied to the diameters of 11,000 broken root ends to estimate the volume of missing roots. CSD was nearly linearly related to the square root of Vd, but the slope of the curve varied greatly as a function of root type. Sinkers and deep roots tapered rapidly, as they were limited by available soil depth. Distal shallow roots tapered gradually, as they were less limited spatially. We estimated that younger trees lost an average of 17% of root volume when excavated, while older trees lost 4%. Missing volumes were smallest in the central parts of root systems and largest in distal shallow roots. The slopes of the curves for each root type are synthetic parameters that account for differentiation due to genetics, soil properties, or mechanical stimuli. Accounting for this differentiation is critical to estimating root loss accurately. PMID

  11. Ancient Chinese Astronomical Technologies

    NASA Astrophysics Data System (ADS)

    Walsh, Jennifer Robin

    2004-05-01

    I am interested in the astronomical advances of the Ancient Chinese in measuring the solar day. Their development of gnomon & ruler, sundial, and water clock apparatuses enabled Chinese astronomers to measure the annual solar orbit and solar day more precisely than their contemporaries. I have built one of each of these devices to use in collecting data from Olympia, Washington. I will measure the solar day in the Pacific Northwest following the methodology of the ancient Chinese. I will compare with my data, the available historical Chinese astronomical records and current records from the United States Naval Observatory Master Clock. I seek to understand how ancient Chinese investigations into solar patterns enabled them to make accurate predictions about the movement of the celestial sphere and planets, and to develop analytic tests of their theories. Mayall, R. Newton; Sundials: their construction and use. Dover Publications 2000 North, John; The Norton History of Astronomy and Cosmology W.W. Norton& Co. 1995 Zhentao Xu, David W. Pankenier, Yaotiao Jiang; East Asian archaeoastronomy : historical records of astronomical observations of China, Japan and Korea Published on behalf of the Earth Space Institute by Gordon and Breach Science Publishers, c2000

  12. Shuttle ban for Chinese journalists

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2011-07-01

    A bill passed in April by the US Congress has banned representatives of the Chinese government's news agency Xinhua from the launch site at the Kennedy Space Center as well as preventing NASA from hosting "official Chinese visitors".

  13. Cadmium re-distribution from pod and root zones and accumulation by peanut (Arachis hypogaea L.).

    PubMed

    Wang, Kairong; Song, Ningning; Zhao, Qiaoqiao; van der Zee, S E A T M

    2016-01-01

    Peanut (Arachis hypogaea L.) genotypes may differ greatly with regard to cadmium (Cd) accumulation, but the underlying mechanisms remain unclear. To determine the key factors that may contribute to Cd re-distribution and accumulation in peanut genotypes with different Cd accumulating patterns, a split-pot soil experiment was conducted with three common Chinese peanut cultivars (Fenghua-6, Huayu-20, and Huayu-23). The growth medium was separated into pod and root zones with varied Cd concentrations in each zone to determine the re-distribution of Cd after it is taken up via different routes. The peanut cultivars were divided into two groups based on Cd translocation efficiency as follows: (1) high internal Cd translocation efficiency cultivar (Fenghua-6) and (2) low internal Cd translocation efficiency cultivars (Huayu-20 and Huayu-23). Compared with Fenghua-6, low Cd translocation cultivars Huayu-20 and Huayu-23 showed higher biomass production, especially in stems and leaves, leading to dilution of metal concentrations. Results also showed that Cd concentration in roots increased significantly with increasing Cd concentrations in soils when Cd was applied in the root zone. However, there were no significant differences in the root Cd concentrations between different pod zone Cd treatments and the control, suggesting that root uptake, rather than pod uptake, is responsible for Cd accumulation in the roots of peanuts. Significant differences of Cd distribution were observed between pod and root zone Cd exposure treatments. The three peanut cultivars revealed higher kernel over total Cd fractions for pod than for root zone Cd exposure if only extra applied Cd was considered. This suggests that uptake through peg and pod shell might, at least partially, be responsible for the variation in Cd re-distribution and accumulation among peanut cultivars. Cd uptake by plants via two routes (i.e., via roots and via pegs and pods, respectively) and internal Cd translocation

  14. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  15. Root branching: mechanisms, robustness, and plasticity.

    PubMed

    Dastidar, Mouli Ghosh; Jouannet, Virginie; Maizel, Alexis

    2012-01-01

    Plants are sessile organisms that must efficiently exploit their habitat for water and nutrients. The degree of root branching impacts the efficiency of water uptake, acquisition of nutrients, and anchorage. The root system of plants is a dynamic structure whose architecture is determined by modulation of primary root growth and root branching. This plasticity relies on the continuous integration of environmental inputs and endogenous developmental programs controlling root branching. This review focuses on the cellular and molecular mechanisms involved in the regulation of lateral root distribution, initiation, and organogenesis with the main focus on the root system of Arabidopsis thaliana. We also examine the mechanisms linking environmental changes to the developmental pathways controlling root branching. Recent progress that emphasizes the parallels to the formation of root branches in other species is discussed. PMID:23801487

  16. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  17. Knowing Chinese character grammar.

    PubMed

    Myers, James

    2016-02-01

    Chinese character structure has often been described as representing a kind of grammar, but the notion of character grammar has hardly been explored. Patterns in character element reduplication are particularly grammar-like, displaying discrete combinatoriality, binarity, phonology-like final prominence, and potentially the need for symbolic rules (X→XX). To test knowledge of these patterns, Chinese readers were asked to judge the acceptability of fake characters varying both in grammaticality (obeying or violating reduplication constraints) and in lexicality (of the reduplicative configurations). While lexical knowledge was important (lexicality improved acceptability and grammatical configurations were accepted more quickly when also lexical), grammatical knowledge was important as well, with grammaticality improving acceptability equally for lexical and nonlexical configurations. Acceptability was also higher for more frequent reduplicative elements, suggesting that the reduplicative configurations were decomposed. Chinese characters present an as-yet untapped resource for exploring fundamental questions about the nature of the human capacity for grammar. PMID:26684059

  18. Knowing Chinese character grammar.

    PubMed

    Myers, James

    2016-02-01

    Chinese character structure has often been described as representing a kind of grammar, but the notion of character grammar has hardly been explored. Patterns in character element reduplication are particularly grammar-like, displaying discrete combinatoriality, binarity, phonology-like final prominence, and potentially the need for symbolic rules (X→XX). To test knowledge of these patterns, Chinese readers were asked to judge the acceptability of fake characters varying both in grammaticality (obeying or violating reduplication constraints) and in lexicality (of the reduplicative configurations). While lexical knowledge was important (lexicality improved acceptability and grammatical configurations were accepted more quickly when also lexical), grammatical knowledge was important as well, with grammaticality improving acceptability equally for lexical and nonlexical configurations. Acceptability was also higher for more frequent reduplicative elements, suggesting that the reduplicative configurations were decomposed. Chinese characters present an as-yet untapped resource for exploring fundamental questions about the nature of the human capacity for grammar.

  19. Root crops and their biomass potential in Florida

    SciTech Connect

    O'Hair, S.K.; Locascio, S.J.; Forbes, R.R.; White, J.M.; Hensel, D.R.; Shumaker, J.R.; Dangler, J.M.

    1983-01-01

    Root and tuber crops are of particular interest as biofuel crops because of their ability to concentrate and store fermentables including starch and sugars, in enlarged organs at or below the soil surface. In Florida, harvest index, the storage organ biomass divided by total plant biomass, of sweet potato, fodder beet, cassava and potato has approached 0.80. Chicory, fodder beet, cassava and sweet potato produced a total plant yield of 16.0, 14.1, 11.4 and 11.3 t/ha, respectively. Since the crops vary for time to maturity and storage organ chemical composition, a conventional unit to equate yield differences is kilocalorie (kcal) production/ha/day. Of the warm season crops, sweet potato and cassava roots produced an estimated 32 and 14 x 10/sup 4/ kcal/ha/day, respectively. Chinese radish and rutabaga roots produced 18 and 17 x 10/sup 4/ kcal/ha/day. Thus, a year round average of as much as 25 x 10/sup 4/ kcal/ha/day has been demonstrated. In conjunction with the total potential biomass production by a plant, root and tuber crops may be able to surpass grain crops in fermentable productivity on a temporal and spacial basis. The factors that will contribute to this include developing the appropriate cultural practices for biomass production along with breeding and selecting for adaptability and favorable harvest index. Since many of these crops have been neglected from a research standpoint, there is little doubt that improvements can be made by further work. 27 references.

  20. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  1. Four cuspal maxillary second premolar with single root and three root canals: Case report.

    PubMed

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  2. Deciduous Mandibular Second Molar with Supernumerary Roots and Root Canals Associated with Missing Mandibular Permanent Premolar

    PubMed Central

    Shafi, Shabina; Gambhir, Natasha; Rehani, Usha

    2011-01-01

    Morphological variations like additional roots and root canals in human deciduous dentition are rare. Knowledge of the morphology, variation of root and root canals of deciduous teeth are useful for successful endodontic treatment and exodontia. Presented here is a case report of the supernumerary roots and additional root canals of deciduous mandibular second molar (85) with congenitally bilateral missing of mandibular permanent second premolar (35 and 45) tooth bud.

  3. Four cuspal maxillary second premolar with single root and three root canals: Case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Goyal, Ayush; Singh, Ritu

    2016-01-01

    Traditional configuration of maxillary second premolars has been described to have two cusps, one root and one or two root canals. The endodontic literature reports considerable anatomic aberrations in the root canal morphology of maxillary second premolar but the literature available on the variation in cuspal anatomy and its relationship to the root canal anatomy is sparse. The purpose of this clinical report was to describe the root and root canal configuration of a maxillary second premolar with four cusps. PMID:27563190

  4. Concepts of Chinese Folk Happiness

    ERIC Educational Resources Information Center

    Ip, Po Keung

    2011-01-01

    Discourses on Chinese folk happiness are often based on anecdotal narratives or qualitative analysis. Two traditional concepts of happiness popular in Chinese culture are introduced. The paper constructs a concept of Chinese folk happiness on basis of the findings of a scientific survey on the Taiwanese people regarding their concepts of…

  5. How Iconic Are Chinese Characters?

    ERIC Educational Resources Information Center

    Luk, Gigi; Bialystok, Ellen

    2005-01-01

    The study explores the notion that some Chinese characters contain pictorial indications of meanings that can be used to help retrieve the referent. Thirty adults with no prior knowledge of Chinese guessed the meanings of twenty Chinese characters by choosing between one of two photographs. Half of the characters were considered to be iconic and…

  6. Supporting Chinese Speaking Skills Online

    ERIC Educational Resources Information Center

    Stickler, Ursula; Shi, Lijing

    2013-01-01

    Chinese is considered a difficult language to learn by most Western learners, yet recently more and more people are learning Chinese, and increasingly teaching is delivered online. Due to the nature of Chinese and the complexity of online learning, research has not yet produced sufficient information on students' and teachers' interaction during…

  7. On Chinese Culture Curriculum Planning

    ERIC Educational Resources Information Center

    Wang, Catherine

    2006-01-01

    The importance of cultural elements in foreign language teaching has been widely accepted in recent years. This applies particularly to the teaching of Chinese as a foreign language (TCFL) to non-native Chinese speakers at tertiary level in mainland China. However, there is no commonly accepted blueprint that defines the parts of Chinese culture…

  8. The Chinese in Children's Books.

    ERIC Educational Resources Information Center

    New York Public Library, NY.

    This is a selective annotated list of children's books about China and the Chinese. Topics range from dynasties, the era of Western influence, emigration, revolution, to present day affairs. Most of the books have a Chinese setting, but some are about the Chinese in America. Listings are made under categories such as picture books, stories for…

  9. Chinese alchemy: confluence and transformation.

    PubMed

    Kao, J J

    1977-01-01

    The study of China's alchemical tradition can provide considerable insight into early Chinese medical theory, pharmaco-therapeutic practice and psychosomatic concepts. Chinese alchemy is a complex blending of philosophical, cosmological, physiological and natural scientific thought. This article presents a historical survey and analysis of some important aspects of Chinese alchemical research and theory.

  10. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  11. Excising the Root from STEM

    ERIC Educational Resources Information Center

    Lock, Roger

    2009-01-01

    There are a number of well-intentioned STEM initiatives, some designed to improve the recruitment and retention of science teachers. Sometimes it appears that the initiators are remote from direct contact with the "grass roots" issues that feed the "stem" on which the blossoms of young enthusiastic recruits to the science teaching profession are…

  12. Disease notes - Bacterial root rot

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  13. The Social Impact of "Roots"

    ERIC Educational Resources Information Center

    Hur, Kenneth K.; Robinson, John P.

    1978-01-01

    A survey revealed that a larger percentage of blacks than of whites had watched the television drama "Roots," considered it accurate, and discussed it with friends. The program's influence on the racial attitude of whites was found to be less than many media observers had believed. (GW)

  14. Ancient Chinese constellations

    NASA Astrophysics Data System (ADS)

    Xu, Junjun

    2011-06-01

    China, a country with a long history and a specific culture, has also a long and specific astronomy. Ancient Chinese astronomers observed the stars, named and distributed them into constellations in a very specific way, which is quite different from the current one. Around the Zodiac, stars are divided into four big regions corresponding with the four orientations, and each is related to a totem, either the Azure Dragon, the Vermilion Bird, the White Tiger or the Murky Warrior. We present a general pattern of the ancient Chinese constellations, including the four totems, their stars and their names.

  15. Integrated traditional Chinese medicine.

    PubMed

    Robinson, Nicola

    2006-05-01

    To experience the integration of traditional Chinese medicine (TCM) in China was 'the chance of a lifetime; thanks to the support of the Winston Churchill Memorial Trust. The scale and range of TCM available in terms of health care provision, education and research is unique in the world. This holistic integrative medicine is part of Chinese culture. Regulation and training of practitioners has similarities with current structures emerging in the UK in preparation for the statutory regulation for acupuncture and herbal medicine. China's research activity is a critical component of informing the debate on evidence-based practice and now real opportunities for collaboration and dissemination are beginning to emerge. PMID:16648091

  16. Modification of nitrate uptake pathway in plants affects the cadmium uptake by roots.

    PubMed

    Guan, Mei Yan; Fan, Shi Kai; Fang, Xian Zhi; Jin, Chong Wei

    2015-01-01

    NRT1.1 is a dual-affinity nitrate (NO3(-)) transporter involved in both high- and low-affinity NO3(-) uptake in Arabidopsis plants. In a recent study, we showed that, under cadmium (Cd) exposure, blocking the NRT1.1-mediated NO3(-) uptake reduces Cd entry into roots, thus lowing Cd levels in plants and improving plant growth. In addition, we also found that the Cd levels in edible parts of 11 Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars correlated well with the NO3(-) uptake rates of their roots. These results suggested that the NO3(-) uptake of roots negatively regulate Cd uptake. Modification of NO3(-) uptake in crops by modulating NO3(-) uptake pathway might provide a biological engineering approach to reducing Cd accumulation in edible organs, thus improving food safety.

  17. Investigation of VEGGIE Root Mat

    NASA Technical Reports Server (NTRS)

    Subbiah, Arun M.

    2013-01-01

    VEGGIE is a plant growth facility that utilizes the phenomenon of capillary action as its primary watering system. A cloth made of Meta Aramid fiber, known as Nomex is used to wick water up from a reservoir to the bottom of the plants roots. This root mat system is intended to be low maintenance with no moving parts and requires minimal crew interface time. Unfortunately, the water wicking rates are inconsistent throughout the plant life cycle, thus causing plants to die. Over-wicking of water occurs toward the beginning of the cycle, while under-wicking occurs toward the middle. This inconsistency of wicking has become a major issue, drastically inhibiting plant growth. The primary objective is to determine the root cause of the inconsistent wicking through experimental testing. Suspect causes for the capillary water column to break include: a vacuum effect due to a negative pressure gradient in the water reservoir, contamination of material due to minerals in water and back wash from plant fertilizer, induced air bubbles while using syringe refill method, and material limitations of Nomex's ability to absorb and retain water. Experimental testing will be conducted to systematically determine the cause of under and over-wicking. Pressure gages will be used to determine pressure drop during the course of the plant life cycle and during the water refill process. A debubbler device will be connected to a root mat in order to equalize pressure inside the reservoir. Moisture and evaporation tests will simultaneously be implemented to observe moisture content and wicking rates over the course of a plant cycle. Water retention tests will be performed using strips of Nomex to determine materials wicking rates, porosity, and absorptivity. Through these experimental tests, we will have a better understanding of material properties of Nomex, as well as determine the root cause of water column breakage. With consistent test results, a forward plan can be achieved to resolve

  18. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  19. Root formation in ethylene-insensitive plants.

    PubMed

    Clark, D G; Gubrium, E K; Barrett, J E; Nell, T A; Klee, H J

    1999-09-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.

  20. Being Chinese or Being Different: Chinese Undergraduates' Use of Discourses of Chineseness

    ERIC Educational Resources Information Center

    Skyrme, Gillian

    2014-01-01

    Myths about "the Chinese learner" developed from an outsider perspective abound in the Western world. The focus of this article, however, is how discourses of Chineseness were used by the Chinese international students themselves who, as undergraduate students in a New Zealand university, were the subjects of my doctoral research. It…

  1. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    PubMed

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  2. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community.

  3. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-08-19

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.

  4. Chinese New Year Dragons.

    ERIC Educational Resources Information Center

    Balgemann, Linda

    2000-01-01

    Presents an art project, used in a culturally diverse curriculum, in which second grade students create Chinese New Year dragons. Describes the process of creating the dragons, from the two-week construction of the head to the accordion-folded bodies. (CMK)

  5. Aspiration in Chinese

    NASA Astrophysics Data System (ADS)

    Chao, Huey-Ju.

    This dissertation studies aspiration in Chinese in these four areas: the temporal relationships between aspiration and the vowel of the syllable, the perception of aspiration, the correlation between pitch and aspiration, and the role of aspiration in a historical change in Chinese. Data based on 144 words with aspiration contrasts were derived from the experiments which involved production and perception by a total of 28 Chinese speakers. On the basis of the measurements of acoustical characteristics of the voice onset time and the lengths of the syllable, a constant ratio model has been proposed to describe the timing relationships among the elements within a syllable. The perceptual experiment tested the cues of aspiration by deleting the portion of the voice onset time from the syllable on the front, back, middle and both ends. The results are reported and discussed. The effects of aspiration on intrinsic tone heights in Mandarin were measured and the significance calculated. Finally some attempts are made to solve the development of aspiration from voiced obstruents under the condition of different tones from Middle Chinese to modern dialects.

  6. Negative Questions in Chinese

    ERIC Educational Resources Information Center

    Yat-shing, Cheung

    1974-01-01

    Mainly concerned with where negative questions in Chinese originate.An abstract treatment allows the derviation of all questions from a general underlying structure with disjunctive pattern and accounts for the discordance between the answer to a negative question and its answer particle. (Author/RM)

  7. Chinese Festivals and Customs.

    ERIC Educational Resources Information Center

    Green, Sandra Aili

    Traditional festivals and customs of the Chinese people are described in this publication which can be used with secondary level students. In the margins of the text are numbers which indicate slides and cultural objects that relate to the text. The text, however, can be used without the slides and objects. The following festivals are described:…

  8. Cataloging Pirated Chinese Books

    ERIC Educational Resources Information Center

    Wang, Sze-Tseng

    1971-01-01

    Various types of pirated Chinese books are given with specific examples. The basic steps followed for the proper identification of these books is described, and remedies suggested in case the original is discovered after the book has been cataloged according to the information given by the book pirate. (13 references) (Author/NH)

  9. The Imperative in Chinese.

    ERIC Educational Resources Information Center

    Hashimoto, Anne Yue

    A preliminary study of the syntactic characteristics of the imperative construction in modern Chinese is presented. The term "imperative" is used to refer to the type of syntactic construction which is marked by an implicit or explicit second person subject, and which expresses a direct command. Indirect or implied commands expressed by a…

  10. The role of strigolactones in root development

    PubMed Central

    Sun, Huwei; Tao, Jinyuan; Gu, Pengyuan; Xu, Guohua; Zhang, Yali

    2016-01-01

    Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions. PMID:26515106

  11. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-01

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  12. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  13. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography. PMID:27108314

  14. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography.

  15. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  16. How Roots Perceive and Respond to Gravity.

    ERIC Educational Resources Information Center

    Moore, Randy

    1984-01-01

    Discusses graviperception and gravitropism by plant roots. Indicates that graviperception occurs via sedimentation of amyloplasts in columella cells of the root cap and that the minimal graviresponsiveness of lateral roots may be due to the intensity of their caps to establish a concentration gradient of inhibitor(s) sufficient to affect…

  17. Root Cause Analysis: Methods and Mindsets.

    ERIC Educational Resources Information Center

    Kluch, Jacob H.

    This instructional unit is intended for use in training operations personnel and others involved in scram analysis at nuclear power plants in the techniques of root cause analysis. Four lessons are included. The first lesson provides an overview of the goals and benefits of the root cause analysis method. Root cause analysis techniques are covered…

  18. Root Cause Analysis, Part 2: STERILE COMPOUNDING.

    PubMed

    Cabaleiro, Joe; Jackson, Kathleen

    2016-01-01

    When an adverse event or near miss occurs in a pharmacy, eliminating the root cause to prevent recurrence is critically important. Addressing the root cause of the problem reduces the recurrence of putting patients and the pharmacy at risk. This article proposes a method for performing Root Cause Analysis applicable to sterile compounding. PMID:27323421

  19. QCD with rooted staggered fermions

    NASA Astrophysics Data System (ADS)

    Goltermann, M.

    In this talk, I will give an overview of the theoretical status of staggered Lattice QCD with the “fourth-root trick.” In this regularization of QCD, a separate staggered quark field is used for each physical flavor, and the inherent four-fold multiplicity that comes with the use of staggered fermions is removed by taking the fourth root of the staggered determinant for each flavor. At nonzero lattice spacing, the resulting theory is nonlocal and not unitary, but there are now strong arguments that this disease is cured in the continuum limit. In addition, the approach to the continuum limit can be understood in detail in the framework of effective field theories such as staggered chiral perturbation theory.

  20. Springback in Root Gravitropism 1

    PubMed Central

    Leopold, A. Carl; Wettlaufer, Scott H.

    1989-01-01

    Conditions under which a gravistimulus of Merit corn roots (Zea mays L.) is withdrawn result in a subsequent loss of gravitropic curvature, an effect which we refer to as `springback.' This loss of curvature begins within 1 to 10 minutes after removal of the gravistimulus. It occurs regardless of the presence or absence of the root cap. It is insensitive to inhibitors of auxin transport (2,3,5-triiodobenzoic acid, naphthylphthalmaic acid) or to added auxin (2,4-dichlorophenoxyacetic acid). Springback is prevented if a clinostat treatment is interjected to neutralize gravistimulation during germination, which suggests that the change in curvature is a response to a `memory' effect carried over from a prior gravistimulation. PMID:11537456

  1. Fine Root Longevity Still Under Debate

    NASA Astrophysics Data System (ADS)

    Keel, S. G.; Blackburn, M.; Campbell, C.; Högberg, M. N.; Richter, A.; Wild, B.; Högberg, P.

    2008-12-01

    Assuming that fine roots (< 2 mm in diameter) turn over once per year, they represent a third of the global annual net primary productivity. These turnover estimates are based on rhizotron studies, where root longevity is determined by monitoring the appearance/disappearance of roots on a screen, which is inserted into the soil. Much slower fine root turnover rates were found using carbon (C) isotope methods (either 14C dating or continuous 13C-labelling), resulting in root longevities of several years. Stable C isotope tracer experiments, are argued to overestimate fine root longevities, mainly because the smallest roots with the highest turn over, are easily missed during sampling. The goal of the present study was therefore to carry out a C-labelling experiment, and specifically focus on the finest roots, namely root tips. In addition we sampled whole fine roots (<1 mm and 1-3 mm in diameter), as in other studies. We pulse labelled 14-year-old Pinus sylvestris (Pine) trees in the field for only three hours with highly 13C-enriched CO2 (24 atom percent). The mean residence time (MRT) of recently assimilated C in root tips was determined, as a measure for root longevity. Already two days after labelling, recent C had been translocated from the crowns to fine roots indicating rapid belowground C allocation. 13C signals in root tips were stronger than in whole roots, which shows that they are the most active part of the root system. MRT of C calculated using first order exponential decay functions of C in bulk roots were around 20 days in both <1mm and 1-3mm roots and 29 days in root tips. A rapid decline in 13C signals was observed which could be explained by a rapid decrease in the signal of the sucrose pool, which had a MRT of 5 days. However, part of the labelled C had been allocated to a pool with a slower turnover rate (most likely structural compounds such as cellulose) as indicated by persisting 13C signals measured 120 days after labelling. MRT of C in

  2. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition.

    PubMed

    Miguel, Magalhaes Amade; Postma, Johannes Auke; Lynch, Jonathan Paul

    2015-04-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.

  3. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  4. Root-cubing and general root-powering methods for finding the zeros of polynomials

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Mathematical analysis technique generalizes a root squaring and root cubing method into a general root powering method. The introduction of partitioned polynomials into this general root powering method simplifies the coding of the polynomial transformations into input data suitable for processing by computer. The method includes analytic functions.

  5. Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape

    PubMed Central

    Nakamura, Shin-ichi

    2013-01-01

    Glutathione is a tripeptide involved in various aspects of plant metabolism. This study investigated the effects of the reduced form of glutathione (GSH) applied to specific organs (source leaves, sink leaves, and roots) on cadmium (Cd) distribution and behaviour in the roots of oilseed rape plants (Brassica napus) cultured hydroponically. The translocation ratio of Cd from roots to shoots was significantly lower in plants that had root treatment of GSH than in control plants. GSH applied to roots reduced the Cd concentration in the symplast sap of root cells and inhibited root-to-shoot Cd translocation via xylem vessels significantly. GSH applied to roots also activated Cd efflux from root cells to the hydroponic solution. Inhibition of root-to-shoot translocation of Cd was visualized, and the activation of Cd efflux from root cells was also shown by using a positron-emitting tracer imaging system (PETIS). This study investigated a similar inhibitory effect on root-to-shoot translocation of Cd by the oxidized form of glutathione, GSSG. Inhibition of Cd accumulation by GSH was abolished by a low-temperature treatment. Root cells of plants exposed to GSH in the root zone had less Cd available for xylem loading by actively excluding Cd from the roots. Consequently, root-to-shoot translocation of Cd was suppressed and Cd accumulation in the shoot decreased. PMID:23364937

  6. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  7. Light as stress factor to plant roots - case of root halotropism.

    PubMed

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  8. Chinese New Year Materials for Elementary Teachers.

    ERIC Educational Resources Information Center

    Kwok, Irene

    This is a resource book designed to be used by teachers in Chinese bilingual bicultural programs. The materials in the book are based on Chinese New Year customs still observed in Chinese-American communities. The resource book contains five types of materials: (1) a general introduction to the Chinese New Year, including the Chinese Lunar Year…

  9. Five Roots Pattern of Median Nerve Formation.

    PubMed

    Natsis, Konstantinos; Paraskevas, George; Tzika, Maria

    2016-01-01

    An unusual combination of median nerve's variations has been encountered in a male cadaver during routine educational dissection. In particular, the median nerve was formed by five roots; three roots originated from the lateral cord of the brachial plexus joined individually the median nerve's medial root. The latter (fourth) root was united with the lateral (fifth) root of the median nerve forming the median nerve distally in the upper arm and not the axilla as usually. In addition, the median nerve was situated medial to the brachial artery. We review comprehensively the relevant variants, their embryologic development and their potential clinical applications. PMID:27131354

  10. Penis-root perception of Koro patients.

    PubMed

    Chowdhury, A N

    1991-07-01

    Koro is an acute anxiety reaction in which the perception of decreased penis length because of intra-abdominal traction is the main feature. This study attempts to explore the penis-root perception of the Koro patients by a graphomotor projective test--the Draw-a-penis Test (DAPT). This controlled DAPT investigation shows that Koro patients perceived the penis as a detached organ with root-boundary definiteness as evidenced from their close penis-root perception. They also displayed reduced volumetric perception of penis-root than the normal subjects. These perceptual deviations in penis-root image are discussed in relation to their Koro vulnerability.

  11. Modelling root exploration of structured soils

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Bengough, Glyn; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    To overcome dry spells, plant roots can use macroscopic structures in the soil to reach deeper water reservoirs. We used R-SWMS, an explicit soil- and root water uptake model and integrated different kinds of macropores within the soil domain. Root growth is based on vector addition and influenced by the local soil parameters, e.g. penetrometer resistance or nutrient availability, around a growing root tip. Root water uptake from the macropore-bulk soil interface was simulated with respect to the contact area between roots and bulk soil. The macropore was assumed to be air-filled. A sensitivity analysis with a small domain containing a single macropore showed the influence of macropore inclination, bulk soil density, and root growth parameterisation on root system architecture. A simulation setup with a larger soil domain and a macropore structure derived from a previously grown tap-root system, showed the influence on water uptake. We could compare the simulation results with previously described experimental data from a field study. The simulations could show the feasibility of modelling root growth and water uptake in macroporous soil structures and could give an insight in the impact on the plant water status. Furthermore we were able to show the conditions under which root growth in macropores is useful for plants. As biopores are often coated with nutrient rich material, this modelling approach can also be useful to investigate the benefits of macropores for plant nutrient uptake.

  12. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  13. Optimal root arrangement of cereal crops

    NASA Astrophysics Data System (ADS)

    Jung, Yeonsu; Park, Keunhwan; Kim, Ho-Young

    2015-11-01

    The plant root absorbs water from the soil and supplies it to the rest part of the plant. It consists of a number of root fibers, through whose surfaces water uptake occurs. There is an intriguing observation that for most of cereal crops such as maize and wheat, the volume density of root in the soil declines exponentially as a function of depth. To understand this empirical finding, we construct a theoretical model of root water uptake, where mass transfer into root surface is modeled just as heat flux around a fin. Agreement between the theoretically predicted optimal root distribution in vertical direction and biological data supports the hypothesis that the plant root has evolved to achieve the optimal water uptake in competition with neighbors. This study has practical implication in the agricultural industry as well as optimal design of water transport networks in both micro- and macroscales. Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea.

  14. Chinese Experiences on Orthokeratology.

    PubMed

    Xie, Peiying; Guo, Xi

    2016-01-01

    The prevalence of myopia in Chinese children has been rising each year. Research has shown that orthokeratology is a good method for controlling the progression of myopia. In this article, we review the current prevalence of myopia, the development and management of orthokeratology, and the myopia control methods used in China. A physical and health survey release indicated that the ratio of poor vision in every range of ages is still high in China. During the past 17 years, Chinese doctors have developed a standard fitting procedure and medical management of orthokeratology patients. This article also reviews the clinical studies in China for Ortho-K lenses, such as myopia control, effects and safety, corneal change, and lens design and fitting. Finally, we review the development of the International Academy of Orthokeratology Asia in China. PMID:26704137

  15. Root cap removal increases root penetration resistance in maize (Zea mays L).

    PubMed

    Iijima, Morio; Higuchi, Toshifumi; Barlow, Peter W; Bengough, A Glyn

    2003-09-01

    The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact soil (1.4 g cm-3; penetration resistance 1.0 MPa), to evaluate the contribution of the cap to decreasing the impedance to root growth. Root elongation rate and diameter were the same for decapped and intact roots when the plants were grown in loose soil. In compacted soil, however, the elongation rate of decapped roots was only about half that of intact roots, whilst the diameter was 30% larger. Root penetration resistances of intact and decapped seminal axis were 0.31 and 0.52 MPa, respectively, when the roots were grown in compacted soil. These results indicated that the presence of a root cap alleviates much of the mechanical impedance to root penetration, and enables roots to grow faster in compacted soils. PMID:12885860

  16. Root cap removal increases root penetration resistance in maize (Zea mays L).

    PubMed

    Iijima, Morio; Higuchi, Toshifumi; Barlow, Peter W; Bengough, A Glyn

    2003-09-01

    The root cap assists the passage of the root through soil by means of its slimy mucilage secretion and by the sloughing of its outer cells. The root penetration resistance of decapped primary roots of maize (Zea mays L. cv. Mephisto) was compared with that of intact roots in loose (dry bulk density 1.0 g cm-3; penetration resistance 0.06 MPa) and compact soil (1.4 g cm-3; penetration resistance 1.0 MPa), to evaluate the contribution of the cap to decreasing the impedance to root growth. Root elongation rate and diameter were the same for decapped and intact roots when the plants were grown in loose soil. In compacted soil, however, the elongation rate of decapped roots was only about half that of intact roots, whilst the diameter was 30% larger. Root penetration resistances of intact and decapped seminal axis were 0.31 and 0.52 MPa, respectively, when the roots were grown in compacted soil. These results indicated that the presence of a root cap alleviates much of the mechanical impedance to root penetration, and enables roots to grow faster in compacted soils.

  17. Hydraulic responses of whole vines and individual roots of kiwifruit (Actinidia chinensis) following root severance.

    PubMed

    Black, Marykate Z; Patterson, Kevin J; Minchin, Peter E H; Gould, Kevin S; Clearwater, Michael J

    2011-05-01

    Whole vine (K(plant)) and individual root (K(root)) hydraulic conductances were measured in kiwifruit (Actinidia chinensis Planch. var. chinensis 'Hort16A') vines to observe hydraulic responses following partial root system excision. Heat dissipation and compensation heat pulse techniques were used to measure sap flow in trunks and individual roots, respectively. Sap flux and measurements of xylem pressure potential (Ψ) were used to calculate K(plant) and K(root) in vines with zero and ∼80% of roots severed. Whole vine transpiration (E), Ψ and K(plant) were significantly reduced within 24 h of root pruning, and did not recover within 6 weeks. Sap flux in intact roots increased within 24 h of root pruning, driven by an increase in the pressure gradient between the soil and canopy and without any change in root hydraulic conductance. Photosynthesis (A) and stomatal conductance (g(s)) were reduced, without significant effects on leaf internal CO(2) concentration (c(i)). Shoot growth rates were maintained; fruit growth and dry matter content were increased following pruning. The woody roots of kiwifruit did not demonstrate a rapid dynamic response to root system damage as has been observed previously in monocot seedlings. Increased sap flux in intact roots with no change in K(root) and only a moderate decline in shoot A suggests that under normal growing conditions root hydraulic conductance greatly exceeds requirements for adequate shoot hydration.

  18. Bioactivity-Guided Fractionation and GC/MS Fingerprinting of Angelica sinensis and Angelica archangelica Root Components for Antifungal and Mosquito Deterrent Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angelica sinensis and A. archangelica belong to the Umbelliferae and both are used in traditional Chinese medicine to treat gynecological and intestinal disorders. In this study, oils from three different A. sinensis collections and one A. archangelica root were analyzed by GC and GC/MS. The domin...

  19. Chinese Spacesuit Analysis

    NASA Technical Reports Server (NTRS)

    Croog, Lewis

    2010-01-01

    In 2008, China became only the 3rd nation to perform an Extravehicular Activity (EVA) from a spacecraft. An overview of the Chinese spacesuit and life support system were assessed from video downlinks during their EVA; from those assessments, spacesuit characteristics were identified. The spacesuits were compared against the Russian Orlan Spacesuit and the U.S. Extravehicular Mobility Unit (EMU). China's plans for future missions also were presented.

  20. Scope processing in Chinese.

    PubMed

    Zhou, Peng; Gao, Liqun

    2009-02-01

    The standard view maintains that quantifier scope interpretation results from an interaction between different modules: the syntax, the semantics as well as the pragmatics. Thus, by examining the mechanism of quantifier scope interpretation, we will certainly gain some insight into how these different modules interact with one another. To observe it, two experiments, an offline judgment task and an eye-tracking experiment, were conducted to investigate the interpretation of doubly quantified sentences in Chinese, like Mei-ge qiangdao dou qiang-le yi-ge yinhang (Every robber robbed a bank). According to current literature, doubly quantified sentences in Chinese like the above are unambiguous, which can only be interpreted as "for every robber x, there is a bank y, such that x robbed y"(surface scope reading), contrary to their ambiguous English counterparts, which also allow the interpretation that "there is a bank y, such that for every robber x, x robbed y"(inverse scope reading). Specifically, three questions were examined, that is, (i) What is the initial reading of doubly quantified sentences in Chinese? (ii) Whether inverse scope interpretation can be available if appropriate contexts are provided? (iii) What are the processing time courses engaged in quantifier scope interpretation? The results showed that (i) Initially, the language processor computes the surface scope representation and the inverse scope representation in parallel, thus, doubly quantified sentences in Chinese are ambiguous; (ii) The discourse information is not employed in initial processing of relative scope, it serves to evaluate the two representations in reanalysis; (iii) The lexical information of verbs affects their scope-taking patterns. We suggest that these findings provide evidence for the Modular Model, one of the major contenders in the literature on sentence processing.

  1. Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage.

    PubMed

    Weisskopf, Laure; Tomasi, Nicola; Santelia, Diana; Martinoia, Enrico; Langlade, Nicolas Bernard; Tabacchi, Raffaele; Abou-Mansour, Eliane

    2006-01-01

    The internal concentration of isoflavonoids in white lupin (Lupinus albus) cluster roots and the exudation of isoflavonoids by these roots were investigated with respect to the effects of phosphorus (P) supply, root type and cluster-root developmental stage. To identify and quantify the major isoflavonoids exuded by white lupin roots, we used high-pressure liquid chromatography (HPLC) coupled to electrospray ionization (ESI) in mass spectrometry (MS). The major exuded isoflavonoids were identified as genistein and hydroxygenistein and their corresponding mono- and diglucoside conjugates. Exudation of isoflavonoids during the incubation period used was higher in P-deficient than in P-sufficient plants and higher in cluster roots than in noncluster roots. The peak of exudation occurred in juvenile and immature cluster roots, while exudation decreased in mature cluster roots.Cluster-root exudation activity was characterized by a burst of isoflavonoids at the stage preceding the peak of organic acid exudation. The potential involvement of ATP-citrate lyase in controlling citrate and isoflavonoid exudation is discussed, as well as the possible impact of phenolics in repelling rhizosphere microbial citrate consumers. PMID:16866966

  2. Transmitting Chinese Medicine

    PubMed Central

    Scheid, Volker

    2015-01-01

    Historians of Chinese medicine acknowledge the plurality of Chinese medicine along both synchronic and diachronic dimensions. Yet, there remains a tendency to think of tradition as being defined by some unchanging features. The Chinese medical body is a case in point. This is assumed to have been formalised by the late Han dynasty around a system of internal organs, conduits, collaterals, and associated body structures. Although criticism was voiced from time to time, this body and the micro/macrocosmic cosmological resonances that underpin it are seen to persist until the present day. I challenge this view by attending to attempts by physicians in China and Japan in the period from the mid 16th to the late 18th century to reimagine this body. Working within the domain of cold damage therapeutics and combining philological scholarship, empirical observations, and new hermeneutic strategies these physicians worked their way towards a new territorial understanding of the body and of medicine as warfare that required an intimate familiarity with the body’s topography. In late imperial China this new view of the body and medicine was gradually re-absorbed into the mainstream. In Japan, however, it led to a break with this orthodoxy that in the Republican era became influential in China once more. I argue that attending further to the innovations of this period from a transnational perspective - commonly portrayed as one of decline - may help to go beyond the modern insistence to frame East Asian medicines as traditional. PMID:26869864

  3. Analysis of carotenoid accumulation and expression of carotenoid biosynthesis genes in different organs of Chinese cabbage (Brassica rapa subsp. pekinensis).

    PubMed

    Tuan, Pham Anh; Kim, Jae Kwang; Lee, Jeongyeo; Park, Woo Tae; Kwon, Do Yeon; Kim, Yeon Bok; Kim, Haeng Hoon; Kim, Hye Ran; Park, Sang Un

    2012-01-01

    The relationship between carotenoid accumulation and expression of carotenoid biosynthesis genes was investigated in the flowers, stems, young leaves, old leaves, and roots of Chinese cabbage (Brassica rapa subsp. pekinensis). Quantitative real-time PCR analysis showed that the mRNA levels of BrPSY, BrPDS, BrZDS, BrLCYB, BrLCYE, BrCHXB, and BrZEP leading to the production of carotenoids were highest in the flowers or the leaves and lowest in the roots of Chinese cabbage. In contrast, the mRNA expression of BrNCED, a gene involved in abscisic acid (ABA) biosynthesis, was highest in the roots. High-performance liquid chromatography revealed that carotenoids, namely, lutein and β-carotene, were distributed predominantly in the flowers and leaves, with very little in the underground organ, the roots. Specifically, old leaves contained 120.3 μg/g lutein and 103.93 μg/g β-carotene, which is the most potent dietary precursor of vitamin A. Moreover, we found a relatively large amount of cis isomers of β-carotene, namely, 9-cis β-carotene and 13-cis β-carotene, in Chinese cabbage. These results provide insight into carotenoid biosynthetic mechanisms in Chinese cabbage and may be helpful in the metabolic engineering of carotenoid biosynthesis in plants.

  4. Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy.

    PubMed

    Chan, Pui Hei; Zhang, Wendy L; Lau, Chung-Ho; Cheung, Chi Yuen; Keun, Hector C; Tsim, Karl W K; Lam, Henry

    2014-01-01

    Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. ¹H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of ¹H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied ¹H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites. PMID:24658570

  5. Metabonomic analysis of water extracts from different angelica roots by ¹H-nuclear magnetic resonance spectroscopy.

    PubMed

    Chan, Pui Hei; Zhang, Wendy L; Lau, Chung-Ho; Cheung, Chi Yuen; Keun, Hector C; Tsim, Karl W K; Lam, Henry

    2014-03-20

    Angelica Radix, the roots of the genus Angelica, has been used for more than 2,000 years as a traditional medicine in Eastern Asia. The Chinese Pharmacopoeia records more than 100 herbal formulae containing Angelica roots. There are two common sources of Angelica roots, Angelica sinensis from China and A. gigas from Korea. The two species of Angelica roots differ in their chemical compositions, pharmacological properties and clinical efficacy. ¹H-NMR metabolic profiling has recently emerged as a promising quality control method for food and herbal chemistry. We explored the use of ¹H-NMR metabolic profiling for the quality control of Angelica Radix. Unlike previous work, we performed the metabolic profiling on hot water extracts, so as to mimic the clinically relevant preparation method. Unsupervised principle component analyses of both the full spectral profile and a selection of targeted molecules revealed a clear differentiation of three types of Angelica roots. In addition, the levels of 13 common metabolites were measured. Statistically significant differences in the levels of glucose, fructose and threonine were found between different sources of Angelica. Ferulic acid, a marker commonly used to evaluate Angelica root, was detected in our samples, but the difference in ferulic acid levels between the samples was not statistically significant. Overall, we successfully applied ¹H-NMR metabolic profiling with water extraction to discriminate all three sources of Angelica roots, and obtained quantitative information of many common metabolites.

  6. Genetic and chemical characterization of white and red peony root derived from Paeonia lactiflora.

    PubMed

    Zhu, Shu; Yu, Xiaoli; Wu, Yuqiu; Shiraishi, Fumio; Kawahara, Nobuo; Komatsu, Katsuko

    2015-01-01

    Two kinds of peony roots--white peony root (WPR) and red peony root (RPR)--are used for different remedies in traditional Chinese medicine; however, most of them are derived from the same botanical origin, Paeonia lactiflora. The difference between WPR and RPR has been debated for a long time. This study attempted to clarify the genetic and chemical characteristics of WPR and RPR in order to provide a scientific dataset for their identification and effective use. The nucleotide sequence of nrDNA internal transcribed spacer (ITS) and the contents of 8 main bioactive constituents were analyzed from specimens of P. lactiflora, P. veitchii and two related species as well as crude drug samples of WPR, RPR and peony root produced in Japan. Of the samples derived from P. lactiflora, the WPR produced in the southern parts of China and the RPR produced in the northern parts of China were clearly divided into two subgroups within the P. lactiflora group based on similarity of the ITS sequences. The nucleotides at positions 69, 458 and 523 upstream of the ITS sequence served as molecular markers to discriminate between WPR and RPR. Quantitative analysis indicated that the RPR samples obviously contained a higher content of paeoniflorin and paeonol, but a lower content of albiflorin than the WPR produced in the southern parts of China and peony root produced in Japan. The WPR available from Chinese markets was usually processed by sulfur fumigation, which resulted in an extremely low content of paeoniflorin. This study indicated that WPR and RPR were not only geographically isolated, but also genetically and chemically separated. The ITS sequence provided a genetic index for their identification.

  7. Genetic and chemical characterization of white and red peony root derived from Paeonia lactiflora.

    PubMed

    Zhu, Shu; Yu, Xiaoli; Wu, Yuqiu; Shiraishi, Fumio; Kawahara, Nobuo; Komatsu, Katsuko

    2015-01-01

    Two kinds of peony roots--white peony root (WPR) and red peony root (RPR)--are used for different remedies in traditional Chinese medicine; however, most of them are derived from the same botanical origin, Paeonia lactiflora. The difference between WPR and RPR has been debated for a long time. This study attempted to clarify the genetic and chemical characteristics of WPR and RPR in order to provide a scientific dataset for their identification and effective use. The nucleotide sequence of nrDNA internal transcribed spacer (ITS) and the contents of 8 main bioactive constituents were analyzed from specimens of P. lactiflora, P. veitchii and two related species as well as crude drug samples of WPR, RPR and peony root produced in Japan. Of the samples derived from P. lactiflora, the WPR produced in the southern parts of China and the RPR produced in the northern parts of China were clearly divided into two subgroups within the P. lactiflora group based on similarity of the ITS sequences. The nucleotides at positions 69, 458 and 523 upstream of the ITS sequence served as molecular markers to discriminate between WPR and RPR. Quantitative analysis indicated that the RPR samples obviously contained a higher content of paeoniflorin and paeonol, but a lower content of albiflorin than the WPR produced in the southern parts of China and peony root produced in Japan. The WPR available from Chinese markets was usually processed by sulfur fumigation, which resulted in an extremely low content of paeoniflorin. This study indicated that WPR and RPR were not only geographically isolated, but also genetically and chemically separated. The ITS sequence provided a genetic index for their identification. PMID:25151277

  8. Root canal treatment of a maxillary first premolar with three roots

    PubMed Central

    Mathew, Josey; Devadathan, Aravindan; Syriac, Gibi; Shamini, Sai

    2015-01-01

    Successful root canal treatment needs a thorough knowledge of both internal and external anatomy of a tooth. Variations in root canal anatomy constitute an impressive challenge to the successful completion of endodontic treatment. Undetected extra roots and canals are a major reason for failed root canal treatment. Three separate roots in a maxillary first premolar have a very low incidence of 0.5–6%. Three rooted premolars are anatomically similar to molars and are sometimes called “small molars or radiculous molars.” This article explains the diagnosis and endodontic management of a three rooted maxillary premolar with separate canals in each root highlighting that statistics may indicate a low incidence of abnormal variations in root canal morphology of a tooth, but aberrant anatomy is a possibility in any tooth. Hence, modern diagnostics like cone beam computed tomography, and endodontic operating microscope may have to be used more for predictable endodontic treatment. PMID:26538958

  9. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.

  10. Patterns in soil fertility and root herbivory interact to influence fine-root dynamics.

    PubMed

    Stevens, Glen N; Jones, Robert H

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8-9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (< 1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P < 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P < 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  11. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Reed, R. C.; Brady, S. R.; Muday, G. K.

    1998-01-01

    In roots two distinct polar movements of auxin have been reported that may control different developmental and growth events. To test the hypothesis that auxin derived from the shoot and transported toward the root controls lateral root development, the two polarities of auxin transport were uncoupled in Arabidopsis. Local application of the auxin-transport inhibitor naphthylphthalamic acid (NPA) at the root-shoot junction decreased the number and density of lateral roots and reduced the free indoleacetic acid (IAA) levels in the root and [3H]IAA transport into the root. Application of NPA to the basal half of or at several positions along the root only reduced lateral root density in regions that were in contact with NPA or in regions apical to the site of application. Lateral root development was restored by application of IAA apical to NPA application. Lateral root development in Arabidopsis roots was also inhibited by excision of the shoot or dark growth and this inhibition was reversible by IAA. Together, these results are consistent with auxin transport from the shoot into the root controlling lateral root development.

  12. Foraging strategies in trees of different root morphology: the role of root lifespan.

    PubMed

    Adams, Thomas S; McCormack, M Luke; Eissenstat, David M

    2013-09-01

    Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology. PMID:24128849

  13. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  14. In vitro comparison of passive and continuous ultrasonic irrigation in curved root canals

    PubMed Central

    Castelo-Baz, Pablo; Varela-Patiño, Purificación; Cantatore, Giuseppe; Domínguez-Perez, Ana; Ruíz-Piñón, Manuel; Martín-Biedma, Benjamín

    2016-01-01

    Background The efficacy of endodontic irrigation procedures can be compromised by the complexity of the root canal system. Delivering irrigants to the apical third of curved canals presents a particular challenge to endodontists. This study compared the effects of two ultrasonic irrigation techniques on the penetration of sodium hypochlorite into the main canal and simulated lateral canals of curved roots in extracted teeth. Material and Methods Two sets of simulated lateral canals were created at 2, 4, and 6 mm from the working length in 60 single-rooted teeth (6 canals/tooth, n = 360 canals). The teeth were randomly divided into three experimental irrigation groups: group 1 (n = 20), positive pressure irrigation (PPI); group 2 (n = 20), passive ultrasonic irrigation (PUI); and group 3 (n = 20), continuous ultrasonic irrigation (CUI). To assess the irrigation solution penetration, 20% Chinese ink (Sanford Rotring GmbH, Hamburg, Germany) was added to a 5% sodium hypochlorite solution and delivered into the curved root canals. The penetration of contrast solution into the simulated lateral canals was scored by counting the number of lateral canals (0-2) penetrated to at least 50% of the total length. Results The CUI group showed significantly higher (P < 0.05) irrigant penetration into the lateral canals and into the apical third of the main canals. The PPI group showed significantly lower sodium hypochlorite penetration (P < 0.001) into the main and lateral canals compared with that in the CUI and PUI groups. Significantly higher irrigant penetration was observed in the PUI group than the PPI group. Conclusions Using CUI as the final rinse significantly increased the penetration of irrigant solution into the simulated lateral canals and apical third of curved roots. Key words:Continuous ultrasonic irrigation, curved root canals, passive ultrasonic irrigation, positive pressure irrigation, root canal irrigation. PMID:27703613

  15. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  16. A statistical approach to root system classification

    PubMed Central

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for “plant functional type” identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential. PMID:23914200

  17. The Source of Carbon for Root Respiration

    NASA Astrophysics Data System (ADS)

    Cisneros-Dozal, L.; Trumbore, S.; Zheng, S.

    2004-12-01

    In the Enriched Background Isotope Study (EBIS) that took advantage of a whole-ecosystem radiocarbon label that occurred in the temperate forest near Oak Ridge, Tennessee, we measured the radiocarbon signature of total soil respiration, heterotrophic respiration and root respiration, at different times during the last 3 growing seasons (2002-2004). By applying a mass balance approach, the relative and absolute contributions of heterotrophic and root respiration to total soil respiration were estimated. In contrast to heterotrophic respiration, root respiration seemed to be less affected by changes in soil moisture and temperature but rather showed a link to photosynthetic activity with a very similar pattern during the growing season as that of leaf area index. The radiocarbon signature of root respiration was very dynamic with low values in spring compared to the summer. The sources of variation can include changes in the local atmospheric signature and/or changes in the source of C being respired. Two different sites with different values and patterns of local atmospheric radiocarbon signature showed the same pattern in radiocarbon signatures of root respiration indicating that the source of variation was phenological. Low values during the spring could indicate the use of stored carbohydrates switching to more recent photosynthetic products as the summer progresses. As a first attempt to elucidate the source of C respired by roots, we will compare the radiocarbon content of starch, cellulose and soluble sugars in roots to that of bulk root material and root respired CO2. These radiocarbon signatures can help us identify the pool of C that is most likely being respired by roots during the growing season. A better understanding of the source of C for root respiration has implications for understanding the role of root respiration in C cycling in temperate forests, specifically the timescale over which carbon is fixed through photosynthesis and returned to the

  18. Genes controlling root development in rice.

    PubMed

    Mai, Chung D; Phung, Nhung Tp; To, Huong Tm; Gonin, Mathieu; Hoang, Giang T; Nguyen, Khanh L; Do, Vinh N; Courtois, Brigitte; Gantet, Pascal

    2014-12-01

    In this review, we report on the recent developments made using both genetics and functional genomics approaches in the discovery of genes controlling root development in rice. QTL detection in classical biparental mapping populations initially enabled the identification of a very large number of large chromosomal segments carrying root genes. Two segments with large effects have been positionally cloned, allowing the identification of two major genes. One of these genes conferred a tolerance to low phosphate content in soil, while the other conferred a tolerance to drought by controlling root gravitropism, resulting in root system expansion deep in the soil. Findings based on the higher-resolution QTL detection offered by the development of association mapping are discussed. In parallel with genetics approaches, efforts have been made to screen mutant libraries for lines presenting alterations in root development, allowing for the identification of several genes that control different steps of root development, such as crown root and lateral root initiation and emergence, meristem patterning, and the control of root growth. Some of these genes are closely phylogenetically related to Arabidopsis genes involved in the control of lateral root initiation. This close relationship stresses the conservation among plant species of an auxin responsive core gene regulatory network involved in the control of post-embryonic root initiation. In addition, we report on several genetic regulatory pathways that have been described only in rice. The complementarities and the expected convergence of the direct and reverse genetic approaches used to decipher the genetic determinants of root development in rice are discussed in regards to the high diversity characterizing this species and to the adaptations of rice root system architecture to different edaphic environments.

  19. A statistical approach to root system classification.

    PubMed

    Bodner, Gernot; Leitner, Daniel; Nakhforoosh, Alireza; Sobotik, Monika; Moder, Karl; Kaul, Hans-Peter

    2013-01-01

    Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

  20. Computer-Mediated Materials for Chinese Character Learning.

    ERIC Educational Resources Information Center

    Hsu, Hui-Mei; Gao, Liwei

    2002-01-01

    Reviews four sets of computer-mediated materials for Chinese character learning. These include the following: Write Chinese, Chinese Characters Primer, Animated Chinese Characters, and USC Chinese Character Page. (Author/VWL)

  1. Root hairs aid soil penetration by anchoring the root surface to pore walls

    PubMed Central

    Bengough, A. Glyn; Loades, Kenneth; McKenzie, Blair M.

    2016-01-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3–3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0–1.5g cm−3). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm−3 soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm−3 soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm−3). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm−3 soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. PMID:26798027

  2. The Adolescent Chinese Immigrant Student in Canada

    ERIC Educational Resources Information Center

    Chan, Lilian Y. O.

    1977-01-01

    The young Chinese student is seldom psychologically or academically prepared for immigration to Canada. Difficulties confronting Chinese adolescent immigrants include cultural problems and language difficulties. (SW)

  3. Chinese Treasure Chest: An Integrated Exploratory Chinese Language & Culture Program.

    ERIC Educational Resources Information Center

    Jensen, Inge-Lise; Verg-in, Yen-ti

    This publication describes the Chinese Treasure Chest project, an exploratory Chinese language and culture program developed by two elementary school teachers in the Aleutians East Borough (Alaska) School District. The project centers on the use of a large box of materials and a program plan designed to introduce elementary students in…

  4. A Rooted Net of Life

    PubMed Central

    2011-01-01

    Abstract Phylogenetic reconstruction using DNA and protein sequences has allowed the reconstruction of evolutionary histories encompassing all life. We present and discuss a means to incorporate much of this rich narrative into a single model that acknowledges the discrete evolutionary units that constitute the organism. Briefly, this Rooted Net of Life genome phylogeny is constructed around an initial, well resolved and rooted tree scaffold inferred from a supermatrix of combined ribosomal genes. Extant sampled ribosomes form the leaves of the tree scaffold. These leaves, but not necessarily the deeper parts of the scaffold, can be considered to represent a genome or pan-genome, and to be associated with members of other gene families within that sequenced (pan)genome. Unrooted phylogenies of gene families containing four or more members are reconstructed and superimposed over the scaffold. Initially, reticulations are formed where incongruities between topologies exist. Given sufficient evidence, edges may then be differentiated as those representing vertical lines of inheritance within lineages and those representing horizontal genetic transfers or endosymbioses between lineages. Reviewers W. Ford Doolittle, Eric Bapteste and Robert Beiko. PMID:21936906

  5. Roots at the percolation threshold

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  6. Roots at the percolation threshold.

    PubMed

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water? PMID:25974526

  7. Light modulates the root tip excision induced lateral root formation in tomato.

    PubMed

    Thomas, Sherinmol; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2014-01-01

    During plant growth and development, root tip performs multifarious functions integrating diverse external and internal stimuli to regulate root elongation and architecture. It is believed that a signal originating from root tip inhibits lateral root formation (LRF). The excision of root tip induced LRF in tomato seedlings associated with accumulation of auxin in pericycle founder cells. The excision of cotyledons slightly reduced LRF, whereas severing shoot from root completely abolished LRF. Exogenous ethylene application did not alter LRF. The response was modulated by light with higher LRF in seedlings exposed to light. Our results indicate that light plays a role in LRF in seedlings by likely modulating shoot derived auxin.

  8. Root phenology in a changing climate.

    PubMed

    Radville, Laura; McCormack, M Luke; Post, Eric; Eissenstat, David M

    2016-06-01

    Plant phenology is one of the strongest indicators of ecological responses to climate change, and altered phenology can have pronounced effects on net primary production, species composition in local communities, greenhouse gas fluxes, and ecosystem processes. Although many studies have shown that aboveground plant phenology advances with warmer temperatures, demonstration of a comparable association for belowground phenology has been lacking because the factors that influence root phenology are poorly understood. Because roots can constitute a large fraction of plant biomass, and root phenology may not respond to warming in the same way as shoots, this represents an important knowledge gap in our understanding of how climate change will influence phenology and plant performance. We review studies of root phenology and provide suggestions to direct future research. Only 29% of examined studies approached root phenology quantitatively, strongly limiting interpretation of results across studies. Therefore, we suggest that researchers emphasize quantitative analyses in future phenological studies. We suggest that root initiation, peak growth, and root cessation may be under different controls. Root initiation and cessation may be more constrained by soil temperature and the timing of carbon availability, whereas the timing of peak root growth may represent trade-offs among competing plant sinks. Roots probably do not experience winter dormancy in the same way as shoots: 89% of the studies that examined winter phenology found evidence of growth during winter months. More research is needed to observe root phenology, and future studies should be careful to capture winter and early season phenology. This should be done quantitatively, with direct observations of root growth utilizing rhizotrons or minirhizotrons. PMID:26931171

  9. Springback and diagravitropism in Merit corn roots.

    PubMed

    Kelly, M O; Leopold, A C

    1992-06-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  10. Temperature sensing by primary roots of maize

    NASA Technical Reports Server (NTRS)

    Poff, K. L.

    1990-01-01

    Zea mays L. seedlings, grown on agar plates at 26 degrees C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  11. Springback and diagravitropism in Merit corn roots.

    PubMed Central

    Kelly, M O; Leopold, A C

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots. PMID:11537884

  12. Advanced Techniques for Root Cause Analysis

    2000-09-19

    Five items make up this package, or can be used individually. The Chronological Safety Management Template utilizes a linear adaptation of the Integrated Safety Management System laid out in the form of a template that greatly enhances the ability of the analyst to perform the first step of any investigation which is to gather all pertinent facts and identify causal factors. The Problem Analysis Tree is a simple three (3) level problem analysis tree whichmore » is easier for organizations outside of WSRC to use. Another part is the Systemic Root Cause Tree. One of the most basic and unique features of Expanded Root Cause Analysis is the Systemic Root Cause portion of the Expanded Root Cause Pyramid. The Systemic Root Causes are even more basic than the Programmatic Root Causes and represent Root Causes that cut across multiple (if not all) programs in an organization. the Systemic Root Cause portion contains 51 causes embedded at the bottom level of a three level Systemic Root Cause Tree that is divided into logical, organizationally based categorie to assist the analyst. The Computer Aided Root Cause Analysis that allows the analyst at each level of the Pyramid to a) obtain a brief description of the cause that is being considered, b) record a decision that the item is applicable, c) proceed to the next level of the Pyramid to see only those items at the next level of the tree that are relevant to the particular cause that has been chosen, and d) at the end of the process automatically print out a summary report of the incident, the causal factors as they relate to the safety management system, the probable causes, apparent causes, Programmatic Root Causes and Systemic Root Causes for each causal factor and the associated corrective action.« less

  13. Water Transport in Maize Roots 1

    PubMed Central

    Steudle, Ernst; Oren, Ram; Schulze, Ernst-Detlef

    1987-01-01

    A root pressure probe has been used to measure the root pressure (Pr) exerted by excised main roots of young maize plants (Zea Mays L.). Defined gradients of hydrostatic and osmotic pressure could be set up between root xylem and medium to induce radial water flows across the root cylinder in both directions. The hydraulic conductivity of the root (Lpr) was evaluated from root pressure relaxations. When permeating solutes were added to the medium, biphasic root pressure relaxations were observed with water and solute phases and root pressure minima (maxima) which allowed the estimation of permeability (PSr) and reflection coefficients (σsr) of roots. Reflection coefficients were: ethanol, 0.27; mannitol, 0.74; sucrose, 0.54; PEG 1000, 0.82; NaCl, 0.64; KNO3, 0.67, and permeability coefficients (in 10−8 meters per second): ethanol, 4.7; sucrose, 1.6; and NaCl, 5.7. Lpr was very different for osmotic and hydrostatic gradients. For hydrostatic gradients Lpr was 1·10−7 meters per second per megapascal, whereas in osmotic experiments the hydraulic conductivity was found to be an order of magnitude lower. For hydrostatic gradients, the exosmotic Lpr was about 15% larger than the endosmotic, whereas in osmotic experiments the polarity in the water movement was reversed. These results either suggest effects of unstirred layers at the osmotic barrier in the root, an asymmetrical barrier, and/or mechanical effects. Measurements of the hydraulic conductivity of individual root cortex cells revealed an Lp similar to Lpr (hydrostatic). It is concluded that, in the presence of external hydrostatic gradients, water moves primarily in the apoplast, whereas in the presence of osmotic gradients this component is much smaller in relation to the cell-to-cell component (symplasmic plus transcellular transport). PMID:16665588

  14. Temperature sensing by primary roots of maize

    SciTech Connect

    Fortin, M.C.A.; Poff, K.L. )

    1990-09-01

    Zea mays L. seedlings, grown on agar plates at 26{degree}C, reoriented the original vertical direction of their primary root when exposed to a thermal gradient applied perpendicular to the gravity vector. The magnitude and direction of curvature can not be explained simply by either a temperature or a humidity effect on root elongation. It is concluded that primary roots of maize sense temperature gradients in addition to sensing the gravitational force.

  15. Springback and diagravitropism in Merit corn roots

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Dark-treated Merit corn (Zea mays L.) roots are diagravitropic and lose curvature upon withdrawal of the gravity stimulus (springback). Springback was not detected in a variety of corn that is orthogravitropic in the dark, nor in Merit roots in which tropistic response was enhanced either with red light or with abscisic acid. A possible interpretation is that springback may be associated with a weak growth response of diagravitropic roots.

  16. Root doctors as providers of primary care.

    PubMed

    Stitt, V J

    1983-07-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two "root doctors." These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care.

  17. Root Doctors as Providers of Primary Care

    PubMed Central

    Stitt, Van J.

    1983-01-01

    Physicians in primary care recognize that as many as 65 percent of the patients seen in their offices are there for psychological reasons. In any southern town with a moderate population of blacks, there are at least two “root doctors.” These root doctors have mastered the power of autosuggestion and are treating these patients with various forms of medication and psychological counseling. This paper updates the practicing physician on root doctors who practice primary care. PMID:6887277

  18. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    PubMed Central

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  19. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots.

    PubMed

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc'h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A; Belko, Marème N; Bennett, Malcolm J; Gantet, Pascal; Wells, Darren M; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  20. Root-to-Root Travel of the Beneficial Bacterium Azospirillum brasilense†

    PubMed Central

    Bashan, Yoav; Holguin, Gina

    1994-01-01

    The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root. PMID:16349297

  1. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  2. A Chinese Zodiac Mathematical Structure.

    ERIC Educational Resources Information Center

    Lamb, John F., Jr.

    2000-01-01

    Helps students identify the animal that corresponds to the year of their birth according to the Chinese zodiac. Defines the structure of the Chinese zodiac so that the subsets of compatibles and opposites form closed substructures with interesting mathematical properties. (ASK)

  3. Internationalization of Chinese Higher Education

    ERIC Educational Resources Information Center

    Chen, Linhan; Huang, Danyan

    2013-01-01

    This paper probes into the development of internationalization of higher education in China from ancient times to modern times, including the emergence of international connections in Chinese higher education and the subsequent development of such connections, the further development of internationalization of Chinese higher education, and the…

  4. Chinese Converstations: An Intellectual Profile.

    ERIC Educational Resources Information Center

    Cogan, John J.

    1980-01-01

    A profile of how Chinese urban intellectuals view life in their country is presented. Information was obtained through many conversations with Chinese educators and students during the author's visit to China. Discussed are family, education, the cultural revolution, the Gang of Four, the quest for modernization, and the policy toward…

  5. Chinese American Experience: San Francisco.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Stanford Program on International and Cross Cultural Education.

    This unit encourages students to explore the history and current situation of Chinese Americans. Organized around five lesson plans, the unit's first lesson begins with the students' own perceptions of Chinese Americans, followed by a quiz that provides relevant background information. The second lesson examines the general history of Chinese…

  6. Chinese English Learners' Strategic Competence

    ERIC Educational Resources Information Center

    Wang, Dianjian; Lai, Hongling; Leslie, Michael

    2015-01-01

    The present study aims to investigate Chinese English learners' ability to use communication strategies (CSs). The subjects are put in a relatively real English referential communication setting and the analyses of the research data show that Chinese English learners, when encountering problems in foreign language (FL) communication, are…

  7. Neuroanatomical markers of speaking Chinese.

    PubMed

    Crinion, Jenny T; Green, David W; Chung, Rita; Ali, Nliufa; Grogan, Alice; Price, Gavin R; Mechelli, Andrea; Price, Cathy J

    2009-12-01

    The aim of this study was to identify regional structural differences in the brains of native speakers of a tonal language (Chinese) compared to nontonal (European) language speakers. Our expectation was that there would be differences in regions implicated in pitch perception and production. We therefore compared structural brain images in three groups of participants: 31 who were native Chinese speakers; 7 who were native English speakers who had learnt Chinese in adulthood; and 21 European multilinguals who did not speak Chinese. The results identified two brain regions in the vicinity of the right anterior temporal lobe and the left insula where speakers of Chinese had significantly greater gray and white matter density compared with those who did not speak Chinese. Importantly, the effects were found in both native Chinese speakers and European subjects who learnt Chinese as a non-native language, illustrating that they were language related and not ethnicity effects. On the basis of prior studies, we suggest that the locations of these gray and white matter changes in speakers of a tonal language are consistent with a role in linking the pitch of words to their meaning.

  8. Nominal Modifiers in Mandarin Chinese.

    ERIC Educational Resources Information Center

    Hou, John Y.

    In the surface structure of Chinese nominal modifiers (quantifiers, determiners, adjectives, measure phrase, relative clause, etc.) may occur either before or after a modified noun. In most of the transformational studies of Chinese syntax (e.g. Cheng 1966; Hashimoto 1966; Mei 1972; Tai 1973; Teng 1974), it has been assumed that such NP's have the…

  9. Retroflex Endings in Ancient Chinese

    ERIC Educational Resources Information Center

    Hashimoto, Mantaro J.

    1973-01-01

    Reconstruction of Ancient Chinese retroflex endings (syllable-final consonants) based on internal phonological evidence in Modern Chinese. Paper read at the December 1972 meeting of the Kukeo Hakhoe (The National Language Association of Korea); research supported by the Social Science Research Council, Committee for Korean Studies. (RS)

  10. Devil's claw root: ulcers and gastrointestinal bleeding?

    PubMed

    2013-12-01

    Harpagophytum procumbens, or devil's claw, is an African plant whose root is used to relieve minor joint symptoms. Several cases of gastrointestinal bleeding associated with the use of devil's claw root have been reported. A systematic review of the adverse effects of devil's claw root in about 20 randomised, double-blind, placebo-controlled clinical trials showed mainly gastrointestinal effects: gastralgia and dyspepsia. In practice, devil's claw root exposes patients to the risk of sometimes serious upper gastrointestinal disorders, yet has no established efficacy beyond a placebo effect. It is best avoided. PMID:24600731

  11. Genetic ablation of root cap cells in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Tsugeki, R.; Fedoroff, N. V.

    1999-01-01

    The root cap is increasingly appreciated as a complex and dynamic plant organ. Root caps sense and transmit environmental signals, synthesize and secrete small molecules and macromolecules, and in some species shed metabolically active cells. However, it is not known whether root caps are essential for normal shoot and root development. We report the identification of a root cap-specific promoter and describe its use to genetically ablate root caps by directing root cap-specific expression of a diphtheria toxin A-chain gene. Transgenic toxin-expressing plants are viable and have normal aerial parts but agravitropic roots, implying loss of root cap function. Several cell layers are missing from the transgenic root caps, and the remaining cells are abnormal. Although the radial organization of the roots is normal in toxin-expressing plants, the root tips have fewer cytoplasmically dense cells than do wild-type root tips, suggesting that root meristematic activity is lower in transgenic than in wild-type plants. The roots of transgenic plants have more lateral roots and these are, in turn, more highly branched than those of wild-type plants. Thus, root cap ablation alters root architecture both by inhibiting root meristematic activity and by stimulating lateral root initiation. These observations imply that the root caps contain essential components of the signaling system that determines root architecture.

  12. Mineral nutrition and adventitious rooting in microcuttings of Eucalyptus globulus.

    PubMed

    Schwambach, Joséli; Fadanelli, Cristina; Fett-Neto, Arthur G

    2005-04-01

    We characterized the adventitious rooting response of Eucalyptus globulus Labill. to various concentrations of calcium, nitrogen, phosphorus, iron, manganese, zinc, boron and copper. The parameters analyzed were percent rooting, root number, root length and mean rooting time. Root number and root length were significantly affected by mineral nutrition, whereas mean rooting time and rooting percentage seemed to be closely related to auxin availability. Root number was affected by calcium, nitrogen source and zinc, whereas root length was influenced by concentrations of phosphorus, iron and manganese, and by nitrogen source. Based on these results, we evaluated various combinations of several concentrations of these minerals in each rooting phase. Cuttings that were rooted in an optimized mineral nutrient medium and acclimatized to ex-vitro conditions for two months showed significantly higher survival after transplanting and drought stress than cuttings rooted in basal medium and treated in the same way.

  13. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  14. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  15. ROOT CAUSE ANALYSIS PROGRAM MANUAL

    SciTech Connect

    Gravois, Melanie C.

    2007-05-02

    Root Cause Analysis (RCA) identifies the cause of an adverse condition that, if corrected, will preclude recurrence or greatly reduce the probability of recurrence of the same or similar adverse conditions and thereby protect the health and safety of the public, the workers, and the environment. This procedure sets forth the requirements for management determination and the selection of RCA methods and implementation of RCAs that are a result of significant findings from Price-Anderson Amendments Act (PAAA) violations, occurrences/events, Significant Adverse Conditions, and external oversight Corrective Action Requests (CARs) generated by the Office of Enforcement (PAAA headquarters), the U.S. Environmental Protection Agency, and other oversight entities against Lawrence Berkeley National Laboratory (LBNL). Performance of an RCA may result in the identification of issues that should be reported in accordance with the Issues Management Program Manual.

  16. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    PubMed

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  17. Chinese Armillary Spheres

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    The armillary sphere was perhaps the most important type of astronomical instrument in ancient China. It was first invented by Luoxia Hong in the first century BC. After Han times, the structure of the armillary sphere became increasingly sophisticated by including more and more rings representing various celestial movements as recognized by the Chinese astronomers. By the eighth century, the Chinese armillary sphere consisted of three concentric sets of rings revolving on the south-north polar axis. The relative position of the rings could be adjusted to reflect the precession of the equinoxes and the regression of the Moon's nodes along the ecliptic. To counterbalance the defect caused by too many rings, Guo Shoujing from the late thirteenth century constructed the Simplified Instruments which reorganized the rings of the armillary sphere into separate instruments for measuring equatorial coordinates and horizontal coordinates. The armillary sphere was still preserved because it was a good illustration of celestial movements. A fifteenth-century replica of Guo Shoujing's armillary sphere still exists today.

  18. Root-soil relationships and terroir

    NASA Astrophysics Data System (ADS)

    Tomasi, Diego

    2015-04-01

    Soil features, along with climate, are among the most important determinants of a succesful grape production in a certain area. Most of the studies, so far, investigated the above-ground vine response to differente edaphic and climate condition, but it is clearly not sufficient to explain the vine whole behaviour. In fact, roots represent an important part of the terroir system (soil-plant-atmosphere-man), and their study can provide better comprehension of vine responses to different environments. The root density and distribution, the ability of deep-rooting and regenerating new roots are good indicators of root well-being, and represents the basis for an efficient physiological activity of the root system. Root deepening and distribution are strongly dependent and sensitive on soil type and soil properties, while root density is affected mostly by canopy size, rootstock and water availability. According to root well-being, soil management strategies should alleviate soil impediments, improving aeration and microbial activity. Moreover, agronomic practices can impact root system performance and influence the above-ground growth. It is well known, for example, that the root system size is largely diminished by high planting densities. Close vine spacings stimulate a more effective utilization of the available soil, water and nutrients, but if the competition for available soil becomes too high, it can repress vine growth, and compromise vineyard longevity, productivity and reaction to growing season weather. Development of resilient rootstocks, more efficient in terms of water and nutrient uptake and capable of dealing with climate and soil extremes (drought, high salinity) are primary goals fore future research. The use of these rootstocks will benefit a more sustainable use of the soil resources and the preservation and valorisation of the terroir.

  19. Malformations of the tooth root in humans.

    PubMed

    Luder, Hans U

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  20. Malformations of the tooth root in humans

    PubMed Central

    Luder, Hans U.

    2015-01-01

    The most common root malformations in humans arise from either developmental disorders of the root alone or disorders of radicular development as part of a general tooth dysplasia. The aim of this review is to relate the characteristics of these root malformations to potentially disrupted processes involved in radicular morphogenesis. Radicular morphogenesis proceeds under the control of Hertwig's epithelial root sheath (HERS) which determines the number, length, and shape of the root, induces the formation of radicular dentin, and participates in the development of root cementum. Formation of HERS at the transition from crown to root development appears to be very insensitive to adverse effects, with the result that rootless teeth are extremely rare. In contrast, shortened roots as a consequence of impaired or prematurely halted apical growth of HERS constitute the most prevalent radicular dysplasia which occurs due to trauma and unknown reasons as well as in association with dentin disorders. While odontoblast differentiation inevitably stops when growth of HERS is arrested, it seems to be unaffected even in cases of severe dentin dysplasias such as regional odontodysplasia and dentin dysplasia type I. As a result radicular dentin formation is at least initiated and progresses for a limited time. The only condition affecting cementogenesis is hypophosphatasia which disrupts the formation of acellular cementum through an inhibition of mineralization. A process particularly susceptible to adverse effects appears to be the formation of the furcation in multirooted teeth. Impairment or disruption of this process entails taurodontism, single-rooted posterior teeth, and misshapen furcations. Thus, even though many characteristics of human root malformations can be related to disorders of specific processes involved in radicular morphogenesis, precise inferences as to the pathogenesis of these dysplasias are hampered by the still limited knowledge on root formation

  1. [Effects of root zone hypoxia on respiratory metabolism of cucumber seedlings roots].

    PubMed

    Kang, Yun-Yan; Guo, Shi-Rong; Duan, Jiu-Ju

    2008-03-01

    With the seedlings of Lübachun No. 4, a hypoxia-resistant cultivar, and Zhongnong No. 8, a hypoxia-sensitive cultivar, as test materials, and by the method of solution culture, this paper studied the effects of root zone hypoxia on their roots' respiratory metabolism. The results showed that root zone hypoxia inhibited the tricarboxylic acid (TCA) cycle significantly, But accelerated the anaerobic respiration of cucumber roots. Under root zone hypoxia stress, the decrement of succinic dehydrogenase (SDH) and isocitric dehydrogenase (IDH) activities and the increment of lactate dehydrogenase (LDH) activity and lactate and pyruvate contents were lesser in Lübachun No. 4 than in Zhongnong No. 8 seedlings roots, but conversely, the increment of pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities and alcohol and alanine contents in Lübachun No. 4 seedlings roots were higher than those in Zhongnong No. 8 seedlings roots. On the 8th day of hypoxia stress, the ADH activity and alcohol and alanine contents increased by 409.30%, 112.13% and 30.64% in Lübachun No. 4 roots and by 110.42%, 31.84% and 4.78% in Zhongnong No. 8 roots, respectively, compared with the control. No significant differences in the alanine aminotransferase (AlaAT) activity and acetaldehyde content were observed between the two cultivars. It was concluded that the acceleration of alcohol fermentation and the accumulation of alanine were in favor of the enhancement of root zone hypoxia tolerance of cucumber roots.

  2. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  3. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  4. Root susceptibility and inoculum production from roots of eastern oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Oak radicles of several eastern oak species were exposed to zoospore suspensions of 1, 10, 100, or 1000 zoospores per ml at ...

  5. Root susceptibility and inoculum production from roots of Eastern United States oak species to Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known about root susceptibility of eastern U.S. tree species to Phytophthora ramorum. In this study, we examined root susceptibility and inoculum production from roots. Sprouted acorns of Q. rubra, Q. palustrus, Q. coccinia, Q. alba, Q. michauxii and Q. prinus were exposed to motile zoos...

  6. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.

  7. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis.

    PubMed

    Zhang, Liping; Pei, Yanxi; Wang, Hongjiao; Jin, Zhuping; Liu, Zhiqiang; Qiao, Zengjie; Fang, Huihui; Zhang, Yanjie

    2015-01-01

    Hydrogen sulfide (H2S) is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd-) induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS), a H2S donor, alleviated the growth inhibition caused by Cd in roots-this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage.

  8. Multicultural Awareness for the Classroom: The Chinese.

    ERIC Educational Resources Information Center

    Valbuena, Felix Mario; And Others

    This guide provides the teacher of multiethnic students with information and teaching resources on Chinese. An historical overview of China and the Chinese experience in America is presented in English and Chinese. Several lesson plans and classroom activities reviewing Chinese geography, holidays, legends, and stories are presented. (APM)

  9. Transitioning Challenges Faced by Chinese Graduate Students

    ERIC Educational Resources Information Center

    Huang, Ying

    2012-01-01

    This literature review examines transitioning challenges faced by Chinese international students who pursue graduate degrees in the United States. Based on existing research on adulthood in U.S. and Chinese contexts and the features of Chinese graduate students, Chinese adults, and international students as learners in Western countries, the…

  10. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  11. Effect of Root System Morphology on Root-sprouting and Shoot-rooting Abilities in 123 Plant Species from Eroded Lands in North-east Spain

    PubMed Central

    GUERRERO-CAMPO, JOAQUÍN; PALACIO, SARA; PÉREZ-RONTOMÉ, CARMEN; MONTSERRAT-MARTÍ, GABRIEL

    2006-01-01

    • Background and Aims The objective of this study was to test whether the mean values of several root morphological variables were related to the ability to develop root-borne shoots and/or shoot-borne roots in a wide range of vascular plants. • Methods A comparative study was carried out on the 123 most common plant species from eroded lands in north-east Spain. After careful excavations in the field, measurements were taken of the maximum root depth, absolute and relative basal root diameter, specific root length (SRL), and the root depth/root lateral spread ratio on at least three individuals per species. Shoot-rooting and root-sprouting were observed in a large number of individuals in many eroded and sedimentary environments. The effect of life history and phylogeny on shoot-rooting and root-sprouting abilities was also analysed. • Key Results The species with coarse and deep tap-roots tended to be root-sprouting and those with fine, fasciculate and long main roots (which generally spread laterally), tended to be shoot-rooting. Phylogeny had an important influence on root system morphology and shoot-rooting and root-sprouting capacities. However, the above relations stood after applying analyses based on phylogenetically independent contrasts (PICs). • Conclusions The main morphological features of the root system of the study species are related to their ability to sprout from their roots and form roots from their shoots. According to the results, such abilities might only be functionally viable in restricted root system morphologies and ecological strategies. PMID:16790468

  12. The teacher-disciple tradition and secret teaching in Chinese medicine.

    PubMed

    Solos, Ioannis; Liang, Yuan; Yue, Guang-xin

    2014-01-01

    The ancient teacher-disciple tradition is regarded as one of the most celebrated practices within the Chinese medicine world. Such traditions of secrecy, private wisdom and honor are deeply rooted in the theories of Confucianism. This paper only explores the surface of this ancient culture, by investigating relevant popular ancient texts and common Chinese proverbs, as well as utilizing personal experiences, in order to reflect on how the ancient Chinese perceived such practices within their own society and how secret teaching was passed on from teacher to student, including the revelation of secret formulas and their importance and how that tradition differs from our modern-day perspectives. Various rare manuscripts from the author's personal library are employed in order to provide relative examples of the importance of secret knowledge, and how these secrets applied in the traditional healing.

  13. Maize root characteristis that enhance flooding tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant root systems have several cellular and molecular adaptations that are important in reducing stress caused by flooding. Of these, two physical properties of root systems provide an initial barrier toward the avoidance of stress. These are the presence of aerenchyma cells and rapid adventitious ...

  14. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  15. Enhancing Students' Understanding of Square Roots

    ERIC Educational Resources Information Center

    Wiesman, Jeff L.

    2015-01-01

    Students enrolled in a middle school prealgebra or algebra course often struggle to conceptualize and understand the meaning of radical notation when it is introduced. For example, although it is important for students to approximate the decimal value of a number such as [square root of] 30 and estimate the value of a square root in the form of…

  16. ACETOGENIC BACTERIA ASSOCIATED WITH SEAGRASS ROOTS

    EPA Science Inventory

    Seagrasses are adapted to being rooted in reduced, anoxic sediments with high rates of sulfate reduction. During the day, an oxygen gradient is generated around the roots, becoming anoxic at night. Thus, obligate anaerobic bacteria in the rhizosphere have to tolerate elevated oxy...

  17. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  18. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  19. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  20. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  1. 33 CFR 117.1095 - Root River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Root River. 117.1095 Section 117.1095 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Wisconsin § 117.1095 Root River. (a) The draw of the Main...

  2. Indoleacetic acid movement in the root cap.

    PubMed

    Pernet, J J; Pilet, P E

    1976-01-01

    When applied on the root cap of Zea mays L., indol-3yl-acetic acid (IAA) may enter the root tip and move basipetally inside the cap. From the cap to the apex (quiescent centre and meristem) the IAA transport is very slow. Polarity of IAA movement, in relation to growth, is discussed.

  3. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  4. Method for Constructing Standardized Simulated Root Canals.

    ERIC Educational Resources Information Center

    Schulz-Bongert, Udo; Weine, Franklin S.

    1990-01-01

    The construction of visual and manipulative aids, clear resin blocks with root-canal-like spaces, for simulation of root canals is explained. Time, materials, and techniques are discussed. The method allows for comparison of canals, creation of any configuration of canals, and easy presentation during instruction. (MSE)

  5. Rapid phenotyping of alfalfa root system architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Root system architecture (RSA) influences the capacity of an alfalfa plant for symbiotic nitrogen fixation, nutrient uptake and water use efficiency, resistance to frost heaving, winterhardiness, and some pest and pathogen resistance. However, we currently lack a basic understanding of root system d...

  6. Fate of HERS during Tooth Root Development

    PubMed Central

    Huang, Xiaofeng; Bringas, Pablo; Slavkin, Harold C.; Chai, Yang

    2009-01-01

    Tooth root development begins after the completion of crown formation in mammals. Previous studies have shown that Hertwig's epithelial root sheath (HERS) plays an important role in root development, but the fate of HERS has remained unknown. In order to investigate the morphological fate and analyze the dynamic movement of HERS cells in vivo, we generated K14-Cre;R26R mice. HERS cells are detectable on the surface of the root throughout root formation and do not disappear. Most of the HERS cells are attached to the surface of the cementum, and others separate to become the epithelial rest of Malasez. HERS cells secrete extracellular matrix components onto the surface of the dentin before dental follicle cells penetrate the HERS network to contact dentin. HERS cells also participate in the cementum development and may differentiate into cementocytes. During root development, the HERS is not interrupted, and instead the HERS cells continue to communicate with each other through the network structure. Furthermore, HERS cells interact with cranial neural crest derived mesenchyme to guide root development. Taken together, the network of HERS cells is crucial for tooth root development. PMID:19576204

  7. Plant root research: the past, the present and the future

    PubMed Central

    Lux, Alexander; Rost, Thomas L.

    2012-01-01

    This special issue is dedicated to root biologists past and present who have been exploring all aspects of root structure and function with an extensive publication record going over 100 years. The content of the Special Issue on Root Biology covers a wide scale of contributions, spanning interactions of roots with microorganisms in the rhizosphere, the anatomy of root cells and tissues, the subcellular components of root cells, and aspects of metal accumulation and stresses on root function and structure. We have organized the papers into three topic categories: (1) root ecology, interactions with microbes, root architecture and the rhizosphere; (2) experimental root biology, root structure and physiology; and (3) applications of new technology to study root biology. Finally, we will speculate on root research for the future. PMID:22966495

  8. Branching out in roots: uncovering form, function, and regulation.

    PubMed

    Atkinson, Jonathan A; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J; Wells, Darren M; Bennett, Malcolm J

    2014-10-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  9. Branching Out in Roots: Uncovering Form, Function, and Regulation1

    PubMed Central

    Atkinson, Jonathan A.; Rasmussen, Amanda; Traini, Richard; Voß, Ute; Sturrock, Craig; Mooney, Sacha J.; Wells, Darren M.; Bennett, Malcolm J.

    2014-01-01

    Root branching is critical for plants to secure anchorage and ensure the supply of water, minerals, and nutrients. To date, research on root branching has focused on lateral root development in young seedlings. However, many other programs of postembryonic root organogenesis exist in angiosperms. In cereal crops, the majority of the mature root system is composed of several classes of adventitious roots that include crown roots and brace roots. In this Update, we initially describe the diversity of postembryonic root forms. Next, we review recent advances in our understanding of the genes, signals, and mechanisms regulating lateral root and adventitious root branching in the plant models Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). While many common signals, regulatory components, and mechanisms have been identified that control the initiation, morphogenesis, and emergence of new lateral and adventitious root organs, much more remains to be done. We conclude by discussing the challenges and opportunities facing root branching research. PMID:25136060

  10. Social Anxiety among Chinese People

    PubMed Central

    Fan, Qianqian; Chang, Weining C.

    2015-01-01

    The experience of social anxiety has largely been investigated among Western populations; much less is known about social anxiety in other cultures. Unlike the Western culture, the Chinese emphasize interdependence and harmony with social others. In addition, it is unclear if Western constructed instruments adequately capture culturally conditioned conceptualizations and manifestations of social anxiety that might be specific to the Chinese. The present study employed a sequence of qualitative and quantitative approaches to examine the assessment of social anxiety among the Chinese people. Interviews and focus group discussions with Chinese participants revealed that some items containing the experience of social anxiety among the Chinese are not present in existing Western measures. Factor analysis was employed to examine the factor structure of the more comprehensive scale. This approach revealed an “other concerned anxiety” factor that appears to be specific to the Chinese. Subsequent analysis found that the new factor—other concerned anxiety—functioned the same as other social anxiety factors in their association with risk factors of social anxiety, such as attachment, parenting, behavioral inhibition/activation, and attitude toward group. The implications of these findings for a more culturally sensitive assessment tool of social anxiety among the Chinese were discussed. PMID:26380367

  11. Social Anxiety among Chinese People.

    PubMed

    Fan, Qianqian; Chang, Weining C

    2015-01-01

    The experience of social anxiety has largely been investigated among Western populations; much less is known about social anxiety in other cultures. Unlike the Western culture, the Chinese emphasize interdependence and harmony with social others. In addition, it is unclear if Western constructed instruments adequately capture culturally conditioned conceptualizations and manifestations of social anxiety that might be specific to the Chinese. The present study employed a sequence of qualitative and quantitative approaches to examine the assessment of social anxiety among the Chinese people. Interviews and focus group discussions with Chinese participants revealed that some items containing the experience of social anxiety among the Chinese are not present in existing Western measures. Factor analysis was employed to examine the factor structure of the more comprehensive scale. This approach revealed an "other concerned anxiety" factor that appears to be specific to the Chinese. Subsequent analysis found that the new factor-other concerned anxiety-functioned the same as other social anxiety factors in their association with risk factors of social anxiety, such as attachment, parenting, behavioral inhibition/activation, and attitude toward group. The implications of these findings for a more culturally sensitive assessment tool of social anxiety among the Chinese were discussed.

  12. Root growth and nitrate-nitrogen leaching of catch crops following spring wheat.

    PubMed

    Herrera, Juan M; Feil, Boy; Stamp, Peter; Liedgens, Markus

    2010-01-01

    Growing nitrogen (N) catch crops can reduce NO(3)-N leaching after cultivating cereals. The objective of this study was to relate NO(3)-N leaching to variation in the uptake of N and the size and distribution of the root systems of different catch crops species. In a 3-yr lysimeter experiment, phacelia (Phacelia tanacetifolia Benth.), sunflower (Helianthus annuus L.), and a Brassica species (yellow mustard [Brassica alba L.] or a hybrid of turnip rape [B. rapa L. spp. oleifera (DC.) Metzg.] and Chinese cabbage [B. rapa L. ssp. chinensis (L.) Hanelt]) were grown after the harvest of spring wheat under two levels of N supply. Bare soil lysimeters served as the control. Water percolation from the lysimeters and the NO(3)(-) concentration in the leachate were measured weekly from the sowing until the presumed frost-kill of the catch crops. Minirhizotrons were used to assess the spatial and temporal patterns of root growth from 0.10 to 1.00 m. The catch crop species differed in their shoot biomass, N uptake, total NO(3)-N leaching, and root growth. The results suggested that there was no strict relationship between the total NO(3)-N leaching of each catch crop species and the N uptake or parameters that indicate static characteristics of the root system. In contrast, the ranking of each catch crop species by parameters that indicate early root growth was inversely related to the ranking of each catch crop species in NO(3)-N leaching. The rapid establishment of the root system is essential for a catch crop following spring wheat to reduce the amount of NO(3)-N leaching after the harvest of spring wheat.

  13. Root growth and nitrate-nitrogen leaching of catch crops following spring wheat.

    PubMed

    Herrera, Juan M; Feil, Boy; Stamp, Peter; Liedgens, Markus

    2010-01-01

    Growing nitrogen (N) catch crops can reduce NO(3)-N leaching after cultivating cereals. The objective of this study was to relate NO(3)-N leaching to variation in the uptake of N and the size and distribution of the root systems of different catch crops species. In a 3-yr lysimeter experiment, phacelia (Phacelia tanacetifolia Benth.), sunflower (Helianthus annuus L.), and a Brassica species (yellow mustard [Brassica alba L.] or a hybrid of turnip rape [B. rapa L. spp. oleifera (DC.) Metzg.] and Chinese cabbage [B. rapa L. ssp. chinensis (L.) Hanelt]) were grown after the harvest of spring wheat under two levels of N supply. Bare soil lysimeters served as the control. Water percolation from the lysimeters and the NO(3)(-) concentration in the leachate were measured weekly from the sowing until the presumed frost-kill of the catch crops. Minirhizotrons were used to assess the spatial and temporal patterns of root growth from 0.10 to 1.00 m. The catch crop species differed in their shoot biomass, N uptake, total NO(3)-N leaching, and root growth. The results suggested that there was no strict relationship between the total NO(3)-N leaching of each catch crop species and the N uptake or parameters that indicate static characteristics of the root system. In contrast, the ranking of each catch crop species by parameters that indicate early root growth was inversely related to the ranking of each catch crop species in NO(3)-N leaching. The rapid establishment of the root system is essential for a catch crop following spring wheat to reduce the amount of NO(3)-N leaching after the harvest of spring wheat. PMID:20400580

  14. Healing after root reimplantation in the monkey.

    PubMed

    Houston, F; Sarhed, G; Nyman, S; Lindhe, J; Karring, T

    1985-10-01

    The aim of the present investigation was to evaluate the regenerative potential of the periodontal tissues following tooth reimplantation using a model which excluded the dentogingival epithelium from the process of healing. Maxillary and mandibular incisors, premolars and molars of 5 monkeys were used. Following root filling of all experimental teeth, the teeth were divided into 3 experimental groups. In 1 group, the teeth were extracted following the elevation of full thickness flaps. The crowns were separated from the roots at the level of the buccal cemento-enamel junction and the roots immediately reimplanted into their sockets. The flaps were replaced and sutured to accomplish complete coverage of the roots. In a 2nd group, the teeth were subjected to the same experimental procedure, but in addition, the buccal alveolar bone was removed to about half its original height prior to root reimplantation. The teeth of the 3rd group were subjected to identical experimental procedures as for group II with the addition that the buccal root surfaces were planed to the level of the surgically created bone crest. The animals were sacrificed after 6 months of healing. The jaws were removed and histological specimens prepared for microscopic examination. The results showed that a complete fibrous re-attachment formed onto roots on which the original periodontal ligament tissue was preserved. This occurred irrespective of whether the roots were reimplanted into sockets with normal (group I) or reduced (group II) bone height. When the original periodontal ligament tissue was removed by root planing before reimplantation (group III), healing resulted in a significant amount of new connective tissue attachment. However, coronal to the newly formed fibrous attachment, the root surface frequently showed signs of resorption and particularly so in those roots which remained covered by the soft tissue during the entire course of healing. In the majority of the roots which

  15. HPLC/QTOF-MS/MS application to investigate phenolic constituents from Ficus pandurata H. aerial roots.

    PubMed

    Zhang, Xiaoping; Lv, Huiqing; Li, Zuguang; Jiang, Kezhi; Lee, Maw-Rong

    2015-06-01

    Ficus pandurata H. aerial roots are used as a traditional Chinese medicine for the treatment of uarthritis, indigestion and hyperuricemia. However, the bioactive constituents responsible for the pharmacological effects of F. pandurata H. are unclear. A simple and efficient HPLC/QTOF-MS/MS (high-performance liquid chromatography/electrospray ionization with quadrupole time-of-flight tandem mass spectrometry) method was established to detect and identify active constituents in the n-butanol extract of F. pandurata H. aerial roots. Chemical constituents were separated and investigated by HPLC/QTOF-MS/MS in the negative-ion mode. Thirty-seven compounds, including hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, hydroquinone glycosides, flavonoid glycosides, etc., were identified or tentatively characterized in the n-butanol extract of F. pandurata H. aerial roots by comparing the UV spectra, accurate mass spectra and fragmentation pathways and retrieving the reference literatures. Moreover, the flavonoid trisaccharides and hydroxybenzoic acid derivatives were tentatively characterized in F. pandurata H. for the first time. The analytical tool used here is very valuable in the rapid separation and identification of the multiple and minor constituents in the n-butanol extract of F. pandurata H. aerial roots.

  16. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils.

    PubMed

    Luo, Lei; Zhang, Shuzhen; Shan, Xiao-Quan; Zhu, Yong-Guan

    2006-05-01

    The abiotic desorption of p,p'-DDT from seven Chinese soils spiked with p,p'-DDT and the effects of oxalate at 0.001-0.1M and the root exudates of maize, wheat, and ryegrass were evaluated using batch experiments. Soil organic carbon played a predominant role in the retention of DDT. Oxalate significantly increased the desorption of p,p'-DDT, with the largest increments ranging from 11% to 54% for different soils. Oxalate addition also resulted in the increased release of dissolved organic carbon and inorganic ions from soils. Root exudates had similar effects to those of oxalate. Root exudates significantly increased DDT desorption from the soils, and the general trend was similar among the plant species studied for all the soils (p > 0.05). Low molecular weight dissolved organic carbon amendments caused partial dissolution of the soil structure, such as the organo-mineral linkages, resulting in the release of organic carbon and metal ions and thus the subsequent enhanced desorption of DDT from the soils. The enhancing effects of oxalate and root exudates on DDT desorption were influenced by the contents of soil organic carbon and dissolved organic carbon in soils. PMID:16307790

  17. Plant Root Growth In Granular Media

    NASA Astrophysics Data System (ADS)

    Wendell, Dawn; Hosoi, Peko

    2010-03-01

    Roots grow in a variety of granular substrates. However, the substrates are often treated in ways which minimize or neglect the inhomogeneities arising from the influence of inter-particle forces. Experiments are often run using gels or average stress measurements. This presentation discusses the effect of the local structure of the particulate environment on the root's direction. Using photoelastic particles and particles with a variety of Young's Moduli, we investigate the influence of inter-particle forces and particle stiffness on a pinto bean root's ability to grow through a fully-saturated granular medium. The level of particle contact force through which the roots successfully grow is determined and the influence of particle stiffness on root direction is investigated.

  18. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  19. Formation and separation of root border cells.

    PubMed

    Driouich, Azeddine; Durand, Caroline; Vicré-Gibouin, Maïté

    2007-01-01

    Plant roots release a large number of border cells into the rhizosphere, which are believed to play a key role in root development and health. The formation and loss of these cells from the root cap region is a developmentally regulated process that is also controlled by phytohormones and environmental factors. The separation of border cells involves the complete dissociation of individual cells from each other and from root tissue. This process requires the activity of cell wall-degrading enzymes that solubilize the cell wall connections between cells. We present and discuss the solubilization process with an emphasis on pectin-degrading enzymes as well as the recently discovered root border-like cells of Arabidopsis thaliana.

  20. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  1. Long-term control of root growth

    SciTech Connect

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin. 7 figs.

  2. Systems approaches to study root architecture dynamics

    PubMed Central

    Cuesta, Candela; Wabnik, Krzysztof; Benková, Eva

    2013-01-01

    The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots (LRs) are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation. Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how LRs and thereby root system architecture is established and developed. PMID:24421783

  3. An overview of management of root fractures.

    PubMed

    Prithviraj, D R; Bhalla, H K; Vashisht, R; Regish, K M; Suresh, P

    2014-01-01

    Crown or root fractures are the most commonly encountered emergencies in the dental clinic. Root fractures occur in fewer than eight percent of the traumatic injuries to permanent teeth. They are broadly classified as horizontal and vertical root fractures. Correct diagnosis of root fractures is essential to ensure a proper treatment plan and hence, the best possible prognosis. Indication of the type of treatment to be used depends primarily on the level of the fracture line. Therefore, a clinician must also have a thorough knowledge of the various treatment approaches to devise a treatment plan accordingly. Various treatment strategies have been proposed, each with their own advantages and disadvantages. Hence, this literature review presents an overview of the various types of root fractures and their management.

  4. Clinical management of infected root canal dentin.

    PubMed

    Love, R M

    1996-08-01

    Several hundred different species of bacteria are present in the human intraoral environment. Bacterial penetration of root canal dentin occurs when bacteria invade the root canal system. These bacteria may constitute a reservoir from which root canal reinfection may occur during or after endodontic treatment. The learning objective of this article is to review endodontic microbiology, update readers on the role of bacteria in pulp and periapical disease, and discuss the principles of management of infected root canal dentin. Complete debridement, removal of microorganisms and affected dentin, and chemomechanical cleansing of the root canal are suggested as being the cornerstones of successful endodontic therapy, followed by intracanal medication to remove residual bacteria, when required. PMID:9242125

  5. Alfalfa Root Flavonoid Production Is Nitrogen Regulated.

    PubMed Central

    Coronado, C.; Zuanazzi, JAS.; Sallaud, C.; Quirion, J. C.; Esnault, R.; Husson, H. P.; Kondorosi, A.; Ratet, P.

    1995-01-01

    Flavonoids produced by legume roots are signal molecules acting both as chemoattractants and nod gene inducers for the symbiotic Rhizobium partner. Combined nitrogen inhibits the establishment of the symbiosis. To know whether nitrogen nutrition could act at the level of signal production, we have studied the expression of flavonoid biosynthetic genes as well as the production of flavonoids in the roots of plants grown under nitrogen-limiting or nonlimiting conditions. We show here that growth of the plant under nitrogen-limiting conditions results in the enhancement of expression of the flavonoid biosynthesis genes chalcone synthase and isoflavone reductase and in an increase of root flavonoid and isoflavonoid production as well as in the Rhizobium meliloti nod gene-inducing activity of the root extract. These results indicate that in alfalfa (Medicago sativa L.) roots, the production of flavonoids can be influenced by the nitrogen nutrition of the plant. PMID:12228491

  6. The origin and early evolution of roots.

    PubMed

    Kenrick, Paul; Strullu-Derrien, Christine

    2014-10-01

    Geological sites of exceptional fossil preservation are becoming a focus of research on root evolution because they retain edaphic and ecological context, and the remains of plant soft tissues are preserved in some. New information is emerging on the origins of rooting systems, their interactions with fungi, and their nature and diversity in the earliest forest ecosystems. Remarkably well-preserved fossils prove that mycorrhizal symbionts were diverse in simple rhizoid-based systems. Roots evolved in a piecemeal fashion and independently in several major clades through the Devonian Period (416 to 360 million years ago), rapidly extending functionality and complexity. Evidence from extinct arborescent clades indicates that polar auxin transport was recruited independently in several to regulate wood and root development. The broader impact of root evolution on the geochemical carbon cycle is a developing area and one in which the interests of the plant physiologist intersect with those of the geochemist.

  7. Effect of lead on root growth.

    PubMed

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development.

  8. Management of Six Root Canals in Mandibular First Molar

    PubMed Central

    Gomes, Fabio de Almeida; Sousa, Bruno Carvalho

    2015-01-01

    Success in root canal treatment is achieved after thorough cleaning, shaping, and obturation of the root canal system. This clinical case describes conventional root canal treatment of an unusual mandibular first molar with six root canals. The prognosis for endodontic treatment in teeth with abnormal morphology is unfavorable if the clinician fails to recognize extra root canals. PMID:25685156

  9. Root Canal Treatment of a Maxillary Second Premolar with Two Palatal Root Canals: A Case Report

    PubMed Central

    Golmohammadi, Maryam; Jafarzadeh, Hamid

    2016-01-01

    Accurate diagnosis of the root canal morphology and anatomy is essential for thorough shaping and cleaning of the entire root canal system and consequent successful treatment. This report describes a case of maxillary second premolar with two roots and three root canals (two mesial and distal palatal canals). The case report underlines the importance of complete knowledge about root canal morphology and possible variations, coupled with clinical and radiographic examination in order to increase the ability of clinicians to treat difficult cases. PMID:27471538

  10. Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise

    PubMed Central

    Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo

    2016-01-01

    Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109

  11. Chinese-English bilinguals reading English hear Chinese.

    PubMed

    Wu, Yan Jing; Thierry, Guillaume

    2010-06-01

    Bilingual individuals have been shown to access their native language while reading in or listening to their other language. However, it is unknown what type of mental representation (e.g., sound or spelling) they retrieve. Here, using event-related brain potentials, we demonstrate unconscious access to the sound form of Chinese words when advanced Chinese-English bilinguals read or listen to English words. Participants were asked to decide whether or not English words presented in pairs were related in meaning; they were unaware of the fact that some of the unrelated word pairs concealed either a sound or a spelling repetition in their Chinese translations. Whereas spelling repetition in Chinese translations had no effect, concealed sound repetition significantly modulated event-related brain potentials. These results suggest that processing second language activates the sound, but not the spelling, of native language translations.

  12. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification

    PubMed Central

    Lartaud, Marc; Perin, Christophe; Courtois, Brigitte; Thomas, Emilie; Henry, Sophia; Bettembourg, Mathilde; Divol, Fanchon; Lanau, Nadege; Artus, Florence; Bureau, Charlotte; Verdeil, Jean-Luc; Sarah, Gautier; Guiderdoni, Emmanuel; Dievart, Anne

    2015-01-01

    We developed the PHIV-RootCell software to quantify anatomical traits of rice roots transverse section images. Combined with an efficient root sample processing method for image acquisition, this program permits supervised measurements of areas (those of whole root section, stele, cortex, and central metaxylem vessels), number of cell layers and number of cells per cell layer. The PHIV-RootCell toolset runs under ImageJ, an independent operating system that has a license-free status. To demonstrate the usefulness of PHIV-RootCell, we conducted a genetic diversity study and an analysis of salt stress responses of root anatomical parameters in rice (Oryza sativa L.). Using 16 cultivars, we showed that we could discriminate between some of the varieties even at the 6 day-olds stage, and that tropical japonica varieties had larger root sections due to an increase in cell number. We observed, as described previously, that root sections become enlarged under salt stress. However, our results show an increase in cell number in ground tissues (endodermis and cortex) but a decrease in external (peripheral) tissues (sclerenchyma, exodermis, and epidermis). Thus, the PHIV-RootCell program is a user-friendly tool that will be helpful for future genetic and physiological studies that investigate root anatomical trait variations. PMID:25646121

  13. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    PubMed

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  14. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    PubMed

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap.

  15. Resistance to compression of weakened roots subjected to different root reconstruction protocols

    PubMed Central

    ZOGHEIB, Lucas Villaça; SAAVEDRA, Guilherme de Siqueira Ferreira Anzaloni; CARDOSO, Paula Elaine; VALERA, Márcia Carneiro; de ARAÚJO, Maria Amélia Máximo

    2011-01-01

    Objective This study evaluated, in vitro, the fracture resistance of human non-vital teeth restored with different reconstruction protocols. Material and methods Forty human anterior roots of similar shape and dimensions were assigned to four groups (n=10), according to the root reconstruction protocol: Group I (control): non-weakened roots with glass fiber post; Group II: roots with composite resin by incremental technique and glass fiber post; Group III: roots with accessory glass fiber posts and glass fiber post; and Group IV: roots with anatomic glass fiber post technique. Following post cementation and core reconstruction, the roots were embedded in chemically activated acrylic resin and submitted to fracture resistance testing, with a compressive load at an angle of 45º in relation to the long axis of the root at a speed of 0.5 mm/min until fracture. All data were statistically analyzed with bilateral Dunnett's test (α=0.05). Results Group I presented higher mean values of fracture resistance when compared with the three experimental groups, which, in turn, presented similar resistance to fracture among each other. None of the techniques of root reconstruction with intraradicular posts improved root strength, and the incremental technique was suggested as being the most recommendable, since the type of fracture that occurred allowed the remaining dental structure to be repaired. Conclusion The results of this in vitro study suggest that the healthy remaining radicular dentin is more important to increase fracture resistance than the root reconstruction protocol. PMID:22231002

  16. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize.

    PubMed

    Humphris, Sonia N; Bengough, A Glyn; Griffiths, Bryan S; Kilham, Ken; Rodger, Sheena; Stubbs, Vicky; Valentine, Tracy A; Young, Iain M

    2005-09-01

    We investigated the influence of root border cells on the colonisation of seedling Zea mays roots by Pseudomonas fluorescens SBW25 in sandy loam soil packed at two dry bulk densities. Numbers of colony forming units (CFU) were counted on sequential sections of root for intact and decapped inoculated roots grown in loose (1.0 mg m(-3)) and compacted (1.3 mg m(-3)) soil. After two days of root growth, the numbers of P. fluorescens (CFU cm(-1)) were highest on the section of root just below the seed with progressively fewer bacteria near the tip, irrespective of density. The decapped roots had significantly more colonies of P. fluorescens at the tip compared with the intact roots: approximately 100-fold more in the loose and 30-fold more in the compact soil. In addition, confocal images of the root tips grown in agar showed that P. fluorescens could only be detected on the tips of the decapped roots. These results indicated that border cells, and their associated mucilage, prevented complete colonization of the root tip by the biocontrol agent P. fluorescens, possibly by acting as a disposable surface or sheath around the cap. PMID:16329978

  17. RootGraph: a graphic optimization tool for automated image analysis of plant roots

    PubMed Central

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.

    2015-01-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880

  18. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    PubMed Central

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  19. Accessory roots and root canals in human anterior teeth: a review and clinical considerations.

    PubMed

    Ahmed, H M A; Hashem, A A

    2016-08-01

    Anterior teeth may have aberrant anatomical variations in the number of roots and root canals. A review of the literature was conducted using appropriate key words in major endodontic journals to identify the available reported cases as well as experimental and clinical investigations on accessory roots and root canals in anterior teeth. After retrieving the full text of related articles, cross-citations were identified, and the pooled data were then discussed. Results revealed a higher prevalence in accessory root/root canal variations in mandibular anterior teeth than in maxillary counterparts. However, maxillary incisor teeth revealed the highest tendency for accessory root/root canal aberrations caused by anomalies such as dens invaginatus and palato-gingival groove. Primary anterior teeth may also exhibit external and internal anatomical variations in the root, especially maxillary canines. Therefore, dental practitioners should thoroughly assess all teeth scheduled for root canal treatment to prevent the undesirable consequences caused by inadequate debridement of accessory configurations of the root canal system. PMID:26174943

  20. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.

    PubMed

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. PMID:26287479

  1. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  2. The Chinese healthcare challenge

    PubMed Central

    Fabre, Guilhem

    2015-01-01

    Investments in the extension of health insurance coverage, the strengthening of public health services, as well as primary care and better hospitals, highlights the emerging role of healthcare as part of China’s new growth regime, based on an expansion of services, and redistributive policies. Such investments, apart from their central role in terms of relief for low-income people, serve to rebalance the Chinese economy away from export-led growth toward the domestic market, particularly in megacity-regions as Shanghai and the Pearl River Delta, which confront the challenge of integrating migrant workers. Based on the paper by Gusmano and colleagues, one would expect improvements in population health for permanent residents of China’s cities. The challenge ahead, however, is how to address the growth of inequalities in income, wealth and the social wage. PMID:25774379

  3. Root phenology at Harvard Forest and beyond

    NASA Astrophysics Data System (ADS)

    Abramoff, R. Z.; Finzi, A.

    2013-12-01

    Roots are hidden from view and heterogeneously distributed making them difficult to study in situ. As a result, the causes and timing of root production are not well understood. Researchers have long assumed that above and belowground phenology is synchronous; for example, most parameterizations of belowground carbon allocation in terrestrial biosphere models are based on allometry and represent a fixed fraction of net C uptake. However, using results from metaanalysis as well as empirical data from oak and hemlock stands at Harvard Forest, we show that synchronous root and shoot growth is the exception rather than the rule. We collected root and shoot phenology measurements from studies across four biomes (boreal, temperate, Mediterranean, and subtropical). General patterns of root phenology varied widely with 1-5 production peaks in a growing season. Surprisingly, in 9 out of the 15 studies, the first root production peak was not the largest peak. In the majority of cases maximum shoot production occurred before root production (Offset>0 in 32 out of 47 plant sample means). The number of days offset between maximum root and shoot growth was negatively correlated with median annual temperature and therefore differs significantly across biomes (ANOVA, F3,43=9.47, p<0.0001). This decline in offset with increasing temperature may reflect greater year-round coupling between air and soil temperature in warm biomes. Growth form (woody or herbaceous) also influenced the relative timing of root and shoot growth. Woody plants had a larger range of days between root and shoot growth peaks as well as a greater number of growth peaks. To explore the range of phenological relationships within woody plants in the temperate biome, we focused on above and belowground phenology in two common northeastern tree species, Quercus rubra and Tsuga canadensis. Greenness index, rate of stem growth, root production and nonstructural carbohydrate content were measured beginning in April

  4. Traditional Chinese Medicines in Treatment of Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Xie, Weidong; Zhao, Yunan; Zhang, Yaou

    2011-01-01

    Type 2 diabetes mellitus (T2DM) occurs in 95% of the diabetic populations. Management of T2DM is a challenge. Traditional Chinese medicines (TCM) are usually served as adjuvants used to improve diabetic syndromes in combination of routine antidiabetic drugs. For single-herb prescriptions, Ginseng, Bitter melon, Golden Thread, Fenugreek, Garlic, and Cinnamon might have antidiabetic effects in T2DM patients. Among 30 antidiabetic formulas approved by the State Food and Drugs Administrator of China, top 10 of the most frequently prescribed herbs are Membranous Milkvetch Root, Rehmannia Root, Mongolian Snakegourd Root, Ginseng, Chinese Magnoliavine Fruit, Kudzuvine Root, Dwarf Lilyturf Tuber, Common Anemarrhena Rhizome, Barbary Wolfberry Fruit, and India Bread, which mainly guided by the theory of TCM. Their action mechanisms are related to improve insulin sensitivity, stimulate insulin secretion, protect pancreatic islets, and even inhibit intake of intestinal carbohydrates. However, it is very difficult to determine antihyperglycemic components of TCM. Nevertheless, TCM are becoming popular complementary and alternative medicine in treatment of syndromes of T2DM. In the future, it requires further validation of phytochemical, pharmacological, and clinical natures of TCM in T2DM in the future studies, especially for those herbs with a high prescription frequency. PMID:21584252

  5. Variation of the Linkage of Root Function with Root Branch Order

    PubMed Central

    Chen, Zhengxia; Zeng, Hui

    2013-01-01

    Mounting evidence has shown strong linkage of root function with root branch order. However, it is not known whether this linkage is consistent in different species. Here, root anatomic traits of the first five branch order were examined in five species differing in plant phylogeny and growth form in tropical and subtropical forests of south China. In Paramichelia baillonii, one tree species in Magnoliaceae, the intact cortex as well as mycorrhizal colonization existed even in the fifth-order root suggesting the preservation of absorption function in the higher-order roots. In contrast, dramatic decreases of cortex thickness and mycorrhizal colonization were observed from lower- to higher-order roots in three other tree species, Cunninghamia lanceolata, Acacia auriculiformis and Gordonia axillaries, which indicate the loss of absorption function. In a fern, Dicranopteris dichotoma, there were several cortex layers with prominently thickened cell wall and no mycorrhizal colonization in the third- and fourth-order roots, also demonstrating the loss of absorptive function in higher-order roots. Cluster analysis using these anatomic traits showed a different classification of root branch order in P. baillonii from other four species. As for the conduit diameter-density relationship in higher-order roots, the mechanism underpinning this relationship in P. baillonii was different from that in other species. In lower-order roots, different patterns of coefficient of variance for conduit diameter and density provided further evidence for the two types of linkage of root function with root branch order. These linkages corresponding to two types of ephemeral root modules have important implication in the prediction of terrestrial carbon cycling, although we caution that this study was pseudo-replicated. Future studies by sampling more species can test the generality of these two types of linkage. PMID:23451168

  6. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  7. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.).

  8. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.). PMID:27450258

  9. Chinese Constellations and Star Maps

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Star observations can be traced back to as early as the twenty-third century BC in ancient China. By the fifth century BC, the Chinese had named the 28 asterisms that formed the basic reference points for the Chinese equatorial coordinate system. By the first century BC, the Chinese had developed a unique system of constellations that reflected Chinese cosmological ideas with the central theme of the correlation between Heaven and Man. Star charts have been discovered on tomb ceilings dating back to Han times. But most of them are illustrative in their presentation of stars. The Dunhuang star maps from the ninth century, the star maps in the Xin yixiang fa yao of the eleventh century, and the Suzhou Astronomical Planisphere of the thirteenth century are examples of precise star maps from ancient China.

  10. The Chinese Cult of Examinations.

    ERIC Educational Resources Information Center

    Krebs, Sylvia H.

    1996-01-01

    Discusses how the cult of examinations continues to affect both teachers and students in China, and concludes that any serious reform of Chinese education depends on thoroughly rethinking the role of examinations in learning. (SR)

  11. How to bond to root canal dentin

    NASA Astrophysics Data System (ADS)

    Nica, Luminita; Todea, Carmen; Furtos, Gabriel; Baldea, Bogdan

    2014-01-01

    Bonding to root canal dentin may be difficult due to various factors: the structural characteristic of the root canal dentin, which is different from that of the coronal dentin; the presence of the organic tissue of the dental pulp inside the root canal, which has to be removed during the cleaning-shaping of the root canal system; the smear-layer resulted after mechanical instrumentation, which may interfere with the adhesion of the filling materials; the type of the irrigants used in the cleaning protocol; the type of the sealer and core material used in the obturation of the endodontic space; the type of the materials used for the restoration of the endodontically treated teeth. The influence of the cleaning protocol, of the root canal filling material, of the type of the adhesive system used in the restoration of the treated teeth and of the region of the root canal, on the adhesion of several filling and restorative materials to root canal dentin was evaluated in the push-out bond strength test on 1-mm thick slices of endodontically treated human teeth. The results showed that all these factors have a statistically significant influence on the push-out bond strength. Formation of resin tags between radicular dentin and the investigated materials was observed in some of the samples at SEM analysis.

  12. Spiralizations and tropisms in Arabidopsis roots.

    PubMed

    Migliaccio, F; Piconese, S

    2001-12-01

    When Arabidopsis seedlings are grown on a hard-agar plate, their primary roots show characteristic spiralling movements, apparent as waves, coils and torsions, together with a slanting toward the right-hand side. All these movements are believed to be the result of three different processes acting on the roots: circumnutation, positive gravitropism and negative thigmotropism. The basic movement of the roots is described as that of a growing right-handed helix, which, because of the root tip hitting the agar plate, is continuously switched from the right-hand to the left-hand of the growth direction, and vice versa. This movement also produces a slanting root-growth direction toward the right-hand because of the incomplete waves made by the right-handed root to the left-hand. By contrast, the torsions seen in the coils and waves are interpreted as artefacts that form as an adaptation of the three-dimensional root helix to the flat two-dimensional agar surface.

  13. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  14. Chinese culture and fertility decline.

    PubMed

    Wu, C; Jia, S

    1992-01-01

    Coale has suggested that cultural factors exert a significant influence on fertility reduction; countries in the "Chinese cultural circle" would be the first to show fertility decline. In China, the view was that traditional Chinese culture contributed to increased population. This paper examines the nature of the relationship between Chinese culture and fertility. Attention was directed to a comparison of fertility rates of developing countries with strong Chinese cultural influence and of fertility within different regions of China. Discussion was followed by an explanation of the theoretical impact of Chinese culture on fertility and direct and indirect beliefs and practices that might either enhance or hinder fertility decline. Emigration to neighboring countries occurred after the Qing dynasty. Fertility after the 1950s declined markedly in Japan, Singapore, Hong Kong, South Korea, Taiwan, and mainland China: all countries within the Chinese cultural circle. Other countries within the Chinese circle which have higher fertility, yet lower fertility than other non-Chinese cultural countries, are Malaysia, Thailand, and Indonesia. Within China, regions with similar fertility patterns are identified as coastal regions, central plains, and mountainous and plateau regions. The Han ethnic group has lower fertility than that of ethnic minorities; regions with large Han populations have lower fertility. Overseas Chinese in East Asian countries also tend to have lower fertility than their host populations. Chinese culture consisted of the assimilation of other cultures over 5000 years. Fertility decline was dependent on the population's desire to limit reproduction, favorable social mechanisms, and availability of contraception: all factors related to economic development. Chinese culture affects fertility reduction by affecting reproductive views and social mechanisms directly, and indirectly through economics. Confucianism emphasizes collectivism, self

  15. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen.

    PubMed

    Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.

  16. Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen

    PubMed Central

    Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

  17. Bitter Root Irrigation district canal, looking east, typical section (canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section (canal full) - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  18. Bitter Root Irrigation district canal, looking east, typical section and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bitter Root Irrigation district canal, looking east, typical section and crossing - Bitter Root Irrigation Project, Bitter Root Irrigation Canal, Heading at Rock Creek Diversion Dam, West of U.S. Highway 93, Darby, Ravalli County, MT

  19. 10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. PHOTOCOPY OF 'P. H. & F. M. ROOTS FOUNDARY MANUFACTURERS OF ROOTS BLOWERS' FROM INDIANAPOLIS STAR, June 13, 1926, Gravure Section, p. 2 - P. H. & F. M. Roots Company, Eastern Avenue, Connersville, Fayette County, IN

  20. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  1. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  2. Adventitious root induction in Arabidopsis thaliana as a model for in vitro root organogenesis.

    PubMed

    Verstraeten, Inge; Beeckman, Tom; Geelen, Danny

    2013-01-01

    Adventitious root formation, the development of roots on non-root tissue (e.g. leaves, hypocotyls and stems) is a critical step during micropropagation. Although root induction treatments are routinely used for a large number of species micropropagated in vitro as well as for in vivo cuttings, the mechanisms controlling adventitious rooting are still poorly understood. Researchers attempt to gain better insight into the molecular aspects by studying adventitious rooting in Arabidopsis thaliana. The existing assay involves etiolation of seedlings and measurements of de novo formed roots on the elongated hypocotyl. The etiolated hypocotyls express a novel auxin-controlled signal transduction pathway in which auxin response factors (ARFs), microRNAs and environmental conditions that drive adventitious rooting are integrated. An alternative assay makes use of so-called thin cell layers (TCL), excised strips of cells from the inflorescence stem of Arabidopsis thaliana. However, both the etiolated seedling system and the TCL assay are only distantly related to industrial rooting processes in which roots are induced on adult stem tissue. Here, we describe an adventitious root induction system that uses segments of the inflorescence stems of Arabidopsis thaliana, which have a histological structure similar to cuttings or in vitro micropropagated shoots. The system allows multiple treatments with chemicals as well as the evaluation of different environmental conditions on a large number of explants. It is therefore suitable for high throughput chemical screenings and experiments that require numerous data points for statistical analysis. Using this assay, the adventitious root induction capacity of classical auxins was evaluated and a differential response to the different auxins could be demonstrated. NAA, IBA and IAA stimulated adventitious rooting on the stem segment, whereas 2,4-D and picloram did not. Light conditions profoundly influenced the root induction capacity

  3. Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Cohen, D.; Or, D.

    2011-06-01

    Root-soil mechanical interactions are key to soil stability on steep hillslopes. Motivated by new advances and applications of the Root Bundle Model (RBM), we conducted a series of experiments in the laboratory and in the field to study the mechanical response of pulled roots. We systematically quantified the influence of different factors such as root geometry and configuration, soil type, and soil water content considering individual roots and root bundles. We developed a novel pullout apparatus for strain-controlled field and laboratory tests of up to 13 parallel roots measured individually and as a bundle. Results highlight the importance of root tortuosity and root branching points for prediction of individual root pullout behavior. Results also confirm the critical role of root diameter distribution for realistic prediction of global pullout behavior of a root bundle. Friction between root and soil matrix varied with soil type and water content and affected the force-displacement behavior. Friction in sand varied from 1 to 17 kPa, with low values obtained in wet sand at a confining pressure of 2 kPa and high values obtained in dry sand with 4.5 kPa confining pressure. In a silty soil matrix, friction ranged between 3 kPa under wet and low confining pressure (2 kPa) and 6 kPa in dry and higher confining pressure (4.5 kPa). Displacement at maximum pullout force increased with increasing root diameter and with tortuosity. Laboratory experiments were used to calibrate the RBM that was later validated using six field measurements with natural root bundles of Norway spruce (Picea abies L.). These tests demonstrate the progressive nature of root bundle failure under strain-controlled pullout force and provide new insights regarding force-displacement behavior of root reinforcement, highlighting the importance of considering displacement in slope stability models. Results show that the magnitude of maximum root pullout forces (1-5 kPa) are important for slope

  4. BOREAS TE-2 Root Respiration Data

    NASA Technical Reports Server (NTRS)

    Ryan, Michael G.; Lavigne, Michael; Hall, Forrest G. (Editor); Papagno, Andrea (Editor)

    2000-01-01

    The BOREAS TE-2 team collected several data sets in support of its efforts to characterize and interpret information on the respiration of the foliage, roots, and wood of boreal vegetation. This data set includes means of tree root respiration measurements on roots having diameters ranging from 0 to 2 mm conducted in the NSA during the growing season of 1994. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  5. THttpServer class in ROOT

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, Joern; Linev, Sergey

    2015-12-01

    The new THttpServer class in ROOT implements HTTP server for arbitrary ROOT applications. It is based on Civetweb embeddable HTTP server and provides direct access to all objects registered for the server. Objects data could be provided in different formats: binary, XML, GIF/PNG, and JSON. A generic user interface for THttpServer has been implemented with HTML/JavaScript based on JavaScript ROOT development. With any modern web browser one could list, display, and monitor objects available on the server. THttpServer is used in Go4 framework to provide HTTP interface to the online analysis.

  6. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  7. Getting to the roots of it: Genetic and hormonal control of root architecture

    PubMed Central

    Jung, Janelle K. H.; McCouch, Susan

    2013-01-01

    Root system architecture (RSA) – the spatial configuration of a root system – is an important developmental and agronomic trait, with implications for overall plant architecture, growth rate and yield, abiotic stress resistance, nutrient uptake, and developmental plasticity in response to environmental changes. Root architecture is modulated by intrinsic, hormone-mediated pathways, intersecting with pathways that perceive and respond to external, environmental signals. The recent development of several non-invasive 2D and 3D root imaging systems has enhanced our ability to accurately observe and quantify architectural traits on complex whole-root systems. Coupled with the powerful marker-based genotyping and sequencing platforms currently available, these root phenotyping technologies lend themselves to large-scale genome-wide association studies, and can speed the identification and characterization of the genes and pathways involved in root system development. This capability provides the foundation for examining the contribution of root architectural traits to the performance of crop varieties in diverse environments. This review focuses on our current understanding of the genes and pathways involved in determining RSA in response to both intrinsic and extrinsic (environmental) response pathways, and provides a brief overview of the latest root system phenotyping technologies and their potential impact on elucidating the genetic control of root development in plants. PMID:23785372

  8. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs.

    PubMed

    Won, Su-Kyung; Choi, Sang-Bong; Kumari, Simple; Cho, Misuk; Lee, Sang Ho; Cho, Hyung-Taeg

    2010-10-01

    Cell differentiation ultimately relies on the regulation of cell type-specific genes. For a root hair cell to undergo morphogenesis, diverse cellular processes including cell-wall loosening must occur in a root hair cell-specific manner. Previously, we identified and characterized root hairspecific cis-elements (RHE) from the genes encoding the cell wall-loosening protein EXPANSIN A (EXPA) which functions preferentially on dicot cell walls. This study reports two root hair-specific grass EXPB genes that contain RHEs. These genes are thought to encode proteins that function more efficiently on grass cell walls. The proximal promoter regions of two orthologous EXPB genes from rice (Oryza sativa; OsEXPB5) and barley (Hordeum vulgare; HvEXPB1) included RHE motifs. These promoters could direct root hair-specific expression of green fluorescent protein (GFP) in the roots of rice and Arabidopsis (Arabidopsis thaliana). Promoter deletion analyses demonstrated that the RHE motifs are necessary for root hairspecific expression of these EXPB promoters. Phylogenetic analysis of EXP protein sequences indicated that grass EXPBs are the only orthologs to these root hair-specific EXPBs, separating dicot EXPBs to distal branches of the tree. These results suggest that RHE-containing root hair-specific EXPB genes have evolved for grass-specific cell wall modification during root hair morphogenesis.

  9. Chinese journals: a guide for epidemiologists

    PubMed Central

    Fung, Isaac CH

    2008-01-01

    Chinese journals in epidemiology, preventive medicine and public health contain much that is of potential international interest. However, few non-Chinese speakers are acquainted with this literature. This article therefore provides an overview of the contemporary scene in Chinese biomedical journal publication, Chinese bibliographic databases and Chinese journals in epidemiology, preventive medicine and public health. The challenge of switching to English as the medium of publication, the development of publishing bibliometric data from Chinese databases, the prospect of an Open Access publication model in China, the issue of language bias in literature reviews and the quality of Chinese journals are discussed. Epidemiologists are encouraged to search the Chinese bibliographic databases for Chinese journal articles. PMID:18826604

  10. Chinese kindergartners learn to read characters analytically.

    PubMed

    Yin, Li; McBride, Catherine

    2015-04-01

    Do Chinese children implicitly extract information from Chinese print before they are formally taught to read? We examined Chinese kindergartners' sensitivity to regularities in Chinese characters and the relationship between such sensitivity and later literacy ability. Eighty-five kindergartners from Beijing were given a character-learning task and assessed on word reading and word writing twice within a 1-year interval. Sensitivity to the structural and phonetic regularities in Chinese appeared in 4-year-olds, and sensitivity to the positions of radicals in Chinese characters emerged in 5-year-olds. Such sensitivities explained unique variance in Chinese word reading and writing 1 year later, with age and nonverbal IQ statistically controlled. Young children detected regularities in written Chinese before they received formal instruction in it, which underscores both the importance of early statistical learning for literacy development and the analytic properties of Chinese print.

  11. Arthroscopic Repair of Posterior Meniscal Root Tears

    PubMed Central

    Matheny, Lauren; Moulton, Samuel G.; Dean, Chase S.; LaPrade, Robert F.

    2016-01-01

    Objectives: The purpose of this study was to compare subjective clinical outcomes in patients requiring arthroscopic transtibial pullout repair for posterior meniscus root tears of the medial and lateral menisci. We hypothesized that improvement in function and activity level would be similar among patients undergoing lateral and medial meniscal root repairs. Methods: This study was IRB approved. All patients who underwent posterior meniscal root repair by a single orthopaedic surgeon were included in this study. Detailed operative data were documented at surgery. Patients completed a subjective questionnaire, including Lysholm score, Tegner activity scale, WOMAC, SF-12 and patient satisfaction with outcome, which were collected preoperatively and at a minimum of two years postoperatively. Failure was defined as any patient who underwent revision meniscal root repair or partial meniscectomy following the index surgery. Results: There were 50 patients (16 females, 34 males) with a mean age of 37.8 years (range, 16.6-65.7) and a mean BMI of 27.3 (range, 20.5-49.2) included in this study. Fifteen patients underwent lateral meniscus root repair and 35 patients underwent medial meniscus root repair. Three patients who underwent lateral meniscus root repair required revision meniscus root repair surgery, while no patients who underwent medial meniscus root repair required revision surgery (p=0.26). There was a significant difference in preoperative and postoperative Lysholm score (53 vs. 78) (p<0.001), Tegner activity scale (2.0 vs. 4.0) (p=0.03), SF-12 physical component subscale (38 vs. 50) (p=0.001) and WOMAC (36 vs. 8) (p<0.001) for the total population. Median patient satisfaction with outcome was 9 (range, 1-10). There was no significant difference in mean age between lateral and medial root repair groups (32 vs. 40) (p=0.12) or gender (p=0.19). There was no significant difference in gender between lateral and medial root repair groups (p=0.95). There was a

  12. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  13. Plant roots use a patterning mechanism to position lateral root branches toward available water

    PubMed Central

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E.; Sturrock, Craig J.; Thompson, Mark C.; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L.; Vernoux, Teva; Mooney, Sacha J.; Bennett, Malcolm J.; Dinneny, José R.

    2014-01-01

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and PIN-FORMED 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root. PMID:24927545

  14. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root. PMID:24927545

  15. Allometry of root branching and its relationship to root morphological and functional traits in three range grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have documented the existence of correlative mechanisms that control lateral root emergence in plants. To better understand root branching responses to nutrients, root growth in three range grasses [Whitmar cultivar of bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) Love), Hyc...

  16. Rooting depths of plants relative to biological and environmental factors

    SciTech Connect

    Foxx, T S; Tierney, G D; Williams, J M

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance.

  17. Understanding plant root system influences on soil strength and stability

    NASA Astrophysics Data System (ADS)

    Bengough, A. Glyn; Brown, Jennifer L.; Loades, Kenneth W.; Knappett, Jonathan A.; Meijer, Gertjan; Nicoll, Bruce

    2016-04-01

    Keywords: root growth, soil reinforcement, tensile strength Plant roots modify and reinforce the soil matrix, stabilising it against erosion and shallow landslides. Roots mechanically bind the soil particles together and modify the soil hydrology via water uptake, creation of biopores, and modification of the soil water-release characteristic. Key to understanding the mechanical reinforcement of soil by roots is the relation between root strength and root diameter measured for roots in any given soil horizon. Thin roots have frequently been measured to have a greater tensile strength than thick roots, but their strength is also often much more variable. We consider the factors influencing this strength-diameter relationship, considering relations between root tensile strength and root dry density, root water content, root age, and root turnover in several woody and non-woody species. The role of possible experimental artefacts and measurement techniques will be considered. Tensile strength increased generally with root age and decreased with thermal time after excision as a result of root decomposition. Single factors alone do not appear to explain the strength-diameter relationship, and both strength/stiffness and dry density may vary between different layers of tissue within a single root. Results will be discussed to consider how we can achieve a more comprehensive understanding of the variation in root biomechanical properties, and its consequences for soil reinforcement. Acknowledgements: The James Hutton Institute receives funding from the Scottish Government. AGB and JAK acknowledge part funding from EPSRC (EP/M020355/1).

  18. Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds.

    PubMed

    Lim, C O; Lee, S I; Chung, W S; Park, S H; Hwang, I; Cho, M J

    1996-01-01

    A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.

  19. DMA thermal analysis of yacon tuberous roots

    NASA Astrophysics Data System (ADS)

    Blahovec, J.; Lahodová, M.; Kindl, M.; Fernández, E. C.

    2013-12-01

    Specimens prepared from yacon roots in first two weeks after harvest were tested by dynamic mechanical analysis thermal analysis at temperatures between 30 and 90°C. No differences between different parts of roots were proved. There were indicated some differences in the test parameters that were caused by short time storage of the roots. One source of the differences was loss of water during the roots storage. The measured modulus increased during short time storage. Detailed study of changes of the modulus during the specimen dynamic mechanical analysis test provided information about different development of the storage and loss moduli during the specimen heating. The observed results can be caused by changes in cellular membranes observed earlier during vegetable heating, and by composition changes due to less stable components of yacon like inulin.

  20. Root gravitropism in maize and Arabidopsis

    NASA Technical Reports Server (NTRS)

    Evans, Michael L.

    1993-01-01

    Research during the period 1 March 1992 to 30 November 1993 focused on improvements in a video digitizer system designed to automate the recording of surface extension in plants responding to gravistimulation. The improvements included modification of software to allow detailed analysis of localized extension patterns in roots of Arabidopsis. We used the system to analyze the role of the postmitotic isodiametric growth zone (a region between the meristem and the elongation zone) in the response of maize roots to auxin, calcium, touch and gravity. We also used the system to analyze short-term auxin and gravitropic responses in mutants of Arabidopsis with reduced auxin sensitivity. In a related project, we studied the relationship between growth rate and surface electrical currents in roots by examining the effects of gravity and thigmostimulation on surface potentials in maize roots.

  1. Leishmanicidal activity of Maytenus illicifolia roots.

    PubMed

    Alvarenga, Nelson; Canela, N; Gómez, R; Yaluff, G; Maldonado, M

    2008-07-01

    In vitro evaluation of leishmanicidal activity of aqueous and ethanolic extracts of Maytenus illicifolia against three species of Leishmania. The root extracts showed differential activity against parasites, whereas the aerial part of the extracts was inactive.

  2. "Roots" Touched Children: Planned or Not

    ERIC Educational Resources Information Center

    Greathouse, Betty

    1977-01-01

    Explores children's reactions to the televised version of Alex Haley's "Roots" through interviews with thirty 8-year-old third-graders (10 Black, 10 Mexican-American, 10 White) from two classrooms in South Phoenix, Arizona. (BF/JH)

  3. Hidden branches: developments in root system architecture.

    PubMed

    Osmont, Karen S; Sibout, Richard; Hardtke, Christian S

    2007-01-01

    The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.

  4. Root apex transition zone as oscillatory zone.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.

  5. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  6. Development of the Multi-Trait Personality Inventory (MTPI): comparison among four Chinese populations.

    PubMed

    Cheung, P C; Conger, A J; Hau, K T; Lew, W J; Lau, S

    1992-12-01

    Anemic approach was adopted to develop a culture-specific instrument for the assessment of Chinese personality. The Multi-Trial Personality Inventory (MTPI) was administered to 1,673 men and 944 women in four major Chinese populations. It was found that Chinese in mainland China, Taiwan, Hong Kong, and the United States possess some common traits deeply rooted in the Chinese culture characterized by Confucian thoughts (e.g., self-discipline and moderation) and some additional traits nurtured by their respective environments. Consequently, findings of this study lent support to the hypothesis that, in spite of superficial discontinuities, there are basic continuities in the personality traits of mainland and overseas Chinese. The cross-cultural differences in personality were examined from a political-social perspective and also explained with a cultural-ecological model. In the development of the MTPI, a new methodology that relies on forming factor-consistent clusters was employed to deal successfully with the problem of complex factor space.

  7. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis)

    PubMed Central

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties “GHA” and “XK,” respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage. PMID:27443222

  8. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis).

    PubMed

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage.

  9. Ethno-cultural diversity in the experience of widowhood in later life: Chinese widows in Canada.

    PubMed

    Martin-Matthews, Anne; Tong, Catherine E; Rosenthal, Carolyn J; McDonald, Lynn

    2013-12-01

    This paper utilizes Helena Znaniecka Lopata's concept of life frameworks as a lens through which to understand the experience of widowhood amongst elderly Chinese immigrant women living in Toronto, Canada. While Lopata defined life frameworks as including social supports, social relations and social roles, for these widows, personal resources (framed in Chinese cultural context) were also important aspects of life frameworks. In-depth interviews with 20 widows contacted through a Chinese community center were conducted in Mandarin and Cantonese and then transcribed and interpreted through team-based qualitative analyses. These women ranged in age from 69 to 93 years and had been in Canada an average of 17 years, with over half of them widowed following immigration. Our analysis framed the widows' narratives in terms of four types of supports defined by Lopata: social, service, financial and emotional supports. They had fairly extensive social and service supports focused primarily around family and the Chinese community. Although norms of filial piety traditionally dictate sons as primary supports, daughters predominated as providers of supports to these widows. Interpreted from a life course perspective, financial supports were deemed sufficient, despite overall limited financial means. Emotional support was more nuanced and complex for these widows. Loneliness and feelings of social isolation were prevalent. Nevertheless, themes of acceptance and satisfaction dominated our findings, as did reciprocity and exchange. The narrative accounts of these widows depict a complexity of experience rooted in their biographies as Chinese women and as immigrants, rather than primarily in widowhood itself. PMID:24300070

  10. Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp. chinensis).

    PubMed

    Wang, Aihua; Hu, Jihong; Huang, Xingxue; Li, Xia; Zhou, Guolin; Yan, Zhixiang

    2016-01-01

    Chinese cabbage (Brassica rapa ssp. chinensis) is an economically and agriculturally significant vegetable crop and is extensively cultivated throughout the world. Heat stress disturbs cellular homeostasis and causes visible growth inhibition of shoots and roots, severe retardation in growth and development, and even death. However, there are few studies on the transcriptome profiling of heat stress in non-heading Chinese cabbage. In this study, we investigated the transcript profiles of non-heading Chinese cabbage from heat-sensitive and heat-tolerant varieties "GHA" and "XK," respectively, in response to high temperature using RNA sequencing (RNA seq). Approximately 625 genes were differentially expressed between the two varieties. The responsive genes can be divided into three phases along with the time of heat treatment: response to stimulus, programmed cell death and ribosome biogenesis. Differentially expressed genes (DEGs) were identified in the two varieties, including transcription factors (TFs), kinases/phosphatases, genes related to photosynthesis and effectors of homeostasis. Many TFs were involved in the heat stress response of Chinese cabbage, including NAC069 TF which was up-regulated at all the heat treatment stages. And their expression levels were also validated by quantitative real-time-PCR (qRT-PCR). These candidate genes will provide genetic resources for further improving the heat-tolerant characteristics in non-heading Chinese cabbage. PMID:27443222

  11. New pattern recognition system in the e-nose for Chinese spirit identification

    NASA Astrophysics Data System (ADS)

    Hui, Zeng; Qiang, Li; Yu, Gu

    2016-02-01

    This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (Sf), crest factor value (Cf), impulse factor value (If), clearance factor value (CLf), kurtosis factor value (Kv) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901) and the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-14-120A2).

  12. Capillary-Effect Root-Environment System

    NASA Technical Reports Server (NTRS)

    Wright, Bruce D.

    1991-01-01

    Capillary-effect root-environment system (CERES) is experimental apparatus for growing plants in nutrient solutions. Solution circulated at slight tension in cavity filled with plastic screen and covered by porous plastic membrane. By adsorptive attraction, root draws solution through membrane. Conceived for use in microgravity of space, also finds terrestrial application in germinating seedlings, because it protects them from extremes of temperature, moisture, and soil pH and from overexposure to fertilizers and herbicides.

  13. Anatomical aspects of angiosperm root evolution

    PubMed Central

    Seago, James L.; Fernando, Danilo D.

    2013-01-01

    Background and Aims Anatomy had been one of the foundations in our understanding of plant evolutionary trends and, although recent evo-devo concepts are mostly based on molecular genetics, classical structural information remains useful as ever. Of the various plant organs, the roots have been the least studied, primarily because of the difficulty in obtaining materials, particularly from large woody species. Therefore, this review aims to provide an overview of the information that has accumulated on the anatomy of angiosperm roots and to present possible evolutionary trends between representatives of the major angiosperm clades. Scope This review covers an overview of the various aspects of the evolutionary origin of the root. The results and discussion focus on angiosperm root anatomy and evolution covering representatives from basal angiosperms, magnoliids, monocots and eudicots. We use information from the literature as well as new data from our own research. Key Findings The organization of the root apical meristem (RAM) of Nymphaeales allows for the ground meristem and protoderm to be derived from the same group of initials, similar to those of the monocots, whereas in Amborellales, magnoliids and eudicots, it is their protoderm and lateral rootcap which are derived from the same group of initials. Most members of Nymphaeales are similar to monocots in having ephemeral primary roots and so adventitious roots predominate, whereas Amborellales, Austrobaileyales, magnoliids and eudicots are generally characterized by having primary roots that give rise to a taproot system. Nymphaeales and monocots often have polyarch (heptarch or more) steles, whereas the rest of the basal angiosperms, magnoliids and eudicots usually have diarch to hexarch steles. Conclusions Angiosperms exhibit highly varied structural patterns in RAM organization; cortex, epidermis and rootcap origins; and stele patterns. Generally, however, Amborellales, magnoliids and, possibly

  14. Mapping gene activity of Arabidopsis root hairs

    PubMed Central

    2013-01-01

    Background Quantitative information on gene activity at single cell-type resolution is essential for the understanding of how cells work and interact. Root hairs, or trichoblasts, tubular-shaped outgrowths of specialized cells in the epidermis, represent an ideal model for cell fate acquisition and differentiation in plants. Results Here, we provide an atlas of gene and protein expression in Arabidopsis root hair cells, generated by paired-end RNA sequencing and LC/MS-MS analysis of protoplasts from plants containing a pEXP7-GFP reporter construct. In total, transcripts of 23,034 genes were detected in root hairs. High-resolution proteome analysis led to the reliable identification of 2,447 proteins, 129 of which were differentially expressed between root hairs and non-root hair tissue. Dissection of pre-mRNA splicing patterns showed that all types of alternative splicing were cell type-dependent, and less complex in EXP7-expressing cells when compared to non-root hair cells. Intron retention was repressed in several transcripts functionally related to root hair morphogenesis, indicative of a cell type-specific control of gene expression by alternative splicing of pre-mRNA. Concordance between mRNA and protein expression was generally high, but in many cases mRNA expression was not predictive for protein abundance. Conclusions The integrated analysis shows that gene activity in root hairs is dictated by orchestrated, multilayered regulatory mechanisms that allow for a cell type-specific composition of functional components. PMID:23800126

  15. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; McLaughlin, Neil B; Gu, Jiacun; Li, Xingpeng; Wang, Zhengquan

    2013-06-01

    Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0-10 cm) of 22-year-old larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81-94% of variation in the rate of root respiration for larch and up to 83-93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the

  16. Lectin Binding to the Root and Root Hair Tips of the Tropical Legume Macroptilium atropurpureum Urb

    PubMed Central

    Ridge, R. W.; Rolfe, B. G.

    1986-01-01

    Ten fluorescein isothiocyanate-labeled lectins were tested on the roots of the tropical legume Macroptilium atropurpureum Urb. Four of these (concanavalin A, peanut agglutinin, Ricinis communis agglutinin I [RCA-I], wheat germ agglutinin) were found to bind to the exterior of root cap cells, the root cap slime, and the channels between epidermal cells in the root elongation zone. One of these lectins, RCA-I, bound to the root hair tips in the mature and emerging hair zones and also to sites at which root hairs were only just emerging. There was no RCA-I binding to immature trichoblasts. Preincubation of these lectins with their hapten sugars eliminated all types of root cell binding. By using a microinoculation technique, preincubation of the root surface with RCA-I lectin was found to inhibit infection and nodulation by Rhizobium spp. Preincubation of the root surface with the RCA-I hapten β-d-galactose or a mixture of RCA-I lectin and its hapten failed to inhibit nodulation. Application of RCA-I lectin to the root surface caused no apparent detrimental effects to the root hair cells and did not prevent the growth of root hairs. The lectin did not prevent Rhizobium sp. motility or viability even after 24 h of incubation. It was concluded that the RCA-I lectin-specific sugar β-d-galactose may be involved in the recognition or early infection stages, or both, in the Rhizobium sp. infection of M. atropurpureum. Images PMID:16346989

  17. [Apical root pins of high-karat gold alloys for resected roots].

    PubMed

    Handtmann, S; Lindemann, W; Sculte, W

    1989-02-01

    Following earlier studies on corrosion of silver pins in the root canal experience will be presented with the use of high-karat gold pins for apical closure of root amputations. The commercially available standardized Ackermann silver pins were replaced by high-karat gold pins of similar Vicker hardness and inserted in 218 patients with 264 root amputations since 1986. A clinical and radiological follow-up demonstrated a success rate of over 90%.

  18. Competing neighbors: light perception and root function.

    PubMed

    Gundel, Pedro E; Pierik, Ronald; Mommer, Liesje; Ballaré, Carlos L

    2014-09-01

    Plant responses to competition have often been described as passive consequences of reduced resource availability. However, plants have mechanisms to forage for favorable conditions and anticipate competition scenarios. Despite the progresses made in understanding the role of light signaling in modulating plant-plant interactions, little is known about how plants use and integrate information gathered by their photoreceptors aboveground to regulate performance belowground. Given that the phytochrome family of photoreceptors plays a key role in the acquisition of information about the proximity of neighbors and canopy cover, it is tempting to speculate that changes in the red:far-red (R:FR) ratio perceived by aboveground plant parts have important implications shaping plant behavior belowground. Exploring data from published experiments, we assess the neglected role of light signaling in the control of root function. The available evidence indicates that plant exposure to low R:FR ratios affects root growth and morphology, root exudate profiles, and interactions with beneficial soil microorganisms. Although dependent on species identity, signals perceived aboveground are likely to affect root-to-root interactions. Root systems could also be guided to deploy new growth predominantly in open areas by light signals perceived by the shoots. Studying interactions between above- and belowground plant-plant signaling is expected to improve our understanding of the mechanisms of plant competition.

  19. Vertical root fractures and their management

    PubMed Central

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-01-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  20. Profiling Gene Expression in Germinating Brassica Roots.

    PubMed

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  1. Extracellular DNA: the tip of root defenses?

    PubMed

    Hawes, Martha C; Curlango-Rivera, Gilberto; Wen, Fushi; White, Gerard J; Vanetten, Hans D; Xiong, Zhongguo

    2011-06-01

    This review discusses how extracellular DNA (exDNA) might function in plant defense, and at what level(s) of innate immunity this process might operate. A new role for extracellular factors in mammalian defense has been described in a series of studies. These studies reveal that cells including neutrophils, eosinophils, and mast cells produce 'extracellular traps' (ETs) consisting of histone-linked exDNA. When pathogens are attracted to such ETs, they are trapped and killed. When the exDNA component of ETs is degraded, trapping is impaired and resistance against invasion is reduced. Conversely, mutation of microbial genes encoding exDNases that degrade exDNA results in loss of virulence. This discovery that exDNases are virulence factors opens new avenues for disease control. In plants, exDNA is required for defense of the root tip. Innate immunity-related proteins are among a group of >100 proteins secreted from the root cap and root border cell populations. Direct tests revealed that exDNA also is rapidly synthesized and exported from the root tip. When this exDNA is degraded by the endonuclease DNase 1, root tip resistance to fungal infection is lost; when the polymeric structure is degraded more slowly, by the exonuclease BAL31, loss of resistance to fungal infection is delayed accordingly. The results suggest that root border cells may function in a manner analogous to that which occurs in mammalian cells.

  2. New insights into root gravitropic signalling

    PubMed Central

    Sato, Ethel Mendocilla; Hijazi, Hussein; Bennett, Malcolm J.; Vissenberg, Kris; Swarup, Ranjan

    2015-01-01

    An important feature of plants is the ability to adapt their growth towards or away from external stimuli such as light, water, temperature, and gravity. These responsive plant growth movements are called tropisms and they contribute to the plant’s survival and reproduction. Roots modulate their growth towards gravity to exploit the soil for water and nutrient uptake, and to provide anchorage. The physiological process of root gravitropism comprises gravity perception, signal transmission, growth response, and the re-establishment of normal growth. Gravity perception is best explained by the starch–statolith hypothesis that states that dense starch-filled amyloplasts or statoliths within columella cells sediment in the direction of gravity, resulting in the generation of a signal that causes asymmetric growth. Though little is known about the gravity receptor(s), the role of auxin linking gravity sensing to the response is well established. Auxin influx and efflux carriers facilitate creation of a differential auxin gradient between the upper and lower side of gravistimulated roots. This asymmetric auxin gradient causes differential growth responses in the graviresponding tissue of the elongation zone, leading to root curvature. Cell biological and mathematical modelling approaches suggest that the root gravitropic response begins within minutes of a gravity stimulus, triggering genomic and non-genomic responses. This review discusses recent advances in our understanding of root gravitropism in Arabidopsis thaliana and identifies current challenges and future perspectives. PMID:25547917

  3. Adaptive significance of root grafting in trees

    SciTech Connect

    Loehle, C.; Jones, R.

    1988-12-31

    Root grafting has long been observed in forest trees but the adaptive significance of this trait has not been fully explained. Various authors have proposed that root grafting between trees contributes to mechanical support by linking adjacent root systems. Keeley proposes that this trait would be of greatest advantage in swamps where soils provide poor mechanical support. He provides as evidence a greenhouse study of Nyssa sylvatica Marsh in which seedlings of swamp provenance formed between-individual root grafts more frequently than upland provenance seedlings. In agreement with this within-species study, Keeley observed that arid zone species rarely exhibit grafts. Keeley also demonstrated that vines graft less commonly than trees, and herbs never do. Since the need for mechanical support coincides with this trend, these data seem to support his model. In this paper, the authors explore the mechanisms and ecological significance of root grafting, leading to predictions of root grafting incidence. Some observations support and some contradict the mechanical support hypothesis.

  4. ASTROCULTURE (TM) root metabolism and cytochemical analysis

    NASA Technical Reports Server (NTRS)

    Porterfield, D. M.; Barta, D. J.; Ming, D. W.; Morrow, R. C.; Musgrave, M. E.

    2000-01-01

    Physiology of the root system is dependent upon oxygen availability and tissue respiration. During hypoxia nutrient and water acquisition may be inhibited, thus affecting the overall biochemical and physiological status of the plant. For the Astroculture (TM) plant growth hardware, the availability of oxygen in the root zone was measured by examining the changes in alcohol dehydrogenase (ADH) activity within the root tissue. ADH activity is a sensitive biochemical indicator of hypoxic conditions in plants and was measured in both spaceflight and control roots. In addition to the biochemical enzyme assays, localization of ADH in the root tissue was examined cytochemically. The results of these analyses showed that ADH activity increased significantly as a result of spaceflight exposure. Enzyme activity increased 248% to 304% in dwarf wheat when compared with the ground controls and Brassica showed increases between 334% and 579% when compared with day zero controls. Cytochemical staining revealed no differences in ADH tissue localization in any of the dwarf wheat treatments. These results show the importance of considering root system oxygenation in designing and building nutrient delivery hardware for spaceflight plant cultivation and confirm previous reports of an ADH response associated with spaceflight exposure.

  5. Modeling vegetation rooting strategies on a hillslope

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2011-12-01

    The manner in which water and energy is partitioned and redistributed along a hillslope is the result of complex coupled ecohydrological interactions between the climatic, soils, topography and vegetation operating over a wide range of spatiotemporal scales. Distributed process based modeling creates a framework through which the interaction of vegetation with the subtle differences in the spatial and temporal dynamics of soil moisture that arise under localized abiotic conditions along a hillslope can be simulated and examined. One deficiency in the current dynamic vegetation models is the one sided manner in which vegetation responds to soil moisture dynamics. Above ground, vegetation is given the freedom to dynamically evolve through alterations in fractional vegetation cover and/or canopy height and density; however below ground rooting profiles are simplistically represented and often held constant in time and space. The need to better represent the belowground role of vegetation through dynamic rooting strategies is fundamental in capturing the magnitude and timing of water and energy fluxes between the atmosphere and land surface. In order to allow vegetation to adapt to gradients in soil moisture a dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically based distributed ecohydrological model). The dynamic rooting scheme allows vegetation the freedom to adapt their rooting depth and distribution in response abiotic conditions in a way that more closely mimics observed plant behavior. The incorporation of this belowground plasticity results in vegetation employing a suite of rooting strategies based on soil texture, climatic conditions and location on the hillslope.

  6. Gene expression regulation in roots under drought.

    PubMed

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  7. Vertical root fractures and their management.

    PubMed

    Khasnis, Sandhya Anand; Kidiyoor, Krishnamurthy Haridas; Patil, Anand Basavaraj; Kenganal, Smita Basavaraj

    2014-03-01

    Vertical root fractures associated with endodontically treated teeth and less commonly in vital teeth represent one of the most difficult clinical problems to diagnose and treat. In as much as there are no specific symptoms, diagnosis can be difficult. Clinical detection of this condition by endodontists is becoming more frequent, where as it is rather underestimated by the general practitioners. Since, vertical root fractures almost exclusively involve endodontically treated teeth; it often becomes difficult to differentiate a tooth with this condition from an endodontically failed one or one with concomitant periodontal involvement. Also, a tooth diagnosed for vertical root fracture is usually extracted, though attempts to reunite fractured root have been done in various studies with varying success rates. Early detection of a fractured root and extraction of the tooth maintain the integrity of alveolar bone for placement of an implant. Cone beam computed tomography has been shown to be very accurate in this regard. This article focuses on the diagnostic and treatment strategies, and discusses about predisposing factors which can be useful in the prevention of vertical root fractures. PMID:24778502

  8. A large and deep root system underlies high nitrogen-use efficiency in maize production.

    PubMed

    Yu, Peng; Li, Xuexian; White, Philip J; Li, Chunjian

    2015-01-01

    Excessive N fertilization results in low N-use efficiency (NUE) without any yield benefits and can have profound, long-term environmental consequences including soil acidification, N leaching and increased production of greenhouse gases. Improving NUE in crop production has been a longstanding, worldwide challenge. A crucial strategy to improve NUE is to enhance N uptake by roots. Taking maize as a model crop, we have compared root dry weight (RDW), root/shoot biomass ratio (R/S), and NUE of maize grown in the field in China and in western countries using data from 106 studies published since 1959. Detailed analysis revealed that the differences in the RDW and R/S of maize at silking in China and the western countries were not derived from variations in climate, geography, and stress factors. Instead, NUE was positively correlated with R/S and RDW; R/S and NUE of maize varieties grown in western countries were significantly greater than those grown in China. We then testified this conclusion by conducting field trials with representative maize hybrids in China (ZD958 and XY335) and the US (P32D79). We found that US P32D79 had a better root architecture for increased N uptake and removed more mineral N than Chinese cultivars from the 0-60 cm soil profile. Reported data and our field results demonstrate that a large and deep root, with an appropriate architecture and higher stress tolerance (higher plant density, drought and N deficiency), underlies high NUE in maize production. We recommend breeding for these traits to reduce the N-fertilizer use and thus N-leaching in maize production and paying more attention to increase tolerance to stresses in China. PMID:25978356

  9. A Large and Deep Root System Underlies High Nitrogen-Use Efficiency in Maize Production

    PubMed Central

    Yu, Peng; Li, Xuexian; White, Philip J.; Li, Chunjian

    2015-01-01

    Excessive N fertilization results in low N-use efficiency (NUE) without any yield benefits and can have profound, long-term environmental consequences including soil acidification, N leaching and increased production of greenhouse gases. Improving NUE in crop production has been a longstanding, worldwide challenge. A crucial strategy to improve NUE is to enhance N uptake by roots. Taking maize as a model crop, we have compared root dry weight (RDW), root/shoot biomass ratio (R/S), and NUE of maize grown in the field in China and in western countries using data from 106 studies published since 1959. Detailed analysis revealed that the differences in the RDW and R/S of maize at silking in China and the western countries were not derived from variations in climate, geography, and stress factors. Instead, NUE was positively correlated with R/S and RDW; R/S and NUE of maize varieties grown in western countries were significantly greater than those grown in China. We then testified this conclusion by conducting field trials with representative maize hybrids in China (ZD958 and XY335) and the US (P32D79). We found that US P32D79 had a better root architecture for increased N uptake and removed more mineral N than Chinese cultivars from the 0-60 cm soil profile. Reported data and our field results demonstrate that a large and deep root, with an appropriate architecture and higher stress tolerance (higher plant density, drought and N deficiency), underlies high NUE in maize production. We recommend breeding for these traits to reduce the N-fertilizer use and thus N-leaching in maize production and paying more attention to increase tolerance to stresses in China. PMID:25978356

  10. Hydrogen Sulfide Alleviates Cadmium-Induced Cell Death through Restraining ROS Accumulation in Roots of Brassica rapa L. ssp. pekinensis

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is a cell signal molecule produced endogenously and involved in regulation of tolerance to biotic and abiotic stress in plants. In this work, we used molecular biology, physiology, and histochemical methods to investigate the effects of H2S on cadmium- (Cd-) induced cell death in Chinese cabbage roots. Cd stress stimulated a rapid increase of endogenous H2S in roots. Additionally, root length was closely related to the cell death rate. Pretreatment with sodium hydrosulfide (NaHS), a H2S donor, alleviated the growth inhibition caused by Cd in roots—this effect was more pronounced at 5 μM NaHS. Cd-induced cell death in roots was significantly reduced by 5 μM NaHS treatment. Under Cd stress, activities of the antioxidant enzymes were significantly enhanced in roots. NaHS + Cd treatment made their activities increase further compared with Cd exposure alone. Enhanced antioxidant enzyme activity led to a decline in reactive oxygen species accumulation and lipid peroxidation. In contrast, these effects were reversed by hydroxylamine, a H2S inhibitor. These results suggested that H2S alleviated the cell death caused by Cd via upregulation of antioxidant enzyme activities to remove excessive reactive oxygen species and reduce cell oxidative damage. PMID:26078819

  11. Earliest rooting system and root : shoot ratio from a new Zosterophyllum plant.

    PubMed

    Hao, Shougang; Xue, Jinzhuang; Guo, Dali; Wang, Deming

    2010-01-01

    The enhanced chemical weathering by rooted vascular plants during the Silurian-Devonian period played a crucial role in altering global biogeochemical cycles and atmospheric environments; however, the documentation of early root morphology and physiology is scarce because the existing fossils are mostly incomplete. Here, we report an entire, uprooted specimen of a new Zosterophyllum Penhallow, named as Z. shengfengense, from the Early Devonian Xitun Formation (Lochkovian, c. 413 Myr old) of Yunnan, south China. This plant has the most ancient known record of a rooting system. The plant consists of aerial axes of 98 mm in height, showing a tufted habit, and a rhizome bearing a fibrous-like rooting system, c. 20 mm in length. The rhizome shows masses of branchings, which produce upwardly directed aerial axes and downwardly directed root-like axes. The completeness of Z. shengfengense made it possible to estimate the biomass allocation and root : shoot ratio. The root : shoot ratio of this early plant is estimated at a mean value of 0.028, and the root-like axes constitute only c. 3% of the total biomass. Zosterophyllum shengfengense was probably a semi-aquatic plant with efficient water use or a strong uptake capacity of the root-like axes.

  12. Adhesive Approach Using Internal Coping for Vertical Root Fractured Teeth with Flared Root Canals.

    PubMed

    Takeuchi, Shuhei; Sekita, Toshiaki; Kobayashi, Ken'ichi

    2015-01-01

    Vertical root fractures are often observed in teeth with endodontic treatment and post space preparation. Frequently, because such teeth have flared root canals with thin dentin walls, conventional treatments are disadvantageous in terms of adhesiveness, sealability and risk of refracture. Here we devised an intentional replantation method that uses internal resin coping, with a reinforcing effect on thin root canal dentin. In two patients treated with this method, satisfactory conditions have been maintained. This report suggests that an intentional replantation method in which an internal resin coping is employed may be a useful therapy for fractured teeth with flared root canals.

  13. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  14. Adhesive Approach Using Internal Coping for Vertical Root Fractured Teeth with Flared Root Canals.

    PubMed

    Takeuchi, Shuhei; Sekita, Toshiaki; Kobayashi, Ken'ichi

    2015-01-01

    Vertical root fractures are often observed in teeth with endodontic treatment and post space preparation. Frequently, because such teeth have flared root canals with thin dentin walls, conventional treatments are disadvantageous in terms of adhesiveness, sealability and risk of refracture. Here we devised an intentional replantation method that uses internal resin coping, with a reinforcing effect on thin root canal dentin. In two patients treated with this method, satisfactory conditions have been maintained. This report suggests that an intentional replantation method in which an internal resin coping is employed may be a useful therapy for fractured teeth with flared root canals. PMID:26373031

  15. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types

    PubMed Central

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  16. RootNav: Navigating Images of Complex Root Architectures1[C][W

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Atkinson, Jonathan A.; Wells, Darren M.; Bennett, Malcolm J.; Pridmore, Tony

    2013-01-01

    We present a novel image analysis tool that allows the semiautomated quantification of complex root system architectures in a range of plant species grown and imaged in a variety of ways. The automatic component of RootNav takes a top-down approach, utilizing the powerful expectation maximization classification algorithm to examine regions of the input image, calculating the likelihood that given pixels correspond to roots. This information is used as the basis for an optimization approach to root detection and quantification, which effectively fits a root model to the image data. The resulting user experience is akin to defining routes on a motorist’s satellite navigation system: RootNav makes an initial optimized estimate of paths from the seed point to root apices, and the user is able to easily and intuitively refine the results using a visual approach. The proposed method is evaluated on winter wheat (Triticum aestivum) images (and demonstrated on Arabidopsis [Arabidopsis thaliana], Brassica napus, and rice [Oryza sativa]), and results are compared with manual analysis. Four exemplar traits are calculated and show clear illustrative differences between some of the wheat accessions. RootNav, however, provides the structural information needed to support extraction of a wider variety of biologically relevant measures. A separate viewer tool is provided to recover a rich set of architectural traits from RootNav’s core representation. PMID:23766367

  17. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops. PMID:26443081

  18. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin.

  19. Cadmium translocation by contractile roots differs from that in regular, non-contractile roots

    PubMed Central

    Lux, Alexander; Lackovič, Andrej; Van Staden, Johannes; Lišková, Desana; Kohanová, Jana; Martinka, Michal

    2015-01-01

    Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot. Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections. Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part. Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant

  20. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    PubMed Central

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  1. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

    PubMed

    Yu, Peng; White, Philip J; Li, Chunjian

    2015-01-01

    Historical domestication and the "Green revolution" have both contributed to the evolution of modern, high-performance crops. Together with increased irrigation and application of chemical fertilizers, these efforts have generated sufficient food for the growing global population. Root architecture, and in particular root branching, plays an important role in the acquisition of water and nutrients, plant performance, and crop yield. Better understanding of root growth and responses to the belowground environment could contribute to overcoming the challenges faced by agriculture today. Manipulating the abilities of crop root systems to explore and exploit the soil environment could enable plants to make the most of soil resources, increase stress tolerance and improve grain yields, while simultaneously reducing environmental degradation. In this article it is noted that the control of root branching, and the responses of root architecture to nitrate availability, differ between root types and between plant species. Since the control of root branching depends upon both plant species and root type, further work is urgently required to determine the appropriate genes to manipulate to improve resource acquisition by specific crops.

  2. A new Approach for Quantifying Root-Reinforcement of Streambanks: the RipRoot Model

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2003-12-01

    Riparian vegetation plays an important role in controlling geotechnical and fluvial processes acting along and within streambanks through the binding effects of roots. Quantification of this mechanical effect is therefore essential to accurately model streambank stability. Until now, most attempts to include the effects of root reinforcement by riparian vegetation have used root-cohesion values estimated using the Wu et al. (1979) equation, requiring the tensile strengths and diameters of the roots crossing the potential shear-plane. However, the Wu et al. equation is a static model that assumes that all roots break, and that they all break simultaneously. Field observations and laboratory experiments have shown that in reality the roots do not all break simultaneously, and that the breaking of roots during mass failure is in fact a dynamic process. Static models such as the Wu et al. equation are therefore likely to produce overestimations of cohesion due to roots. As a response to this concern, a dynamic root reinforcement model (RipRoot) was developed, based on the concepts of fiber bundle models (FBM's) used in materials science. Within the model the root-soil system is loaded incrementally resulting in progressive root breaking and redistribution of stresses from the broken roots to the remaining intact roots in the soil matrix. The redistribution and loading process continues until either all of the roots have broken, or equilibrium is reached where the root network supports the driving force imposed on the bank. The increase in bank cohesion using the static Wu et al. equation are 18% to 38% higher than RipRoot for riparian tree species, including Black Willow, Sandbar Willow, Cottonwood, River Birch and Eastern Sycamore, and 49% higher for Switch Grass. These variations in cohesion values can have a significant impact on streambank Factor of Safety (Fs) values calculated using the Simon et al. (2000) bank-stability model. For example, a 3m high silt

  3. Antioxidant and DNA Repair Stimulating Effect of Extracts from Transformed and Normal Roots of Rhaponticum carthamoides against Induced Oxidative Stress and DNA Damage in CHO Cells

    PubMed Central

    Skała, Ewa; Sitarek, Przemysław; Różalski, Marek; Krajewska, Urszula; Szemraj, Janusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    Rhaponticum carthamoides has a long tradition of use in Siberian folk medicine. The roots and rhizomes of this species are used in various dietary supplements or nutraceutical preparations to increase energy level or eliminate physical weakness. This is the first report to reveal the protective and DNA repair stimulating abilities of R. carthamoides root extracts in Chinese hamster ovary (CHO) cells exposed to an oxidative agent. Both transformed root extract (TR extract) and extract of soil-grown plant roots (NR extract) may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, but CHO cells stimulated with extract from the transformed roots demonstrated significantly stronger properties than cells treated with the soil-grown plant root extract. These differences in biological activity may be attributed to the differences in the content of phenolic compounds in these root extracts. Preincubation of the CHO cells with TR and NR extracts showed an increase in gene expression and protein levels of catalase (CAT) and superoxide dismutase (SOD2). R. carthamoides may possess antioxidant properties that protect CHO cells against oxidative stress. PMID:27034736

  4. Antioxidant and DNA Repair Stimulating Effect of Extracts from Transformed and Normal Roots of Rhaponticum carthamoides against Induced Oxidative Stress and DNA Damage in CHO Cells.

    PubMed

    Skała, Ewa; Sitarek, Przemysław; Różalski, Marek; Krajewska, Urszula; Szemraj, Janusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    Rhaponticum carthamoides has a long tradition of use in Siberian folk medicine. The roots and rhizomes of this species are used in various dietary supplements or nutraceutical preparations to increase energy level or eliminate physical weakness. This is the first report to reveal the protective and DNA repair stimulating abilities of R. carthamoides root extracts in Chinese hamster ovary (CHO) cells exposed to an oxidative agent. Both transformed root extract (TR extract) and extract of soil-grown plant roots (NR extract) may be responsible for stimulating CHO cells to repair oxidatively induced DNA damage, but CHO cells stimulated with extract from the transformed roots demonstrated significantly stronger properties than cells treated with the soil-grown plant root extract. These differences in biological activity may be attributed to the differences in the content of phenolic compounds in these root extracts. Preincubation of the CHO cells with TR and NR extracts showed an increase in gene expression and protein levels of catalase (CAT) and superoxide dismutase (SOD2). R. carthamoides may possess antioxidant properties that protect CHO cells against oxidative stress. PMID:27034736

  5. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  6. Toxicological risks of Chinese herbs.

    PubMed

    Shaw, Debbie

    2010-12-01

    As traditional Chinese medicine (TCM) has become more popular there have been increasing concerns about safety and potential toxicity of the Chinese materia medica (CMM) comprising plants, animal parts and minerals. The potential toxicity of many CMM is well recognised in TCM and to reduce risks use of some herbs is restricted whilst specific processing methods have been developed to modify the activities/toxicity of others. However adverse reactions have been reported, many of these are due misuse or abuse of Chinese medicine. The main problem remains products adulterated with pharmaceuticals for weight loss or erectile dysfunction. But some herbs have narrow therapeutic ranges (e.g., Aconitum species) so toxic effects are frequently reported. Toxic effects from chronic or cumulative dosing are difficult to detect in the traditional setting and recent reports have demonstrated the health problems from Aristolochia species. Despite safety concerns, Chinese medicine appears to be relatively safe with comparatively few reports of adverse reactions compared with overall drug reports. The wealth of information in the Chinese literature needs to be more widely available. As TCM is widely used by patients, improved pharmacovigilance and pharmacoepidemiology can contribute valuable safety information, relevant to clinical use. PMID:21077025

  7. Assessment of Chinese Students' Experience with Foreign Faculty: A Case Study from a Chinese University

    ERIC Educational Resources Information Center

    Ho, Raymond

    2010-01-01

    This article compares Chinese students' responses to local Chinese versus American professors, and the effectiveness of the professors' respective teaching techniques. A case study made at a single university in China, which had a joint academic program with the United States, found that Chinese students preferred local Chinese professors to…

  8. Writing Chinese and Mathematics Achievement: A Study with Chinese-American Undergraduates.

    ERIC Educational Resources Information Center

    Li, Chieh; Nuttall, Ronald

    2001-01-01

    Indicates that writing Chinese is correlated to Chinese-American (CA) students' spatial skills and investigates whether writing Chinese would have the same relationship to mathematics skills. Suggested a strong correlation between writing Chinese and success on SAT-Math. Supports the cultural relativity theory of gender difference on SAT-Math.…

  9. Mothers' Self-Reported Emotional Expression in Mainland Chinese, Chinese American and European American Families

    ERIC Educational Resources Information Center

    Camras, Linda; Kolmodin, Karen; Chen, Yinghe

    2008-01-01

    This study compared Mainland Chinese, Chinese American and European American mothers' self-reported emotional expression within the family. Mothers of 3-year-old European American (n = 40), Chinese American (n = 39) and Mainland Chinese (n = 36) children (n = 20 girls per group) completed the Self-Expressiveness in the Family Questionnaire (SEFQ),…

  10. Is Chinese Special? Four Aspects of Chinese Literacy Acquisition That Might Distinguish Learning Chinese from Learning Alphabetic Orthographies

    ERIC Educational Resources Information Center

    McBride, Catherine Alexandra

    2016-01-01

    Some aspects of Chinese literacy development do not conform to patterns of literacy development in alphabetic orthographies. Four are highlighted here. First, semantic radicals are one aspect of Chinese characters that have no analogy to alphabetic orthographies. Second, the unreliability of phonological cues in Chinese along with the fact that…

  11. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  12. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses. PMID:26312572

  13. The Spirit of Chinese Shadow Puppet Theater.

    ERIC Educational Resources Information Center

    Okada, Kyle; Olivier-Hirasawa, Susan

    2002-01-01

    Presents a project where fourth- and fifth-grade students created Chinese shadow puppets, designed scenery for puppet theater, built the theater, wrote plays, and put on performances in a Chinese theater festival. Lists a collection of resources. (CMK)

  14. Disentangling root system responses to neighbours: identification of novel root behavioural strategies.

    PubMed

    Belter, Pamela R; Cahill, James F

    2015-05-27

    Plants live in a social environment, with interactions among neighbours a ubiquitous aspect of life. Though many of these interactions occur in the soil, our understanding of how plants alter root growth and the patterns of soil occupancy in response to neighbours is limited. This is in contrast to a rich literature on the animal behavioural responses to changes in the social environment. For plants, root behavioural changes that alter soil occupancy patterns can influence neighbourhood size and the frequency or intensity of competition for soil resources; issues of fundamental importance to understanding coexistence and community assembly. Here we report a large comparative study in which individuals of 20 species were grown with and without each of two neighbour species. Through repeated root visualization and analyses, we quantified many putative root behaviours, including the extent to which each species altered aspects of root system growth (e.g. rooting breadth, root length, etc.) in response to neighbours. Across all species, there was no consistent behavioural response to neighbours (i.e. no general tendencies towards root over-proliferation nor avoidance). However, there was a substantial interspecific variation showing a continuum of behavioural variation among the 20 species. Multivariate analyses revealed two novel and predominant root behavioural strategies: (i) size-sensitivity, in which focal plants reduced their overall root system size in response to the presence of neighbours, and (ii) location-sensitivity, where focal plants adjusted the horizontal and vertical placement of their roots in response to neighbours. Of these, size-sensitivity represents the commonly assumed response to competitive encounters-reduced growth. However, location sensitivity is not accounted for in classic models and concepts of plant competition, though it is supported from recent work in plant behavioural ecology. We suggest that these different strategies could have

  15. Tissue response to potential root-end filling materials in infected root canals.

    PubMed

    Chong, B S; Ford, T R; Kariyawasam, S P

    1997-03-01

    The tissue responses to two potential root-end filling materials, a light-cured glass ionomer cement (Vitrebond) and a reinforced zinc oxide-eugenol cement (Kalzinol) were compared with that to amalgam. In 27 premolar teeth of beagle dogs (54 roots), a collection of endodontic pathogenic bacteria was first inoculated into the root canals to induce periapical lesions. On each root, an apicectomy was performed and root-end cavities prepared to receive fillings of each material. The teeth and surrounding jaw were removed after 8 weeks (24 roots) and 4 weeks (30 roots); and they were prepared for histological examination. The tissue response to amalgam fillings after 4 and 8 weeks was marked by moderate or severe inflammation on all roots, and extended > 0.5 mm in 10 out of 18 roots. In contrast, after 8 weeks, the majority of roots filled with Kalzinol showed little or moderate inflammation while the tissue response to Vitrebond was the best of the three materials, and was also less extensive. After 4 weeks, the overall best tissue response was with Kalzinol, followed closely by Vitrebond. The differences between materials for both time periods with either none or few inflammatory cells when compared with that with either moderate or severe inflammation were statistically significant (P < 0.01). Similarly, the differences between materials for both time periods with no inflammation or inflammation extending < 0.2 mm when compared with that with inflammation extending > 0.2 mm (< or = 0.5 mm or > 0.5 mm) were statistically significant (P < 0.01). Both Vitrebond and Kalzinol have potential as root-end filling materials as the tissue response was considerably more favourable than that to amalgam.

  16. Disentangling root system responses to neighbours: identification of novel root behavioural strategies

    PubMed Central

    Belter, Pamela R.; Cahill, James F.

    2015-01-01

    Plants live in a social environment, with interactions among neighbours a ubiquitous aspect of life. Though many of these interactions occur in the soil, our understanding of how plants alter root growth and the patterns of soil occupancy in response to neighbours is limited. This is in contrast to a rich literature on the animal behavioural responses to changes in the social environment. For plants, root behavioural changes that alter soil occupancy patterns can influence neighbourhood size and the frequency or intensity of competition for soil resources; issues of fundamental importance to understanding coexistence and community assembly. Here we report a large comparative study in which individuals of 20 species were grown with and without each of two neighbour species. Through repeated root visualization and analyses, we quantified many putative root behaviours, including the extent to which each species altered aspects of root system growth (e.g. rooting breadth, root length, etc.) in response to neighbours. Across all species, there was no consistent behavioural response to neighbours (i.e. no general tendencies towards root over-proliferation nor avoidance). However, there was a substantial interspecific variation showing a continuum of behavioural variation among the 20 species. Multivariate analyses revealed two novel and predominant root behavioural strategies: (i) size-sensitivity, in which focal plants reduced their overall root system size in response to the presence of neighbours, and (ii) location-sensitivity, where focal plants adjusted the horizontal and vertical placement of their roots in response to neighbours. Of these, size-sensitivity represents the commonly assumed response to competitive encounters—reduced growth. However, location sensitivity is not accounted for in classic models and concepts of plant competition, though it is supported from recent work in plant behavioural ecology. We suggest that these different strategies could have

  17. Ecological Hypothesis of Dentin and Root Caries.

    PubMed

    Takahashi, Nobuhiro; Nyvad, Bente

    2016-01-01

    Recent advances regarding the caries process indicate that ecological phenomena induced by bacterial acid production tilt the de- and remineralization balance of the dental hard tissues towards demineralization through bacterial acid-induced adaptation and selection within the microbiota - from the dynamic stability stage to the aciduric stage via the acidogenic stage [Takahashi and Nyvad, 2008]. Dentin and root caries can also be partly explained by this hypothesis; however, the fact that these tissues contain a considerable amount of organic material suggests that protein degradation is involved in caries formation. In this review, we compiled relevant histological, biochemical, and microbiological information about dentin/root caries and refined the hypothesis by adding degradation of the organic matrix (the proteolytic stage) to the abovementioned stages. Bacterial acidification not only induces demineralization and exposure of the organic matrix in dentin/root surfaces but also activation of dentin-embedded and salivary matrix metalloproteinases and cathepsins. These phenomena initiate degradation of the demineralized organic matrix in dentin/root surfaces. While a bacterial involvement has never been confirmed in the initial degradation of organic material, the detection of proteolytic/amino acid-degrading bacteria and bacterial metabolites in dentin and root caries suggests a bacterial digestion and metabolism of partly degraded matrix. Moreover, bacterial metabolites might induce pulpitis as an inflammatory/immunomodulatory factor. Root and dentin surfaces are always at risk of becoming demineralized in the oral cavity, and exposed organic materials can be degraded by host-derived proteases contained in saliva and dentin itself. New approaches to the prevention and treatment of root/dentin caries are required. PMID:27458979

  18. How can science education foster students' rooting?

    NASA Astrophysics Data System (ADS)

    Østergaard, Edvin

    2015-06-01

    The question of how to foster rooting in science education points towards a double challenge; efforts to prevent (further) uprooting and efforts to promote rooting/re-rooting. Wolff-Michael Roth's paper discusses the uprooting/rooting pair of concepts, students' feeling of alienation and loss of fundamental sense of the earth as ground, and potential consequences for teaching science in a rooted manner. However, the argumentation raises a number of questions which I try to answer. My argumentation rests on Husserl's critique of science and the "ontological reversal", an ontological position where abstract models from science are considered as more real than the everyday reality itself, where abstract, often mathematical, models are taken to be the real causes behind everyday experiences. In this paper, measures towards an "ontological re-reversal" are discussed by drawing on experiences from phenomenon-based science education. I argue that perhaps the most direct and productive way of promoting rooting in science class is by intentionally cultivating the competencies of sensing and aesthetic experience. An aesthetic experience is defined as a precognitive, sensuous experience, an experience that is opened up for through sensuous perception. Conditions for rooting in science education is discussed against three challenges: Restoring the value of aesthetic experience, allowing time for open inquiry and coping with curriculum. Finally, I raise the question whether dimensions like "reality" or "nature" are self-evident for students. In the era of constructivism, with its focus on cognition and knowledge building, the inquiry process itself has become more important than the object of inquiry. I argue that as educators of science teachers we have to emphasize more explicitly "the nature of nature" as a field of exploration.

  19. Cold temperature delays wound healing in postharvest sugarbeet roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  20. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  1. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  2. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  3. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  4. 21 CFR 872.3810 - Root canal post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Root canal post. 872.3810 Section 872.3810 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3810 Root canal post. (a) Identification. A root canal... of the platinum group intended to be cemented into the root canal of a tooth to stabilize and...

  5. Root cortical burden influences drought tolerance in maize

    PubMed Central

    Jaramillo, Raúl E.; Nord, Eric A.; Chimungu, Joseph G.; Brown, Kathleen M.; Lynch, Jonathan P.

    2013-01-01

    Background and Aims Root cortical aerenchyma (RCA) increases water and nutrient acquisition by reducing the metabolic costs of soil exploration. In this study the hypothesis was tested that living cortical area (LCA; transversal root cortical area minus aerenchyma area and intercellular air space) is a better predictor of root respiration, soil exploration and, therefore, drought tolerance than RCA formation or root diameter. Methods RCA, LCA, root respiration, root length and biomass loss in response to drought were evaluated in maize (Zea mays) recombinant inbred lines grown with adequate and suboptimal irrigation in soil mesocosms. Key Results Root respiration was highly correlated with LCA. LCA was a better predictor of root respiration than either RCA or root diameter. RCA reduced respiration of large-diameter roots. Since RCA and LCA varied in different parts of the root system, the effects of RCA and LCA on root length were complex. Greater crown-root LCA was associated with reduced crown-root length relative to total root length. Reduced LCA was associated with improved drought tolerance. Conclusions The results are consistent with the hypothesis that LCA is a driver of root metabolic costs and may therefore have adaptive significance for water acquisition in drying soil. PMID:23618897

  6. Biophoton Emission Induced by Osmotic Stress in Adzuki Bean Root

    NASA Astrophysics Data System (ADS)

    Ohya, Tomoyuki; Oikawa, Noriko; Kawabata, Ryuzou; Okabe, Hirotaka; Kai, Shoichi

    2003-12-01

    In order to evaluate the physiological damage to plants caused by osmotic stress, we have investigated the relationship between the inhibition of root elongation and spontaneous photon emission from the root. Adzuki bean roots were soaked in polyethylene glycol (PEG) solutions for short periods in their early growth stage, and their root length and photon emission were measured afterwards. Consequently, it became clear that the root elongation decreased with the increase of PEG concentration. Moreover, there was a clear correlation between the emission intensity of the cell division area in the root and the inhibition of elongation, though the elongation of individual roots varied to some degree.

  7. Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development.

    PubMed

    Verbon, Eline H; Liberman, Louisa M

    2016-03-01

    Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect Arabidopsis thaliana root growth and development by modulating cell division and differentiation in the primary root and influencing lateral root development. These effects lead to dramatic changes in root system architecture that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology.

  8. How up- or downslope anchoring affects root reinforcement

    NASA Astrophysics Data System (ADS)

    Giadrossich, Filippo; Schwarz, Massimiliano; Cohen, Denis; Niedda, Marcello

    2016-04-01

    Root reinforcement is important for slope stability. In addition to the important contribution of roots to shear strength along the slip surface, root networks are also recognized to impart stabilization through lateral (parallel to slope) redistribution of forces under tension. The most common method to measure lateral root reinforcement is a pullout test where one root or a bundle of root is pulled out of the soil matrix. This condition represents the case where roots within the mass of a landslide slip out from the upper stable part of the slope. There is also, however, the situation where roots anchored in the upper stable part of the slope slip out from the sliding mass. In the latter it is difficult to quantify root reinforcement and no study has discussed this mechanism. We carried out a new series of laboratory and field experiments using Douglas fir (Pseudotsuga menziesii) roots to quantify how up- or downslope anchoring affects root reinforcement. In addition, we carried out new field pullout tests on coarse roots (larger that 2 mm in diameter, up to 47 mm). Then, considering the state-of-the-art of root reinforcement modeling (the Root Bundle Model), we integrated results from our measurements into the model to verify the magnitude of this effect on overall root reinforcement at the stand scale. Results indicate that the ratio between pullout force and force transferred to the root during soil slip ranges between 0.5 and 1. This indicates that measured pullout force always overestimate the contribution of lateral slipping out roots in situations where the soil slide from anchored roots. This is general the case for root with diameter up to 3-4 mm. Root-size distribution is also a key factor influencing root reinforcement at the forest-stand scale. As most coarse roots break along tension cracks while fine roots slip out, the effect discussed in this study on root reinforcement modeling is negligible when coarse-root diameter classes are represented. Our

  9. International Curriculum for Chinese Language Education

    ERIC Educational Resources Information Center

    Scrimgeour, Andrew; Wilson, Philip

    2009-01-01

    The International Curriculum for Chinese Language Education (ICCLE) represents a significant initiative by the Office of Chinese Language Council International (Hanban) to organise and describe objectives and content for a standardised Chinese language curriculum around the world. It aims to provide a reference curriculum for planning, a framework…

  10. Young Chinese ESL Children's Home Literacy Experiences.

    ERIC Educational Resources Information Center

    Xu, Hong

    1999-01-01

    Describes home literacy experiences of six Chinese English-as-a-second-language kindergartners. Includes the parents' provision of literate home environments as well as children's functional use of Chinese and English and engagement in Chinese and English literacy activities. Indicates the diverse and cultural nature of the home literacy…

  11. Chinese Pupils and Their Learning Preferences.

    ERIC Educational Resources Information Center

    Woodrow, Derek; Sham, Sylvia (Mei, Yuen)

    2001-01-01

    Explored the responses of Chinese students in British schools to the education they received in independent, grant-maintained, and comprehensive school settings. British-Chinese students had distinctly different learning preferences than British-European students. They remained conditioned by traditional Chinese behavioral rules and believed in…

  12. The Chinese American: Inscrutable to Some.

    ERIC Educational Resources Information Center

    Chan, Carole

    Chinese Americans have been called inscrutable--not open to being understood. More casual, spontaneous, and expressive people find it hard to understand the strict discipline of feelings and highly selective and controlled expressions such as the Chinese American may practice. This paper serves as a social introduction to the Chinese American. For…

  13. Scientific and Technical Chinese, Volume II. Glossary.

    ERIC Educational Resources Information Center

    Kao, Kung-yi; And Others

    A composite English-to-Chinese glossary of all terms introduced in the individual lessons of "Scientific and Technical Chinese" is presented here. The appendices include lists of weights and measures and chemical elements, and a partial list of Chinese government organizations and research institutes related to science and technology. (AMH)

  14. Chinese Brush Calligraphy Character Retrieval and Learning

    ERIC Educational Resources Information Center

    Zhuang, Yueting; Zhang, Xiafen; Lu, Weiming; Wu, Fei

    2007-01-01

    Chinese brush calligraphy is a valuable civilization legacy and a high art of scholarship. It is still popular in Chinese banners, newspaper mastheads, university names, and celebration gifts. There are Web sites that try to help people enjoy and learn Chinese calligraphy. However, there lacks advanced services such as content-based retrieval or…

  15. Animals of the Chinese Zodiac. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    The Chinese lunar calendar dates back to the second millennium BC. Unlike the western calendar, which numbers the years progressively from the birth of Jesus Christ, the Chinese calendar is cyclical. Each cycle is made up of 12 years--after the 12th year, the cycle is repeated. The Chinese associate each year of a 12-year cycle with an animal, and…

  16. Chinese Orthographic Decomposition and Logographic Structure

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lin, Shan-Yuan

    2013-01-01

    "Chinese orthographic decomposition" refers to a sense of uncertainty about the writing of a well-learned Chinese character following a prolonged inspection of the character. This study investigated the decomposition phenomenon in a test situation in which Chinese characters were repeatedly presented in a word context and assessed…

  17. L2 Chinese: Grammatical Development and Processing

    ERIC Educational Resources Information Center

    Mai, Ziyin

    2016-01-01

    Two recent books (Jiang, 2014, "Advances in Chinese as a second language"; Wang, 2013, "Grammatical development of Chinese among non-native speakers") provide new resources for exploring the role of processing in acquiring Chinese as a second language (L2). This review article summarizes, assesses and compares some of the…

  18. Saving Chinese-Language Education in Singapore

    ERIC Educational Resources Information Center

    Lee, Cher Leng

    2012-01-01

    Three-quarters of Singapore's population consists of ethnic Chinese, and yet, learning Chinese (Mandarin) has been a headache for many Singapore students. Recently, many scholars have argued that the rhetoric of language planning for Mandarin Chinese should be shifted from emphasizing its cultural value to stressing its economic value since…

  19. Chinese Number Words, Culture, and Mathematics Learning

    ERIC Educational Resources Information Center

    Ng, Sharon Sui Ngan; Rao, Nirmala

    2010-01-01

    This review evaluates the role of language--specifically, the Chinese-based system of number words and the simplicity of Chinese mathematical terms--in explaining the relatively superior performance of Chinese and other East Asian students in cross-national studies of mathematics achievement. Relevant research is critically reviewed focusing on…

  20. Managerial Success Factors: A Chinese Profile

    ERIC Educational Resources Information Center

    Stivers, Bonnie P.; Adams, Janet S.; Liu, Bin

    2007-01-01

    This article reports on an exploratory study conducted in the People's Republic of China (PRC) to identify the managerial success factors perceived by Chinese managers to be important in their market economy. The study also looked at how these factors are exhibited by recent graduates of Chinese universities now working in Chinese firms.…

  1. Chinese-English Machine Translation System.

    ERIC Educational Resources Information Center

    Wang, William S-Y; And Others

    The report documents results of a two-year R&D effort directed at the completion of a prototype system for Chinese-English machine translation of S&T literature. The system, designated QUINCE, accepts Chinese input exactly as printed, with no pre-editing of any kind, and produces English output on experimental basis. Coding of Chinese text via…

  2. Teaching Oral Chinese in the United States

    ERIC Educational Resources Information Center

    Cheng, Chin-Chuan

    1976-01-01

    Because Chinese language textbooks were judged inadequate in teaching vocabulary dealing with everyday life in the U.S. and in China, new methods and materials were introduced into an oral Chinese course. Prepared discussion topics, Chinese films, soap operas, and shortwave radio broadcasts were used. (CHK)

  3. Problems of Textbook in Teaching Chinese Poetry.

    ERIC Educational Resources Information Center

    Kuo, Ta-hsia

    It is proposed that teachers of Chinese expose their students to traditional critical views of Chinese poetics and criticism through careful selection of poems. This approach to language study is based on the assumption that the student may gain insight and appreciation of Chinese poetry as well as a feeling for the culture. Arguments favoring…

  4. The Rhetoric of Chinese Layoff Memos

    ERIC Educational Resources Information Center

    Sisco, Lisa A.; Yu, Na

    2010-01-01

    In this analysis the authors introduce three memos announcing layoffs in Chinese companies. The three memos, translated from Chinese, are from: (1) Hewlett Packard China, an American company doing business in China; (2) UT Starcom, founded in China; and (3) Rizhao Steel, one of China's largest steel manufacturers. Comparing the Chinese and…

  5. Factors Influencing the Learning of Chinese Characters

    ERIC Educational Resources Information Center

    Sung, Ko-Yin; Wu, Hsiao-Ping

    2011-01-01

    This survey study, which involved 108 language learners enrolled in first-year Chinese as a foreign language classrooms in the United States, intended to address the research questions, "What types of Chinese-character learning strategies do US learners use?" and "Do US learners' Chinese-character learning strategy use differ based on the…

  6. [Dimensional fractal of post-paddy wheat root architecture].

    PubMed

    Chen, Xin-xin; Ding, Qi-shuo; Li, Yi-nian; Xue, Jin-lin; Lu, Ming-zhou; Qiu, Wei

    2015-06-01

    To evaluate whether crop rooting system was directionally dependent, a field digitizer was used to measure post-paddy wheat root architectures. The acquired data was transferred to Pro-E, in which virtual root architecture was reconstructed and projected to a series of planes each separated in 10° apart. Fractal dimension and fractal abundance of root projections in all the 18 planes were calculated, revealing a distinctive architectural distribution of wheat root in each direction. This strongly proved that post-paddy wheat root architecture was directionally dependent. From seedling to turning green stage, fractal dimension of the 18 projections fluctuated significantly, illustrating a dynamical root developing process in the period. At the jointing stage, however, fractal indices of wheat root architecture resumed its regularity in each dimension. This wheat root architecture recovered its dimensional distinctness. The proposed method was applicable for precision modeling field state root distribution in soil.

  7. Root system markup language: toward a unified root architecture description language.

    PubMed

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  8. Effect of root canal preparation, type of endodontic post and mechanical cycling on root fracture strength

    PubMed Central

    RIPPE, Marília Pivetta; SANTINI, Manuela Favarin; BIER, Carlos Alexandre Souza; BALDISSARA, Paolo; VALANDRO, Luiz Felipe

    2014-01-01

    Objective To evaluate the impact of the type of root canal preparation, intraradicular post and mechanical cycling on the fracture strength of roots. Material and Methods eighty human single rooted teeth were divided into 8 groups according to the instruments used for root canal preparation (manual or rotary instruments), the type of intraradicular post (fiber posts- FRC and cast post and core- CPC) and the use of mechanical cycling (MC) as follows: Manual and FRC; Manual, FRC and MC; Manual and CPC; Manual, CPC and MC; Rotary and FRC; Rotary, FRC and MC; Rotary and CPC; Rotary, CPC and MC. The filling was performed by lateral compactation. All root canals were prepared for a post with a 10 mm length, using the custom #2 bur of the glass fiber post system. For mechanical cycling, the protocol was applied as follows: an angle of incidence of 45°, 37°C, 88 N, 4 Hz, 2 million pulses. All groups were submitted to fracture strength test in a 45° device with 1 mm/ min cross-head speed until failure occurred. Results The 3-way ANOVA showed that the root canal preparation strategy (p<0.03) and post type (p<0.0001) affected the fracture strength results, while mechanical cycling (p=0.29) did not. Conclusion The root canal preparation strategy only influenced the root fracture strength when restoring with a fiber post and mechanical cycling, so it does not seem to be an important factor in this scenario. PMID:25025556

  9. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White lupin (Lupinus albus L.) is a phosphate (Pi) deficiency tolerant legume which develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and...

  10. Identification of coniferous fine roots to species using ribosomal PCR products of pooled root samples

    EPA Science Inventory

    Background/Question/Methods To inform an individual-based forest stand model emphasizing belowground competition, we explored the potential of using the relative abundances of ribosomal PCR products from pooled and milled roots, to allocate total root biomass to each of the thre...

  11. Occlusion regulates tooth-root elongation during root development in rat molars.

    PubMed

    Nakasone, Naohiro; Yoshie, Hiromasa

    2011-12-01

    Occlusion is commenced by contact of a tooth with an opposing tooth and is the mechanical force working against the periodontal ligament (PDL). However, the influences of occlusion during root development remain uncertain. By extracting the unerupted counterpart molars of rats, we established a non-occlusal model that directly examined the effects of the absence of occlusion in developing molars using micro-computed tomography (μ-CT) and histological procedures. The μ-CT data for experimental molars confirmed no attrition and hypogenesis of the alveolar bone. Root lengths in experimental groups increased more than in control groups. Histological findings of experimental molars showed a wide crown pulp, a long and narrow root, immature Sharpey's fibers, and hypogenesis of cementum. Proliferating cells localized in Hertwig's epithelial root sheath (HERS), the apical pulp, and the PDL of experimental teeth. Furthermore, cell-proliferative activity in experimental roots exceeded that in normal roots. These data indicate that cell proliferation is decreased by occlusion during root formation. Thus, occlusion is one factor that regulates root elongation.

  12. Correlation of Pectin Methylesterase Activity in Root Caps of Pea with Root Border Cell Separation.

    PubMed Central

    Stephenson, M. B.; Hawes, M. C.

    1994-01-01

    We tested predictions of the hypothesis that pectin methylesterase in the root cap plays a role in cell wall solubilization leading to separation of root border cells from the root tip. Root cap pectin methylesterase activity was detected only in species that release large numbers of border cells daily. In pea (Pisum sativum) root caps, enzyme activity is correlated with border cell separation during development: 6-fold more activity occurs during border cell separation than after cell separation is complete. Higher levels of enzyme activity are restored by experimental induction of border cell separation. A corresponding increase in transcription of a gene encoding root cap pectin methylesterase precedes the increase in enzyme activity. A dramatic increase in the level of soluble, de-esterified pectin in the root tip also is correlated with pectin methylesterase activity during border cell development. This increase in acidic, de-esterified pectin during development occurs in parallel with a decrease in cell wall/apoplastic pH of cells in the periphery of the root cap. PMID:12232366

  13. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.

  14. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance.

    PubMed

    Koevoets, Iko T; Venema, Jan Henk; Elzenga, J Theo M; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  15. Root System Markup Language: Toward a Unified Root Architecture Description Language1[OPEN

    PubMed Central

    Pound, Michael P.; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Leitner, Daniel; Meunier, Félicien; Pridmore, Tony P.; Schnepf, Andrea

    2015-01-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. PMID:25614065

  16. Characterization of Root Surface and Endorhizosphere Pseudomonads in Relation to Their Colonization of Roots

    PubMed Central

    van Peer, Ron; Punte, Helma L. M.; de Weger, Letty A.; Schippers, Bob

    1990-01-01

    An extensive colonization of the endorhizosphere by fluorescent pseudomonads was observed in tomato plants grown on artificial substrates. These studies reveal that a significantly higher percentage of pseudomonads obtained from the endorhizosphere (30%) reduced plant growth than those obtained from the root surface (4%). Lipopolysaccharide patterns, cell envelope protein patterns, and other biochemical characteristics indicated that Pseudomonas isolates obtained from the endorhizosphere are distinct from Pseudomonas isolates obtained from the root surface. Isolates from the endorhizosphere especially were able to recolonize the endorhizosphere of both sterile and nonsterile tomato roots. The ability of the endorhizosphere isolates to colonize the endorhizosphere significantly correlated with their agglutination by tomato root agglutinin but did not correlate with chemotaxis to seed exudates of tomato. No correlation between colonization of the endorhizosphere and agglutination by root agglutinin could be demonstrated for the root surface isolates. We propose that agglutination of specific Pseudomonas strains by root agglutinin is of importance in the initial phase of adherence of bacteria to the root surface. Images PMID:16348258

  17. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields

    PubMed Central

    Arai-Sanoh, Yumiko; Takai, Toshiyuki; Yoshinaga, Satoshi; Nakano, Hiroshi; Kojima, Mikiko; Sakakibara, Hitoshi; Kondo, Motohiko; Uga, Yusaku

    2014-01-01

    To clarify the effect of deep rooting on grain yield in rice (Oryza sativa L.) in an irrigated paddy field with or without fertilizer, we used the shallow-rooting IR64 and the deep-rooting Dro1-NIL (a near-isogenic line homozygous for the Kinandang Patong allele of DEEPER ROOTING 1 (DRO1) in the IR64 genetic background). Although total root length was similar in both lines, more roots were distributed within the lower soil layer of the paddy field in Dro1-NIL than in IR64, irrespective of fertilizer treatment. At maturity, Dro1-NIL showed approximately 10% higher grain yield than IR64, irrespective of fertilizer treatment. Higher grain yield of Dro1-NIL was mainly due to the increased 1000-kernel weight and increased percentage of ripened grains, which resulted in a higher harvest index. After heading, the uptake of nitrogen from soil and leaf nitrogen concentration were higher in Dro1-NIL than in IR64. At the mid-grain-filling stage, Dro1-NIL maintained higher cytokinin fluxes from roots to shoots than IR64. These results suggest that deep rooting by DRO1 enhances nitrogen uptake and cytokinin fluxes at late stages, resulting in better grain filling in Dro1-NIL in a paddy field in this study. PMID:24988911

  18. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance

    PubMed Central

    Koevoets, Iko T.; Venema, Jan Henk; Elzenga, J. Theo. M.; Testerink, Christa

    2016-01-01

    To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant’s response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops. PMID:27630659

  19. The root as a drill: an ethylene-auxin interaction facilitates root penetration in soil.

    PubMed

    Santisree, Parankusam; Nongmaithem, Sapana; Sreelakshmi, Yellamaraju; Ivanchenko, Maria; Sharma, Rameshwar

    2012-02-01

    Plant roots forage the soil for water and nutrients and overcome the soil's physical compactness. Roots are endowed with a mechanism that allows them to penetrate and grow in dense media such as soil. However, the molecular mechanisms underlying this process are still poorly understood. The nature of the media in which roots grow adds to the difficulty to in situ analyze the mechanisms underlying root penetration. Inhibition of ethylene perception by application of 1-methyl cyclopropene (1-MCP) to tomato seedlings nearly abolished the root penetration in Soilrite. The reversal of this process by auxin indicated operation of an auxin-ethylene signaling pathway in the regulation of root penetration. The tomato pct1-2 mutant that exhibits an enhanced polar transport of auxin required higher doses of 1-MCP to inhibit root penetration, indicating a pivotal role of auxin transport in this process. In this update we provide a brief review of our current understanding of molecular processes underlying root penetration in higher plants.

  20. Root system markup language: toward a unified root architecture description language.

    PubMed

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow.