Science.gov

Sample records for chinese hamster fibroblasts

  1. Resistance to DNA denaturation in irradiated Chinese hamster V79 fibroblasts is linked to cell shape

    SciTech Connect

    Olive, P.L.; Vanderbyl, S.; MacPhail, S.H. )

    1991-04-01

    Exponentially growing Chinese hamster V79-171b lung fibroblasts seeded at high density on plastic (approximately 7 x 10(3) cells/cm2) flatten, elongate, and produce significant amounts of extracellular fibronectin. When lysed in weak alkali/high salt, the rate of DNA denaturation following exposure to ionizing radiation is exponential. Conversely, cells plated at low density (approximately 7 x 10(2) cells/cm2) on plastic are more rounded 24 h later, produce little extracellular fibronectin, and display unusual DNA denaturation kinetics after X-irradiation. DNA in these cells resists denaturation, as though constraints to DNA unwinding have developed. Cell doubling time and distribution of cells in the growth cycle are identical for both high and low density cultures as is cell survival in response to radiation damage. The connection between DNA conformation and cell shape was examined further in low density cultures grown in conditioned medium. Under these conditions, cells at low density were able to elongate, and DNA denaturation of low density cultures was identical to that of high density cultures. Conversely, cytochalasin D, which interferes with actin polymerization causing cells to round up and release fibronectin, allowed development of constraints in high density cultures. These results suggest that DNA conformation is sensitive to changes in cell shape which result when cells are grown in different environments. However, these changes in DNA conformation detected by the DNA unwinding assay do not appear to play a direct role in radiation-induced cell killing.

  2. Transfection of normal human and Chinese hamster DNA corrects diepoxybutane-induced chromosomal hypersensitivity of Fanconi anemia fibroblasts

    SciTech Connect

    Shaham, M.; Adler, B.; Ganguly, S.; Chaganti, R.S.K.

    1987-08-01

    Cultured cells from individuals affected with Fanconi anemia (FA) exhibit spontaneous chromosome breakage and hypersensitivity to the cell killing and clastogenic effects of the difunctional alkylating agent diepoxybutane (DEB). The authors report here the correction of both of these DEB-hypersensitivity phenotypes of FA cells achieved by cotransfection of normal placental of Chinese hamster lung cell DNA and the plasmid pSV2-neo-SVgpt. Transfectants were selected for clonogenic survival after treatment with DEB at a dose of 5 ..mu..gml. At this dose of DEB, the clonogenicity of normal fibroblasts was reduced to 50% and that of FA fibroblasts was reduced to zero. DEB-resistant (DEB/sup r/) colonies selected in this system exhibited a normal response to DEB-induced chromosome breakage and resistance to repeated DEB treatment. The neo and gpt sequences were detected by Southern blot analysis of DNA from one of four DEB/sup r/ colonies independently derived from transfection of human DNA and one of three DEB/sup r/ colonies independently derived from transfection of Chinese hamster DNA. The results demonstrate that DNA sequences that complement the two hallmark cellular phenotypes (cellular and chromosomal hypersensitivity to alkylating agents) of FA are present in human as well as Chinese hamster DNA. The cloning of these genes using transfection strategies can be expected to enable molecular characterization of FA

  3. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts: Role of cell surface proteins

    PubMed Central

    Pagano, RE; Takeichi, M

    1977-01-01

    The adhesion of artificially generated lipid membrane vesicles to Chinese hamster V79 fibroblasts in suspension was used as a model system for studying membrane interactions. Below their gel-liquid crystalline phase transition temperature, vesicles comprised of dipalmitoyl lecithin (DPL) or dimyristoyl lecithin (DML) absorbed to the surfaces of EDTA- dissociated cells. These adherent vesicles could not be removed by repeated washings of the treated cells but could be released into the medium by treatment with trypsin. EM autoradiographic studies of cells treated with[(3)H]DML or [(3)H]DPL vesicles showed that most of the radioactive lipids were confined to the cell periphery. Scanning electron microscopy and fluorescence microscopy further confirmed the presence of adherent vesicles at the cell surface. Adhesion of DML or DPL vesicles to EDTA-dissociated cells modified the lactoperoxidase-catalyzed iodination pattern of the cell surface proteins; the inhibition of labeling of two proteins with an approximately 60,000- dalton mol wt was particularly evident. Incubation of cells wit h (3)H-lipid vesicles followed by sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis showed that some of the (3)H-lipid migrated preferentially with these approximately 60,000-mol wt proteins. Studies of the temperature dependence of vesicle uptake and subsequent release by trypsin showed that DML or DPL vesicle adhesion to EDTA- dissociated cells increased with decreasing temperatures. In contrast, cells trypsinized before incubation with vesicles showed practically no temperature dependence of vesicle uptake. These results suggest two pathways for adhesion of lipid vesicles to the cell surface-a temperature-sensitive one involving cell surface proteins, and a temperature-independent one. These findings are discussed in terms of current models for cell-cell interactions. PMID:407233

  4. Radiation-induced division delay in Chinese hamster ovary fibroblast and carcinoma cells: dose effect and ploidy. [X-ray

    SciTech Connect

    Kimler, B.F.; Leeper, D.B.; Schneiderman, M.H.

    1981-02-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the G/sub 2/ transition point for and the duration of radiation-induced division delay in diploid and tetraploid Chinese hamster ovary (CHO) fibroblasts and in Chinese hamster ovarian carcinoma cells. The location of the radiation-induced division delay transition point was dose independent at high doses and located approximately 42 min before division. At lower doses only an estimate of the point of blockade was possible; but the G/sub 2/ transition point appeared to be earlier in the cell cycle. The duration of radiation-induced division delay was dose dependent. This response is consistent with a sensitive population of cells in late G/sub 2/ that define the location of the transition point and the length of division delay. There was no difference observed in the dose response for radiation-induced division delay between the pseudotetraploid cell line of CHO and the pseudodiploid parent strain. However, in the cell line derived from a spontaneous Chinese hamster ovarian carcinoma the division delay was 39 +- 4 min/Gy. Therefore, radiation-induced division delay is independent of chromosome ploidy, but can show intraspecies cell line specificity.

  5. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts

    SciTech Connect

    Boothman, D.A.

    1994-04-01

    Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. {beta}-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases in unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab.

  6. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity.

    PubMed

    Archana, P R; Nageshwar Rao, B; Ballal, Mamatha; Satish Rao, B S

    2009-01-01

    The effect of thymol (TOH), a dietary compound was investigated for its ability to protect against radiation-induced cytotoxicity in Chinese hamster lung fibroblast (V79) cells growing in vitro. Treatment of V79 cells with 25 microg/ml of TOH prior to 10 Gy gamma radiation resulted increase in the cell viability than that of radiation alone as evaluated by MTT assay. Similarly, there was a significant increase in the surviving fraction observed with 25 microg/ml of TOH administered 1h prior to graded doses of gamma radiation. Further, 25 microg/ml TOH treatment before irradiation significantly decreased the percentage of radiation-induced apoptotic cells (sub-G(1) population) analyzed by flow cytometry as well as DNA ladder assay. TOH was found to inhibit various free radicals generated in vitro, viz., DPPH, O(2), ABTS(+) and OH in a concentration dependent manner. TOH also inhibited the radiation-induced decrease in intracellular glutathione, superoxide dismutase and catalase enzyme levels in V79 cells accompanied by the reduction in lipid peroxides. Our study demonstrated antagonistic potential of TOH against radiation-induced oxidative stress, lipid peroxidation resulting in increased cell viability.

  7. Sister chromatid exchange response of human diploid fibroblasts and Chinese hamster ovary cells to dimethylnitrosamine and benzo(a)pyrene

    SciTech Connect

    Tomkins, D.J.; Kwok, S.E.; Douglas, G.R.; Biggs, D.

    1982-01-01

    In the search for relevant assays for mutagenicity testing, considerable attention has been given to the use of mammalian cells in vitro and the incorporation of metabolic activation in the protocol. Chinese hamster ovary (CHO) cells are commonly chosen as the target cells for cytogenetic tests because of their excellent growth characteristics and long lifespan in culture. However, there may be cellular factors affecting the uptake, metabolism, and repair of damage which are not the same in cell lines. The response of CHO cells and three human diploid fibroblast strains (1MR-90, WI-38, S-3299) to benzo(a)pyrene (BP) and dimethylnitrosamine (DMN) were compared using sister chromatid exchange (SCE) analysis as a measure of genetic damage. For both BP and DMN the human cells and the CHO cells showed dose-response slopes that were significantly different from zero, except CHO cells treated with BP for 1 hr and S-3299 cells treated with DMN. Whereas human and CHO cells showed similar dose-response to BP and the three human cell strains had similar dose-responses to BP and DMN, the dose-response of the human cells to DMN was statistically less significant than that of CHO cells. Reducing the duration of chemical treatment in CHO cells had no effect on the slope of the dose-response curves for BP or DMN. The observed differences between human and CHO cells may reflect differences in the fate of metabolic intermediates of DMN.

  8. Indium chloride-induced micronuclei via reactive oxygen species in Chinese hamster lung fibroblast V79 cells.

    PubMed

    Lin, Ruey-Hseng; Yang, Ming-Ling; Li, Yi-Ching; Chang, Hui-Min; Kuan, Yu-Hsiang

    2013-10-01

    We study the cytotoxicity of indium chloride (InCl₃) in Chinese hamster lung fibroblasts, the V79 cells, using MTT assay. The results showed that InCl₃ did not induce significant cytotoxicity at various concentrations tested. In addition, the frequency of micronuclei (MN) was assayed to evaluate the genotoxic effects of InCl₃ in V79 cells. InCl₃ at concentrations ranged 0.1-1 μM significantly increased MN frequency in a concentration-dependent manner. Both catalase and superoxide dismutase at concentrations of 75 and 150 μg/mL significantly inhibited InCl₃-induced MN. Similarly, Germanium oxide (GeO₂) and dimercaprol expressed antigenotoxic effects. From these findings, it is concluded that InCl₃ is a potent genotoxic chemical, which may be mediated partly by inducing oxidative stress. The significance of this study shows that the workers in the semiconductor factories should be cautious in exposing to the hazardous genotoxic InCl₃.

  9. Dicholesteroyl diselenide: cytotoxicity, genotoxicity and mutagenicity in the yeast Saccharomyces cerevisiae and in Chinese hamster lung fibroblasts.

    PubMed

    de Oliveira, Iuri Marques; Degrandi, Tiago Hoerbe; Jorge, Patrícia Mendes; Saffi, Jenifer; Rosa, Renato Moreira; Guecheva, Temenouga Nikolova; Henriques, João Antonio Pêgas

    2014-03-15

    The organoselenium compound, dicholesteroyl diselenide (DCDS) is a structural analogue of diphenyl diselenide (DPDS) and may be considered as a promising antioxidant drug in vivo. Nevertheless, little is known about the toxicological properties of DCDS. In the present study we evaluated the cytotoxic, genotoxic and mutagenic properties of DCDS in Chinese hamster lung fibroblasts (V79) and in strains of the yeast Saccharomyces cerevisiae, proficient and deficient in several DNA-repair pathways. The results with V79 cells show that DCDS induced cytotoxicity, GSH depletion and elevation of lipid peroxidation at lower concentrations than did DPDS. DCDS also generated single- and double-strand DNA breaks in V79 cells, both in the presence and in the absence of metabolic activation, as revealed by alkaline and neutral comet assays. Moreover, the induction of oxidative DNA base-damage was demonstrated by means of a modified comet assay with formamidopyrimidine-DNA glycosylase and endonuclease III. Treatment with DCDS also induced micronucleus formation in V79 cells as well as point and frame-shift mutations in a haploid wild-type strain of S. cerevisiae. Yeast mutants defective in base excision-repair proteins were the most sensitive to DCDS. Pre-incubation with N-acetylcysteine reduced DCDS's oxidative, genotoxic and mutagenic effects in yeast and in V79 cells. Our findings indicate that the presence of cholesteroyl substituents in DCDS results in elevation of its cytotoxic and genotoxic potential compared with that of DPDS in yeast and in V79 cells. However, due to dose-dependent contrasting behaviour of organoselenium compounds and differences in their toxicity in in vitro and in vivo systems, further studies are needed in order to establish the non-toxic concentration range for treatment in mammals. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Interaction of leukotriene C4 and Chinese hamster lung fibroblasts (V79A03 cells). 1. Characterization of binding.

    PubMed

    Fitz, T A; Contois, D F; Liu, Y X; Watt, D S; Walden, T L

    1990-10-01

    A novel, specific, and potent biological action of leukotriene C4 (LTC4) was demonstrated in the Chinese hamster lung fibroblast cell line V79A03 (V79 cells), namely the confirment of protection against subsequent gamma-irradiation. Consequently, studies were conducted to determine whether LTC4-conferred radioprotection could be attributed to a receptor-mediated phenomenon. Specific binding sites for leukotriene C4 (LTC4) were identified and characterized using intact V79 cells incubated at 4 degrees C in the presence of serine-borate, during which time conversion of LTC4 to LTD4 or LTE4 was undetectable. Binding was maximal in a broad region between pH 6.2 and 8.8. Ca2+, Mg2+, and Na+ were not required for binding, and binding was not altered by GTP, ATP, or cAMP, by leukotrienes B4, D4, or E4, or by the leukotriene end point antagonists LY 171883, FPL 55712, or Revlon 5901-5. Scatchard analyses and kinetic experiments indicated the presence of high-affinity [Kd = 2.5 +/- 0.63 nM, approximately 9.9 x 10(5) sites/cell] and low-affinity [Kd = 350 +/- 211 nM, approximately 2.7 x 10(6) sites/cell] binding sites. The observed binding characteristics of LTC4 to V79 cells are consistent with a receptor-mediated phenomenon. In a companion communication which follows this report, we report the subcellular distribution of LTC4 binding to V79 cells and demonstrate that this binding is unlikely to be attributed principally to interaction with glutathione-S-transferase.

  11. Induction of chromosome aberrations by Fusarium T-2 toxin in cultured human peripheral blood lymphocytes and Chinese hamster fibroblasts

    SciTech Connect

    Hsia, C.C.; Gao, Y.; Wu, J.L.; Tzian, B.

    1986-01-01

    T-2 toxin is an important representative of trichothecenes produced by various species of imperfect fungi, mainly Fusarium genus. No definite data demonstrating the carcinogenic potential of T-2 toxin had been reported up to now. The authors demonstrated that T-2 toxin reproducibly induced chromosomal structural aberrations both in cultured human peripheral blood lymphocytes as well as in V/sub 79/ Chinese hamster fibroblasts. The mean percentage of cells with aberration of human lymphocytes from normal individuals induced by T-2 toxin is 49-fold (9.8%) of the mean percentage of corresponding control cultures without T-2 toxin (0.2%). T-2 toxin induced chromosome type (76%) as well as chromatid type (24%) of aberrations; among them, acentric fragment (46%) was the most common type, and chromatid gap, deletion, and chromosome gap were the next most common. T-2 toxin can induce aberrations in cells at different phases of the cell cycle. There are definite dose-effect relationships within a certain range of dosage of T-2 toxin in experiments with both human peripheral blood lymphocytes and V/sub 79/ cells. T-2 toxin exhibited three types of effects on cells, namely, mitogenic at lowest concentration, clastogenic (chromosome aberration) at median concentration, and cytotoxic at higher concentration. The dose-effect curves of these three effects are partly overlapping. Sex or age effect was not observed. The results suggest that T-2 toxin has carcinogenic potentials. The dosage of aflatoxin that can induce chromosomal aberration of human peripheral blood lymphocytes is thousands-fold of the dosage of T-2 toxin as shown in this report.

  12. Molecular cloning of Chinese hamster dihydrofolate reductase-specific cDNA and the identification of multiple dihydrofolate reductase mRNAs in antifolate-resistant Chinese hamster lung fibroblasts.

    PubMed Central

    Lewis, J A; Kurtz, D T; Melera, P W

    1981-01-01

    ds cDNA from antifolate-resistant Chinese hamster lung fibroblast subline DC-3F/MQ19 was ligated to Eco RI and Sal I oligonucleotide linkers and cloned into Eco RI and Sal I digested pBR322. Transformed colonies containing dihydrofolate reductase (DHFR)-specific recombinant plasmid were identified by Grunstein Hogness assay using a Chinese hamster DHFR-specific cDNA probe. A recombinant plasmid, pDHFR6, containing a 650 bp HFR insert was isolated and analyzed. This plasmid was used as a molecular probe in a Northern blot analysis of both cytoplasmic and polysomal DHFR, poly A+ mRNAs of the DC-3F/MQ19 subline, which over-produces a 20,000d DHFR 150-fold, and DC-3F/A3 subline, which over-produces a 21,000d DHFR 170-fold. This analysis revealed the presence of three DHFR mRNA species of 1350, 2200, and 3300 nucleotides in both independently-derived cell lines. The relative abundance of each species however varied strikingly between the two cell lines. Images PMID:6262725

  13. Protective Effect of Boric Acid on Oxidative DNA Damage In Chinese Hamster Lung Fibroblast V79 Cell Lines

    PubMed Central

    Yılmaz, Sezen; Ustundag, Aylin; Cemiloglu Ulker, Ozge; Duydu, Yalcın

    2016-01-01

    Objective Many studies have been published on the antioxidative effects of boric acid (BA) and sodium borates in in vitro studies. However, the boron (B) concentrations tested in these in vitro studies have not been selected by taking into account the realistic blood B concentrations in humans due to the lack of comprehensive epidemiological studies. The recently published epidemiological studies on B exposure conducted in China and Turkey provided blood B concentrations for both humans in daily life and workers under extreme exposure conditions in occupational setting. The results of these studies have made it possible to test antioxidative effects of BA in in vitro studies within the concentra- tion range relevant to humans. The aim of this study was to investigate the protective ef- fects of BA against oxidative DNA damage in V79 (Chinese hamster lung fibroblast) cells. The concentrations of BA tested for its protective effect was selected by taking the blood B concentrations into account reported in previously published epidemiological studies. Therefore, the concentrations of BA tested in this study represent the exposure levels for humans in both daily life and occupational settings. Materials and Methods In this experimental study, comet assay and neutral red uptake (NRU) assay methods were used to determinacy to toxicity and genotoxicity of BA and hydrogen peroxide (H2O2). Results The results of the NRU assay showed that BA was not cytotoxic within the tested concentrations (3, 10, 30, 100 and 200 µM). These non-cytotoxic concentrations were used for comet assay. BA pre-treatment significantly reduced (P<0.05, one-way ANOVA) the DNA damaging capacity of H2O2 at each tested BA concentrations in V79 cells. Conclusion Consequently, pre-incubation of V79 cells with BA has significantly reduced the H2O2-induced oxidative DNA damage in V79 cells. The protective effect of BA against oxidative DNA damage in V79 cells at 5, 10, 50, 100 and 200 μM (54, 108, 540

  14. Cytotoxic and genotoxic effects of tambjamine D, an alkaloid isolated from the nudibranch Tambja eliora, on Chinese hamster lung fibroblasts.

    PubMed

    Cavalcanti, Bruno C; Júnior, Hélio V N; Seleghim, Mirna H R; Berlinck, Roberto G S; Cunha, Geanne M A; Moraes, Manoel O; Pessoa, Claudia

    2008-08-11

    Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 microg/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6, 1.2, 2.4 and 4.8 microg/mL). After 24h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested, assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50>100 microg/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations

  15. SnCl(2)-induced DNA damage and repair inhibition of MMS-caused lesions in V79 Chinese hamster fibroblasts.

    PubMed

    Viau, C M; Guecheva, Temenouga N; Sousa, F G; Pungartnik, C; Brendel, M; Saffi, J; Henriques, João Antonio Pêgas

    2009-08-01

    In order to clarify the molecular mechanisms of Sn(2+) genotoxicity, we evaluated the induction of strand breaks, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (Endo III) sensitive sites, and the interference with the repair of methyl methane sulfonate (MMS)-caused DNA damage in V79 Chinese hamster lung fibroblasts exposed to stannous chloride by comet assay. A concentration-related increase in the DNA damage induced by 2 h SnCl(2) treatment at a concentration range of 50-1,000 microM was observed (r = 0.993; P < 0.01). Significantly elevated DNA migration in relation to the control level was detected at doses 100, 500 and 1,000 microM in normal alkaline and at doses 500 and 1,000 microM in modified (with Fpg and Endo III) comet assay. Although 50 microM SnCl(2) concentration did not increase significantly the DNA migration by itself in comet assay, it was capable to inhibit the repair of MMS-induced DNA damage during the post-treatment period of 24 h. Our results demonstrate the genotoxic and comutagenic effects of stannous chloride in V79 cells. The inhibitory effect of Sn(2+) on repair of MMS-induced DNA damage suggests that this metal can also interfere in DNA repair systems thus contributing to increased mutation by shifting the balance from error-free to error-prone repair processes.

  16. Spontaneous endomyometrial neoplasms in aging Chinese hamsters

    SciTech Connect

    Brownstein, D.G.; Brooks, A.L.

    1980-05-01

    Twenty-one endomyometrial neoplasms among 93 nulliparous noninbred Chinese hamsters were evaluated. The median survival time of the 93 females was 1040 days. The median age of hamsters with endomyometrial neoplasms was 1200 days. Neoplasms were classified as carcinomas or malignant mixed muellerian tumors of the endometrium and benign or malignant myometrial neoplasms. There were 13 endometrial adenocarcinomas. Three tumors were mixed adenosquamous carcinomas, which occurred in significantly older Chinese hamsters than did adenocarcinomas. Three malignant mixed muellerian tumors consisted of 2 carcinosarcomas and 1 mixed mesodermal tumor. The 2 myometrial neoplasms were a lelomyoma and a lelomyosarcoma. The classification and relative frequency of these neoplasms were similar to endomyometrial neoplasms of women, which makes Chinese hamsters useful subjects for studies of spontaneous endomyometrial cancers.

  17. Localization of the Chinese hamster CAD gene reveals homology between human chromosome 2p and Chinese hamster 7q

    SciTech Connect

    Bertoni, L.; Attolini, C.; Giulotto, E. ); Simi, S. )

    1993-06-01

    The trifunctional enzyme CAD catalyzes the first three steps of pyrimidine biosynthesis. By using fluorescence in situ hybridization the authors have localized the Chinese hamster CAD gene on chromosome 7q11-q13 of diploid fibroblasts. Other genes previously assigned to chromosome 7 include acid phosphatase-1, the M2 subunit of ribonucleotide reductase and ornithine decarboxylase. These genes are also syntenic with CAD on human chromosome 2p. They have then mapped CAD on the pericentromeric region of two different rearranged chromosomes (Z8p and R2q) in a cell line derived from Chinese hamster ovary. The presence of CAD on Z8 and R2 indicates that they derive from rearrangements involving chromosome 7. 14 refs., 2 figs.

  18. Antioxidant and cytoprotective effects of morin against hydrogen peroxide-induced oxidative stress are associated with the induction of Nrf-2‑mediated HO-1 expression in V79-4 Chinese hamster lung fibroblasts.

    PubMed

    Lee, Moon Hee; Cha, Hee-Jae; Choi, Eun Ok; Han, Min Ho; Kim, Sung Ok; Kim, Gi-Young; Hong, Su Hyun; Park, Cheol; Moon, Sung-Kwon; Jeong, Soon-Jeong; Jeong, Moon-Jin; Kim, Wun-Jae; Choi, Yung Hyun

    2017-03-01

    Natural phytochemicals of plant origin, including flavonoids, have been found to be potent antioxidants providing beneficial effects against oxidative stress-related diseases. The present study was carried out to investigate the antioxidant properties of morin, a flavonoid originally isolated from the flowering plants of the Moraceae family. Superoxide dismutase (SOD)‑like activity and 2,2'‑azino‑bis‑(3‑ethylbenzothiazoline‑6‑sulfonic acid) (ABTS•+) radical scavenging activity were determined. We also investigated the cytoprotective effects of morin against hydrogen peroxide (H2O2)‑induced DNA damage and apoptosis in V79‑4 Chinese hamster lung fibroblasts. Our results demonstrated that morin had strong scavenging effects against ABTS•+ radicals with enhanced SOD activity, which varied in a dose-dependent manner. Morin was found to reduce H2O2‑induced intracellular reactive oxygen species generation and nuclear DNA damage, and it recovered cell viability damaged by H2O2 via inhibition of mitochondrial dysfunction‑mediated apoptosis. Notably, the treatment of V79‑4 cells with morin markedly enhanced the expression of heme oxygenase‑1 (HO‑1) but not quinone oxidoreductase-1, which was associated with the increased expression and phosphorylation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the downregulation of Kelch‑like ECH‑associated protein 1 expression. Based on our findings, we conclude that morin effectively ameliorated oxidative stress‑induced DNA damage through intrinsic free radical scavenging activity and activation of the Nrf2/HO-1 pathway.

  19. Laminin on Toxoplasma gondii mediates parasite binding to the beta 1 integrin receptor alpha 6 beta 1 on human foreskin fibroblasts and Chinese hamster ovary cells.

    PubMed

    Furtado, G C; Cao, Y; Joiner, K A

    1992-11-01

    We investigated the role of parasite-bound laminin and the host cell beta 1 integrin receptors for this extracellular matrix protein in Toxoplasma gondii binding to fibroblasts. Laminin but not fibronectin was detected on extracellular tachyzoites by immunofluorescence and immunoblotting. Binding of parasites to CHO cells was inhibited by polyclonal antibodies to laminin and by a monoclonal antibody directed against the globular carboxyl-terminal portion of the long arm of laminin (at or near the suggested ligand-binding sites for alpha 3 beta 1 and alpha 6 beta 1), but not by a monoclonal antibody directed against the lateral short arms of laminin near the cross region of the molecule. Antibodies to the alpha 6 but not the alpha 2, alpha 3, or alpha 5 chains of the beta 1 family of integrins blocked parasite attachment to human foreskin fibroblasts and CHO cells. Attachment of T. gondii to cells via laminin on the parasite surface and laminin receptors on the mammalian cell is consistent with the capacity of the parasite to invade almost all nucleated cells.

  20. Proteomic Analysis of Chinese Hamster Ovary Cells

    PubMed Central

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E.; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard O.; Zhang, Hui; Betenbaugh, Michael

    2013-01-01

    In order to complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multi-dimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most a 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using CHO genome exclusively which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. 504 of the detected proteins included N-acetylation modifications and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  1. Chinese hamster ovary cell lysosomes retain pinocytized horseradish peroxidase and in situ-radioiodinated proteins

    SciTech Connect

    Storrie, B.; Sachdeva, M.; Viers, V.S.

    1984-02-01

    We used Chinese hamster ovary cells, a cell line of fibroblastic origin, to investigate whether lysosomes are an exocytic compartment. To label lysosomal contents, Chinese hamster ovary cells were incubated with the solute marker horseradish peroxidase. After an 18-h uptake period, horseradish peroxidase was found in lysosomes by cell fractionation in Percoll gradients and by electron microscope cytochemistry. Over a 24-h period, lysosomal horseradish peroxidase was quantitatively retained by Chinese hamster ovary cells and inactivated with a t 1/2 of 6 to 8 h. Lysosomes were radioiodinated in situ by soluble lactoperoxidase internalized over an 18-h uptake period. About 70% of the radioiodine incorporation was pelleted at 100,000 X g under conditions in which greater than 80% of the lysosomal marker enzyme beta-hexosaminidase was released into the supernatant. By one-dimensional electrophoresis, about 18 protein species were present in the lysosomal membrane fraction, with radioiodine incorporation being most pronounced into species of 70,000 to 75,000 daltons. After a 30-min or 2-h chase at 37 degrees C, radioiodine that was incorporated into lysosomal membranes and contents was retained in lysosomes. These observations indicate that lysosomes labeled by fluid-phase pinocytosis are a terminal component of endocytic pathways in fibroblasts.

  2. Effects of 13 T Static Magnetic Fields (SMF) in the Cell Cycle Distribution and Cell Viability in Immortalized Hamster Cells and Human Primary Fibroblasts Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Guoping; Chen, Shaopeng; Zhao, Ye; Zhu, Lingyan; Huang, Pei; Bao, Lingzhi; Wang, Jun; Wang, Lei; Wu, Lijun; Wu, Yuejin; Xu, An

    2010-02-01

    Magnetic resonance image (MRI) systems with a much higher magnetic flux density were developed and applied for potential use in medical diagnostic. Recently, much attention has been paid to the biological effects of static, strong magnetic fields (SMF). With the 13 T SMF facility in the Institute of Plasma Physics, Chinese Academy of Sciences, the present study focused on the cellular effects of the SMF with 13 T on the cell viability and the cell cycle distribution in immortalized hamster cells, such as human-hamster hybrid (AL) cells, Chinese hamster ovary (CHO) cells, DNA double-strand break repair deficient mutant (XRS-5) cells, and human primary skin fibroblasts (AG1522) cells. It was found that the exposure of 13 T SMF had less effect on the colony formation in either nonsynchronized or synchronized AL cells. Moreover, as compared to non-exposed groups, there were slight differences in the cell cycle distribution no matter in either synchronized or nonsynchronized immortalized hamster cells after exposure to 13 T SMF. However, it should be noted that the percentage of exposed AG1522 cells at G0/G1 phase was decreased by 10% as compared to the controls. Our data indicated that although 13 T SMF had minimal effects in immortalized hamster cells, the cell cycle distribution was slightly modified by SMF in human primary fibroblasts.

  3. Internalization of ricin in Chinese hamster ovary cells.

    PubMed Central

    Ray, B; Wu, H C

    1981-01-01

    Internalization of ricin into Chinese hamster ovary cells has been investigated. Combined treatment with galactose and pronase at 0 degrees C resulted in a complete release of surface-bound [125I]ricin into the media. Galactose-pronase-resistant cell-bound [125I]ricin represents internalized ricin molecules inside the cells. The internalization process is time, temperature, and concentration dependent. The pH optimum of internalization of ricin is about pH 7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has revealed that intact ricin molecules are internalized. Neither reduction nor proteolytic processing of ricin is required for the entry of ricin into Chinese hamster ovary cells. PMID:6965107

  4. Transfer of human genes conferring resistance to methylating mutagens, but not to UV irradiation and cross-linking agents, into Chinese hamster ovary cells

    SciTech Connect

    Kaina, B.; Van Zeeland, A.A.; Backendorf, C.; Thielmann, H.W.; Van de Putte, P.

    1987-05-01

    Chinese hamster ovary cells were transfected by human DNA ligated to the bacterial gpt (xanthine-guanine-phosphoribosyltransferase) gene which was used either in its native form or after partial inactivation with methylnitrosourea. The gpt+ transfectants were screened for resistance to high doses of N-methyl-N'-nitro-N-nitrosoguanidine. Using this approach, we showed that Chinese hamster ovary cells can acquire N-methyl-N'-nitro-N-nitrosoguanidine resistance upon transfection with DNA from diploid human fibroblasts, that this resistance is transferable by secondary transfection and is specific for methylating mutagens, and that it is not caused by increased removal of O6-methylguanine, 3-methyladenine, and 7-methylguanine from DNA.

  5. Variants of hamster fibroblasts resistant to Ricinus communis toxin (ricin).

    PubMed Central

    Meager, A; Ungkitchanukit, A; Hughes, R C

    1976-01-01

    1. Variant baby-hamster kidney (BHK) cell lines were isolated that grow in the presence of high concentrations of ricin, the toxic lectin of castor beans (Ricinus communis). The variant lines were independently derived from several cultures of normal BHK cells which had been exposed to the mutagen, methyl-N-nitro-N-nitrosoguanidine, before selection by ricin. 2. The cell lines maintain a high degree of resistance to ricin after growth in lectin-free medium for prolonged periods and therefore exhibit stable phenotypes that are different from normal BHK cells. 3. A preliminary classification of the phenotypes was made. Several cell lines bind normal amounts of 125I-labelled ricin, whereas other bind the lectin poorly. 4. A loss of surface receptors for two other lectins, R. communis RCA and Axinella polyploides, which have specificities similar to ricin, was also found in some but not all of the cell lines showing decreased surface concentrations of ricin receptors. 5. The binding to the ricin-resistant cells of lectins of different sugar specificity, namely Lens culinaris lectin and concanavalin A, was similar to, or higher than, to normal BHK cells. 6. Several of the ricin-resistant cell lines were shown to be cross-resistant to the weak cytotoxicity of Phaseolus vulgaris lectin. By contrast, some cell lines were more sensitive to concanavalin A than were normal BHK cells. Images PLATE 1 PMID:1275903

  6. Quantitative mutagenesis and mutagen screening with Chinese hamster ovary cells

    SciTech Connect

    Hsie, A.W.; San Sebastian, J.R.; Tan, E.L.

    1980-01-01

    A summary is presented on the development of a specific gene mutation assay, the Chinese hamster ovary cells/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) system, and the utilization of this system to study structure-activity relationship affecting cytotoxicity and gene mutation by various carcinogens. Then, preliminary development and validation of a Multiplex CHO System for the simultaneous determination of chromosome aberration, sister chromatid exchange in addition to cytotoxicity and gene mutation is presented. The potential use of a CHO/human cell hybrid system for measuring chromosomal deletion and loss is discussed.

  7. Chinese hamster ORC subunits dynamically associate with chromatin throughout the cell-cycle.

    PubMed

    McNairn, Adrian J; Okuno, Yukiko; Misteli, Tom; Gilbert, David M

    2005-08-15

    In yeast, the Origin Recognition Complex (ORC) is bound to replication origins throughout the cell-cycle, but in animal cells, there are conflicting data as to whether and when ORC is removed from chromatin. We find ORC1, 2 and ORC4 to be metabolically stable proteins that co-fractionate with chromatin throughout the cell-cycle in Chinese hamster fibroblasts. Since cellular extraction methods cannot directly examine the chromatin binding properties of proteins in vivo, we examined ORC:chromatin interactions in living cells. Fluorescence loss in photobleaching (FLIP) studies revealed ORC1 and ORC4 to be highly dynamic proteins during the cell-cycle with exchange kinetics similar to other regulatory chromatin proteins. In vivo interaction with chromatin was not significantly altered throughout the cell-cycle, including S-phase. These data support a model in which ORC subunits dynamically interact with chromatin throughout the cell-cycle.

  8. Mitotic Spindle Proteomics in Chinese Hamster Ovary Cells

    PubMed Central

    Bonner, Mary Kate; Poole, Daniel S.; Xu, Tao; Sarkeshik, Ali; Yates, John R.; Skop, Ahna R.

    2011-01-01

    Mitosis is a fundamental process in the development of all organisms. The mitotic spindle guides the cell through mitosis as it mediates the segregation of chromosomes, the orientation of the cleavage furrow, and the progression of cell division. Birth defects and tissue-specific cancers often result from abnormalities in mitotic events. Here, we report a proteomic study of the mitotic spindle from Chinese Hamster Ovary (CHO) cells. Four different isolations of metaphase spindles were subjected to Multi-dimensional Protein Identification Technology (MudPIT) analysis and tandem mass spectrometry. We identified 1155 proteins and used Gene Ontology (GO) analysis to categorize proteins into cellular component groups. We then compared our data to the previously published CHO midbody proteome and identified proteins that are unique to the CHO spindle. Our data represent the first mitotic spindle proteome in CHO cells, which augments the list of mitotic spindle components from mammalian cells. PMID:21647379

  9. Glutamine protects Chinese Hamster Ovary cells from radiation killing

    SciTech Connect

    Winters, R.; Matthews, R.; Ercal, N.; Krishnan, K. )

    1994-01-01

    Chinese Hamster Ovary (CHO) cells were propagated in vitro and exposed to varying doses of ionizing radiation. The surviving fraction of cells was determined, being found to be a function of the radiation dose. The cell survival curves obtained as a function of radiation dose were modified by the inclusion of varying doses of glutamine in the medium, with glutamine demonstrating a radioprotective effect. The radioprotectant effect of glutamine for CHO cells was more pronounced at higher radiation doses. These results support the idea that glutamine protects body systems such as the gut more directly as a radioprotector as opposed to a more indirect route, such as preventing bacterial translocation from the gut. 16 refs.

  10. Constitutive overexpression of a growth-regulated gene in transformed Chinese hamster and human cells

    SciTech Connect

    Anisowicz, A.; Bardwell, L.; Sager, R.

    1987-10-01

    Comparison by subtractive hybridization of mRNAs revealed a moderately abundant message in highly tumorigenic CHEF/16 cells present at very low levels in closely related nontumorigenic CHEF/18 cells. After cloning and sequencing the corresponding cDNA, computer comparison showed closest homology with the human connective tissue-activating peptide III (CTAP III). The human tumor cell cDNA hybridizing with the Chinese hamster clone was isolated, sequenced, and found to have closer similarity to the Chinese hamster gene than to CTAP III. Thus, the cloned cDNAs from Chinese hamster and human cells represent a different gene, named gro. Studies of its transcriptional regulation have shown that expression is tightly regulated by growth status in normal Chinese hamster and human cells and relaxed in the tumorigenic cells so far examined.

  11. Enhanced internalization of ricin in nigericin-pretreated Chinese hamster ovary cells.

    PubMed Central

    Ray, B; Wu, H C

    1981-01-01

    Biochemical and electron microscopic autoradiographic studies with [125I] ricin have revealed that nigericin-pretreated Chinese hamster ovary cells are more efficient than untreated cells in the internalization of the toxin into the cells. These results suggest that the enhanced rate of internalization of ricin in nigericin-pretreated cells may account for the enhancement of cytotoxicity of ricin in Chinese hamster ovary cells by nigericin. Images PMID:6965109

  12. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.

    PubMed

    Omasa, Takeshi; Onitsuka, Masayoshi; Kim, Wook-Dong

    2010-04-01

    Mammalian cell lines are important host cells for the industrial production of pharmaceutical proteins owing to their capacity for correct folding, assembly and post-translational modification. In particular, Chinese hamster ovary (CHO) cells are the most dependable host cells for the industrial production of therapeutic proteins. Growing demand for therapeutic proteins promotes the development of technologies for high quality and productivity in CHO expression systems. The following are fundamentally important for effective production. 1) Construction of cultivation process. The CHO-based cultivation process is well established and is a general platform of therapeutic antibody production. The cost of therapeutic protein production using CHO cells is equivalent to that using microbial culture. 2) Cell line development. Recent developments in omics technologies have been essential for the development of rational methods of constructing a cell line. 3) Cell engineering for post-translational steps. Improvement of secretion, folding and glycosylaiton is an important key issue for mammalian cell production systems. This review provides an overview of the industrial production of therapeutic proteins using a CHO cell expression system.

  13. CXPD: Cloning and characterization of the Chinese hamster XPD gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.; Carrano, A.V.; Weber, C.A.

    1994-12-31

    The Chinese hamster Xeroderma Pigmentosum group D (CXPD) nucleotide excision repair gene was cloned from the V79 cell line, and its nucleotide sequence was determined. The -15 kb gene is comprised of 23 exons with a 2283 base open reading frame. The predicted 760 amino acid protein is 98%, 51%, and 54% identical to the human ERCC2/XPD, the S. cerevisiae RAD3, and the S. pombe rad15 proteins, respectively. The promoter region of the CXPD gene contains a pyrimidine-rich stretch similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. We are creating mutants in CHO cell lines corresponding to those found in the rad3ts, rem-1 and rem-2 mutant alleles of S. cerevisiae, which do not cause UV-sensitivity. After modification of cloned CXPD fragments by site-directed mutagenesis, the DNAs will be targeted into UV-sensitive CHO group 2 cell lines. We have identified the mutation in the single CXPD alleles of UV5 and UVL-13. SInce the mutations in these lines are sufficiently near the sites of the rad3ts and both rem mutations, we will introduce the altered DNAs into these group 2 cell lines and select for UV-resistance. These new CHO mutants may provide insights into possible roles of CXPD in DNA replication fidelity, and mismatch repair and may confirm the predicted essential function.

  14. [Cytotoxicity studies on T-3262 in cultured Chinese hamster cells].

    PubMed

    Yoneda, T; Nakamura, S; Nojima, Y; Nishio, Y

    1989-04-01

    T-3262 is an antibacterial drug which belongs to the group of pyridonecarboxylic acids. In this study, we investigated cytotoxicity of T-3262 for inhibition of cell growth and effects on viability of, and morphological changes in cultured Chinese hamster cells (V79 cells). The following results were obtained. 1. The 50% inhibition dose of T-3262 for cell growth (ID50, cultured for 48 hours) was 12 micrograms/ml, showing that the inhibitory effect of T-3262 on the cell growth was stronger than that of enoxacin (ENX: ID50 44 micrograms/ml), norfloxacin (NFLX: ID50 105 micrograms/ml) or ofloxacin (OFLX: ID50 145 micrograms/ml). 2. The number of cells increased and dead cells were scarcely seen at the highest concentration tested in culture medium (40 micrograms/ml of T-3262 for 48 hours). At this concentration, degeneration of cytoplasm (atrophy and round shape) and decrease of mitotic cells were observed. These morphological changes were similar to those of the cells treated 400 micrograms/ml of NFLX or OFLX for 48 hours. 3. After the removal of T-3262 from culture medium, the cells began to grow actively and recovered from the morphological changes. The similar phenomenon was observed with ENX treated cells but not with fluorouracil or mitomycin C treated cells.

  15. Efficient Uptake and Dissemination of Scrapie Prion Protein by Astrocytes and Fibroblasts from Adult Hamster Brain

    PubMed Central

    Hollister, Jason R.; Lee, Kil Sun; Dorward, David W.; Baron, Gerald S.

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres. PMID:25635871

  16. Efficient uptake and dissemination of scrapie prion protein by astrocytes and fibroblasts from adult hamster brain.

    PubMed

    Hollister, Jason R; Lee, Kil Sun; Dorward, David W; Baron, Gerald S

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres.

  17. Coupling of human delta-opioid receptor to retinal rod transducin in Chinese hamster ovary cells.

    PubMed

    Varga, E V; Stropova, D; Kim, T; Wang, M; Roeske, W R; Yamamura, H I

    2000-01-01

    Reverse transcription-polymerase chain reaction was used to identify the pertussis toxin (Ptx)-sensitive G protein alpha-subunit pool in Chinese hamster ovary (CHO) and mouse fibroblast (B82) cells. We detected the presence of mRNA for G(ialpha2), G(ialpha3), and G(oalpha) in both cell lines. G(ialpha1) and G(alphaz) mRNAs were not detected. We also found a homolog of the retinal rod transducin (G(talpha1)) in CHO, and the mouse cone transducin (G(talpha2)) in B82 cells. The presence of the transducin alpha-subunit proteins in CHO and B82 cells was confirmed by immunoprecipitation with specific antibodies. To test the interaction of heterologously expressed receptors with transducin in CHO cells, a Ptx-insensitive (C347S) rod transducin mutant was transfected into a CHO cell line stably expressing the human delta-opioid receptor (hDOR/CHO). (+)-4-[(alphaR)-alpha-((2S,2R)-4-allyl-2, 5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide, a selective delta-opioid receptor agonist, stimulated guanosine-5'-O-(3-[(35)S]thio)triphosphate binding by 293 +/- 36% after Ptx pretreatment in the mutant cell line with an EC(50) value of 54 +/- 32 nM, showing that transducin can functionally couple to the human delta-opioid receptors in these cells.

  18. Phagocytosis and solubilization of fixed cells by metastatic hamster embryo fibroblasts, Nil2C2

    SciTech Connect

    Sakiyama, H.; Nishino, Y.; Nishimura, K.; Noda, Y.; Otsu, H.

    1984-05-01

    When Nil2C2, a metastatic clone derived from hamster embryo fibroblasts (Nil), was inoculated over (/sup 3/H)leucine-labeled fixed cells, Nil2C2 cells solubilized and phagocytosed fixed cells, and the radioactivity was released into the culture medium as trichloroacetic acid-soluble fragments. The solubilization of fixed cells was dependent on both the time of incubation of living cells with fixed cells and the number of living cells inoculated. Nil2C2 cells were shown by autoradiographic and electron microscopic studies to peel off fixed cells and ingest them as large fragments. The solubilization of fixed cells was significantly decreased when plasminogen was depleted from the culture medium. Protease inhibitors such as leupeptin, epsilon-aminocaproic acid, and soybean trypsin inhibitor partially inhibited the proteolysis and phagocytosis of Nil2C2 cells. Mouse peritoneal macrophages activated by Salmonella typhimurium solubilized fixed cells after the addition of 12-O-tetradecanoylphorbol-13-acetate. However, they did not phagocytose fixed cells as large fragments.

  19. Augmenting Chinese hamster genome assembly by identifying regions of high confidence.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan A; Fu, Hsu-Yuan; Sharma, Mohit; Johnson, Kathryn C; Mudge, Joann; Ramaraj, Thiruvarangan; Onsongo, Getiria; Silverstein, Kevin A T; Jacob, Nitya M; Le, Huong; Karypis, George; Hu, Wei-Shou

    2016-09-01

    Chinese hamster Ovary (CHO) cell lines are the dominant industrial workhorses for therapeutic recombinant protein production. The availability of genome sequence of Chinese hamster and CHO cells will spur further genome and RNA sequencing of producing cell lines. However, the mammalian genomes assembled using shot-gun sequencing data still contain regions of uncertain quality due to assembly errors. Identifying high confidence regions in the assembled genome will facilitate its use for cell engineering and genome engineering. We assembled two independent drafts of Chinese hamster genome by de novo assembly from shotgun sequencing reads and by re-scaffolding and gap-filling the draft genome from NCBI for improved scaffold lengths and gap fractions. We then used the two independent assemblies to identify high confidence regions using two different approaches. First, the two independent assemblies were compared at the sequence level to identify their consensus regions as "high confidence regions" which accounts for at least 78 % of the assembled genome. Further, a genome wide comparison of the Chinese hamster scaffolds with mouse chromosomes revealed scaffolds with large blocks of collinearity, which were also compiled as high-quality scaffolds. Genome scale collinearity was complemented with EST based synteny which also revealed conserved gene order compared to mouse. As cell line sequencing becomes more commonly practiced, the approaches reported here are useful for assessing the quality of assembly and potentially facilitate the engineering of cell lines. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gene mutations, chromosome aberrations and survivability after X-ray irradiation of Chinese hamster cell culture under conditions of cysteamine protection

    SciTech Connect

    Yesilova, T.V.; Feoktistova, T.P.

    1984-06-01

    Experimental results were reported to the determination of protective action of cysteamine on the yield of genetic mutations, chromosome aberrations and cell kill during reproduction, evidently due to damage of genetic structures. The experiments were performed on transplanted fibroblast cells of Chinese hamsters, clone 431 in which 80% of the cells had pseudodiloidy. A dose-modifying factor of 2 was established for chromosome aberrations and cell inactivation and a factor of 2.8 for the gene mutations. The data obtained led to a conclusion that there are general protective mechanisms which include the reaction of cysteamine on the radiation-chemical level and possible effect on the reparative processes.

  1. Enhancement of ricin cytotoxicity in Chinese hamster ovary cells by depletion of intracellular K+: evidence for an Na+/H+ exchange system in Chinese hamster ovary cells

    PubMed Central

    1985-01-01

    Depletion of intracellular K+ has been reported to result in an arrest of the formation of coated pits in human fibroblasts (Larkin, J.M., M.S. Brown, J.L. Goldstein, and R.G.W. Anderson, 1983, Cell, 33:273- 285). We have studied the effects of K+ depletion on the cytotoxicities of ricin, Pseudomonas exotoxin A, and diphtheria toxin in Chinese hamster ovary (CHO) cells. The cytotoxicities of ricin and Pseudomonas toxin were enhanced in K+-depleted CHO cells whereas the cytotoxicity of diphtheria toxin was reduced by K+ depletion. The effects of NH4Cl on the cytotoxicities of ricin, Pseudomonas toxin, and diphtheria toxin were found to be similar to those of K+ depletion, and there were no additive or synergistic effects on ricin cytotoxicity by NH4Cl in K+- depleted medium. The enhancement of ricin cytotoxicity by K+ depletion could be completely reversed by the addition of K+, Rb+, and partially by the addition of Cs+, before the ricin treatment, whereas Li+ was ineffective. These protective effects of K+ or Rb+ requires a functional Na+/K+ ATPase. CHO cells grown in K+-depleted media were found to contain 6.3-fold increase in intracellular Na+ level, concomitant with a 10-fold reduction in intracellular K+ level. The enhanced cytotoxicity of ricin in K+-free medium and the increased uptake of Na+ could be abolished by amiloride or amiloride analogues, which are known to be potent inhibitors of the Na+/H+ antiport system. Our results suggest that a depletion of intracellular K+ results in an influx of Na+, which is accompanied by the extrusion of H+. Consequently, there is an alkalinization of the cytosol and the ricin- containing endosomes. As a result, ricin is more efficiently released from the endosomes in-K+-depleted cells. Results from the studies of the binding, internalization, and degradation of 125I-ricin, and the kinetics of inhibition of protein synthesis by ricin in K+-depleted cells are consistent with this working hypothesis. PMID:2991297

  2. Replication of Chinese hamster embryo cells transformed by temperature-sensitive T-antigen mutants of simian virus 40.

    PubMed Central

    Robinson, C C; Swartzendruber, D E; Lehman, J M

    1980-01-01

    Chinese hamster embryo cells transformed by simian virus 40 temperature-sensitive T-antigen mutants replicated when confluent at 40.5 degrees C, regardless of the selection method, selection temperature, or virus strain used. Images PMID:6251272

  3. Assignment of genes encoding metallothioneins I and II to Chinese hamster chromosome 3: evidence for the role of chromosome rearrangement in gene amplification.

    PubMed Central

    Stallings, R L; Munk, A C; Longmire, J L; Hildebrand, C E; Crawford, B D

    1984-01-01

    Cadmium resistant (Cdr) variants with coordinately amplified metallothionein I and II (MTI and MTII) genes have been derived from both Chinese hamster ovary and near-euploid Chinese hamster cell lines. Cytogenetic analyses of Cdr variants consistently revealed breakage and rearrangement involving chromosome 3p. In situ hybridization with a Chinese hamster MT-encoding cDNA probe localized amplified MT gene sequences near the translocation breakpoint involving chromosome 3p. These observations suggested that both functionally related, isometallothionein loci are linked on Chinese hamster chromosome 3. Southern blot analyses of DNAs isolated from a panel of Chinese hamster X mouse somatic cell hybrids which segregate hamster chromosomes confirmed that both MTI and MTII are located on chromosome 3. We speculate that rearrangement of chromosome 3p could be causally involved with the amplification of MT genes in Cdr hamster cell lines. Images PMID:6527691

  4. Modulation of collagen production following bleomycin-induced pulmonary fibrosis in hamsters. Presence of a factor in lung that increases fibroblast prostaglandin E2 and cAMP and suppresses fibroblast proliferation and collagen production.

    PubMed

    Clark, J G; Kostal, K M; Marino, B A

    1982-07-25

    To elucidate mechanisms involved in the regulation of lung collagen content we studied hamsters with bleomycin-induced pulmonary fibrosis. Lung collagen in this model is increased as the result of greatly increased lung collagen synthesis rates. However, collagen synthesis rates are subsequently restored to normal. Hamster lung explants from both normal and bleomycin-exposed hamsters were cultured, and the effects of explant conditioned medium (CM) on lung fibroblast (IMR-90) proliferation and collagen production in vitro were determined. Lung explant CM increased fibroblast prostaglandin (PG)E2 production and intracellular cAMP, and decreased both fibroblast proliferation and collagen production in a dose-dependent manner. Greater activity was observed with lung explant CM from bleomycin-exposed lungs. Incubation of fibroblasts with indomethacin prior to addition of CM blocked CM-mediated changes in PGE2 and cAMP and inhibited changes in fibroblast proliferation and collagen production. Exogenous PGE2 or dibutyryl cAMP also suppressed fibroblast proliferation and collagen production. The suppressive activity in lung-conditioned medium is nondialyzable, has an apparent molecular weight of 15,000-20,000 by gel filtration, and is heat-stable. It is not species-restricted since CM from hamster lung affected human and hamster lung fibroblasts similarly. Activity is present preformed in lung and bronchoalveolar lavage fluid, although bronchoalveolar macrophages produce a nondialyzable factor in culture which suppresses fibroblast proliferation. The suppressive activity identified in fibrotic lung may represent a means for limiting collagen accumulation following tumor injury.

  5. Chinese hamster ovary cells contain transcriptionally active full-length type C proviruses.

    PubMed

    Lie, Y S; Penuel, E M; Low, M A; Nguyen, T P; Mangahas, J O; Anderson, K P; Petropoulos, C J

    1994-12-01

    We have isolated a genomic locus from Chinese hamster ovary (CHO) cells that contains a full-length provirus. Nucleotide sequence analysis indicates that it is a defective member of the rodent type C retrovirus family with an env region that is similar to those of mouse amphotropic retrovirus and subgroup B feline leukemia virus. We were able to demonstrate that this provirus is a member of a closely related family of full-length proviruses in CHO cells and Chinese hamster liver. Hybridization probes generated from this genomic clone were used to characterize type C retrovirus RNA expression in CHO cells. Full-length genomic RNA and subgenomic envelope mRNA were detected in CHO cell lines but not in the human-derived 293 cell line. Interestingly, we discovered that the site of retrovirus integration lies within a G repeat sequence belonging to the short interspersed element family of retroposons.

  6. Reversal of intrinsic multidrug resistance in Chinese hamster ovary cells by amiloride analogs.

    PubMed Central

    Epand, R. F.; Epand, R. M.; Gupta, R. S.; Cragoe, E. J.

    1991-01-01

    A number of amiloride analogs can sensitise wild type Chinese Hamster ovary (CHO) cells to the cytotoxic action of vinblastine, daunomycin, puromycin or colchicine. Some of these analogs also have weak sensitising effects on the multidrug resistant CHO cell line, CHRC5. The unusual feature of most of the active amiloride analogs is that they are more potent in reversing the intrinsic multidrug resistance (MDR) phenotype of CHO cells than their acquired MDR characteristic. Human HeLa cells that do not exhibit intrinsic MDR are not affected by these agents. Several of the amiloride analogs have a greater effect in increasing adriamycin uptake in wild type CHO cells than they do with CHRC5 cells. The differential effect of amiloride analogs on intrinsic versus acquired MDR characteristics of Chinese hamster cells suggests some differences in the underlying resistance mechanisms. PMID:1671752

  7. Superoxide Mediates the Toxicity of Paraquat for Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Bagley, Ann C.; Krall, Judith; Lynch, Robert E.

    1986-05-01

    The roles of superoxide and H2O2 in the cytotoxicity of paraquat were assessed in Chinese hamster ovary cells. Neither catalase nor superoxide dismutase inhibited the loss of ability to form colonies when added to the medium. When introduced into the cells, superoxide dismutase but not catalase inhibited the toxicity of paraquat. That superoxide dismutase acted by its known catalytic action is shown by the loss of inhibition when the enzyme was inactivated by H2O2 before being introduced into the cells. The lack of inhibition by catalase, by dimethyl sulfoxide, and by desferoxamine suggests that the toxicity is not mediated by a reaction between H2O2 and superoxide to engender the hydroxyl radical. Exposure of Chinese hamster ovary cells to paraquat may be a suitable means to determine the effects of superoxide anion in cultured cells and the ways in which cells can resist this toxic action.

  8. A cowpox virus gene required for multiplication in Chinese hamster ovary cells.

    PubMed Central

    Spehner, D; Gillard, S; Drillien, R; Kirn, A

    1988-01-01

    Cowpox virus, in contrast to vaccinia virus, can multiply in Chinese hamster ovary cells. To study the genetic basis for this difference in host range, recombinants between vaccinia and cowpox viruses were isolated and their DNA restriction patterns were examined. The ability to multiply in Chinese hamster ovary cells could be correlated with the conservation of cowpox virus sequences mapping at the left end of the genome. This was further demonstrated by marker rescue of the host range phenotype with restricted cowpox virus DNA. Marker rescue with cloned restriction fragments of decreasing size enabled the fine localization of the host range function to a 2.3-kilobase-pair fragment. Nucleotide sequencing revealed that the fragment encoded a single major polypeptide of approximately 77,000 daltons. It is suggested that the role of the host range gene from cowpox virus is to prevent the early and extensive shutoff of protein synthesis that normally occurs in Chinese hamster ovary cells infected by vaccinia virus. Images PMID:2831390

  9. Structure of the dihydrofolate reductase gene in Chinese hamster ovary cells.

    PubMed

    Carothers, A M; Urlaub, G; Ellis, N; Chasin, L A

    1983-04-11

    Overlapping recombinant lambda 1059 phages carrying regions of the dhfr locus from the amplified Chinese hamster ovary (CHO) cell clone MK42 have been isolated. In addition, dhfr cDNAs from this cell line have been cloned into plasmid pBR322. Restriction analysis of these recombinant molecules has led to a map of the Chinese hamster dhfr gene. This gene has a minimum size of 26 kb and contains six exons as defined by hybridization to a combination of mouse and CHO cDNA probes. The latter probes reveal 3' exonic sequences that are not present in mouse cDNA. The CHO dhfr gene thus extends about 700 bp further 3' than in the mouse, consistent with the larger size of the hamster mRNA. At least five intervening sequences are present, of approximate sizes: 0.3, 2.5, 8.6, 2.6 and 9.4 kb. Four sequences from highly repeated families are situated in introns within the dhfr gene. The overall structure of this gene is strikingly similar to that of the mouse. Evolutionary conservation of interrupted gene structure among mammals thus extends to genes that code for household enzymes as well as specialized or structural proteins.

  10. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism.

    PubMed Central

    Skinner, G. R.

    1976-01-01

    The phenomenon of cell transformation by type 2 herpes simplex virus has been investigated. Primary hamster embryo fibroblasts were exposed to type 2 herpes virus under conditions which would restrict or inhibit the lytic events of virus-cell interaction. Cell lines were established by single-cell cloning. There was evidence of altered cell morphology with altered biological activity in terms of longevity and oncogenicity; there was, however, no evidence of virus specific antigen or incorporation of viral nucleic acid into the host cell genome. Virus specific antigen was only detected in the early passages of an uncloned transformed cell line. We are thus unable to confirm previous studies (vide supra) and are obliged to propose a "hit and run" model for in vitro cell transformation by type 2 herpes simplex virus. Images Fig. 1 Fig. 2 Fig. 3 PMID:183803

  11. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run" mechanism.

    PubMed

    Skinner, G R

    1976-08-01

    The phenomenon of cell transformation by type 2 herpes simplex virus has been investigated. Primary hamster embryo fibroblasts were exposed to type 2 herpes virus under conditions which would restrict or inhibit the lytic events of virus-cell interaction. Cell lines were established by single-cell cloning. There was evidence of altered cell morphology with altered biological activity in terms of longevity and oncogenicity; there was, however, no evidence of virus specific antigen or incorporation of viral nucleic acid into the host cell genome. Virus specific antigen was only detected in the early passages of an uncloned transformed cell line. We are thus unable to confirm previous studies (vide supra) and are obliged to propose a "hit and run" model for in vitro cell transformation by type 2 herpes simplex virus.

  12. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines.

    PubMed

    Ohsfeldt, Erika; Huang, Szu-Han; Baycin-Hizal, Deniz; Kristoffersen, Linda; Le, Thuy-My T; Li, Edwin; Hristova, Kalina; Betenbaugh, Michael J

    2012-01-01

    Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.

  13. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B sub 1

    SciTech Connect

    Doehmer, J.; Dogra, S.; Friedberg, T.; Monier, S.; Adesnik, M.; Glatt, H.; Oesch, F. )

    1988-08-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltranferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B{sub 1}, which is activated by this enzyme.

  14. Large-Scale Transient Transfection of Chinese Hamster Ovary Cells in Suspension.

    PubMed

    Rajendra, Yashas; Balasubramanian, Sowmya; Hacker, David L

    2017-01-01

    We describe a one-liter transfection of suspension-adapted Chinese hamster ovary (CHO-DG44) cells using polyethyleneimine (PEI) for DNA delivery. The method involves transfection at a high cell density (5 × 10(6) cells/mL) by direct addition of plasmid DNA (pDNA) and PEI to the culture and subsequent incubation at 31 °C with agitation by orbital shaking. We also describe an alternative method in which 90% of the pDNA is replaced by nonspecific (filler) DNA, and the production phase is performed at 31 °C in the presence of 0.25% N, N-dimethylacetamide (DMA).

  15. A distinct G1 step required to specify the Chinese hamster DHFR replication origin.

    PubMed

    Wu, J R; Gilbert, D M

    1996-03-01

    Nuclei isolated from Chinese hamster ovary (CHO) cells at various times during the G1 phase of the cell cycle were stimulated to enter S phase by incubation in Xenopus egg cytosol. Replication of DNA initiated within the dihydrofolate reductase (DHFR) origin locus in nuclei isolated late in G1, but at random sites in nuclei isolated early in G1. A discrete transition point occurred 3 to 4 hours after metaphase. Neither replication licensing nor nuclear assembly was sufficient for origin recognition. Thus, a distinct cell cycle-regulated event in the nucleus restricts the initiation of replication to specific sites downstream of the DHFR gene.

  16. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells

    SciTech Connect

    Mason, J.M.; Zeiger, E.; Haworth, S.; Ivett, J.; Valencia, R.

    1987-01-01

    The genotoxic effects of methyl isocyanate (MIC) were investigated using four short-term tests: the Salmonella reversion assay (Ames test), the Drosophila sex-linked recessive lethal assay, and the sister chromatic exchange (SCE) and chromosomal aberration assays in cultured Chinese hamster ovary (CHO) cells. No evidence was found for the induction of mutations in either Salmonella or Drosophila. MIC did, however, induce SCEs and chromosomal aberrations in CHO cells both in the presence and absence of Aroclor-induced rat liver S-9.

  17. Mutation Detection in an Antibody-Producing Chinese Hamster Ovary Cell Line by Targeted RNA Sequencing

    PubMed Central

    Zhang, Siyan; Hughes, Jason D.; Murgolo, Nicholas; Levitan, Diane; Chen, Janice; Liu, Zhong

    2016-01-01

    Chinese hamster ovary (CHO) cells have been used widely in the pharmaceutical industry for production of biological therapeutics including monoclonal antibodies (mAb). The integrity of the gene of interest and the accuracy of the relay of genetic information impact product quality and patient safety. Here we employed next-generation sequencing, particularly RNA-seq, and developed a method to systematically analyze the mutation rate of the mRNA of CHO cell lines producing a mAb. The effect of an extended culturing period to mimic the scale of cell expansion in a manufacturing process and varying selection pressure in the cell culture were also closely examined. PMID:27088091

  18. Recent progress with the DNA repair mutants of Chinese hamster ovary cells

    SciTech Connect

    Thompson, L.H.; Salazar, E.P.; Brookman, K.W.; Collins, C.C.; Stewart, S.A.; Busch, D.B.; Weber, C.A.

    1986-04-02

    Repair deficient mutants of Chinese hamster ovary (CHO) cells are being used to identify human genes that correct the repair defects and to study mechanisms of DNA repair and mutagenesis. Five independent tertiary DNA transformants were obtained from the EM9 mutant. In these clones a human DNA sequence was identified that correlated with the resistance of the cells to CldUrd. After Eco RI digestion, Southern transfer, and hybridization of transformant DNAs with the BLUR-8 Alu family sequence, a common fragment of 25 to 30 kb was present. 37 refs., 4 figs., 3 tabs.

  19. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  20. Cell killing and mutation induction on Chinese hamster cells by photoradiations

    SciTech Connect

    Lam, C.K.C.

    1982-11-01

    Applying radiation directly on cells, far-uv is more effective than black light, and black light is more effective than white light in inducing proliferative death and in inducing resistance to 6-thioguanine (6-TG), ouabain and diptheria toxin (DT). Gold light has no killing and mutagenic effects on CHO (Chinese hamster ovary) cells. Use of filters showed that a small percentage of shorter wavelengths in the far-uv region is responsible for most of the killing and mutagenic effects in the unfiltered broad spectra of black and white light.

  1. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  2. The evolution of chromosomal instability in Chinese hamster cells: a changing picture?

    NASA Technical Reports Server (NTRS)

    Ponnaiya, B.; Limoli, C. L.; Corcoran, J.; Kaplan, M. I.; Hartmann, A.; Morgan, W. F.

    1998-01-01

    PURPOSE: To investigate the kinetics of chromosomal instability induced in clones of Chinese hamster cells following X-irradiation. MATERIALS AND METHODS: X-irradiated clones of GM10115, human-hamster hybrid cells containing a single human chromosome 4 (HC4), have been previously established. These clones were defined as unstable if they contained > or = three subpopulations of cells with unique rearrangements of HC4 as detected by FISH. Stable and unstable clones were analysed by FISH and Giemsa staining at various times post-irradiation. RESULTS: While most of the stable clones continued to show chromosomal stability of HC4 over time, one became marginally unstable at approximately 45 population doublings post-irradiation. Clones exhibiting chromosomal instability had one of several fates. Many of the unstable clones were showed similar levels of instability over time. However, one unstable clone became stable with time in culture, while another became even more unstable over time. Cytogenetic analyses of all clones after Giemsa staining indicated that in some clones the hamster chromosomes were rearranged independent of HC4, demonstrating increased frequencies of chromatid breaks and dicentric chromosomes. The majority of the unstable clones also had higher yields of chromatid gaps. CONCLUSIONS: These data demonstrate the dynamic nature of chromosomal instability as measured by two different cytogenetic assays.

  3. Restoration of Mitochondrial Gene Expression Using a Cloned Human Gene in Chinese Hamster Lung Cell Mutant

    PubMed Central

    Sherif, Zaki A; Broome, Carolyn W

    2015-01-01

    Background Gal−32 is a Chinese hamster lung cell nuclear mutant that is unable to grow in galactose due to a defect in mitochondrial protein synthesis. Since the product of the Gal−32 gene was unknown, it was imperative to use phenotypic complementation to clone a human gene that corrected the Gal−32 mutation. Results Recessive Gal−32 cells were co-transformed with pSV2-neo plasmid DNA and recombinant DNA from a human genomic library containing the dominant human Gal+ gene and a chloramphenicol-resistance (camr) gene present in the pSV13 vector. Primary transformants were selected by growth in galactose and the neomycin analog G418. In order to rescue the human Gal+ gene, a genomic library was constructed with primary transformant DNA and the pCV108 cosmid vector. The camr gene was used to identify clones with the nearby human sequences. DNA from two camr, Alu-hybridizing clones was able to transform the recessive Gal−32 cells to the Gal+ phenotype and to restore mitochondrial protein synthesis. Conclusion These data demonstrate the isolation of two pCV108-transformant recombinant clones containing a human gene that complements the Chinese hamster Gal−32 mutation and restores galactose metabolism. PMID:26052559

  4. Apoptosis induced by different doses of caffeine on Chinese hamster ovary cells.

    PubMed

    Fernández, M J; López, A; Santa-Maria, A

    2003-01-01

    Caffeine has been investigated for its potential mutagenic activity to bacteria, fungi and mammalian cells in culture, and at high concentrations it is also an inducer of apoptosis. Caffeine can exert acute cellular toxicity, including inhibition of cell growth and cell death, in Chinese hamster ovary cells. The aim of this study was to evaluate the cell survival and apoptotic or non-apoptotic effects of caffeine to different concentrations in Chinese hamster ovary cells (CHO-K1). These effects were evaluated by measuring cell viability, caspase 8 activity and fragmented DNA. This study suggests that the concentration of caffeine is of critical importance because high doses of caffeine induce apoptosis and low concentrations can act as an antioxidant. Previously, the cytotoxicity of caffeine was evaluated using a wide range of concentrations by the neutral red test. From this screening, adequate doses were selected to perform the caspase activity and fragmentation DNA studies. The potential antioxidant effect of caffeine was studied using tert-butyl-hydroperoxide as a free-radical generator. The repeatability was checked through three separate tests with the same concentration. Copyright 2003 John Wiley & Sons, Ltd.

  5. Restriction of human adenovirus replication in Chinese hamster cell lines and their hybrids with human cells.

    PubMed

    Radna, R L; Foellmer, B; Feldman, L A; Francke, U; Ozer, H L

    1987-11-01

    We have found that the replication of human adenovirus (Ad2) is restricted in multiple Chinese hamster cell lines including CHO and V79. The major site of restriction involves differential accumulation of late viral proteins as demonstrated by immunofluorescence assay and polyacrylamide gel electrophoresis with and without prior immunoprecipitation. Synthesis of fiber and penton base are markedly reduced, whereas others, such as the 100K polypeptide, are synthesized efficiently. This pattern of restriction is similar to that previously reported for Ad2 infection of several monkey cell lines; however, the restriction is more marked in the Chinese hamster cell lines. The restriction is most likely due to a deficient cellular function since stable cell hybrids between V79 or CHO and human cells are permissive for virus replication. By analysis of a series of hybrids with reduced numbers of human chromosomes, fiber synthesis was correlated with the presence of the short arm of human chromosome 3. More hybrids showed restoration of fiber synthesis than production of progeny virus, suggesting that more than one unlinked function is required for the latter.

  6. Formation of N epsilon-(gamma-glutamyl)-lysine isodipeptide in Chinese-hamster ovary cells.

    PubMed Central

    Fesus, L; Tarcsa, E

    1989-01-01

    N epsilon-(gamma-Glutamyl)-lysine isodipeptide was detected in a protein-free fraction of Chinese-hamster ovary cells and their culture fluid by using radioactive lysine as a tracer. The identity of the isodipeptide was established by its separation on ion-exchange chromatography, analysis by h.p.l.c. after derivatization, recovery of lysine after acidic hydrolysis or after cleavage by a specific enzyme, namely gamma-glutamylamine cyclotransferase. The amount of isodipeptide was raised (460 pmol/10(7) cells and 61 pmol/ml of culture fluid were observed as highest values) as the cell density increased. Effects of inhibitors of intracellular protein degradation have shown that the isodipeptide derives from cross-linking N epsilon-(gamma-glutamyl)-lysine bonds formed by tissue transglutaminase. Estimated half-life values of cross-linked proteins were about 3 h. gamma-Glutamylamine cyclotransferase, which may split the isodipeptide formed during the continuous turnover of cross-linked proteins, was also found in Chinese-hamster ovary cells. Isodipeptide may have been accumulated when either its generated amount is beyond the capacity of gamma-glutamylamine cyclotransferase or it is generated in cell compartments where this enzyme is not present. PMID:2574570

  7. Interspecies complementation analysis of xeroderma pigmentosum and UV-sensitive Chinese hamster cells

    SciTech Connect

    Stefanini, M.; Keijzer, W.; Westerveld, A.; Bootsma, D.

    1985-12-01

    Complementation analysis was performed 24 h after fusion of UV-sensitive CHO cells (CHO 12 RO) with XP cells of complementation groups A, B, C, D, F and G. The parental cells are characterized by low levels of unscheduled DNA synthesis (UDS). In all combinations, the UDS levels observed in heterokaryons were higher than those in parental mutant cells, clearly indicating cooperation of human and Chinese hamster repair functions. In heterokaryons of CHO 12 RO with XP-A and XP-C cells, the UDS values reached about the normal human level, whereas in heterokaryons with XP-B, XP-D and XP-F, UDS was restored at a level approaching that in wild-type CHO cells. The results obtained after fusion of CHO cells with two representative cell strains from the XP-G group, XP 2 BI and XP 3 BR, were inconsistent. Fusion with XP 3 BR cells yielded UDS levels ranging from wild-type Chinese hamster to normal human, whereas fusion with XP 2 BI cells resulted in a slight increase in UDS which even after 48 h remained below the level found in wild-type CHO cells. The occurrence of complementation in these interspecies heterokaryons indicates that the genetic defect in the CHO 12 RO cells is different from the defects in the XP complementation groups tested.

  8. Metabolism of 6-nitrobenzo(a)pyrene by hamster embryonic fibroblasts and its interaction with nuclear macromolecules

    SciTech Connect

    Tong, S.; Selkirk, J.K.

    1983-01-01

    Incubation of 6-nitrobenzo(a)pyrene (6-nitroBaP) with hamster embryonic fibroblasts led to formation of both organic solvent-soluble and water-soluble products. High-pressure liquid chromatographic analysis of organic solvent-soluble extracellular metabolites showed the predominant presence of dihydrodiols, with only small amounts of phenolic products. This differed from microsomal metabolism, using hepatic preparations from 3-methylcholanthrene-pretreated rats, where a major phenolic peak was obtained. Subsequent treatment of aqueous layer with ..beta..-glucuronidase, however, revealed that most of the phenols were associated with glucuronic acid to form water-soluble products. Interaction of 6-nitroBaP with nuclear macromolecules from HEF was also studied. The chemical interacted with both DNA and RNA, but the specific activity was highest with nuclear proteins. This binding profile was found to be similar to that when benzo(a)pyrene was used, although the affinity toward protein binding was slightly higher for 6-nitroBaP. 23 references, 6 figures, 2 tables.

  9. [Susceptibility of the Chinese hamster (Cricetulus griseus) to parasitic infection (3). Experimental infection with Hymenolepis nana or Trichuris muris to the cortisone treated Chinese hamster].

    PubMed

    Kutsumi, H; Miyamoto, K; Inaoka, T

    1989-07-01

    Susceptibility of Chinese hamster (Cricetulus griseus) of Asahikawa Colony (CHA) to Hymenolepis nana or Trichuris muris infection was compared in the feces-egg examination with that of mice as the control animals. Though CHA were resistant to the infection of H. nana, they were found to become susceptible to H. nana by the treatment with cortisone. A half number of CHA was infected with H. nana and the eggs were detected from each animal only in 4 or 6 days in the periods of examination more than 40 days. Mice with or without cortisone treatment were equally susceptible to H. nana infection. In another experiment, CHA with or without cortisone treatment were completely resistant to Trichuris muris infection. Mice, as the control animals, were found to be infected with T. muris in both of cortisone-treated and non-treated groups. Results from the fecal examination, it was confirmed that T. muris were expelled naturally from the animals on the weeks of 11 to 33 after infection.

  10. Cytotoxicity of refractory ceramic fibres to Chinese hamster ovary cells in culture.

    PubMed

    Hart, G A; Newman, M M; Bunn, W B; Hesterberg, T W

    1992-07-01

    The toxicity/oncogenicity of refractory ceramic fibres have been tested in chronic inhalation studies in rodents. Because these studies are time consuming and expensive, there is a need to develop and validate short-term models to screen fibres for their toxicological potential. In the present study, the toxic effects of four different compositions of refractory ceramic fibres were determined using Chinese hamster ovary cells grown in culture. These refractory ceramic fibres were the same size-selected fibres that had been used in animal inhalation studies, thus facilitating a direct comparison of findings in the two systems. Chinese hamster ovary cells were treated with refractory ceramic fibres 24 hr after seeding into 60-mm culture dishes in Ham's F12 medium with 10% serum. Inhibition of cell proliferation and colony formation were determined after 3-5 days of fibre exposure. Crocidolite and chrysotile asbestos were used as positive controls. Concentration-dependent inhibition of both cell proliferation and colony formation was observed after treatment with refractory ceramic fibres. The LC(50) for the different refractory ceramic fibres ranged from 10 to 30 mug/cm(2). The LC(50)s for crocidolite and chrysotile were 5 mug/cm(2) and 1 mug/cm(2), respectively. To assess the genotoxic potential of these fibres, fibre-exposed Chinese hamster ovary cell cultures were stained with acridine orange and scored for the incidence of micronuclei and other nuclear abnormalities. The incidence of nuclear abnormalities for refractory ceramic fibres at 20 mug/cm(2) ranged from 20 to 40%. Toxic endpoints of the in vitro studies were compared with those of the chronic animal inhalation studies. The latter included induction of lung fibrosis and pleural and airway tumours. A correlation was observed between the in vitro and in vivo toxicological potencies of the respective four refractory ceramic fibres: the fibres that were most toxic in vitro were also the most toxic in the

  11. Evolution of Chromosomal Instability in Chinese Hamster Cells: aChanging Picture?

    SciTech Connect

    Ponnaiya, Brian; Limoli, Charles L.; Corcoran, James; Kaplan,Mark I.; Hartmann, Andreas; Morgan, William F.

    1998-07-14

    Purpose: To investigate the kinetics of chromosomalinstability induced in clones of Chinese hamster cells followingX-irradiation. Materials and methods: X-irradiated clones of GM10115,human hamster hybrid cells containing a single human chromosome 4 (HC4),have been previously established. These clones were defined as unstableif they contained three sub-populations of cells with uniquerearrangements of HC4 as detected by FISH. Stable and unstable cloneswere analysed by FISH and Giemsa staining at various timespost-irradiation. Results: While most of the stable clones continued toshow chromosomal stability of HC4 over time, one became marginallyunstable at approximately 45 population doublings postirradiation. Clonesexhibiting chromosomal instability had one of several fates. Many of theunstable clones were showed similar levels of instability over time.However, one unstable clone became stable with time in culture, whileanother became even more unstable over time. Cytogenetic analyses of allclones after Giemsa staining indicated that in some clones the hamsterchromosomes were rearranged independent of HC4, demonstrating increasedfrequencies of chromatid breaks and dicentric chromosomes. The majorityof the unstable clones also had higher yields of chromatid gaps.Conclusions: These data demonstrate the dynamic nature of chromosomalinstability as measured by two different cytogenetic assays.

  12. Role of the adenylate energy charge in the response of Chinese hamster ovary cells to radiation

    SciTech Connect

    Bump, E.A.; Calderwood, S.K.; Sawyer, J.M.; Brown, J.M.

    1984-08-01

    Steady-state modification of the adenylate energy charge in aerobic Chinese hamster ovary (CHO) cells was achieved with a combination of rotenone and 2-deoxy glucose (2dG). The radiation response of these cells was not significantly affected by this treatment when cells were irradiated either one or three hours after addition of the drugs, and held in the presence of the inhibitors for one hour after irradiation. The ability of cells to repair radiation-induced single-strand breaks was studied by the alkaline elution method. Energy depleted cells repaired single-strand breaks at a slightly slower rate than the controls. However, thymidine incorporation was also inhibited, suggesting that repair may still have preceded events leading to the fixation of that damage (e.g., DNA replication).

  13. Isolation and characterization of Chinese hamster cell mutants resistant to the cytotoxic effects of chromate.

    PubMed

    Campbell, C E; Gravel, R A; Worton, R G

    1981-09-01

    Stable mutants resistant to the toxic anion chromate have been isolated from a variety of Chinese hamster cell lines. The mechanism of chromate toxicity is not known, but it must involve internalization via the sulfate transport pathway. All mutant lines had a defective sulfate transport system, showing a 10-fold reduction in the rate of uptake of radioactive sulfate into the cell. The chromate resistance phenotype in CHO cell mutants behave recessively in somatic cell hybrids; in other cell lines the Chr(r) phenotype was partially expressed (codominant) in cell hybrids. Complementation analysis in cell hybrids between 18 different mutant pairs failed to reveal any complementation, indicating that chromate selects mutants primarily, if not exclusively, at a single gene locus.

  14. Stable Expression of the Motor Protein Prestin in Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Konno, Kazuaki; Oshima, Takeshi; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Mammalian hearing sensitivity relies on a mechanical amplification mechanism involving the outer hair cells (OHCs), which rapidly alter their longitudinal length in response to changes in their membrane potential. The molecular basis of this mechanism is thought to be a motor protein embedded in the lateral membrane of the OHCs. Recently, this motor protein was identified and termed prestin. Since then, prestin has been researched intensively to elucidate the behavior of the OHCs. However, little progress in the study of prestin at the molecular level has been made because no method of obtaining an adequate amount of prestin has been established. In this study, therefore, an attempt was made to construct a stable expression system of prestin using Chinese hamster ovary (CHO) cells. The expression of prestin in the transfected CHO cells and the activity of prestin on CHO cells were confirmed by immunofluorescence and whole-cell patch-clamp measurements, respectively.

  15. Filter-Aided Sample Preparation (FASP) for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells.

    PubMed

    Coleman, Orla; Henry, Michael; Clynes, Martin; Meleady, Paula

    2017-01-01

    Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell line for biopharmaceutical production because of their ability to correctly fold and posttranslationally modify recombinant proteins that are compatible with human use. Proteomics, along with other 'omic platforms, are being used to understand the biology of CHO cells with the ultimate aim of enhancing CHO cell factories for more efficient production of biopharmaceuticals. In this chapter, we will describe an efficient protocol called Filter Aided Sample Preparation (FASP) for the extraction of proteins from CHO cells for proteomic studies. FASP uses a common ultrafiltration device whereby the membrane pores are small enough to allow contaminating detergents to pass through, while proteins are too large and are retained and concentrated in the filter unit. This method of sample preparation and protein digestion is universally applicable and can be easily employed in any proteomics facilities as standard everyday laboratory reagents and equipment are used.

  16. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  17. Changes in protein phosphorylation during the cell cycle of Chinese hamster ovary cells

    SciTech Connect

    Westwood, J.T.; Church, R.B.; Wagenaar, E.B.

    1985-08-25

    The phosphorylation patterns of proteins were examined during the cell cycle of Chinese hamster ovary cells. This was accomplished by labeling synchronized cells at various times with (TSP)orthophosphate and separating the proteins by both isoelectric focusing and nonequilibrium pH gradient two-dimensional gel electrophoresis. The most dramatic changes occurred during late G2/M when approximately eight proteins (including vimentin, lamin B, and histones 1 and 3) showed increased phosphorylation. Ten other proteins appeared to be uniquely phosphorylated during late G2/M. Of these 10 proteins, seven were no longer phosphorylated shortly after mitosis. There is also at least one protein which showed a relative decrease in phosphorylation during late G2/M.

  18. Antimutagenic activities of naturally occurring polyamines in Chinese hamster ovary cell in vitro

    SciTech Connect

    Cozzi, R.; Perticone, P.; Bona, R.; Polani, S. )

    1991-01-01

    Spermine and spermidine, ubiquitous polyamines present in bacteria and animal cells, are also involved in cell growth. Since they interact with the double helix, they can stabilize the DNA molecule. Recent evidence of the antimutagenic and anticarcinogenic capacity of spermine has focused attention on the he mechanism(s) by which such agents can protect cells from induced damages. In the present paper the authors show the ability of spermine and spermidine to decrease the level of sister chromatid exchanges induced in Chinese hamster ovary cells cultivated in vitro, by treating them with Psoralen + UVA irradiation (able to induce mainly monoadducts and DNA cross-links). Two different mechanisms of polyamine action can be invoked to explain the preservative activity of this class of agents.

  19. Dielectric model for Chinese hamster ovary cells obtained by dielectrophoresis cytometry

    PubMed Central

    Salimi, E.; Braasch, K.; Butler, M.; Thomson, D. J.

    2016-01-01

    We present a dielectric model and its parameters for Chinese hamster ovary (CHO) cells based on a double-shell structure which includes the cell membrane, cytoplasm, nuclear envelope, and nucleoplasm. Employing a dielectrophoresis (DEP) based technique and a microfluidic system, the DEP response of many single CHO cells is measured and the spectrum of the Clausius-Mossotti factor is obtained. The dielectric parameters of the model are then extracted by curve-fitting to the measured spectral data. Using this approach over the 0.6–10 MHz frequency range, we report the values for CHO cells' membrane permittivity, membrane thickness, cytoplasm conductivity, nuclear envelope permittivity, and nucleoplasm conductivity. The size of the cell and its nuclei are obtained using optical techniques. PMID:26858823

  20. Enhancement of cytotoxicities of ricin and Pseudomonas toxin in Chinese hamster ovary cells by nigericin.

    PubMed Central

    Ray, B; Wu, H C

    1981-01-01

    Nigericin and monensin, ionophores for Na+ and K+, have been found to enhance the cytotoxicities of abrin, ricin, and Pseudomonas aeruginosa exotoxin A in Chinese hamster ovary (CHO) cells. They do not affect the cytotoxicity of diphtheria toxin in the same cell line. Maximal sensitization of the CHO cells toward ricin and Pseudomonas toxin requires preculture of CHO cells in the presence of nigericin. Inhibition of protein synthesis in CHO cells by ricin or Pseudomonas toxin is also enhanced by preculture of CHO cells in the presence of nigericin. These results suggest a common step in the intoxication process of ricin and Pseudomonas toxin, the rate of which is facilitated by pretreatment with nigericin. This step is, however, not shared by the intoxication of CHO cells with diphtheria toxin. PMID:6965108

  1. Developmental arrest at early stages of Chinese hamster embryos homozygous for chromosomal rearrangements

    SciTech Connect

    Sonta, S.; Yamada, M.; Iida, T.; Ohashi, H. )

    1991-03-01

    Forty-three Chinese hamster stocks with autosomal rearrangements produced by X-irradiation were used. These rearrangements, 38 reciprocal translocations and 5 inversions, were chromosomally balanced. Heterozygotes for these rearrangements were all fertile and morphologically normal in both sexes except for one line with growth retardation. By crossing male and female heterozygotes for the same rearrangements, homozygotes were obtained in 37 lines. In the remaining 6 lines (5 with reciprocal translocations and 1 with an inversion), no homozygotes were viable. These 6 lines revealed arrested development of homozygous embryos at the two-cell stage, around the eight-cell stage, and after implantation, respectively. The bands of the breakpoints of rearrangements associated with lethality of homozygous embryos were different for each rearrangement. These results suggest that abnormal expression including embryonic lethality in homozygotes may be due to an influence of genes at the breakpoints.

  2. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts.

    PubMed Central

    Rahman, Qamar; Lohani, Mohtashim; Dopp, Elke; Pemsel, Heidemarie; Jonas, Ludwig; Weiss, Dieter G; Schiffmann, Dietmar

    2002-01-01

    Inhaled ultrafine titanium dioxide (UF-TiO2) particles cause pronounced pulmonary inflammation, in contrast to fine TiO2. Previous studies provide evidence for the production of reactive oxygen species by alveolar macrophages, after overloading with UF-TiO2 particles and cytotoxicity of UF-TiO2 in rat lung alveolar macrophages. UF-TiO2 also causes pulmonary fibrosis and lung tumors in rats. UF-TiO2 particles are photogenotoxic, but in general, information on the genotoxicity of UF-TiO2 is still limited. We studied the potential of UF-TiO2 (particle size less than or equal to 20 nm) and fine TiO2 (particle size > 200 nm) to induce chromosomal changes, which can be monitored by the formation of micronuclei (MN) in Syrian hamster embryo (SHE) cells. We also analyzed UF-TiO2-treated cells for apoptosis induction. The MN assay revealed a significant increase in MN induction (p less than or equal to 0.05) in SHE cells after treatment with UF-TiO2 (1.0 micro g/cm2) for 12 hr (mean, 24.5 MN/1,000 cells), 24 hr (mean, 31.13 MN/1,000 cells), 48 hr (mean, 30.8 MN/1,000 cells), 66 hr (mean, 31.2 MN/1,000 cells), and 72 hr (mean, 31.3 MN/1,000 cells). Bisbenzimide staining of the fixed cells revealed typical apoptotic structures (apoptotic bodies), and the apoptosis-specific "DNA ladder pattern" resulting from internucleosomal cleavage was identified by gel electrophoresis. Furthermore, transmission electron microscopy of the exposed cells revealed the typical chromatin compaction of apoptosis. PMID:12153761

  3. Activation of cellular oncogenes by chemical carcinogens in Syrian hamster embryo fibroblasts

    SciTech Connect

    Ebert, R.; Reiss, E.; Roellich, G.; Schiffmann, D. ); Barrett, J.C.; Wiseman, R.W. ); Pechan, R.

    1990-08-01

    Carcinogen-induced point mutations resulting in activation of ras oncogenes have been demonstrated in various experimental systems such as skin carcinogenesis, mammary, and liver carcinogenesis. In many cases, the data support the conclusion that these point mutations are critical changes in the initiation of these tumors. The Syrian hamster embryo (SHE) cell transformation model system has been widely used to study the multistep process of chemically induced neoplastic transformation. Recent data suggest that activation of the Ha-ras gene via point mutation is one of the crucial events in the transformation of these cells. The authors have now cloned the c-Ha-ras proto-oncogene from SHE cDNA-libraries, and we have performed polymerase chain reaction and direct sequencing to analyze tumor cell lines induced by different chemical carcinogens for the presence of point mutations. No changes were detectable at codons 12, 13, 59, 61, and 117 or adjacent regions in tumor cell lines induced by diethylstilbestrol, asbestos, benzo(a)pyrene, trenbolone, or aflatoxin B{sub 1}. Thus, it is not known whether point mutations in the Ha-ras proto-oncogene are essential for the acquisition of the neoplastic phenotype of SHE cells. Activation of other oncogenes or inactivation of tumor suppressor genes may be responsible for the neoplastic progression of these cells. However, in SHE cells neoplastically transformed by diethylstilbestrol or trenbolone, a significant elevation of the c-Ha-ras expression was observed. Enhanced expression of c-myc was detected in SHE cells transformed by benzo(a)pyrene or trenbolone.

  4. Enhanced sialylation of recombinant erythropoietin in genetically engineered Chinese-hamster ovary cells.

    PubMed

    Jeong, Yeon Tae; Choi, One; Son, Young Dok; Park, Seung Yeol; Kim, Jung Hoe

    2009-04-01

    Sialic acid, the terminal sugar in N-linked complex glycans, is usually found in glycoproteins and plays a major role in determining the circulatory lifespan of glycoproteins. In the present study we attempted to enhance the sialylation of recombinant EPO (erythropoietin) in CHO (Chinese-hamster ovary) cells. To enhance EPO sialylation, we introduced human alpha2,3-ST (alpha2,3-sialyltransferase) and CMP-SAS (CMP-sialic acid synthase) into recombinant human EPO-producing CHO cells. The sialylation of EPO was increased by the expression of alpha2,3-ST alone. Although the co-expression of alpha2,3-ST and CMP-SAS did not further increase sialylation, an increase in the intracellular pool of CMP-sialic acid was noted. On the basis of these observations, it was postulated that the transport capacity of CMP-sialic acid into the Golgi lumen was limited, thereby causing the reduced availability of CMP-sialic acid substrate for sialylation. Therefore, we co-expressed human alpha2,3-ST and CMP-SAS, as well as overexpress Chinese hamster CMP-sialic acid transporter (CMP-SAT) in CHO cells, which produced recombinant human EPO. When alpha2,3-ST, CMP-SAS, and CMP-SAT were overexpressed in CHO cells, there was a corresponding increase in sialylation compared with the co-expression of alpha2,3-ST and CMP-SAS. The present study provides a useful strategy for enhancing the sialylation of therapeutic glycoproteins produced in CHO cells.

  5. Genetic analysis of tumorigenesis: a conserved region in the human and Chinese hamster genomes contains genetically identified tumor-suppressor genes

    SciTech Connect

    Stenman, G.; Sager, R.

    1987-12-01

    Regional chromosome homologies were found in a comparison of human 11p with Chinese hamster 3p. By use of probes that recognize six genes of human 11p (INS, CAT, HBBC, CALC, PTH, and HRAS), the corresponding genes were localized by in situ hybridization on Chinese hamster chromosome 3. INS and CAT were located close to the centromere on 3p, whereas HBBC, CALC, and PTH were at 3q3-4 and HRAS at 3q4. Extensive prior data from chromosome studies of tumorigenic and tumor-derived Chinese hamster cells have suggested the presence of a tumor-suppressor gene on 3p. Two tumor-suppressor genes have been described on human 11p, one linked to CAT and one to INS. The present study raises the possibility that the Chinese hamster suppressor may be closely linked to INS or CAT.

  6. Kerosene soot genotoxicity: enhanced effect upon co-exposure with chrysotile asbestos in Syrian hamster embryo fibroblasts.

    PubMed

    Lohani, M; Dopp, E; Weiss, D G; Schiffmann, D; Rahman, Q

    2000-04-03

    Epidemiological and experimental studies have suggested an enhancement of asbestos-induced bronchogenic carcinoma by cigarette smoke. Further, our recent experimental and epidemiological studies have indicated that besides smoking, several other compounds including kerosene soot may accelerate disease processes in asbestos-exposed animals as well as in the humans. Incomplete combustion of kerosene oil generates large volumes of soot, which contains various polycyclic aromatic hydrocarbons and aliphatic compounds. As reported earlier, exposure to kerosene soot is known to cause biochemical and pathological changes in the pulmonary tissue, which may cause cardiopulmonary disorders. In this study we investigated genotoxic effects caused by kerosene soot and chrysotile asbestos as well as co-exposure of kerosene soot and chrysotile using Syrian hamster embryo fibroblasts (SHE). The micronucleus assay revealed a significant increase of induced micronuclei (MN), (P

  7. Expression and regional assignment of Chinese hamster ESD and rRNA genes associated with translocations giving rise to chromosomes Z1 and Z6 in CHO cells.

    PubMed

    Stallings, R L; Adair, G M; Lin, J C; Siciliano, M J

    1984-01-01

    The Chinese hamster genes ADK, NP, ESD, PGM2, PEPS, PEPB, GLO, and GSR, all of which are on Chinese hamster chromosome 1, were assigned to CHO-LA chromosomes by analysis of the segregation of CHO isozymes and chromosomes from interspecific somatic cell hybrids made with CHO cells and mouse C11D cells. One allele of each of these eight loci remained linked on the normal chromosome 1 homolog. For seven loci, the other allele remained linked on chromosome Z1, but ESD was shown to have been translocated to chromosome Z6 (Chinese hamster chromosome 5q +). Ag-NOR staining of CHO chromosomes indicated that the (1;5) translocation was very likely reciprocal, since the Chinese hamster chromosome 5, which gave rise to the CHO Z6, lacks an NOR and the Z1 now has one. These data allowed regional assignment of ESD to the distal portion of Chinese hamster chromosome 1p and provided genetic evidence for the origin of CHO chromosomes Z1 and Z6 from Chinese hamster chromosomes 1 and 5. Induced electrophoretic shift mutations of ESD and positive Ag-NOR staining for the rRNA genes on the Z1 showed that the activities of the genes lying close to the translocation breakpoints were maintained.

  8. Inhaled ozone as a mutagen. II - Effect on the frequency of chromosome aberrations observed in irradiated Chinese hamsters.

    NASA Technical Reports Server (NTRS)

    Zelac, R. E.; Cromroy, H. L.; Bolch, W. E., Jr.; Dunavant, B. G.; Bevis, H. A.

    1971-01-01

    Exposure-adjusted break frequencies for chromosome aberrations produced in Chinese hamster circulating blood lymphocytes were the quantitative indicator of damage from 5 hrs of exposure to X-radiation and/or to ozone. Radiation produced 5.51 x 0.0001 breaks/cell rad for cells withdrawn 2 weeks after exposure, a reasonable value when compared with data from in vivo exposure of human lymphocytes and Chinese hamster bone marrow cells. Animals exposed to the two agents simultaneously exhibited more than 70% of the total breaks anticipated assuming the expected equal contributions to be additive. Extending to humans, at presently permitted levels, exposure to ozone would be much more detrimental than exposure to radiati*n.

  9. Inhaled ozone as a mutagen. II - Effect on the frequency of chromosome aberrations observed in irradiated Chinese hamsters.

    NASA Technical Reports Server (NTRS)

    Zelac, R. E.; Cromroy, H. L.; Bolch, W. E., Jr.; Dunavant, B. G.; Bevis, H. A.

    1971-01-01

    Exposure-adjusted break frequencies for chromosome aberrations produced in Chinese hamster circulating blood lymphocytes were the quantitative indicator of damage from 5 hrs of exposure to X-radiation and/or to ozone. Radiation produced 5.51 x 0.0001 breaks/cell rad for cells withdrawn 2 weeks after exposure, a reasonable value when compared with data from in vivo exposure of human lymphocytes and Chinese hamster bone marrow cells. Animals exposed to the two agents simultaneously exhibited more than 70% of the total breaks anticipated assuming the expected equal contributions to be additive. Extending to humans, at presently permitted levels, exposure to ozone would be much more detrimental than exposure to radiati*n.

  10. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor.

    PubMed

    Zhang, Ye; Chotteau, Véronique

    2015-12-01

    This data article shows how the recombinant Chinese Hamster Ovary (CHO) cells are located in the interstices of the matrix fibers of a CellTank bioreactor after completion of a perfusion culture, supporting the article entitled "Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor" by Zhang et al. [1]. It provides a visualization of the cell distribution in the non-woven fiber matrix in a deeper view.

  11. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor

    PubMed Central

    Zhang, Ye; Chotteau, Véronique

    2015-01-01

    This data article shows how the recombinant Chinese Hamster Ovary (CHO) cells are located in the interstices of the matrix fibers of a CellTank bioreactor after completion of a perfusion culture, supporting the article entitled “Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor” by Zhang et al. [1]. It provides a visualization of the cell distribution in the non-woven fiber matrix in a deeper view. PMID:26958613

  12. Species differences in mutagenicity testing: I. Micronucleus and SCE tests in rats, mice, and Chinese hamsters with aflatoxin B1.

    PubMed

    Madle, E; Korte, A; Beek, B

    1986-01-01

    Three animal species used in in vivo mutagenicity testing--rats, mice and Chinese hamsters--were compared with respect to their mutagenic response to the mycotoxin aflatoxin B1 (AFB1). The micronucleus test and the SCE test with bone marrow cells were chosen as test methods, employing similar protocols for all species. The mutagenic potential of AFB1 was detected with rats and mice but not with Chinese hamsters. Rats were more susceptible to the mutagenic action of AFB1 than mice with regard to the effective dose. A difference in sensitivity between males and females was evident in rats and mice: male animals exhibited higher induced micronucleus frequencies than females, and a clear SCE-inducing effect was only detectable in male animals. These results are in agreement with those of in vitro and carcinogenicity studies. They may be due to metabolic differences between the species and sexes, predominantly differences in glutathione conjugation of the reactive AFB1 epoxide and in the formation of the metabolite aflatoxicol. Furthermore, it could be demonstrated that AFB1 seems to be a more potent inducer of micronuclei than of SCE. Since our results obtained with rats and mice were clearly positive, but with the Chinese hamster the mutagenic potential of AFB1 was not detectable with the test systems used, it can be concluded that the choice of an "inappropriate" test species may lead to a false negative judgment on the genotoxic potential of a test compound.

  13. Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line.

    PubMed Central

    Lo, J F; Wang, H F; Tam, M F; Lee, T C

    1992-01-01

    A glutathione S-transferase (GST) was purified from an arsenic-resistant Chinese hamster ovary cell line, SA7. The SA7 GST was shown to catalyse the conjugation of glutathione and ethacrynic acid, a specific substrate for Pi class GST. Its N-terminal amino-acid sequence has 80% identical residues to that of rat GST P and human GST pi. Thus, the GST purified from SA7 cells belongs to the Pi family. Treatment with Cibacron Blue or ethacrynic acid, which are GST inhibitors, significantly decreased the resistance of SA7 cells to sodium arsenite. On the other hand, pretreatment of SA7N cells, a partial revertant of SA7 cells, with sublethal doses of sodium arsenite, cadmium acetate or zinc sulphate resulted in re-elevation of GST activities and the cells regained the arsenic resistance. The regained arsenic resistance was well correlated with the levels of GST pi which were induced dose-dependently by zinc sulphate. Heat-shock treatment (45 degrees C for 10 min) did not increase GST pi expression or arsenic resistance of SA7N cells. The results indicate that GST pi is possibly involved in the mechanism of arsenic detoxification. Images Fig. 4. Fig. 5. Fig. 7. Fig. 6. PMID:1472011

  14. Gene silencing by DNA methylation and dual inheritance in Chinese hamster ovary cells.

    PubMed

    Paulin, R P; Ho, T; Balzer, H J; Holliday, R

    1998-06-01

    Chinese hamster ovary (CHO) cells strain D422, which has one copy of the adenine phosphoribosyl transferase (APRT) gene, were permeabilized by electroporation and treated with 5-methyl deoxycytidine triphosphate. Cells with a silenced APRT gene were selected on 2, 6-diaminopurine. Colonies were isolated and shown to be reactivated to APRT+ by 5-aza-cytidine and by selection in medium containing adenine, aminopterin and thymidine. Genomic DNA was prepared from eight isolates of independent origin and subjected to bisulphite treatment. This deaminates cytosine to uracil in single-stranded DNA but does not deaminate 5-methyl cytosine. PCR, cloning and sequencing revealed the methylation pattern of CpG doublets in the promoter region of the APRT- gene, whereas the active APRT gene had nonmethylated DNA. CHO strain K1, which has two copies of the APRT+ gene, could also be silenced by the same procedure but at a lower frequency. The availability of the 5-methyl dCTP-induced silencing, 5-aza-CR and a standard mutagen, ethyl methane sulphonate, makes it possible to follow concomitantly the inheritance of active, mutant or silenced gene copies. This analysis demonstrates "dual inheritance" at the APRT locus in CHO cells.

  15. Molecular characterisation of camptothecin-induced mutations at the hprt locus in Chinese hamster cells.

    PubMed

    Balestrieri, E; Zanier, R; Degrassi, F

    2001-05-09

    The capacity of the topoisomerase I inhibitor camptothecin (CPT) to induce single locus mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene and the DNA changes underlying induced mutations were analysed in Chinese hamster ovary cells. Camptothecin treatments increased hprt mutations up to 50-fold over the spontaneous levels at highly cytotoxic doses. Genomic DNA was isolated from 6-thioguanine resistant clones and subjected to multiplex PCR to screen for gross alterations in the gene structure. The molecular analysis revealed that deletion mutants represented 80% of the analysed clones, including total hprt deletion, multiple and single exon deletions. Furthermore, a fraction of the analysed clones showed deletions of more than one exon that were characterised by the absence of non-contiguous exons. These data show that single locus mutations induced by camptothecin are characterised by large deletions or complex rearrangements rather than single base substitutions and suggest that the recombinational repair of camptothecin-induced strand breaks at replication fork may be involved in the generations of these alterations at the chromatin structure level.

  16. Microthermometry of laser-heated Chinese hamster ovary cells and sperm cells

    NASA Astrophysics Data System (ADS)

    Liu, Yagang; Sonek, Gregory J.; Chapman, Curtis F.; Tromberg, Bruce J.; Patrizio, Pasquale; Tadir, Yona; Berns, Michael W.

    1995-05-01

    Microthermometric measurements on optically-trapped Chinese Hamster Ovary (CHO) cells and sperms cells re reported, using a noninvasive microfluorometric detection technique. Within an optical tweezer system that has been outfitted with a spectral fluorescence excitation and detection capability, the changes in temperature induced by the process of sample confinement by a focused laser beam has been quantified over micron-sized spatial regions of both motile and immotile cells. Our measurement technique is based on the use of environmentally sensitive fluorophores that can be incorporated into the cell membrane and used to sense local changes in temperature when the cell membrane is perturbed optically or via other environmental stress factors. Using a cw 1.064 micrometers Nd:YAG laser for trapping CHO and human sperm cells, a temperature increase of approximately equals 1°C per 100 mW laser power was observed. At this infrared wavelength, cellular heating as result of laser confinement appears to be mainly due to radiation absorption by water.

  17. Rotational diffusion of TEMPONE in the cytoplasm of Chinese hamster lung cells.

    PubMed Central

    Lepock, J R; Cheng, K H; Campbell, S D; Kruuv, J

    1983-01-01

    The correlation time for rotational diffusion (tau R) of 2,2,6,6-tetramethyl-4-piperidone-N-oxide (TEMPONE) in Chinese hamster lung (V79) cells has been measured. For these cells in an isosmotic solution at 20 degrees C, tau R = 4.18 X 10(-11) s, approximately 3.6 times greater than tau R = 1.17 X 10(-11) s in water. The relationship between tau R and viscosity was investigated in a number of glycerol-water (0-50%) and sucrose-water (20-40%) solutions and a constant Stokes-Einstein volume of 44 A3 was found for TEMPONE in solutions of less than 20% glycerol and sucrose. This gives an average shear viscosity (for rotation of a small molecule) of 0.038 poise for the cytoplasm. When nonsecular terms were used in the calculation of tau R, the activation energies for rotation of TEMPONE in the above solutions correlated well with the activation energies for shear viscosity. The viscosity increases as the cell is shrunk in hypertonic solutions. It also increases with decreasing temperature with an activation energy of 3.7 kcal/mol, about the same as the activation energy for the viscosity of pure water. The rotational correlation times were carefully calculated considering inhomogeneous line broadening, non-Lorentzian line shapes, the need for accurate tensor values and nonsecular terms. PMID:6318842

  18. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    PubMed Central

    Hansen, Henning Gram; Nilsson, Claes Nymand; Lund, Anne Mathilde; Kol, Stefan; Grav, Lise Marie; Lundqvist, Magnus; Rockberg, Johan; Lee, Gyun Min; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup

    2015-01-01

    Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric productivity of CHO cells in 96-half-deepwell microplates comparable with those obtained in shake flasks. In addition, we demonstrate that split-GFP complementation can be used to accurately measure relative titers of therapeutic glycoproteins. Using this platform, we were able to detect target gene-specific increase in titer and specific productivity of two non-mAb glycoproteins. In conclusion, the platform provides a novel miniaturized and parallelisable solution for screening target genes and holds the potential to unravel genes that can enhance the secretory capacity of CHO cells. PMID:26657798

  19. Propolis-induced genotoxicity and antigenotoxicity in Chinese hamster ovary cells.

    PubMed

    Tavares, Denise Crispim; Mazzaron Barcelos, Gustavo Rafael; Silva, Lívia Ferreira; Chacon Tonin, Conception Cortez; Bastos, Jairo Kenupp

    2006-10-01

    Propolis has been used in folk medicine since ancient times and is known for its antimicrobial, antiparasitic, antiviral, anti-inflammatory, antitumoral and antioxidant properties. In view of the great therapeutic interest in propolis and the small number of studies regarding its mechanism of action, the aim of the present study was to evaluate the mutagenic and antimutagenic effects of propolis using Chinese hamster ovary cells. Parameters such as the frequency of chromosome aberrations and mitotic index were analyzed. The results showed that, on one hand, the highest propolis tested concentration displayed a small but significant increase in the frequency of chromosome aberrations, and on the other hand, it was observed that the lowest tested concentration significantly reduced the chromosome damage induced by the chemotherapeutic agent doxorubicin. The present results indicate that propolis shows the characteristic of a "Janus" compound, i.e., propolis is genotoxic at higher concentrations, while at lower concentrations it display a chemopreventive effect on doxorubicin-induced mutagenicity. Flavonoids may be the components of propolis responsible for its both mutagenic and antimutagenic effects, once these compounds may act either as pro-oxidant or as free radicals scavenger, depending on its concentration.

  20. Using Molecular Markers to Characterize Productivity in Chinese Hamster Ovary Cell Lines

    PubMed Central

    Edros, Raihana Z.; McDonnell, Susan; Al-Rubeai, Mohamed

    2013-01-01

    Selection of high producing cell lines to produce maximum product concentration is a challenging and time consuming task for the biopharmaceutical industry. The identification of early markers to predict high productivity will significantly reduce the time required for new cell line development. This study identifies candidate determinants of high productivity by profiling the molecular and morphological characteristics of a panel of six Chinese Hamster Ovary (CHO) stable cell lines with varying recombinant monoclonal antibody productivity levels ranging between 2 and 50 pg/cell/day. We examined the correlation between molecular parameters and specific productivity (qp) throughout the growth phase of batch cultures. Results were statistically analyzed using Pearson correlation coefficient. Our study revealed that, overall, heavy chain (HC) mRNA had the strongest association with qp followed by light chain (LC) mRNA, HC intracellular polypeptides, and intracellular antibodies. A significant correlation was also obtained between qp and the following molecular markers: growth rate, biomass, endoplasmic reticulum, and LC polypeptides. However, in these cases, the correlation was not observed at all-time points throughout the growth phase. The repeated sampling throughout culture duration had enabled more accurate predictions of productivity in comparison to performing a single-point measurement. Since the correlation varied from day to day during batch cultivation, single-point measurement was of limited use in making a reliable prediction. PMID:24146795

  1. Production and characterization of neurosecretory protein GM using Escherichia coli and Chinese Hamster Ovary cells

    PubMed Central

    Masuda, Keiko; Furumitsu, Megumi; Taniuchi, Shusuke; Iwakoshi-Ukena, Eiko; Ukena, Kazuyoshi

    2015-01-01

    Neurosecretory protein GL (NPGL) and neurosecretory protein GM (NPGM) are paralogs recently discovered in birds and in mammals. The post-translational products of NPGL and of NPGM genes include a signal peptide sequence, a glycine amidation signal, and a dibasic amino acid cleavage site. This suggests that the mature forms of NPGL and of NPGM are small proteins secreted in the hypothalamus and containing an amidated C-terminus. However, endogenous NPGL and NPGM have not yet been identified. Chicken NPGL and NPGM have two highly conserved Cys residues that are likely to form a disulfide bond, while mammalian NPGM has one additional Cys residue located between the two conserved Cys residues and the correct disulfide bond pattern is unclear. In this study, we prepared rat NPGM to elucidate the structure of its mature form. We first expressed the predicted mature NPGM, containing an extra C-terminal Gly, in Escherichia coli SHuffle cells, which are engineered to promote the formation of native disulfide bridges in recombinant proteins. We observed the presence of a disulfide bond between the N-terminal Cys residue and the second Cys residue, while the C-terminal Cys residue was free. Secondly, we transfected a construct containing the entire NPGM open reading frame into Chinese Hamster Ovary cells, and observed that NPGM was cleaved immediately after the signal peptide and that it was secreted into the medium. Furthermore, the protein presented a disulfide bond at the same location observed in recombinant NPGM. PMID:26587371

  2. HPRT mutations in V79 Chinese hamster cells induced by accelerated Ni, Au and Pb ions.

    PubMed

    Stoll, U; Barth, B; Scheerer, N; Schneider, E; Kiefer, J

    1996-07-01

    Mutation induction by accelerated heavy ions to 6-TG resistance (HPRT system) in V79 Chinese hamster cells was investigated with Ni (6-630 Me V/u), Au (2.2, 8.7 Me V/u) and Pb ions (11.6-980 Me V/u) corresponding to a LET range between 180 and 12895 ke V/microns. Most experiments could only be performed once due to technical limitations using accelerator beam times. Survival curves were exponential, mutation induction curves linear with fluence. From their slopes inactivation- and mutation-induction cross-sections were derived. If they are plotted versus LET, single, ion-specific curves are obtained. It is shown that other parameters like ion energy and effective charge play an important role. In the case of Au and Pb ions the cross-sections follow a common line, since these ions have nearly the same atomic weight, so that they should have similar spatial ionization patterns in matter at the same energies. Calculated RBEs were higher for mutation induction than for killing for all LETs.

  3. Ultrasonic backscatter coefficient quantitative estimates from high-concentration Chinese hamster ovary cell pellet biophantoms

    PubMed Central

    Han, Aiguo; Abuhabsah, Rami; Blue, James P.; Sarwate, Sandhya; O’Brien, William D.

    2011-01-01

    Previous work estimated the ultrasonic backscatter coefficient (BSC) from low-concentration (volume density < 3%) Chinese Hamster Ovary (CHO, 6.7 -μm cell radius) cell pellets. This study extends the work to higher cell concentrations (volume densities: 9.6% to 63%). At low concentration, BSC magnitude is proportional to the cell concentration and BSC frequency dependency is independent of cell concentration. At high cell concentration, BSC magnitude is not proportional to cell concentration and BSC frequency dependency is dependent on cell concentration. This transition occurs when the volume density reaches between 10% and 30%. Under high cell concentration conditions, the BSC magnitude increases slower than proportionally with the number density at low frequencies (ka < 1), as observed by others. However, what is new is that the BSC magnitude can increase either slower or faster than proportionally with number density at high frequencies (ka > 1). The concentric sphere model least squares estimates show a decrease in estimated cell radius with number density, suggesting that the concentric spheres model is becoming less applicable as concentration increases because the estimated cell radius becomes smaller than that measured. The critical volume density, starting from when the model becomes less applicable, is estimated to be between 10% and 30% cell volume density. PMID:22225068

  4. Cell culture and gene transcription effects of copper sulfate on Chinese hamster ovary cells.

    PubMed

    Qian, Yueming; Khattak, Sarwat F; Xing, Zizhuo; He, Aiqing; Kayne, Paul S; Qian, Nan-Xin; Pan, Shih-Hsie; Li, Zheng Jian

    2011-07-01

    This study reports the effects of varying concentrations of copper sulfate on the metabolic and gene transcriptional profile of a recombinant Chinese hamster ovary (CHO) cell line producing an immunoglobulin G (IgG)-fusion protein (B0). Addition of 50 μM copper sulfate significantly decreased lactate accumulation in the cultures while increasing viable cell density and protein titer. These changes could be seen from day 6 and became increasingly evident with culture duration. Reducing the copper sulfate concentration to 5 μM retained all the above beneficial effects, but with the added benefit of reduced levels of the aggregated form of the B0 protein. To profile the cellular changes due to copper sulfate addition at the transcriptional level, Affymetrix® CHO microarrays were used to identify differentially expressed genes related to reduced cellular stresses and facilitated cell cycling. Based on the microarray results, down-regulation of the transferrin receptor and lactate dehydrogenase, and up-regulation of a cytochrome P450 family-2 polypeptide were then confirmed by Western blotting. These results showed that copper played a critical role in cell metabolism and productivity on recombinant CHO cells and highlighted the usefulness of microarray data for better understanding biological responses on medium modification.

  5. Optimizing production of Fc-amidated peptides by Chinese hamster ovary cells.

    PubMed

    Carlson, Kristina; Pomerantz, Steven C; Vafa, Omid; Naso, Michael; Strohl, William; Mains, Richard E; Eipper, Betty A

    2015-10-16

    Amidation of the carboxyl terminal of many peptides is essential for full biological potency, often increasing receptor binding and stability. The single enzyme responsible for this reaction is peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3), a copper- and ascorbate-dependent Type I membrane protein. To make large amounts of high molecular weight amidated product, Chinese hamster ovary (CHO) cells were engineered to express exogenous PAM. To vary access of the enzyme to its substrate, exogenous PAM was targeted to the endoplasmic reticulum, trans-Golgi network, endosomes and lysosomes or to the lumen of the secretory pathway. PAM was equally active when targeted to each intracellular location and assayed in homogenates. Immunocytochemical analyses of CHO cells and a pituitary cell line demonstrated that targeting of exogenous PAM was partially successful. PAM substrates generated by expressing peptidylglycine substrates (glucagon-like peptide 1-Gly, peptide YY-Gly and neuromedin U-Gly) fused to the C-terminus of immunoglobulin Fc in CHO cell lines producing targeted PAM. The extent of amidation of the Fc-peptides was determined by mass spectrometry and amidation-specific enzyme immunoassays. Amidation was inhibited by copper chelation, but was not enhanced by the addition of additional copper or ascorbate. Peptide amidation was increased over endogenous levels by exogenous PAM, and targeting PAM to the endoplasmic reticulum or trans-Golgi network increased peptide amidation compared to endogenous CHO PAM.

  6. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine.

    PubMed

    Ley, K D; Murphy, M M

    1973-08-01

    Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([(3)H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([(3)H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9-12 h after addition of isoleucine and virtually all [(3)H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G(1) because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.

  7. Ascorbate enhances u. v. -mutagenesis in E. coli but inhibits it in Chinese hamster cells

    SciTech Connect

    Rossman, T.G.; Klein, C.B.; Naslund, M.

    1986-05-01

    Ascorbic acid (vitamin C) causes an increase in the mutation frequency of u.v.-irradiated Escherichia coli WP2. The enhancement occurs at all u.v. fluences, and is dependent upon the ascorbate concentration in the medium. A maximum effect (approximately 8- to 13-fold) is seen at 100-150 micrograms/ml, although some enhancement can be seen even at 10 micrograms/ml. The comutagenic effect of ascorbate with u.v. in E. coli is dependent upon peptone, a constituent of nutrient broth. The enhancement of u.v.-mutagenesis by ascorbate is absent in strains WP2s (uvrA) and WP6 (polA), suggesting that ascorbate affects the repair of pyrimidine dimers. The opposite results are observed for u.v.-mutagenesis in Chinese hamster V79 cells. The presence of ascorbate (50 micrograms/ml) during u.v. irradiation does not enhance the u.v. effect, but rather decreases it approximately 30%. These results are discussed with regard to differences in the mechanism of u.v.-mutagenesis and DNA repair in bacterial and mammalian cells.

  8. Intracellular trafficking of recycling apolipoprotein E in Chinese hamster ovary cells.

    PubMed

    Braun, Nicole A; Mohler, Peter J; Weisgraber, Karl H; Hasty, Alyssa H; Linton, MacRae F; Yancey, Patricia G; Su, Yan Ru; Fazio, Sergio; Swift, Larry L

    2006-06-01

    We have investigated apolipoprotein E (apoE) recycling in Chinese hamster ovary (CHO) cells, a peripheral cell that does not produce lipoproteins or express apoE. Using a pulse-chase protocol in which cells were pulsed with 125I-apoE-VLDL and chased for different periods, approximately 30% of the apoE internalized during the pulse was resecreted within a 4 h chase in a relatively lipid-free state. The addition of lysosomotropic agents or brefeldin A had no effect on apoE recycling. Unlike previous results with hepatocytes and macrophages, neither apoA-I nor upregulation of ABCA1 stimulated apoE recycling. However, cyclodextrin, which extracts cholesterol from plasma membrane lipid rafts, increased recycling. Confocal studies revealed that apoE, internalized during a 1 h pulse, colocalizes with early endosomal antigen-1, Rab5, Rab11a, and lysobisphosphatidic acid but not with lysosomal-associated membrane protein-1. Colocalization of apoE and Rab11a persisted even after cells had been chased for 1 h, suggesting a pool of apoE within the endosomal recycling compartment (ERC). Our data suggest that apoE recycling in CHO cells is linked to cellular cholesterol removal via the ERC and phospholipid-containing acceptors in a pathway alternative to the ABCA1-apoA-I axis.

  9. Effects of amiloride on thermosensitivity of Chinese hamster cells under neutral and acidic pH

    SciTech Connect

    Miyakoshi, J.; Oda, W.; Hirata, M.; Fukuhori, N.; Inagaki, C.

    1986-04-01

    The modifying effects of amiloride on the thermosensitivity of Chinese hamster V-79 cells were examined under both neutral (pH 7.3) and acidic (pH 6.6) conditions. Amiloride, a diuretic drug, is known to inhibit the Na+/H+ exchange activity. Under the extracellular pH of 7.3, amiloride (0.1-0.5 mM) enhanced the thermal cell killing powers of 42/sup 0/C hyperthermia with increasing concentration and exposure time of the drug. The age response of cells to 42/sup 0/C hyperthermia in the presence or absence of amiloride (0.5 mM) showed that amiloride sensitized cells to heat, especially those at G1-S boundary through middle S phases. On the other hand, the lowering of extracellular pH to 6.6 enhanced cell killing by 42/sup 0/C hyperthermia. When cells were exposed to 42/sup 0/C hyperthermia in the presence of amiloride at pH 6.6, cell survival decreased still more. The thermosensitizing effects of the lowered pH at 6.6 and amiloride appeared to be additive. From these results, it is suggested that the thermosensitization by amiloride is probably due, in part, to the inhibition of cellular Na+/H+ exchange activity. The present study proposes the possibility that amiloride may be useful as a hyperthermic sensitizer in a clinical treatment of cancer.

  10. Cocytotoxicity/comutagenicity of arsenic in a Chinese hamster ovary triple auxotroph

    SciTech Connect

    Taylor, R.T.; Stewart, S.A.; Hanna, M.L.

    1984-06-04

    Among four forms of As that are measurable in human tissues (arsenite, arsenate, monomethylarsonate, and dimethylarsinate), non-cytotoxic concentrations of arsenite specifically enhance cell killing by various mutagenic agents in a Chinese hamster ovary auxotroph that requires glycine + adenosine + thymidine (CHO AUXB1). Arsenite is cocytotoxic at low concentrations of 2 to 12 ..mu..M. It is also the most growth rate inhibitory and cytotoxic of these As compounds, when each is incubated alone in AUXB1 cell cultures. None of these four As compounds are mutagenic per se, using an assay that we have developed to measure reversion to prototrophy at the FPGS gene locus. But arsenite (10 ..mu..M) specifically enhances induced reversion by the direct acting chemical mutagens cis-Pt(NH/sub 3/)/sub 2/Cl/sub 2/, methylglyoxal, and glycidal with which it is also cocytotoxic. Its comutagenicity with other agents is being tested. The foregoing experiments represent the first systematic comparison in mammalian cells of As growth inhibition, cytotoxicity, and mutagenicity versus its chemical form. Moreover, they provide the first evidence for the specific cocytotoxicity/comutagenicity of trivalent As in a mammalian cell line. Our findings support the suggestion that one role of As in its association with cancer could be to serve as a cocarcinogen. By functioning as a comutagen, perhaps through the inhibition of DNA repair, trivalent As may increase the initiation of tumor formation by enhancing the mutagenic activities of a large collection of primary environmental carcinogens. 55 references, 11 figures.

  11. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide.

    PubMed Central

    Hirschberg, C B; Baker, R M; Perez, M; Spencer, L A; Watson, D

    1981-01-01

    Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells were screened by replica plating-fluorography for clones showing decreased incorporation of fucose into trichloroacetic acid-insoluble macromolecules. Considerable enrichment for cells deficient in fucose uptake or incorporation into proteins (or both) was found in populations surviving the later selection cycles. Two mutant clones isolated after the fourth selection cycle had the same doubling time as the wild type, but contained only 30 to 40% as much fucose bound to proteins as the wild type. Sialic acid contents of the mutants and the wild type were similar. The mutants differed quantitatively and qualitatively from the wild type and from each other with respect to total glycoprotein profiles as visualized by sodium dodecyl sulfate gel electrophoresis. Differences were also found in resistances to cytotoxicity of lectins such as concanavalin A and wheat germ agglutinin. Images PMID:7202113

  12. Cytogenetic genotoxicity of antiherpes virostatics in Chinese hamster V79-E cells. I. Purine nucleoside analogues.

    PubMed

    Thust, R; Schacke, M; Wutzler, P

    1996-06-01

    The antiherpes virostatics acyclovir (ACV), valaciclovir (VACV), penciclovir (PCV), famciclovir (FCV) and ganciclovir (GCV), which belong to the group of purine acyclic nucleoside analogues, were tested for clastogenic and sister chromatid exchange (SCE)-inducing activity in Chinese hamster V79-E cells upon chronic application with and without a recovery period. ACV induced borderline effects in both cytogenetic assays, a dose-dependent reduction of the mitotic index and an increasing cell cycle delay. With VACV and PCV only a decrease of the mitotic index and an increase of cell cycle delay were observed. FCV was negative with respect to the four parameters studied, presumably due to the incapacity of the target cells of metabolizing FCV to PCV. GCV was a very potent genotoxin in both assays. It induced a statistically significant SCE response even in the range of the cytomegalovirus IC50 of < 10 microM. By variation of the experimental protocol it was shown that SCEs are induced in the second cell cycle following exposure to GCV but not in the first one. It is assumed that the drugs under study are metabolized to their respective triphosphates and then inhibit DNA replication as detected by decreasing mitotic index and increasing cell cycle delay. In the case of GCV it is suggested that GCV-TP is incorporated into the target cell DNA and that chromosomal aberrations and SCEs are secondary lesions due to repair processes at the substituted template.

  13. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell

    SciTech Connect

    Stamato, T.D.; Weinstein, R.; Giaccia, A.; Mackenzie, L.

    1983-03-01

    A technique for the isolation of gamma ray-sensitive Chinese hamster ovary (CHO) cell mutants is described, which uses nylon cloth replica plating and photography with dark-field illumination to directly monitor colonies for growth after gamma irradiation. Two gamma ray-sensitive mutants were isolated using this method. One of these cells (XR-1) had a two-slope survival curve: an initial steep slope and then a flattening of the curve at about 10% survival. Subsequently, it was found that this cell is sensitive to gamma irradiation in G1, early S, and late G2 phases of the cell cycle, whereas in the resistant phase (late S phase) its survival approaches that of the parental cells. The D37 in the sensitive G1 period is approximately 30 rads, compared with 300 rads of the parental cell. This mutant cell is also sensitive to killing by the DNA breaking agent, bleomycin, but is relatively insensitive to UV light and ethyl methane sulfonate, suggesting that the defect is specific for agents that produce DNA strand breakage.

  14. Endogenous TRPM4-like channel in Chinese hamster ovary (CHO) cells

    SciTech Connect

    Yarishkin, Oleg V.; Hwang, Eun-Mi; Park, Jae-Yong; Kang, Dawon; Han, Jaehee; Hong, Seong-Geun

    2008-05-02

    Chinese hamster ovary (CHO) cells used in many transfection studies have been found to endogenously express channels permeable to monovalent cations, but not to divalent cations. In the presence of intracellular Ca{sup 2+}, 23-pS channel with a linear current-voltage (I-V) relationship could be frequently observed in inside-out patches but not in cell-attached patches. The open probability was voltage-dependent, which is higher at positive potentials. The channel was dose-dependently activated by relatively high level of Ca{sup 2+} (EC{sub 50} = 1.04 {+-} 0.08 mM), and sensitively inhibited by 100 {mu}M ATP, ADP, AMP, and 1 mM spermine. However, ruthenium red (2 {mu}M) had no effect. Reverse transcript polymerase chain reaction (RT-PCR) supported the presence of mRNA encoding TRPM4b channel protein. Western blot assay finally confirmed the presence of this channel protein in membrane fraction of CHO cells. These results provide evidence that CHO cells express an endogenous TRPM4b-like channel, and thereby can be used as a tool to study de novo regulation/modulation of TRPM4 channel.

  15. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    PubMed

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  16. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    SciTech Connect

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.

  17. Laser microirradiation of Chinese hamster cells at wavelength 365 nm: effects of psoralen and caffeine

    SciTech Connect

    Cremer, T.; Peterson, S.P.; Cremer, C.; Berns, M.W.

    1981-03-01

    Cells of a V79 subline of the Chinese hamster were microirradiated at wavelength 365 nm in the presence of the psoralen derivative, trioxsalen. Microirradiation was accomplished by a pulsed argon laser microbeam either in anaphase or in interphase 3 h after mitosis. Inhibition of clonal growth and formation of micronuclei at the first postirradiation mitosis were observed after microirradiation of anaphase chromosomes and of small parts of the interphase nucleus. Microirradiation of the cytoplasm beside the interphase nucleus or between the sets of chromosomes moving apart from each other in anaphase did not produce these effects. Anaphase experiments showed that only the daughter cell which received microirradiated chromatin exhibited an abnormal growth pattern. Most interestingly, shattering of the whole chromosome complement could be induced by microirradiation of small parts of the interphase nucleus and post-treatment with caffeine. Since microirradiation of chromatin in the absence of psoralen was not effective, we consider formation of psoralen photoadducts to nucleic acids in microirradiated chromatin to be the specific cause of the effects. We suggest that DNA photolesions in chromosome segments present in the microirradiated part of the nucleus can induce shattering of all the chromosomes in the microirradiated nucleus. Several possibilities are discussed to explain this unexpected finding.

  18. A flow cytometric study of chromosomes from rat kangaroo and Chinese hamster cells.

    PubMed

    Stöhr, M; Hutter, K J; Frank, M; Futterman, G; Goerttler, K

    1980-01-01

    Chromosomes from rat kangaroo (PTK) and chinese hamster (CHV 79) cells have been prepared for quantitative flow-cytometric analysis. The preparation time was otimized down to 30 (PTK) and 40 min (CHV 79). DAPI was used as a AT-sensitive fluorescent dye to stain for monoparameter DNA measurements. Simultaneous two-parameter DNA-protein analysis was carried out with DAPI and SR 101 (as a general protein fluorochrome) in combination. The karyotype of the PTK cells with 13 (14) chromosomes was separated into 10DNA peaks. The X-chromosome bearing the nucleolus organizer region generates a distinct peak. The karyotype of the CHV 79 cells with 22 chromosomes was separated inot 15 peaks. The DNA profile obtained indicates a geometric grading of the chromosomal amount of AT components in teh karyotype of this particular cell line. The simultaneous DNA-protein analysis performed show enough sensitivity of the instrument utilizing hihg power UV excitation illumination to discriminate the two color emission consisting of blue (DAPI) and red (SR 101) fluorescence. Color overlapping could be completely avoided. Additionally, the quality (number, location, and resolution of peaks) of the DNA distribution was not influences by the simultaneous application of a second fluorescent stain. Fluorescence activated electronic sorting applied on chromosomal fluorescence distributions providing purified fractions of chromosomes for subsequent biochemical and biological determinations is discussed.

  19. Effect of glutamine limitation on the death of attached Chinese hamster ovary cells

    SciTech Connect

    Sanfeliu, A.; Stephanopoulos, G. )

    1999-07-05

    The effect of glutamine depletion on the death of attached Chinese hamster ovary (CHO) cells was investigated. Experiments were performed using an anchorage dependent CHO cell line expressing [gamma]-IFN and a second cell line obtained by transfection of that cell line with the human bcl-2 (hbcl-2). Either cell line could grow in media devoid of glutamine with minimal cell death due to endogenous glutamine synthetase activity that allowed cells to synthesize glutamine from glutamic acid in the medium. However, compared to control cultures in glutamine-containing media, the cell growth rate in glutamine-free media was slower with an increased fraction of cells distributed in the G[sub 0]/G[sub 1] phase. The slower rate of cell cycling apparently protected the cells from entering apoptosis when they were stimulated to proliferate in an environment devoid of other protective factors, such as serum or over-expressed hbcl-2. The depletion of both glutamine and glutamic acid did cause cell death, which could be mitigated by hbcl-2 over-expression.

  20. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression.

    PubMed

    Haredy, Ahmad M; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-12-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host cell line. Clone CHO-ATF4-16 did not show any change in growth rate compared with the parental cells or mock-transfected CHO-DP12-SF cells. The expression levels of mRNAs encoding both the antibody heavy and light chains in the CHO-ATF4-16 clone were analyzed. This analysis showed that ATF4 overexpression improved the total production and specific production rate of antibody without affecting the mRNA transcription level. These results indicate that ATF4 overexpression is a promising method for improving recombinant IgG production in CHO cells.

  1. Purification and characterization of a Chinese hamster ovary cell elongation factor of Vibrio hollisae.

    PubMed Central

    Kothary, M H; Claverie, E F; Miliotis, M D; Madden, J M; Richardson, S H

    1995-01-01

    The halophilic bacterium Vibrio hollisae, isolated from patients with diarrhea, produces an extracellular toxin which elongates Chinese hamster ovary (CHO) cells. We purified this toxin to homogeneity by sequential ammonium sulfate precipitation, gel filtration with Sephacryl S-200, hydrophobic interaction chromatography with phenyl-Sepharose CL-4B, ion-exchange chromatography with DEAE-Sephadex A-50, and affinity chromatography. The toxin is heat labile and sensitive to proteases, with an isoelectric point of about 6.5 and molecular weights of about 83,000 and 80,000, as estimated by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The toxin did not react with immunoaffinity-purified antibodies to cholera toxin in a plate enzyme-linked immunosorbent assay and in a Western blot, and its activity could not be neutralized by anti-cholrea toxin serum. Mixed gangliosides and gangliosides GM1, GD1a, GD1b, Gq1b, GT1b, GD2, GD3, GM2, and GM3 failed to block its activity. Elongation of CHO cells induced by the toxin was not accompanied by an increase in the levels of cyclic AMP. The toxin induced intestinal fluid accumulation in suckling mice. These results and the lack of homology between V. hollisae DNA and DNA coding for cholera toxin or the heat-labile toxin of Escherichia coli suggest that the V. hollisae toxin is structurally and functionally different from other CHO cell-elongating toxins. PMID:7790052

  2. Isolation and characterization of Chinese hamster ovary cell lines sensitive to mitomycin C and bleomycin

    SciTech Connect

    Robson, C.N.; Harris, A.L.; Hickson, I.D.

    1985-11-01

    Seven Chinese hamster ovary K1 cell lines exhibiting sensitivity to anticancer drugs have been isolated by a replica-plating technique. Five of the mutants are hypersensitive to the DNA cross-linking agent mitomycin C. Of these, one is also appreciably sensitive to UV light. Significant variations in their cross-sensitivity to cis-platinum(II) diammine dichloride, chlorambucil, and Adriamycin have also been observed. Two additional mutants have been isolated on the basis of sensitivity to the radiomimetic agent bleomycin. One of these shows greater than 6-fold sensitivity to bleomycin, while the other is approximately 14 times more sensitive than the parental strain to bleomycin and is also hypersensitive to a number of other DNA-damaging agents, including cis-platinum(II) diammine dichloride, chlorambucil, X-rays, and UV light. Both bleomycin-sensitive mutants also exhibit some degree of sensitivity to Adriamycin. In all cases, the cell lines have been grown in continuous culture for 3 months without evidence of reversion and should act as suitable recipients in DNA transfection experiments aimed at identifying human DNA repair genes.

  3. DNA conformation of Chinese hamster V79 cells and sensitivity to ionizing radiation

    SciTech Connect

    Olive, P.L.; Hilton, J.; Durand, R.E.

    1986-07-01

    Chinese hamster V79 cells grown for 20 h in suspension culture form small clusters of cells (spheroids) which are more resistant to killing by ionizing radiation than V79 cells grown as monolayers. This resistance appears to be due to the greater capacity of cells grown in contact to repair radiation damage. Attempts to relate this ''contact effect'' to differences in DNA susceptibility or DNA repair capacity have provided conflicting results. Two techniques, alkaline sucrose gradient sedimentation and alkaline elution, show no difference in the amounts of radiation-induced DNA single-strand breakage or its repair between suspension or monolayer cells. However, using the alkali-unwinding assay, the rate of DNA unwinding is much slower for suspension cells than for monolayer cells. Interestingly, a decrease in salt concentration or in pH of the unwinding solution eliminates these differences in DNA unwinding kinetics. A fourth assay, sedimentation of nucleoids on neutral sucrose gradients, also shows a significant decrease in radiation damage produced in suspension compared to monolayer cultures. It is believed that this assay measures differences in DNA conformation (supercoiling) as well as differences in DNA strand breakage. We conclude from these four assays that the same number of DNA strand breaks/Gy is produced in monolayer and spheroid cells. However, changes in DNA conformation or packaging occur when cells are grown as spheroids, and these changes are responsible for reducing DNA damage by ionizing radiation.

  4. RNA synthesis in the ultrastructural and biochemical components of the nucleolus of Chinese hamster ovary cells

    PubMed Central

    1975-01-01

    A correlated autoradiographic and biochemical study of RNA synthesis in the nucleoli of chinese hamster ovary cells has been made. Quantitative analysis of the labeling indicates that the fibrillar ribonucleoprotein (RNP) component is labeled faster than 80S RNP and 45S RNA molecules, but approaches simultaneously a steady-state 3H to 14C ratio or grains/mum2 after 30 min of [3H]uridine incorporation. On the other hand, the 55S RNP, the 36S + 32S RNA, and the granular RNP components have the same kinetic of labeling with [3H]uridine. These results suggest that the fibrillar and granular RNP components of the nucleolus are the ultrastructural substratum of, respectively, the 80S RNP (45S RNA) and 55S RNP (36S + 32S RNA). The possibility that precursors to 80S RNP exist also in the fibrillar region of the nucleolus is strongly suggested by the rapid labeling of the fibrils on the autoradiographs. PMID:1171872

  5. Trehalose transporter from African chironomid larvae improves desiccation tolerance of Chinese hamster ovary cells.

    PubMed

    Chakraborty, Nilay; Menze, Michael A; Elmoazzen, Heidi; Vu, Halong; Yarmush, Martin L; Hand, Steven C; Toner, Mehmet

    2012-04-01

    Dry preservation has been explored as an energy-efficient alternative to cryopreservation, but the high sensitivity of mammalian cells to desiccation stress has been one of the major hurdles in storing cells in the desiccated state. An important strategy to reduce desiccation sensitivity involves use of the disaccharide trehalose. Trehalose is known to improve desiccation tolerance in mammalian cells when present on both sides of the cell membrane. Because trehalose is membrane impermeant the development of desiccation strategies involving this promising sugar is hindered. We explored the potential of using a high-capacity trehalose transporter (TRET1) from the African chironomid Polypedilum vanderplanki[21] to introduce trehalose into the cytoplasm of mammalian cells and thereby increase desiccation tolerance. When Chinese hamster ovary cells (CHO) were stably transfected with TRET1 (CHO-TRET1 cells) and incubated with 0.4M trehalose for 4h at 37°C, a sevenfold increase in trehalose uptake was observed compared to the wild-type CHO cells. Following trehalose loading, desiccation tolerance was investigated by evaporative drying of cells at 14% relative humidity. After desiccation to 2.60g of water per gram dry weight, a 170% increase in viability and a 400% increase in growth (after 7days) was observed for CHO-TRET1 relative to control CHO cells. Our results demonstrate the beneficial effect of intracellular trehalose for imparting tolerance to partial desiccation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Molecular engineering of exocytic vesicle traffic enhances the productivity of Chinese hamster ovary cells.

    PubMed

    Peng, Ren-Wang; Fussenegger, Martin

    2009-03-01

    A complex vesicle trafficking system manages the precise and regulated distribution of proteins, membranes and other molecular cargo between cellular compartments as well as the secretion of (heterologous) proteins in mammalian cells. Sec1/Munc18 (SM) proteins are key components of the system by regulating membrane fusion. However, it is not clear how SM proteins contribute to the overall exocytosis. Here, functional analysis of the SM protein Sly1 and Munc18c suggested a united, positive impact upon SNARE-based fusion of ER-to-Golgi- and Golgi-to-plasma membrane-addressed exocytic vesicles and increased the secretory capacity of different therapeutic proteins in Chinese hamster ovary cells up to 40 pg/cell/day. Sly1- and Munc18c-based vesicle traffic engineering cooperated with Xbp-1-mediated ER/Golgi organelle engineering. Our study supports a model for united function of SM proteins in stimulating vesicle trafficking machinery and provides a generic secretion engineering strategy to improve biopharmaceutical manufacturing of important protein therapeutics.

  7. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells.

    PubMed

    Tigges, Marcel; Fussenegger, Martin

    2006-05-01

    A variety of successful transcription and translation engineering strategies implemented during the past decade have driven the specific productivity of mammalian cells to an apparent limit. Restricted post-translation competence has since been considered the major bottleneck preventing mammalian cells from fully exploiting their physiologic production capacity in a biopharmaceutical manufacturing scenario. Through ectopic expression of the human transcription factor Xbp1 (X-box-binding-protein 1), evolved to manage plasma cell differentiation and coordinate the unfolded protein response, we have specifically expanded the endoplasmic reticulum and the Golgi of transgenic Chinese hamster ovary (CHO-K1)-derived cell lines with a resulting increase in overall production capacity. Xbp-1-based engineering of secretory bottlenecks was compatible with a variety of different promoter–product gene configurations suggesting that Xbp-1 induces generic production increases in CHO-K1 cell derivatives. Secretion engineering, illustrated here by Xbp1-based reprogramming of the post-translational processing machinery, provides a first insight into mastering a major system bottleneck which impacts biopharmaceutical manufacturing of secreted protein therapeutics.

  8. Expression of human extracellular superoxide dismutase in Chinese hamster ovary cells and characterization of the product

    SciTech Connect

    Tibell, L.; Hjalmarsson, K.; Edlund, T.; Skogman, G.; Engstroem, A.; Marklund, S.L.

    1987-10-01

    A complementary DNA clone from human placenta, encoding human extracellular superoxide dismutase, has recently been isolated and characterized. An expression plasmid, based on the EC-SOD complementary DNA, was transfected into Chinese hamster ovary cells (CHO-K1). The transfected cells secreted human EC-SOD to the culture medium. The secreted recombinant (r) EC-SOD was isolated in high yield with a three-step procedure beginning with immobilized monoclonal anti-EC-SOD antibodies. The properties of the rEC-SOD were compared with native (n) EC-SOD isolated from human umbilical cords. The specific activities and amino-terminal amino acid sequences were identical. The amino acid compositions were virtually identical and very similar to the composition deduced from the complementary DNA sequence. Both rEC-SOD and nEC-SOD contained 4 Cu and 4 Zn atoms per molecule, and the presence of Zn in EC-SOD is thus now established. The rEC-SOD produced is type C, since its affinity for heparin-Sepharose was identical to that of nEC-SOD type C. Both enzymes bound to concanavalin A, lentil lectin, and wheat germ lectin and are thus glycoproteins. rEC-SOD and nEC-SOD seem to have the same subunit structure and composition as analyzed by polyacrylamide gel electrophoresis and gel chromatography.

  9. Bystander effect induced by UVC radiation in Chinese hamster V79 cells.

    PubMed

    Wu, Shengwen; Jin, Cuihong; Lu, Xiaobo; Yang, Jinghua; Liu, Qiufang; Qi, Ming; Lu, Shuai; Zhang, Lifeng; Cai, Yuan

    2014-01-01

    In past decades, researches on radiation-induced bystander effect mainly focused on ionizing radiation such as α-particle, β-particle, X-ray and γ-ray. But few researches have been conducted on the ability of ultraviolet (UV) radiation-induced bystander effect, and knowledge of UVC-induced bystander effect is far limited. Here, we adopted medium transfer experiment to detect whether UVC could cause bystander effect in Chinese hamster V79 cells. We determined the cell viability, apoptosis rate, chromosome aberration and ultrastructure changes, respectively. Our results showed that: (1) the viability of UVC-irradiated V79 cells declined significantly with the dosage of UVC; (2) similar to the irradiated cells, the main death type of bystander cells cultured in irradiation conditioned medium (ICMs) was also apoptosis; (3) soluble factors secreted by UVC-irradiated cells could induce bystander effect in V79 cells; (4) cells treated with 4 h ICM collected from 90 mJ cm(-2) UVC-irradiated cells displayed the strongest response. Our data revealed that UVC could cause bystander effect through the medium soluble factors excreted from irradiated cells and this bystander effect was a novel quantitative and kinetic response. These findings might provide a foundation to further explore the exact soluble bystander factors and detailed mechanism underlying UVC-induced bystander effect. © 2014 The American Society of Photobiology.

  10. Induction of the bystander effect in Chinese hamster V79 cells by actinomycin D.

    PubMed

    Jin, Cuihong; Wu, Shengwen; Lu, Xiaobo; Liu, Qiufang; Qi, Ming; Lu, Shuai; Xi, Qi; Cai, Yuan

    2011-05-10

    Bystander effect (BE) can be induced by ionizing radiation and chemicals, including alkylating agents. Ionizing radiation mostly induces the bystander effect by causing double-strand DNA breakage in the exposed cells. However, the chemical-induced bystander effect is poorly studied. Here we chose actinomycin D (ACTD), a genotoxic chemotherapeutic drug, to investigate whether it could cause bystander effect in Chinese hamster V79 cells. Results are that (1) ACTD induced apoptosis in V79 cells and an optimal apoptosis model in V79 cells was established with ACTD (4 mg/L, 1h); (2) using apoptosis rate, chromosome aberration, and ultrastructure changes as endpoints of bystander effect, ACTD could induce bystander effect in V79 cells; (3) as in the exposed cells, ACTD mainly induced apoptosis in bystander V79 cells cultured in different period conditioned medium; (4) the strongest bystander effect was induced by 4 h conditioned medium collected from cells treated with ACTD. It suggests that ACTD could cause BE through the medium soluble factors excreted from exposed cells during apoptosis and ACTD-induced BE was a novel quantitative and kinetic response. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. [COMPARATIVE CYTOGENETIC ANALYSIS OF MONOLAYER AND SUSPENSION CHINESE HAMSTER OVARY CELL LINES CHO(dhfr-)].

    PubMed

    Stefanova, V N; Yartseva, N M; Petrov, A V

    2015-01-01

    The karyotypes of CHO(dhfr-) and CHO(dhfr-)/susp Chinese hamster ovary cell lines were investigated with the use of GTG-staining. Modal chromosome set consists of 20 and 18 chromosomes respectively. The karyotypes of both cell lines were stable with constant ratio of normal chromosomes and chromosomes with structural rearrangements. Monosomy for chromosomes 1, 2, 4, 5, 8 was observed in both cell lines and for chromosome 9 in CHO(dhfr-)/susp cell line. The differences between CHO(dhfr-) cell lines studied by us consists of inclusion of part of chromosome 7 in der(6)t(1;6), rearrangement of del(5) and monosomy of chromosome 9. It was shown that in karyotypes of all CHO cell lines studied up today there are 5 common structurally chromosome rearrangements: del(2), inv(3), add(6), del(9) and mar1. In both CHO(dhfr-) cell lines investigated by us three unique chromosome rearrangements: del(1), der(6)t(1,6) and mar3 were revealed. Necessity of simultaneous GTG and FISH analysis of chromosomes rearrangements in the CHO cell lines under study is discussed.

  12. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells.

    PubMed

    Wippermann, Anna; Rupp, Oliver; Brinkrolf, Karina; Hoffrogge, Raimund; Noll, Thomas

    2015-04-10

    Chinese hamster ovary (CHO) cells represent the most commonly used production cell line for therapeutic proteins. By recent genome and transcriptome sequencing a basis was created for future investigations of genotype-phenotype relationships and for improvement of CHO cell productivity and product quality. In this context information is missing about DNA cytosine methylation as a crucial epigenetic modification and an important element in mammalian genome regulation and development. Here, we present the first DNA methylation map of a CHO cell line in single-base resolution that was generated by whole genome bisulfite sequencing combined with gene expression analysis by CHO microarrays. We show CHO DP-12 cells to exhibit global hypomethylation compared to a majority of mammalian methylomes and hypermethylation of CpG-dense regions at gene promoters called CpG islands. We also observed partially methylated domains that cover 62% of the CHO DP-12 cell genome and contain functional clusters of genes. Gene expression analysis showed these clusters to be either highly or weakly expressed with regard to CHO-specific characteristics and hence proves DNA methylation in CHO cells to be an important link between genomics and transcriptomics.

  13. Enhanced use of backup pathways of NHEJ in G2 in Chinese hamster mutant cells with defects in the classical pathway of NHEJ.

    PubMed

    Wu, Wenqi; Wang, Minli; Mussfeldt, Tamara; Iliakis, George

    2008-10-01

    In higher eukaryotes DNA double-strand breaks (DSBs) are repaired by homologous recombination repair (HRR) or nonhomologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) using DNA ligase III and PARP1. We have reported previously that mouse embryo fibroblasts (MEFs) defective in D-NHEJ show enhanced repair of DSBs in G2 not reflecting a contribution of HRR. Here we extend these studies to Chinese hamster mutant cells with defects in the DNA-PKcs, Ku80 or XRCC4 components of D-NHEJ or in the XRCC2 and XRCC3 components of HRR. Using cell sorting to separate cells at defined times after irradiation, we measure repair of DSBs with pulsed-field gel electrophoresis in unperturbed G1- and G2-phase cells. Wild-type cells and mutants of XRCC2 and XRCC3 repair DSBs with similar efficiency in G1 and G2. Mutants of DNA-PKcs, Ku80 and XRCC4 show more pronounced repair in G2 than in G1. These and previously published results provide support for the notion that the increased efficacy of DSB repair in G2 reflects the enhanced function of B-NHEJ, which may be a general feature of rodent cells that also holds for human cells.

  14. Cell fusion studies to examine the mechanism for etoposide resistance in Chinese hamster V79 spheroids.

    PubMed

    Luo, C; Johnston, P J; MacPhail, S H; Banáth, J P; Oloumi, A; Olive, P L

    1998-09-15

    When exposed to etoposide, the outer cells from Chinese hamster V79 spheroids are about 10 times more resistant to DNA strand breaks and cell killing than V79 cells grown as monolayers. Previous results have shown that the outer cells of both spheroids and monolayers grow at the same rate and contain the same amount and activity of the target enzyme, topoisomerase II. In order to examine possible mechanisms for this resistance, cell fusion studies were conducted with fluorescent dye-tagged monolayer and spheroid cells. Fused cells were exposed for 30 min to 1.2 microg/ml etoposide and then separated using fluorescence-activated cell sorting into binucleate cells consisting of two monolayer cells, two spheroid cells, or a mixed doublet consisting of one cell of each type. Individual sorted cell doublets were examined for the presence of etoposide-induced DNA strand breaks using the alkaline comet assay. As expected, doublets of monolayer cells were sensitive to etoposide and doublets of spheroid cells were resistant. However, mixed doublets were as resistant to DNA damage by etoposide as spheroid doublets. In comparison, when etoposide- or adriamycin-resistant V79 monolayer cells were fused to the parent monolayer cells, the expected intermediate sensitivity to etoposide was observed for the mixed doublets. We conclude that etoposide resistance associated with the outer cells of spheroids can be "transferred" to produce resistance in monolayer cells. Rapid changes in phosphorylation that can affect topoisomerase II activity or localization, or that can alter chromatin structure, are suggested as possible mechanisms of resistance. In support of this hypothesis, topo IIalpha phosphorylation was at least 10 times greater in monolayers than in the outer cell layer of spheroids. Copyright 1998 Academic Press.

  15. Replication kinetics of Chinese hamster chromosomes as revealed by bivariate flow karyotyping

    SciTech Connect

    Cremer, C.; Gray, J.W.

    1983-01-01

    It is shown that the replication kinetics of individual chromosomes can be estimated by bivariate flow cytometric analysis of chromosomes isolated from 5-bromo-2'-deoxyuridine (BrdUrd) treated cells. To study the timing of replication of chromosomes, Chinese hamster M3-1 cells were grown for different times in BrdUrd containing medium. Colcemid was added during the last 90 minutes of each BrdUrd labeling period. Chromosomes were isolated from the Colcemid blocked mitotic cells and stained with Hoechst 33258 (HO) and chromomycin A3 (CA3). Bivariate HO-CA3 flow karyotypes were measured in a dual beam flow cytometer. Labeling cells with BrdUrd for 2, 2 1/2, 3, 3 1/2, and 4 hours before chromosome isolation resulted in progressive quenching of the HO fluorescence of chromosomes Y and 10, 11, M2 while the HO fluorescence of all other chromosomes was either not quenched or was only slightly quenched. The CA3 fluorescence of all chromosomes was slightly enhanced by BrdUrd treatment. A quantitative evaluation of the quenching of HO fluorescence suggested that: a) greater than 50% of HO binding DNA of chromosomes 10, 11, M2 is synthesized in the last quarter of S phase; b) the Y chromosome synthesizes more than 50% of HO binding DNA in the last tenth of S phase making the Y chromosome the latest replicating M3-1 chromosome. All other chromosomes have synthesized greater than 50% of their HO binding DNA before the last third of S phase.

  16. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.

    PubMed

    Yin, Bojiao; Gao, Yuan; Chung, Cheng-Yu; Yang, Shuang; Blake, Emily; Stuczynski, Mark C; Tang, Juechun; Kildegaard, Helene F; Andersen, Mikael R; Zhang, Hui; Betenbaugh, Michael J

    2015-11-01

    Sialic acid, a terminal residue on complex N-glycans, and branching or antennarity can play key roles in both the biological activity and circulatory lifetime of recombinant glycoproteins of therapeutic interest. In order to examine the impact of glycosyltransferase expression on the N-glycosylation of recombinant erythropoietin (rEPO), a human α2,6-sialyltransferase (ST6Gal1) was expressed in Chinese hamster ovary (CHO-K1) cells. Sialylation increased on both EPO and CHO cellular proteins as observed by SNA lectin analysis, and HPLC profiling revealed that the sialic acid content of total glycans on EPO increased by 26%. The increase in sialic acid content was further verified by detailed profiling of the N-glycan structures using mass spectra (MS) analysis. In order to enhance antennarity/branching, UDP-N-acetylglucosamine: α-1,3-D-mannoside β1,4-N-acetylglucosaminyltransferase (GnTIV/Mgat4) and UDP-N-acetylglucosamine:α-1,6-D-mannoside β1,6-N-acetylglucosaminyltransferase (GnTV/Mgat5), was incorporated into CHO-K1 together with ST6Gal1. Tri- and tetraantennary N-glycans represented approximately 92% of the total N-glycans on the resulting EPO as measured using MS analysis. Furthermore, sialic acid content of rEPO from these engineered cells was increased ∼45% higher with tetra-sialylation accounting for ∼10% of total sugar chains compared to ∼3% for the wild-type parental CHO-K1. In this way, coordinated overexpression of these three glycosyltransferases for the first time in model CHO-K1 cell lines provides a mean for enhancing both N-glycan branching complexity and sialylation with opportunities to generate tailored complex N-glycan structures on therapeutic glycoproteins in the future.

  17. Overexpression of Serpinb1 in Chinese hamster ovary cells increases recombinant IgG productivity.

    PubMed

    Lin, Nan; Brooks, Jeanne; Sealover, Natalie; George, Henry J; Kayser, Kevin J

    2015-01-10

    We report the discovery and validation of a novel CHO cell engineering target for improving IgG expression, serpin peptidase inhibitor, clade B, member 1 (Serpinb1). Transcriptomic studies using microarrays revealed that Serpinb1 was up-regulated in cultures with IgG heavy and light chain transcription transiently repressed compared with cultures treated with non-targeting siRNA. As proof of concept, a lentiviral vector was employed to overexpress the Chinese Hamster Serpinb1 in a CHOZN(®) Glutamine Synthetase (-/-) recombinant IgG producing CHO line. The lentiviral stable pool demonstrated 4.2-fold SERPINB1 overexpression compared with the non-transduced control. The peak viable cell density (VCD) and peak IgG volumetric productivity of the lentiviral stable pool increased 1.3 and 2.0 fold, respectively, compared with the non-transduced control. For host cell engineering, a plasmid encoding SERPINB1 was transfected into the CHOZN(®) GS (-/-) host cell line to create several stable pools. Single-cell clones isolated from the pools were characterized for their SERPINB1 expression levels and growth. The clone (SERPINB1_OE_27) with the highest SERPINB1 expression had decreased peak viable cell density and exponential phase growth rate. Selected SERPINB1 OE clones were subsequently evaluated for their IgG expression capabilities using GS selection. Clone SERPINB1_OE_42 with moderate SERPINB1 overexpression demonstrated increased IgG productivity in "bulk" selection. We conclude that manipulating Serpinb1 expression can lead to increased recombinant IgG productivity, but the effect in host cell lines may vary by clone and by overexpression level. This work represents the ongoing effort in applying "-omics" findings to novel CHO host cell line engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division

    PubMed Central

    1983-01-01

    Chinese hamster ovary (CHO) cell mutants resistant to the cytotoxic effects of taxol and requiring the drug for normal growth were isolated in a single step. One of these mutant cell lines, Tax-18, fails to divide in the absence of taxol; instead, the cells become larger, rounder, flatter, and multinucleated. Analysis by flow cytometry indicates that during taxol deprivation there is an accumulation of cells in G2 + M phase but that the cells are able to leak through the block in the absence of cell division and further increase their DNA content beyond the tetraploid amount. This interpretation is confirmed by karyotype analysis and by time-lapse studies that show cells rounded for mitosis two to five times longer than in wild-type cultures or in Tax-18 cultures grown in taxol. The cells finally attempt to undergo cytokinesis, fail, and spread out again, but as larger cells than before. Tax-18 has a normal growth rate and morphology when grown in taxol even at concentrations three to five times below the selecting concentration of the drug. The cells, however, have increased sensitivity to microtubule-disrupting drugs such as colcemid, griseofulvin, and D2O. The mutation for taxol auxotrophy behaves recessively in somatic cell hybridization experiments, and the phenotypic reversion rate is approximately 10(-5) in a nonmutagenized population. Both alpha- and beta-tubulin are present in apparently normal amounts and with normal electrophoretic mobilities on two- dimensional gels. The results suggest that Tax-18 lacks a factor necessary for mitosis and that taxol may be able to substitute for this factor. PMID:6134736

  19. Application of a nonradioactive method of measuring protein synthesis in industrially relevant Chinese hamster ovary cells.

    PubMed

    Dadehbeigi, Nazanin; Dickson, Alan James

    2013-01-01

    Due to the high medical and commercial value of recombinant proteins for clinical and diagnostic purposes, the protein synthesis machinery of mammalian host cells is the subject of extensive research by the biopharmaceutical industry. RNA translation and protein synthesis are steps that may determine the extent of growth and productivity of host cells. To address the problems of utilization of current radioisotope methods with proprietary media, we have focused on the application of an alternative method of measuring protein synthesis in recombinant Chinese hamster ovary (CHO) cells. This method employs puromycin as a nonradioactive label which incorporates into nascent polypeptide chains and is detectable by western blotting. This method, which is referred to as SUnSET, successfully demonstrated the expected changes in protein synthesis in conditions that inhibit and restore translation activity and was reproducibly quantifiable. The study of the effects of feed and sodium butyrate addition on protein synthesis by SUnSET revealed an increase following 1 h feed supplementation while a high concentration of sodium butyrate was able to decrease translation during the same treatment period. Finally, SUnSET was used to compare protein synthesis activity during batch culture of the CHO cell line in relation to growth. The results indicate that as the cells approached the end of batch culture, the global rate of protein synthesis declined in parallel with the decreasing growth rate. In conclusion, this method can be used as a "snapshot" to directly monitor the effects of different culture conditions and treatments on translation in recombinant host cells. © 2013 American Institute of Chemical Engineers.

  20. Diversity in host clone performance within a Chinese hamster ovary cell line.

    PubMed

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  1. Temperature control of growth and productivity in mutant Chinese hamster ovary cells synthesizing a recombinant protein.

    PubMed

    Jenkins, N; Hovey, A

    1993-11-05

    The use of a temperature switch to control the growth and productivity of temperature-sensitive (ts) mutants was investigated to extend the productive life span of recombinant Chinese hamster ovary (CHO) cells in batch culture. Bromodeoxyuridine was used at 39 degrees C to select mutagenized CHO-K1 cells, which resulted in the isolation of 31 temperature-sensitive mutants that were growth inhibited at 39 degrees C. Two of these mutants were successfully transfected with the gene for tissue inhibitor of metalloproteinases (TIMP) using glutamine synthetase amplification, and a permanent recombinant cell line established (5G1-B1) that maintains the ts phenotype.Continuous exposure to the nonpermissive temperature (npt) of 39 degrees C led to a rapid decline in cell viability. However, a temperature regime using alternating incubations at 34 degrees C and 39 degrees C arrested the 5G1-B1 cells while retaining a high cell viability for up to 170 h in culture. The specific production rate of the growth-arrested cells was 3-4 times that of control cultures maintained at a constant 34 degrees C over the crucial 72-130-h period of culture, which resulted in a 35% increase in the maximum product yield. Glucose uptake and lactate production both decreased in arrested cells. Flow cytometric analysis indicated that 5G1-B1 cells arrested in the G(1) or G(0) phase of the cell cycle, and no major structural damage was caused to these cells by the alternating temperature regime.These results demonstrate that growth-arrested ts CHO cells have increased productivity compared to growing cultures and maintain viability for longer periods. The system offers the prospect of enhancing the productivity of recombinant mammalian cells grown in simple batch fermentors.

  2. Metabolic analysis of antibody producing Chinese hamster ovary cell culture under different stresses conditions.

    PubMed

    Badsha, Md Bahadur; Kurata, Hiroyuki; Onitsuka, Masayoshi; Oga, Takushi; Omasa, Takeshi

    2016-07-01

    Chinese hamster ovary (CHO) cells are commonly used as the host cell lines concerning their ability to produce therapeutic proteins with complex post-translational modifications. In this study, we have investigated the time course extra- and intracellular metabolome data of the CHO-K1 cell line, under a control and stress conditions. The addition of NaCl and trehalose greatly suppressed cell growth, where the maximum viable cell density of NaCl and trehalose cultures were 2.2-fold and 2.8-fold less than that of a control culture. Contrariwise, the antibody production of both the NaCl and trehalose cultures was sustained for a longer time to surpass that of the control culture. The NaCl and trehalose cultures showed relatively similar dynamics of cell growth, antibody production, and substrate/product concentrations, while they indicated different dynamics from the control culture. The principal component analysis of extra- and intracellular metabolome dynamics indicated that their dynamic behaviors were consistent with biological functions. The qualitative pattern matching classification and hierarchical clustering analyses for the intracellular metabolome identified the metabolite clusters whose dynamic behaviors depend on NaCl and trehalose. The volcano plot revealed several reporter metabolites whose dynamics greatly change between in the NaCl and trehalose cultures. The elastic net identified some critical, intracellular metabolites that are distinct between the NaCl and trehalose. While a relatively small number of intracellular metabolites related to the cell growth, glucose, glutamine, lactate and ammonium ion concentrations, the mechanism of antibody production was suggested to be very complicated or not to be explained by elastic net regression analysis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    SciTech Connect

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-04-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes.

  4. Effects of selenocystine on lead-exposed Chinese hamster ovary (CHO) and PC-12 cells

    SciTech Connect

    Aykin-Burns, Nukhet; Ercal, Nuran . E-mail: nercal@umr.edu

    2006-07-15

    Lead is a pervasive environmental toxin that affects multiple organ systems, including the nervous, renal, reproductive, and hematological systems. Even though it is probably the most studied toxic metal, some of the symptoms of lead toxicity still cannot be explained by known molecular mechanisms. Therefore, lead-induced oxidative stress has recently started to gain attention. This in vitro study confirms the existence of oxidative stress due to lead exposure. Administration of lead acetate (PbA) to cultures of Chinese hamster ovary cells (CHO) had a concentration-dependent inhibitory effect on colony formation and cell proliferation. This inhibition was eliminated by 5 {mu}M selenocystine (SeCys). In order to evaluate the nature of SeCys's effect, we measured glutathione (GSH), its oxidized form glutathione disulfide (GSSG), malondialdehyde (MDA), catalase, and GSH peroxidase (GPx) activities in lead-exposed CHO cells both in the presence and absence of SeCys. Increases in MDA, catalase, and GPx activities were observed in cultures that received only PbA, but supplementation with SeCys returned these measures to pretreatment levels. The ratio of GSH to GSSG increased in lead-exposed cells incubated in SeCys-enhanced media but declined in cultures treated with PbA only. In order to determine whether SeCys also reverses lead-induced neurotoxicity, a neuronal cell line, PC-12 cells, was used. Lead's inhibition on neurite formation was significantly eliminated by SeCys in PC-12 cells. Our results suggest that SeCys can confer protection against lead-induced toxicity in CHO cells and neurotoxicity in PC-12 cells.

  5. Detection of G1 proteins in Chinese hamster cells synchronized by isoleucine deprivation or mitotic selection.

    PubMed

    Ley, K D

    1975-07-01

    Examination of labeling patterns of proteins in Chinese hamster cells(line CHO) revealed the presence of a class of protein(s) that is synthesized during G1 phase of the cell cycle. Cells arrested in G1 by isoleucine (Ile) deprivation were prelabeded with [14-C]Ile, induced to traverse G1 by addition of unlabeled Ile, and labeled with [3-H]Ile at hourly intervals. Cells were fractionated into neclear and cytoplasmic portions, and proteins were separated by sodium dodecyl sulfate-polyacrylamide get electrophoresis. Gel profiles of proteins in the 45,000-160,000 mol wt range from the cytoplasm of cells in G1 were similar to those from cells arrested in G1 except for the presence of a mojor peak of [1-H]Ile incorporated into a protein(s) of approximately 80,000 mol wt. Peaks of net [3-H]Ile incorporation were not detected in neclear preparations. Cellular fractionation by differential centrifugation showed the peak I protein was located in the soluble supernatant fraction of the cytoplasm. Time-course studies showed that synthesis of this protein began 1-2 h after initiation of G1 traverse; the protein reached maximum levels in 4-6 h and was reduced to undetectable levels by 9 h. A cytoplasmic protein with similar electrophoretic mobility was found in G1 phase of cells synchronized by mitotic selection. This class of proteins is synthesized by cells before entry into S phase and may be involved in initiation of DNA synthesis.

  6. Selection and characterization of Chinese hamster ovary cells resistant to the cytotoxicity of lectins.

    PubMed

    Stanley, P; Siminovitch, L

    1976-03-01

    Chinese hamster ovary (CHO) cells selected in a single step for resistance to the cytotoxicity of the lectin from red kidney beans (PHA) behave as authentic somatic cell mutants. The PHA-resistant (Phar) phenotype is stable in the absence of selection; its frequency in a sensitive-population is increased several-fold by mutagenesis; and it behaves recessively in somatic cell hybrids. The activity of a specific glycosyl transferase which transfers N-acetylglucosamine (GlcNAc) to terminal alpha-mannose residues is dramatically reduced (less than or equal to 5% of the activity detected in wild-type CHO cells) in several independent PhaR clones. These clones also exhibit (a) a decreased ability to bind [125I]-PHA; (b) a marked resistance to the cytotoxicity of wheat germ agglutinin (WGA), Ricin (RIC) and Lens culinaris agglutinin (LCA); (c) a 4- to 5-fold increased sensitivity to the cytoxocity of concanavalin A (Con A); (d) an increased ability to bind 125I-Con A; and (e) decreased surface galactose residues - all properties consistent with the specific loss of the GlcNAc transferase activity. The lectins WGA, RIC, LCA and Con A have also been used to select, in a single step, resistance closes from each of two complementary CHO auxitrophic lines. These lectin-resistant clones have been characterized by their ability to survive cytotoxic doses of PHA, Con A, WGA, RIC, or LCA, and 4-5 "lectin-resistance" phenotypes have been demonstrated. Complementation data is being sought by somatic cell hybridization. Preliminary results show that two phenotypically-distinct Con AR mutants are complementary in that hybrid cells formed between them exhibit wild-type sensitivity to Con A.

  7. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with /sup 32/Pi and L-(U-/sup 14/C)serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.

  8. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    SciTech Connect

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y. )

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

  9. Specific aneusomies in Chinese hamster cells at different stages of neoplastic transformation, initiated by nitrosomethylurea

    PubMed Central

    Fabarius, Alice; Willer, Andreas; Yerganian, George; Hehlmann, Ruediger; Duesberg, Peter

    2002-01-01

    Aneuploidy is ubiquitous in cancer, and its phenotypes are inevitably dominant and abnormal. In view of these facts we recently proposed that aneuploidy is sufficient for carcinogenesis generating cancer-specific aneusomies via a chain reaction of autocatalytic aneuploidizations. According to this hypothesis a carcinogen initiates carcinogenesis via a random aneuploidy. Aneuploidy then generates transformation stage-specific aneusomies and further random aneusomies autocatalytically, because it renders chromosome segregation and repair mechanisms error-prone. The hypothesis predicts that several specific aneusomies can cause the same cancers, because several chromosomes also cooperate in normal differentiation. Here we describe experiments on the Chinese hamster (CH) that confirm this hypothesis. (i) Random aneuploidy was detected before transformation in up to 90% of CH embryo cells treated with the carcinogen nitrosomethylurea (NMU). (ii) Several specific aneusomies were found in 70–100% of the aneuploid cells from colonies transformed with NMU in vitro and from tumors generated by NMU-transformed cells in syngeneic animals. Among the aneuploid in vitro transformed cells, 79% were trisomic for chromosome 3, and 59% were monosomic for chromosome 10, compared with 8% expected for random distribution of any aneusomy among the 12 CH chromosomes. Moreover, 52% shared both trisomy 3 and monosomy 10 compared with 0.6% expected for random distribution of any two aneusomies. Among the tumor cells, 65% were trisomic for chromosome 3, 51% were trisomic for chromosome 5, and 30% shared both trisomies. Aneuploid cells without these specific aneusomies may contain minor transformation-specific aneusomies or may be untransformed. (iii) Random aneusomies and structurally altered chromosomes increased with the generations of transformed cells to the point where their origins became unidentifiable in tumors. We conclude that specific aneusomies are necessary for carcinogenesis

  10. Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.

    PubMed

    Saunders, P P; Tan, M T; Spindler, C D; Robins, R K

    1989-12-01

    The growth inhibitory activity of 3-deazaguanosine toward a mutant line (TGR-3) of Chinese hamster ovary cells deficient in hypoxanthine-guanine phosphoribosyltransferase (EC 2.4.2.8) was substantially reversed by the simultaneous addition of nicotinamide riboside. The activities of most other ribonucleoside analogues tested were unaffected. The formation of cellular 3-deazaGMP and 3-deazaGTP from the ribonucleoside analogue, as measured by high-pressure liquid chromatography, was inhibited by the presence of nicotinamide riboside. The inhibition was dependent on concentration of 3-deazaguanosine and could also be demonstrated by following the metabolism of 3-deazaguanosine, labeled with 14C in the ribose moiety, to [14C]3-deazaGTP. In the presence of 100 microM nicotinamide riboside formation of the labeled triphosphate derivative of 3-deazaguanosine was undetectable. A 3-deazaguanosine phosphorylating activity was separated from other cellular kinases by DEAE-cellulose chromatography. Contaminating purine nucleoside phosphorylase (EC 2.4.2.1) was subsequently removed by sucrose density gradient centrifugation. The resulting enzyme preparation demonstrated the greatest activities with nicotinamide riboside and 3-deazaguanosine and, in addition, could also phosphorylate tiazofurin and guanosine to lesser, but significant, degrees. These and other observations suggest that 3-deazaguanosine, and perhaps other agents such as tiazofurin, may, at least in part, be phosphorylated by a nicotinamide ribonucleoside kinase in these cells. If so, it is possible that the activity of this agent in other types of cells in vivo could be dependent upon the presence of this enzyme and that it could be influenced by cellular concentrations of the natural pyridine nucleoside.

  11. DNA and chromosome breaks induced by iodine-123-labeled estrogen in Chinese hamster ovary cells

    SciTech Connect

    Schwartz, J.L. |; Mustafi, R.; Hughes, A.; DeSombre, E.R.

    1996-08-01

    The effects of the Auger electron-emitting isotope {sup 123}I, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen receptor-positive Chinese hamster ovary (CHO-ER) cells. Exposure to the {sup 123}I-labeled estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.8. The corresponding ratio with {sup 60}Co {gamma} rays was 15.6. The dose response was biphasic, suggesting either that receptor sites are saturated at high doses, or that there is a nonrandom distribution of breaks induced by the {sup 123}I-labeled estrogen. The {sup 123}I-labeled estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1000 disintegrations per cell. This corresponds to the mean lethal dose of {sup 123}I-labeled estrogen for these cells, suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that {sup 123}I-labeled estrogen-induced chromosome breaks are rejoined. The F ratio, the ratio of dicentrics to centric rings, was 5.8 {+-} 1.7, which is similar to that seen with high-LET radiations. Our results suggest that {sup 123}I bound to estrogen is an efficient clastogenic agent, the cytotoxic damage produced by {sup 123}I bound to estrogen is very like damage induced by high-LET radiation, and the {sup 123}I in the estrogen receptor-DNA complex is probably in proximity to the sugar-phosphate backbone of the DNA. 40 refs., 7 figs.

  12. Temperature-sensitive RNA polymerase II mutations in Chinese hamster ovary cells

    PubMed Central

    Ingles, C. James

    1978-01-01

    Mutant Chinese hamster ovary cell lines temperature-sensitive (TS) for growth and containing TS mutations in RNA polymerase II (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) have been isolated. Wild-type cells were treated with the mutagen N-methyl-N′-nitro-N-nitrosoguanidine and a population of cells possessing mutations in RNA polymerase II was initially selected by isolating α-amanitin-resistant clones at 34°. Of 168 such α-amanitin-resistant isolates screened for temperature sensitivity, nine were TS for growth at 39.5°. By examining the behavior of the α-amanitin resistance of these TS cell lines in somatic cell hybrids, the TS mutation in a number of them was shown to be in RNA polymerase II. Hybrid cells obtained by the fusion of the TS and α-amanitin-resistant cells with cells possessing α-amanitin-sensitive polymerase II grew at both 34° and 39.5°; the TS mutations were recessive. At 34° all the hybrids were α-amanitin-resistant and possessed a mixture of α-amanitin-resistant and sensitive polymerase II. At 39.5° the α-amanitin-resistant polymerase II activities in hybrids of four of the TS cell lines were lost; these four lines were α-amanitin-sensitive and possessed only α-amanitin-sensitive polymerase II. Temperature-insensitive revertants of two of these mutants were isolated. Reversion of the TS phenotype for mutants TsAmaR-1 and TsAmaR-8 was accompanied by an alteration in the level of α-amanitin resistance of the RNA polymerase II activities in the revertant cells. Together these data provide convincing evidence that TS mutations in RNA polymerase II can be coselected with α-amanitin resistance. PMID:272657

  13. Spermatogonial multiplication in the Chinese hamster. I. Cell cycle properties and synchronization of differentiating spermatogonia.

    PubMed

    Lok, D; de Rooij, D G

    1983-01-01

    The cell cycle properties of the six successive generations of differentiating spermatogonia in the Chinese hamster were analysed by the fraction of labelled mitoses technique (FLM). Except for the A1 spermatogonia most of which have a longer cell cycle time (Tc), Tc was found to be c. 60 hr for all types of differentiating spermatogonia. As in the mouse and the rat this represents c. 14% of the duration of the cycle of the seminiferous epithelium. With ongoing differentiation, ts of the differentiating spermatogonia increases from 14 to 25 hr, while tG2 shortens from 22 to 10 hr, ts + tG2 remaining at around 35 hr throughout. Autoradiography of whole mounted seminiferous tubules at 1 hr after injection of [3H]thymidine, and experiments with Ara-C revealed that the differentiating spermatogonia traverse S in sharply defined tubular segments. Thus adjacent clones of differentiating spermatogonia start and finish their S phase at virtually the same moment. This synchronization is not yet fully established among the first generation, as clones of A1 spermatogonia in the S phase were found intermingled with A1 cells in other phases of the cell cycle. Since there is little variation in tS and tG2 in the A1 spermatogonia, it was concluded that adjacent clones of A2 spermatogonia do not always arise at the same moment. Yet A2 spermatogonia do start S synchronously, and the FLM study confirms the expected variability in their tG1. A hypothesis is proposed that each generation of differentiating spermatogonia receives a stimulus to divide from outside the spermatogonial compartment. This would ensure the synchronous behaviour of adjacent clones and the strict relationship of the pattern of proliferation to the stages of the cycle of the seminiferous epithelium.

  14. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity.

    PubMed Central

    Lobaton, C D; Moreno, A; Oxender, D L

    1984-01-01

    We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20. Images PMID:6717430

  15. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity.

    PubMed

    Lobaton, C D; Moreno, A; Oxender, D L

    1984-03-01

    We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20.

  16. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis.

    PubMed

    Feng, Hua-Tao; Wong, Niki; Wee, Sheena; Lee, May May

    2008-07-01

    Twelve nucleotides and seven nucleotide sugars in Chinese Hamster ovary (CHO) cells were determined by capillary electrophoresis (CE). The CE operating conditions of buffer pH value, ion strength, capillary temperature, polymer additive and cell extraction method were investigated. Optimum separation was achieved with 40 mM sodium tetraborate buffer (pH 9.5) containing 1% (w/v) polyethylene glycol (PEG) at a capillary temperature of 22 degrees C. Acetonitrile and chloroform were used for intracellular extraction. This method can be used to monitor intracellular carbohydrate metabolism.

  17. Permeabilization of ultraviolet-irradiated chinese hamster cells with polyethylene glycol and introduction of ultraviolet endonuclease from Micrococcus luteus

    SciTech Connect

    Yarosh, D.B.; Setlow, R.B.

    1981-03-01

    Chinese hamster V-79 cells were made permeable by treatment with polyethylene glycol and then incubated with a Micrococcus luteus extract containing ultraviolet-specific endonuclease activity. This treatment introduced nicks in irradiated, but not in unirradiated, deoxyribonucleic acid. The nicks remained open for at least 3 h; there was no loss of endonuclease-sensitive sites, and no excision of dimers as measured by chromatography was detected. In addition, there was no increase in ultraviolet resistance in treated cells. This suggests that the absence of a significant amount of excision repair in rodent cells is due to the lack of both incision and excision capacity.

  18. Selenium modulates oxidative stress-induced TRPM2 cation channel currents in transfected Chinese hamster ovary cells.

    PubMed

    Nazıroğlu, Mustafa; Özgül, Cemil; Küçükayaz, Mustafa; Çiğ, Bilal; Hebeisen, Simon; Bal, Ramazan

    2013-02-01

    It has been recently reported that the essential antioxidant element selenium has protective effects on cytosolic Ca(2+) levels in cell lines. However, the effects of selenium on like transient receptor potential melastatin 2 (TRPM2) in response to oxidative stress (H(2) O(2) ) are not well understood. We investigated the effects of selenium on H(2) O(2) -induced TRPM2 channel currents in the Chinese hamster ovary (CHO) cell line using patch-clamp and fura-2 fluorescence imaging techniques. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  19. Impact of graphene oxide on viability of Chinese hamster ovary and mouse hepatoma MH-22A cells.

    PubMed

    Batiuskaite, Danute; Grinceviciute, Nora; Snitka, Valentinas

    2015-08-01

    The evaluation of the cyto- and bio-compatibility is a critical step in the development of graphene oxide (GO) as a new promising material for in vivo biomedical applications. In this study, we report the impact of GO, with and without the addition of bovine serum albumin, on healthy (Chinese hamster ovary) and a cancer (mouse hepatoma MH-22A) cells viability and the estimation of the intracellular distribution of GO inside the cells in vitro. The viability tests were performed using a colony formation assay. The intracellular distribution of GO was estimated using Raman spectroscopy and imaging. The viability of both cell lines decreased with increasing concentration of graphene oxide (12.5-50.0 μg/ml): in the case of Chinese hamster ovary cells viability decreased from 44% to 11%, in the case of mouse hepatoma MH-22A cells--from 22% to 3%. These cell lines significantly differed in their response to GO and GO-BSA formulations. The results of viability tests correlate with results of atomic force microscopy and Raman spectroscopy and imaging findings. The GO influence on cell morphology changes, cell structure, cells colony growth dynamics and GO accumulation inside the cells was higher in the case of mouse hepatoma MH-22A cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    SciTech Connect

    Matzuk, M.M.; Krieger, M.; Corless, C.L.; Boime, I.

    1987-09-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common ..cap alpha.. subunit but differ in their hormone-specific ..beta..-subunits. The ..beta.. subunit of hCG (hCG..beta..) is unique among the ..beta.. subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCG..beta.. gene alone or together with the hCG..cap alpha.. gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results reveal that hCG..beta.. can be secreted normally in the absence of its O-linked oligosaccharides. hCG..beta.. devoid of O-linked carbohydrate can also combine efficiently with hCG..cap alpha.. and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCG..beta.. O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG.

  1. Isolation of the plasma membrane and organelles from Chinese hamster ovary cells.

    PubMed

    Cezanne, L; Navarro, L; Tocanne, J F

    1992-12-09

    Two methods are described enabling the plasma membrane from Chinese hamster ovary (CHO) cells to be obtained rapidly, relatively pure and with a good yield. In both cases, cells were disrupted by nitrogen cavitation in an isoosmotic buffer either at pH 5.4 or at pH 7.4. In the first approach, cells were lysed at pH 7.4 and the plasma membrane and cell organelles were isolated on a self-generated gradient of Percoll, at neutral pH. Mitochondria and endoplasmic reticulum were recovered in the denser fractions, plasma membrane fragments were found in the lighter fractions, but always contaminated by lysosomes. Because lysosomes were found to sediment in acidic conditions, cells were lysed at pH 5.4 and presedimentation (1500 x g) of the cell homogenate at the same pH enabled more than 80% of the lysosomes to be removed. Then, ultracentrifugation of the supernatant over a Percoll gradient at neutral pH yielded plasma membrane fractions practically free of lysosomes with an enrichment ratio of 3 and fractions of mitochondria and endoplasmic reticulum with enrichment ratios of 17 and 6, respectively. A major problem was encountered in the final step of elimination of Percoll from the purified plasma membrane fractions. Whatever the technique used for eliminating Percoll, plasma membranes were observed to be contaminated by a Percoll constituent which prevented further purification and biochemical identification of the lipids extracted from these membrane fractions to be carried out. A second method of plasma membrane preparation was tested consisting first in the coating of the cell surface with positive colloidal silica which was stabilized by an anionic polymer. Then, and through differential centrifugations, plasma membrane fractions were easily obtained within less than 1 h, with a yield of 65% and an enrichment ratio of 7. The coating pellicle was quantitatively removed thus enabling any biochemical manipulation of the plasma membrane to be carried out. The lipids

  2. Understanding Transcriptional Enhancement in Monoclonal Antibody-Producing Chinese Hamster Ovary Cells

    NASA Astrophysics Data System (ADS)

    Nicoletti, Sarah E.

    With the demand for monoclonal antibody (mAB) therapeutics continually increasing, the need to better understand what makes a high productivity clone has gained substantial interest. Monoclonal antibody producing Chinese hamster ovary (CHO) cells with different productivities were provided by a biopharmaceutical company for investigation. Gene copy numbers, mRNA levels, and mAb productivities were previously determined for two low producing clones and their amplified progeny. These results showed an increase in mRNA copy number in amplified clones, which correlated to the observed increases in specific productivity of these clones. The presence of multiple copies of mRNA per one copy of DNA in the higher productivity clones has been coined as transcriptional enhancement. The methylation status of the CMV promoter as well as transcription factor/promoter interactions were evaluated to determine the cause of transcriptional enhancement. Methylation analysis via bisulfite sequencing revealed no significant difference in overall methylation status of the CMV promoter. These data did, however, reveal the possibility of differential interactions of transcription factors between the high and low productivity cell clones. This finding was further supported by chromatin immunoprecipitations previously performed in the lab, as well as literature studies. Transcription activator-like effector (TALE) binding proteins were constructed and utilized to selectively immunoprecipitate the CMV promoter along with its associated transcription factors in the different CHO cell clones. Cells were transfected with the TALE proteins, harvested and subjected to a ChIP-like procedure. Results obtained from the TALE ChIP demonstrated the lack of binding of the protein to the promoter and the need to redesign the TALE. Overall, results obtained from this study were unable to give a clear indication as to the causes of transcriptional enhancement in the amplified CHO cell clones. Further

  3. Expression of human basic fibroblast growth factor cDNA in baby hamster kidney-derived cells results in autonomous cell growth

    PubMed Central

    1988-01-01

    Growth factor over-production by responsive cells might contribute to their autonomous proliferation as well as their acquisition of a transformed phenotype in culture. Basic fibroblast growth factor (bFGF) has been shown to induce transient changes in cell behavior that resemble those encountered in transformed cells. In addition, several types of human tumor cells have been shown to produce bFGF. To determine directly the role that bFGF might play in the induction of the transformed phenotype, we have introduced a human bFGF cDNA expression vector into baby hamster kidney-derived (BHK-21) fibroblasts. One of the BHK transfectants, termed clone 19, expresses the bFGF mRNA and produces biologically active bFGF that accumulates to a high concentration inside the cells. These properties correlate with the ability of the cells to grow in serum-free medium without the addition of exogenous bFGF. Clone 19 cells also proliferated in soft agar, indicating that constitutive expression of the bFGF gene results in a loss of anchorage-dependent growth. PMID:3360856

  4. Role of the Chinese Herbal Medicine Xianhuayin on the Reversal of Premalignant Mucosal Lesions in the Golden Hamster Buccal Pouch

    PubMed Central

    Xu, Yan-zhi; Qiu, Yong-le; An, Zhi-guang; Yang, Feng-ying

    2010-01-01

    Aim To investigate the role of the Chinese herbal medicine Xianhuayin on the reversal of 7,12-dimethylbenz[a]anthracene (DMBA)-induced premalignant mucosal lesions in the oral buccal pouch of golden hamsters. Methodology The animals were randomly divided into a non-diseased control group (n=5) and an experimental group including 50 animals in which the buccal mucosa had been painted with DMBA (0.5% in acetone) to generate an oral mucosa premalignant lesion. Animals in the experimental group were further divided into Xianhuayin-treated group (n=30), untreated premalignant lesion group (n=10) and normal saline (NS)-treated group (n=10). The cheek (buccal) pouch mucosa of the golden hamsters in each group was observed with light and electron microscopy eight weeks after intragastric administration with NS or Xianhuayin. Results In the non-diseased control group, the buccal mucosa was keratinized and stratified squamous epithelium under a light microscope. In the untreated premalignant lesion group, variable degrees of epithelial dysplasia was observed. The irregular epithelial mucosa gradually became distinct in the Xianhuayin-treated group. Scanning electronic microscopic (SEM) analysis showed that surface of the cells exhibited honeycomb structures in the hamster of untreated-group. The cells were morphologically irregular, overlapped and loosened in the untreated premalignant lesion group. Most of the cell surface exhibited honeycomb structure in the Xianhuayin-treated group. Transmission electronic microscopic (TEM) analysis showed that buccal mucosal epithelial cells were morphologically regular in the non-diseased control group. Desmosomes and tonofibrils were reduced and the nucleus was morphologically irregular in the untreated premalignant lesion group. In the Xianhuayin-treated group, the widening intercellular gap was gradually reduced, desmosomes and the cells becoming morphologically regular. No significant difference was observed between the hamsters in

  5. Fibrillar and cytoskeletal substructure of tight junctions: analysis of single-stranded tight junctions linking fibroblasts of the lamina fusca in hamster eyes.

    PubMed

    Hageman, G S; Kelly, D E

    1984-01-01

    The lamina fusca of the hamster eye contains layers of flattened, slightly overlapping fibroblasts. Thin sections of the overlapping margins reveal punctate, tight-junction-like membrane appositions associated with accumulation of cytoplasmic filaments, 5-7 nm in diameter. Intermediate filaments are present in the surrounding cytoplasm. A diffuse dense substance occurs in adjacent intercellular space. Freeze-fracture replicas show that the membrane appositions are mainly single-stranded tight junctions, each composed of two fibrils (micelles), and each continuous or nearly continuous around the fibroblastic perimeter. Fracturing characteristics of these junctions offer a unique opportunity to gain further insight into tight junctional morphology. When exposed, the fibrils adhere to the P-face, measure 9.2 +/- 0.3 nm in diameter, and are accompanied by a narrow band of membrane differing in texture from non-junctional membrane. Characteristically, the junctional fibrils themselves mark the deviation line along which fracture planes pass from one membrane of the junction to the other. This pattern exposes, over long distances, the P-face of one membrane on one side of this line and E-face of the adjacent membrane on the other. Analysis of any single junction over such distances reveals that the juxtaposition of the fibrils may gradually twist or undulate over a range of at least 180 degrees within the two involved membranes. The fracture plane appears preferentially to pass between the two junctional fibrils; association of the cytoskeleton with junctional fibrils may govern this route of fracture. Cytoskeletal attachment appears to be to a single fibril and may alternate from one fibroblast to the next depending on which cytoplasmic leaflet is nearest a given fibril.

  6. Survival and DNA damage in Chinese hamster V79 cells exposed to alpha particles emitted by DNA-incorporated astatine-211.

    PubMed

    Walicka, M A; Vaidyanathan, G; Zalutsky, M R; Adelstein, S J; Kassis, A I

    1998-09-01

    Asynchronous Chinese hamster V79 lung fibroblasts were incubated at 37 degrees C for 30 min with the thymidine analog 5-[211At]astato-2'-deoxyuridine (211AtdU, exposure from DNA-incorporated activity) or with [211At]astatide (211At-, exposure from extracellular activity), and DNA-incorporated activity was determined. The 211AtdU content in cellular DNA increased as a function of extracellular concentration. Incorporation of 211At- was less than 1% of that of 211AtdU. After exposure, cells were frozen in the presence of 10% DMSO. One month later, survival was determined by the colony-forming assay, and DNA double-strand breaks (DSBs) were measured by the neutral elution method (pH 9.6). The survival curve for 211AtdU was biphasic (D37 = 2.8 decays per cell), reflecting killing of 211At-DNA-labeled cells and of unlabeled cells irradiated by 211At in neighboring labeled cells. The toxicity of 211At- decaying outside the cell (30-min exposure) was negligible. Analysis of the survival curve produced a D0 of 1.3 decays/cell for 211At-labeled cells. The yield of DSBs from the decay of DNA-incorporated 211At was compared with that from DNA-incorporated 125I. Each decay of 211At produced at least 10 times the number of DSBs as that obtained per 125I decay. The extreme radiotoxicity of DNA-incorporated 211AtdU seems to be associated with considerable damage to the mammalian cell genome.

  7. The effect of two topoisomerase inhibitors on low-dose hypersensitivity and increased radioresistance in Chinese hamster V79 cells

    SciTech Connect

    Skov, K.; Zhou, H.; Marples, B.

    1994-04-01

    A preliminary investigation of the effect of topoisomerase inhibitors on the structure of the survival curve at low doses has been carried out in Chinese hamster V79 cells, where there is a deviation from the predicted response to radiation. Cells were treated with one representative drug for each enzyme (topoisomerase I or II) prior to X irradiation in air and assessed for cell survival using automated microscopic location of cells. VP-16 causes little or no effect, while camptothecin has a measurable effect up to 2 Gy. The results are discussed in terms of the role of DNA damage and cell cycle in increased radioresistance, which encourage further investigation of the effects of this class of drugs at low doses. 17 refs., 2 figs.

  8. Heat-resistant variants of the Chinese hamster ovary cell: alteration of cellular structure and expression of vimentin.

    PubMed

    Lee, Y J; Hou, Z Z; Curetty, L; Armour, E P; al-Saadi, A; Bernstein, J; Corry, P M

    1992-04-01

    Three heat-resistant mutant cell lines (78-1, 78-2, 78-3) were previously selected from Chinese hamster ovary cells. In this study, we investigated whether the differences in intrinsic thermal sensitivity result from alteration of stress protein levels or cellular structural changes. Although there was no significant difference in the levels of stress proteins, i.e., constitutive HSP70 in wild type and three heat-resistant mutant strains, there were marked differences in the amounts of vimentin among the cell lines. Two-dimensional gel electrophoresis and Western blot showed a 2.3-2.9-fold increase in the level of vimentin in the mutant cells under normal growth conditions. Northern blot also revealed higher amounts of vimentin mRNA in the mutant cells. Electron microscopy and immunofluorescence suggest that increased amounts of the vimentin-containing intermediate filaments are correlated with the heat-resistant phenotypes.

  9. Chromosomal aberrations and sister chromatid exchange tests in Chinese hamster ovary cells in vitro. IV. Results with 15 chemicals

    SciTech Connect

    Ivett, J.L.; Brown, B.M.; Rodgers, C. ); Anderson, B.E.; Resnick, M.A.; Zeiger, E. )

    1989-01-01

    The National Toxicology Program has undertaken a study to assess the ability of four genetic toxicology assays to predict the carcinogenicity of chemicals in 2-year rodent studies. Two of the assays, used for evaluating in vitro cytogenic damage, were the SCE and chromosome aberration assays in Chinese hamster ovary cells. The results and data for 15 of the chemicals tested in these two assays are presented here. Each chemical was tested with and without exogenous metabolic activation. The chemicals tested were bisphenol A, 2-chloroethanol, C.l. acid orange 10, C.l. disperse yellow 3, C.l. solvent yellow 14, cytembena, D C red 9, 1,2-dibromoethane, FD C yellow 6, malaoxon, D,L-methanol, phenol, sulfisoxazole, titanium dioxide, and tris(2-ethyl-hexyl)phosphate. In vitro cytogenetic results from the other chemicals presented by Tennant et al. have been published by Galloway et al, Gulati et al. and Loveday et. al.

  10. Influence of DMSO on Carbon K ultrasoft X-rays induced chromosome aberrations in V79 Chinese hamster cells.

    PubMed

    Natarajan, Adayapalam T; Palitti, Fabrizio; Hill, Mark A; Stevens, David L; Ahnström, Gunnar

    2010-09-10

    Ultrasoft X-rays have been shown to be very efficient in inducing chromosomal aberrations in mammalian cells. The present study was aimed to evaluate the modifying effects of DMSO (a potent scavenger of free radicals) on the frequencies of chromosome aberrations induced by soft X-rays. Confluent held G1 Chinese hamster cells (V79) were irradiated with Carbon K ultrasoft X-rays in the presence and absence of 1M DMSO and frequencies of chromosome aberrations in the first division cells were determined. DMSO reduced the frequencies of exchange types of aberrations (dicentrics and centric rings) by a factor of 2.1-3.5. The results indicate that free radicals induced by ultrasoft X-rays contribute to a great extent to the induction of chromosome aberrations. The possible implications of these results in interpreting the mechanisms involved in the high efficiency of ultrasoft X-rays in the induction of chromosome aberrations are discussed.

  11. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese hamster ovary cells

    SciTech Connect

    Pendse, G.J.; Bailey, J.E. . Dept. of Chemical Engineering)

    1994-12-01

    Previous studies suggest that secretion of cloned proteins synthesized by recombinant Chinese hamster ovary (CHO) cells can be adenosine triphosphate (ATP) limited. Other research indicates that the presence of cloned Vitreoscilla hemoglobin (VHb) enhances ATP production in oxygen-limited Escherichia coli. To evaluate the influence of VHb expression on recombinant CHO cell productivity, the vhb gene has been fused to the mouse mammary tumor virus (MMTV) promoter and cloned in a CHO cell line previously engineered to express human tissue plasminogen activator (tPA). Western blot analysis confirms dexamethasone-inducible VHb expression in all of the clones tested. Batch cultivation experiments with one VHb-expressing clone and the parental CHO-tPA cells show a reduced specific growth rate in the VHb-expressing cells. The VHb-expressing clone exhibits specific tPA production 40 to 100% greater than the parental CHO-tPA culture.

  12. Recovery after exposure to near-ultraviolet light of cells containing 5-bromodeoxyuridine. [V79 Chinese hamster cells

    SciTech Connect

    Hagan, M.P.; Elkind, M.M.

    1981-06-01

    The survival of synchronized V79 Chinese hamster cells irradiated with near-ultraviolet light after a 1-h labeling with 5-bromodeoxyuridine (BrdUrd) is highly dependent upon the cells' position in the cell cycle at the time of irradiation. In this report, we show that cells irradiated in the same S phase after BrdUrd incorporation demonstrate an ability to repair sublethal damage, in contrast to the lack of an increase in survival with dose fractionation in template-labeled cells. In addition, we show that pulse-labeled cells in S phase can repair potentially lethal damage expressed by caffeine. The kinetics of these recovery processes and the absence of a caffeine effect on the rapair of sublethal damage indicate that these two processes are to a large degree unrelated. We conclude that in template-labeled cells inadequate time to effect prereplicational repair precludes effective contributions to cell survival from other kinds of DNA repair processes.

  13. Analysis of cytogenetic effects of the secondary radiation resulting from 70 GeV protons of chinese hamster cells

    NASA Astrophysics Data System (ADS)

    Akhmadieva, A. Kh.; Aptikaeva, G. Ph.; Livanova, I. A.; Antipov, A. V.; Akoev, I. G.; Ganassi, E. E.

    The cell culture of a Chinese hamster was irradiated on a Serpuchov proton synchrotron at a dose of 0.5-4 Gy and a dose rate of 1 Gy/min and by gamma-irradiation at dose 1-5 Gy and dose rate 1.2-1.4 Gy/min. The effect of radiation on the cell culture was judged from chromosomal aberrations in G2-stage of cell cycle and micronuclear test. The relative biological efficience of the secondary radiation was approximately 3. Modifying effect of caffeine on the cells irradiated by secondary radiation of synchrotron was not observed. In the presence of caffeine the effect of γ-irradiation practically is increased up to the level observed upon secondary irradiation. This suggests that secondary radiation inhibits the repair of the cytogenetic damage.

  14. Rat bladder cell-mediated mutagenesis of Chinese hamster V79 cells and metabolism of benzo(a)pyrene

    SciTech Connect

    Langenbach, R.; Malick, L.; Nesnow, S.

    1981-05-01

    Primary rat bladder epithelial cells were cocultivated with Chinese hamster V79 cells in the presence of carcinogens, and the induction of 6-thioguanine resistance in the V79 cells was used as a market of cell-mediated mutagenesis. The carcinogens dimethylnitrosamine, 7,12-dimethylbenz(a)anthracene, and benzo(a)pyrene (BP) were mutagenic to V79 cells in the presence of bladder cells but not in their absence. Analysis of BP metabolites (formed by bladder cells indicated that 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene, 9,10-dihydro-9,10-dihydroxybenzo(a)pyrene, benzo(a)pyrene-3,6-quinone, and 9-hydroxybenzo(a)pyrene were the major organic-soluble metabolites formed. The finding that rat bladder peithelium can metabolize some carcinogens offers new possibilities for the mechanism of initiation of bladder cancer.

  15. The replication timing of the amplified dihydrofolate reductase genes in the Chinese hamster ovary cell line CHOC 400.

    PubMed

    Caddle, M S; Heintz, N H

    1990-07-16

    We have examined the timing of replication of the amplified dihydrofolate reductase genes in the methotrexate-resistant Chinese hamster ovary cell line CHOC 400 using two synchronization procedures. DNA replicated in the presence of 5-bromodeoxyuridine was collected from cells of various times during the DNA synthesis phase and the extent of replication for defined sequences was determined by Southern blotting analysis of CsCl density gradient fractions. We report that under these conditions the DHFR gene replicates throughout the course of S phase in a mode similar to the bulk of the replicated genomic DNA. This contrasts with previous data that shows the non-amplified DHFR gene replicates during the first quarter of S phase. Therefore, we conclude that gene amplification alters the replication timing of the DHFR gene in CHOC 400 cells.

  16. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    SciTech Connect

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  17. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    PubMed

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production.

  18. Investigation of the effects of Chinese medicine on fibroblast viability: implications in wound healing.

    PubMed

    Lau, T W; Chan, Y W; Lau, C P; Chan, C M; Lau, C B S; Fung, K P; Leung, P C; Ho, Y Y

    2007-10-01

    Diabetes mellitus has been a clinical problem for hundreds of years. Over 194 million people suffer from this disease worldwide. Improper control of diabetes may result in diabetic foot ulcer or even amputation. Granulation formation is an important issue essential for ulcer healing. The CRL-7522 fibroblast cell line and primary fibroblasts from a diabetic foot ulcer patient were used to model the wound healing enhancing activities of two clinically efficacious Chinese herbal formulae, Formula 1 (F1) and Formula 2 (F2) and their component herbs. Results showed that the two formulae and four of their component herbs, Radix Astragali, Radix Rehmanniae, Rhizoma Alismatis and Rhizoma Atractylodis Macrocephalae significantly enhanced CRL-7522 cell viability. However, these component herbs showed compromised effects on the viability of primary fibroblasts cultured from the ulcerous tissue of a diabetic patient. Interestingly, F1 and F2 enhanced the viability of primary cultured fibroblasts from the diabetic patient even in the face of insulin resistance. These results further support the previously reported clinical efficacies of the two formulae on healing diabetic foot ulcers.

  19. Absence of interaction between X-rays and UV light in inducing ouabain- and thioguanine-resistant mutants in Chinese hamster cells.

    PubMed

    Cleaver, J E

    1978-11-01

    Chinese hamster ovary cells were irradiated with X-rays at times from 0 to 17 h before being irradiated with ultraviolet (UV) light. No synergism was observed between the two radiations for the production of mutants resistant to either ouabain or 6-thioguanine. These experiments were designed to test whether X-rays induced an error-prone repair system that would increase the frequency of mutations produced by UV light, but no such system was detected.

  20. Characterization of murine monoclonal antibodies that recognize defined epitopes of pertussis toxin and neutralize its toxic effect on Chinese hamster ovary cells.

    PubMed Central

    Walker, M J; Wehland, J; Timmis, K N; Raupach, B; Schmidt, M A

    1991-01-01

    Three murine monoclonal antibodies (MAb), E19, E205, and E251, raised against pertussis toxin reacted in Western blots (immunoblots) with the S1, S4, and S2-S3 subunits, respectively, and neutralized the Chinese hamster ovary cell-clustering activity of pertussis toxin. MAb E251 recognized a linear synthetic peptide corresponding to amino acids 107 to 120 of the S2 subunit, suggesting a role for this region in receptor binding. Images PMID:1718872

  1. Chinese Hamster Ovary (CHO) Host Cell Engineering to Increase Sialylation of Recombinant Therapeutic Proteins by Modulating Sialyltransferase Expression

    PubMed Central

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R.; George, Henry J.; Brooks, Jeanne; Kayser, Kevin J.; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio-better” protein therapeutics and cell culture vaccine production. PMID:25641927

  2. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.

    PubMed

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R; George, Henry J; Brooks, Jeanne; Kayser, Kevin J; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production.

  3. Carbamates: A study on genotoxic, cytotoxic, and apoptotic effects induced in Chinese hamster ovary (CHO-K1) cells.

    PubMed

    Soloneski, Sonia; Kujawski, Maciej; Scuto, Anna; Larramendy, Marcelo L

    2015-08-01

    In vitro effects of the carbamates pirimicarb and zineb and their formulations Aficida® (50% pirimicarb) and Azzurro® (70% zineb), respectively, were evaluated in Chinese hamster ovary (CHO-K1) cells. Whereas the cytokinesis-blocked micronucleus cytome assay was employed to test for genotoxicity, MTT, neutral red (NR), and apoptosis evaluation were used as tests for estimating cell viability and succinic dehydrogenase activity, respectively. Concentrations tested were 10-300 μg/ml for pirimicarb and Aficida®, and 1-50 μg/ml for zineb and Azzurro®. All compounds were able to increase the frequency of micronuclei. A marked reduction in the nuclear division index was observed after treatment with 5 μg/ml of zineb and Azzurro® and 10 μg/ml of Azzurro®. Alterations in the cellular morphology not allowing the recognition of binucleated cells exposed to 300 μg/ml pirimicarb and Aficida® as well as 10-50 μg/ml zineb and Azzurro®. All four compounds induced inhibition of both cell viability and succinic dehydrogenase activity and trigger apoptosis in CHO-K1 cells, at least when exposed for 24 h. The data herein demonstrate the genotoxic and cytotoxic effects exerted by these carbamates and reveal the potential risk factor of these pesticides, still extensively used worldwide, for both human health and the environment.

  4. Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells.

    PubMed

    Searles, J A; Todd, P; Kompala, D S

    1994-01-01

    The perfusion culture of suspended mammalian cells requires a cell retention device, the best of which will retain all viable cells and reject all nonviable cells and debris. The inclined settler is a passive, simple, inexpensive, and easy-to-maintain device that has been shown in the past to selectively remove single nonviable cells of hybridoma cultures. In this work, we have demonstrated the preferential return of viable recombinant Chinese hamster ovary (CHO) cells through the use of a three-port settler maintained at lower temperatures and vibrated to reduce cell attachment and enhance cell return to the bioreactor. The residence time of CHO cells in the cooled, vibrated settler was determined by flow-cytometric discrimination of tracer recombinant CHO cells. Cells returning to the bioreactor through the underflow had an average residence time of 1.46 h in the settler. During perfusion cultures with cell densities above 10(6) cells/mL, cells seen to be stalled within the settler were easily dislodged by periodic air bubbling using a simple back-flushing procedure in which headspace gas was brought through the settler underflow port. The resuspended cells were returned to the bioreactor within an average of 32 min after bubbling. This study demonstrates that inclined sedimentation technology can be utilized to selectively recycle viable recombinant CHO cells with only a short retention time in an inclined settler.

  5. Suppressive action of near-ultraviolet light on ouabain resistance induced by far-ultraviolet light in Chinese hamster cells.

    PubMed

    Suzuki, F; Han, A; Hill, C K; Elkind, M M

    1983-03-01

    The interaction between ultraviolet light (UV-C) from germicidal lamps (254 nm) and near-ultraviolet light (UV-B) from Westinghouse Sun Lamps (290-345 nm) was studied in Chinese hamster V79 cells by measuring the effectiveness of combined exposures to induce the resistance to 6-thioguanine or to ouabain. Exposure of cells to a conditioning dose of UV-B (approximately 70% survival) results in significant inhibition of the induction by UV-C of cells resistant to ouabain. The inhibition is lost, however, if cells are incubated for 12 h at 37 degrees C between exposures. Inhibition is also observed when cells are preirradiated with a dose of UV-B filtered with polystyrene (300-345 nm) which, in itself, has no effect on cell killing. Conditioning exposures of unfiltered or filtered UV-B light do not inhibit the induction of 6-thioguanine-resistant cells by UV-C light, and the effects of UV-B and UV-C light are largely independent.

  6. Resveratrol, a naturally occurring polyphenol, induces sister chromatid exchanges in a Chinese hamster lung (CHL) cell line.

    PubMed

    Matsuoka, A; Furuta, A; Ozaki, M; Fukuhara, K; Miyata, N

    2001-07-25

    We tested the genotoxicity of 3,5,4'-trihydroxystilbene (resveratrol), a polyphenolic phytoalexin found in grapes, in a bacterial reverse mutation assay, in vitro chromosome aberration (CA) test, in vitro micronucleus (MN) test, and sister chromatid exchange (SCE) test. Resveratrol was negative in the strains we used in the bacterial reverse mutation assay (S. typhimurium TA98 and TA100 and E. coli WP2uvrA) in the absence and presence of a microsomal metabolizing system. It induced structural CAs at 2.5-20 microg/ml and showed weak aneuploidy induction in a Chinese hamster lung (CHL) cell line. It induced MN cells and polynuclear and karyorrhectic cells after 48h treatments in the in vitro MN test. In the SCE test, resveratrol caused a clear cell-cycle delay; at 10 microg/ml, the cell cycle took twice as long as it did in the control. Resveratrol induced SCEs dose-dependently at up to 10 microg/ml, at which it increased SCE six-fold, and the number was almost as large as mitomycin C, a strong SCE inducer. No second mitoses were observed at 20 microg/ml even after 54h. Cell cycle analysis by FACScan indicated that resveratrol caused S phase arrest, and 48h treatment induced apoptosis. Our results suggest that resveratrol may preferentially induce SCE but not CA, that is, it may cause S phase arrest only when SCEs are induced.

  7. Identification of cellular changes associated with increased production of human growth hormone in a recombinant Chinese hamster ovary cell line.

    PubMed

    Van Dyk, Derek D; Misztal, David R; Wilkins, Marc R; Mackintosh, James A; Poljak, Anne; Varnai, Jodie C; Teber, Erdahl; Walsh, Bradley J; Gray, Peter P

    2003-02-01

    A proteomics approach was used to identify the proteins potentially implicated in the cellular response concomitant with elevated production levels of human growth hormone in a recombinant Chinese hamster ovary (CHO) cell line following exposure to 0.5 mM butyrate and 80 microM zinc sulphate in the production media. This involved incorporation of two-dimensional (2-D) gel electrophoresis and protein identification by a combination of N-terminal sequencing, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry, amino acid analysis and cross species database matching. From these identifications a CHO 2-D reference map and annotated database have been established. Metabolic labelling and subsequent autoradiography showed the induction of a number of cellular proteins in response to the media additives butyrate and zinc sulphate. These were identified as GRP75, enolase and thioredoxin. The chaperone proteins GRP78, HSP90, GRP94 and HSP70 were not up-regulated under these conditions.

  8. Molecular nature of spontaneous mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in Chinese hamster ovary cells.

    PubMed

    Xu, Z; Yu, Y; Schwartz, J L; Meltz, M L; Hsie, A W

    1995-01-01

    The hypoxanthine-guanine phosphoribosyltransferase (hprt) locus has been widely used as a selectable genetic marker for studies of mammalian cell mutagenesis. We report here the spontaneous mutation spectrum at the hprt locus in 64 independently isolated mutants of Chinese hamster ovary (CHO) cells. All nine hprt exons were simultaneously analyzed via multiplex polymerase chain reaction (PCR) for rapid detection of gene deletions or insertions. Structural point mutations were identified by direct sequence analysis of the PCR amplified cDNA. The molecular nature of RNA splicing errors and insertions was analyzed by solid-phase direct exon sequencing. Single base substitutions were found in 24 mutants (38%), of which 21 were missense and 3 were nonsense mutations. Transversions were about twice as frequent as transitions. Fifteen mutants (23%) had deletions involving either intragenic small fragments (2), single exons (9), or multiple exons (4). The majority of deletion breakpoints (71%) were located in regions surrounding exons 4, 5, and 6. RNA splicing mutations were observed in 15 mutants (23%) and affected exons 3-8; most (6/15) resulted in the loss of exon 7. Two insertion mutants, one with a 209 bp insert in exon 4 and the other with a 88 bp insert accompanied by a 24 bp deletion in exon 6, represent novel mutations reported for the first time in spontaneous mutants of the mammalian hprt gene.

  9. Contribution of chlorination to the mutagenic activity of drinking water extracts in Salmonella and Chinese hamster ovary cells

    SciTech Connect

    Douglas, G.R.; Nestmann, E.R.; Lebel, G.

    1986-11-01

    The production of chlorinated by-products through chlorine disinfection of drinking water has been well documented. Natural organic precursors for these chemicals include fulvic and humic acids, the chlorination of which leads to the production of mutagenic compounds. Comparisons of extracts of raw versus treated waters have confirmed that clorination during water treatment produces mutagenic activity in the Salmonella (Ames) test. Present work on XAD-2 extracts of raw and chlorinated water from six municipalities in the Great Lakes region of Canada has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) and the micronucleus (MN) induction in Chinese hamster ovary (CHO) cells. All extracts of treated (chlorinated), but none of untreated, water were mutagenic in the Salmonella assay. On the other hand, extracts of both treated and untreated water samples showed activity in the SCE and MN assays, but no consistent pattern of response with regard to treatment (chlorination) was evident. These data show that chlorination contributes mutagens to drinking water and suggest that mammalian in vitro assays may be more sensitive for detecting mutagenicity in water samples than the Salmonella test.

  10. Deletion screening at the hypoxanthine-guanine phosphoribosyltransferase locus in Chinese hamster cells using the polymerase chain reaction

    SciTech Connect

    Xu, Z.D.; Yu, Y.J.; Hsie, A.W.; Caskey, C.T.; Rossiter, B.; Gibbs, R.A. )

    1989-01-01

    We have developed a rapid screening method using the polymerase chain reaction (PCR) for detecting deletion mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in Chinese hamster cells. DNA was extracted from spontaneous and ultraviolet (UV) light- and X-ray-induced hprt-deficient mutants. Two primer sets were used to amplify 276 bp and 344 bp fragments containing the entire exon 3 and exon 9 coding sequence, respectively. The PCR was performed using Taq DNA polymerase for 40 cycles, and the PCR product was directly analyzed for the presence of the respective amplified DNA using electrophoresis on agarose gels stained with ethidium bromide. With this assay, we have analyzed 39 independently derived hprt-deficient mutants. Four of ten spontaneous mutants were found to have deletions in exon 9. UV light produced mutants with predominantly wild-type amplification patterns (10/14). X-ray induced mostly deletion patterns (11/15); six of these occurred only in exon 9, and five occurred in both exons 3 and 9. These observations are consistent with the classical notion that UV light induces predominantly missense mutations and X-ray produces a high proportion of deletion mutations. Deletion mutations occurred most frequently at the 3' end of the hprt gene, suggesting the possible existence of hot spots for deletions in this region. The PCR assay for deletion detection has the advantage that it can be completed in less than 4 hr without using radioisotopes. This assay should be useful for routine deletion screening.

  11. Effects of N-acetylcysteine amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Wu, Wei; Abraham, Linu; Ogony, Joshua; Matthews, Richard; Goldstein, Glenn; Ercal, Nuran

    2008-05-23

    Ionizing radiation is known to cause tissue damage in biological systems, mainly due to its ability to produce reactive oxygen species (ROS) in cells. Many thiol antioxidants have been used previously as radioprotectors, but their application has been limited by their toxicity. In this investigation, we have explored the possible radioprotective effects of a newly synthesized thiol antioxidant, N-acetylcysteine amide (NACA), in comparison with N-acetylcysteine (NAC), a commonly used antioxidant. Protective effects of NACA and NAC were assessed using Chinese hamster ovary (CHO) cells, irradiated with 6 gray (Gy) radiation. Oxidative stress parameters, including levels of reduced glutathione (GSH), cysteine, malondialdehyde (MDA), and activities of antioxidant enzymes like glutathione peroxidase, glutathione reductase, and catalase, were measured. Results indicate that NACA was capable of restoring GSH levels in irradiated cells in a dose dependent manner. In addition, NACA prevented radiation-induced loss in cell viability. NACA further restored levels of malondialdehyde, caspase-3 activity, and antioxidant enzyme activities to control levels. Although NAC affected cells in a similar manner to NACA, its effects were not as significant. Further, NAC was also found to be cytotoxic to cells at higher concentrations, whereas NACA was non-toxic at similar concentrations. These results suggest that NACA may be able to attenuate radiation-induced cytotoxicity, possibly by its ability to provide thiols to cells.

  12. Insulin-like growth factor-I and transferrin mediate growth and survival of Chinese hamster ovary cells.

    PubMed

    Sunstrom, N A; Gay, R D; Wong, D C; Kitchen, N A; DeBoer, L; Gray, P P

    2000-01-01

    The aim of this investigation was to elucidate the roles of insulin-like growth factor-I (IGF-I) and transferrin in the survival and proliferation of Chinese hamster ovary (CHO) cells upon withdrawal of serum. For this purpose, we employed DNA analysis and flow cytometry to compare CHO cell lines expressing either IGF-I alone or IGF-I and transferrin. The ability of cells to cycle and the occurrence of apoptosis were monitored in these cells in serum-free medium. These results indicate that IGF-I alone is able to maintain the viability of CHO cells for an extended length of time in the absence of serum. Transferrin alone does not promote survival or proliferation. Only in the presence of both IGF-I and transferrin do cells survive and proliferate. Therefore, in attached CHO cultures, IGF-I alone does not stimulate cell proliferation but is a requirement for growth in serum-free medium in cooperation with transferrin. We report on the dual role of IGF-I as a survival factor in CHO cells and its interlocking role with transferrin to stimulate cell growth.

  13. Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR

    PubMed Central

    Smart, D; Jerman, J C; Brough, S J; Rushton, S L; Murdock, P R; Jewitt, F; Elshourbagy, N A; Ellis, C E; Middlemiss, D N; Brown, F

    1999-01-01

    The cellular mechanisms underlying the physiological effects of the orexins are poorly understood. Therefore, the pharmacology of the recombinant human orexin receptors was studied using FLIPR. Intracellular calcium ([Ca2+]i) was monitored in Chinese hamster ovary (CHO) cells stably expressing orexin-1 (OX1) or orexin-2 (OX2) receptors using Fluo-3AM. Orexin-A and orexin-B increased [Ca2+]i in a concentration dependent manner in CHO-OX1 (pEC50=8.03±0.08 and 7.30±0.08 respectively, n=5) and CHO-OX2 (pEC50=8.18±0.10 and 8.43±0.09 respectively, n=5) cells. This response was typified as a rapid peak in [Ca2+]i (maximal at 6–8 s), followed by a gradually declining secondary phase. Thapsigargin (3 μM) or U73122 (3 μM) abolished the response. In calcium-free conditions the peak response was unaffected but the secondary phase was shortened, returning to basal values within 90 s. Calcium (1.5 mM) replacement restored the secondary phase. In conclusion, orexins cause a phospholipase C-mediated release of calcium from intracellular stores, with subsequent calcium influx. PMID:10498827

  14. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    SciTech Connect

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  15. Effect of mitochondrial inhibitors on metaphase-telophase progression and nuclear membrane formation in Chinese hamster cells.

    PubMed

    Chai, L S; Schumer, J M; Sandberg, A A

    1985-01-01

    Chinese hamster Don cells in log-phase were exposed to Colcemid during the G2 period with and without a combination of divalent cation chelators and mitochondrial inhibitors. Isolated metaphase cells were incubated as follows: (i) without Colcemid but with other agents and the progression was monitored from metaphase (M) to telophase (Tel) and to cell division; (ii) with Colcemid and other agents and the rate of micronuclei formation in the absence of anaphase was studied. Both EDTA and EGTA accelerated the progression from M to Tel, but did not affect the overall rate of cell division. Chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, blocked the effect of the chelators and also retarded the progression. An inhibitor of mitochondrial respiration, Antimycin A (AA), also retarded the progression in the absence of the chelators and prevented the promoting effect of the chelators. A stimulator of ATPase for ATP breakdown. 2,4-dinitrophenol (DNP), accelerated the M to Tel progression. Chloramphenicol (CAP) and AA, as well as DNP, appeared to have little effect on the formation of micronuclei in the presence of Colcemid. EGTA, which affects cell surface Ca2+, stimulated the formation of micronuclei. This study indicates that Ca2+ ions and mitochondrial function are involved in the regulation of a certain segment of mitosis beyond metaphase, with Ca2+ sequestration in the mitochondria and chelation of Ca2+ by EGTA as dominant factors.

  16. Agricultural irrigation mediates climatic effects and density dependence in population dynamics of Chinese striped hamster in North China Plain.

    PubMed

    Yan, Chuan; Xu, Lei; Xu, Tongqin; Cao, Xiaoping; Wang, Fusheng; Wang, Shuqing; Hao, Shoushen; Yang, Hefang; Zhang, Zhibin

    2013-03-01

    Several studies show that climatic (extrinsic) factors can interact with density-dependent (intrinsic) factors to alter long-term population dynamics, yet there is a surprising lack of investigations of how anthropogenic disturbance modifies such dynamics. Such interactions could be especially important in agricultural systems subject to climate change. We investigated the effects of density dependence, climate, recurrent disturbance from flood irrigation and their interactions on the population dynamics of an important rodent pest, the Chinese striped hamster (Cricetulus barabensis), over 27 years in the croplands of the North China Plain. Strong density-dependent feedbacks occurred at both annual and seasonal scales. While warmer weather increased population sizes in nonbreeding seasons, this effect was counteracted by the negative effect of flood irrigation in breeding seasons. Precipitation showed significant positive effects in nonbreeding seasons, but negative effects in breeding seasons. There were important interactions between intrinsic dynamics, extrinsic dynamics and disturbance. Low temperature significantly increased the strength of density dependence in nonbreeding seasons, whereas intensification of flood irrigation area significantly increased the strength of density dependence but reduced the effect of summer precipitation in breeding seasons. Overall climate change is expected to increase population levels, but anthropogenic disturbance from flood irrigation will help prevent long-term population increases. The interactions between anthropogenic disturbance and both intrinsic and extrinsic (weather-driven) population dynamics caution that we need to consider anthropogenic disturbance as an integral component of population responses to climate change.

  17. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR

    PubMed Central

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC. PMID:26131064

  18. N-acetylcysteine protects Chinese Hamster ovary cells from oxidative injury and apoptosis induced by microcystin-LR.

    PubMed

    Xue, Lijian; Li, Jinhui; Li, Yang; Chu, Chu; Xie, Guantao; Qin, Jin; Yang, Mingfeng; Zhuang, Donggang; Cui, Liuxin; Zhang, Huizhen; Fu, Xiaoli

    2015-01-01

    This study aimed to investigate the MC-LR induced oxidative injury and apoptosis in Chinese hamster ovary (CHO) cells, and the protective effects of N-acetylcysteine (NAC) on these cells. Cell viability was determined by MTT assay after exposure to NAC at various concentrations (0, 1, 5, 10, 20, 30, 40, 50, 60 and 80 mmol/L) alone, or NAC (0, 1 and 5 mmol/L) plus MC-LR (0, 2.5, 5 and 10 μg/ml) for 24 h. The reactive oxygen species (ROS) in CHO cells were measured by DCFH-DA, mitochondrial membrane potential (MMP) by fluorescence probe JC-1 staining, and apoptosis index determined by Annexin V-PI staining. Results showed, following exposure to NAC alone for 24 h, cell viability remains higher than 80% at 1 and 5 mmol/L. After exposure to NAC at different concentrations plus MC-LR, cell viability increased, ROS decreased, MMP elevated, and apoptosis index reduced to a certain extent. In conclusion, MC-LR may induce the apoptosis of CHO cells by inducing ROS production which is protected by NAC.

  19. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture.

    PubMed

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-03-02

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.

  20. Improved transgene integration into the Chinese hamster ovary cell genome using the Cre-loxP system.

    PubMed

    Inao, Takanori; Kawabe, Yoshinori; Yamashiro, Takuro; Kameyama, Yujiro; Wang, Xue; Ito, Akira; Kamihira, Masamichi

    2015-07-01

    Genetic engineering of cellular genomes has provided useful tools for biomedical and pharmaceutical studies such as the generation of transgenic animals and producer cells of biopharmaceutical proteins. Gene integration using site-specific recombinases enables precise transgene insertion into predetermined genomic sites if the target site sequence is introduced into a specific chromosomal locus. We previously developed an accumulative site-specific gene integration system (AGIS) using Cre and mutated loxPs. The system enabled the repeated integration of multiple transgenes into a predetermined locus of a genome. In this study, we explored applicable mutated loxP pairs for AGIS to improve the integration efficiency. The integration efficiencies of 52 mutated loxP sequences, including novel sequences, were measured using an in vitro evaluation system. Among mutated loxP pairs that exhibited a high integration efficiency, the applicability of the selected pairs to AGIS was confirmed for transgene integration into the Chinese hamster ovary cell genome. The newly found mutated loxP pairs should be useful for Cre-mediated integration of transgenes and AGIS.

  1. Repair-deficient xeroderma pigmentosum cells made UV light resistant by fusion with X-ray-inactivated Chinese hamster cells

    SciTech Connect

    Karentz, D.; Cleaver, J.E.

    1986-10-01

    Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.

  2. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells

    SciTech Connect

    Ellis, L.; Morgan, D.O.; Jong, S.M.; Wang, L.H.; Roth, R.A.; Rutter, W.J.

    1987-08-01

    A hybrid receptor molecule composed of the extracellular ligand-binding domain of the human insulin receptor and the transmembrane and cytoplasmic (protein-tyrosine kinase) domains of the chicken sarcoma virus UR2 transforming protein p68/sup gag-ros/ has been constructed and expressed in Chinese hamster ovary (CHO) cells. The hybrid is processed normally into ..cap alpha.. and hybrid ..beta.. subunits, is expressed on the cell surface at high levels, and binds insulin with near-wild-type affinity. Furthermore, insulin stimulates the phosphorylation on tyrosine resides of the hybrid ..beta..-subunit in vivo and the phosphorylation of an exogeneous substrate (poly(Glu,Tyr)) in vitro. Thus the hybrid is capable of heterologous transmembrane signaling. However, the hybrid mediates neither the insulin-activated uptake of 2-deoxyglucose nor the incorporation of (/sup 3/H)thymidine into DNA, suggesting that the physiological response(s) mediated by ligand-activated protein-tyrosine kinases may utilize distinct intracellular mechanisms for postreceptor signaling

  3. Induction of chromosomal aberrations by the fuel additive methylcyclopentadienyl-manganese tricarbonyl (MMT) in Chinese hamster ovary cells

    SciTech Connect

    Blakey, D.H.; Bayley, J.M.

    1995-11-01

    Methylcyclopentadienyl-manganese tricarbonyl (MMT) is a fuel additive used throughout Canada as replacement for lead-based antiknock compounds in gasoline and as an anti-smoking compound in other fuels. Because of the widespread use of MMT in Canadian gasoline, it is important to determine whether MMT is a safe alternative to alkyllead as a fuel additive. Although environmental exposure to MMT is unlikely because it is almost completely consumed during combustion and any MMT exhaust emissions would be degraded rapidly, human contact can occur occupationally through accidental exposure, or incidentally while refuelling gasoline-powered engines. In order to determine the intrinsic mutagenicity of MMT, an in vitro chromosomal aberration assay was performed using Chinese hamster ovary cells. In the presence of metabolic activation, MMT was a potent inducer of structural chromosomal aberrations. There was significant (p{le}0.0114), reproducible increase in chromosomal aberrations at concentrations as low as 0.02 {mu}l/ml (0.12 mM). Without metabolic activation, MMT failed to induce a significant increase in chromosomal aberrations following either a 3 hr (p = 0.412) or continuous (p = 0.178) exposure. In order to determine whether the intrinsic mutagenicity identified in vitro is expressed in vivo, a mouse bone marrow micronucleus assay will be performed. In addition, the mutagenicity of MMT combustion byproducts will be evaluated.

  4. /sup 31/P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells

    SciTech Connect

    Lopez, A.; Rols, M.P.; Teissie, J.

    1988-02-23

    Chinese hamster ovary (CHO) cells were reversibly permeabilized by submitting them to short, high-intensity, square wave pulses (1.8 kV/cm, 100 ..mu..s). The cells remained in a permeable state without loss of viability for several hours at 4/sup 0/C. A new anisotropic peak with respect to control cells was observed on /sup 31/P NMR spectroscopic analysis of the phospholipid components. This peak is only present when the cells are permeable, and normal anisotropy is recovered after resealing. Taking into account the fusogenicity of electropermeabilized cells, comparative studies were performed on 5% poly(ethylene glycol) treated cells. The /sup 31/P NMR spectra of the phospholipids displayed the same anisotropic peak as in the case of the electropermeabilized cells. In the two cases, this anisotropic peak was located downfield from the main peak associated to the phospholipids when organized in bilayers. The localization of this anisotropic peak is very different from the one of a hexagonal phase. The authors proposed a reorganization of the polar head group region leading to a weakening of the hydration layer to account for these observations. This was also thought to explain the electric field induced fusogenicity of these cells.

  5. Studies on cytotoxic and genotoxic effects of cadmium nitrate and lead nitrate in Chinese hamster ovary cells

    SciTech Connect

    Ruey H. Lin; Ching H. Lee; Wen K. Chen

    1994-12-31

    Cadmium nitrate decreased the viability of Chinese hamster ovary (CHO) cells in a concentration-dependent manner; 50% inhibition (IC{sub 50}) was achieved at 0.015 mM. In contrast, lead nitrate appeared to be less toxic. Neither cadmium nitrate nor lead nitrate significantly increased frequencies of binucleated CHO cells with micronuclei (MN). However, both cadmium nitrate and lead nitrate could augment sister chromatid exchanges (SCEs). Cadmium nitrate induced SCEs with a potency approximately equal to that of mitomycin C and more than 10 times higher than lead nitrate. Cadmium nitrate also increased chromosome aberrations (CAs), which included breaks, acentrics, interchanges, and dicentrics of chromosomes. In addition, cadmium nitrate induced a decrease in the mitotic index (MI), but lead nitrate increased it. In summary, it appears that both of these two heavy metal salts have cytogenetic toxicities with different degrees of effects on the cytotoxicity, MN, CAs, and SCEs and CHO cells. However, SCE was the most sensitive endpoint for indicating mutagenetic effects of cadmium and lead in the present study. 31 refs., 3 figs., 3 tabs.

  6. Cell-cycle specific expression of a small proline-rich protein in Chinese hamster ovary cells

    SciTech Connect

    Tesfaigzi, J.

    1994-11-01

    Squamous metaplasia of the bronchial epithelium is generally believed to be involved in the neoplastic progression toward squamous cell carcinomas. Thus, it is important to understand the mechanisms controlling this type of differentiation. The induction of two families of cDNAs encoding a small proline-rich protein (sPRP), sprI and sprII, was first identified in human keratinocytes exhibiting squamous differentiation. cDNAs similar to sprI have also been identified in cultured tracheal epithelial cells undergoing squamous differentiation. The first step during the squamous differentiation process is the inhibition of cell growth; it has also been noted that a sPRP mRNA in Chinese hamster ovary (CHO) cells is induced 10-fold just before the cultures reach confluence. Thus, sPRP may stop cell division in cells undergoing squamous differentation. In support of this possibility are the recent investigations correlating expression of sPRP with cell morphology. Specific immunoreactivity to sPRP, using affinity-purified antibodies, showed a strong immunostaining in cells with a round configuration, while less staining was observed in other cells. The major part of the CHO population showed no immunoreactivity. One interpretation of this observation is that the expression of sPRP may be cell-cyle regulated. The purpose of this investigation was to determine the phase of the cell cycle where induced synthesis of sPRP mRNA occurs.

  7. Caffeine-induced Release of Intracellular Ca2+ from Chinese Hamster Ovary Cells Expressing Skeletal Muscle Ryanodine Receptor

    PubMed Central

    Bhat, Manjunatha B.; Zhao, Jiying; Zang, Weijin; Balke, C. William; Takeshima, Hiroshi; Wier, W. Gil; Ma, Jianjie

    1997-01-01

    The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins. PMID:9382901

  8. Molecular characterization of the AdeI mutant of Chinese hamster ovary cells: a cellular model of adenylosuccinate lyase deficiency.

    PubMed

    Vliet, Lydia K; Wilkinson, Terry G; Duval, Nathan; Vacano, Guido; Graham, Christine; Zikánová, Marie; Skopova, Vaclava; Baresova, Veronika; Hnízda, Aleš; Kmoch, Stanislav; Patterson, David

    2011-01-01

    Adenylosuccinate lyase (ADSL, E. C. 4.3.2.2) carries out two non-sequential steps in de novo AMP synthesis, the conversion of succinylaminoimidazole carboxamide ribotide (SAICAR) to aminoimidazolecarboxamide ribotide (AICAR) and the conversion of succinyl AMP (AMPS) to AMP. In humans, mutations in ADSL lead to an inborn error of metabolism originally characterized by developmental delay, often with autistic features. There is no effective treatment for ADSL deficiency. Hypotheses regarding the pathogenesis include toxicity of high levels of SAICAR, AMPS, or their metabolites, deficiency of the de novo purine biosynthetic pathway, or lack of a completely functional purine cycle in muscle and brain. One important approach to understand ADSL deficiency is to develop cell culture models that allow investigation of the properties of ADSL mutants and the consequences of ADSL deficiency at the cellular level. We previously reported the isolation and initial characterization of mutants of Chinese hamster ovary (CHO-K1) cells (AdeI) that lack detectable ADSL activity, accumulate SAICAR and AMPS, and require adenine for growth. Here we report the cDNA sequences of ADSL from CHO-K1 and AdeI cells and describe a mutation resulting in an alanine to valine amino acid substitution at position 291 (A291V) in AdeI ADSL. This substitution lies in the "signature sequence" of ADSL, inactivates the enzyme, and validates AdeI as a cellular model of ADSL deficiency.

  9. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.

  10. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in alpha-tubulin.

    PubMed Central

    Cabral, F; Abraham, I; Gottesman, M M

    1981-01-01

    Taxol is a plant alkaloid that has antimitotic activity and appears to stabilize microtubules [Schiff, P. B., Fant, J. & Horwitz, S. B. (1979) Nature (London) 277, 665-667]. Taxol-resistant cells were selected from a population of UV-mutagen-treated Chinese hamster ovary cells by a single-step procedure. These mutants have normal morphologies and growth rates but are 2- to 3-fold more resistant to the toxic effects of the drug than the wild-type parent. One out of 20 mutants screened by two-dimensional electrophoresis for chemical alterations in tubulin had an "extra" spot with a more acidic isoelectric point that alpha-tubulin. This extra spot was shown to be an electrophoretic variant alpha-tubulin by its copurification with tubulin in crude microtubule-containing preparations and by one-dimensional peptide mapping. The alpha-tubulin mutant was found to be temperature sensitive for growth, and this property was used as the basis for the selection of revertants. Seventeen temperature-resistant revertants of the alpha-tubulin mutant were selected for their ability to grow at 40 degrees C and three of these revertants were found to have simultaneously lost their taxol resistance and the electrophoretic variant alpha-tubulin. These results provide evidence that an alteration in alpha-tubulin can confer taxon resistance on a mammalian cell line and suggest that alpha-tubulin is essential for cell viability. Images PMID:6117076

  11. Comparative evaluation of the genotoxic properties of potassium bromate and potassium superoxide in V79 Chinese hamster cells.

    PubMed

    Speit, G; Haupter, S; Schütz, P; Kreis, P

    1999-02-19

    The genotoxic potential of two oxidizing compounds, potassium bromate and potassium superoxide, was comparatively tested in various genotoxicity tests with V79 Chinese hamster cells. Both substances clearly induced cytotoxicity, chromosome aberrations and increased DNA migration in the alkaline comet assay. Using a modified comet assay protocol with FPG protein, a DNA repair enzyme which specifically nicks DNA at sites of 8-oxoguanines and formamidopyrimidines, we detected oxidative DNA base damage only after potassium bromate treatment. HPLC analysis also revealed significantly increased levels of 8-oxodeoxyguanosine after potassium bromate treatment but not after potassium superoxide treatment. Furthermore, potassium bromate clearly induced gene mutations at the HPRT locus while potassium superoxide only had a small effect on HPRT mutant frequencies. Molecular analysis of potassium bromate-induced mutations indicated a high portion of deletion mutations. Three out of four point mutations were G to T transversions which typically arise after replication of 8-oxoguanine. Our results suggest that the two oxidizing compounds induce specific patterns of genotoxic effects that reflect the types of DNA alterations induced by different reactive oxygen species (ROS). Copyright 1999 Elsevier Science B.V.

  12. High-antibody-producing Chinese hamster ovary cells up-regulate intracellular protein transport and glutathione synthesis.

    PubMed

    Orellana, Camila A; Marcellin, Esteban; Schulz, Benjamin L; Nouwens, Amanda S; Gray, Peter P; Nielsen, Lars K

    2015-02-06

    Chinese hamster ovary (CHO) cells are the preferred production host for therapeutic monoclonal antibodies (mAb) due to their ability to perform post-translational modifications and their successful approval history. The completion of the genome sequence for CHO cells has reignited interest in using quantitative proteomics to identify markers of good production lines. Here we applied two different proteomic techniques, iTRAQ and SWATH, for the identification of expression differences between a high- and low-antibody-producing CHO cell lines derived from the same transfection. More than 2000 proteins were quantified with 70 of them classified as differentially expressed in both techniques. Two biological processes were identified as differentially regulated by both methods: up-regulation of glutathione biosynthesis and down-regulation of DNA replication. Metabolomic analysis confirmed that the high producing cell line displayed higher intracellular levels of glutathione. SWATH further identified up-regulation of actin filament processes and intracellular transport and down regulation of several growth-related processes. These processes may be important for conferring high mAb production and as such are promising candidates for targeted engineering of high-expression cell lines.

  13. A Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture

    PubMed Central

    Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko

    2017-01-01

    Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput “omics” methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture. PMID:28252038

  14. Effect of intercellular contact on DNA conformation, radiation-induced DNA damage, and mutation in Chinese hamster V79 cells

    SciTech Connect

    Olive, P.L.; Durand, R.E.

    1985-01-01

    Chinese hamster V79 cells, when grown as small spheroids in suspension culture, are more resistant to killing by ionizing radiation than when grown as monolayers. The authors have attempted to determine whether this enhanced survival following irradiation is reflected in DNA damage and repair at the structural level (by measuring alkali-induced DNA unwinding rates from strand breaks) and at the functional level (by measuring resistance to forward mutation at the HGPRT locus). For a given dose of radiation, the unwinding of DNA in high salt/weak alkali was less complete for spheroid DNA than for monolayer DNA, and the rate of repair of radiation damage was faster in spheroid DNA. These differential responses were lost 8 hr after separation of spheroids into single cells, coinciding with loss of radioresistance measured by clonogenicity. In addition, spheroid cells showed fewer numbers of induced mutants per Gray, although, for a given level of survival, the mutation frequency for monolayers and spheroids was identical. These results suggest that conformational changes in DNA resulting from cell growth as spheroids might enhance repair of radiation-induced lesions.

  15. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development.

    PubMed

    Liu, Yaya; Zhang, Weiyan; Deng, Xiancun; Poon, Hong Fai; Liu, Xuping; Tan, Wen-Song; Zhou, Yan; Fan, Li

    2015-12-01

    Basal medium design is considered one of the most important steps in process development. To optimize chemically defined (CD) media efficiently and effectively for the biopharmaceutical industry, a two-step rational strategy was applied to optimize four antibody producing Chinese hamster ovary (CHO) cell lines. In the first step, 48 of 52 components of our in-house medium were divided into three groups according to their characteristics. In the next step, these groups were optimized by spent medium analysis, response surface methodology and mixture design. Because these steps in our strategy involved dividing medium components into groups and subsequently adjusting the concentration of the components, we termed this medium development strategy "divide and conquer". By applying the strategy, we were able to improve the titers of CHO-S, CHO-DG44 and two CHO-K1 cell lines 1.92, 1.86, 2.92 and 1.62-fold, respectively, in 8 weeks with fewer than 60 tests. This divide-and-conquer strategy was efficient, effective, scalable and universal in our current study and offered a new approach to CD media development. Copyright © 2015. Published by Elsevier B.V.

  16. TOXICOLOGY STUDIES OF LEWISITE AND SULFUR MUSTARD AGENTS:GENETIC TOXICITY OF LEWISITE (L) IN CHINESE HAMSTER OVARY CELLS

    SciTech Connect

    Jostes,R.F. Jr.; Sasser, LB; Rausch, R.J.

    1989-05-31

    The cytotoxic clastogenic and mutagenic effects of the arsenic containing vesicant, Lewisite (L) [dichloro(2-chlorovinyl) arsine], have been investigated using Chinese hamster ovary cells. One hour exposures to Lewisite were cytotoxic in uM amounts. The cell survival response yields a D37 of 0.6 uM and an extrapolation number of 2.5. The mutagenic response at the hypoxantnine-guanine phosporibosyl transferase (HGPRT) locus was sporadic and not significantly greater than control values when cells were exposed over a range of 0.125 to2.0 uM. Sister chromatid exchange (SCE) induction, a measure of chromosomal rearrangement, was weakly positive over a range of 0.25 to 1.0 uM but the values were not significantly greater than the control response. Chromosomal aberrations were induced at 0.75 and 1.0 UMin one experiment and 0.5 and 0.75 uM in another experiment. The Induced values were significantly greater than the control values. Lewisite appears to be cytotoxic and clastogenic in our investigations but SCE and mutation at the HGPRT locus are not significantly greater than control values. Lewisita toxicity was in some ways similar to radiomimetic chemicals such as bleomycin.

  17. Detection of DNA single-strand breaks induced by procarcinogens in Chinese hamster ovary cells cocultured with rat hepatocytes

    SciTech Connect

    Yang, K.H.; Shin, C.G.; Choe, S.Y.; Kim, D.H.

    1984-01-01

    DNA single-strand breaks induced by procarcinogens were detected in Chinese hamster overy (CHO) cell cocultured with adult rat hepatocytes. Freshly isolated adult rat hepatocytes were added to the CHO cell culture prelabeled with (/sup 3/H) thymidine. After allowing the hepatocytes to attach on or near the CHO cells, aflatoxin B/sub 1/ or benzo(a)pyrene was added to the culture and incubated for the desired time. DNA single-strand breaks in CHO cells were measured by the alkaline elution technique. Aflatoxin B/sub 1/ induced some DNA single-strand breaks in CHO cells cultured alone, but in coculture system with hepatocytes the number of DNA single-strand breaks increased greatly. The magnitude of the increase was related to the dose and the time of exposure to aflatoxin B/sub 1/. Addition of proteinase-K to the cell lysates increased the elution of DNA compared to that of samples without proteinase-K. Benzo(a)pyrene did not induce any DNA single-strand breaks in CHO cells in the absence of liver cells, but a significant number of single-strand breaks were detected in the coculture system.

  18. Identification of a functional antioxidant responsive element in the promoter of the Chinese hamster carbonyl reductase 3 (Chcr3) gene.

    PubMed

    Miura, Takeshi; Taketomi, Ayako; Nakabayashi, Toshikatsu; Nishinaka, Toru; Terada, Tomoyuki

    2015-07-01

    CHCR3, a member of the short-chain dehydrogenase/reductase superfamily, is a carbonyl reductase 3 enzyme in Chinese hamsters. Carbonyl reductase 3 in humans has been believed to involve the metabolism and/or pharmacokinetics of anthracycline drugs, and the mechanism underlying the gene regulation has been investigated. In this study, the nucleotide sequence of the Chcr3 promoter was originally determined, and its promoter activity was characterised. The proximal promoter region is TATA-less and GC-rich, similar to the promoter region of human carbonyl reductase 3. Cobalt stimulated the transcriptional activity of the Chcr3 gene. The results of a luciferase gene reporter assay demonstrated that cobalt-induced stimulation required an antioxidant responsive element. Forced expression of Nrf2, the transcription factor that binds to antioxidant responsive elements, enhanced the transcriptional activity of the Chcr3 gene. These results suggest that cobalt induces the expression of the Chcr3 gene via the Nrf2-antioxidant responsive element pathway.

  19. Modulation of [(35)S]GTPgammaS binding to chinese hamster ovary cell membranes by D(2(short)) dopamine receptors.

    PubMed

    Terasmaa, A; Finnman, U B; Owman, C; Ferré, S; Fuxe, K; Rinken, A

    2000-02-18

    Rat dopamine D(2short) expressed in Chinese hamster ovary (CHO) cells were characterized by means of activation of [(35)S]-guanosine 5'-O-(gamma-thiotriphosphate) ([(35)S]GTPgammaS) binding and inhibition of [(3)H]raclopride binding. Among 18 dopaminergic ligands studied dopamine, NPA, apomorphine and quinpirole were full agonists in activation of [(35)S]GTPgammaS binding, while seven ligands were partial agonists with efficacies from 16 to 69% of the effect of dopamine and seven ligands were antagonists having no effect on the basal level of [(35)S]GTPgammaS binding, but inhibited dopamine-dependent activation in a dose-response manner. Despite the different efficacies, the potencies of all 18 ligands to modulate [(35)S]GTPgammaS binding revealed a good correlation with their potencies to inhibit [(3)H]raclopride binding in the CHO cell membranes. This indicates that the binding of the ligand to the receptor determines its potency, but has no direct correlation with its intrinsic activity.

  20. Structural and functional analysis of four non-coding Y RNAs from Chinese hamster cells: identification, molecular dynamics simulations and DNA replication initiation assays.

    PubMed

    de Lima Neto, Quirino Alves; Duarte Junior, Francisco Ferreira; Bueno, Paulo Sérgio Alves; Seixas, Flavio Augusto Vicente; Kowalski, Madzia Pauline; Kheir, Eyemen; Krude, Torsten; Fernandez, Maria Aparecida

    2016-01-05

    The genes coding for Y RNAs are evolutionarily conserved in vertebrates. These non-coding RNAs are essential for the initiation of chromosomal DNA replication in vertebrate cells. However thus far, no information is available about Y RNAs in Chinese hamster cells, which have already been used to detect replication origins and alternative DNA structures around these sites. Here, we report the gene sequences and predicted structural characteristics of the Chinese hamster Y RNAs, and analyze their ability to support the initiation of chromosomal DNA replication in vitro. We identified DNA sequences in the Chinese hamster genome of four Y RNAs (chY1, chY3, chY4 and chY5) with upstream promoter sequences, which are homologous to the four main types of vertebrate Y RNAs. The chY1, chY3 and chY5 genes were highly conserved with their vertebrate counterparts, whilst the chY4 gene showed a relatively high degree of diversification from the other vertebrate Y4 genes. Molecular dynamics simulations suggest that chY4 RNA is structurally stable despite its evolutionarily divergent predicted stem structure. Of the four Y RNA genes present in the hamster genome, we found that only the chY1 and chY3 RNA were strongly expressed in the Chinese hamster GMA32 cell line, while expression of the chY4 and chY5 RNA genes was five orders of magnitude lower, suggesting that they may in fact not be expressed. We synthesized all four chY RNAs and showed that any of these four could support the initiation of DNA replication in an established human cell-free system. These data therefore establish that non-coding chY RNAs are stable structures and can substitute for human Y RNAs in a reconstituted cell-free DNA replication initiation system. The pattern of Y RNA expression and functionality is consistent with Y RNAs of other rodents, including mouse and rat.

  1. Novel Role of ER Stress and Autophagy in Microcystin-LR Induced Apoptosis in Chinese Hamster Ovary Cells

    PubMed Central

    Zhang, Shenshen; Liu, Chuanrui; Li, Yang; Imam, Mustapha U.; Huang, Hui; Liu, Haohao; Xin, Yongjuan; Zhang, Huizhen

    2016-01-01

    Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the in vitro proliferation of CHO cells significantly, with an IC50 of 10 μM. Moreover, MC-LR-treated CHO cells revealed strong induction of cell cycle arrest and apoptosis. Additionally, exposure of CHO cells to MC-LR resulted in excess reactive oxygen species production and intracellular calcium release, with resultant endoplasmic reticulum stress (ERs). There was also extensive accumulation of autophagic vacuoles with the highest concentration of MC-LR used (10 μM). Furthermore, the expression of ERs (GRP78, ATF-6, PERK, IRE1, CHOP) and autophagy (Beclin1 and LC3II) proteins was increased, with concomitantly reduced expression of LC3I suggesting that ERs and autophagy were induced in CHO cells by MC-LR treatment. Conversely, pretreatment of CHO cells with 4-Phenyl butyric acid, the ERs inhibitor reduced the MC-LR-induced apoptotic cell death and cellular autophagy as evidenced by the reduced expression of Beclin1 and LC3II. Similarly, MC-LR treatment in combination with an autophagy inhibitor (3-methyladenine) increased apoptotic cell death compared with MC-LR alone, and induced ERs via upregulating ERs proteins. The overall results indicated that activation of ERs and autophagy are both associated with MC-LR-induced apoptosis in CHO cells. ERs may be a trigger of autophagy in this process. PMID:27877136

  2. Transformation abrogates an early G1-phase arrest point required for specification of the Chinese hamster DHFR replication origin.

    PubMed

    Wu, J R; Keezer, S M; Gilbert, D M

    1998-03-16

    The origin decision point (ODP) was originally identified as a distinct point during G1-phase when Chinese hamster ovary (CHO) cell nuclei experience a transition that is required for specific recognition of the dihydrofolate reductase (DHFR) origin locus by Xenopus egg extracts. Passage of cells through the ODP requires a mitogen-independent protein kinase that is activated prior to restriction point control. Here we show that inhibition of an early G1-phase protein kinase pathway by the addition of 2-aminopurine (2-AP) prior to the ODP arrests CHO cells in G1-phase. Transformation with simian virus 40 (SV40) abrogated this arrest point, resulting in the entry of cultured cells into S-phase in the presence of 2-AP and a disruption of the normal pattern of initiation sites at the DHFR locus. Cells treated with 2-AP after the ODP initiated replication specifically within the DHFR origin locus. Transient exposure of transformed cells to 2-AP during the ODP transition also disrupted origin choice, whereas non-transformed cells arrested in G1-phase and then passed through a delayed ODP after removal of 2-AP from the medium. We conclude that mammalian cells have many potential sites at which they can initiate replication. Normally, events occurring during the early G1-phase ODP transition determine which of these sites will be the preferred initiation site. However, if chromatin is exposed to S-phase-promoting factors prior to this transition, mammalian cells, like Xenopus and Drosophila embryos, can initiate replication without origin specification.

  3. Genetics of the mammalian oxidative phosphorylation system: Characterization of a new oligomycin-resistant Chinese hamster ovary cell line

    SciTech Connect

    Breen, G.A.M.

    1982-07-01

    The properties of a new type of oligomycin-resistant Chinese hamster ovary (CHO) cell line (Oli/sup r/ 2.2) are described in this paper. Oli/sup r/ 2.2 cells were approximately 50,000-fold more resistant to oligomycin than were wild-type CHO cells when tested in glucose-containing medium, but only 10- to 100-fold more resistant when tested in galactose-containing medium. Oli/sup r/ 2.2 cells grew with a doubling time similar to that of wild-type cells both in the presence or absence of oligomycin. Oligomycin resistance in Oli/sup r/ 2.2 cells was stable in the absence of drug. In vitro assays indicated that there was approximately a 25-fold increase in the resistance of the mitochondrial ATPase to inhibition by oligomycin in Oli/sup r/ 2.2 cells, with little change in the total ATPase activity. The electron transport chain was shown to be functional in Oli/sup r/ 2.2 cells. Oli/sup r/ 2.2 cells were cross-resistant to other inhibitors of the mitochondrial ATPase (such as rutamycin, ossamycin, peliomycin, venturicidin, leucinostatin, and efrapeptin) and to other inhibitors of mitochondrial functions (such as chloramphenicol, rotenone, and antimycin). Oligomycin resistance was expressed codominantly in hybrids between Oli/sup r/ 2.2 cells and wild-type cells. Cross-resistance to ossamycin, peliomycin, chloramphenicol, antimycin, venturicidin, leucinostatin, and efrapeptin was also expressed codominantly in hybrids. Fusions of enucleated Oli/sup r/ 2.2 cells with wild-type cells and characterization of the resulting cybrid clones indicated that resistance to oligomycin and ossamycin results from a mutation in both a nuclear gene and a cytoplasmic gene. Cross-resistance to efrapeptin, leucinostatin, venturicidin, and antimycin results from a mutation in only a nuclear gene.

  4. Growth and morphology of colonies of Chinese hamster ovary cells growing on agar is affected by insulin

    PubMed Central

    Aidells, Bruce D.; Konrad, Michael W.; Glaser, Donald A.

    1979-01-01

    As a model for the effect of hormones and growth factors on three-dimensional growth of mammalian cells, we have analyzed the effect of insulin on the three-dimensional growth and morphology of Chinese hamster ovary (CHO) colonies grown on the surface of agar. Sequential photographs in dark-field illumination of growing colonies have been analyzed with computer-assisted techniques. In this analysis the entire shape of each colony in a sizeable population (up to 105 colonies per experiment) can be measured and distributions of parameters derived from these measurements can be studied. In fetal calf serum (FCS), insulin has a dose-related stimulatory effect on cell growth that is most pronounced when growth has slowed down. In 10% FCS, insulin has a similar but diminished effect. When CHO cells are grown conventionally on plastic substrata or in suspension, insulin has little effect on cell growth at 4% serum concentration. Computer analysis of changes in the distribution of colony morphology proved to be a sensitive, dose-dependent, and reproducible assay of a hormonal effect. As little as 5 ng of insulin per ml added to 10% FCS causes a shift in the distribution of colony morphologies. In 4% FCS, 50 ng of insulin per ml is required to produce a detectable change in the colony morphology distribution. Computer analysis of cells grown three-dimensionally on agar provides a powerful approach to studying the effects of hormones and provides observations not available when cells are grown on plastic substrata. Images PMID:287027

  5. Organization and genesis of dihydrofolate reductase amplicons in the genome of a methotrexate-resistant Chinese hamster ovary cell line.

    PubMed

    Ma, C; Looney, J E; Leu, T H; Hamlin, J L

    1988-06-01

    We have recently isolated overlapping recombinant cosmids that represent the equivalent of two complete dihydrofolate reductase (dhfr) amplicon types from the methotrexate-resistant Chinese hamster ovary (CHO) cell line CHOC 400. In the work described in this report, we used pulse-field gradient gel electrophoresis to analyze large SfiI restriction fragments arising from the amplified dhfr domains. The junction between the 260-kilobase type I amplicons (which are arranged in head-to-tail configurations in the genome) has been localized, allowing the construction of a linear map of the parental dhfr locus. We also show that the 220-kilobase type II amplicons are arranged as inverted repeat structures in the CHOC 400 genome and arose from the type I sequence relatively early in the amplification process. Our data indicate that there are a number of minor amplicon types in the CHOC 400 cell line that were not detected in previous studies; however, the type II amplicons represent ca. 75% of all the amplicons in the CHOC 400 genome. Both the type I and type II amplicons are shown to be composed entirely of sequences that were present in the parental dhfr locus. Studies of less resistant cell lines show that initial amplicons can be larger than those observed in CHOC 400. Once established, a given amplicon type appears to be relatively stable throughout subsequent amplification steps. We also present a modification of an in-gel renaturation method that gives a relatively complete picture of the size and variability of amplicons in the genome.

  6. Molecular structural analysis of HPRT mutations induced by thermal and epithermal neutrons in Chinese hamster ovary cells.

    PubMed

    Kinashi, Y; Sakurai, Y; Masunaga, S; Suzuki, M; Takagaki, M; Akaboshi, M; Ono, K

    2000-09-01

    Chinese hamster ovary (CHO) cells were exposed to thermal and epithermal neutrons, and the occurrence of mutations at the HPRT locus was investigated. The Kyoto University Research Reactor (KUR), which has been improved for use in neutron capture therapy, was the neutron source. Neutron energy spectra ranging from nearly pure thermal to epithermal can be chosen using the spectrum shifters and thermal neutron filters. To determine mutant frequency and cell survival, cells were irradiated with thermal and epithermal neutrons under three conditions: thermal neutron mode, mixed mode with thermal and epithermal neutrons, and epithermal neutron mode. The mutagenicity was different among the three irradiation modes, with the epithermal neutrons showing a mutation frequency about 5-fold that of the thermal neutrons and about 1.5-fold that of the mixed mode. In the thermal neutron and mixed mode, boron did not significantly increase the frequency of the mutants at the same dose. Therefore, the effect of boron as used in boron neutron capture therapy (BNCT) is quantitatively minimal in terms of mutation induction. Over 300 independent neutron-induced mutant clones were isolated from 12 experiments. The molecular structure of HPRT mutations was determined by analysis of all nine exons by multiplex polymerase chain reaction. In the thermal neutron and mixed modes, total and partial deletions were dominant and the fraction of total deletions was increased in the presence of boron. In the epithermal neutron mode, more than half of the mutations observed were total deletions. Our results suggest that there are clear differences between thermal and epithermal neutron beams in their mutagenicity and in the structural pattern of the mutants that they induce. Mapping of deletion breakpoints of 173 partial-deletion mutants showed that regions of introns 3-4, 7/8-9 and 9-0 are sensitive to the induction of mutants by neutron irradiation.

  7. Multi-omic profiling -of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production.

    PubMed

    Ley, Daniel; Seresht, Ali Kazemi; Engmark, Mikael; Magdenoska, Olivera; Nielsen, Kristian Fog; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2015-11-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied to study the production of erythropoietin (EPO) in a panel of CHO-K1 cells under growth-limited and unlimited conditions in batch and chemostat cultures. Physiological characterization of the EPO-producing cells included global transcriptome analysis, targeted metabolome analysis, including intracellular pools of glycolytic intermediates, NAD(P)H/NAD(P)(+) , adenine nucleotide phosphates (ANP), and extracellular concentrations of sugars, organic acids, and amino acids. Potential impact of EPO expression on the protein secretory pathway was assessed at multiple stages using quantitative PCR (qPCR), reverse transcription PCR (qRT-PCR), Western blots (WB), and global gene expression analysis to assess EPO gene copy numbers, EPO gene expression, intracellular EPO retention, and differentially expressed genes functionally related to secretory protein processing, respectively. We found no evidence supporting the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)(+) and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO productivity.

  8. Transformation abrogates an early G1-phase arrest point required for specification of the Chinese hamster DHFR replication origin.

    PubMed Central

    Wu, J R; Keezer, S M; Gilbert, D M

    1998-01-01

    The origin decision point (ODP) was originally identified as a distinct point during G1-phase when Chinese hamster ovary (CHO) cell nuclei experience a transition that is required for specific recognition of the dihydrofolate reductase (DHFR) origin locus by Xenopus egg extracts. Passage of cells through the ODP requires a mitogen-independent protein kinase that is activated prior to restriction point control. Here we show that inhibition of an early G1-phase protein kinase pathway by the addition of 2-aminopurine (2-AP) prior to the ODP arrests CHO cells in G1-phase. Transformation with simian virus 40 (SV40) abrogated this arrest point, resulting in the entry of cultured cells into S-phase in the presence of 2-AP and a disruption of the normal pattern of initiation sites at the DHFR locus. Cells treated with 2-AP after the ODP initiated replication specifically within the DHFR origin locus. Transient exposure of transformed cells to 2-AP during the ODP transition also disrupted origin choice, whereas non-transformed cells arrested in G1-phase and then passed through a delayed ODP after removal of 2-AP from the medium. We conclude that mammalian cells have many potential sites at which they can initiate replication. Normally, events occurring during the early G1-phase ODP transition determine which of these sites will be the preferred initiation site. However, if chromatin is exposed to S-phase-promoting factors prior to this transition, mammalian cells, like Xenopus and Drosophila embryos, can initiate replication without origin specification. PMID:9501102

  9. DNA lesion and Hprt mutant frequency in rat lymphocytes and V79 Chinese hamster lung cells exposed to cadmium.

    PubMed

    Jianhua, Zhou; Lian, Xue; Shuanlai, Zheng; Juan, Du; Shuanxi, Yang

    2006-03-01

    Cadmium is a potential carcinogenic environmental and occupational pollutant. A wide variety of mutagens have been shown to cause DNA damage, but it is not yet clear whether the DNA damage is relative to inducement of mutations. DNA damage and the formation of mutations at the hypoxanthine guanine phosphoribosyl trans ferase (HPRT) induced by cadmium chloride (CdCl(2)) were investigated with rat lymphocytes and V79 Chinese hamster lung cells. The hprt mutant frequency (MF) assay was used as the method to measure gene mutation in the rat lymphocytes and V79 cells exposed to CdCl(2), and comet assay analysis was performed to detect DNA lesion and repair in CdCl(2)-induced V79 cells. The results showed that CdCl(2) treatment caused a strong genotoxic effect and a marginal effect on the frequency of gene mutations. The hprt mutant frequencies in the rat lymphocytes and V79 cells exposed to CdCl(2) were statistically higher than those of the negative control. There was statistical significance in TL, TD and percentage of comet cell with tails. CdCl(2) treatment can induce DNA single-strand breaks. There was a dose-dependent increase between CdCl(2) and DNA lesion. After cells were treated with CdCl(2) and hydrogen peroxide (H(2)O(2)), the TL and TD declined with repair time increasing, which indicated that DNA damages were repaired gradually. However, DNA repair with treatment of CdCl(2) was slower than that of H(2)O(2) in V79 cells, which suggests that CdCl(2) affected DNA repair of damaged cells. The study also showed that the hprt MF and comet assay can be used for genotoxicity testing of heavy metals. DNA damage detected with the comet assay may be relative to mutagenesis.

  10. Regulation of cell growth and apoptosis through lactate dehydrogenase C over-expression in Chinese hamster ovary cells.

    PubMed

    Fu, Tuo; Zhang, Cunchao; Jing, Yu; Jiang, Cheng; Li, Zhenhua; Wang, Shengyu; Ma, Kai; Zhang, Dapeng; Hou, Sheng; Dai, Jianxin; Kou, Geng; Wang, Hao

    2016-06-01

    Lactate has long been credited as a by-product, which jeopardizes cell growth and productivity when accumulated over a certain concentration during the manufacturing process of therapeutic recombinant proteins by Chinese hamster ovary (CHO) cells. A number of efforts to decrease the lactate concentration have been developed; however, the accumulation of lactate is still a critical issue by the late stage of fed-batch culture. Therefore, a lactate-tolerant cell line was developed through over-expression of lactate dehydrogenase C (LDH-C). In fed-batch culture, sodium lactate or sodium pyruvate was supplemented into the culture medium to simulate the environment of lactate accumulation, and LDH-C over-expression increased the highest viable cell density by over 30 and 50 %, respectively, on day 5, meanwhile the viability was also improved significantly since day 5 compared with that of the control. The percentages of cells suffering early and late apoptosis decreased by 3.2 to 12.5 and 2.0 to 4.3 %, respectively, from day 6 onwards in the fed-batch culture when 40 mM sodium pyruvate was added compared to the control. The results were confirmed by mitochondrial membrane potential assay. In addition, the expression of cleaved caspases 3 and 7 decreased in cells over-expressing LDH-C, suggesting the mitochondrial pathway was involved in the LDH-C regulated anti-apoptosis. In conclusion, a novel cell line with higher lactate tolerance, lowered lactate production, and alleviated apoptosis response was developed by over-expression of LDH-C, which may potentially represent an efficient and labor-saving approach in generating recombinant proteins.

  11. Functional studies of bradykinin receptors in Chinese hamster ovary cells stably expressing the human B2 bradykinin receptor.

    PubMed

    Zhang, S P; Wang, H Y; Lovenberg, T W; Codd, E E

    2001-05-01

    Bradykinin B1 and B2 receptors, members of the G-protein coupled receptor superfamily, are involved in inflammation and pain. Chinese hamster ovary (CHO) cells stably expressing the human B2 bradykinin receptor (CHO-B2) were used to characterize the signal transduction pathways associated with this receptor and its regulation. The selective B2 antagonist [3H]NPC17731 but not the selective B1 antagonist [3,4-prolyl-3,4-(3)H(N)]-[des-Arg10,Leu9]kallidin ([3H]DALKD) bound to CHO-B2 cell membranes with a Kd of 0.77 nM and a Bmax of 1087 fmol/mg protein. [3H]NPC17731 binding was inhibited by bradykinin ligands in the order: NPC17731 > bradykinin > kallidin > DALKD > [des-Arg10] kallidin (DAKD), consistent with the pharmacological profile of B2 bradykinin receptors. The B2 agonist bradykinin and the B1/B2 agonist kallidin, but not the B1 agonist DAKD, increased [35S]GTP gamma S binding to the CHO-B2 cell membranes. The B2 bradykinin receptors were co-immunoprecipitated with G alpha q/11. In response to bradykinin stimulation, coupling of the B2 receptors to G alpha q/11 was increased by 10-fold. Bradykinin and kallidin, but not DAKD, induced intracellular calcium release in CHO-B2 cells, which was blocked by NPC17731 but not by DALKD. These results demonstrate that B2 bradykinin receptors directly coupled to G alpha q/11 to regulate intracellular calcium release. CHO-B2 cell is a useful system that can be applied to study the effect of potential agents that may influence the B2 receptor function.

  12. Differences in temporal aspects of mutagenesis and cytotoxicity in Chinese hamster cells treated with methylating agents and thymidine.

    PubMed

    Peterson, A R; Peterson, H

    1982-03-01

    Equitoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MeMes) produced different frequencies of 8-azaguanine-resistant mutants and different amounts of N7-methylguanine, O6-methylguanine (m6G), and N3-methyladenine in the DNA of V79 Chinese hamster cells. Thus, neither the cytotoxicities nor the mutagenicities of these methylating agents could be attributed solely to nitrogen or to oxygen methylations in the DNA. However, MNNG produced 12-fold more m6G and 5-fold more mutants than did MeMes, indicating that a substantial part of the MNNG-induced mutations resulted from m6G--thymine mispairing during DNA replication. The expression as mutants of mutagenic oxygen methylations in the DNA of cells treated with MNNG was enhanced by thymidine (dThd) and deoxycytidine (dCyd), but these nucleosides did not significantly enhance MeMes-induced mutagenesis. The cytotoxicities of MNNG and MeMes were also increased by 10 microM dThd in proportion to the amount of m6G in the DNA. These increases in cytotoxicity were abolished by dCyd, which did not greatly reduce the dThd-induced enhancements of mutagenesis. Moreover, when dThd was present only during the 2-hr treatment with MNNG, maximal cytotoxicity occurred, but MNNG-induced mutagenesis was not increased. Maximal mutagenesis occurred when the dThd was present throughout the first doubling time of the MNNG-treated cells. Thus, the expression of the cytotoxicity and the mutagenicity associated with m6G in the DNA of V79 cells occurred by quite different mechanisms.

  13. Differences in temporal aspects of mutagenesis and cytotoxicity in Chinese hamster cells treated with methylating agents and thymidine.

    PubMed Central

    Peterson, A R; Peterson, H

    1982-01-01

    Equitoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and methyl methanesulfonate (MeMes) produced different frequencies of 8-azaguanine-resistant mutants and different amounts of N7-methylguanine, O6-methylguanine (m6G), and N3-methyladenine in the DNA of V79 Chinese hamster cells. Thus, neither the cytotoxicities nor the mutagenicities of these methylating agents could be attributed solely to nitrogen or to oxygen methylations in the DNA. However, MNNG produced 12-fold more m6G and 5-fold more mutants than did MeMes, indicating that a substantial part of the MNNG-induced mutations resulted from m6G--thymine mispairing during DNA replication. The expression as mutants of mutagenic oxygen methylations in the DNA of cells treated with MNNG was enhanced by thymidine (dThd) and deoxycytidine (dCyd), but these nucleosides did not significantly enhance MeMes-induced mutagenesis. The cytotoxicities of MNNG and MeMes were also increased by 10 microM dThd in proportion to the amount of m6G in the DNA. These increases in cytotoxicity were abolished by dCyd, which did not greatly reduce the dThd-induced enhancements of mutagenesis. Moreover, when dThd was present only during the 2-hr treatment with MNNG, maximal cytotoxicity occurred, but MNNG-induced mutagenesis was not increased. Maximal mutagenesis occurred when the dThd was present throughout the first doubling time of the MNNG-treated cells. Thus, the expression of the cytotoxicity and the mutagenicity associated with m6G in the DNA of V79 cells occurred by quite different mechanisms. PMID:6951203

  14. Identification of galectin I and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells.

    PubMed

    Chang, Kwang Ning; Lee, Te Chang; Tam, Ming F; Chen, Yi Chin; Lee, Li Wen; Lee, Shin Ying; Lin, Pei Jung; Huang, Rong Nan

    2003-04-15

    In this study, we report the identification of two arsenic-binding proteins from Chinese hamster ovary (CHO) cells. The crude extract derived from CHO and SA7 (arsenic-resistant CHO cells) was applied to a phenylarsine oxide-agarose affinity column, and after extensive washing, the absorbed proteins were eluted with buffers containing 20 mM 2-mercaptoethanol (2-ME) or dithiothreitol (DTT). Three differentially expressed proteins, galectin 1 (Gal-1; in the 2-ME-eluted fraction from CHO cells), glutathione S-transferase P-form (GST-P) and thioredoxin peroxidase II (TPX-II), respectively in the 2-ME- and DTT-eluted fractions from SA7 cells, were identified by partial amino acid sequence analysis after separation by SDS/PAGE. The GST-P protein has been previously shown to facilitate the excretion of sodium arsenite [As(III)] from SA7 cells. TPX II was detected predominately in SA7 cells [routinely cultured in As(III)-containing medium], but not in CHO or SA7N (a revertant of SA7 cells cultured in regular medium) cells. In contrast, Gal-1 was specifically identified in CHO and SA7N cells, but not in SA7 cells. The preferential expression of Gal-1 in CHO cells and TPX-II in SA7 cells was further illustrated by quantitative PCR analysis. The binding of Gal-1 and TPX-II with As(III) was further verified by both co-immunoprecipitation and co-elution of Gal-1 and TPX-II with As(III). It is suggested that Gal-1 and TPX-II are two proteins that serve as high-affinity binding sites for As(III) and thus both may be involved in the biological action of As(III).

  15. Radioprotective action of WR-1065 on radiation-induced DNA strand breaks in cultured Chinese hamster ovary cells

    SciTech Connect

    Murray, D.; VanAnkeren, S.C.; Milas, L.; Meyn, R.E.

    1988-01-01

    We have examined the radioprotective effect of WR-1065 on cultured Chinese hamster ovary cells. The effects of the drug on the induction and rejoining of gamma-ray-induced DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) were measured using alkaline (pH 12.1) and neutral (pH 7.0) elution, respectively. Molecular protection factors (PFs) calculated from these data allowed us to determine whether the degree of modification of strand breakage accurately predicted the PFs measured using the biological end point of cell survival. The drug did protect against the induction of both SSBs and DSBs, although to an extent that did not appear to fully account for the degree of radioprotection in terms of cell killing measured under identical conditions. It is therefore unlikely that radioprotection by WR-1065 occurs simply as a consequence of a general lowering of all types of gamma-ray-induced DNA lesions, and it is possible that the drug could differentially protect against the induction of subsets of these DNA lesions. The rate of SSB rejoining was retarded following preirradiation treatment of cells with WR-1065, but there was no effect on DSB rejoining. Postirradiation treatment with WR-1065 also appeared to retard SSB rejoining but without an accompanying effect on either DSB rejoining or cell survival; however, this effect was largely reversed by the addition of catalase and was, therefore, probably a result of H/sub 2/O/sub 2/ generated by autoxidation of the drug. Based on these observations, it would appear that the molecular actions of aminothiol radioprotective compounds that lead to reduced cell killing are much more complex than previously thought.

  16. Requirement for Cell Dispersion Prior to Selection of Induced Azaguanine-Resistant Colonies of Chinese Hamster Cells

    PubMed Central

    Myhr, B. C.; DiPaolo, J. A.

    1975-01-01

    With V79 Chinese hamster cell cultures treated with a mutagen, the maximum frequency of colonies resistant to 8-azaguanine (AZG) was attained when the cells were dispersed after a suitable expression time before adding the selection medium. V79–4 cells were exposed to 500 µM MMS, 7 µM AFAA, or 10 µM MNNG and allowed to multiply before being reseeded at 4 x 104 cells/60 mm dish and selected with 10 µg/ml AZG. Maximum frequencies of 4 x 10-5, 4 x 10-4, and 2.4 x 10-3 were obtained about 100, 130, and 200 hrs after exposure to MMS, AFAA, and MNNG, respectively. The maximum frequencies following MMS or MNNG treatments were about 10-fold greater than those obtained when induction and selection of AZG-resistant colonies were performed in the same culture dish. The reseeding of treated cells eliminated the possibility of metabolic cooperation within mosaic colonies of wild-type and mutant cells and achieved expression of the induced changes before intercolony crossfeeding reduced the frequency of resistant colonies.—AZG-resistant colonies were selected in medium containing dialyzed fetal bovine serum, and the selection medium was replaced at least twice. Both serum dialysis and selection medium replacement were necessary for consistent achievement of background frequencies of resistant colonies near 10-6. Reconstruction experiments with AZG-resistant V79 lines showed that the efficiency of recovery of resistant cells in the selection medium was constant over a range of 0–20 colonies observed/dish. A mixed population of V79 and AZG-resistant cells was also correctly analyzed by the procedure used in mutagenesis studies. PMID:1093934

  17. Chromosomal damage and repair in G{sub 1}-phase Chinese hamster ovary cells exposed to charged-particle beams

    SciTech Connect

    Goodwin, E.H.; Blakely, E.A.; Tobias, C.A.

    1994-06-01

    Chromosomal fragmentation was examined in G{sub 1}-phase Chinese hamster ovary cells using the premature chromosome condensation (PCC) technique. The yield and distribution of chromatin breaks, the lesions revealed by PCC, were measured in cells exposed to X rays or each of nine particle beams covering a range of LET from 0.56 to 2700 keV/{mu}m. The average number of breaks per cell was found to be linearly proportional to the fluence of high-LET neon ions (183 keV/{mu}m). Assuming a linear response for the other beams, the level of breakage per unit dose rose from a plateau at the lowest LET values to a peak in the 100-200 keV/{mu}m range and then declined continuously thereafter, eventually falling well below the low-LET plateau. The maximum breakage RBE was 1.5. The average number of breaks per particle traversal rose steadily from 0.006 to 11 breaks/cell as the LET increased from 0.56 to 2700 keV/{mu}m. The breaks were distributed randomly within the cell population after low-LET irradiation, but became progressively overdispersed with increasing LET. Rejoining of prematurely condensed chromosomes plus fragments was followed for up to 5 h for four particle beams having LET values between 0.56 and 183 keV/{mu}m. An LET-dependent trend toward higher levels of residual fragments was observed. 34 refs., 5 figs., 4 tabs.

  18. Posttreatment with sodium arsenite alters the mutational spectrum induced by ultraviolet light irradiation in Chinese hamster ovary cells

    SciTech Connect

    Yang, Jia-Ling; Chen, Mei-Fang; Wu, Cheng-Wen; Lee, Te-Chang )

    1992-01-01

    Arsenic, a potent carcinogen, fails to induce gene mutations in mammalian cells. However, posttreatment of ultraviolet light (UV)-irradiated cells with sodium arsenite synergstically enhances the mutation frequency on the hypoxanthine (Guanine) phosphoribosyltransferase locus. To investigate the molecular mechanism of the comutagenic effects of sodium arsenite, the authors characterized the alternations of nucleotide sequences in 30 UV-induced and 39 sodium arsenite enhanced hprt mutants from CHinese hamster ovary K1 cells by direct sequencing of mRNA-PCR amplified cDNA. The majority of sequence alterations derived from UV irradiation (80%) and from sodium arsenite posttreatment (70%) were single base substitutions. UV irradiation induced all types of base substitutions. Among them, 57% were transversions. The frequency of transversion increased to 70% in sodium arsenite enhanced mutants. While base substitutions observed in UV-induced mutants were evenly distributed along with the whole coding region, exons 3 and 8 were most frequently mutated in sodium arsenite enhanced mutants. Sodium arsenite posttreatment did not alter the strand bias for mutation induction, i.e., 73% and 78%, of the mutations were located on the non-transcribed strand in UV-induced and sodium arsenite enhanced mutants, respectively. In contrast to UV-induced mutations, bases at the 5' position of TT and the 3' position of CT sequences were the most frequent mutation sites observed in sodium arsenite enhanced mutants. The authors hypothesize that sodium arsenite may interfere with the process of mutation fixation of TT and CT dimers during DNA replication. 50 refs., 2 figs., 6 tabs.

  19. DNA adduct formation and mutation induction by nitropyrenes in Salmonella and Chinese hamster ovary cells: relationships with nitroreduction and acetylation.

    PubMed Central

    Heflich, R H; Fifer, E K; Djuric, Z; Beland, F A

    1985-01-01

    Nitrated pyrenes are environmental pollutants and potent mutagens in the Salmonella reversion assay. In this study reversion induction by 1-nitropyrene and 1,8-dinitropyrene in Salmonella typhimurium TA1538 and mutation induction by 1-nitropyrene in Chinese hamster ovary (CHO) cells were related to the extent of metabolism and DNA adduct formation. In suspension cultures of Salmonella typhimurium TA1538, 1,8-dinitropyrene was up to 40-fold more mutagenic than 1-nitropyrene, although both compounds were metabolized at similar rates with nitroreduction being the major pathway. The major metabolite formed from 1-nitropyrene after 2 hr of incubation was 1-nitrosopyrene, while 1-amino-8-nitropyrene was the major metabolite formed from 1,8-dinitropyrene. 1-Nitrosopyrene and 1-nitro-8-nitrosopyrene elicited mutation values consistent with their being intermediates in the activation pathways. However, subsequent to nitroreduction, 1,8-dinitropyrene appeared to be further activated by acetylation, while 1-nitropyrene was not. Each nitrated pyrene produced a major DNA adduct substituted at the C8-position of deoxyguanosine. Although 1,8-dinitropyrene was more mutagenic than 1-nitropyrene, both compounds induced a similar number of revertants per adduct. Incubation of 1-nitrosopyrene with CHO cells produced a rapid concentration- and time-dependent induction of mutations and the conversion of 1-nitrosopyrene to 1-aminopyrene. In contrast, 1-nitropyrene did not induce mutations and was not converted to 1-aminopyrene. Both compounds produced the same major adduct, but adduct formation by 1-nitropyrene was much lower than by 1-nitrosopyrene.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3910415

  20. High-level stable expression of recombinant 5-HT1A 5-hydroxytryptamine receptors in Chinese hamster ovary cells.

    PubMed Central

    Newman-Tancredi, A; Wootton, R; Strange, P G

    1992-01-01

    The human 5-hydroxytryptamine 5-HT1A receptor gene was transfected into Chinese hamster ovary cells. A series of recombinant monoclonal cell lines expressing the receptor were isolated and the properties of one cell line that expressed receptors at a high level (2.8 pmol/mg) were studied in detail. In ligand binding assays with the selective 5-HT1A receptor agonist 2-(NN-di[3H]propylamino)-8-hydroxy-1,2,3,4-tetrahydronaphthalene ([3H]8-OH-DPAT) only a single class of saturable high-affinity binding sites was detected, with a pharmacological profile in competition experiments essentially identical to that of the 5-HT1A receptor of bovine hippocampus. [3H]8-OH-DPAT binding to the recombinant cell membranes was inhibited by GTP, showing that the receptors in the transfected cells couple to G-proteins. A series of 5-hydroxytryptamine agonists inhibited forskolin-stimulated adenylate cyclase activity in the cells and, despite the high level of receptor expression, their apparent efficacies were similar to those observed for inhibition of adenylate cyclase in brain. This recombinant cell line provides a complete model system for studying the 5-HT1A receptor and its transmembrane signalling system. The recombinant cells can also be grown in suspension culture for long periods but, whereas 5-HT1A receptor numbers and receptor regulation by guanine nucleotides are maintained in suspension-grown cells, the inhibition of adenylate cyclase by the 5-HT1A receptor is gradually lost. Images Fig. 1. PMID:1386736

  1. Induction and expression of mutations at multiple drug-resistance marker loci in Chinese hamster ovary cells

    SciTech Connect

    Adair, G.M.; Carver, J.H.

    1983-01-01

    We observed quantitative and qualitative differences in the mutability and mutagen-specificity of various drug-resistance marker loci in Chinese hamster ovary (THO) cells, which suggest that mammalian gene loci may differ in their relative mutability by a given mutagenic agent. We have used the CHO-AT3-2 multiple-marker mutagenesis assay system to examine the dose-dependent induction and kinetics of expression of mutations at four well-characterized, drug-resistance marker loci, after treatment with chemical agents which produce various types of DNA damage. The CHO-AT3-2 subline allows simultaneous quantitation and direct comparison of induced mutation frequencies at the hgprt, oua (Na/sup +//K/sup +/ ATPase), aprt, and tk loci. The agents tested in this study included ethyl methanesulfonate, methyl methanesulfonate, mitomycin C, ICR-191, benzo(a)pyrene, and dimethylnitrosamine. The expression kinetics and optimal expression times for each drug-resistance marker were determined in dose-response experiments in which cells from mutagen-treated populations were plated at 1-2-day intervals over a period of 10 days following mutagenesis. Comparison of induced mutation frequencies for each drug-resistance marker after mutagen treatments yielding equivalent cell survivals (equitoxic doses resulting in relative cell survivals of 0.37) revealed locus-specific differences in the relative mutagenicities of the agents tested. These results indicate that the apparent mutagenicity of a particular agent at a single genetic locus may not necessarily be an accurate indicator of that agent's mutagenic potential for the genome as a whole.

  2. Identification and quantitation of Vesivirus 2117 particles in bioreactor fluids from infected Chinese hamster ovary cell cultures.

    PubMed

    Qiu, Yongchang; Jones, Nathan; Busch, Michelle; Pan, Peng; Keegan, Jesse; Zhou, Weichang; Plavsic, Mark; Hayes, Michael; McPherson, John M; Edmunds, Tim; Zhang, Kate; Mattaliano, Robert J

    2013-05-01

    The prevention of adventitious agent contamination is a top priority throughout the entire biopharmaceutical production process. For example, although viral contamination of cell banks or cell cultures is rare, it can result in serious consequences (e.g., shutdown and decontamination of manufacturing facilities). To ensure virus free production, numerous in vivo and in vitro adventitious agent assays and biophysical characterizations such as electron microscopy are conducted on cell banks, raw materials, process materials, and drug substances throughout the manufacturing process. Molecular assays such as PCR and other nucleotide-based techniques are also routinely used for screening and identification of any viral agents. However, modern techniques in protein identification of complex protein mixtures have not yet been effectively integrated throughout the industry into current viral testing strategies. Here, we report the identification and quantitation of Vesivirus 2117 particles in bioreactor fluid from infected Chinese hamster ovary cell cultures by global protein sequencing using mass spectrometry in combination with multi-dimensional liquid-chromatography. Following mass spectrometric data acquisition and rigorous data analysis, six virus specific peptides were identified. These peptides were fragments of two structural proteins, capsid protein pre-cursor (four unique peptides) and small structural protein (two unique peptides), from the same species: Vesivirus 2117. Using stable heavy isotope-labeled peptides as internal standards, we also determined the absolute concentration of Vesivirus particles in the bioreactor fluid and the ratio of two capsid proteins (VP1:VP2) in the particles as approximately 9:1. The positive identification of Vesivirus 2117 was subsequently confirmed by RT-PCR. Copyright © 2012 Wiley Periodicals, Inc.

  3. Cell proliferation as a requirement for development of the contact effect in Chinese hamster V79 spheroids

    SciTech Connect

    Olive, P.L.

    1989-01-01

    Chinese hamster V79 cells grown for several hours in suspension culture form spheroids which are more resistant to killing by ionizing radiation than cells grown on petri dishes, a phenomenon known as the contact effect. Previous results using the alkali-unwinding assay as a measure of DNA damage have implicated differences in DNA conformation as contributing to this effect; spheroid DNA denatures more slowly in dilute alkali than monolayer DNA, perhaps due to the presence of constraints to DNA unwinding. In this paper, the rate of development of radiation resistance is shown to be similar when either cell survival or DNA unwinding is used as an end point. At the midpoint for development of resistance, approximately 10 h, the unwinding kinetics indicate that either half of the cells contain constraints to DNA unwinding, or half of the DNA in all of the cells contains constraints. The latter explanation appears more likely since all cells seem to develop these constraints at the same rate, regardless of position in the cell cycle or the degree of contact with other cells. Results using the microelectrophoresis assay to measure damage to individual nuclei confirm the fact that 10-h cultures show a homogeneous radiation response intermediate between that of monolayers and spheroids. Incubation of cells at room temperature or in the presence of drugs which inhibit cell cycle progression prevents full development of the contact effect. Conversely, incubation of cells in medium containing inhibitors of polyamine synthesis, adenylcyclase, glutathione synthesis, poly(ADP-ribose)polymerase, topoisomerase II, or cell-cell communication does not inhibit development of the contact effect as measured by DNA-unwinding kinetics.

  4. Exploring the capabilities of fluorometric online monitoring on chinese hamster ovary cell cultivations producing a monoclonal antibody.

    PubMed

    Schwab, Karen; Amann, Thomas; Schmid, Jakob; Handrick, René; Hesse, Friedemann

    2016-11-01

    Online monitoring of Chinese hamster ovary fed-batch cell cultures via two-dimensional fluorescence spectroscopy (2DFS) was evaluated in this work. Particular attention was directed toward different process strategies regarding the use of nutrient-rich feed media and temperature shifts. These intentionally performed process manipulations broadened the variances in the obtained fluorescence spectra and this was suspected to hamper the generation of reliable soft sensors. Principal component analysis of the obtained fluorescence data showed that temperature shift and feeding strategy had a considerable impact on the fluorescence signals. Partial least square regression models were calculated for the prediction of glucose, lactate, monoclonal antibody (mAb), and viable cell concentrations (VCC). It was aimed to integrate all 2DFS datasets in the respective calibration models regardless of the process-strategy-dependent diversity. Contrary to the expectations, it was feasible to calibrate soft sensors for the online prediction of glucose (7 latent variables (LVs), Rcal2 = 0.97, rout mean squared error of prediction (RMSEP) = 1.1 g L(-1) ), lactate (5 LV; Rcal2 = 0.96; RMSEP = 0.5 g L(-1) ) and mAb concentrations (4 LV; Rcal2 = 0.99; RMSEP = 11.4 mg L(-1) ). Feeding and temperature shifts had the highest impact on the VCC model (3 LV; Rcal2 = 0.94; RMSEP 3.8 × 10(5) mL(-1) ), nevertheless the prediction of VCC from the fed-batch 2DFS data was feasible. The results strongly indicate that variances in the datasets due to the process strategy can be tolerated to some extent by the respective soft sensors. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1592-1600, 2016.

  5. Activation of mitochondrial promoter P{sub H}-binding protein in a radio-resistant Chinese hamster cell strain associated with Bcl-2

    SciTech Connect

    Roychoudhury, Paromita; Ghosh, Utpal . E-mail: keyachaudhuri@yahoo.com

    2006-11-17

    The cellular response to ionizing radiation is mediated by a complex interaction of number of proteins involving different pathways. Previously, we have shown that up regulation of mitochondrial genes ND1, ND4, and COX1 transcribed from the heavy strand promoter (P{sub H}) has been increased in a radio-resistant cell strain designated as M5 in comparison with the parental Chinese hamster V79 cells. These genes are also up regulated in Chinese hamster V79 cells VB13 that express exogenous human Bcl2. In the present study, the expression of the gene ND6 that is expressed from the light strand promoter (P{sub L}) was found to be similar in both the cell lines, as determined by RT-PCR. To test the possibility that this differential expression of mitochondrial genes under these two promoters was mediated by differences in proteins' affinity to interact with these promoters, we have carried out electrophoretic mobility shift assay (EMSA) using mitochondrial cell extracts from these two cell lines. Our result of these experiments revealed that two different proteins formed complex with the synthetic promoters and higher amount of protein from M5 cell extracts interacted with the P{sub H} promoter in comparison to that observed with cell extracts from Chinese hamster V79 cells. The promoter-specific differential binding of proteins was also observed in VB13. These results showed that differential mitochondrial gene expression observed earlier in the radio-resistant M5 cells was due to enhanced interaction proteins with the promoters P{sub H} and mediated by the expression of Bcl2.

  6. Fluorescence in situ hybridization using bacterial artificial chromosome (BAC) clones for the analysis of chromosome rearrangement in Chinese hamster ovary cells.

    PubMed

    Cao, Yihua; Kimura, Shuichi; Itoi, Takayuki; Honda, Kohsuke; Ohtake, Hisao; Omasa, Takeshi

    2012-03-01

    Chromosome identification using Chinese hamster ovary (CHO) genomic bacterial artificial chromosome (BAC) clones has the potential to contribute to the analysis and understanding of chromosomal instability of CHO cell lines and to improve our understanding of chromosome organization during the establishment of recombinant CHO cells. Fluorescence in situ hybridization imaging using BAC clones as probes (BAC-FISH) can provide valuable information for the identification of chromosomes. In this study, we identified chromosomes and analyzed the chromosome rearrangement in CHO cells using BAC-FISH methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Restoration of Chinese hamster cell radiation resistance by the human repair gene ERCC-5 and progress in molecular cloning of this gene

    SciTech Connect

    Strniste, G.F.; Chen, D.J.; deBruin, D.; McCoy, L.S.; Luke, J.A.; Mudgett, J.S.; Nickols, J.W.; Okinaka, R.T.; Tesmer, J.G.; MacInnes, M.A.

    1988-01-01

    The uv-sensitive Chinese hamster cell uv-135 is being used to identify and isolate the human gene, ERCC-5, which corrects nucleotide excision repair in this incision-defective mutant. A cosmid library, constructed from a 3/sup 0/ transformant of uv-135, has been screened for transfected gpt and human Alu family sequences. An ordered physical map of overlapping positives cosmids has been determined. Molecular evidence suggests a region of this map of <40 Kbp contains the ERCC-5 gene. 10 refs., 2 figs.

  8. Stable expression and visualization of Mat-8 (FXYD-3) tagged with a fluorescent protein in Chinese hamster ovary (CHO)-K1 cells.

    PubMed

    Arimochi, Junko; Kobayashi, Ayako; Maeda, Masatomo

    2005-07-01

    A type I transmembrane protein, Mat-8 (FXYD-3), was tagged with fluorescent protein, Discosoma red fluorescent protein, at the carboxyl terminal cytoplasmic tail, and stably expressed in Chinese Hamster Ovary (CHO)-K1 cells. The fluorescence signal was distributed in intracellular membranes, being not only detected around the nuclear envelope but also partly overlapping with an endoplasmic reticulum marker. Subcellular fractionation by density gradient centrifugation supported this partial overlapping. The spherical structures observed were not colocalized with markers for lysosomes, endosomes, and Golgi bodies, suggesting that Mat-8 is distributed in a distinct endoplasmic reticulum region and the nuclear envelope after synthesis on membrane-bound ribosomes.

  9. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells.

    PubMed

    Chen, P S; Li, J H; Liu, T Y; Lin, T C

    2000-05-01

    Terminalia catappa L. is a popular folk medicine for preventing hepatoma and treating hepatitis in Taiwan. In this paper, we examined the protective effects of T. catappa leaf water extract (TCE) and its major tannin component, punicalagin, on bleomycin-induced genotoxicity in cultured Chinese hamster ovary cells. Pre-treatment with TCE or punicalagin prevented bleomycin-induced hgprt gene mutations and DNA strand breaks. TCE and punicalagin suppressed the generation of bleomycin-induced intracellular free radicals, identified as superoxides and hydrogen peroxides. The effectiveness of TCE and punicalagin against bleomycin-induced genotoxicity could be, at least in part, due to their antioxidative potentials.

  10. Chinese hamster ovary-sphingomyelin synthase2 biospecific extraction and liquid chromatography with tandem mass spectrometry analysis for the prediction of bioactive components of Rhizoma Polygoni Cuspidati.

    PubMed

    Xue, Ying; Dong, Jibin; Liang, Jianying

    2016-03-01

    A novel strategy for predicting bioactive components in traditional Chinese medicines using Chinese hamster ovary-sphingomyelin synthase2 (CHO-SMS2 ) cell biospecific extraction and high-performance liquid chromatography with diode array detection and tandem mass spectrometry analysis was proposed. The hypothesis is that when cells are incubated with the extract of traditional Chinese medicines, the potential bioactive components in the traditional Chinese medicines should selectively combine with the cells, while the cell-combining components would be detectable in the extract of denatured cells. The identities of the cell-combining components could be determined by liquid chromatography with tandem mass spectrometry. Using the proposed approach, the potential bioactive components of Rhizoma Polygoni Cuspidati, a commonly used traditional Chinese medicine for atherosclerosis, were detected and identified. Eight compounds in the extract of Rhizoma Polygoni Cuspidati were detected as the components selectively combined with CHO-SMS2 cells, which is a stable cell line that highly expresses sphingomyelin synthases, it was found that piceid, resveratrol, emodin-8-β-d-glucoside, physcion-8-β-d-glucoside, emodin, physcion, 3,5,4'-trihydroxystilbene-3-O-(6"-galloyl)-glucoside, and emodin-1-O-glucoside combined specifically with CHO-SMS2 cells. The results indicate that the proposed approach may be applied to predict the bioactive candidates in traditional Chinese medicines.

  11. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells.

    PubMed

    Wu, Suh-Chin; Hong, Willy W L; Liu, Jin-Hwang

    2008-09-08

    The dihydrofolate reductase (dhfr)/methotrexate (MTX) selection is a common method to conduct gene amplification in stable clones of Chinese hamster ovary (CHO) cells. We previously reported the use of a short hairpin RNA (shRNA) vector targeted to the dhfr gene resulted in improving the intracellular antigen expression in gene-amplified stable CHO cells [Hong, W.W., Wu, S.C., 2007. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine 25 (20), 4103-4111]. Here we investigated the use of the dhfr-targeted shRNA vector for immunoglobulin G (IgG) expression in gene-amplified stable CHO cells. With the use of the dhfr-targeted shRNA vector, the gene-amplified CHO/dhFr(-) cells were found to increase IgG expression at 1.0 microM MTX by more than 100% and to improve the genomic stability of IgG expression in MTX-free cultures by approximately 30%. The use of the dhfr-targeted shRNA vector can enhance the IgG expression in the gene-amplified stable CHO cells and uphold the IgG expression in MTX-free cultures. Utilizing the dhfr-targeted shRNA vector may provide an alternative way to maneuver CHO cell factories for IgG production in cultures.

  12. Analysis of a Chinese hamster ovary cell mutant with defective mobilization of cholesterol from the plasma membrane to the endoplasmic reticulum.

    PubMed

    Jacobs, N L; Andemariam, B; Underwood, K W; Panchalingam, K; Sternberg, D; Kielian, M; Liscum, L

    1997-10-01

    The factors involved in shuttling cholesterol among cellular membranes have not been defined. Using amphotericin B selection, we previously isolated Chinese hamster ovary cell mutants expressing defects in intracellular cholesterol transport. Complementation analysis among seven mutants identified one cell line, mutant 3-6, with a unique defect. The present analysis revealed three key features of mutant 3-6. First, the movement of cholesterol both from the endoplasmic reticulum and through lysosomes to the plasma membrane was normal. However, when intact 3-6 cells were treated with sphingomyelinase, movement of plasma membrane cholesterol to acyl CoA:cholesterol acyltransferase in the endoplasmic reticulum was defective. Cellular cholesterol was mobilized to this enzyme upon activation by 25-hydroxycholesterol. Second, mutant 3-6 did not utilize endogenously synthesized sterol or low density lipoprotein-derived cholesterol for growth as effectively as parental Chinese hamster ovary cells. Finally, despite normal movement of cholesterol to the plasma membrane, mutant 3-6 was amphotericin B resistant. The plasma membrane cholesterol content was normal as assessed by cholesterol oxidase treatment and Semliki Forest virus fusion, which suggests that the 3-6 mutation alters the organization of cholesterol in the plasma membrane. Our characterization of this mutant cell line should facilitate the identification of gene(s) required for this transport pathway.

  13. Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells.

    PubMed Central

    Ferrara, N; Winer, J; Burton, T; Rowland, A; Siegel, M; Phillips, H S; Terrell, T; Keller, G A; Levinson, A D

    1993-01-01

    Vascular endothelial growth factor (VEGF) is a mitogen with a specificity for endothelial cells in vitro and an angiogenic inducer in vivo. We tested the hypothesis that VEGF may confer on expressing cells a growth advantage in vivo. Dihydrofolatereductase--Chinese hamster ovary cells were transfected with expression vectors which direct the constitutive synthesis of VEGF. Neither the expression nor the exogenous administration of VEGF stimulated anchorage-dependent or anchorage-independent growth of Chinese hamster ovary cells in vitro. However, VEGF-expressing clones, unlike control cells, demonstrated an ability to proliferate in nude mice. Histologic examination revealed that the proliferative lesions were compact, well vascularized, and nonedematous. Ultrastructural analysis revealed that capillaries within the lesions were of the continuous type. These findings indicate that the expression of VEGF may confer on cells the ability to grow in vivo in the absence of transformation by purely paracrine mechanisms. Since VEGF is a widely distributed protein, this property may have relevance for a variety of physiological and pathological proliferative processes. Images PMID:8423215

  14. Functional nucleotide excision repair is required for the preferential removal of N-ethylpurines from the transcribed strand of the dihydrofolate reductase gene of Chinese hamster ovary cells.

    PubMed Central

    Sitaram, A; Plitas, G; Wang, W; Scicchitano, D A

    1997-01-01

    Transcription-coupled repair of DNA adducts is an essential factor that must be considered when one is elucidating biological endpoints resulting from exposure to genotoxic agents. Alkylating agents comprise one group of chemical compounds which modify DNA by reacting with oxygen and nitrogen atoms in the bases of the double helix. To discern the role of transcription-coupled DNA repair of N-ethylpurines present in discrete genetic domains, Chinese hamster ovary cells were exposed to N-ethyl-N-nitrosourea, and the clearance of the damage from the dihydrofolate reductase gene was investigated. The results indicate that N-ethylpurines were removed from the dihydrofolate reductase gene of nucleotide excision repair-proficient Chinese hamster ovary cells; furthermore, when repair rates in the individual strands were determined, a statistically significant bias in the removal of ethyl-induced, alkali-labile sites was observed, with clearance occurring 30% faster from the transcribed strand than from its nontranscribed counterpart at early times after exposure. In contrast, removal of N-ethylpurines was observed in the dihydrofolate reductase locus in cells that lacked nucleotide excision repair, but both strands were repaired at the same rate, indicating that transcription-coupled clearance of these lesions requires the presence of active nucleotide excision repair. PMID:9001209

  15. The use of primary rat hepatocytes to achieve metabolic activation of promutagens in the Chinese hamster ovary/hypoxantine-guanine phosphoribosyl transferase mutational assay

    SciTech Connect

    Bermudez, E.; Couch, D.B.; Tillery, D.

    1982-01-01

    A method is described in which primary rat hepatocytes have been cocultured with chinese hamster ovary (CHO) cells to provide metabolic activation of promutgens in the Chinese hamster ovary/hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT) mutational assay. Single cell hepatocyte suspensions were prepared from male Fisher-344 rats using the in situ collagenase perfusion technique. Hepatocytes were allowed to attach for 1.5 hours in tissue culture dishes containing an approximately equal number of CHO cells in log growth. The cocultures were exposed to promutagens for up to 20 hours in serum-free medium. The survival and 6-thioguanine-resistant fraction of treated CHO cells were then determined as in the standard CHO/HGPRT assay. Aflatoxin B/sub 1/ (AFB/sub 1/) 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene (B(a)P) were found to produce increases in the mutant fractions of treated CHO cells as a function of concentration. The time required for optimum expression of the mutant phenotype following exposure to DMBA and AFB/sub 1/ was approximately 8 days. Primary cell-mediated mutagenesis may be useful in elucidating methobolic pathways important in the production and detoxification of genotoxic products in vivo.

  16. Formycin B-resistant mutants of Chinese hamster ovary cells: novel genetic and biochemical phenotype affecting adenosine kinase.

    PubMed Central

    Mehta, K D; Gupta, R S

    1983-01-01

    Stable mutants which are approximately three- and eightfold resistant to the pyrazolopyrimidine nucleosides formycin A and formycin B (FomR) have been selected in a single step from mutagenized Chinese hamster ovary cells. In cell extracts, the two FomR mutants which were examined were both found to contain no measurable activity of the enzyme adenosine kinase (AK). However, cross-resistance studies with other adenosine analogs such as toyocamycin and tubercidin show that these mutants are distinct from toyocamycin or tubercidin resistant (Toyr) mutants which also contain no measurable AK activity in cell extracts. Studies on the uptake and incorporation of [3H]adenosine and [3H]tubercidin by various mutants and parental cell lines show that unlike the Toyr mutants, which are severely deficient in the phosphorylation of these compounds, the FomR mutants possess nearly normal capacity to phosphorylate these compounds and incorporate them into cellular macromolecules. These results suggest that the FomR mutants contain normal levels of AK activity in vivo. In cell hybrids formed between FomR X FomS cells and FomR X Toyr cells, the formycin-resistant phenotype of both of the FomR mutants behaved codominantly. However, the extracts from these hybrid cells contained either congruent to 50% (FomR X FomS) or no measurable (FomR X Toyr) AK activity, indicating that the lesion in these mutants neither suppresses the wild-type AK activity nor complements the AK deficiency of the Toyr mutants. The presence of AK activity in the FomR mutants in vivo, but not in their cell extracts, along with the codominant behavior of the mutants in hybrids, indicates that the lesions in the FomR mutant are of a novel nature. It is suggested that the genetic lesion in these mutants affects AK activity indirectly and that it may involve an essential cellular function which exists in a complex form with AK. Some implications of these results regarding the mechanism of action of formycin B are

  17. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.

    PubMed

    Pybus, Leon P; Dean, Greg; West, Nathan R; Smith, Andrew; Daramola, Olalekan; Field, Ray; Wilkinson, Stephen J; James, David C

    2014-02-01

    Despite improvements in volumetric titer for monoclonal antibody (MAb) production processes using Chinese hamster ovary (CHO) cells, some "difficult-to-express" (DTE) MAbs inexplicably reach much lower process titers. These DTE MAbs require intensive cell line and process development activity, rendering them more costly or even unsuitable to manufacture. To rapidly and rationally identify an optimal strategy to improve production of DTE MAbs, we have developed an engineering design platform combining high-yielding transient production, empirical modeling of MAb synthesis incorporating an unfolded protein response (UPR) regulatory loop with directed expression and cell engineering approaches. Utilizing a panel of eight IgG1 λ MAbs varying >4-fold in volumetric titer, we showed that MAb-specific limitations on folding and assembly rate functioned to induce a proportionate UPR in host CHO cells with a corresponding reduction in cell growth rate. Derived from comparative empirical modeling of cellular constraints on the production of each MAb we employed two strategies to increase production of DTE MAbs designed to avoid UPR induction through an improvement in the rate/cellular capacity for MAb folding and assembly reactions. Firstly, we altered the transfected LC:HC gene ratio and secondly, we co-expressed a variety of molecular chaperones, foldases or UPR transactivators (BiP, CypB, PDI, and active forms of ATF6 and XBP1) with recombinant MAbs. DTE MAb production was significantly improved by both strategies, although the mode of action was dependent upon the approach employed. Increased LC:HC ratio or CypB co-expression improved cell growth with no effect on qP. In contrast, BiP, ATF6c and XBP1s co-expression increased qP and reduced cell growth. This study demonstrates that expression-engineering strategies to improve production of DTE proteins in mammalian cells should be product specific, and based on rapid predictive tools to assess the relative impact of

  18. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells.

    PubMed

    Carothers, A M; Urlaub, G; Grunberger, D; Chasin, L A

    1993-08-01

    Point mutants induced with a variety of mutagens at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary (CHO) cells were screened for aberrantly spliced dhfr mRNA by RNase protection and/or reverse transcriptase coupled with cDNA amplification by the polymerase chain reaction (PCR). Of 115 mutants screened, 28 were found to be affected in splicing. All exhibited less than 1% correct splicing, probably because the selection procedure was stringent. All 26 unique mutations were located within the consensus splice sequences; changes were found at 9 of 10 possible sites in this 25-kb six-exon gene. Mutations at the sites flanking the first and last exons resulted in the efficient recruitment of a cryptic site within each exon. In contrast, mutations bordering internal exons caused predominantly exon skipping. In many cases, multiple exons were skipped, suggesting the clustering of adjacent exons prior to actual splicing. Six mutations fell outside the well-conserved GU and AG dinucleotides. All but one were donor site single-base substitutions that decreased the agreement with the consensus and resulted in little or no correct splicing. Starting with five of these donor site mutants, we isolated 31 DHFR+ revertants. Most revertants carried a single-base substitution at a site other than that of the original mutation, and most had only partially regained the ability to splice correctly. The second-site suppression occurred through a variety of mechanisms: (i) a second change within the consensus sequence that produced a better agreement with the consensus; (ii) a change close to but beyond the consensus boundaries, as far as 8 bases upstream in the exon or 28 bases downstream in the intron; (iii) mutations in an apparent pseudo 5' site in the intron, 84 and 88 bases downstream of a donor site; and (iv) mutations that improved the upstream acceptor site of the affected exon. Taken together, these second-site suppressor mutations extend the definition of a

  19. Splicing mutants and their second-site suppressors at the dihydrofolate reductase locus in Chinese hamster ovary cells.

    PubMed Central

    Carothers, A M; Urlaub, G; Grunberger, D; Chasin, L A

    1993-01-01

    Point mutants induced with a variety of mutagens at the dihydrofolate reductase (dhfr) locus in Chinese hamster ovary (CHO) cells were screened for aberrantly spliced dhfr mRNA by RNase protection and/or reverse transcriptase coupled with cDNA amplification by the polymerase chain reaction (PCR). Of 115 mutants screened, 28 were found to be affected in splicing. All exhibited less than 1% correct splicing, probably because the selection procedure was stringent. All 26 unique mutations were located within the consensus splice sequences; changes were found at 9 of 10 possible sites in this 25-kb six-exon gene. Mutations at the sites flanking the first and last exons resulted in the efficient recruitment of a cryptic site within each exon. In contrast, mutations bordering internal exons caused predominantly exon skipping. In many cases, multiple exons were skipped, suggesting the clustering of adjacent exons prior to actual splicing. Six mutations fell outside the well-conserved GU and AG dinucleotides. All but one were donor site single-base substitutions that decreased the agreement with the consensus and resulted in little or no correct splicing. Starting with five of these donor site mutants, we isolated 31 DHFR+ revertants. Most revertants carried a single-base substitution at a site other than that of the original mutation, and most had only partially regained the ability to splice correctly. The second-site suppression occurred through a variety of mechanisms: (i) a second change within the consensus sequence that produced a better agreement with the consensus; (ii) a change close to but beyond the consensus boundaries, as far as 8 bases upstream in the exon or 28 bases downstream in the intron; (iii) mutations in an apparent pseudo 5' site in the intron, 84 and 88 bases downstream of a donor site; and (iv) mutations that improved the upstream acceptor site of the affected exon. Taken together, these second-site suppressor mutations extend the definition of a

  20. Interaction of Leukotriene C4 and Chinese Hamster Lung Fibroblasts (V79A03 Cells). 1. Characterization of Binding

    DTIC Science & Technology

    1990-10-01

    irradiation. Consequently, studies were conducted to determine whether LTC4 -conferred radioprotection could be attributed to a receptor -mediated...The observed binding characteristics of LTC, to V79 cells are consistent with a receptor -mediated phenomenon. In a companion communication which...conducted to assess the possibility that LTC4 receptors could be detected on V79 cells. The properties of LTC, interaction with V79 cells are

  1. Toxicology Studies on Lewisite and Sulfur Mustard Agents: Genetic Toxicity of Sulfur Mustard (HD) in Chinese Hamster Ovary Cells Final Report

    SciTech Connect

    Jostes, Jr., R. F.; Sasser, L. B.; Rausch, R. J.

    1989-05-01

    The cytotoxic, clastogenic and mutagenic effects of sulfur nustard in Chinese hamster ovary cells are described in this reoort. The cytotoxicity data indicate that micromolar amounts of HC are highly toxic in microrolar amounts. Chromosone aberration frequencies increased in a dose-dependent manner over a dose range of 0. 5 to 1.0 {micro}m and SCE increased in a dose-dependent fashion in the dose range of 0.0625 to 0.25 {micro}M. Mutation induction at the HGPRT locus was sporadic, but the majority of the exoosures resulted in mutation frequencies which were 1.2 to 4.3 fold higher than the spontaneous frequencies.

  2. The Use of Transcription Terminators to Generate Transgenic Lines of Chinese Hamster Ovary Cells (CHO) with Stable and High Level of Reporter Gene Expression

    PubMed Central

    Gasanov, N. B.; Toshchakov, S. V.; Georgiev, P. G.; Maksimenko, O. G.

    2015-01-01

    Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production. PMID:26483962

  3. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system.

    PubMed

    Fields, Wanda; Fowler, Kathy; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2017-04-01

    Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses.

  4. The effect of oxygen on low-dose hypersensitivity and increased radioresistance in Chinese hamster V79-379A cells

    SciTech Connect

    Marples, B.; Skov, K.A.; Joiner, M.C.

    1994-04-01

    Chinese hamster V79 cells irradiated in air are hypersensitive to X-ray doses less than 0.5 Gy and show an increased radioresistance over the dose range 0.5-1 Gy. Of considerable interest from both a mechanistic and clinical viewpoint is the response of hypoxic cells over this dose range. The data presented here indicate that hypoxic cells are also hypersensitive to low X-ray doses and exhibit an increased radioresistant response, albeit triggered at a somewhat higher dose (0.69 Gy, SEM {+-} 0.18 Gy) than observed in oxygenated cells (0.5 Gy, SEM {+-} 0.21 Gy). These data indicate that the triggering event for increased radioresistance may be independent of oxygen. As reported by others previously, the oxygen enhancement ratio was found to decrease with a decreasing X-ray dose. 21 refs., 3 figs., 1 tab.

  5. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture.

    PubMed

    Tobey, R A; Ley, K D

    1970-07-01

    Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8-9 x 10(5) cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G(1) Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.

  6. Detection and chromosomal assignment of SV40-DNA integration in Chinese hamster cell lines by chromosome sorting and dot blot hybridization.

    PubMed

    Hutter, K J; Klefenz, H; Goerttler, K

    1990-01-01

    A combination of cytometric (chromosome sorting), molecular (dot blot hybridization using radio-active and/or biotinylated DNA probes) and cytogenetic (G-banding) evaluation is described which allows the rapid identification of single copy and repetitive viral integrates and their assignment to chromosome groups or even individual chromosomes. In the case of Chinese hamster cell line CO 631 it could be demonstrated that SV40 DNA was solely integrated into a submetacentric marker chromosome. Such a cytometric/molecular/cytogenetic "identogram" may prove to be a useful tool in many areas of cell and tumor biology. Furthermore, amounts of chromosomes sufficient for analysis as well as subsequent cloning experiments can be accumulated.

  7. UV-induced G:C-->A:T transitions at the APRT locus of Chinese hamster ovary cells cluster at frequently damaged 5'-TCC-3' sequences.

    PubMed

    Drobetsky, E A; Sage, E

    1993-10-01

    We have determined the relative frequency in vitro of UV-induced cyclobutane pyrimidine dimers (py <> py) and (6-4) pyrimidine pyrimidone photoproducts (py(6-4)pyo) at individual sites in selected regions of the Chinese hamster ovary (CHO) adenine phosphoribosyltransferase (aprt) gene, and compared this to the observed specificity of UV-induced mutations (Drobetsky et al., 1987, 1989). Our results indicate that G:C-->A:T transition "hotspots" (multiple occurrences) at the chromosomal CHO aprt locus, the majority of which occur at 5'TCC-3', are clearly targeted at sites associated with a relatively high yield of py <> py and/or py(6-4)pyo. We conclude that photoproduct frequency plays a major role in UV-induced transition mutagenesis at 5'-TCC-3' sites at an endogenous locus in a rodent cell line, and that both py(6-4)pyo and py <> py have premutagenic potential.

  8. Biologically active constituents from Salix viminalis bio-oil and their protective activity against hydrogen peroxide-induced oxidative stress in Chinese hamster ovary cells.

    PubMed

    Ilnicka, Anna; Roszek, Katarzyna; Olejniczak, Andrzej; Komoszynski, Michal; Lukaszewicz, Jerzy P

    2014-11-01

    The protective antioxidative effect of the phenolic extract (PE) isolated from Salix viminalis pyrolysis derived bio-oil was shown in vitro on the Chinese hamster ovary (CHO) cells exposed to hydrogen peroxide (H2O2). Cells pretreated with 0.05 μg/ml PE after exposure to different concentrations of H2O2 (300-900 μM) showed up to 25 % higher viability than the unpretreated ones. The antioxidative effect of PE was also observed in a time-dependent manner. The results were confirmed by visual examination of the specimens using microscopy. Finally, superoxide dismutase (SOD) activity modulation was shown by SOD assay, designed to determine the activity of enzymes removing free radicals.

  9. Enhanced efflux of (/sup 3/H)vinblastine from Chinese hamster ovary cells transfected with a full-length complementary DNA clone for the mdr1 gene

    SciTech Connect

    Hammond, J.R.; Johnstone, R.M.; Gros, P.

    1989-07-15

    Multidrug-resistant Chinese hamster ovary cell clones stably transfected with, and overexpressing, the mouse mdr1 complementary DNA clone along with drug-sensitive Chinese hamster ovary control cells were characterized for their capacities to accumulate and retain (/sup 3/H)vinblastine. Multidrug-resistant mdr1 transfectants show a 3-4-fold decrease in (/sup 3/H)vinblastine accumulation, compared to their drug-sensitive counterparts. After ATP depletion, this difference in (/sup 3/H)vinblastine accumulation between mdr1 transfectants and control cells effectively disappears. This ATP-dependent decreased drug accumulation is paralleled in mdr1 transfectants by an enhanced capacity of these cells to extrude the drug in an ATP-dependent manner. In medium containing glucose and glutamine, the mdr1 transfectants release preloaded drug at a rate five times that of control, drug-sensitive cells. In ATP-depleted control and mdr1-transfected cells, there is little difference in the rate or extent of (/sup 3/H)vinblastine release. The observation that the mdr1 transfectants show a decreased (/sup 3/H)vinblastine accumulation and an increased vinblastine release, both of which are abolished when cellular ATP levels are reduced, provides a direct demonstration that the product of the transfected mdr1 gene is responsible for a mechanism controlling cellular drug levels in an ATP-dependent manner. However, attempts to establish competition for (/sup 3/H)vinblastine transport by vincristine, daunomycin, and actinomycin D were only partly successful in mdr1 transfectants.

  10. Perturbation of N-linked oligosaccharide structure results in an altered incorporation of (/sup 3/H)palmitate into specific proteins in Chinese hamster ovary cells

    SciTech Connect

    Wellner, R.B.; Ghosh, P.C.; Roecklein, B.; Wu, H.C.

    1987-09-25

    Increased (/sup 3/H)palmitate incorporation into specific cellular proteins has been reported to occur in Chinese hamster ovary and yeast mutant cells. In this paper we report studies concerning the relationship between N-linked oligosaccharide structure and (/sup 3/H)palmitate incorporation into proteins of Chinese hamster ovary (CHO) cells. We have compared the incorporation of (/sup 3/H)palmitate into proteins of wild-type and four different mutant CHO cell lines defective in various steps of N-linked protein glycosylation. Sodium dodecyl sulfate-gel electrophoretic analysis showed that three of the mutants exhibited increased (/sup 3/H)palmitate incorporation into several CHO cellular proteins (approximately 30,000-38,000 molecular weight) as compared to the wild-type cells. One of the affected mutants which accumulates the Man5Gn2Asn intermediate structure was examined in detail. In agreement with earlier reports, virtually all of the (/sup 3/H) palmitate-labeled proteins of both wild-type and mutant cell lines are membrane-bound. Pretreatment of the mutant cell line with tunicamycin blocked the increased (/sup 3/H)palmitate incorporation into the two specific proteins (both of approximately 30,000 molecular weight) observed in untreated cells; the decreased incorporation of (/sup 3/H)palmitate into the 30,000 molecular weight species was accompanied by a concomitant increase in the incorporation of (/sup 3/H)palmitate into two proteins of approximately 20,000 molecular weight. Pretreatment of wild-type cells with tunicamycin also caused increased (/sup 3/H)palmitate incorporation into the 20,000 molecular weight species.

  11. Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells.

    PubMed

    Okamoto, Y; Ninomiya, H; Miwa, S; Masaki, T

    2000-03-03

    We investigated the mechanism of endothelin receptor type A (ETA) internalization in Chinese hamster ovary cells using two assays; flow cytometric quantification of cell surface myc-ETA and in situ localization of Cy5-labeled ET-1. In both assays, agonist-dependent internalization of myc-ETA was inhibited by nystatin and filipin, both of which disrupt internalization via caveolae, whereas it was barely affected by chlorpromazine and hypertonic sucrose, both of which disrupt internalization via clathrin-coated pits. In addition to myc-ETA, ET-1 caused intracellular translocation of caveolin-1 and this translocation was also blocked by nystatin but not by chlorpromazine. These results strongly argue that ETA is internalized via caveolae but not clathrin-coated pits. Treatment of the cells with cholesterol oxidase reduced cellular cholesterol and caused intracellular translocation of caveolin-1 but did not affect cell surface localization of myc-ETA. In cholesterol oxidase-treated cells, however, both chlorpromazine and hypertonic sucrose effectively blocked ET-1-induced myc-ETA internalization and nystatin was less effective than in untreated cells. Accordingly, expression of a dominant negative form of beta-arrestin blocked myc-ETA internalization in cholesterol oxidase-treated cells but not in untreated cells. These results suggest that, in Chinese hamster ovary cells, 1) agonist-occupied ETA can be internalized either via caveolae or clathrin-coated pits; 2) of the two, the former is the default pathway; and 3) the oxidative state of cell surface cholesterol is one of the factors involved in the pathway selection.

  12. Three-dimensional positioning of B chromosomes in fibroblast nuclei of the red fox and the chinese raccoon dog.

    PubMed

    Kociucka, B; Sosnowski, J; Kubiak, A; Nowak, A; Pawlak, P; Szczerbal, I

    2013-01-01

    Great progress has been achieved over the last years in studies on chromosome arrangement in mammalian cell nuclei. Growing evidence indicates that the genome's spatial organization is of functional relevance. So far, no attention has been paid to the nuclear organization of B chromosomes (Bs). In this study we have examined nuclear positioning of Bs in 2 species from the Canidae family--the red fox and the Chinese raccoon dog. Using 2D and 3D fluorescence in situ hybridization and 2 gene-specific probes (C-KIT and PDGFRA), we analyzed the location of Bs in fibroblast nuclei. We found that small Bs of the red fox occupied mostly the interior of the nucleus, while medium-sized Bs of the Chinese raccoon dog were observed in the peripheral area of the nucleus as well as in intermediate and interior locations. The more uniform distribution of B chromosomes in the Chinese raccoon dog may be the result of differences in their size, since 3 morphological types of Bs are distinguished in this species. Our results indicate that 3D positioning of B chromosomes in fibroblast nuclei of the 2 canid species is in agreement with the chromosome size-dependent theory.

  13. Analysis of solvent control and 1-nitrosopyrene-induced chinese hamster ovary cell mutants by southern and northern blots and the polymerase chain reaction

    SciTech Connect

    Newton, R.K.; Mittelstaedt, R.A.; Heflich, R.H. )

    1992-01-01

    1-Nitrosopyrene, a metabolite of the tumorigenic environmental pollutant 1-nitropyrene, is a potent mutagen at the hprt locus in Chinese hamster ovary (CHO) cells. A single DNA adduct, N-(deoxyguanosin-8-yl)-l-aminopyrene, is produced in CHO cells treated with 1-nitrosopyrene, and this adduct is found in rats and mice exposed to 1-nitropyrene. In this study, the structure of the hprt gene and the structure and amount of hprt mRNA were analyzed in 43 CHO cell mutants (16 isolated from solvent control cultures and 27 isolated from 1-nitrosopyrene-treated cultures). PstI- and BamHI-digested DNA from the mutants were subjected to Southern blot analysis using a hamster hprt cDNA probe. None of the 1-nitrosopyrene-induced mutants and only one of the control mutants displayed hybridization patterns that were different from the parent CHO cells. Northern blot analysis revealed that two control mutants had truncated hprt mRNAs, while 56% of the control mutants and 78% of the induced mutants had reduced levels of hprt mRNA. Using polymerase chain reaction amplification of cDNA synthesized from RNA, the hprt protein-coding region could be amplified from 23 of the 1-nitrosopyrene-induced mutants and 11 of the control mutants. The amplification products from 3 of the control mutants and 5 of the induced mutants were smaller than that found with RNA from parental CHO cells. These results indicate that the mutagenic DNA damage produced by 1-nitrosopyrene in CHO cells does not cause major structural alterations in the hprt gene and suggest that 1-nitrosopyrene acts as a point mutagen. A large number of both control and 1-nitrosopyrene-induced mutants exhibited a marked reduction in hprt mRNA concentration or possessed truncated mRNA hprt protein coding sequences. These alterations may contribute to the 6-thioguanine-resistant phenotype.

  14. LEC12 and LEC29 gain-of-function Chinese hamster ovary mutants reveal mechanisms for regulating VIM-2 antigen synthesis and E-selectin binding.

    PubMed

    Patnaik, Santosh K; Potvin, Barry; Stanley, Pamela

    2004-11-26

    LEC12 and LEC29 are two gain-of-function Chinese hamster ovary glycosylation mutants that express the Fut9 gene encoding alpha(1,3)fucosyltransferase IX (alpha(1,3) Fuc-TIX). Both mutants express the Lewis X (Le(X)) determinant Galbeta(1,4)[Fucalpha(1,3)]GlcNAc, and LEC12, but not LEC29 cells, also express the VIM-2 antigen SAalpha(2,3)-Galbeta(1,4)GlcNAcbeta(1,3)Galbeta(1,4)[Fucalpha(1,3)]GlcNAc. Here we show that LEC29 cells transfected with a Fut9 cDNA express VIM-2, and thus LEC29 cells synthesize appropriate acceptors to generate the VIM-2 epitope. Semiquantitative reverse transcription-PCR showed that LEC12 has 10- to 20-fold less Fut9 gene transcripts than LEC29. However, Western analysis revealed that LEC12 has approximately 20 times more Fut9 protein than LEC29. The latter finding was consistent with our previous observation that LEC12 has approximately 40 times more in vitro alpha(1,3)Fuc-T activity than LEC29. The basis for the difference in Fut9 protein levels was found to lie in sequence differences in the 5'-untranslated regions (5'-UTR) of LEC12 and LEC29 Fut9 gene transcripts. Whereas reporter assays with the respective 5'-UTR regions linked to luciferase did not indicate a reduced translation efficiency caused by the LEC29 5'-UTR, transfected full-length LEC29 Fut9 cDNA or in vitro-synthesized full-length LEC29 Fut9 RNA gave less Fut9 protein than similar constructs with a LEC12 5'-UTR. This difference appears to be largely responsible for the reduced alpha(1,3)Fuc-TIX activity and lack of VIM-2 expression of LEC29 cells. This could be of physiological relevance, because LEC29 and parent Chinese hamster ovary cells transiently expressing a Fut9 cDNA were able to bind mouse E-selectin, although they did not express sialyl-Le(X).

  15. Digital mRNA profiling of N-glycosylation gene expression in recombinant Chinese hamster ovary cells treated with sodium butyrate.

    PubMed

    Lee, Sang Min; Kim, Yeon-Gu; Lee, Eun Gyo; Lee, Gyun Min

    2014-02-10

    To understand the effects of sodium butyrate (NaBu) on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing Fc-fusion glycoprotein were subjected to 3mM NaBu. The addition of NaBu to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of the glycoprotein. Fifty-two N-glycosylation-related gene expressions were also assessed by the NanoString nCounter system, which can provide a direct digital readout using custom-designed color-coded probes. Among them, ten genes (ugp, slc35a2, ganc, man1a, man1c, mgat5a, st3gal5, glb1, neu1, and neu3) were up-regulated and three genes (b4galt2, st3gal3, and neu2) were down-regulated significantly. Altered expression patterns in st3gal3, neu1, and neu3, which have roles in the sialic acid biosynthesis pathway, correlated with reduced sialic acid content of the glycoprotein by NaBu. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of NaBu on N-glycosylation in rCHO cells.

  16. Phytosphingosine and C2-phytoceramide induce cell death and inhibit carbachol-stimulated phospholipase D activation in Chinese hamster ovary cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor.

    PubMed

    Lee, J S; Min, D S; Park, C; Park, C S; Cho, N J

    2001-06-15

    Sphingolipid metabolites, such as sphingosine and ceramide, are known to play important roles in cell proliferation, differentiation and apoptosis, but the physiological roles of phytosphingosine (PHS) and phytoceramide (PHC) are poorly understood. In this study we investigated the effects of PHS, C2-PHC (N-acetylPHS) and C6-PHC (N-hexanoylPHS) on cell growth and intracellular signalling enzymes. Treatment of Chinese hamster ovary (CHO) cells with PHS, C2-PHC or C6-PHC resulted in cell death in a time- and dose-dependent manner. C2-PHC induced internucleosomal DNA fragmentation, whereas PHS or C6-PHC had little if any effect on DNA fragmentation under the same experimental conditions. Both PHS and C2-PHC inhibited carbachol-induced activation of phospholipase D (PLD), but not of phospholipase C (PLC), in CHO cells expressing the Caenorhabditis elegans muscarinic acetylcholine receptor (mAChR). On the other hand, no significant effect of C6-PHC on PLD or PLC was observed. Our results show that PHS and C2-PHC exert strong cytotoxic effects on CHO cells and modulate the mAChR-mediated signal transduction pathway.

  17. Chinese hamster ovary cells cultured in low concentrations of fetal bovine serum: cloning efficiency, growth in suspension, and selection of drug-resistant mutant phenotypes

    SciTech Connect

    Carver, J.H.; Salazar, E.P.; Knize, M.G.

    1983-09-01

    Reducing serum concentrations in media provides a potential cost advantage. To determine whether such media could be used for applied mutagenesis assays, cloning efficiency and growth parameters in suspension of Chinese hamster ovary cells cultured were measured in reduced serum with or without additives (1 ..mu..g/ml insulin, 3 x 10/sup -7/ M linoleic acid, 1 x 10/sup -8/ M H/sub 2/SeO/sub 3/) or bovine serum albumin (BSA, 1% wt/vol). With the additives and less than or equal to 0.5% fetal bovine serum (FBS), Ham's F12 medium (without hypoxanthine and thymidine) was more optimal than alpha Eagle's minimum essential medium (MEM) (without ribosides and deoxyribosides) for low density cloning and high density suspension growth. The spontaneous frequency of azaadenine-resistant phenotypes (mutant at the aprt locus) in 1% FBS plus BSA was significantly lower than the frequency observed in 2% FBS plus BSA or 10% DFBS. Frequencies of spontaneous mutants resistant to thioguanine (hgprt locus) or fluorodeoxy-uridine (tk locus) were similar with 10% DFBS, 1% FBS plus BSA, or 2% FBS plus BSA. Compared to alpha MEM with 10% DFBS, frequencies of drug-resistant mutants induced by ethyl methanesulfonate or mitomycin C (MMC) were not significantly lower in alpha MEM with 2% FBS plus BSA; observed mutant frequencies induced by dimethylnitrosamine or benzo(a)pyrene seemed to be decreased at lower survival levels.

  18. Improved gene amplification by cell-cycle engineering combined with the Cre-loxP system in Chinese hamster ovary cells.

    PubMed

    Matsuyama, Rima; Tsutsui, Tomomi; Lee, Kyoung Ho; Onitsuka, Masayoshi; Omasa, Takeshi

    2015-12-01

    The dihydrofolate reductase gene amplification system is widely used in Chinese hamster ovary (CHO) cells for the industrial production of therapeutic proteins. To enhance the efficiency of conventional gene amplification systems, we previously presented a novel method using cell-cycle checkpoint engineering. Here, we constructed high-producing and stable cells by the conditional expression of mutant cell division cycle 25 homolog B (CDC25B) using the Cre-loxP system. A bispecific antibody-producing CHO DG44-derived cell line was transfected with floxed mutant CDC25B. After inducing gene amplification in the presence of 250 nM methotrexate, mutant CDC25B sequence was removed by Cre recombinase protein expression. Overexpression of the floxed mutant CDC25B significantly enhanced the efficiency of transgene amplification and productivity. Moreover, the specific production rate of the isolated clone CHO Cre-1 and Cre-2 were approximately 11-fold and 15-fold higher than that of mock-transfected clone CHO Mock-S. Chromosomal aneuploidy was increased by mutant CDC25B overexpression, but Cre-1 and Cre-2 did not show any changes in chromosome number during long-term cultivation, as is the case with CHO Mock-S. Our results suggest that high-producing and stable cells can be constructed by conditionally controlling a cell-cycle checkpoint integrated in conventional gene amplification systems. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units.

    PubMed

    Sasaki, Takayo; Ramanathan, Sunita; Okuno, Yukiko; Kumagai, Chiharu; Shaikh, Seemab S; Gilbert, David M

    2006-02-01

    Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.

  20. A novel regulatory element (E77) isolated from CHO‐K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells

    PubMed Central

    Kang, Shin‐Young; Kim, Yeon‐Gu; Kang, Seunghee; Lee, Hong Weon

    2016-01-01

    Abstract Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO‐K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO‐K1 genomic DNA fragments with a CMV promoter‐driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study. PMID:26762773

  1. Sp1 involvement in the 4beta-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells.

    PubMed

    Noé, V; Alemany, C; Nicolás, M; Ciudad, C J

    2001-06-01

    4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.

  2. Mapping of a locus correcting lack of phosphoribosylaminoimidazole carboxylase activity in Chinese hamster ovary cell Ade-D mutants to human chromosome 4.

    PubMed

    Barton, J W; Hart, I M; Patterson, D

    1991-02-01

    The human phosphoribosylaminoimidazole (AIR) carboxylase locus has been until this report one of the genes encoding purine biosynthetic enzymes that had not been assigned to an individual human chromosome. Characterization of Chinese hamster ovary (CHO) cell mutant Ade-D showed that the cell line was unable to produce IMP and accumulated AIR. CHO Ade-D cells were fused with normal human lymphocytes utilizing inactivated Sendai virus and the resulting hybrid cell lines were selected for purine prototrophy. Cytogenetic analysis showed a 100% concordance value for chromosome 4. Two of the isolated subclones contained only the long arm of chromosome 4 translocated onto a CHO chromosome, providing evidence for a regional assignment of the Ade-D gene to the long arm of chromosome 4. Two of the subclones containing chromosome 4 were subjected to the BrdU visible light segregation. All of the isolated purine auxotrophic cell lines showed a loss of the q arm of chromosome 4. The localization of the Ade-D locus to the long arm of chromosome 4 may reveal further clustering of the mammalian purine genes since the Ade-A locus has previously been regionally assigned to 4pter-q21.

  3. Assignment of the human MARS gene, encoding methioninyl-tRNA synthetase, to chromosome 12 using human X Chinese hamster cell hybrids.

    PubMed

    Cirullo, R E; Wasmuth, J J

    1984-05-01

    We have isolated interspecific somatic cell hybrids between a temperature-sensitive Chinese hamster ovary (CHO) cell methioninyl -tRNA synthetase mutant and human peripheral leukocytes. The hybrids were selected at 39 degrees C which requires the retention and expression of the human gene, MARS , which complements the defective CHO gene. In vitro heat-inactivation experiments on the methioninyl -tRNA synthetase activity in cell-free extracts from heat-resistant hybrids indicate that the human form of this enzyme and, therefore, the human MARS gene is present in hybrid cells. Cytogenetic analysis of three independent temperature-resistant hybrids revealed the presence of a single human chromosome, number 12. Two other independent hybrids examined contained human chromosome 12 as well as a second human chromosome. Electrophoretic analysis of extracts from hybrid cell lines for a human chromosome 12 marker isozyme, LDH-B, showed a pattern of heterotetrameric bands consistent with the presence of the human form of this enzyme in these cells. The correlation between the presence of the human form of methioninyl -tRNA synthetase and human chromosome 12 in temperature-resistant hybrids indicates that the human MARS locus is located on this chromosome.

  4. Relationship between Fluorescence Intensity of GFP and the Expression Level of Prestin in a Prestin-Expressing Chinese Hamster Ovary Cell Line

    NASA Astrophysics Data System (ADS)

    Iida, Koji; Nagaoka, Tomoyuki; Tsumoto, Kouhei; Ikeda, Katsuhisa; Kumagai, Izumi; Kobayashi, Toshimitsu; Wada, Hiroshi

    Outer hair cells (OHCs) in mammals can elongate and contract at frequencies up to 100kHz in response to changes in their membrane potential. The origin of this unique motility is the motor protein prestin, which is densely packed in the lateral membrane of the OHCs. In a previous work, we constructed a prestin-expressing cell line using Chinese hamster ovary (CHO) cells to obtain a stable supply of prestin. When we research prestin using constructed cells, it is necessary to estimate the expression level of prestin in the cells easily and non-invasively. As the prestin gene and a green fluorescent protein (GFP) gene were introduced into constructed cells using the same vector, the expression level of prestin and fluorescence intensity of GFP are possibly correlated. Since this correlation is not clear, however, in this study, we therefore investigated whether the expression level of prestin evaluated by patch-clamp recording and the fluorescence intensity of GFP obtained from fluorescence images are correlated or not. As a result, it was demonstrated that they were correlated. The expression level of prestin can therefore be evaluated by measuring the fluorescence intensity of GFP.

  5. Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap

    NASA Astrophysics Data System (ADS)

    Wei, Ming-Tzo; Yang, Kun-Ta; Karmenyan, Artahses; Chiou, Arthur

    2006-04-01

    We used a fiber-optical dual-beam trap (single-mode fiber, λ = 532nm, trapping power ~ 22mW, the distance between the two fiber end-faces = 125μm) to capture a Chinese hamster ovary (CHO) cell with a diameter of approximately 15μm and tracked its three-dimensional Brownian motion via a pair of orthogonal quadrant photodiodes. By analyzing the Brownian motion of the trapped CHO cell, we determined the force constants of the optical force field on the CHO cell to be kx=6.75 pN/μm, ky=5.53 pN/μm, kz=1.96 pN/μm, and kx=2.91 pN/μm, ky=2.7 pN/μm, kz=0.79 pN/μm, respectively, before and after the CHO cell was treated with latrunculin, a toxic drug known to disrupt the cytoskeleton of the cell.

  6. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins

    PubMed Central

    Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2016-01-01

    Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell. PMID:27271046

  7. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels.

    PubMed

    Strnad, Jure; Brinc, Matjaz; Spudić, Vatroslav; Jelnikar, Nadja; Mirnik, Lidija; Carman, Barbara; Kravanja, Zdravko

    2010-01-01

    This article describes the optimization of cultivation factor settings, that is the shaking rate and working volume in 50 mL spin tubes for a Chinese hamster ovary cell line expressing recombinant human alpha-erythropoietin, using a response D-optimal surface method. The main objectives of the research were, firstly, to determine a setting in which the product titer and product quality attributes in spin tubes are equivalent to those in 250 mL shake flasks in a seven day batch and, secondly, to find a setting in which the product titer is maximal. The model for product titer prediction as a function of shaking rate and working volume in the defined design space was successfully applied to the optimization of cultivation conditions in spin tubes for the tested cell line. Subsequently, validation experiments were carried out simultaneously in spin tubes, shake flasks and bench scale bioreactors to compare cell culture performance parameters such as growth, productivity and product quality attributes in the form of isoform profiles and glycan antennarity structures. The results of the experiments showed that similar cell culture performance and product quality could be achieved in spin tubes when compared to shake flasks. Additionally, bioreactor titers could be reproduced in spin tubes at high shaking rates and low working volumes, but with differing product quality. Cultivation at lower shaking rates in spin tubes and shake flasks produced a glycoprotein with a product quality slightly comparable to that from bioreactors, but with titers being only two thirds.

  8. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-05

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures.

  9. The Chinese Hamster Dihydrofolate Reductase Replication Origin Decision Point Follows Activation of Transcription and Suppresses Initiation of Replication within Transcription Units

    PubMed Central

    Sasaki, Takayo; Ramanathan, Sunita; Okuno, Yukiko; Kumagai, Chiharu; Shaikh, Seemab S.; Gilbert, David M.

    2006-01-01

    Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP. PMID:16428457

  10. Sustained productivity in recombinant Chinese Hamster Ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype

    PubMed Central

    2011-01-01

    Background The ability of mammalian cell lines to sustain cell specific productivity (Qp) over the full duration of bioprocess culture is a highly desirable phenotype, but the molecular basis for sustainable productivity has not been previously investigated in detail. In order to identify proteins that may be associated with a sustained productivity phenotype, we have conducted a proteomic profiling analysis of two matched pairs of monoclonal antibody-producing Chinese hamster ovary (CHO) cell lines that differ in their ability to sustain productivity over a 10 day fed-batch culture. Results Proteomic profiling of inherent differences between the two sets of comparators using 2D-DIGE (Difference Gel Electrophoresis) and LC-MS/MS resulted in the identification of 89 distinct differentially expressed proteins. Overlap comparisons between the two sets of cell line pairs identified 12 proteins (AKRIB8, ANXA1, ANXA4, EIF3I, G6PD, HSPA8, HSP90B1, HSPD1, NUDC, PGAM1, RUVBL1 and CNN3) that were differentially expressed in the same direction. Conclusion These proteins may have an important role in sustaining high productivity of recombinant protein over the duration of a fed-batch bioprocess culture. It is possible that many of these proteins could be useful for future approaches to successfully manipulate or engineer CHO cells in order to sustain productivity of recombinant protein. PMID:21781345

  11. Use of an antikinetochore antibody and DNA probes to measure aneuploidy induction in interphase human lymphocytes and Chinese hamster ovary cells

    SciTech Connect

    Eastmond, D.A.; Tucker, J.D.; Pinkel, D.

    1988-12-05

    Aneuploidy in germ cells is associated with birth defects, spontaneous abortions, and infertility, whereas in somatic cells aneuploidy may lead to cell death and carcinogenesis. The nonrandom numerical chromosomal changes that are often observed in tumors or transformed cells suggest that aneuploidy induction by chemicals may be involved in carcinogenesis. The identification of aneuploidy inducing agents (aneuploidogens) and studies into the mechanisms by which aneuploidy may be involved in carcinogenesis are currently limited in that standard cytogenetic techniques are time consuming, require highly skilled personnel and are prone to technical artifacts. Recent developments in immunology and molecular biology have resulted in new techniques which may allow simple and rapid identification of aneuploidogens. We report the development of two new approaches to determine the aneuploidy-inducing potential of chemicals. The first approach involves the induction of micronuclei in human lymphocytes and Chinese hamster ovary (CHO) cells and the use of an antikinetochore antibody to determine whether micronuclei contain centromeres---a condition indicating potential aneuploidy. The second approach involves the use of in situ hybridization with fluorescently labeled chromosome-specific DNA probes and the subsequent counting of the number of copies of that chromosome in the interphase nuclei of human lymphocytes. 8 refs., 1 fig., 1 tab.

  12. Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin.

    PubMed

    Kim, Sung Hyun; Lee, Gyun Min

    2007-02-01

    Lactate, one of the major waste products in mammalian cell culture, can inhibit cell growth and affect cellular metabolism at high concentrations. To reduce lactate formation, lactate dehydrogenase-A (LDH-A), an enzyme catalyzing the conversion of glucose-derived pyruvate to lactate, was down-regulated by an expression vector of small interfering RNAs (siRNA) in recombinant Chinese hamster ovary (rCHO) cells producing human thrombopoietin (hTPO). Three clones expressing low levels of LDH-A, determined by reverse transcription-PCR and an enzyme activity test, were established in addition to a negative control cell line. LDH-A activities in the three clones were decreased by 75-89%, compared with that of the control CHO cell line, demonstrating that the effect of siRNA is more significant than that of other traditional methods such as homologous recombination (30%) and antisense mRNA (29%). The specific glucose consumption rates of the three clones were reduced to 54-87% when compared to the control cell line. Similarly, the specific lactate production rates were reduced to 45-79% of the control cell line level. In addition, reduction of LDH-A did not impair either cell proliferation or hTPO productivity. Taken together, these results show that the lactate formation rate in rCHO cell culture can be efficiently reduced through the down-regulation of LDH via siRNA.

  13. The Chinese hamster Alu-equivalent sequence: a conserved highly repetitious, interspersed deoxyribonucleic acid sequence in mammals has a structure suggestive of a transposable element.

    PubMed Central

    Haynes, S R; Toomey, T P; Leinwand, L; Jelinek, W R

    1981-01-01

    A consensus sequence has been determined for a major interspersed deoxyribonucleic acid repeat in the genome of Chinese hamster ovary cells (CHO cells). This sequence is extensively homologous to (i) the human Alu sequence (P. L. Deininger et al., J. Mol. Biol., in press), (ii) the mouse B1 interspersed repetitious sequence (Krayev et al., Nucleic Acids Res. 8:1201-1215, 1980) (iii) an interspersed repetitious sequence from African green monkey deoxyribonucleic acid (Dhruva et al., Proc. Natl. Acad. Sci. U.S.A. 77:4514-4518, 1980) and (iv) the CHO and mouse 4.5S ribonucleic acid (this report; F. Harada and N. Kato, Nucleic Acids Res. 8:1273-1285, 1980). Because the CHO consensus sequence shows significant homology to the human Alu sequence it is termed the CHO Alu-equivalent sequence. A conserved structure surrounding CHO Alu-equivalent family members can be recognized. It is similar to that surrounding the human Alu and the mouse B1 sequences, and is represented as follows: direct repeat-CHO-Alu-A-rich sequence-direct repeat. A composite interspersed repetitious sequence has been identified. Its structure is represented as follows: direct repeat-residue 47 to 107 of CHO-Alu-non-Alu repetitious sequence-A-rich sequence-direct repeat. Because the Alu flanking sequences resemble those that flank known transposable elements, we think it likely that the Alu sequence dispersed throughout the mammalian genome by transposition. Images PMID:9279371

  14. Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog A in Chinese hamster ovary cells.

    PubMed

    Lee, Kyoung Ho; Tsutsui, Tomomi; Honda, Kohsuke; Asano, Ryutaro; Kumagai, Izumi; Ohtake, Hisao; Omasa, Takeshi

    2013-12-01

    To improve the efficiency of conventional gene amplification systems, the effect of cell cycle modification during the gene amplification process on IgG production was investigated in Chinese hamster ovary (CHO) cells. The full-length cDNA of CHO cell division cycle 25 homolog A (Cdc25A) was introduced into CHO DG44 cells and the effects of CDC25A overexpression on the cell cycle, transgene copy number and IgG productivity were examined. Both wild-type and mutated CDC25A-overexpressing CHO cells showed a rapid increase in transgene copy number compared with mock cells during the gene amplification process, in both cell pools and individual clones. High-producing clones were obtained with high frequency in CDC25A-overexpressing cell pools. The specific production rate of the isolated clone CHO SD-S23 was up to 2.9-fold higher than that of mock cells in the presence of 250 nM methotrexate (MTX). Cell cycle analysis revealed that the G2 to M phase transition rate was increased ∼1.5-fold in CDC25A-overexpressing CHO cells under MTX treatment. Our results show the improvement of conventional gene amplification systems via cell cycle engineering at an early stage of cell line development.

  15. The response of Chinese hamster V79-379A cells exposed to negative Pi-mesons: Evidence that increased radioresistance is dependent on linear energy transfer

    SciTech Connect

    Marples, B.; Zhou, H.; Skov, K.A.; Lam, G.K.Y.

    1994-04-01

    Chinese hamster V79-379A cells exhibit low-dose hypersensitivity to 250 kVp X rays followed by an increased radioresistant response over the dose range 0.5-1 Gy. This phenomenon is not seen with neutrons. It was therefore postulated the induction of radioresistance might develop as a response to a cellular event(s) which predominates after low- and not high-LET radiation. To test this hypothesis, we measured the survival response of V79-379A cells exposed to pions. Clonogenic survival was assessed for cells irradiated in the Bragg peak (35 keV/{mu}m) and plateau region (10-20 keV/{mu}m) of the beam, using an automated microscope (DMIPS cell analyzer). As expected, peak pions were found to be more effective per unit of dose at killing cells than plateau pions. The survival curve for cells irradiated in the plateau of the pion beam was found to incorporate a region of low-dose hypersensitivity and increased radioresistance, the effective D{sub 0} was dose-dependent, ranging from 3.5-5. This was not seen with peak pions, where the effective D{sub 0} was, on average, constant reflecting a single-exponential survival curve. Fitting the data with an induced repair model indicates that the phenomenon of increased radioresistance is almost certainly dependent on LET. 23 refs., 2 figs., 1 tab.

  16. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases.

    PubMed

    Carlage, Tyler; Kshirsagar, Rashmi; Zang, Li; Janakiraman, Vijay; Hincapie, Marina; Lyubarskaya, Yelena; Weiskopf, Andy; Hancock, William S

    2012-01-01

    Mammalian cell cultures used for biopharmaceutical production undergo various dynamic biological changes over time, including the transition of cells from an exponential growth phase to a stationary phase during cell culture. To better understand the dynamic aspects of cell culture, a quantitative proteomics approach was used to identify dynamic trends in protein expression over the course of a Chinese hamster ovary (CHO) cell culture for the production of a recombinant monoclonal antibody and overexpressing the antiapoptotic gene Bcl-xl. Samples were analyzed using a method incorporating iTRAQ labeling, two-dimensional LC/MS, and linear regression calculations to identify significant dynamic trends in protein abundance. Using this approach, 59 proteins were identified with significant temporal changes in expression. Pathway analysis tools were used to identify a putative network of proteins associated with cell growth and apoptosis. Among the differentially expressed proteins were molecular chaperones and isomerases, such as GRP78 and PDI, and reported cell growth markers MCM2 and MCM5. In addition, two proteins with growth-regulating properties, transglutaminase-2 and clusterin, were identified. These proteins are associated with tumor proliferation and apoptosis and were observed to be expressed at relatively high levels during stationary phase, which was confirmed by western blotting. The proteomic methodology described here provides a dynamic view of protein expression throughout a CHO fed-batch cell culture, which may be useful for further elucidating the biological processes driving mammalian cell culture performance.

  17. Effects of agonist efficacy on desensitization of phosphoinositide hydrolysis mediated by m1 and m3 muscarinic receptors expressed in Chinese hamster ovary cells

    SciTech Connect

    Hu, J.; Wang, S.Z.; el-Fakahany, E.E. )

    1991-06-01

    Muscarinic receptor agonist-induced desensitization of phosphoinositide (PI) hydrolysis and loss of receptors were studied in Chinese hamster ovary (CHO) cells transfected with the m1 and m3 muscarinic receptor genes. Long-term exposure to the full agonist carbamylcholine (CBC) resulted in a time-dependent attenuation of the maximal PI response and a decrease in agonist potency. This desensitization was accompanied by a parallel loss of maximal ligand binding without an alteration of the binding affinity. The time course of both receptor desensitization and down-regulation was similar in m1 and m3 CHO cells. The PI response to the partial agonist McN-A-343 (McN) in m1 cells was more sensitive to desensitization by CBC than the response to the latter agonist, and this desensitization was faster than receptor down-regulation. Desensitization of the PI response to McN was reflected as a decrease in the maximal response without a marked change in potency. McN induced slow desensitization of the PI response to CBC but a much faster desensitization of its own response. Our data provide evidence that although muscarinic agonist-induced desensitization of PI hydrolysis in CHO cells is due mainly to loss of receptors, there are other important factors which play a role in this process, e.g., receptor-effector uncoupling. The relative contribution of these different mechanisms depends on the efficacy of the agonists used for the receptor desensitization and activation steps.

  18. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment.

    PubMed

    Lee, Jae Seong; Grav, Lise Marie; Pedersen, Lasse Ebdrup; Lee, Gyun Min; Kildegaard, Helene Faustrup

    2016-11-01

    Targeted gene integration into site-specific loci can be achieved in Chinese hamster ovary (CHO) cells via CRISPR/Cas9 genome editing technology and the homology-directed repair (HDR) pathway. The low efficiency of HDR often requires antibiotic selection, which limits targeted integration of multiple genes at multiple sites. To improve HDR-mediated targeted integration, while avoiding the use of selection markers, chemical treatment for increased HDR, and fluorescent enrichment of genome-edited cells was assessed in CHO cells. Chemical treatment did not improve HDR-mediated targeted integration. In contrast, fluorescent markers in Cas9 and donor constructs enable FACS enrichment, resulting in a threefold increase in the number of cells with HDR-mediated genome editing. Combined with this enrichment method, large transgenes encoding model proteins (including an antibody) were successfully targeted integrated. This approach provides a simple and fast strategy for targeted generation of stable CHO production cell lines in a rational way. Biotechnol. Bioeng. 2016;113: 2518-2523. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Evaluation of two public genome references for Chinese hamster ovary cells in the context of RNA-seq based gene expression analysis.

    PubMed

    Chen, Chun; Le, Huong; Goudar, Chetan T

    2017-03-15

    RNA-Seq is a powerful transcriptomics tool for mammalian cell culture process development. Successful RNA-Seq data analysis requires a high quality reference for read mapping and gene expression quantification. Currently, there are two public genome references for Chinese hamster ovary (CHO) cells, the predominant mammalian cell line in the biopharmaceutical industry. In this study, we compared these two references by analyzing 60 RNA-Seq samples from a variety of CHO cell culture conditions. Among the 20,891 common genes in both references, we observed that 31.5% have more than 7.1% quantification differences, implying gene definition differences in the two references. We propose a framework to quantify this difference using two metrics, Consistency and Stringency, which account for the average quantification difference between the two references over all samples, and the sample-specific effect on the quantification result, respectively. These two metrics can be used to identify potential genes for future gene model improvement and to understand the reliability of differentially expressed genes identified by RNA-Seq data analysis. Before a more comprehensive genome reference for CHO cells emerges, the strategy proposed in this study can enable a more robust transcriptome analysis for CHO cell RNA-Seq data. This article is protected by copyright. All rights reserved.

  20. Ability of four potential topoisomerase II inhibitors to enhance the cytotoxicity of cis-diamminedichloroplatinum (II) in Chinese hamster ovary cells and in an epipodophyllotoxin-resistant subline.

    PubMed

    Eder, J P; Teicher, B A; Holden, S A; Senator, L; Cathcart, K N; Schnipper, L E

    1990-01-01

    Four drugs known to interact with topoisomerase II were assessed for their ability to enhance the cytotoxicity of cis-diamminedichloroplatinum(II) (CDDP) in Chinese hamster ovary (CHO) cell lines sensitive and resistant to VM-26. The combination treatments were analyzed by isobologram methodology. On 24 h exposure, there was no significant difference in the cytotoxicity of novobiocin or ciprofloxacin toward either cell line. The resistant cells were approximately 9-fold more resistant to 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and approximately 170-fold more resistant to etoposide after a 24-h exposure. The combination of novobiocin and cisplatin produced greater than additive cell kill over the entire dose range of cisplatin tested in both cell lines. m-AMSA and CDDP produced cell kill that fell within the envelope of additivity. Etoposide and CDDP resulted in cytotoxicity that was slightly greater than additive at low CDDP concentrations and additive at the highest concentration of CDDP tested in the parental cell line and was slightly greater than additive in the resistant cell line. Ciprofloxacin and CDDP, like novobiocin, resulted in greater than additive cell kill in both cell lines. The enhancement of CDDP cytotoxicity by novobiocin that was seen in exponentially growing cells was lost in stationary-phase cultures. In these studies, novobiocin and, to a lesser degree, ciprofloxacin produced greater than additive cell kill in combination with CDDP in parental and epipodophyllotoxin-resistant CHO cells.

  1. Differential involvement of cell surface sialic acid residues in wheat germ agglutinin binding to parental and wheat germ agglutinin-resistant Chinese hamster ovary cells

    PubMed Central

    1980-01-01

    Two Chinese hamster ovary (CHO) cell mutants selected for resistance to wheat germ agglutinin (WGA) have been shown to exhibit defective sialylation of membrane glycoproteins and a membrane glycolipid, GM3. The mutants (termed WgaRII and WgaRIII) have been previously shown to belong to different genetic complementation groups and to exhibit different WGA-binding abilities. These mutants and a WGA-resistant CHO cell mutant termed WgaRI (which also possesses a surface sialylation defect arising from a deficient N-acetylglucosaminyltransferase activity), have enabled us to investigate the role of sialic acid in WGA binding at the cell surface. Scatchard plots of the binding of 125I- WGA (1 ng/ml to 1 mg/ml) to parental and WgaR CHO cells before and after a brief treatment with neuraminidase provide evidence for several different groups of sialic acid residues at the CHO cell surface which may be distinquished by their differential involvement in WGA binding to CHO cells. PMID:7364875

  2. The noncompetitive antagonism of histamine H1 receptors expressed in Chinese hamster ovary cells by olopatadine hydrochloride: its potency and molecular mechanism.

    PubMed

    Matsumoto, Yuichi; Funahashi, Jun; Mori, Kiyotoshi; Hayashi, Kozue; Yano, Hiroshi

    2008-01-01

    Calcium responses to various concentrations of histamine were monitored in Chinese hamster ovary cells stably expressing the human histamine H(1) receptor. The effects of various histamine H(1) receptor antagonists on the dose-response curve for histamine were evaluated. Olopatadine hydrochloride (olopatadine) inhibited the histamine-induced maximum response (pD(2)': 7.5) but had insignificant effects on histamine EC(50) values. This noncompetitive property exhibited by olopatadine, which was also observed in human umbilical vein endothelial cells, was the most striking among the antihistamines tested in this study. The geometrical isomer of olopatadine (E-isomer), which had a similar binding affinity to the histamine H(1) receptor as olopatadine, showed a mixed antagonistic profile (competitive and noncompetitive). These results indicate that the geometry around the double bond in the dimethylaminopropylidene group is critical for the potent noncompetitive property of olopatadine. Furthermore, binding mode analyses suggest that the protonated amine group in the dimethylaminopropylidene moiety of olopatadine forms an ionic bond with Glu 181 that is present in the second extracellular loop of the histamine H(1) receptor, whereas the amine group of the E-isomer does not. The second extracellular loop in aminergic G-protein-coupled receptors contributes to ligand binding and therefore the noncompetitive property of olopatadine may be explained by the interaction with Glu 181. Copyright 2008 S. Karger AG, Basel.

  3. Cytotoxicity and mutagenicity of vapor-phase pollutants in rat lung epithelial cells and Chinese hamster ovary cells grown on collagen gels

    SciTech Connect

    Zamora, P.O.; Benson, J.M.; Marshall, T.C.; Mokler, B.V.; Li, A.P.; Dahl, A.R.; Brooks, A.L.; McClellan, R.O.

    1983-01-01

    Lung epithelial cell (cell line designated LEC) and Chinese hamster ovary (CHO) cells were grown on hydrated collagen gels and exposed directly to toxic vapor-phase pollutants. The cells were exposed to graded concentrations of phenol, formaldehyde, a volatile fraction of process stream material from an experimental coal gasifier, and the nonparticulate, vapor phase of diesel engine exhaust. During exposures, the cells were maintained at an air/collagen interface by removing the medium overlying the hydrated collagen gel. Morphological changes indicative of cell retraction were found in LEC cell cultures exposed to phenol, formaldehyde, or diesel exhaust. Damage following exposure to the toxicants was quantitated in LEC and CHO cells by Trypan blue dye exclusion, a measure of plasma membrane integrity. Clone-forming ability was also used to measure cell survival in CHO cells. When measured by Trypan blue dye exclusion, phenol (EC50 = 2.1 mg/l) caused membrane damage to LEC cells but not CHO cells, while formaldehyde (EC50 = 31 and 42 ..mu..g/l for LEC and CHO, respectively) and diesel exhaust (EC50 = 11 and 29% of tailpipe exhaust in LEC and CHO cells, respectively) caused damage to both cell types. No cytotoxicity was observed in LEC or CHO cells exposed to the fraction from the coal gasifier. Essentially no mutagenic activity was associated with the exposure of CHO cells to formaldehyde or the vapor phase of diesel exhaust. Mutagenic activity was found in CHO cells exposed to ethylene oxide, the positive control.

  4. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    SciTech Connect

    Jones, S.B.; Halenda, S.P.; Bylund, D.B. )

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipase A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.

  5. Potentiation of DNA-reactive antineoplastic agents and protection against S-phase-specific agents by anguidine in Chinese hamster ovary cells.

    PubMed

    Hromas, R; Barlogie, B; Swartzendruber, D; Drewinko, B

    1983-07-01

    Anguidine, a protein synthesis inhibitor, has been shown to induce a reversible cell cycle arrest in exponentially growing Chinese hamster ovary cells. The effect of pretreatment with anguidine on the cytotoxicity of subsequently administered various chemotherapeutic agents, hyperthermia, and radiation was investigated. We found that anguidine greatly potentiated the cytotoxic activity of cis-dichlorodiammineplatinum(II) and melphalan by abolishing the initial shoulder and steepening the subsequent exponential portion of the survival curves. Bleomycin-induced cell kill was also potentiated by anguidine pretreatment but to a lesser extent. However, anguidine pretreatment did not substantially alter radiation cytotoxicity. In contrast, anguidine markedly reduced the lethal effect of hydroxyurea, 5-fluorouracil, and hyperthermia, three modalities with S-phase activity. To investigate whether both anguidine-induced potentiation and protection of cells by different antitumor agents were due to its induction of complete suspension of cycle traverse, experiments were also conducted with plateau-phase cultures. Whereas anguidine potentiated cis-dichlorodiammineplatinum(II) cytotoxicity in an identical fashion as noted in exponentially growing cells, its protective effect against lethal damage from Adriamycin was absent. Thus, it appears that the two opposite effects of anguidine modification of cell kill by cytotoxic agents (protection and potentiation) come about by two different mechanisms, with cell cycle arrest underlying cytoprotection and the mechanism of synergistic toxicity remaining obscure.

  6. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH-dependent manner

    SciTech Connect

    Borys, M.C.; Linzer, D.I.H.; Papoutsakis, E.T. )

    1994-03-15

    The N-linked glycosylation of the recombinant protein mouse placental lactogen-I (mPL-I) expressed by Chinese hamster ovary (CHO) cells under nongrowth conditions was inhibited by increasing levels of ammonium chloride in a serum-free, protein expression medium. The effect of ammonia on glycosylation was dependent on the extracellular pH (pH[sub e]). In media containing 0 and 9 mM ammonium chloride, the percentage of the most heavily glycosylated forms of secreted mPL-I decreased from ca. 90% to ca. 25% at pH[sub e] 8.0, and from ca. 90% to ca. 65% at pH[sub e] 7.6, respectively. However, at pH[sub e] 7.2, the most heavily glycosylated forms of secreted mPL-I decreased from ca. 90% to ca. 80% in media containing 0 and 9 mM ammonium chloride, respectively. Inhibition of mPL-I glycosylation was found to correlate with the calculated concentration of the ammonia species. Control experiments showed that the ammonia species. Control experiments showed that the ammonia effect on mPL-I glycosylation could not be attributed to increased chloride concentration or osmolarity, or to extracellular events after secretion of the recombinant protein into the supernatant. Ammonium chloride, inhibited the expression rate of mPL-I by CHO cells at low pH[sub e].

  7. Induction of Thioguanine- and Ouabain-Resistant Mutants and Single-Strand Breaks in the DNA of Chinese Hamster Ovary Cells by 3H-Thymidine

    PubMed Central

    Cleaver, James E.

    1977-01-01

    Cultured Chinese hamster cells were labeled with 6-3H-thymidine or 5-methyl-3H-thymidine and allowed to accumulate damage from 3H decays for various periods of time while frozen. The frequencies of cells resistant to 6-thioguanine or ouabain and the amount of DNA damage (i.e., number of single-strand breaks) were determined and compared with the mutation frequencies resulting from X and ultraviolet light irradiation. Whereas 3H decays and X rays made only 6-thioguanine-resistant mutants, ultraviolet light made both 6-thioguanine- and ouabain-resistant mutants. 3H decays originating at the 6 position were two to three times as effective as decays at the 5-methyl position in making drug-resistant mutants, but decays at both sites were equally effective in making single-strand breaks. Mutants and strand breaks produced by beta irradiation of the nucleus probably are the same irrespective of the site of the decay in thymine; these results indicate that the local transmutation effects of 3H decay produce more mutations when they occur at the 6 position than at the 5-methyl position. PMID:914028

  8. Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: comparison of results for 22 compounds in two laboratories

    SciTech Connect

    Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E.

    1985-01-01

    A major problem of cytogenetics testing in mammalian cells is lack of agreement of results among laboratories. The objective of this study was to develop a sensitive in vitro test protocol that was applicable to large-scale chemical screening and yielded comparable results in two laboratories. The authors used sister chromatid exchange (SEC) and chromosome aberration (CAb) tests in Chinese hamster ovary (CHO) cells. Five clastogens were tested in the first two-laboratory comparison: mitomycin-C, triethylenemelamine, N-methyl-N'-nitro-N-nitrosoguanidine, cyclophosphamide, and benzo(..cap alpha..)pyrene. There was quite good agreement between laboratories. Seventeen compounds were then tested blind in the two laboratories. As testing proceeded, some discrepancies occurred between the laboratories, and the protocol was modified in attempts to improve the resolution of marginal responses and make dose selection more consistent. This protocol gave comparable results in the two laboratories in many cases and by testing up to a maximum dose, limited by solubility and/or toxicity, should detect a high proportion of clastogens and SCE inducers.

  9. Effects of radiofrequency radiation and simultaneous exposure with mitomycin C on the frequency of sister chromatid exchanges in Chinese hamster ovary cells

    SciTech Connect

    Ciaravino, V.; Meltz, M.L.; Erwin, D.N.

    1987-01-01

    Chinese hamster ovary (CHO) cells were exposed for 2 hr with and without mitomycin C (MMC) to pulsed wave radiofrequency radiation (RFR) at 2450 MHz. The repetition rate of 25,000 pulses per sec (pps), and exposure geometry used, resulted in a specific absorption rate (SAR) of 33.8 W/kg. The following exposure regimens were used: 1) a 37 C water bath control; 2) a water bath temperature control (TC) in which the continuously monitored medium temperature closely followed teh temperature rise in the RFR-exposed flasks; and 3) the RFR-exposed cells in a water bath set at 37 C prior to exposure. RFR exposure resulted in a maximum cell culture medium temperature of 39.2 C. In the absence of MMC, there was no significant increase in sister chromatid exchange (SCE) in the RFR-exposed or TC groups over that of teh 37 C control. When a simultaneous treatment of RFR and MMC occurred there was no statistical difference in SCE frequency from that caused by chemical treatment alone.

  10. Effects of radiofrequency radiation and simultaneous exposure with mitomycin C on the frequency of sister chromatid exchanges in Chinese hamster ovary cells

    SciTech Connect

    Ciaravino, V.; Meltz, M.L.; Erwin, D.N.

    1987-01-01

    Chinese hamster ovary (CHO) cells were exposed for 2 hr with and without mitomycin C (MMC) (1 X 10(-8)M) to pulsed wave radiofrequency radiation (RFR) at 2450 MHz. The repetition rate of 25,000 pulses per sec (pps), pulse width of 10 microseconds, and exposure geometry used, resulted in a specific absorption rate (SAR) of 33.8 W/kg. The following exposure regimens were used: a 37 degrees C water bath control; a water bath temperature control (TC) in which the continuously monitored medium temperature closely followed the temperature rise in the RFR-exposed flasks; and the RFR-exposed cells in a water bath set at 37 degrees C prior to exposure. RFR exposure resulted in a maximum cell culture medium temperature of 39.2 degrees C. In the absence of MMC, there was no significant increase in sister chromatid exchange (SCE) in the RFR-exposed or TC groups over that of the 37 degrees C control. When a simultaneous treatment of RFR and MMC occurred there was no statistical difference in SCE frequency from that caused by chemical treatment alone.

  11. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells.

    PubMed

    Ballardin, Michela; Tusa, Ignazia; Fontana, Nunzia; Monorchio, Agostino; Pelletti, Chiara; Rogovich, Alessandro; Barale, Roberto; Scarpato, Roberto

    2011-11-01

    The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.

  12. High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture.

    PubMed

    Kim, Bong Gyun; Park, Hong Woo

    2016-03-01

    Effects of high ZnSO4·7H2O supplementation on cell growth and monoclonal antibody (mAb) production in chemically defined suspension cultures of recombinant Chinese hamster ovary (rCHO) DG44 cells were examined. The supplementation of ZnSO4·7H2O up to 120 μM gradually increased specific mAb production rate of rCHO DG44 cells in the early growth phase (0-4 days of culture). The ZnSO4·7H2O concentration for enhancing mAb production without any cytotoxic effects on cell growth was 30-60 μM. In addition of 60 μM ZnSO4·7H2O to in-house protein-free medium and in-house chemically defined medium, mAb production was increased 2.0-fold and 6.5-fold, respectively. Moreover, addition of ZnSO4·7H2O to three kinds of commercial chemically defined media yielded a greater than 1.2-fold enhancement of mAb production. These data indicate that simple supplementation of a relatively high zinc ion concentration to cell culture media without significant changes of rCHO DG44 cell culture process can be useful for achieving high production of mAb.

  13. Engineering the cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s genes.

    PubMed

    Rahimpour, Azam; Vaziri, Behrouz; Moazzami, Reza; Nematollahi, Leila; Barkhordari, Farzaneh; Kokabee, Leila; Adeli, Ahmad; Mahboudi, Fereidoun

    2013-08-01

    Cell line development is the most critical and also the most time-consuming step in the production of recombinant therapeutic proteins. In this regard, a variety of vector and cell engineering strategies have been developed for generating high-producing mammalian cells; however, the cell line engineering approach seems to show various results on different recombinant protein producer cells. In order to improve the secretory capacity of a recombinant tissue plasminogen activator (t-PA)-producing Chinese hamster ovary (CHO) cell line, we developed cell line engineering approaches based on the ceramide transfer protein (CERT) and X-box binding protein 1 (XBP1) genes. For this purpose, CERT S132A, a mutant form of CERT that is resistant to phosphorylation, and XBP1s were overexpressed in a recombinant t-PA-producing CHO cell line. Overexpression of CERT S132A increased the specific productivity of t-PA-producing CHO cells up to 35%. In contrast, the heterologous expression of XBP1s did not affect the t-PA expression rate. Our results suggest that CERTS132A- based secretion engineering could be an effective strategy for enhancing recombinant t- PA production in CHO cells.

  14. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  15. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells.

    PubMed

    Kang, Shin-Young; Kim, Yeon-Gu; Kang, Seunghee; Lee, Hong Weon; Lee, Eun Gyo

    2016-05-01

    Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO-K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO-K1 genomic DNA fragments with a CMV promoter-driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study.

  16. Detection of a deuterium isotope effect in di- and trisubstituted alkylphenylnitrosoureas. An SCE study in Chinese hamster V79-E cells

    SciTech Connect

    Thust, R.; Mendel, J.; Bach, B.; Schwarz, H.

    1985-06-01

    The genotoxicity of 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (C1-MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU) and their derivatives substituted by deuterium in different positions was studied using sister chromatid exchange (SCE) induction in Chinese hamster V79-E cells. Deuterium substitution in the 1-methyl group of MPNU (MPNU-d3) and C1-MPNU (C1-MPNU-d3) diminished the SCE-inducing capacity by 20-30% and by 30-40% in DMPNU (DMPNU-d3B). There was no altered SCE activity detected when the phenyl group of MPNU (MPNU-d5) or the 3-methyl group of DMPNU (DMPNU-d3A) was deuterium labeled. No isotope effect was detected in deuterated EPNU derivatives, presumably due to the instability of these compounds. It is surmised that the easier delocalization of the positive charge in the deuterated alkyl diazonium ion causes a diminished reactivity and therefore influences the type and amount of DNA alkylation. Furthermore, the experiments with DMPNU and its derivatives revealed that, in contrast to mono- and disubstituted nitrosoureas, the biological activities of these very stable trisubstituted nitrosoureas are strongly influenced by a serum factor in the culture fluid.

  17. Molecular characterization of X-ray-induced mutations at the HPRT locus in plateau-phase Chinese hamster ovary cells.

    PubMed

    Morgan, T L; Fleck, E W; Poston, K A; Denovan, B A; Newman, C N; Rossiter, B J; Miller, J H

    1990-10-01

    CHO-K1 cells were irradiated in plateau phase to determine the effect of dose, dose fractionation, and delayed replating on the type, location and frequency of mutations induced by 250 kVp X-rays at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus. Independent HPRT-deficient cell lines were isolated from each group for Southern blot analysis using a hamster HPRT cDNA probe. When compared with irradiation with 4 Gy and immediate replating, dose fractionation (2 Gy + 24 h + 2 Gy) the entire gene. Since an increase in survival was noted under these conditions, these data suggest that repair of sublethal and potentially lethal damage acts equally on all premutagenic lesions, regardless of type or location. Differences in the mutation spectrum were noted when cells were irradiated at 2 Gy and replated immediately. The location of the deletion breakpoints was determined in 15 mutants showing partial loss of the HPRT locus. In 12 of these cell lines one or both of the breakpoints appeared to be located near the center of the gene, indicating a nonrandom distribution of mutations. These results indicate that damage induced by ionizing radiation results in a nonrandom distribution of genetic damage, suggesting that certain regions of the genome may be acutely sensitive to the mutagenic effects of ionizing radiation.

  18. Identification of shed proteins from Chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

    SciTech Connect

    Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.; Adkins, Joshua N.; Hunter, Joel C.; Miller, John H.; Springer, David L.

    2005-05-01

    The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they have been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.

  19. Prognostic significance of fibroblast growth factor receptor 4 polymorphisms on biochemical recurrence after radical prostatectomy in a Chinese population

    PubMed Central

    Chen, Luyao; Lei, Zhengwei; Ma, Xin; Huang, Qingbo; Zhang, Xu; Zhang, Yong; Hao, Peng; Yang, Minggang; Zhao, Xuetao; Chen, Jun; Liu, Gongxue; Zheng, Tao

    2016-01-01

    Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane receptor with ligand-induced tyrosine kinase activity and is involved in various biological and pathological processes. Several polymorphisms of FGFR4 are associated with the incidence and mortality of numerous cancers, including prostate cancer. In this study, we investigated whether the polymorphisms of FGFR4 influence the biochemical recurrence of prostate cancer in Chinese men after radical prostatectomy. Three common polymorphisms (rs1966265, rs2011077, and rs351855) of FGFR4 were genotyped from 346 patients with prostate cancer by using the Sequenom MassARRAY system. Kaplan–Meier curves and Cox proportional hazard models were used for survival analysis. Results showed biochemical recurrence (BCR) free survival was significantly affected by the genotypes of rs351855 but not influenced by rs1966265 and rs2011077. After adjusting for other variables in multivariable analysis, patients with rs351855 AA/AG genotypes showed significantly worse BCR-free survival than those with the GG genotype (HR = 1.873; 95% CI, 1.209–2.901; P = 0.005). Hence, FGFR4 rs351855 could be a novel independent prognostic factor of BCR after radical prostatectomy in the Chinese population. This functional polymorphism may also provide a basis for surveillance programs. Additional large-scale studies must be performed to validate the significance of this polymorphism in prostate cancer. PMID:27640814

  20. Two distinct mechanisms of fibroblast adhesion

    NASA Astrophysics Data System (ADS)

    Harper, P. A.; Juliano, R. L.

    1981-03-01

    The adhesion of cells to the connective tissue matrix is commonly thought to be governed by fibronectin, a pericellular glycoprotein with binding sites for cell surfaces, collagen and glycosaminoglycans. Here we report evidence that Chinese hamster ovary (CHO) cells possess an alternative mechanism for adhesion which is independent of fibronectin. Cells of a variant CHO clone called ADVF11 are defective in their ability to adhere to fibronectin-coated substrata, but can adhere to a substratum coated with SAM (substrate-attached material), a pericellular material produced by fibroblasts. The adhesion of wild-type CHO cells to fibronectin-coated substrata and adhesion of ADVF11 cells to SAM-coated substrata are differentially sensitive to proteolytic treatment. This suggests that there are two distinct adhesion mechanisms for CHO cells, only one of which is dependent on fibronectin.

  1. Understanding of altered N-glycosylation-related gene expression in recombinant Chinese hamster ovary cells subjected to elevated ammonium concentration by digital mRNA counting.

    PubMed

    Ha, Tae Kwang; Kim, Yeon-Gu; Lee, Gyun Min

    2015-08-01

    To understand the effects of ammonium on N-glycosylation, recombinant Chinese hamster ovary (rCHO) cells that produce the Fc-fusion protein were cultivated in serum-free suspension cultures with 10 mM ammonium addition. The addition of ammonium to the cultures reduced the relative proportion of acidic isoforms and sialic acid content of an Fc-fusion protein. Fifty two N-glycosylation-related gene expressions were assessed by the NanoString nCounter system, which provides a digital readout using custom-designed color-coded probes. Among these queried genes, thirteen genes (gale, nans, gpi, man2a1, b4galt5, b4galt7, st3gal2, st3gal5, glb1, hexa, hexb, neu1, and neu3) were up-regulated over 1.5 times in the culture with ammonium addition after 5 days of culture; however, none of the 54 genes were significantly different after 3 days of culture. In particular, the expression level of neu1 (sialidase-1) and neu3 (sialidase-3), which play a role in reduction of sialylation, increased over 2 times. Likewise, the protein expression levels of sialidase-1 and sialidase-3 determined by Western blot analysis were also increased significantly in the culture with ammonium addition. Transient transfection of neu-1 or neu3-targeted siRNAs significantly improved the sialic acid content of the Fc-fusion protein in the culture with ammonium addition, indicating that the decreased sialic acid content was in part due to the increased expression level of sialidase. Taken together, the results obtained in this study provide a better understanding of the detrimental effect of ammonium on N-glycosylation, especially sialylation, in rCHO cells.

  2. Phenylpropanoids from cinnamon bark reduced β-amyloid production by the inhibition of β-secretase in Chinese hamster ovarian cells stably expressing amyloid precursor protein.

    PubMed

    Kang, Yu Jeong; Seo, Dae-Gun; Park, So-Young

    2016-11-01

    β-Amyloid (Aβ) is a substance of Alzheimer disease (AD), which is generated via the amyloidogenic pathway from amyloid precursor protein (APP) by β-secretase and γ-secretase. Inhibition of Aβ production is a potential therapeutic approach to AD. Thus, we tested the hypothesis that cinnamon bark (Cinnamomi Cortex Spissus), the dried bark of Cinnamomum cassia Blume (Lauraceae), and its constituents are beneficial to AD. The methanol extract of cinnamon bark efficiently reduced Aβ40 production in Chinese hamster ovarian (CHO) cells stably expressing APP as determined by enzyme-linked immunosorbent assay. Bioassay-guided isolation of cinnamon bark extract was carried out using open column chromatography and high-performance liquid chromatography, and the following 6 phenylpropanoids were isolated: syringaresinol (1); medioresinol (2); coumarin (3); 2-hydroxycinnamaldehyde (4); cryptamygin A (5); and 3',5,7-trimethoxy epicatechin (6). Among these, 4 μg/mL medioresinol and cryptamygin A reduced Aβ40 production by 50% and 60%, respectively, compared with dimethyl sulfoxide-treated control cells. The IC50 values of medioresinol and cryptamygin A for the inhibition of Aβ40 production were 10.8 and 8.2 μg/mL, respectively. Furthermore, treatment of APP-CHO cells with either compound decreased the amount of β-secretase and sAPPβ (the proteolytic fragment of APP catalyzed by β-secretase). These results suggest that the antiamyloidogenic activity of cinnamon bark extract was exerted by medioresinol and cryptamygin A via a reduction in the amount of β-secretase. The extract of cinnamon bark contains potentially valuable antiamyloidogenic agents for the prevention and treatment of AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.

    PubMed Central

    Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko

    2004-01-01

    We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155

  4. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  5. Sensitization to the cytotoxicity of melphalan by ethacrynic acid and hyperthermia in drug-sensitive and multidrug-resistant Chinese hamster ovary cells.

    PubMed

    Turcotte, S; Averill-Bates, D A

    2001-09-01

    The ability of physical and pharmacological modulators to increase the cytotoxicity of melphalan was investigated in Chinese hamster ovary cells using a clonogenic cell survival assay. Hyperthermia has potential for use in cancer treatment, particularly as an adjuvant to chemotherapy or radiotherapy. Ethacrynic acid is a glutathione S-transferase inhibitor and also undergoes conjugation with glutathione. Interactions between hyperthermia (41-43 degrees C), ethacrynic acid and melphalan were evaluated in multidrug-resistant (CH(R)C5) cells with overexpression of P-glycoprotein (33.69-fold), and in drug-sensitive (AuxB1) cells. GST alpha was expressed at a higher level (3.65-fold) in CH(R)C5 cells than in sensitive cells, whereas levels of isoforms pi and mu were the same. GST pi was the most highly expressed isoform in the two cell populations. Ethacrynic acid was cytotoxic at elevated temperatures, while it caused little or no cytotoxicity at 37 degrees C. This effect occurred in drug-resistant and drug-sensitive cells, and attributes thermosensitizing properties to ethacrynic acid. Ethacrynic acid (20 microM) alone did not alter the cytotoxicity of melphalan at 37 degrees C. Hyperthermia potentiated drug cytotoxicity in cells, both with and without ethacrynic acid treatment. Ethacrynic acid could be useful in cancer treatment by acting as a thermosensitizer when combined with heat and by enhancing the cytotoxicity of melphalan at elevated temperatures. A major advantage arising from the use of regional hyperthermia is the ability to target drug cytotoxicity to the tumor volume. A useful finding is that ethacrynic acid, heat and/or melphalan are also effective against multidrug-resistant cells with overexpression of P-glycoprotein.

  6. Simian Sarcoma-Associated Virus Fails To Infect Chinese Hamster Cells despite the Presence of Functional Gibbon Ape Leukemia Virus Receptors

    PubMed Central

    Ting, Yuan-Tsang; Wilson, Carolyn A.; Farrell, Karen B.; Chaudry, G. Jilani; Eiden, Maribeth V.

    1998-01-01

    We have sequenced the envelope genes from each of the five members of the gibbon ape leukemia virus (GALV) family of type C retroviruses. Four of the GALVs, including GALV strain SEATO (GALV-S), were originally isolated from gibbon apes, whereas the fifth member of this family, simian sarcoma-associated virus (SSAV), was isolated from a woolly monkey and shares 78% amino acid identity with GALV-S. To determine whether these viruses have identical host ranges, we evaluated the susceptibility of several cell lines to either GALV-S or SSAV infection. GALV-S and SSAV have the same host range with the exception of Chinese hamster lung E36 cells, which are susceptible to GALV-S but not SSAV. We used retroviral vectors that differ only in their envelope composition (e.g., they contain either SSAV or GALV-S envelope protein) to show that the envelope of SSAV restricts entry into E36 cells. Although unable to infect E36 cells, SSAV infects GALV-resistant murine cells expressing the E36-derived viral receptor, HaPit2. These results suggest that the receptors present on E36 cells function for SSAV. We have constructed several vectors containing GALV-S/SSAV chimeric envelope proteins to map the region of the SSAV envelope that blocks infection of E36 cells. Vectors bearing chimeric envelopes comprised of the N-terminal region of the GALV-S SU protein and the C-terminal region of SSAV infect E36 cells, whereas vectors containing the N-terminal portion of the SSAV SU protein and C-terminal portion of GALV-S fail to infect E36 cells. This finding indicates that the region of the SSAV envelope protein responsible for restricting SSAV infection of E36 cells lies within its amino-terminal region. PMID:9811678

  7. High-frequency structural gene deletion as the basis for functional hemizygosity of the adenine phosphoribosyltransferase locus in Chinese hamster ovary cells.

    PubMed

    Adair, G M; Stallings, R L; Nairn, R S; Siciliano, M J

    1983-10-01

    The CHO-AT3-2 Chinese hamster ovary cell line is functionally hemizygous for the adenine phosphoribosyltransferase (APRT; EC 2.4.2.7) locus. Class 1 APRT +/- heterozygotes, such as CHO-AT3-2, can be isolated at high spontaneous frequencies from wild-type CHO cell populations. Simon et al. [Simon, A. E., Taylor, M. W., Bradley, W. E. C. & Thompson, L. (1982) Mol. Cell. Biol. 2, 1126-1133] have proposed that a high-frequency event that inactivates one APRT allele might be responsible for both the spontaneous generation of class 1 APRT +/- heterozygotes and the high-frequency occurrence of APRT- mutants in class 2 APRT +/- heterozygote populations. This event appears to occur at only one of the two APRT alleles. To investigate the nature of this high-frequency event, and to determine the genetic basis for functional hemizygosity of the APRT locus in CHO-AT3-2 cells, we have mapped the APRT locus by using CHO-AT3-2-mouse somatic cell hybrids. Our data confirm that CHO-AT3-2 cells have a single functional APRT allele, which is located on the Z7 chromosome. Karyotypic analysis of CHO-AT3-2 revealed an interstitial deletion on the long arm of the Z4 chromosome, in the very region where the other APRT allele should be located. To determine whether the Z4q interstitial deletion had resulted in physical loss of the APRT gene, DNA from CHO-AT3-2-mouse cell hybrids that had either lost or retained the Z4q- chromosome was analyzed for the presence of CHO APRT coding sequences. Our data suggest that allele-specific high-frequency structural gene deletion events involving the long arm of chromosome Z4 are responsible for the spontaneous generation of functional hemizygosity at the APRT locus in CHO cells.

  8. Optical forced oscillation for the study of lectin-glycoprotein interaction at the cellular membrane of a Chinese hamster ovary cell

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Ling; Karmenyan, Artashes; Wei, Ming-Tzo; Huang, Chun-Chieh; Lin, Chi-Hung; Chiou, Arthur

    2007-03-01

    We report the application of a set of twin optical tweezers to trap and oscillate a ConA (lectin)- coated polystyrene particle and to measure its interaction with glycoprotein receptors at the cellular plasma membrane of a Chinese hamster ovary (CHO) cell. The particle was trapped between two quadratic potential wells defined by a set of twin optical tweezers and was forced to oscillate by chopping on and off one of the trapping beams. We tracked the oscillatory motion of the particle via a quadrant photodiode and measured with a lock-in amplifier the amplitude of the oscillation as a function of frequency at the fundamental component of the driving frequency over a frequency range from 10Hz to 600Hz. By analyzing the amplitude as a function of frequency for a free particle suspended in buffer solution without the presence of the CHO cell and compared with the corresponding data when the particle was interacting with the CHO cell, we deduced the transverse force constant associated with the optical trap and that associated with the interaction by treating both the optical trap and the interaction as linear springs. The force constants were determined to be approximately 2.15pN/μm for the trap and 2.53pN/μm for the lectin-glycoprotein interaction. When the CHO cell was treated with lantrunculin A, a drug that is known to destroy the cytoskeleton of the cell, the oscillation amplitude increased with time, indicating the softening of the cellular membrane, until a steady state with a smaller force constant was reached. The steady state value of the force constant depended on the drug concentration.

  9. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1.

    PubMed

    Matsuyama, Rima; Yamano, Noriko; Kawamura, Namiko; Omasa, Takeshi

    2017-03-01

    The establishment process of high-producing Chinese hamster ovary (CHO) cells for therapeutic protein production is usually laborious and time consuming because of the low probability of obtaining stable, high-producing clones over a long term. Thus, development of an efficient approach is required to establish stable, high-producing cells. This study presents a novel method that can efficiently establish sustainably high-producing cell lines by acceleration of transgene amplification and suppression of transgene silencing. The effects of breast cancer 1 (BRCA1) downregulation on gene amplification efficiency and long-term productivity were investigated in CHO cells. Small interfering RNA expression vectors against BRCA1 were transfected into the CHO DG44-derived antibody-producing cell clone. Individual cell clones were obtained after induction of gene amplification in the presence of 400 nM methotrexate, which were cultured until passage 20. BRCA1-downregulated cell clones CHO B1Sa and B1Sb displayed 2.2- and 1.6-fold higher specific production rates than the S-Mock clone. Fluorescence in situ hybridization showed that transgene amplification occurred at a high frequency in B1Sa and B1Sb clones. Moreover, B1Sa and B1Sb clones at 20 passages had approximately 3.5- and 5.3-fold higher productivity than the S-Mock clone. Histone modification analysis revealed a decrease in an active mark for transcription, trimethylation of histone H3 at lysine 4 (H3K4), in the transgene locus of the S-Mock clone. However, H3K4 trimethylation levels were not decreased in B1Sa and B1Sb clones during long term culture. Our results suggest that high-producing cells, which maintain their productivity long-term, were efficiently established by BRCA1 downregulation. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.

    PubMed

    Clavaud, Matthieu; Roggo, Yves; Von Daeniken, Ralph; Liebler, André; Schwabe, Jan-Oliver

    2013-07-15

    In the present study near infrared (NIR) spectroscopy was used to monitor the cultivation of mammalian Chinese hamster ovary (CHO) cells producing a monoclonal antibody in a fed-batch cell culture process. A temperature shift was applied during the cultivation. The cells were incubated at 37 °C and 33 °C. The Fourier transform near infrared (FT-NIR) multiplex process analyzer spectroscopy was investigated to monitor cultivation variables of the CHO cell culture from 10 independent batches using two channels of the FT-NIR. The measurements were performed on production scale bioreactors of 12,500 L. The cell cultures were analyzed with the spectrometer coupled to a transflection sterilizable fiber optic probe inserted into the bioreactors. Multivariate data analysis (MVDA) employing unsupervised principal component analysis (PCA) and partial least squares regression methods (PLS) were applied. PCA demonstrated that 96% of the observed variability was explained by the process trajectory and the inter-batch variability. PCA was found to be a significant tool in identifying batch homogeneity between lots and in detecting abnormal fermentation runs. Seven different cell culture parameters such as osmolality, glucose concentration, product titer, packed cell volume (PCV), integrated viable packed cell volume (ivPCV), viable cell density (VCD), and integrated viable cell count (iVCC) were monitored inline and predicted by NIR. NIR spectra and reference analytics data were computed using control charts to evaluate the monitoring abilities. Control charts of each media component were under control by NIR spectroscopy. The PLS calibration plots offered accurate predictive capabilities for each media. This paper underlines the capability for inline prediction of multiple cultivation variables during bioprocess monitoring.

  11. ATF6β-based fine-tuning of the unfolded protein response enhances therapeutic antibody productivity of Chinese Hamster Ovary cells.

    PubMed

    Pieper, Lisa A; Strotbek, Michaela; Wenger, Till; Olayioye, Monilola A; Hausser, Angelika

    2017-02-06

    The dynamics of protein folding and secretion are key issues in improving the productivity and robustness of Chinese Hamster Ovary (CHO) producer cells. High recombinant protein secretion in CHO producer clones triggers the activation of the unfolded protein response (UPR), an intracellular response to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). We previously reported that the human microRNA (miRNA) miR-1287 enhances productivity in IgG expressing CHO cells (CHO-IgG). Here, through next generation sequencing (NGS) we identified the activating transcription factor 6 beta (ATF6β), a repressor of the pro-survival and UPR promoting factor ATF6α, as a direct target gene of miR-1287 in CHO-IgG cells. We show that the transient depletion of ATF6β resulted in enhanced specific productivity comparable to that of miR-1287 expressing CHO-IgG cells. Strikingly, stable ATF6β knockdown in CHO-IgG cells significantly improved antibody titer and viable cell density under fed-batch conditions. This was associated with the elevated expression of the UPR genes glucose regulated protein 78 (GRP78), homocysteine inducible ER protein with ubiquitin like domain 1 (Herpud1) and CCAAT/enhancer-binding protein homologous protein (CHOP). We hence demonstrate that ATF6β-based cell line engineering is a promising strategy to improve the productivity of CHO producer cells by activating an optimally balanced UPR program. This article is protected by copyright. All rights reserved.

  12. Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents.

    PubMed

    Tait, Andrew S; Brown, Catherine J; Galbraith, Douglas J; Hines, Michael J; Hoare, Mike; Birch, John R; James, David C

    2004-12-20

    We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.

  13. Folate-dependent enzymes in cultured Chinese hamster ovary cells: impaired mitochondrial serine hydroxymethyltransferase activity in two additional glycine-auxotroph complementation classes

    SciTech Connect

    Taylor, R.T.; Hanna, M.L.

    1982-09-01

    Two glycine-requiring Chinese hamster ovary (CHO) auxotrophs (GLYB and AUXB2) representative of the Gly/sup -/ mutant classes B and C are shown to have defects in folate metabolism. These defects result in 10-fold lower rates of whole cell L-(U-/sup 14/C)serine-to-(/sup 14/C)glycine conversion relative to the parental CHO lines (2 vs 20 nmol/h/10/sup 6/ cells). This restriction in serine hydroxymethyltransferase (SHMT) activity is localized in the mitochondria. Intact mitochondria from GLYB and AUXB2 convert labeled serine to glycine at 1-4% the rate and with only 1-3% of the total capacity of parental CHO mitochondria. Yet, GLYB and AUXB2 contain parental cell amounts of cytosolic and mitochondrial SHMT, the latter displaying normal substrate K/sub m/ values. The whole cell and mitochondrial impairments in glycine formation are corrected in GLYB (but not AUXB2) by a prior growth with 100 ..mu..M dl-folinate. They are also partially restored in spontaneous or chemically induced Gly/sup +/ revertants of GLYB and AUXB2. Subcellular fractionation experiments suggest that a low content (one-fifth parental) of mitochondrial folylpolyglutamates contributes to the auxotrophy of GLYB. These studies demonstrate that mitochondrial SHMT is potentially functional in the Gly/sup -/ mutant classes B (GLYB) and C (AUXB2). The impaired SHMT activity in vivo and in isolated mitochondria may result from a deficiency in mitochondrial recycling of 5,10-methylenetetrahydrofolate back to tetrahydrofolate.

  14. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention.

  15. Overexpression of phospholipase D prevents actinomycin D-induced apoptosis through potentiation of phosphoinositide 3-kinase signalling pathways in Chinese-hamster ovary cells.

    PubMed Central

    Yamada, Momoko; Banno, Yoshiko; Takuwa, Yoh; Koda, Masahiro; Hara, Akira; Nozawa, Yoshinori

    2004-01-01

    To examine the roles of PLD (phospholipase D) in the regulation of the apoptotic process, PLD1 and PLD2 were stably overexpressed in S1P3-CHO cells [CHO (Chinese-hamster ovary) cells expressing the S1P (sphingosine 1-phosphate) receptor S1P3]. Treatment of S1P3-CHO cells with ActD (actinomycin D) induced apoptosis, as shown by the occurrence of nuclear fragmentation and the caspase-dependent proteolytic cleavage of PARP [poly(ADP-ribose) polymerase] and protein kinase Cd. Overexpression of either PLD1 or PLD2 protected S1P3-CHO cells from ActD-induced apoptosis, as demonstrated by an increased number of viable cells and inhibition of PARP and protein kinase Cd cleavage. However, in the early phase of apoptosis, ActD induced an increase in PLD activity and activation of key factors in the cell-survival signalling pathways, such as PI3K (phosphoinositide 3-kinase), Akt, p70S6K (p70 S6 kinase) and ERK (extracellular-signal-regulated kinase). Furthermore, the ActD-induced activation of these survival signalling enzymes was potentiated by overexpression of either PLD1 or PLD2. The PI3K inhibitor LY294002 inhibited the ActD-induced activation of Akt and p70S6K, and completely abolished the effects of PLD1 or PLD2, whereas inhibition of ERK activity by the MEK inhibitor U0126 had a milder effect. The ActD-induced activation of p70S6K and ERKs was blocked by 1-butanol, but not by t-butanol; similar to S1P, exogenous PLD suppressed the ActD-induced events in the apoptosis signalling pathways. These results show that, in S1P3-CHO cells, increased expression of PLDs prevents ActD-induced apoptosis by enhanced activation of the PI3K signalling pathways. PMID:14640974

  16. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture.

    PubMed

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A; Valdez-Cruz, Norma A

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28-34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system.

  17. A comparison of cell killing by heat and/or X rays in Chinese hamster V79 cells, Friend erythroleukemia mouse cells, and human thymocyte MOLT-4 cells.

    PubMed

    Raaphorst, G P; Szekely, J; Lobreau, A; Azzam, E I

    1983-05-01

    The radiation and/or heat sensitivity of Chinese hamster V79 cells, Friend erythroleukemia (FELC) mouse cells, and MOLT-4 human transformed thymocytes were compared. MOLT-4 cells were more radiosensitive (D0 = 0.50 Gy) than FELC (D0 = 0.65 Gy) and V79 cells (D0 = 1.43 Gy). Arrhenius analysis showed that MOLT-4 cells were more heat sensitive than FELC or V79 cells below 42.0 degrees C, but more heat resistant at higher temperatures. In addition, the MOLT-4 cells showed a single-heat inactivation energy between 41.0 and 45.0 degrees C, while FELC and V79 cells both showed a transition in the inactivation energy at about 43.0 and 43.5 degrees C, respectively. These differences may be related to the fact that the upper temperature limit for the development of thermal tolerance during continuous heating was lower for MOLT-4 cells than for FELC or V79 cells. Killing of FELC and V79 cells was dependent on the sequence in which heat and X rays were applied, but the greatest effect was obtained when both treatments were given simultaneously. Recovery occurred when treatments were separated by incubation at 37.0 degrees C. The MOLT-4 cells did not show a sequence dependence for heating and irradiation. Survival of MOLT-4 cells after heating and/or irradiation was compared using trypan blue dye exclusion or colony formation. Both assays showed similar qualitative responses, but survival levels measured by the trypan blue assay were much higher than those determined from the colony-forming assay.

  18. Inhibition of serine palmitoyltransferase in vitro and long-chain base biosynthesis in intact Chinese hamster ovary cells by. beta. -chloroalanine

    SciTech Connect

    Medlock, K.A.; Merrill, A.H. Jr.

    1988-09-06

    The effects of ..beta..-chloroalanine (..beta..-Cl-alanine) on the serine palmitoyltransferase activity and the de novo biosynthesis of sphinganine and sphingenine were investigated in vitro with rat liver microsomes and in vivo with intact Chinese hamster ovary (CHO) cells. The inhibition in vitro was rapid, irreversible, and concentration and time dependent and apparently involved the active site because inactivation only occurred with ..beta..-Cl-L-alanine and was blocked by L-serine. These are characteristics of mechanism-based (suicide) inhibition. Serine palmitoyltransferase (SPT) was also inhibited when intact CHO cells were incubated with ..beta..-Cl-alanine and this treatment inhibited (/sup 14/C)serine incorporation into long-chain bases by intact cells. The concentration dependence of the loss of SPT activity and of long-chain base synthesis was identical. The effects of ..beta..-Cl-alanine appeared to occur with little perturbation of other cell functions: the cells exhibited no loss in cell viability, (/sup 14/C)serine uptake was not blocked, total lipid biosynthesis from (/sup 14/C)acetic acid was not decreased (nor was the appearance of radiolabel in cholesterol and phosphatidylcholine), and (/sup 3/H)thymidine incorporation into DNA was not affected. There appeared to be little effect on protein synthesis based on the incorporation of (/sup 3/H)leucine, which was only decreased by 14%. Although ..beta..-Cl-L-alanine is known to inhibit other pyridoxal 5'-phosphate dependent enzymes, alanine and aspartate transaminases were not inhibited under these conditions. These results establish the close association between the activity of serine palmitoyltransferase and the cellular rate of long-chain base formation and indicate that ..beta..-Cl-alanine and other mechanism-based inhibitors might be useful to study alterations in cellular long-chain base synthesis.

  19. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    SciTech Connect

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.

  20. Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells

    PubMed Central

    Yu, Chao; Crispin, Max; Sonnen, Andreas F.-P.; Harvey, David J.; Chang, Veronica T.; Evans, Edward J.; Scanlan, Christopher N.; Stuart, David I.; Gilbert, Robert J. C.; Davis, Simon J.

    2011-01-01

    Glycoproteins present problems for structural analysis since they often have to be glycosylated in order to fold correctly and because their chemical and conformational heterogeneity generally inhibits crystallization. It is shown that the α-mannosidase I inhibitor kifunensine, which has previously been used for the purpose of glycoprotein crystallization in short-term (3–5 d) cultures, is apparently stable enough to be used to produce highly endoglycosidase H-sensitive glycoprotein in long-term (3–4 week) cultures of stably transfected Chinese hamster ovary (CHO) cells. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry-based analysis of the extracellular region of the cytotoxic T-lymphocyte antigen 4 (CTLA-4; CD152) homodimer expressed in long-term CHO cell cultures in the presence of kifunensine revealed that the inhibitor restricted CTLA-4 glycan processing to Man9GlcNAc2 and Man5GlcNAc2 structures. Complex-type glycans were undetectable, suggesting that the inhibitor was active for the entire duration of the cultures. Endoglycosidase treatment of the homodimer yielded protein that readily formed orthorhombic crystals with unit-cell parameters a = 43.9, b = 51.5, c = 102.9 Å and space group P212121 that diffracted to Bragg spacings of 1.8 Å. The results indicate that kifunensine will be effective in most, if not all, transient and long-term mammalian cell-based expression systems. PMID:21795794

  1. A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production.

    PubMed

    Zhang, Jinyou; Robinson, David; Salmon, Peter

    2006-12-20

    As the market for biopharmaceuticals especially monoclonal antibodies (MAbs) rapidly grows, their manufacturing methods are coming under increasing regulatory scrutiny, particularly due to concerns about the potential introduction of adventitious agents from animal-sourced components in the media used for their production in mammalian cell culture. Chinese hamster ovary (CHO) cells are by far the most commonly used production vehicles for these recombinant glycoproteins. In developing animal-component free media for CHO and other mammalian cell lines, the iron-transporter function of serum or human/bovine transferrin is usually replaced by certain organic or inorganic chelators capable of delivering iron for cell respiration and metabolism, but few of them are sufficiently effective. Selenium is a well-known essential trace element (TE) for cell growth and development, and its positive role in biological system includes detoxification of free radicals by activating glutathione peroxidase. In cell culture, selenium in the form of selenite can help cells to detoxify the medium thus protect them from oxidative damage. In this presentation, we describe the discovery and application of a novel function of selenite, that is, as a highly effective carrier to deliver iron for cell growth and function. In our in-house-developed animal protein-free (APF) medium for CHO cells, using an iron-selenite compound to replace the well-established tropolone delivery system for iron led to comparable or better cell growth and antibody production. A high cell density of >10 x 10(6) viable cells/mL and excellent antibody titer of approximately 3 g/L were achieved in 14-day fed-batch cultures in shake flasks, followed by successful scale-up to stirred bioreactors. The preparation of the commercially unavailable iron-selenite compound from respective ions, and its effectiveness in cell-culture performance, were dependent on reaction time, substrates, and other conditions.

  2. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture

    PubMed Central

    Bedoya-López, Andrea; Estrada, Karel; Sanchez-Flores, Alejandro; Ramírez, Octavio T.; Altamirano, Claudia; Segovia, Lorenzo; Miranda-Ríos, Juan; Trujillo-Roldán, Mauricio A.; Valdez-Cruz, Norma A.

    2016-01-01

    Recombinant proteins are widely used as biopharmaceuticals, but their production by mammalian cell culture is expensive. Hence, improvement of bioprocess productivity is greatly needed. A temperature downshift (TDS) from 37°C to 28–34°C is an effective strategy to expand the productive life period of cells and increase their productivity (qp). Here, TDS in Chinese hamster ovary (CHO) cell cultures, initially grown at 37°C and switched to 30°C during the exponential growth phase, resulted in a 1.6-fold increase in the qp of recombinant human tissue plasminogen activator (rh-tPA). The transcriptomic response using next-generation sequencing (NGS) was assessed to characterize the cellular behavior associated with TDS. A total of 416 (q > 0.8) and 3,472 (q > 0.9) differentially expressed transcripts, with more than a 1.6-fold change at 24 and 48 h post TDS, respectively, were observed in cultures with TDS compared to those at constant 37°C. In agreement with the extended cell survival resulting from TDS, transcripts related to cell growth arrest that controlled cell proliferation without the activation of the DNA damage response, were differentially expressed. Most upregulated genes were related to energy metabolism in mitochondria, mitochondrial biogenesis, central metabolism, and avoidance of apoptotic cell death. The gene coding for rh-tPA was not differentially expressed, but fluctuations were detected in the transcripts encoding proteins involved in the secretory machinery, particularly in glycosylation. Through NGS the dynamic processes caused by TDS were assessed in this biological system. PMID:26991106

  3. A comprehensive comparison of mixing, mass transfer, Chinese hamster ovary cell growth, and antibody production using Rushton turbine and marine impellers.

    PubMed

    Sandadi, Sandeepa; Pedersen, Henrik; Bowers, John S; Rendeiro, Dennis

    2011-09-01

    Large scale production of monoclonal antibodies has been accomplished using bioreactors with different length to diameter ratios, and diverse impeller and sparger designs. The differences in these physical attributes often result in dissimilar mass transfer, mechanical stresses due to turbulence and mixing inside the bioreactor that may lead to disparities in cell growth and antibody production. A rational analysis of impeller design parameters on cell growth, protein expression levels and subsequent antibody production is needed to understand such differences. The purpose of this study was to examine the impact of Rushton turbine and marine impeller designs on Chinese hamster ovary (CHO) cell growth and metabolism, and antibody production and quality. Experiments to evaluate mass transfer and mixing characteristics were conducted to determine if the nutrient requirements of the culture would be met. The analysis of mixing times indicated significant differences between marine and Rushton turbine impellers at the same power input per unit volume of liquid (P/V). However, no significant differences were observed between the two impellers at constant P/V with respect to oxygen and carbon dioxide mass transfer properties. Experiments were conducted with CHO cells to determine the impact of different flow patterns arising from the use of different impellers on cell growth, metabolism and antibody production. The analysis of cell culture data did not indicate any significant differences in any of the measured or calculated variables between marine and Rushton turbine impellers. More importantly, this study was able to demonstrate that the quality of the antibody was not altered with a change in the impeller geometry.

  4. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture.

    PubMed

    Kishishita, Shohei; Nishikawa, Tomoko; Shinoda, Yasuharu; Nagashima, Hiroaki; Okamoto, Hiroshi; Takuma, Shinya; Aoyagi, Hideki

    2015-06-01

    During the production of therapeutic monoclonal antibodies (mAbs), not only enhancement of mAb productivity but also control of quality attributes is critical. Charge variants, which are among the most important quality attributes, can substantially affect the in vitro and in vivo properties of mAbs. During process development for the production of mAbs in a Chinese hamster ovary cell line, we have observed that an improvement in mAb titer is accompanied by an increase in the content of acidic charge variants. Here, to help maintain comparability among mAbs, we aimed to identify the process parameters that controlled the content of acidic charge variants. First, we used a Plackett-Burman design to identify the effect of selected process parameters on the acidic charge variant content. Eight process parameters were selected by using a failure modes and effects analysis. Among these, temperature shift was identified from the Plackett-Burman design as the factor most influencing the acidic charge variant content. We then investigated in more detail the effects of shift temperature and temperature shift timing on this content. The content decreased with a shift to a lower temperature and with earlier timing of this temperature shift. Our observations suggest that Plackett-Burman designs are advantageous for preliminary screening of bioprocess parameters. We report here for the first time that temperature downshift is beneficial for effective control of the acidic peak variant content. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. Redox Cycling and Increased Oxygen Utilization Contribute to Diquat-induced Oxidative Stress and Cytotoxicity in Chinese Hamster Ovary Cells Overexpressing NADPH-cytochrome P450 Reductase

    PubMed Central

    Fussell, Karma C.; Udasin, Ronald G.; Gray, Joshua P.; Mishin, Vladimir; Smith, Peter J.S.; Heck, Diane E.; Laskin, Jeffrey D.

    2011-01-01

    Diquat and paraquat are non-specific defoliants that induce toxicity in many organs including the lung, liver, kidney and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In the present studies, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese Hamster Ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective in generating ROS when compared to paraquat (KM = 1.0 and 44.2 μM, respectively for H2O2 generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5 μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (Vmax ≈ 6.0 nmoles H2O2/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity. PMID:21215309

  6. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase.

    PubMed

    Fussell, Karma C; Udasin, Ronald G; Gray, Joshua P; Mishin, Vladimir; Smith, Peter J S; Heck, Diane E; Laskin, Jeffrey D

    2011-04-01

    Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells

    SciTech Connect

    Andersen, D.C.; Goochee, C.F.

    1995-07-05

    Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granulocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an {alpha}(2,6) linkage to N-acetylgalactosamine, is reduced by NH{sub 4}{sup +} concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an {alpha}(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked {alpha}(2,6)sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0. Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammonia-induced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation.

  8. Nuclear Hormone Receptor Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated and Methoxylated Metabolites in Transactivation Assays Using Chinese Hamster Ovary Cells

    PubMed Central

    Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Sugihara, Kazumi; Yoshida, Takahiko; Kitamura, Shigeyuki

    2009-01-01

    Background An increasing number of studies are reporting the existence of polybrominated diphenyl ethers (PBDEs) and their hydroxylated (HO) and methoxylated (MeO) metabolites in the environment and in tissues from wildlife and humans. Objective Our aim was to characterize and compare the agonistic and antagonistic activities of principle PBDE congeners and their HO and MeO metabolites against human nuclear hormone receptors. Methods We tested the hormone receptor activities of estrogen receptor α (ERα), ERβ, androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor α1 (TRα1), and TRβ1 against PBDE congeners BDEs 15, 28, 47, 85, 99, 100, 153, and 209, four para-HO-PBDEs, and four para-MeO-PBDEs by highly sensitive reporter gene assays using Chinese hamster ovary cells. Results Of the 16 compounds tested, 6 and 2 showed agonistic activities in the ERα and ERβ assays, respectively, and 6 and 6 showed antagonistic activities in these assays. 4′-HO-BDE-17 showed the most potent estrogenic activity via ERα/β, and 4′-HO-BDE-49 showed the most potent anti estrogenic activity via ERα/β. In the AR assay, 13 compounds showed antagonistic activity, with 4′-HO-BDE-17 in particular inhibiting AR-mediated transcriptional activity at low concentrations in the order of 10−8 M. In the GR assay, seven compounds, including two HO-PBDEs and two MeO-PBDEs, showed weak antagonistic activity. In the TRα1 and TRβ1 assays, only 4-HO-BDE-90 showed weak antagonistic activity. Conclusions Taken together, these results suggest that PBDEs and their metabolites might have multiple endocrine-disrupting effects via nuclear hormone receptors, and para-HO-PBDEs, in particular, possess more potent receptor activities compared with those of the parent PBDEs and corresponding para-MeO-PBDEs. PMID:19672399

  9. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting.

    PubMed

    Borth, N; Zeyda, M; Kunert, R; Katinger, H

    The screening procedure for high-producing cell lines is extremely time- and labor-intensive and costly, and is at present guided by an empirical approach based on individual experience. Flow cytometry and cell sorting, with its ability to analyze and separate single cells, an ideal method in the selection of such rare cells. The isolation of recombinant cell lines is especially difficult due to repeated gene amplification, which introduces high mutational variation into the population. We have established and evaluated a modification of a previous method that traps secreted product on the surface of the secreting cell, thus allowing direct analysis of single cell specific production rates. This method was used to select for high-producing subclones of a recombinant Chinese hamster ovary (CHO) cell line producing a human antibody against HIV-1 by repeated rounds of gene amplification and cell sorting. This cell line has been amplified in previous investigations, so that the amount of work and testing required by traditional methods can be compared with the protocol described herein. Forty-five 96-well plates were necessary to obtain a high-producing subclone by limited dilution methods, whereas only five plates were required when cell sorting was used. The specific production rate of the best clone obtained by sorting, however, was five times that of the clone obtained by traditional methods. In contrast to the clones obtained by limited dilution, which consisted of several populations of low- and high-producing cells even at high methotrexate concentrations (6.4 microM), the clones isolated by sorting were already homogeneous at 0.8 microM methotrexate.

  10. High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells.

    PubMed

    Moritz, Benjamin; Woltering, Laura; Becker, Peter B; Göpfert, Ulrich

    2016-05-01

    Chinese hamster ovary cells (CHO) are widely used in the production of glycosylated therapeutic proteins such as antibodies. During expansion and maintenance, CHO cell lines are prone to production instability, which may be caused by promoter silencing, loss of transgene copies, or post-transcriptional effects. Silencing of recombinant genes may be accompanied by DNA methylation and histone modification. Previously, we demonstrated that cytosine methylation of the human cytomegalovirus major immediate early promoter/enhancer (hCMV-MIE) can be used to predict instability of antibody-producing CHO cell lines. However, the high rate of false prediction motivates the search for further markers of stable promoter activity. To this end, we correlated a variety of histone modifications in the vicinity of hCMV-MIE with production stability over time. Our results suggest that acetylation of histone H3 (H3ac) is a more effective indicator of production stability than DNA methylation. Selecting cell lines with highest CMV promoter H3ac levels enriches stable expressors and improves the average stability of production cell lines. For histone H3 acetylation measurement we employed a method based on chromatin immunoprecipitation (ChIP). In its current form, the method is suitable to evaluate 10-20 cell lines within a few days. We propose to determine H3 acetylation once the number of candidate cell lines has been narrowed based on productivity and product quality. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:776-786, 2016. © 2016 American Institute of Chemical Engineers.

  11. Use of Nramp2-transfected Chinese hamster ovary cells and reticulocytes from mk/mk mice to study iron transport mechanisms

    PubMed Central

    Zhang, An-Sheng; Canonne-Hergaux, Francois; Gruenheid, Samantha; Gros, Philippe; Ponka, Prem

    2009-01-01

    Objective We investigated mechanisms involved in iron (Fe) transport by DMT1 (endosomal Fe(II) exporter, encoded by the Nramp2 gene) using wild-type Chinese hamster ovary (CHO) cells and Nramp2-transfected CHO cells, as well as reticulocytes from normal and mk/mk mice that have a defect in DMT1. Materials and Methods CHO cells and reticulocytes were incubated with 59Fe bound to various ligands. The radioiron was present in its Fe(II) or Fe(III) forms or bound to transferrin (Tf), and the internalized 59Fe measured under varying experimental conditions. Additionally, 125I-Tf interaction with reticulocytes was investigated and 59Fe incorporation into their heme was determined. Results Hyperexpression of DMT1 in CHO cells greatly increases their capacity to acquire ferrous iron. Although CHO-Nramp2 cells showed an increase in Fe(III) uptake as compared to CHO cells, they transported Fe(III) with much lower efficacy than Fe(II). In addition to their defect in Fe uptake, mk/mk reticulocytes also showed a decrease in Tf receptor levels. Conclusions Given that CHO cells acquire iron from Fe(II)-ascorbate with much higher rates than from Fe(III)-Tf, Tf-receptor levels represent the rate-limiting step in their iron uptake. As Fe(III) transport by CHO-Nramp2 cells can be inhibited by the impermeable oxidant K3Fe(CN)6, a membrane ferric reductase is probably needed for reduction of Fe(III) to Fe(II), which is then transported by DMT1. DMT1 is not a limiting factor in Fe acquisition by normal reticulocytes and their heme synthesis. PMID:18722041

  12. Effects of chronic opioid exposure on guinea pig mu opioid receptor in Chinese hamster ovary cells: Comparison with human and rat receptor

    PubMed Central

    Wallisch, Michael; Nelson, Cole S.; Mulvaney, Julia M.; Hernandez, Heather S.; Smith, Sue Ann; Olsen, George D.

    2007-01-01

    Chronic opioid treatment leads to agonist-specific effects at the mu opioid receptor. The molecular mechanisms resulting from chronic opioid exposure include desensitization, internalization and down-regulation of membrane-bound mu opioid receptors (MOP). The purpose of this study was to compare the cellular regulation of guinea pig, human and rat MOP expressed in Chinese hamster ovary (CHO) cells, following exposure to two clinically important opioids, morphine and methadone. MOP expressing CHO cells were treated in culture with methadone or morphine for up to 48 hours. Radioligand diprenorphine and [D-AIa2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO)-stimulated GTPγS binding assays were carried out using paired control and opioid-exposed CHO cells. Methadone induced downregulation of the mu opioid receptor, while morphine induced desensitization of the receptor for all three species. Furthermore, morphine predominantly decreased the potency of DAMGO to stimulate GTPγS binding, whereas methadone primarily reduced its efficacy. Changes in DAMGO potency and efficacy differed among species and depended on the opioid used to treat the cells. Our results showed similarities between guinea pig and human MOP for morphine-induced desensitization, but identified differences between the two for methadone-induced desensitization. In contrast, human and rat MOP differed in response to morphine treatment, but were not distinct in their response to methadone treatment. The guinea pig is an excellent and established animal model to study opioid effects, but its molecular opioid pharmacology has not been investigated thus far. These results can assist in understanding species differences in the effects of opioid ligands activating the mu opioid receptor. PMID:17343833

  13. A physiological threshold for protection against menadione toxicity by human NAD(P)H:quinone oxidoreductase (NQO1) in Chinese hamster ovary (CHO) cells.

    PubMed

    De Haan, Laura H J; Boerboom, Anne Marie J F; Rietjens, Ivonne M C M; van Capelle, Daniëlla; De Ruijter, Annemieke J M; Jaiswal, Anil K; Aarts, Jac M M J G

    2002-12-01

    NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stable transfection. The level of NQO1 over-expression ranged from 14 to 29 times the NQO1 activity in the wild-type CHO cells. This panel of cell lines, allowed investigation of the protective role of NQO1 in quinone cytotoxicity. It could be demonstrated that menadione toxicity was significantly reduced in all NQO1-transfected CHO clones compared to the wild-type cells, but the clones did not show differences in their level of protection against menadione. This observation pointed at a critical threshold concentration of NQO1 above which a further increase does not provide further protection against quinone cytotoxicity. Additional studies in which the NQO1 activity was inhibited by dicoumarol showed that only dicoumarol concentrations of about five times the EC(50) for NQO1 inhibition were able to reduce NQO1 levels below the apparent threshold, making the cells more sensitive. The level of this threshold was estimated to be in the range of base line NQO1 activities observed in several tissues and species. Thus, the results of the present study indicate that beneficial effects of NQO1 induction by, for example, cruciferous vegetables might be absent or present depending on the NQO1 activity threshold for optimal protection and the basal level of NQO1 expression in the tissue and species of interest.

  14. Genotoxic and cytotoxic effects of 60Co gamma-rays and 90Sr/90Y beta-rays on Chinese hamster ovary cells (CHO-K1).

    PubMed

    Murakami, Daniella; Suzuki, Miriam Fussae; da Silva Dias, Mauro; Okazaki, Kayo

    2004-07-01

    Among various types of ionizing radiation, the beta emitter radionuclides are involved in many sectors of human activity, such as nuclear medicine, nuclear industries and biomedicine, with a consequently increased risk of accidental, occupational or therapeutic exposure. Despite their recognized importance, there is little information about the effect of beta particles at the cellular level when compared to other types of ionizing radiation. Thus, the objective of the present study was to evaluate the genotoxic and cytotoxic effects of (90)Sr/(90)Y-a pure, highly energetic beta source-on Chinese hamster ovary (CHO) cells and to compare them with data obtained with (60)Co. CHO cells irradiated with different doses of (60)Co (0.34 Gy min(-1)) and (90)Sr/(90)Y (0.23 Gy min(-1)) were processed for analysis of clonogenic death, induction of micronuclei (MN) and interphase death. The survival curves obtained for both types of radiation were fitted by the exponential quadratic model and were found to be similar. Also, the cytogenetic results showed similar frequencies of radio-induced MN between gamma and beta radiations and the MN distribution pattern among cells did not follow the expected Poisson probability pattern. The relative variance values were significantly higher in cells irradiated with (90)Sr/(90)Y than with (60)Co in all exposure doses. The irradiated cells showed more necrotic cells 72 h and 96 h after exposure to beta than to gamma radiation. In general, the (90)Sr/(90)Y beta-radiation was more damaging than (60)Co gamma-rays. The data obtained also demonstrated the need to use several parameters for a better estimate of cellular sensitivity to the action of genotoxic agents, which would be important in terms of radiobiology, oncology and therapeutics.

  15. Effects of asbestos fibers on cell division, cell survival, and formation of thioguanine-resistant mutants in Chinese hamster ovary cells

    SciTech Connect

    Kenne, K.; Ljungquist, S.; Ringertz, N.R.

    1986-04-01

    The ability of crocidolite fibers to induce point mutations and mitotic abnormalities in Chinese hamster ovary (CHO) cells was examined in cell cultures. The purpose has been to study the possibilities for establishing in vitro test methods to quantify genetic damage induced by asbestos and other mineral fibers. Results obtained with the CHO/hypoxanthine guanine phosphoribosyl transferase system indicated that crocidolite fibers per se do not significantly increase the number of thioguanine-resistant mutants. Crocidolite fibers also failed to potentiate the mutagenicity of benzo(a)pyrene. Time-lapse cinematography and microscopy showed that asbestos (crocidolite) fibers were markedly cytotoxic. Among surviving cells some underwent abnormal cell divisions which resulted in multi- and micronucleate cells. Many cells that contained a few asbestos fibers, however, underwent mitosis and successfully formed two mononucleate daughter cells capable of further divisions. Individual, fiber-containing cells were examined by time-lapse television recordings for 4-5 days. During this time period some cells underwent six divisions and generated an almost normal number of daughter cells. Cells which contained fibers that were longer or equivalent to the diameter of the mitotic cell (20 ..mu..m), showed different forms of mitotic abnormalities. The frequency of multinucleate cells was drastically increased following exposure to asbestos fibers. Only rarely, however, did these cells divide to produce viable daughter cells capable of continued cell multiplication. The frequency of multinucleate cells was dependent on the dose of exposure to asbestos fibers and could possible be used as an index of the degree of mitotic disturbances induced by mineral fibers.

  16. A quantitative assay of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells (CHO/HGPRT system): development and definition of the system.

    PubMed

    O'Neill, J P; Brimer, P A; Machanoff, R; Hirsch, G P; Hsie, A W

    1977-10-01

    An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.

  17. Cloning and Expression of Major Surface Antigen 1 Gene of Toxoplasma gondii RH Strain Using the Expression Vector pVAX1 in Chinese Hamster Ovary Cells

    PubMed Central

    Abdizadeh, Rahman; Maraghi, Sharif; Ghadiri, Ata A.; Tavalla, Mehdi; Shojaee, Saeedeh

    2015-01-01

    Background: Toxoplasmosis is an opportunistic protozoan infection with a high prevalence in a broad range of hosts infecting up to one-third of the world human population. Toxoplasmosis leads to serious medical problems in immunocompromised individuals and fetuses and also induces abortion and mortality in domestic animals. Therefore, there is a huge demand for the development of an effective vaccine. Surface Antigen 1 (SAG1) is one of the important immunodominant surface antigens of Toxoplasma gondii, which interacts with host cells and primarily involved in adhesion, invasion and stimulation of host immune response. Surface antigen 1 is considered as the leading candidate for development of an effective vaccine against toxoplasmosis. Objectives: The purpose of this study was to clone the major surface antigen1 gene (SAG1) from the genotype 1 of T. gondii, RH strain into the eukaryotic expression vector pVAX1 in order to use for a DNA vaccine. Materials and Methods: Genomic DNA was extracted from tachyzoite of the parasite using the QIAamp DNA mini kit. After designing the specific primers, SAG1 gene was amplified by Polymerase Chain Reaction (PCR). The purified PCR products were then cloned into a pPrime plasmid vector. The aforementioned product was subcloned into the pVAX1 eukaryotic expression vector. The recombinant pVAX1-SAG1 was then transfected into Chinese Hamster Ovary (CHO) cells and expression of SAG1 antigen was evaluated using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), Immunofluorescence Assay (IFA) and Western Blotting (WB). Results: The cloning and subcloning products (pPrime-SAG1 and pVAX1-SAG1 plasmid vectors) of SAG1 gene were verified and confirmed by enzyme digestion and sequencing. A 30 kDa recombinant protein was expressed in CHO cells as shown by IFA and WB methods. Conclusions: The pVAX1 expression vector and CHO cells are a suitable system for high-level recombinant protein production for SAG1 gene from T. gondii parasites

  18. Prolonged activation of phospholipase D in Chinese hamster ovary cells expressing platelet-activating-factor receptor lacking cytoplasmic C-terminal tail.

    PubMed Central

    Liu, B; Nakashima, S; Adachi, T; Ito, Y; Takano, T; Shimizu, T; Nozawa, Y

    1997-01-01

    The mechanism and role of phospholipase D (PLD) activation by platelet-activating factor (PAF) were examined with Chinese hamster ovary cells stably expressing wild-type PAF receptor (WT-H cells) and truncated PAF receptor lacking the C-terminal cytoplasmic tail (D-H cells). Treatment of D-H cells with PAF resulted in the rapid formation of Ins(1,4,5)P3, which was followed by a sustained phase for more than 10 min. In these cells, PAF-induced PLD activation lasted for more than 20 min. In contrast, PLD activation in WT-H cells was transient. PAF stimulation caused the biphasic formation of 1,2-diacylglycerol (DG) in both types of cell. The first phase was rapid and transient, coinciding with the Ins(1,4,5)P3 peak. The second sustained phase of DG formation was attenuated by butanol, which produces phosphatidylbutanol at the expense of phosphatidic acid (PA) by transphosphatidylation activity of PLD, and by propranolol, a selective inhibitor for PA phosphohydrolase catalysing the conversion of PA into DG. The DG level returned nearly to basal at 20 min after PAF stimulation in WT-H cells, whereas in D-H cells the elevated DG level was sustained for more than 20 min. The profile of translocation of protein kinase Calpha (PKCalpha) to membrane was similar to that of DG formation. In WT-H cells, PKCalpha was transiently associated with membranes and then returned to the cytosol. However, in D-H cells PKCalpha was rapidly translocated to and remained in membranes for more than 20 min. Butanol suppressed this sustained translocation of PKCalpha. Furthermore the mRNA levels of c-fos and c-jun by PAF in WT-H cells were much lower than those in D-H cells. Propranolol and butanol at concentrations that inhibited the formation of DG suppressed the PAF-induced mRNA expression of c-fos and c-jun. Taken together, the prolonged PLD activation in D-H cells confirmed a primary role for phospholipase C/PKC in PLD activation by PAF. Furthermore the results obtained here suggest that

  19. Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity: Genotoxic effects of zinc oxide in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells.

    PubMed

    Dufour, Eric K; Kumaravel, Tirukalikundram; Nohynek, Gerhard J; Kirkland, David; Toutain, Hervé

    2006-09-05

    Zinc oxide (ZnO), a widely used ingredient in dermatological preparations and sunscreens, is clastogenic in vitro, but not in vivo. Given that ZnO has an approximately four-fold greater clastogenic potency in the presence of UV light when compared with that in the dark, it has been suggested to be photo-clastogenic. In order to clarify whether this increased potency is a genuine photo-genotoxic effect, we investigated the clastogenicity of ZnO (mean particle size, 100 nm) in Chinese hamster ovary (CHO) cells in the dark (D), in pre-irradiated (PI, i.e. UV irradiation of cells followed by treatment with ZnO) and in simultaneously irradiated (SI, i.e. ZnO treatment concurrent with UV irradiation) CHO cells at UV doses of 350 and 700 mJ/cm(2). The cytotoxicity of ZnO to CHO cells under the different irradiation conditions was as follows: SI>PI>D. In the dark, ZnO produced a concentration-related increase in chromosome aberrations (CA). In PI or SI CHO cells, ZnO was clastogenic at significantly lower concentrations (approximately two- to four-fold) when compared with effective concentrations in the dark, indicating an increased susceptibility of CHO cells to ZnO-mediated clastogenic effects due to UV irradiation per se. The incidence of CA in SI or PI cells was generally higher than that in the dark. At similar ZnO concentrations, SI conditions generally produced higher CA incidence than PI conditions. However, when ZnO concentrations producing similar cytotoxicity were compared, CA incidences under PI or SI conditions were nearly identical. The modest increase in the clastogenic potency of ZnO following UV irradiation contrasts with the results observed with genuine photo-clastogenic agents, such as 8-MOP, which may produce an increase in clastogenic potency of >15,000-fold under SI conditions. Our results provide evidence that, under conditions of in vitro photo-clastogenicity tests, UV irradiation of the cellular test system per se may produce a slight increase in

  20. Pharmacological and signaling properties of endogenous P2Y1 receptors in cystic fibrosis transmembrane conductance regulator-expressing Chinese hamster ovary cells.

    PubMed

    Marcet, Brice; Chappe, Valérie; Delmas, Patrick; Verrier, Bernard

    2004-05-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a cAMP-dependent Cl(-) channel that is defective in CF disease. CFTR activity has been shown to be regulated by the G(q)/phospholipase C-linked P2Y2 subtype of P2Y nucleotide receptors (P2YR) in various systems. Here, we tested whether other P2YR may exert a regulation on CFTR activity and whether CFTR may in turn exert a regulation on P2YR signaling. Using reverse transcriptase-polymerase chain reactions, antisense oligodeoxynucleotide knockdown, and measurements of intracellular calcium concentration ([Ca(2+)](i)), we showed that, in addition to P2Y2R, Chinese hamster ovary (CHO) cells also express functional P2Y1R. P2Y1R were activated by 2-methylthioadenosine 5'-diphosphate > 2-methylthioadenosine-5'-triphosphate > ADP with an EC(50) of 30 nM, 0.2 microM, and 0.8 microM, respectively. Activation of P2Y1R increased [Ca(2+)](i), which was prevented by the P2Y1R antagonists pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (10 microM) and N6-methyl 2'-deoxyadenosine 3',5'-bisphosphate (MRS2179) (10 microM) and by pretreatment with P2Y1R antisense oligodeoxynucleotides. In CHO-K1 and CHO-KNUT (mock-transfected) cells lacking CFTR, both P2Y1R and P2Y2R caused [Ca(2+)](i) mobilization via pertussis toxin (PTX)-insensitive G(q/11)-proteins. In contrast, in CFTR-expressing CHO cells (CHO-BQ1), the P2Y1R response was completely PTX-sensitive, indicating that P2Y1R couples to G(i/o)-proteins, whereas the P2Y2R response remained PTX-insensitive. In CHO-BQ1 cells, P2Y1R activation by ADP (100 microM) failed to inhibit both forskolin (1 microM)-induced CFTR activation, measured using iodide ((125)I) efflux, and forskolin (0.1-10 microM)-evoked cAMP increase. Together, our results indicate that, in contrast to P2Y2R, P2Y1R does not modulate CFTR activity in CHO cells and that CFTR expression may alter the G-protein-coupling selectivity of P2Y1R.

  1. Low concentrations of recombinant granulocyte macrophage-colony stimulating factor derived from Chinese hamster ovary cells augments long-term bioactivity with delayed clearance in vitro.

    PubMed

    Hashimoto, Atsushi; Tanaka, Takahiro; Itoh, Yuko; Yamagata, Akira; Kitamura, Nobutaka; Tazawa, Ryushi; Nakagaki, Kazuhide; Nakata, Koh

    2014-08-01

    To date, the biological activity of granulocyte macrophage-colony stimulating factor (GM-CSF) has been investigated by using mostly Escherichia coli- or yeast cell-derived recombinant human GM-CSF (erhGM-CSF and yrhGM-CSF, respectively). However, Chinese hamster ovary cell-derived recombinant human GM-CSF (crhGM-CSF), as well as natural human GM-CSF, is a distinct molecule that includes modifications by complicated oligosaccharide moieties. In the present study, we reevaluated the bioactivity of crhGM-CSF by comparing it with those of erhGM-CSF and yrhGM-CSF. The effect of short-term stimulation (0.5h) on the activation of neutrophils/monocytes or peripheral blood mononuclear cells (PBMCs) by crhGM-CSF was lower than those with erhGM-CSF or yrhGM-CSF at low concentrations (under 60pM). Intermediate-term stimulation (24h) among the different rhGM-CSFs with respect to its effect on the activation of TF-1 cells, a GM-CSF-dependent cell line, or PBMCs was not significantly different. In contrast, the proliferation/survival of TF-1 cells or PBMCs after long-term stimulation (72-168h) was higher at low concentrations of crhGM-CSF (15-30pM) than that of cells treated with other GM-CSFs. The proportion of apoptotic TF-1 cells after incubation with crhGM-CSF for 72h was lower than that of cells incubated with other rhGM-CSFs. These effects were attenuated by desialylation of crhGM-CSF. Clearance of crhGM-CSF but not desialylated-crhGM-CSF by both TF-1 cells and PBMCs was delayed compared with that of erhGM-CSF or yrhGM-CSF. These results suggest that sialylation of oligosaccharide moieties delayed the clearance of GM-CSF, thus eliciting increased long-term bioactivity in vitro. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Comparison of five different in vitro assays for assessment of sodium metavanadate cytotoxicity in Chinese hamster ovary cells (CHO-K1 line).

    PubMed

    Zwolak, Iwona

    2015-08-01

    This investigation was undertaken to compare five different in vitro cytotoxicity assays for their power in revealing vanadium-mediated toxicity in Chinese hamster ovary (CHO)-K1 cells. The cells were exposed to sodium metavanadate (NaVO(3)) in the range of 10-1000 µM for 24 h and thereafter the cytotoxic effects of NaVO(3) were measured by colorimetric in vitro assays: the neutral red (NR) test, the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) assay, the resazurin assay, the sulforhodamine B (SR-B) assay, and by microscopic assessment of cell viability using the trypan blue (TB) staining method. Among the assays used, the NR test was the most sensitive, since it revealed metavanadate cytotoxicity at the lowest NaVO(3) dose (=50 µM). Also, NaVO(3) cytotoxicity expressed as inhibitory concentration (IC) showed the lowest values for the NR test. Three other tests XTT, resazurin, and SR-B assays showed intermediate sensitivity revealing the cytotoxicity of NaVO(3) at 100 µM. The corresponding IC10 and IC50 values calculated for the XTT, resazurin, and SR-B tests were similar. The TB staining method was the least sensitive, since it recorded metavanadate cytotoxicity at the highest NaVO(3) concentration tested (=600 µM). Based on the cytotoxicity end points measured with the above assays, it can be concluded that lysosomal/Golgi apparatus damage (measured by NR assay) may be the primary effect of NaVO(3) on CHO-K1 cells. The disintegration of mitochondria (assessed with the XTT and resazurin assays) probably follows lysosomal impairment. Plasma membrane permeability (staining with TB) occurs at a late stage of NaVO(3)-induced cytotoxicity on CHO-K1 cells. The results obtained in this research work show that the NR test can be recommended as a very sensitive assay for the assessment of NaVO(3) cytotoxicity in the CHO-K1 cell culture model. Considering the convenience of assay performance along with adequate sensitivity

  3. Comparison of three different cell viability assays for evaluation of vanadyl sulphate cytotoxicity in a Chinese hamster ovary K1 cell line.

    PubMed

    Zwolak, Iwona

    2016-06-01

    Previously, evaluation of sodium metavanadate (NaVO3) cytotoxicity after 24 h exposure of Chinese hamster ovary K1 (CHO-K1) cells revealed different sensitivity of the in vitro assays used starting from the neutral red (NR, 3-amino-7-dimethylamino-2-methylphenazine hydrochloride) test (detecting lysosomal and possibly the Golgi apparatus damage) as the most sensitive followed by the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) and resazurin (7-hydroxy-3H-phenoxazin-3-one-10-oxide) tests (mitochondrial disruption). The trypan blue (TB) staining (plasma membrane permeability) showed cytotoxicity of NaVO3 at a much higher NaVO3 concentration than the above-mentioned assays. In the current study, using the same experimental approach, we have assessed the toxicity of vanadyl sulphate (VOSO4) and compared the obtained results with NaVO3 action. Unlike metavanadate, VOSO4 treatment at 24 h resulted in similar sensitivity of the NR and resazurin tests. Nevertheless, following the 48-h incubation with VOSO4, the NR test showed markedly higher sensitivity than the resazurin test when comparing the half maximal inhibitory concentration values (61 and 110 µM for the NR and resazurin test, respectively, p < 0.05). The TB staining method was the least susceptible for detecting vanadyl cytotoxicity at each exposure time point. In summary, both the NR and resazurin tests can be advocated as similarly sensitive in detection of VOSO4-induced cytotoxicity in the CHO-K1 cell line at 24 h. However, the longer incubation time with VOSO4 showed that the NR test is more sensitive than the resazurin assay. The differences in the results between the cytotoxicity tests employed probably arise from dissimilar susceptibility of the endpoints (targets) measured with these tests to the damage by vanadium. Considering this, the current and the previous studies highlight the role of lysosomes (and possibly the Golgi apparatus) apart from mitochondria

  4. Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells.

    PubMed

    Fatur, Tanja; Lah, Tamara T; Filipic, Metka

    2003-08-28

    The co-genotoxic effects of cadmium are well recognized and it is assumed that most of these effects are due to the inhibition of DNA repair. We used the comet assay to analyze the effect of low, non-toxic concentrations of CdCl2 on DNA damage and repair-induced in Chinese hamster ovary (CHO) cells by UV-radiation, by methyl methanesulfonate (MMS) and by N-methyl-N-nitrosourea (MNU). The UV-induced DNA lesions revealed by the comet assay are single-strand breaks which are the intermediates formed during nucleotide excision repair (NER). In cells exposed to UV-irradiation alone the formation of DNA strand breaks was rapid, followed by a fast rejoining phase during the first 60 min after irradiation. In UV-irradiated cells pre-exposed to CdCl2, the formation of DNA strand breaks was significantly slower, indicating that cadmium inhibited DNA damage recognition and/or excision. Methyl methanesulfonate and N-methyl-N-nitrosourea directly alkylate nitrogen and oxygen atoms of DNA bases. The lesions revealed by the comet assay are mainly breaks at apurinic/apyrimidinic (AP) sites and breaks formed as intermediates during base excision repair (BER). In MMS treated cells the initial level of DNA strand breaks did not change during the first hour of recovery; thereafter repair was detected. In cells pre-exposed to CdCl2 the MMS-induced DNA strand breaks accumulated during the first 2h of recovery, indicating that AP sites and/or DNA strand breaks were formed but that further steps of BER were blocked. In MNU treated cells the maximal level of DNA strand breaks was detected immediately after the treatment and the breaks were repaired rapidly. In CdCl2 pre-treated cells the formation of MNU-induced DNA single-strand breaks was not affected, while the repair was slower, indicating inhibition of polymerization and/or the ligation step of BER. Cadmium thus affects the repair of UV-, MMS- and MNU-induced DNA damage, providing further evidence, that inhibition of DNA repair is an

  5. N- and O-linked carbohydrates and glycosylation site occupancy in recombinant human granulocyte-macrophage colony-stimulating factor secreted by a Chinese hamster ovary cell line.

    PubMed

    Forno, Guillermina; Bollati Fogolin, Mariela; Oggero, Marcos; Kratje, Ricardo; Etcheverrigaray, Marina; Conradt, Harald S; Nimtz, Manfred

    2004-03-01

    GM-CSF is one of several naturally occurring glycoproteins that regulate leukocyte production, migration and function. It has been produced in different cell types, with different properties that depend on the production process used. The purpose of this work was to characterize the recombinant human GM-CSF from an engineered Chinese hamster ovary cell line grown in suspension and as adherent culture for the identification of the glycosylation sites and the definition of the glycosidic moiety, including the degree of site occupancy. Both preparations exhibited size heterogeneity in SDS/PAGE with multiple bands containing glycoprotein forms with either two or one N-glycosylation sites occupied. Minor low molecular mass forms completely lacked N-linked oligosaccharides but contained 1-3 O-linked glycans. Twelve differently charged isoforms were detected in isoelectric focusing gels. At least 16 glycoforms, differing in the number of Hex-HexNAc units (Deltam 365 Da), were detected in MALDI-TOF MS spectra of the desialylated GM-CSFs. MALDI-TOF MS and HPAEC-PAD analysis indicated the presence of predominantly tri- and tetraantennary N-linked oligosaccharide chains with and without N-acetyllactosamine repeat units and some 10% of biantennary oligosaccharides, all containing more than 90% proximal alpha1-6-linked fucose. The oligosaccharide patterns of both GM-CSF preparations were found to be very similar. More than 90% of terminal galactose residues of the N-glycans were found alpha2-3 sialylated with NeuNAc (93%) or NeuNGc (7%). Site specific glycosylation was analysed by electrospray ionization MS and it was found that in the mono glycosylated GM-CSF form more than 90% of the Asn37 were occupied by N-glycans. O-glycosylation at the N-terminus of the polypeptide was detected at Ser7 and Ser9 or Thr10, in the predominantly doubly O-glycosylated glycoprotein form. In the triply modified GM-CSF molecules, Ser5 was additionally O-glycosylated. The major difference between

  6. The quantitative detection of various Pt-DNA-adducts in Chinese hamster ovary cells treated with cisplatin: application of immunochemical techniques.

    PubMed

    Plooy, A C; Fichtinger-Schepman, A M; Schutte, H H; van Dijk, M; Lohman, P H

    1985-04-01

    With polyclonal antibodies raised against cis-Pt(NH3)2Guo-GMP, small quantities of specific Pt-adducts could be detected in DNA from Chinese hamster ovary (CHO) cells treated with the antitumor agent cisplatin, after the DNA had been digested with nucleases and the degradation products separated by anion-exchange chromatography (FPLC). Directly after treatment with 83 microM cisplatin, resulting in 97 X 10(-6) platinum atoms bound per nucleotide, 35.9 +/- 4.7% of the platinum was recovered as cis-Pt(NH3)2d(pGpG), derived from intrastrand cross-links on two neighboring guanines, 3.1 +/- 1.6% as cis-Pt(NH3)2d(GMP)2, the degradation product of interstrand cross-links on two guanines (0.07%, according to separate studies) and of intrastrand cross-links on two guanines separated by one or more bases. The immunochemical method was not sensitive enough for the detection of monofunctionally bound platinum on guanine residues. The amount of these adducts, present in the digests as Pt(NH3)3dGMP, could be established with atomic absorption spectroscopy (AAS) (38.5% of the total Pt-content of the DNA). After a post-treatment incubation of the cells for 24 h, the total amount of platinum decreased to 59 X 10(-6) atoms per nucleotide, indicating the removal of adducts. In the digests, cis-Pt(NH3)2d(pGpG) accounted for 46.4 +/- 6.8% of the total Pt-content, cis-Pt(NH3)2d(GMP)2 for 3.0 +/- 0.9% (0.34% derived from DNA interstrand cross-links). The amounts of monofunctional adducts had decreased to such an extent that the exact quantities (below 15%) could not be determined. According to AAS-assays, at the elution position of cis-Pt(NH3)2d(pApG) a significant amount of Pt-product was present, both at t = 0 and 24 h, but the signals did not allow quantitative evaluation (however, below 48% and 28%, respectively). The possible role of the individual lesions in the DNA in the biological effects of this platinum compound in CHO cells is discussed.

  7. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc.

    PubMed

    Li, Cynthia H; Narhi, Linda O; Wen, Jie; Dimitrova, Mariana; Wen, Zai-qing; Li, Jenny; Pollastrini, Joseph; Nguyen, Xichdao; Tsuruda, Trace; Jiang, Yijia

    2012-12-18

    The circulation half-life of a potential therapeutic can be increased by fusing the molecule of interest (an active peptide, the extracellular domain of a receptor, an enzyme, etc.) to the Fc fragment of a monoclonal antibody. For the fusion protein to be a successful therapeutic, it must be stable to process and long-term storage conditions, as well as to physiological conditions. The stability of the Fc used is critical for obtaining a successful therapeutic protein. The effects of pH, temperature, and salt on the stabilities of Escherichia coli- and Chinese hamster ovary cell (CHO)-derived IgG1 Fc high-order structure were probed using a variety of biophysical techniques. Fc molecules derived from both E. coli and CHO were compared. The IgG1 Fc molecules from both sources (glycosylated and aglycosylated) are folded at neutral pH and behave similarly upon heat- and low pH-induced unfolding. The unfolding of both IgG1 Fc molecules occurs via a multistep unfolding process, with the tertiary structure and C(H)2 domain unfolding first, followed by changes in the secondary structure and C(H)3 domain. The acid-induced unfolding of IgG1 Fc molecules is only partially reversible, with the formation of high-molecular weight species. The CHO-derived Fc protein (glycosylated) is more compact (smaller hydrodynamic radius) than the E. coli-derived protein (aglycosylated) at neutral pH. Unfolding is dependent on pH and salt concentration. The glycosylated C(H)2 domain melts at a temperature 4-5 °C higher than that of the aglycosylated domain, and the low-pH-induced unfolding of the glycosylated Fc molecule occurs at a pH ~0.5 pH unit lower than that of the aglycosylated protein. The difference observed between E. coli- and CHO-derived Fc molecules primarily involves the C(H)2 domain, where the glycosylation of the Fc resides.

  8. Estrogen-induced hepatic toxicity and hepatic cancer: differences between two closely related hamster species.

    PubMed

    Coe, J E; Ishak, K G; Ross, M J

    1998-10-01

    Estrogen is known to affect hepatobiliary function; however, it is unusual for high serum levels of estrogen to actually result in clinically detectable hyperbilirubinemia. Women affected by cholestatic jaundice during pregnancy share this genetic susceptibility with two Cricetulus hamsters, the Armenian hamster (Cricetulus migratorius) and the Chinese hamster (Cricetulus griseus). Nevertheless, the pathophysiologic process responsible for this estrogen induced icterus may be different in women and hamsters. The present study compares various facets of estrogen-induced icterus in these two closely related hamsters. Hamsters were injected with various estrogens and the acute and chronic effects on liver were monitored by measuring changes in serum constituents and by observing changes in hepatic structure as seen grossly and by light and electron microscopy. In previous studies, hepatic tumors developed in most Armenian hamsters after chronic estrogen treatment, but in the present study, the livers of Chinese hamsters were remarkably free of neoplastic change under similar conditions. Also, when compared with the responses in the Armenian hamsters, signs of hepatic destruction and regeneration were less prevalent in estrogen-treated Chinese hamsters, and they were less susceptible to the effects of estrogen (because larger doses of estrogen were required to produce icterus and the bilirubin levels were lower and of shorter duration). In contrast to the findings in Armenian hamsters, bile canaliculi were severely affected in livers of estrogen-treated Chinese hamsters, and hepatic microvesicular steatosis, indicative of an unusual lipodystrophy caused by estrogen, was prominent. An additional lesion peculiar to the Chinese hamster was striking sinusoidal dilatation, which may be analogous to the oral contraceptive-induced sinusoidal dilatation in humans. Although these two hamster species are genetically similar, the genes activated by the estrogen receptor show

  9. Fluorescence decay kinetics and localization of disulphonated aluminium phthalocyanine in fibroblasts: a confocal fluorescence microscopy study

    NASA Astrophysics Data System (ADS)

    Petrasek, Zdenek; Ostler, Richard B.; Eigenbrot, Ilya V.; Phillips, David

    1999-05-01

    Steady state and time resolved confocal fluorescence microscopy, using a point scanning system, is applied to an investigation of the early stages of photo-induced changes in 3T3-L1 murine fibroblasts using di-sulphonated aluminum phthalocyanine (AlPcS2) as a photosensitizer. A comparison is made with data obtained using a line scan system and V79-4 Chinese hamster fibroblasts. The steady state data obtained in this work demonstrate that intracellular AlPcS2 fluorescence intensity increases progressively on photoirradiation. Time-resolved studies indicate that this could result from a progressive decrease in the concentration of the self-quenched membrane-associated form of AlPcS2 following its conversion into the fluorescent monomeric form.

  10. Interaction of Leukotriene C4 and Chinese Hamster Lung Fibroblasts (V79A03 Cells). 2. Subcellular Distribution of Binding and Unlikely Role of Glutathione-s-Transferase

    DTIC Science & Technology

    1990-10-01

    cell culture, Ms. Yvonne Caicedo for technical manipulations, and Mrs. Jane Koeser for secretarial help, are gratefully acknowledged. This work was...F.F., L.Y. Chau, and K.F. Austen . Binding of Leukotriene C. by Glutathione Transferase: A Reassessment of Biochemical and Functional Criteria for...Krillis, S., R.A. Lewis, E.J. Corey, and K.F. Austen . Specific Receptors for Laukotriene C4 on a Smooth Muscle Cell Line. J. Clin. Invest. 72:1516

  11. Mutagenicity testing on chinese hamster V79 cells treated in the in vitro liver perfusion system. Comparative investigation of different in vitro metabolising systems with dimethylnitrosamine and benzo[a]pyrene.

    PubMed

    Jenssen, D; Beije, B; Ramel, C

    1979-09-01

    A comparative study of three in vitro metabolising systems was performed in combination with Chinese hamster V79 cells, at which point mutation to 6-thioguanine resistance was scored. The three metabolising systems used were: (1) rat liver microsomal fraction (S9-mix); (2) feeder layer of primary embryonic golden hamster cells, according to Hubermann's system; (3) in vitro perfusion of rat liver according to the system of Beije et al. As model substances dimethylnitrosamine (DMN) and benzo[a]pyrene (BP) was used. The liver perfusion was more efficient than S9-mix as an activating system of DMN, while the feeder layer of embryonic cells was unable to activate this compound. The activation of DMN with S9-mix was dependent on the presence of NADP. By exposing the target cells in the liver perfusion at different distances from the liver the biological half life of the active metabolite of DMN could be estimated to less than 5 s. With BP the three metabolising systems showed reversed results as compared with DMN--both the feeder layer cells and S9-mix activated BP, the feeder layer cells being most efficient. With liver perfusion, the perfusate itself was totally negative. Only the bile showed a week mutagenic effect. These results are in accordance with the notion that intact liver cells perform both an activation and a subsequent deactivation of BP. Because of the importance of hepatic bio-transformation in chemical mutagenesis and carcinogenesis it is emphasied that a liver perfusion system could be used in a testing protocol for genotoxic effects as a valuable tool in order to analyse the mechanism of action of mutagenic and carcinogenic compounds detected in other test systems, for instance bacterial/microsomal tests.

  12. Induction of tolerance to lipopolysaccharide and mycobacterial components in Chinese hamster ovary/CD14 cells is not affected by overexpression of Toll-like receptors 2 or 4.

    PubMed

    Medvedev, A E; Henneke, P; Schromm, A; Lien, E; Ingalls, R; Fenton, M J; Golenbock, D T; Vogel, S N

    2001-08-15

    Down-regulation of cell surface expression of Toll-like receptor (TLR) 4 following LPS stimulation has been suggested to underlie endotoxin tolerance. In this study, we examined whether overexpression of TLR2 or TLR4 would affect the ability of cells to become tolerant to LPS or the mycobacterial components, arabinose-capped lipoarabinomannan (LAM) and soluble tuberculosis factor (STF). To this end, Chinese hamster ovary/CD14 cells stably transfected with a NF-kappaB-dependent reporter construct, endothelial leukocyte adhesion molecule CD25 (the 3E10 clone), were engineered to overexpress either human TLR2 or TLR4. Transfected TLRs exhibited proper signaling functions, as evidenced by increased LPS responsiveness of 3E10/TLR4 cells and acquisition of sensitivity to TLR2-specific ligands upon transfection of TLR2 into TLR2-negative 3E10 cells. Pretreatment of cells with LPS, LAM, or STF did not modulate TLR2 or TLR4 cell surface expression. Following LPS exposure, 3E10, 3E10/TLR2, and 3E10/TLR4 cells exhibited comparable decreases in LPS-mediated NF-kappaB activation and mitogen-activated protein (MAP) kinase phosphorylation. Likewise, LPS pretreatment profoundly inhibited LPS-induced NF-kappaB translocation in Chinese hamster ovary cells that concomitantly overexpressed human TLR4 and myeloid differentiation protein-2 (MD-2), but failed to modulate TLR4 or MD-2 cell surface expression. Pretreatment of 3E10/TLR2 cells with LAM or STF decreased their NF-kappaB responses induced by subsequent stimulation with these substances or LPS. Conversely, prior exposure of 3E10/TLR2 cells to LPS led to hyporesponsiveness to LPS, LAM, and STF, indicating that LPS and mycobacterial products induce cross-tolerance. Thus, tolerance to LPS and mycobacterial components cannot be attributed solely to a decrease in TLR/MD-2 expression levels, suggesting inhibition of expression or function of other signaling intermediates.

  13. Comparison of repair of DNA double-strand breaks in identical sequences in primary human fibroblast and immortal hamster-human hybrid cells harboring a single copy of human chromosome 11

    NASA Technical Reports Server (NTRS)

    Fouladi, B.; Waldren, C. A.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Lobrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.

  14. Comparison of repair of DNA double-strand breaks in identical sequences in primary human fibroblast and immortal hamster-human hybrid cells harboring a single copy of human chromosome 11

    NASA Technical Reports Server (NTRS)

    Fouladi, B.; Waldren, C. A.; Rydberg, B.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    We have optimized a pulsed-field gel electrophoresis assay that measures induction and repair of double-strand breaks (DSBs) in specific regions of the genome (Lobrich et al., Proc. Natl. Acad. Sci. USA 92, 12050-12054, 1995). The increased sensitivity resulting from these improvements makes it possible to analyze the size distribution of broken DNA molecules immediately after the introduction of DSBs and after repair incubation. This analysis shows that the distribution of broken DNA pieces after exposure to sparsely ionizing radiation is consistent with the distribution expected from randomly induced DSBs. It is apparent from the distribution of rejoined DNA pieces after repair incubation that DNA ends continue to rejoin between 3 and 24 h postirradiation and that some of these rejoining events are in fact misrejoining events, since novel restriction fragments both larger and smaller than the original fragment are generated after repair. This improved assay was also used to study the kinetics of DSB rejoining and the extent of misrejoining in identical DNA sequences in human GM38 cells and human-hamster hybrid A(L) cells containing a single human chromosome 11. Despite the numerous differences between these cells, which include species and tissue of origin, levels of TP53, expression of telomerase, and the presence or absence of a homologous chromosome for the restriction fragments examined, the kinetics of rejoining of radiation-induced DSBs and the extent of misrejoining were similar in the two cell lines when studied in the G(1) phase of the cell cycle. Furthermore, DSBs were removed from the single-copy human chromosome in the hamster A(L) cells with similar kinetics and misrejoining frequency as at a locus on this hybrid's CHO chromosomes.

  15. Etoposide; colchicine; mitomycin C and cyclophosphamide tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster lung (CHL) cells at Covance laboratories; Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David

    2010-10-29

    The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    SciTech Connect

    Kramer, J.M. . Dept. of Zoology)

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs.

  17. Stable expression of human H1-histamine-receptor cDNA in Chinese hamster ovary cells. Pharmacological characterisation of the protein, tissue distribution of messenger RNA and chromosomal localisation of the gene.

    PubMed

    Moguilevsky, N; Varsalona, F; Noyer, M; Gillard, M; Guillaume, J P; Garcia, L; Szpirer, C; Szpirer, J; Bollen, A

    1994-09-01

    A cDNA clone for the histamine H1 receptor was isolated from a human lung cDNA library; it encoded a protein of 487 amino acids which showed characteristic features of G-protein-coupled receptors. The percentages of identity of the deduced amino acid sequence with bovine, rat and guinea pig H1 histamine receptors were 82.6%, 79.4% and 73.3%, respectively, whereas these percentages decreased to 74.6%, 66% and 56.7% for the amino acid sequence of the third intracellular loop. The human H1-receptor cDNA was transfected into Chinese hamster ovary cells (CHO) via an eukaryotic expression vector; the receptor protein present on cell membranes specifically bound [3H]mepyramine with a Kd of 3.7 nM. The binding was displaced by H1-histamine-receptor antagonists and histamine. Northern blot analysis indicated the presence of two histamine H1 receptor mRNAs of 3.5 kb and 4.1 kb in various human tissues and an additional mRNA of 4.8 kb restricted to the human brain. Finally, by means of somatic cell hybrids segregating either human or rat chromosomes, the gene for histamine H1 receptor was found to reside on human chromosome 3 and rat chromosome 4.

  18. Expression of type I and type II bovine scavenger receptors in Chinese hamster ovary cells: Lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein

    SciTech Connect

    Freeman, M. Massachusetts General Hospital, Boston ); Ekkel, Y.; Rohrer, L.; Penman, M.; Freedman, N.J.; Krieger, M. ); Chisolm, G.M. )

    1991-06-01

    Type I and type II scavenger receptors, which have been implicated in the development of atherosclerosis and other macrophage-associated functions, differ only by the presence in the type I receptor of an extracellular cysteine-rich C-terminal domain. Stable Chinese hamster ovary (CHO) cell transfectants expressing high levels of either the type I or type II bovine scavenger receptors have been generated. Type I and type II receptors in these cells mediated high-affinity saturable endocytosis of both {sup 125}I-labeled acetylated low density lipoprotein (LDL) and {sup 125}I-labeled oxidized LDL with the distinctive broad ligand specificity characteristic of scavenger receptors. After incubation for 2 days with acetylated LDL, the transfected cells accumulated oil red O-staining lipid droplets reminiscent of those in macrophage foam cells, whereas untransfected CHO cells did not. Thus, macrophage-specific gene products other than the scavenger receptor are not required for modified-LDL-induced intracellular lipid accumulation. In transfected cells, acetylated LDL efficiently competed for both its own endocytosis and that of oxidized LDL. This nonreciprocal cross competition suggests that these ligands may bind to nonidentical but interacting sites on a single receptor. Results were similar for transfectants expressing either type I or type II scavenger receptors. The nonreciprocal cross competition seen in the transfected CHO cells differs from that previously observed with cultured macrophages.

  19. Inhibition of X-ray-induced potentially lethal damage (PLD) repair by cordycepin (3'-deoxyadenosine) and enhancement of its action by 2'-deoxycoformycin in Chinese Hamster hai cells in the stationary phase in Vitro

    SciTech Connect

    Nakatsugawa, S.; Sugahara, T.

    1980-11-01

    The effects of growth phase and chemicals on PLD repair were studied in X-irradiated Chinese hamster hai cells. The change in capacity of cells in different growth phases to repair PLD was investigated. Starting from cells in the log phase, the magnitude of PLD repair during 10 hr of postirradiation incubation in Hanks' balanced salt solution increased for 2.5 to 18 as the cultures approached the stationary phase, which occurred on the 7th or 8th day. The effects of chemicals dissolved in Hanks' BSS on PLD repair were studied using 10th- or 12th-day cultures. Among the chemicals tested, caffeine and cordycepin were effective in inhibiting PLD repair. When 2'-deoxycoformycin, an inhibitor of adenosine deaminase, was combined with cordycepin, the effect of cordycepin was enhanced. Due to this prevention of the deamination of cordycepin by 2'-deoxycoformycin, the inhibition of PLD repair was prolonged, indicating a possible clinical application of cordycepin as a radiosensitizer.

  20. Cytotoxic and mutagenic properties of shale oil byproducts II. Comparison of mutagenic effects at five genetic markers induced by retort process water plus near ultraviolet light in Chinese hamster ovary cells.

    PubMed

    Chen, D J; Strniste, G F

    1982-01-01

    A chinese hamster ovary (CHO) cell line heterozygous at the adenine phosphoribosyl transferase (APRT) locus was used for selection of induced mutants resistant to 8-azaadenine (8AA), 6-thioguanine (6TG), ouabain (OUA), emetine (EMT) and diphtheria toxin (DIP). The expression times necessary for optimizing the number of mutants recovered at the different loci have been determined using the know direct acting mutagen, far ultraviolet light (FUV), and a complex aqueous organic mixture (shale oil process water) activated with near ultraviolet light (NUV). Our results indicate that optimal expression times following treatment with either mutagen was between 2 and 8 days (depending on the genetic marker examined). For CHO cells treated with shale oil process water and subsequently exposed to NUV a linear dose response for mutant induction was observed for all five genetic loci. At 10% surviving fraction of cells, between 35- and 130-fold increases above background mutation frequencies were observed for the various markers examined. Among the five genetic loci tested, OUAR was the most sensitive marker tested.

  1. [Scanning microscopy of hamster cells transformed by herpes simplex virus type 2].

    PubMed

    Kitsak, V Ia; Zaĭkina, O E

    1983-01-01

    Scanning microscopy was used to examine the features of morphology and attachment to a solid substrate of a transformed and tumor lines of hamster cells. These cell lines differed from normal hamster fibroblasts by changes in the mode of attachment and the degree of flattening on the solid substrate, relief of the cell surface and pattern of intercellular interactions. The observed morphological changes correlated with the degree of cell transformation.

  2. Clustered DNA damage induced by γ radiation in human fibroblasts (HF19), hamster (V79-4) cells and plasmid DNA is revealed as Fpg and Nth sensitive sites

    PubMed Central

    Gulston, Melanie; Fulford, Jonathan; Jenner, Terry; de Lara, Catherine; O’Neill, Peter

    2002-01-01

    The signature DNA lesion induced by ionizing radiation is clustered DNA damage. Gamma radiation-induced clustered DNA damage containing base lesions was investigated in plasmid DNA under cell mimetic conditions and in two cell lines, V79-4 (hamster) and HF19 (human), using bacterial endonucleases Nth (endonuclease III) and Fpg (formamidopyrimidine DNA glycosylase). Following irradiation with 60Co γ-rays, induction of double-strand breaks (DSB) and clustered DNA damage, revealed as DSB by the proteins, was determined in plasmid using the plasmid-nicking assay and in cells by either conventional pulsed field gel electrophoresis or a hybridization assay, in which a 3 Mb restriction fragment of the X chromosome is used as a radioactive labeled probe. Enzyme concentrations (30–60 ng/µg DNA) were optimized to minimize visualization of background levels of endogenous DNA damage and DSB produced by non-specific cutting by Fpg and Nth in cellular DNA. 60Co γ- radiation produces a 1.8-fold increase in the yields of both types of enzyme sensitive sites, visualized as DSB compared with that of prompt DSB in plasmid DNA. In mammalian cells, the increase in yields of clustered DNA damage containing either Fpg or Nth sensitive sites compared with that of prompt DSB is 1.4–2.0- and 1.8-fold, respectively. Therefore, clustered DNA damage is induced in cells by sparsely ionizing radiation and their yield is significantly greater than that of prompt DSB. PMID:12140332

  3. Tamoxifen inhibits estrogen-induced hepatic injury in hamsters.

    PubMed

    Coe, J E; Ross, M J

    1988-01-01

    Estrogens have an unusual toxic effect on the liver of two hamster species, the Armenian and the Chinese hamster. The hepatotoxicity was detectable clinically by hyperbilirubinemia and confirmed histologically by the presence of hepatic degenerative-regenerative changes. Administration of tamoxifen with estrogen [either ethynyl estradiol or diethylstilbestrol (DES)] completely abrogated the hepatotoxic effects, suggesting that estrogen receptor (ER) was necessary for estrogen to damage liver. In Armenian hamsters, estrogens decreased hepatic synthesis of female protein (FP); tamoxifen also abolished this DES effect and resulted in a net increase in serum FP levels. DES administration produced higher serum bilirubin levels and lower serum FP levels in females than in males. Paradoxically, tamoxifen blocked these DES effects more effectively and efficiently in females than in males. Estrogens did not injure uteri of Armenian and Chinese hamsters and were nontoxic to livers of other hamsters species, such as Syrian and Turkish. This model provides another perspective of the acute cellular derangement that can be effected by estrogen-ER complex and may indicate a yet unknown mode of ER action.

  4. Serum Fibroblast Growth Factor 19 Levels Are Decreased in Chinese Subjects With Impaired Fasting Glucose and Inversely Associated With Fasting Plasma Glucose Levels

    PubMed Central

    Fang, Qichen; Li, Huating; Song, Qianqian; Yang, Wenjing; Hou, Xuhong; Ma, Xiaojing; Lu, Junxi; Xu, Aimin; Jia, Weiping

    2013-01-01

    OBJECTIVE Fibroblast growth factor 19 (FGF19), a hormone secreted from the small intestine, has recently been shown to stimulate glycogen synthesis and inhibit gluconeogenesis through insulin-independent pathways. This study investigated the change of FGF19 in prediabetes and newly diagnosed type 2 diabetes mellitus (T2DM) and explored the association of serum FGF19 levels with parameters of glucose metabolism in Chinese subjects. RESEARCH DESIGN AND METHODS Fasting serum FGF19 levels were determined by ELISA in 81 normal glucose tolerance (NGT), 91 impaired fasting glucose (IFG), 93 impaired glucose tolerance (IGT), and 104 newly diagnosed T2DM subjects, and their association with parameters of glucose metabolism was studied. An ordinal logistic regression analysis was performed in subjects with NGT, IFG, and T2DM. Serum FGF19 levels at 2 h after a 75-g oral glucose tolerance test in the different glucose tolerance categories were studied in a subgroup. RESULTS Fasting serum FGF19 levels in subjects with IFG (210 pg/mL [142–327]) (median [interquartile range]) and T2DM (196 pg/mL [137–280]) were significantly lower than those in NGT subjects (289 pg/mL [224–393]) (both P < 0.001). However, no significant difference in fasting FGF19 levels was observed between IGT (246 pg/mL [138–379]) and NGT subjects. Fasting serum FGF19 levels were negatively associated with fasting plasma glucose and independently associated with the deterioration of glucometabolic status from NGT to IFG and T2DM. CONCLUSIONS Fasting serum FGF19 levels were decreased in Chinese subjects with IFG and inversely associated with fasting glucose levels. PMID:23628619

  5. 5-Fluorouracil, colchicine, benzo[a]pyrene and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster V79 cells at Covance Laboratories, Harrogate, UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation) and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster V79 cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In Vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Very High Density of Chinese Hamster Ovary Cells in Perfusion by Alternating Tangential Flow or Tangential Flow Filtration in WAVE Bioreactor™—Part II: Applications for Antibody Production and Cryopreservation

    PubMed Central

    Clincke, Marie-Françoise; Mölleryd, Carin; Samani, Puneeth K; Lindskog, Eva; Fäldt, Eric; Walsh, Kieron; Chotteau, Véronique

    2013-01-01

    A high cell density perfusion process of monoclonal antibody (MAb) producing Chinese hamster ovary (CHO) cells was developed in disposable WAVE Bioreactor™ using external hollow fiber (HF) filter as cell separation device. Tangential flow filtration (TFF) and alternating tangential flow (ATF) systems were compared and process applications of high cell density perfusion were studied here: MAb production and cryopreservation. Operations by perfusion using microfiltration (MF) or ultrafiltration (UF) with ATF or TFF and by fed-batch were compared. Cell densities higher than 108 cells/mL were obtained using UF TFF or UF ATF. The cells produced comparable amounts of MAb in perfusion by ATF or TFF, MF or UF. MAbs were partially retained by the MF using ATF or TFF but more severely using TFF. Consequently, MAbs were lost when cell broth was discarded from the bioreactor in the daily bleeds. The MAb cell-specific productivity was comparable at cell densities up to 1.3 × 108 cells/mL in perfusion and was comparable or lower in fed-batch. After 12 days, six times more MAbs were harvested using perfusion by ATF or TFF with MF or UF, compared to fed-batch and 28× more in a 1-month perfusion at 108 cells/mL density. Pumping at a recirculation rate up to 2.75 L/min did not damage the cells with the present TFF settings with HF short circuited. Cell cryopreservation at 0.5 × 108 and 108 cells/mL was performed using cells from a perfusion run at 108 cells/mL density. Cell resuscitation was very successful, showing that this system was a reliable process for cell bank manufacturing. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:768–777, 2013 PMID:23436783

  7. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor.

    PubMed Central

    Abousalham, Abdelkarim; Hobman, Tom C; Dewald, Jay; Garbutt, Michael; Brindley, David N

    2002-01-01

    Differential effects of acetyl(C2-) ceramide (N-acetylsphingosine) were studied on coated vesicle formation from Golgi-enriched membranes of Chinese hamster ovary (CHO) and Madin-Darby canine kidney (MDCK) cells. C2-ceramide blocked the translocation of ADP-ribosylation factor-1 (ARF-1) and protein kinase C-alpha (PKC-alpha) to the membranes from CHO cells, but not those of MDCK cells. Consequently, C2-ceramide blocked the stimulation of phospholipase D1 (PLD1) by the cytosol and guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in membranes from CHO cells. Basal specific activity of PLD1 and the concentration of ARF-1 were 3-4 times higher in Golgi-enriched membranes from MDCK cells compared with CHO cells. Moreover, PLD1 activity in MDCK cells was stimulated less by cytosol and GTP[S]. PLD2 was not detectable in the Golgi-enriched membranes. Incubation of intact CHO cells or their Golgi-enriched membranes with C2-ceramide also inhibited COP1 vesicle formation by membranes from CHO, but not MDCK, cells. Specificity was demonstrated, since dihydro-C2-ceramide had no significant effect on ARF-1 translocation, PLD1 activation or vesicle formation in membranes from both cell types. C2-ceramide also decreased the secretion of virus-like particles to a greater extent in CHO compared with MDCK cells, whereas dihydro-C2-ceramide had no significant effect. The results demonstrate a biological effect of C2-ceramide in CHO cells by decreasing ARF-1 and PKC-alpha binding to Golgi-enriched membranes, thereby preventing COP1 vesicle formation. PMID:11802796

  8. Lowered fasting chenodeoxycholic acid correlated with the decrease of fibroblast growth factor 19 in Chinese subjects with impaired fasting glucose.

    PubMed

    Zhang, Jing; Li, Huating; Zhou, Hu; Fang, Li; Xu, Jingjing; Yan, Han; Chen, Shuqin; Song, Qianqian; Zhang, Yinan; Xu, Aimin; Fang, Qichen; Ye, Yang; Jia, Weiping

    2017-07-20

    The gut-derived hormone Fibroblast growth factor 19 (FGF19) could regulate glucose metabolism and is induced by bile acids (BAs) through activating Farnesoid X Receptor (FXR). FGF19 was found to decrease in subjects with isolated-impaired fasting glucose (I-IFG) and type 2 diabetes mellitus (T2DM). However, the reason for the change of FGF19 in subjects with different glucometabolic status remained unclear. Here we measured six BAs including chenodeoxycholic acid (CDCA), cholic acid, deoxycholic acid, their glycine conjugates and FGF19 levels during oral glucose tolerance test (OGTT) in normal glucose tolerance (NGT), isolated-impaired glucose tolerance, I-IFG, combined glucose intolerance (CGI) and T2DM subjects. After OGTT, serum FGF19 peaked at 120 min in all subjects. Glycine conjugated BAs peaked at 30 min, while free BAs did not elevated significantly. Consistent with the decrease trend in FGF19 levels, fasting serum CDCA levels in subjects with I-IFG, CGI and T2DM were significantly lower than NGT subjects (P < 0.05). Fasting serum CDCA was independently associated with FGF19. CDCA strongly upregulated FGF19 mRNA levels in LS174T cells in a dose- and time-dependent manner. These results suggest that the decrease of FGF19 in subjects with I-IFG was at least partially due to their decrease of CDCA acting via FXR.

  9. Involvement of basic fibroblast growth factor in suramin-induced inhibition of V79/AP4 fibroblast cell proliferation.

    PubMed Central

    Bernardini, N.; Giannessi, F.; Bianchi, F.; Dolfi, A.; Lupetti, M.; Citti, L.; Danesi, R.; Del Tacca, M.

    1993-01-01

    The V79/AP4 Chinese hamster fibroblasts were densely stained with the anti-basic fibroblast growth factor (bFGF) antibody demonstrating an endogenous production of the peptide. The in vitro proliferation of these cells was stimulated by exogenous bFGF and the maximum growth (259% increase in 3H-thymidine incorporation into DNA) was reached with bFGF 10 ng ml-1. Inhibition of bFGF-mediated mitogenic pathway was obtained with a 15-mer antisense oligodeoxynucleotide targeted against bFGF mRNA and with suramin, a drug which blocks the biological activity of heparin-binding growth factors. bFGF antisense oligomer reduced the synthesis of DNA by 79.5 and 89.5% at 20 and 60 microM, respectively; this effect was reversed by the addition of exogenous bFGF to the culture medium. A short-term exposure to suramin 300 micrograms ml-1 produced a modest reduction in 3H-thymidine incorporation but suppressed the mitogenic effect of bFGF on V79/AP4 cells. In cells treated with suramin 300 micrograms ml-1 the drug concentration increased linearly over 3 days, reaching 13.15 micrograms mg-1 of protein; cell proliferation was inhibited in a dose-related manner as evaluated by the colony formation assay (IC50: 344.22 micrograms ml-1) and by the number of mitoses observed in culture. Furthermore, the drug induced ultrastructural alterations, consisting of perinuclear cisternae swelling, chromatin condensation, nucleolar segregation and cytoplasmic vacuolations. These findings demonstrated that the endogenous production of bFGF plays an important role in V79/AP4 fibroblasts proliferation, and the inhibition of bFGF-mediated mitogenic signalling with bFGF antisense oligomer or suramin is an effective mean of reducing cell growth. Images Figure 1 Figure 5 Figure 6 PMID:7685616

  10. Poly(N-isopropylacrylamide)-coated thermo-responsive nanoparticles for controlled delivery of sulfonated Zn-phthalocyanine in Chinese hamster ovary cells in vitro and zebra fish in vivo

    NASA Astrophysics Data System (ADS)

    He, Jia; Chen, Ji-Yao; Wang, Pu; Wang, Pei-Nan; Guo, Jia; Yang, Wu-Li; Wang, Chang-Chun; Peng, Qian

    2007-10-01

    Poly(N-isopropylacrylamide) (PNIPAM)-coated Fe3O4@SiO2@CdTe multifunctional nanoparticles with photoluminescent (PL), thermosensitive and magnetic properties, were investigated as carriers to deliver water-soluble, fluorescent sulfonated Zn-phthalocyanine (ZnPcS), a photosensitizing drug for photodynamic therapy of cancer, in Chinese hamster ovary (CHO) cells in vitro and zebra fish in vivo. PNIPAM is a well-known thermo-responsive polymer with a volume phase transition temperature. This property allows it to be swollen in water at temperatures lower than 32-34 °C to take up ZnPcS and shrunken to expel the drug at higher temperatures. Since the PL band of CdTe quantum dots (QDs) as indicators for the nanoparticles is at 585 nm and the emission band of ZnPcS is at 680 nm, it is possible to study the temperature-dependent release of ZnPcS from the nanoparticles by fluorescence measurements. ZnPcS was embedded in the PNIPAM of the nanoparticles at 25 °C in phosphate buffered saline (PBS) solution and released at 37 °C, measured with a spectrophotometer. When CHO cells had been incubated with the ZnPcS-loaded nanoparticles at 27 °C, a similar intracellular localization pattern of CdTe QDs and ZnPcS was seen by multichannel measurements in confocal laser scanning microscopy (CLSM), but a diffuse pattern of only ZnPcS fluorescence was detected in the cytoplasm of the cells at 37 °C, indicating a release of ZnPcS from the nanoparticles. Similar results were also found in the intestinal tract of zebra fish in vivo after intake of the nanoparticles. Since the nanoparticles contain magnetic (Fe3O4) material, the nanoparticles could also be manipulated to change their location in the intestinal tract of the zebra fish with an external magnetic field gradient of 300 G mm-1. The results presented suggest that such multifunctional nanoparticles may have combined potential for temperature-dependent drug delivery, QD photodetection and magnetic manipulation in diagnosis and

  11. Understanding of decreased sialylation of Fc-fusion protein in hyperosmotic recombinant Chinese hamster ovary cell culture: N-glycosylation gene expression and N-linked glycan antennary profile.

    PubMed

    Lee, Jong Hyun; Jeong, Yeong Ran; Kim, Yeon-Gu; Lee, Gyun Min

    2017-08-01

    To understand the effects of hyperosmolality on protein glycosylation, recombinant Chinese hamster ovary (rCHO) cells producing the Fc-fusion protein were cultivated in hyperosmolar medium resulting from adding NaCl (415 mOsm/kg). The hyperosmotic culture showed increased specific Fc-fusion protein productivity (qFc ) but a decreased proportion of acidic isoforms and sialic acid content of the Fc-fusion protein. The intracellular and extracellular sialidase activities in the hyperosmotic cultures were similar to those in the control culture (314 mOsm/kg), indicating that reduced sialylation of Fc-fusion protein at hyperosmolality was not due to elevated sialidase activity. Expression of 52 N-glycosylation-related genes was assessed by the NanoString nCounter system, which provides a direct digital readout using custom-designed color-coded probes. After 3 days of hyperosmotic culture, nine genes (ugp, slc35a3, slc35d2, gcs1, manea, mgat2, mgat5b, b4galt3, and b4galt4) were differentially expressed over 1.5-fold of the control, and all these genes were down-regulated. N-linked glycan analysis by anion exchange and hydrophilic interaction HPLC showed that the proportion of highly sialylated (di-, tri-, tetra-) and tetra-antennary N-linked glycans was significantly decreased upon hyperosmotic culture. Addition of betaine, an osmoprotectant, to the hyperosmotic culture significantly increased the proportion of highly sialylated and tetra-antennary N-linked glycans (P ≤ 0.05), while it increased the expression of the N-glycan branching/antennary genes (mgat2 and mgat4b). Thus, decreased expression of the genes with roles in the N-glycan biosynthesis pathway correlated with reduced sialic acid content of Fc-fusion protein caused by hyperosmolar conditions. Taken together, the results obtained in this study provide a better understanding of the detrimental effects of hyperosmolality on N-glycosylation, especially sialylation, in rCHO cells. Biotechnol. Bioeng

  12. The C. elegans VIG-1 and FRM-1 modulate carbachol-stimulated ERK1/2 activation in chinese hamster ovary cells expressing the muscarinic acetylcholine receptor GAR-3.

    PubMed

    Shin, Youngmi; Cho, Nam Jeong

    2014-04-01

    Many neurotransmitter receptors are known to interact with a variety of intracellular proteins that modulate signaling processes. In an effort to understand the molecular mechanism by which acetylcholine (ACh) signaling is modulated, we searched for proteins that interact with GAR-3, the Caenorhabditis elegans homolog of muscarinic ACh receptors. We isolated two proteins, VIG-1 and FRM-1, in a yeast two-hybrid screen of a C. elegans cDNA library using the third intracellular (i3) loop of GAR-3 as bait. To test whether these proteins regulate ACh signaling, we utilized Chinese hamster ovary (CHO) cells stably expressing GAR-3 (GAR-3/CHO cells). Previously we have shown that the cholinergic agonist carbachol stimulates extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation in an atropine-sensitive manner in this cell line. When VIG-1 was transiently expressed in GAR-3/CHO cells, carbachol-stimulated ERK1/2 activation was substantially reduced. In contrast, transient expression of FRM-1 significantly enhanced carbachol-stimulated ERK1/2 activation. Neither VIG-1 nor FRM-1 expression appeared to alter the affinity between GAR-3 and carbachol. In support of this notion, expression of these proteins did not affect GAR-3-mediated phospholipase C activation. To verify the modulation of ERK1/2 activity by VIG-1 and FRM-1, we used an i3 loop deletion mutant of GAR-3 (termed GAR-3Δi3). Carbachol treatment evoked robust ERK1/2 activation in CHO cells stably expressing the deletion mutant (GAR-3Δi3/CHO cells). However, transient expression of either VIG-1 or FRM-1 had little effect on carbachol-stimulated ERK1/2 activation in GAR-3Δi3/CHO cells. Taken together, these results indicate that VIG-1 and FRM-1 regulate GAR-3-mediated ERK1/2 activation by interacting with the i3 loop of GAR-3.

  13. Sequencing, Annotation and Analysis of the Syrian Hamster (Mesocricetus auratus) Transcriptome

    PubMed Central

    Tchitchek, Nicolas; Safronetz, David; Rasmussen, Angela L.; Martens, Craig; Virtaneva, Kimmo; Porcella, Stephen F.; Feldmann, Heinz

    2014-01-01

    Background The Syrian hamster (golden hamster, Mesocricetus auratus) is gaining importance as a new experimental animal model for multiple pathogens, including emerging zoonotic diseases such as Ebola. Nevertheless there are currently no publicly available transcriptome reference sequences or genome for this species. Results A cDNA library derived from mRNA and snRNA isolated and pooled from the brains, lungs, spleens, kidneys, livers, and hearts of three adult female Syrian hamsters was sequenced. Sequence reads were assembled into 62,482 contigs and 111,796 reads remained unassembled (singletons). This combined contig/singleton dataset, designated as the Syrian hamster transcriptome, represents a total of 60,117,204 nucleotides. Our Mesocricetus auratus Syrian hamster transcriptome mapped to 11,648 mouse transcripts representing 9,562 distinct genes, and mapped to a similar number of transcripts and genes in the rat. We identified 214 quasi-complete transcripts based on mouse annotations. Canonical pathways involved in a broad spectrum of fundamental biological processes were significantly represented in the library. The Syrian hamster transcriptome was aligned to the current release of the Chinese hamster ovary (CHO) cell transcriptome and genome to improve the genomic annotation of this species. Finally, our Syrian hamster transcriptome was aligned against 14 other rodents, primate and laurasiatheria species to gain insights about the genetic relatedness and placement of this species. Conclusions This Syrian hamster transcriptome dataset significantly improves our knowledge of the Syrian hamster's transcriptome, especially towards its future use in infectious disease research. Moreover, this library is an important resource for the wider scientific community to help improve genome annotation of the Syrian hamster and other closely related species. Furthermore, these data provide the basis for development of expression microarrays that can be used in functional

  14. Gait disturbances in dystrophic hamsters.

    PubMed

    Hampton, Thomas G; Kale, Ajit; Amende, Ivo; Tang, Wenlong; McCue, Scott; Bhagavan, Hemmi N; VanDongen, Case G

    2011-01-01

    The delta-sarcoglycan-deficient hamster is an excellent model to study muscular dystrophy. Gait disturbances, important clinically, have not been described in this animal model. We applied ventral plane videography (DigiGait) to analyze gait in BIO TO-2 dystrophic and BIO F1B control hamsters walking on a transparent treadmill belt. Stride length was ∼13% shorter (P < .05) in TO-2 hamsters at 9 months of age compared to F1B hamsters. Hindlimb propulsion duration, an indicator of muscle strength, was shorter in 9-month-old TO-2 (247 ± 8 ms) compared to F1B hamsters (272 ± 11 ms; P < .05). Braking duration, reflecting generation of ground reaction forces, was delayed in 9-month-old TO-2 (147 ± 6 ms) compared to F1B hamsters (126 ± 8 ms; P < .05). Hindpaw eversion, evidence of muscle weakness, was greater in 9-month-old TO-2 than in F1B hamsters (17.7 ± 1.2° versus 8.7 ± 1.6°; P < .05). Incline and decline walking aggravated gait disturbances in TO-2 hamsters at 3 months of age. Several gait deficits were apparent in TO-2 hamsters at 1 month of age. Quantitative gait analysis demonstrates that dystrophic TO-2 hamsters recapitulate functional aspects of human muscular dystrophy. Early detection of gait abnormalities in a convenient animal model may accelerate the development of therapies for muscular dystrophy.

  15. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients.

    PubMed

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-03-15

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica.

  16. Detection of anti-aquaporin-4 autoantibodies in the sera of Chinese neuromyelitis optica patients★

    PubMed Central

    Li, Miao; Su, Weiheng; Wang, Jie; Pisani, Francesco; Frigeri, Antonio; Ma, Tonghui

    2013-01-01

    In this study, we recruited 10 neuromyelitis optica patients, two multiple sclerosis patients and two myelitis patients. Chinese hamster lung fibroblast (V79) cells transfected with a human aquaporin-4-mCherry fusion protein gene were used to detect anti-aquaporin-4 antibody in neuromyelitis optica patient sera by immunofluorescence. Anti-aquaporin-4 autoantibody was stably detected by immunofluorescence in neuromyelitis optica patient sera exclusively. The sensitivity of the assay for neuromyelitis optica was 90% and the specificity for neuromyelitis optica was 100%. The anti-aquaporin-4 antibody titers in sera were tested with serial dilutions until the signal disappeared. A positive correlation was detected between Expanded Disability Status Scale scores and serum anti-aquaporin-4 antibody titers. The anti-aquaporin-4 antibody assay is highly sensitive and specific in the sera of Chinese neuromyelitis optica patients. Detection of aquaporin-4 autoantibody is important for the diagnosis and treatment of neuromyelitis optica. PMID:25206717

  17. Evidence for cross-talk between M2 and M3 muscarinic acetylcholine receptors in the regulation of second messenger and extracellular signal-regulated kinase signalling pathways in Chinese hamster ovary cells

    PubMed Central

    Hornigold, David C; Mistry, Rajendra; Raymond, Pamela D; Blank, Jonathan L; John Challiss, R A

    2003-01-01

    We have examined possible mechanisms of cross-talk between the Gq/11-linked M3 muscarinic acetylcholine (mACh) receptor and the Gi/o-linked M2 mACh receptor by stable receptor coexpression in Chinese hamster ovary (CHO) cells. A number of second messenger (cyclic AMP, Ins(1,4,5)P3) and mitogen-activated protein kinase (ERK and JNK) responses stimulated by the mACh receptor agonist methacholine were examined in CHO-m2m3 cells and compared to those stimulated in CHO-m2 and CHO-m3 cell-lines, expressing comparable levels of M2 or M3 mACh receptors. Based on comparisons between cell-lines and pertussis toxin (PTx) pretreatment to eliminate receptor-Gi/o coupling, evidence was obtained for (i) an M2 mACh receptor-mediated contribution to the predominantly M3 mACh receptor-mediated Ins(1,4,5)P3 response and (ii) a facilitation of the inhibitory effect of M2 mACh receptor on forskolin-stimulated cyclic AMP accumulation by M3 mACh receptor coactivation at low agonist concentrations (MCh 10−9–10−6 M). The most profound cross-talk effects were observed with respect to ERK activation. Thus, while MCh stimulated ERK activation in both CHO-m2 and CHO-m3 cells (pEC50 values: 5.64±0.09 and 5.57±0.16, respectively), the concentration–effect relation was approx 50-fold left-shifted in CHO-m2m3 cells (pEC50: 7.17±0.07). In addition, the ERK response was greater and more sustained in CHO-m2m3 cells. In contrast, only minor differences were seen in the time-courses and concentration-dependencies of JNK activation in CHO-m3 and CHO-m2m3 cells. Costimulation of endogenous P2Y2 purinoceptors also caused an approx 10-fold left-shift in the MCh-stimulated ERK response in CHO-m2 cells, suggesting that the Gq/11/Gi/o interaction to affect ERK activation is not specific to muscarinic receptors. PTx pretreatment of cells had unexpected effects on ERK activation by MCh in both CHO-m2m3 and CHO-m3 cells. Thus, in CHO-m3 cells PTx pretreatment caused a marked left-shift in the MCh

  18. Failure to induce mutations in Chinese hamster V79 cells and WB rat liver cells by the polybrominated biphenyls, Firemaster BP-6, 2,2',4,4',5,5'-hexabromobiphenyl, 3,3',4,4',5,5'-hexabromobiphenyl, and 3,3',4,4'-tetrabromobiphenyl.

    PubMed

    Kavanagh, T J; Rubinstein, C; Liu, P L; Chang, C C; Trosko, J E; Sleight, S D

    1985-06-15

    Firemaster BP-6 (FM), a mixture of polybrominated biphenyls (PBB), and the congeners 2,2',4,4',5,5'-hexabromobiphenyl (2,4,5-HBB), 3,3',4,4',5,5'-hexabromobiphenyl (3,4,5-HBB), and 3,3',4,4'-tetrabromobiphenyl (3,4-TBB) were tested for their ability to induce mutations in mammalian cells in culture. A rat liver microsome-mediated (S 15) Chinese hamster V79 cell mutation assay was used to test the mutagenicity of PBB and 3,4-TBB. V79 cells and WB rat liver cells were used to detect the mutagenicity of 2,4,5-HBB and 3,4,5-HBB. No mutagenic effects were detected at the dose levels tested. The possibility that these compounds promote liver neoplasms via a nongenotoxic mechanism is discussed.

  19. Hyperadrenocorticism in Three Teddy Bear Hamsters

    PubMed Central

    Bauck, L. (Brouwer); Orr, J. P.; Lawrence, K. H.

    1984-01-01

    Hyperadrenocorticism was diagnosed in three related teddy bear hamsters with presenting complaints of alopecia and hyperpigmentation of the skin. Treatment was attempted in two of the hamsters and was successful in one case. Metyrapone and o,p′-DDD (1,1-dichloro-2-2bis (p-chlorophenyl) ethane) were the drugs used. Necropsy and histopathological examinations revealed a pituitary chromophobe adenoma in one hamster and an adrenocortical adenocarcinoma in a second hamster. The third related hamster was clinically diagnosed as having hyperadrenocorticism but the origin of the disease has not yet been determined. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:17422415

  20. Hyperadrenocorticism in three teddy bear hamsters.

    PubMed

    Bauck, L B; Orr, J P; Lawrence, K H

    1984-06-01

    Hyperadrenocorticism was diagnosed in three related teddy bear hamsters with presenting complaints of alopecia and hyperpigmentation of the skin. Treatment was attempted in two of the hamsters and was successful in one case. Metyrapone and o,p'-DDD (1,1-dichloro-2-2bis (p-chlorophenyl) ethane) were the drugs used. Necropsy and histopathological examinations revealed a pituitary chromophobe adenoma in one hamster and an adrenocortical adenocarcinoma in a second hamster. The third related hamster was clinically diagnosed as having hyperadrenocorticism but the origin of the disease has not yet been determined.

  1. Daidzin inhibits mitochondrial aldehyde dehydrogenase and suppresses ethanol intake of Syrian golden hamsters.

    PubMed

    Keung, W M; Klyosov, A A; Vallee, B L

    1997-03-04

    Daidzin is the major active principle in extracts of radix puerariae, a traditional Chinese medication that suppresses the ethanol intake of Syrian golden hamsters. It is the first isoflavone recognized to have this effect. Daidzin is also a potent and selective inhibitor of human mitochondrial aldehyde dehydrogenase (ALDH-2). To establish a link between these two activities, we have tested a series of synthetic structural analogs of daidzin. The results demonstrate a direct correlation between ALDH-2 inhibition and ethanol intake suppression and raise the possibility that daidzin may, in fact, suppress ethanol intake of golden hamsters by inhibiting ALDH-2. Hamster liver contains not only mitochondrial ALDH-2 but also high concentrations of a cytosolic form, ALDH-1, which is a very efficient catalyst of acetaldehyde oxidation. Further, the cytosolic isozyme is completely resistant to daidzin inhibition. This unusual property of the hamster ALDH-1 isozyme accounts for the fact we previously observed that daidzin can suppress ethanol intake of this species without blocking acetaldehyde metabolism. Thus, the mechanism by which daidzin suppresses ethanol intake in golden hamsters clearly differs from that proposed for the classic ALDH inhibitor disulfiram. We postulate that a physiological pathway catalyzed by ALDH-2, so far undefined, controls ethanol intake of golden hamsters and mediates the antidipsotropic effect of daidzin.

  2. Succinate dehydrogenase activity in cultured human skin fibroblasts and amniotic fluid cells. A methodological study.

    PubMed

    Hansen, T L; Andersen, H

    1983-01-01

    Through a methodological evaluation, reliable histochemical and biochemical methods for succinate dehydrogenase activity in cultured human skin fibroblasts and amniotic fluid cells were developed. The histochemical method includes a cleaning of the cultured cells in 1 mM malonate in 0.9% NaCl, air-drying and fixation in acetone (5 min at -20 degrees C), coating of cells with CoQ10 (0.2 mg/ml in ether/acetone) and incubation for 1 h at 37 degrees C in 50 mM succinate and 0.5 mg/ml Nitro BT in 200 mM phosphate buffer, pH 7.6 PMS as an intermediate electron carrier was found inferior to exogenous CoQ10. Both types of cells exhibit equal activity. In the biochemical method homogenizing was performed in 50 mM Tris-HCl buffer, pH 7.5, and 200 mM sucrose. The standard incubation was 2.0 mM INT and 10 mM succinate in 10 mM Tris-HCl buffer, pH 7.5 for 1 h at 37 degrees C. The apparent Km values for INT and succinate were estimated to 0.39 mM and 0.13 mM, respectively, while I0.5 for malonate was 0.46 mM. Activity in amniotic fluid cells was 18.1 pkat/mg protein and in human skin fibroblasts 20.3 pkat/mg protein. Specificity of the methods was tested by use of a Chinese hamster fibroblast strain B9 known to be succinate dehydrogenase deficient in addition to various control experiments. Congruent results were obtained with the two methods.

  3. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains.

    PubMed

    Raymond, Gregory J; Raymond, Lynne D; Meade-White, Kimberly D; Hughson, Andrew G; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S; Miller, Michael W; Race, Richard E; Caughey, Byron

    2007-04-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.

  4. Gene Dosage Dependence of Pigment Synthesis in Melanoma x Fibroblast Hybrids

    PubMed Central

    Fougére, Catherine; Ruiz, Françoise; Ephrussi, Boris

    1972-01-01

    Hybrids between Syrian hamster melanoma cells and mouse fibroblasts, containing one genome (1s) of each parent, produce neither melanin nor DOPA-oxidase (“extinction”). Attempts to induce loss of the fibroblast chromosomes by irradiation of the fibroblasts before fusion with melanoma cells resulted in the formation of colonies comprising pigmented hybrid cells, which contained 2s melanoma and 1s fibroblast chromosome-complements suggesting that extinction or re-expression of melanogenesis is a function of genic balance. This interpretation was confirmed by crosses between 2s melanoma cells with unirradiated 1s fibroblasts, which produced both pigmented and unpigmented hybrids. No correlation has thus far been established between karyotype and phenotype of the hybrid cells, but analysis of the karyological data suggests that the fibroblast chromosomes responsible for extinction cannot be numerous. Images PMID:4621832

  5. Ginsenoside Rb1, Rg1 and three extracts of traditional Chinese medicine attenuate ultraviolet B-induced G1 growth arrest in HaCaT cells and dermal fibroblasts involve down-regulating the expression of p16, p21 and p53.

    PubMed

    Wang, Xiao-Yong; Wang, Yun-Gui; Wang, Yan-Fei

    2011-08-01

    The aims of this study were to confirm whether traditional Chinese medicine ginsenoside Rb1 (Rb1), ginsenoside Rg1 (Rg1), polygonum multiflorum (PM), ginkgo extract (GE) and lycium barbarum polysaccharide (LBP) can attenuate G1 growth arrest of HaCaT cells and dermal fibroblasts induced by 10 subcytotoxic ultraviolet B (UVB) exposures, and to explore the possible mechanism in terms of the expression of cell-cycle regulatory proteins p16, p21 and p53. Ten subcytotoxic exposures to UVB induced G1 growth arrest of HaCaT cells and dermal fibroblasts. Cell-cycle analysis was performed using flow cytometry, and mRNA levels of p16, p21 and p53 were detected by a reverse transcription-polymerase chain reaction (RT-PCR), and protein levels were detected using Western blot analysis. Five types of traditional Chinese medicine attenuated UVB-induced G1 growth arrest. The mRNA and protein levels of p16, p21 and p53 in HaCaT cells and dermal fibroblasts increased after UVB irradiation, but pretreatment with five types of traditional Chinese medicine decreased the expression of p16, p21 and p53. These results indicated that five types of traditional Chinese medicine can attenuate G1 growth arrest of HaCaT cells and dermal fibroblasts induced by UVB exposures, which was caused by down-regulating the expression of cell-cycle regulatory proteins p16, p21 and p53. © 2011 John Wiley & Sons A/S.

  6. Vomeronasal organ lesion disrupts social odor recognition, behaviors and fitness in golden hamsters.

    PubMed

    Liu, Yingjuan; Zhang, Jinhua; Liu, Dingzhen; Zhang, Jianxu

    2014-06-01

    Most studies support the viewpoint that the vomeronasal organ has a profound effect on conspecific odor recognition, scent marking and mating behavior in the golden hamster (Mesocricetus auratus). However, the role of the vomeronasal organ in social odor recognition, social interaction and fitness is not well understood. Therefore, we conducted a series of behavioral and physiological tests to examine the referred points in golden hamster. We found that male hamsters with vomeronasal organ lesion showed no preference between a predator odor (the anal gland secretion of the Siberian weasels (Mustela sibirica) and putative female pheromone components (myristic acid and palmitic acid), but were still able to discriminate between these 2 kinds of odors. In behavioral tests of anxiety, we found that vomeronasal organ removal causes female hamsters to spend much less time in center grids and to cross fewer center grids and males to make fewer crossings between light and dark boxes than sham-operated controls. This indicates that a chronic vomeronasal organ lesion induced anxious responses in females. In aggressive behavioral tests, we found that a chronic vomeronasal organ lesion decreased agonistic behavior in female hamsters but not in males. The pup growth and litter size show no differences between the 2 groups. All together, our data suggested that vomeronasal organ ablation disrupted the olfactory recognition of social chemosignals in males, and induced anxiety-like and aggressive behavior changes in females. However, a vomeronasal organ lesion did not affect the reproductive capacity and fitness of hamsters. Our studies may have important implications concerning the role of the vomeronasal organ in golden hamsters and also in rodents. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  7. The hamster cheek pouch model for field cancerization studies.

    PubMed

    Monti-Hughes, Andrea; Aromando, Romina F; Pérez, Miguel A; Schwint, Amanda E; Itoiz, Maria E

    2015-02-01

    External carcinogens, such as tobacco and alcohol, induce molecular changes in large areas of oral mucosa, which increase the risk of malignant transformation. This condition, known as 'field cancerization', can be detected in biopsy specimens using histochemical techniques, even before histological alterations are identified. The efficacy of these histochemical techniques as biomarkers of early cancerization must be demonstrated in appropriate models. The hamster cheek pouch oral cancer model, universally employed in biological studies and in studies for the prevention and treatment of oral cancer, is also an excellent model of field cancerization. The carcinogen is applied in solution to the surface of the mucosa and induces alterations that recapitulate the stages of cancerization in human oral mucosa. We have demonstrated that the following can be used for the early detection of cancerized tissue: silver staining of nucleolar organizer regions; the Feulgen reaction to stain DNA followed by ploidy analysis; immunohistochemical analysis of fibroblast growth factor-2, immunohistochemical labeling of proliferating cells to demonstrate an increase of epithelial cell proliferation in the absence of inflammation; and changes in markers of angiogenesis (i.e. those indicating vascular endothelial growth factor activity, endothelial cell proliferation and vascular density). The hamster cheek pouch model of oral cancer was also proposed and validated by our group for boron neutron capture therapy studies for the treatment of oral cancer. Clinical trials of this novel treatment modality have been performed and are underway for certain tumor types and localizations. Having demonstrated the efficacy of boron neutron capture therapy to control tumors in the hamster cheek pouch oral cancer model, we adapted the model for the long-term study of field cancerized tissue. We demonstrated the inhibitory effect of boron neutron capture therapy on tumor development in field

  8. Directed Student Inquiry: Modeling in Roborovsky Hamsters

    ERIC Educational Resources Information Center

    Elwess, Nancy L.; Bouchard, Adam

    2007-01-01

    In this inquiry-based activity, Roborovsky hamsters are used to provide students with an opportunity to develop their skills of analysis, inquiry, and design. These hamsters are easy to maintain, yet offer students a means to use conventional techniques and those of their own design to make further observations through measuring, assessing, and…

  9. Directed Student Inquiry: Modeling in Roborovsky Hamsters

    ERIC Educational Resources Information Center

    Elwess, Nancy L.; Bouchard, Adam

    2007-01-01

    In this inquiry-based activity, Roborovsky hamsters are used to provide students with an opportunity to develop their skills of analysis, inquiry, and design. These hamsters are easy to maintain, yet offer students a means to use conventional techniques and those of their own design to make further observations through measuring, assessing, and…

  10. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells.

    PubMed Central

    Powers, T P; Shows, T B; Davidson, R L

    1994-01-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. Images PMID:8289799

  11. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  12. The mechanisms underlying the anti-aging activity of the Chinese prescription Kangen-karyu in hydrogen peroxide-induced human fibroblasts.

    PubMed

    Satoh, Akiko; Yokozawa, Takako; Kim, Young Ae; Cho, Eun Ju; Okamoto, Takuya; Sei, Yasuo

    2005-10-01

    Our previous study showed that Kangen-karyu extract protected against cellular senescence by reducing oxidative damage through the inhibition of reactive oxygen species generation and regulation of the antioxidative status. Although these findings suggest that Kangen-karyu could delay the aging process, the mechanisms responsible for protection against aging have rarely been elucidated. Therefore, this study was focussed on the mechanisms responsible for the anti-aging activity of Kangen-karyu extract using hydrogen peroxide (H(2)O(2))-induced human diploid fibroblasts, a well-established experimental model of cellular aging. Kangen-karyu extract exerted a protective effect against the morphological changes induced by H(2)O(2) treatment and inhibited senescence-associated beta-galactosidase activity. In addition, the beneficial effects of Kangen-karyu extract on cell viability and lifespan indicated that Kangen-karyu extract could delay the cellular aging process. The observation that Kangen-karyu extract prevented nuclear factor kappa B (NF-kappaB) translocation in response to oxidative stress suggested that Kangen-karyu exerted its anti-aging effect through NF-kappaB modulation and prevention of H(2)O(2)-induced overexpression of haem oxygenase-1 protein. Moreover, pretreatment with Kangen-karyu extract reduced overexpression of bax protein and prevented the mitochondrial membrane potential decline, suggesting that Kangen-karyu extract may protect mitochondria from mitochondrial oxidative stress and dysfunction. These findings indicate that Kangen-karyu is a promising potential anti-aging agent that may delay, or normalize, the aging process by virtue of its protective activity against oxidative stress-related conditions.

  13. Bryostatin-1 causes radiosensitization of BMG-1 malignant glioma cells through differential activation of protein kinase-Cδ not evident in the non-malignant AA8 fibroblasts.

    PubMed

    Dagur, Raghubendra Singh; Hambarde, Shashank; Chandna, Sudhir

    2015-03-01

    Bryostatin-1 (bryo-1), a non-phorbol ester, is known to sensitize mammalian cells against certain chemotherapeutic drugs. We assessed its ability to modify radiation response of mammalian cells using Chinese hamster fibroblasts AA8 cells and human malignant glioma BMG-1 cells. In the malignant glioma BMG-1 cell line, bryo-1 pre-treatment significantly enhanced radiation-induced growth inhibition and cytogenetic damage, and further reduced the clonogenic cell survival as compared to cells irradiated at the clinically relevant dose of 2 Gy. PKCδ expression increased significantly when bryo-1 pre-treated BMG-1 glioma cells were irradiated at 2 Gy and induced prolonged ERK-1/2 activation associated with p21 overexpression. Silencing PKCδ resulted in inhibition of bryo-1-induced radiosensitization. In contrast, bryo-1 failed to alter radiosensitivity (cell survival; growth inhibition; cytogenetic damage) or activate ERK1/2 pathway in the AA8 fibroblasts despite PKCδ phosphorylation at its regulatory (Y155) domain, indicating alternate mechanisms in these non-malignant cells as compared to the glioma cells. This study suggests that bryo-1 may effectively enhance the radiosensitivity of malignant cells and warrants further in-depth investigations to evaluate its radiosensitizing potential in various cell types.

  14. Lessons from the hamster: Cricetulus griseus tissue and CHO cell line proteome comparison.

    PubMed

    Heffner, Kelley M; Hizal, Deniz Baycin; Yerganian, George S; Kumar, Amit; Can, Özge; O'Meally, Robert N; Cole, Robert; Chaerkady, Raghothama; Wu, Herren; Bowen, Michael A; Betenbaugh, Michael J

    2017-09-06

    Chinese hamster ovary cells represent the dominant host for therapeutic recombinant protein production. However, few large-scale datasets have been generated to characterize this host organism and derived CHO cell lines at the proteomics level. Consequently, an extensive label-free quantitative proteomics analysis of two cell lines (CHO-S and CHO DG44) and two Chinese hamster tissues (liver and ovary) was used to identify a total of 11801 unique proteins containing at least two unique peptides. 9359 unique proteins were identified specifically in the cell lines, representing a 56% increase over previous work. Additionally, 6663 unique proteins were identified across liver and ovary tissues providing the first Chinese hamster tissue proteome. Protein expression was more conserved within cell lines during both growth phases than across cell lines, suggesting large genetic differences across cell lines. Overall, both gene ontology and KEGG pathway analysis revealed enrichment of cell cycle activity in cells. In contrast, upregulated molecular functions in tissue include glycosylation and lipid transporter activity. Furthermore, cellular components including Golgi apparatus are upregulated in both tissues. In conclusion, this large-scale proteomics analysis enables us to delineate specific changes between tissues and cells derived from these tissues, which can help explain specific tissue function and the adaptations cells incur for applications in biopharmaceutical productions.

  15. 2-Aminoanthracene, 5-fluorouracil, colchicine, benzo[a]pyrene, cadmium chloride and cytosine arabinoside tested in the in vitro mammalian cell micronucleus test (MNvit) in Chinese hamster ovary (CHO) cells at Covance Laboratories, Harrogate UK in support of OECD draft Test Guideline 487.

    PubMed

    Whitwell, James; Fowler, Paul; Allars, Sarah; Jenner, Karen; Lloyd, Melvyn; Wood, Debbie; Smith, Katie; Young, Jamie; Jeffrey, Laura; Kirkland, David

    2010-10-29

    The reference genotoxic agents 2-aminoanthracene (a metabolism dependent weak clastogen), 5-fluorouracil (a nucleoside analogue, characterised by a steep dose response profile), colchicine (an aneugen that inhibits tubulin polymerisation), benzo[a]pyrene (a polycyclic aromatic hydrocarbon requiring metabolic activation), cadmium chloride (an inorganic carcinogen), and cytosine arabinoside (a nucleoside analogue that inhibits the gap-filling step of excision repair) were tested in the in vitro micronucleus assay using the Chinese hamster ovary (CHO) cell line at Covance Laboratories, Harrogate, UK. All chemicals were treated in the absence and presence of cytokinesis block (via addition of cytochalasin B) with this work forming part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 on the In vitro Mammalian Cell Micronucleus Test (MNvit). The toxicity measures used, detecting a possible combination of both cytostasis and cell death (though not cell death directly), were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index in the presence of cytokinesis block. All of the chemicals tested either gave marked positive increases in the percentage of micronucleated cells with and without cytokinesis block, or did not induce micronuclei at concentrations giving approximately 50-60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcome from this series of tests supports the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Natural ligands of hamster aphrodisin.

    PubMed

    Briand, Loïc; Blon, Florence; Trotier, Didier; Pernollet, Jean-Claude

    2004-06-01

    The chemical nature of vertebrate pheromones remains largely to be deciphered. Hamster aphrodisin is a rare instance of mammal proteinaceous sexual pheromone. This protein, found in vaginal secretions, facilitates the mounting behaviour of males via activation of a specialized sensory structure named the vomeronasal organ, which activates the accessory olfactory bulb. Since it might carry small pheromonal ligands due to its lipocalin structure, we analysed organic extracts from natural aphrodisin. We identified five predominant compounds specifically bound onto natural aphrodisin as 1-hexadecanol (44.7%), 1-octadecanol (19.5%), Z-9-octadecen-1-ol (18.2%), E-9-octadecen-1-ol (15.4%) and hexadecanoic acid (2.2%). Interestingly, these compounds are also described as part of insect pheromone blends, disclosing the continuing story of amazing coincidences of chemical communication shared by mammals and insects.

  17. Taste reactivity in the hamster.

    PubMed

    Brining, S K; Belecky, T L; Smith, D V

    1991-06-01

    Taste reactivity, which was first described in the rat, consists of ingestive and aversive response components, the latter seen mostly to bitter-tasting stimuli. The present experiment characterized the hamster's taste reactivity to an array of stimuli (sugars: 1 M sucrose, d-fructose and d-glucose; sodium salts: 1 M NaCl, Na2SO4 and NaNO3; acids: 30 mM HCl, tartaric acid and citric acid; bitter-tasting stimuli: 100 mM quinine hydrochloride and nicotine sulfate and 10 mM denatonium benzoate). These 12 stimuli were chosen to represent 3 examples each of stimuli that taste sweet, salty, sour, or bitter to humans; they were presented in random order via an intraoral fistula, one stimulus each day per animal (n = 10). Infusions of 0.6 ml were delivered over a 1-min period from a syringe pump. Orofacial and somatic motor responses were recorded on videotape for later analysis and were also coded online into a computer. Ingestive responses included forward and lateral tongue protrusions and aversive responses included gaping, chin rubbing, forelimb flailing, fluid rejection, increased locomotion, and aversive posturing. Each stimulus group produced a characteristic pattern of these behaviors, with sugars eliciting only ingestive behaviors and the bitter stimuli evoking predominantly aversive responses. Both sodium salts and acids produced ingestive responses, as seen previously in the rat, although these stimuli also elicited aversive behaviors in the hamster, including apes. The patterns of responses were characterized using multivariate procedures; the stimuli fell into distinct groups that were separated primarily along an hedonic dimension.

  18. Induction of lyme arthritis in LSH hamsters

    SciTech Connect

    Schmitz, J.L.; Schell, R.F.; Hejka, A.; England, D.M.; Konick, L.

    1988-09-01

    In studies of experimental Lyme disease, a major obstacle has been the unavailability of a suitable animal model. We found that irradiated LSH/Ss Lak hamsters developed arthritis after injection of Borrelia burgdorferi in the hind paws. When nonirradiated hamsters were injected in the hind paws with B. burgdorferi, acute transient synovitis was present. A diffuse neutrophilic infiltrate involved the synovia and periarticular structures. The inflammation was associated with edema, hyperemia, and granulation tissue. Numerous spirochetes were seen in the synovial and subsynovial tissues. The histopathologic changes were enhanced in irradiated hamsters. The onset and duration of the induced swelling were dependent on the dose of radiation and the inoculum of spirochetes. Inoculation of irradiated hamsters with Formalin-killed spirochetes or medium in which B. burgdorferi had grown for 7 days failed to induce swelling. This animal model should prove useful for studies of the immune response to B. burgdorferi and the pathogenesis of Lyme arthritis.

  19. Neurobehavioural development of the golden hamster.

    PubMed

    Da Silva, V A; Smart, J L; Freire, E M; Paumgartten, F J

    1989-01-01

    The aim of this study was to establish a developmental profile for the golden hamster by using a systematic sequence of test procedures. One experimentally naive litter was tested each day from 0 to 25 days of postnatal age. The appearance of developmental landmarks (physical features and reflexes), spontaneous behaviour in an open field, homing behaviour and rota rod performance were studied. Infant mortality through infanticide was recorded in undisturbed and tested hamsters. The results indicated that most of the tests employed in the present study can be applied usefully in the evaluation of the neurobehavioural development of the golden hamster. The developmental profile for this species is described in detail. In comparison to rats and mice, hamsters display accelerated development of a number of characteristics, most notably incisor eruption and vaginal opening. Infanticide, the most troublesome problem in studies in which hamster litters must be disturbed, did not occur after day 3. As most reflexes and sensory abilities develop after this age, hamster pups can be used successfully in behavioural teratology evaluation.

  20. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency.

    PubMed

    Abe, Yuichi; Honsho, Masanori; Nakanishi, Hiroki; Taguchi, Ryo; Fujiki, Yukio

    2014-04-04

    Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Development of novel DNA markers for genetic analysis of grey hamsters by cross-species amplification of microsatellites.

    PubMed

    Wang, C; Zhang, S J; Du, X Y; Xu, Y M; Huo, X Y; Liao, L F; Chen, Z W

    2015-11-13

    The grey hamster has been used in biomedical research for decades. However, effective molecular methods for evaluating the genetic structure of this species are lacking, which hinders its wider usage. In this study, we employed cross-amplification of microsatellite loci of species within the same genus by polymerase chain reaction. Loci screened included 107 from the Mongolian gerbil (MG) and 60 from the Chinese hamster (CH); of these, 15 polymorphic loci were identified for the grey hamster. Of the 167 loci screened, 95 (56.9%) with clear bands on agarose gel were initially identified. After sequencing, 74 (77.9%) of these matched the criteria for microsatellite characteristics, including 41 from MG and 33 from CH. Lastly, 15 (20.3%) loci with more than two alleles for each locus were identified through capillary electrophoresis scanning. To justify the applicability of the 15 grey hamster loci, genetic indexes of grey hamsters were evaluated using 46 generations of outbred stock, established 20 years ago, from Xinjiang, China. Mean effective allele numbers and expected heterozygosity of stock were as low as, respectively, 1.2 and 0.14; these were 2.8 and 4.0 times inferior, respectively, to wild grey hamsters. This finding suggests that the genetic structure of the stock-bred population is too weak to resist artificial and natural selection, mutation and genetic drifting. In conclusion, we have developed de novo microsatellite markers for genetic analysis of the grey hamster, providing data and methodology for the enrichment of a genetic library for this species.

  2. Serotoninergic system in hamster skin.

    PubMed

    Slominski, Andrzej; Pisarchik, Alexander; Semak, Igor; Sweatman, Trevor; Szczesniewski, Andre; Wortsman, Jacobo

    2002-10-01

    We have cloned the tryptophan hydroxylase cDNA from hamster pituitary and demonstrated its expression in the skin, melanotic and amelanotic melanomas, spleen, heart, and the eye. We further demonstrated that skin, melanomas, spleen, pituitary, and eye but not heart expressed arylalkylamine N-acetyltransferase mRNA. The cutaneous expression of the arylalkylamine N-acetyltransferase gene was accompanied by enzymatic activity for the conversion of serotonin and tryptamine to N-acetylserotonin and N-acetyltryptamine, respectively. There was marked regional variation in the serotonin N-acetyltransferase activity, which was higher in ear skin than in corpus skin, and was lower in melanomas than in normal skin. Serotonin N-acetyltransferase activity was significantly inhibited by Cole bisubstrate at low concentration (

  3. Comparison of HepG2 feeder cells generated by exposure to gamma-rays, X-rays, UV-C light or mitomycin C for ability to activate 7,12-dimethylbenz[a]anthracene in a cell-mediated Chinese hamster V79/HGPRT mutation assay.

    PubMed

    Schrader, T J

    1999-01-25

    The cell-mediated Chinese hamster V79/HGPRT mutagenicity assay is an established in vitro testing method. Although gamma-irradiated human HepG2 hepatoma cells have been used recently for chemical activation, an alternative is now needed due to scheduled retirement of the available gamma-source. X-irradiation, 254 nm UV-C light and mitomycin C were examined as possible HepG2 mitotic inhibitors, and treated cells compared for activation of 7, 12-dimethylbenz[a]anthracene (DMBA). In colony-forming assays, V79 and HepG2 cells differed in sensitivity to DMBA, with V79 survival declining sharply between 1-2.5 microM (LD50=1.75 microM) while HepG2 survival decreased gradually, beginning at 0.01 microM DMBA (LD50=0.045 microM). When HepG2 feeder cells generated by each method were included in V79/HGPRT mutation assays, activation of 1 microM DMBA was found to vary according to the mitotic inhibitor used, with mutation frequencies decreasing in the order 4000 rads gamma-rays>25 microg/ml mitomycin C>4000 rads X-rays>25 J/m2 UV-C light. Only assays containing gamma-irradiated HepG2 cells generated an increase (2-3-fold) in mutation frequency when DMBA exposure was extended from 24 to 48 h. The effect of HepG2 preincubation with either Aroclor 1254 or DMBA on feeder cell activation of DMBA was also assessed using concentrations of Aroclor 1254 (10 microg/ml) or DMBA (1.0 microM) which were found to produce optimum induction of ethoxyresorufin-O-deethylase (EROD) activity (3.1-fold and 2-fold increases, respectively). Compared to results obtained with uninduced HepG2 cells, assays incorporating HepG2 cells activated by either Aroclor 1254 or DMBA produced slightly increased V79/HGPRT mutation frequencies after 24 h of exposure to mutagen; however, a 48 h incubation with mutagen in the presence of HepG2 preincubated with either Aroclor 1254 or DMBA resulted in higher mutation frequencies regardless of the mitotic inhibitor treatment. EROD activity was also induced 1.4-fold

  4. Mutation and repair induced by the carcinogen 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) in the dihydrofolate reductase gene of Chinese hamster ovary cells and conformational modeling of the dG-C8-PhIP adduct in DNA.

    PubMed

    Carothers, A M; Yuan, W; Hingerty, B E; Broyde, S; Grunberger, D; Snyderwine, E G

    1994-01-01

    Three experiments using 20 microM 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) were performed to induce mutations in the dihydrofolate reductase (DHFR) gene of a hemizygous Chinese hamster ovary (CHO) cell line (UA21). Metabolized forms of this chemical primarily bind at the C-8 position of guanine in DNA. In total, 21 independent induced mutants were isolated and 20 were characterized. DNA sequencing showed that the preferred mutation type found in 75% of the induced DHFR- clones was G.C-->T.A single and tandem double transversions. In addition to base substitutions, one mutant carried a-1 frameshift and another one had lost the entire locus by deletion. The induced changes affected purine targets on the nontranscribed strand of the gene in nearly all of the mutants sequenced (18/19). At the time that the first two experiments were performed, the initial adduct levels were quantitated in treated cells at the mutagenic dose by 32P-postlabeling. While the induced frequency of mutation was relatively low (approximately 5 x 10(-6), the adduct levels after a 1-h exposure of UA21 cells to 20 microM N-OH-PhIP were relatively high (13 adducts x 10(-6) nucleotides). This latter method was then employed to learn if the induced mutation frequency correlated with rapid overall genome repair of PhIP-DNA adducts. Total adduct levels, determined using DNA samples from treated cells collected after intervals of time, were reduced by about 50% after 6 h, and about 70% after 24 h. Since overall genome repair in CHO cells is relatively slow compared with preferential gene repair, the removal of dG-C8-PhIP adducts was apparently efficient. In order to better understand the mutational and repair results, we performed computational modeling to determine the lowest energy structure for the major dG-C8-PhIP adduct in a repetitively mutated duplex sequence opposite dA. Results of this analysis indicate that the PhIP-modified base resembles previous structural

  5. Histopathology of Lyme arthritis in LSH hamsters

    SciTech Connect

    Hejka, A.; Schmitz, J.L.; England, D.M.; Callister, S.M.; Schell, R.F.

    1989-05-01

    The authors studied the histopathologic evolution of arthritis in nonirradiated and irradiated hamsters infected with Borrelia burgdorferi. Nonirradiated hamsters injected in the hind paws with B. burgdorferi developed an acute inflammatory reaction involving the synovium, periarticular soft tissues, and dermis. This acute inflammatory reaction was short-lived and was replaced by a mild chronic synovitis as the number of detectable spirochetes in the synovium, periarticular soft tissues, and perineurovascular areas diminished. Exposing hamsters to radiation before inoculation with B. burgdorferi exacerbated and prolonged the acute inflammatory phase. Spirochetes also persisted longer in the periarticular soft tissues. A major histopathologic finding was destructive and erosive bone changes of the hind paws, which resulted in deformation of the joints. These studies should be helpful in defining the immune mechanism participating in the onset, progression, and resolution of Lyme arthritis.

  6. Ivermectin treatment of demodicosis in 56 hamsters.

    PubMed

    Tani, K; Iwanaga, T; Sonoda, K; Hayashiya, S; Hayashiya, M; Taura, Y

    2001-11-01

    Fifty-six hamsters with demodicosis were treated with daily oral administration of ivermectin (0.3 mg/kg). Thirty-three cases (58.9%) were cured and 6 cases (10.7%) had improved clinically but needed to continue treatment. Of 5 cases (8.9%) who relapsed within 3 months and were retreated with ivermectin, 4 were cured and 1 needed further treatment. Five cases (8.9%) had improved clinically but died within 3 months. Seven cases (12.5%) had not improved and died within 3 months. Overall 49 (87.5%) hamsters had improved clinically. No significant differences in prognosis of demodicosis were detected according to sex, breed, age and clinical features, but the prognosis of demodicosis in hamsters with concurrent disease was poor.

  7. Effects of arsenic deprivation in hamsters.

    PubMed

    Uthus, E O

    1990-01-01

    An experiment was conducted to ascertain the effects of arsenic deprivation in hamsters. Male weanling Golden Syrian hamsters were fed a casein-corn-based diet containing approximately 12 ng arsenic/g. Controls were fed 1 microgram arsenic/g of diet, as Na2HAsO4.7 H2O. After 6 weeks arsenic deprivation elevated heart weight/body weight ratio and the concentration of liver zinc and decreased the concentrations of the plasma amino acids alanine, glycine, phenylalanine and taurine. Although no biological role has been found for arsenic, the findings indicate that the hamster is a suitable animal for arsenic deprivation studies and support the hypothesis that arsenic may have a physiological role that influences methionine/methyl metabolism.

  8. Nonphotic phase shifting in hamster clock mutants.

    PubMed

    Mrosovsky, N; Salmon, P A; Menaker, M; Ralph, M R

    1992-01-01

    Golden hamsters with the tau mutation were kept in the dark and induced to become active through confinement to a novel running wheel for 3 hr. The response of the mutants to this nonphotic phase-shifting stimulus differed from that of wild-type hamsters. The mutants showed larger phase shifts, and their phase response curves differed in shape, with an advance portion at about circadian time 24, a phase at which wild types show delays. The results establish that the tau mutation, in addition to its already known effects, alters the response of the circadian system to nonphotic events.

  9. Intramyocardial Fibroblast - Myocyte Communication

    PubMed Central

    Kakkar, Rahul; Lee, Richard T.

    2009-01-01

    Cardiac fibroblasts are emerging as key components of normal cardiac function as well as the response to stressors and injury. These most numerous cells of the heart interact with myocytes via paracrine mechanisms, alterations in extracellular matrix homeostasis, and direct cell-cell interactions. It is possible that they are a contributor to the inability of adult myocytes to proliferate, and may influence cardiac progenitor biology. Furthering our understanding of how cardiac fibroblast and myocytes interact may provide an avenue to novel treatments for heart failure prevention. This review discusses the most recent concepts in cardiac fibroblast-myocyte communication and areas of potential future research. PMID:20056945

  10. Asymmetric learning to avoid heterospecific males in Mesocricetus hamsters.

    PubMed

    delBarco-Trillo, Javier; Johnston, Robert E

    2012-08-01

    If a female mates with a male of a closely related species, her fitness is likely to decline. Consequently, females may develop behavioral mechanisms to avoid mating with heterospecific males. In some species, one such mechanism is for adult females to learn to discriminate against heterospecific males after exposure to such males. We have previously shown that adult, female Syrian hamsters (Mesocricetus auratus) learn to discriminate against male Turkish hamsters (Mesocricetus brandti) after exposure to a single heterospecific male during 8 days across a wire-mesh barrier. Here we repeated that experiment but this time we exposed female Turkish hamsters to a male Syrian hamster for 8 days and then measured sexual and aggressive behaviors towards that heterospecific male and towards a conspecific male. In contrast to female Syrian hamsters, female Turkish hamsters did not differ in their latency to go into lordosis or in any measure of aggression towards either type of male. Female Turkish hamsters spent less time in lordosis with the heterospecific male, but the percentage of trials in which females copulated with conspecific and heterospecific males did not differ. When comparing females from both species that had been exposed to a heterospecific male for 8days, female Syrian hamsters copulated less and were more aggressive towards the heterospecific male compared to the behavior of female Turkish hamsters. We discuss how this asymmetric response between females of the two species may be due to the much larger geographical range of Turkish hamsters compared to Syrian hamsters.

  11. Preference for bedding material in Syrian hamsters.

    PubMed

    Lanteigne, M; Reebs, S G

    2006-10-01

    This study aimed to determine whether Syrian (golden) hamsters, Mesocricetus auratus, prefer certain bedding materials and whether bedding material can affect paw condition, body weight gain and wheel-running activity. In a first experiment, 26 male hamsters had access to two connected cages, each cage containing a different bedding material (either pine shavings, aspen shavings, corn cob or wood pellets). In a second experiment, 14 male hamsters had access to four connected cages that contained the different bedding materials and also a piece of paper towel to serve as nest material. In a third experiment, 30 male hamsters were each placed in a single cage, 10 of them with pine shavings, 10 with aspen shavings and 10 with corn cob, and they were monitored for 50 days. Significant preferences in the first experiment were: pine shavings over aspen shavings, corn cob over wood pellets, pine shavings over corn cob and aspen shavings over wood pellets (aspen shavings versus corn cob was not tested). However, there was no significant preference expressed in the second experiment, suggesting that the general preference for shavings in the first experiment was based on bedding material suitability as a nesting material. No significant effect of bedding material on paw condition, body weight gain and wheel-running activity was detected. None of the four bedding materials tested in this study can be judged to be inappropriate in the short term if nesting material is added to the cage and if the litter is changed regularly.

  12. Disparities in activity levels and learning ability between Djungarian hamster (Phodopus sungorus) and Roborovskii hamster (Phodopus roborovskii).

    PubMed

    Ikeda, Hiromi; Nagasawa, Mao; Yamaguchi, Takeshi; Minaminaka, Kimie; Goda, Ryosei; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-03-01

    The Djungarian hamster and the Roborovskii hamster belong to the same genus of Phodopus. However, the Djungarian hamster is tame and shows sedative behavior, while Roborovskii hamster is not tame and shows high levels of locomotor activity. Hyperactivity occurs in animals with tameless behavior. Tameness or tamelessness behavior is very important because tameness helps for breeding and controlling as well as it enables a strong human-animal bond. In the present study, we examined the relationships between activity levels and cognitive function in Djungarian and Roborovskii hamsters. Three types of behavioral tests were performed to analyze their activity levels, memory and leaning ability. The levels of L- and D-amino acids and monoamines in the brain were then determined. Roborovskii hamsters showed significantly higher locomotor activity than Djungarian hamsters. Memory ability was not significantly different between the two hamsters, but Roborovskii hamsters showed lower learning ability. Brain levels of D-serine which is related to enhancement in memory and learning ability, were significantly higher in Djungarian hamsters, but the reverse was true for brain dopamine and serotonin levels. These results suggest that these differences in brain metabolism may be related to the behavioral differences between the two hamsters.

  13. Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr -/- mice versus hamsters.

    PubMed

    Gardès, Christophe; Chaput, Evelyne; Staempfli, Andreas; Blum, Denise; Richter, Hans; Benson, G Martin

    2013-05-01

    Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr (-/-)) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr (-/-) mice, the predominant bile acid changed from cholate to the more hydrophilic β-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr (-/-) mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged.

  14. Temporal order of gene replication in Chinese hamster ovary cells.

    PubMed Central

    Taljanidisz, J; Popowski, J; Sarkar, N

    1989-01-01

    To investigate the molecular basis of the regulatory mechanisms responsible for the orderly replication of the mammalian genome, we have developed an experimental system by which the replication order of various genes can be defined with relative ease and precision. Exponentially growing CHO-K1 cells were separated into populations representing various stages of the cell cycle by centrifugal elutriation and analyzed for cell cycle status flow cytometry. The replication of specific genes in each elutriated fraction was measured by labeling with 5-mercuri-dCTP and [3H]dTPP under conditions of optimal DNA synthesis after cell permeabilization with lysolecithin. Newly synthesized mercurated DNA from each elutriated fraction was purified by affinity chromatography on thiol-agarose and replicated with the large fragment of Escherichia coli DNA polymerase I by using [alpha-32P]dATP and random primers. The 32P-labeled DNA representative of various stages of the cell cycle was then hybridized with dot blots of plasmid DNA containing specific cloned genes. From these results, it was possible to deduce the nuclear DNA content at the time each specific gene replicated during S phase (C value). The C values of 29 genes, which included single-copy genes, multifamily genes, oncogenes, and repetitive sequences, were determined and found to be distributed over the entire S phase. Of the 28 genes studied, 19 had been examined by others using in vivo labeling techniques, with results which agreed with the replication pattern observed in this study. The replication times of nine other genes are described here for the first time. Our method of analysis is sensitive enough to determine the replication time of single-copy genes. The replication times of various genes and their levels of expression in exponentially growing CHO cells were compared. Although there was a general correlation between transcriptional activity and replication in the first half of S phase, examination of specific genes revealed a number of exceptions. Approximately 25% of total poly(A) RNA was transcribed from the late-replicating DNA. PMID:2476659

  15. Analysis of cadmium mutageness in Chinese hamster ovary cells

    SciTech Connect

    Hu, J.; Tian, S.F.; An, J.; Porter, R.; Hsie, A.W.

    1994-12-31

    We have shown earlier that physical and chemical agents which are known to generate reactive oxygen species (ROS) are more mutagenic to the autosomal heterozygous gpt gene in CHO cell derivative, AS52 than to the X-linked hemizygous hprt locus in CHO cell clone K1-BH4. These ROS generating agents primarily induced deletions in both assays as analyzed at the cellular level. We have reported previously that cadmium (Cd) is mutagenic at both the gpt gene in AS52 cells and the hprt locus in K1-BH4 cells but more mutagenic to the gpt gene in AS52 cells. The molecular nature of Cd-induced mutants is being studied using polymerase chain reaction (PCR)-directed deletion screening and DNA sequencing method. 75 independent Cd-induced mutants is being studied using polymerase chain reaction (PRC)-directed deletion screening and DNA sequencing method. 75 independent Cd-induced HPRT{sup -} mutants were analyzed by the multiplex in vitro DNA amplification. Of these mutants 30 (40%) were found to have large deletions. The deletions included single and multiple exons. Total hprt gene deletions were found in 13 mutants. We have also been investigating the modulative role of glutathione by L-buthionein-SR-sulfoximine(BSO) and metallionein by zinc on Cd mutagenesis. The effect of zinc pretreatment on the cytotoxicity of Cd showed that treatment of AS52 cells with 0.5x10{sup -4} M zinc acetate for 7 h prior to Cd exposure produced lower toxicity. The effect of zinc-pretreatment on the mutagenicity of Cd showed that there were lower mutagenic responses in AS52 cells pretreated with 0.5x10{sup -4} M zinc. Experiments with pretreatment of BSO are in progress.

  16. CD147 overexpression promotes tumorigenicity in Chinese hamster ovary cells.

    PubMed

    Yong, Yu-Le; Liao, Cheng-Gong; Wei, Ding; Chen, Zhi-Nan; Bian, Huijie

    2016-04-01

    CD147 overexpresses in many epithelium-originated tumors and plays an important role in tumor migration and invasion. Most studies aim at the role of CD147 in tumor progression using tumor cell models. However, the influence of abnormal overexpression of CD147 on neoplastic transformation of normal cells is unknown. Here, the role of CD147 in malignant phenotype transformation in CHO cells was investigated. Three CHO cell lines that stably overexpressed CD147 (CHO-CD147), EGFP-CD147 (CHO-EGFP-CD147), and EGFP (CHO-EGFP) were generated by transfection of plasmids containing human CD147, EGFP-human CD147, and EGFP genes into CHO cells. Cell migration and invasion were detected by wound healing and transwell matrix penetration assay. Trypan blue exclusion, MTT, cell cycle analysis, and BrdU cell proliferation assay were used to detect cell viability and cell proliferation. Annexin V-FITC analysis was performed to detect apoptosis. We found that CD147 overexpression promoted the migration and invasion of CHO cells. CD147 accelerated the G1 to S phase transition and enhanced the CHO cell proliferation. Overexpression of CD147 inhibited both early- and late-stages of apoptosis of CHO-CD147 cells, which is caused by serum deprivation. CHO-EGFP-CD147 cells showed an increased anchorage-independent growth compared with CHO-EGFP cells as detected by soft-agar colony formation assay. The tumors formed by CHO-CD147 cells in nude mice were larger and coupled with higher expression of proliferating cell nuclear antigen and Ki-67 than that of CHO cells. In conclusion, human CD147 overexpression induces malignant phenotype in CHO cells.

  17. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  18. Contamination of genetically engineered Chinese hamster ovary cells.

    PubMed

    Burstyn, D G

    1996-01-01

    In late 1988, during production of a recombinant protein for phase I clinical trials, a failure of the cell culture production system occurred due to contamination of the cells by an orbivirus [1]. The incident occurred at Bioferon GmbH & Co, Laupheim, Germany, a joint venture of Biogen, Inc., Cambridge, MA, and Dr. Renstschler Arzneimittel GmbH & Co (Bioferon is currently a wholly owned subsidiary of Rentschler and is now known as Dr. Rentschler Biotechnologie GmbH). The investigation into, and the subsequent response to, the infection can be divided into three stages: Stage I, Investigation and initial response; Stage II, Secondary response; and Stage III: Continuing response.

  19. Dimethylarsenic acid induces tetraploids in Chinese hamster cells

    SciTech Connect

    Endo, Ginji; Horiguchi, Shun'ichi ); Kuroda, Koichi; Okamoto, Akiyoshi )

    1992-01-01

    Arsenic has been documented as a human carcinogen of the skin and lungs. However, attempts to induce tumors in experimental animals with inorganoarsenic compounds have mostly failed except in a few studies in which animals were given arsenic trioxide by intratracheal instillation. Moreover, inorganoarsenics are either inactive or too weak to induce gene mutations in vitro. The mechanism of arsenic carcinogenicity has not yet been discovered. Most mammals including human are able to methylate inorganoarsenic compounds to methylarsonic acid and dimethylarsenic acid. However, the genotoxicity of organoarsenic compounds has hardly been examined. The authors therefore decided to study this genotoxicity, including the frequency of sister chromatid exchange (SCE) of nine organic and three inorganic arsenic compounds. Observation of the metaphases in the SCE test revealed that only DMA of the organo- and inorgano-arsenic compounds induces tetraploids and mitotic arrest. This indicates that the role of DMA may be important in arsenic genotoxicity and may give a clue to the carcinogenic mechanism of arsenic.

  20. Daidzin and daidzein suppress free-choice ethanol intake by Syrian golden hamsters.

    PubMed

    Keung, W M; Vallee, B L

    1993-11-01

    Syrian Golden hamsters prefer and consume large and remarkably constant amounts of ethanol in a simple two-bottle free-choice regimen. Ethanol intake is significantly suppressed by zimelidine, bromocriptine, buspirone, and lithium carbonate, pharmacological agents that have been shown to be beneficial in controlling ethanol intake in alcohol-dependent humans. These results suggest that this ethanol-drinking animal model has high "predictive validity" and can be used effectively in the search for and identification of new agents for the treatment of alcohol abuse. The model has enabled us to confirm the putative antidipsotropic effect of Radix puerariae (RP), an herb long used in traditional Chinese medicine for the treatment of patients who abuse alcohol. A crude extract of RP at a dose of 1.5 g.kg-1 x day-1 significantly suppresses (> 50%) the free-choice ethanol intake of Golden hamsters. Moreover, two major constituents of RP, daidzein (4',7-dihydroxyisoflavone) and daidzin (the 7-glucoside of daidzein), were also shown to suppress free-choice ethanol intake. Daidzin and daidzein, at doses of 150 and 230 mg.kg-1 x day-1, respectively, suppress ethanol intake by > 50%. RP, daidzein, and daidzin treatment do not significantly affect the body weight and water or food intake of the hamsters. These findings identify a class of compounds that offer promise as safe and effective therapeutic agents for alcohol abuse.

  1. Effects of aging on sleep in the golden hamster.

    PubMed

    Naylor, E; Buxton, O M; Bergmann, B M; Easton, A; Zee, P C; Turek, F W

    1998-11-01

    The golden hamster (Mesocricetus auratus) has been a model organism for the study of circadian rhythmicity and, in particular, the effects of age on the circadian system. Surprisingly, nothing is known about the effects of advanced age on sleep in this species. As a first step in determining the effects of aging on sleep in the golden hamster, we recorded sleep for 24 hours in 12 young (3 months) and 18 old (17-18 months) golden hamsters entrained to a 14:10 light:dark (LD) cycle. Aged hamsters exhibited small but significant increases in overall NREM sleep time, primarily due to an increase in time the old animals spent in the NREM sleep state during the dark period relative to the young hamsters. There were no significant differences in REM sleep, median sleep episode length, or the number of arousals. The most striking differences between the sleep of young and old hamsters was in NREM delta (0.5-4 Hz) power per epoch. Old hamsters showed approximately 27% less (p=0.0004) delta power per NREM epoch than young hamsters. It is possible that increased NREM sleep time in the old hamsters may be a failed attempt to maintain cumulative delta power; ie, old hamsters may have more NREM sleep in order to make up for the lower intensity of their sleep. This decline in delta power with age parallels earlier findings in cats and humans, although has it not been previously reported in rodents.

  2. Growth factor activation of an amiloride-sensitive Na+/H+ exchange system in quiescent fibroblasts: coupling to ribosomal protein S6 phosphorylation.

    PubMed Central

    Pouysségur, J; Chambard, J C; Franchi, A; Paris, S; Van Obberghen-Schilling, E

    1982-01-01

    Chinese hamster lung fibroblast cells (CCl39) enter the G0/G1 nonproliferative state after serum deprivation. In this report, we show that reinitiation of DNA synthesis by serum or the combination of purified human thrombin and insulin (1-10 microgram/ml) is preceded by very early stimulation of ionic fluxes (Na+/Rb+) and protein phosphorylation (27,000 daltons, 62,000 daltons, and the ribosomal S6 proteins). The potentiating action of insulin on thrombin-stimulated DNA synthesis is also observed on thrombin-stimulated Na+ influx, Rb+ influx, and protein S6 phosphorylation. Moreover, we demonstrate that CCl39 cells possess a Na+/H+ exchange system sensitive to amiloride. Half-maximal inhibition of growth factor-activated Na+ influx and Na+-dependent H+ efflux is obtained with 3-10 microM amiloride. Two lines of evidence indicate that the extrusion of H+ via the activation of the Na+/H+ exchanger is coupled to protein S6 phosphorylation: serum-stimulated phosphorylation is blocked by (i) amiloride at a concentration that abolishes serum-stimulated Na+ influx and (ii) protonophores that acidify the cell interior. The present data support the idea that the regulation of intracellular pH is a key event in the mechanism of growth factor action. Images PMID:6287453

  3. Role of [Ca2+]i in "Ca2+ stores depletion-Ca2+ entry coupling' in fibroblasts expressing the rat neurotensin receptor.

    PubMed Central

    Gailly, P; Hermans, E; Gillis, J M

    1996-01-01

    1. Transfected Chinese hamster ovary fibroblasts expressing the rat neurotensin receptor were used to study the 'Ca2+ stores depletion-Ca2+ entry coupling' which follows stimulation with neurotensin and liberation of InsP3. 2. This coupling could be dissociated in time. Firstly, stores depletion was produced by neurotensin or thapsigargin which caused a first [Ca2+]i transient in a Ca(2+)-free external medium. Secondly, readmission of external Ca2+ produced an influx of Ca2+ and a second [Ca2+]i transient. 3. Various concentrations of thapsigargin (20 nM to 1 microM) were used to produce complete stores depletion with small or large first peaks of [Ca2+]i. Upon return to external Ca2+, small or large second [Ca2+]i peaks were observed. The amplitudes of both peaks were positively correlated. 4. The Ca2+ entry which followed stores depletion could occur at very low basal values of [Ca2+]i, was accelerated by okadaic acid and inhibited by staurosporine and the calmodulin antagonist W-7. 5. It is concluded that the rise in [Ca2+]i during Ca2+ stores depletion is an essential parameter which determines the size of the subsequent Ca2+ entry. PMID:8815199

  4. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts

    SciTech Connect

    Cheng, S.Y.

    1983-05-01

    The binding and internalization of 3,3'-(/sup 125/I) 5-triiodo-L-thyronine ((/sup 125/I)T3) was studied in cultured Swiss 3T3-4 mouse fibroblasts. At 0 C, the binding of T3 to cells is saturable, reversible, and stereospecific. These results together with those of earlier fluorescence studies using rhodamine-labeled T3 demonstrate the presence of specific plasma membrane T3 receptors. At 37 C, the uptake of T3 reached a steady state after 1 h, and approximately 57 fmol T3 were specifically taken up by 10(6) cells. In other cell lines, 7, 19, and 201 fmol T3 were specifically taken up by Chinese hamster ovary cells (subclone 10001), Kirsten sarcoma virus-transformed NIH 3T3 mouse fibroblasts, and nontransformed NIH 3T3 mouse fibroblasts, respectively. Incorporation of T3 into nuclei followed similar kinetics and accounted for approximately 9% of the total cellular uptake. Equilibrium binding studies of T3 to isolated nuclei showed one class of binding sites with an apparent association constant of 5 X 10(9) M-1 and a binding capacity of 16 fmol/100 micrograms DNA. At 37 C, the internalization of T3 was nearly totally blocked by antimycin A or rotenone, inhibitors of oxidative phosphorylation. These results indicate that the uptake of T3 is an energy-dependent process. In the presence of bacitracin or monodansylcadaverine, substances that inhibit the receptor-mediated endocytosis of alpha 2-macroglobulin, the cellular uptake of T3 as well as the nuclear incorporation of T3 were inhibited in a concentration-dependent manner. The half-maximal inhibitory concentrations for the cellular uptake of T3 were 90 and 660 microM for monodansylcadaverine and bacitracin, respectively; for nuclear incorporation, they were 70 and 350 microM for monodansylcadaverine and bacitracin, respectively. These results indicate that receptor-mediated endocytotic uptake of T3 is a physiologically significant pathway.

  5. Bioactivation of diethylstilbestrol by the Syrian hamster kidney

    SciTech Connect

    Adams, S.P.

    1987-01-01

    Male Syrian golden hamsters chronically exposed to diethylstilbestrol (DES) develop renal adenocarcinomas with an incidence approaching 100%. The ability of the hamster kidney to bioactivate DES was assessed using hamster kidney slices. The male hamster renal cortex has a 2- to 5-fold greater capacity to irreversibly bind ({sup 3}H)DES as compared with female hamster renal cortex and with male hamster renal medulla. Incubation of the tissue under anaerobic conditions inhibited the metabolism and irreversible binding of ({sup 3}H)DES. Gel electrophoresis analysis of covalently modified proteins revealed several radioactive peaks indicating that specific adduct formation had occurred. The cytochrome P-450 inhibitors SKF 525-A, metyrapone, carbon monoxide, butylated hydroxytoluene, and dicumarol decreased the irreversible binding of ({sup 3}H)DES to renal cortical protein by 38 to 72%.

  6. Dupuytren's Contracture: Fibroblast Contraction?

    PubMed Central

    Gabbiani, Giulio; Majno, Guido

    1972-01-01

    In 6 cases of Dupuytren's disease and 1 of Ledderhose's disease, the nodules of the palmar and plantar aponeurosis were examined by light and electron microscopy. The cells composing these nodules, presumably fibroblasts, showed three significant ultrastructural features: (1) a fibrillar system similar to that of smooth muscle cells; (2) nuclear deformations such as are found in contracted cells, the severest being recognizable by light microscopy (cross-banded nuclei); (3) cell-to-cell and cell-to-stroma attachments. Based on these data and on recent information about the biology of the fibroblasts, it is suggested that these cells are fibroblasts that have modulated into contractile cells (myofibroblasts), and that their contraction plays a role in the pathogenesis of the contracture observed clinically. ImagesFig 10Fig 5Fig 11Fig 6 and 7Fig 8Fig 1Fig 2Fig 9Fig 3Fig 4 PMID:5009249

  7. Decreased adult neurogenesis in hibernating Syrian hamster.

    PubMed

    León-Espinosa, Gonzalo; García, Esther; Gómez-Pinedo, Ulises; Hernández, Félix; DeFelipe, Javier; Ávila, Jesús

    2016-10-01

    Generation of new neurons from adult neural stem cells occurs in the dentate gyrus (DG) of the hippocampus and the lateral walls of the lateral ventricles. In this article, we study the neurogenesis that takes place during the hibernation of the Syrian hamster (Mesocricetus auratus). Using a variety of standard neurogenesis markers and 5-bromo-2-deoxyuridine (BrdU) incorporation, we describe a preferential decrease in the proliferation of newborn neurons in the subventricular zone (SVZ) of the hibernating hamsters (torpor) rather than in the hippocampus. Furthermore, we demonstrate that the proliferative capacity is recovered after 3-4days of torpor when arousal is triggered under natural conditions (i.e., not artificially provoked). In addition, we show that tau3R, a tau isoform with three microtubule-binding domains, is a suitable marker to study neurogenesis both in the SVZ and subgranular zone (SGZ) of the Syrian hamster brain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Tumor-related gene changes in immunosuppressive Syrian hamster cholangiocarcinoma.

    PubMed

    Juasook, Amornrat; Aukkanimart, Ratchadawan; Boonmars, Thidarut; Sudsarn, Pakkayanee; Wonkchalee, Nadchanan; Laummaunwai, Porntip; Sriraj, Pranee

    2013-10-01

    The results of a previous study demonstrated that prednisolone enhanced cholangiocarcinogenesis. Therefore, to clarify molecular changes during immunosuppressive cholangiocarcinogenesis, Syrian hamsters were divided into 8 groups: uninfected controls; immunosuppressed Syrian hamsters using prednisolone (P); normal Syrian hamsters administered N-nitrosodimethylamine (ND); immunosuppressed Syrian hamsters administered N-nitrosodimethylamine (NDis); normal Syrian hamsters infected with Opisthorchis viverrini (OV); immunosuppressed Syrian hamsters infected with O. viverrini (OVis); normal Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCA); and immunosuppressed Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCAis). Syrian hamster livers were used for analysis of tumor-related gene expression and immunohistochemistry through cytokeratin 19 (CK19) and proliferating cell nuclear antigen (PCNA) staining. The tumor-related gene expression results show that CCAis groups at all time points exhibited upregulation of COX-2, IL-6, SOD1, CAT and iNOS and downregulation of p53, which correlated with the predominant expression of CK19 and PCNA in liver tissue. These results suggest that prednisolone enhances cholangiocarcinoma development, which was confirmed by molecular changes.

  9. Molecular and immunological characterization of the first allergenic lipocalin in hamster: the major allergen from Siberian hamster (Phodopus sungorus).

    PubMed

    Torres, José Alberto; de Las Heras, Manuel; Maroto, Aroa Sanz; Vivanco, Fernando; Sastre, Joaquín; Pastor-Vargas, Carlos

    2014-08-22

    The most frequent pet allergy is to cat and dog, but in recent years, it has become increasingly popular to have other pets, and the risk of exposure to new allergens is more prevalent. The list of new pets includes hamsters, and one of the most popular hamsters is the Siberian hamster (Phodopus sungorus). The aim of this study was the characterization and cloning of the major allergen from this hamster. The study of its allergenicity and cross-reactivity could improve the specific diagnosis and treatment for hamster-allergic patients. Thirteen Siberian hamster-allergic patients were recruited at the outpatient clinic. Protein extracts were prepared from the hair, urine, and salivary glands of four hamster species (European, golden, Siberian, and Roborovski). IgE-binding proteins were detected by immunoblotting and identified by mass spectrometry. The recombinant protein was produced in Escherichia coli and then purified by metal chelate affinity chromatography. The allergenic properties of the recombinant protein were tested by ELISA and immunoblotting, and biological activity was tested according to capacity for basophil activation. Three IgE-binding proteins were identified in extracts obtained from Siberian hamster hair, urine, and salivary glands. All proteins corresponded to the same protein, which was identified as a lipocalin. This lipocalin had no cross-reactivity with common and golden hamsters. The recombinant allergen was cloned and purified, showing similar IgE reactivity in vitro to Siberian hamster protein extracts. Also, the recombinant allergen was capable of producing biological activation in vivo. The major Siberian hamster allergen was cloned, and allergenic properties were characterized, providing a new tool for specific diagnosis of allergy to Siberian hamster. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Degradation of type IV collagen by neoplastic human skin fibroblasts

    SciTech Connect

    Sheela, S.; Barrett, J.C.

    1985-02-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion.

  11. Molecular characterization of mutation and comparison of mutation profiles in the hprt gene of Chinese hamster ovary cells treated with benzo[a]pyrene trans-7,8-diol-anti-9,10-epoxide, 1-nitrobenzol[a]pyrene trans-7,8-diol-anti-9,10-epoxide, and 3-nitrobenzol[a]pyrene trans-7,8-diol-anti-9,10-epoxide

    SciTech Connect

    Zhan, D.J.; Heflich, R.H.; Fu, P.P.

    1996-12-31

    Both 1- and 3-nitrobenzol[a] pyrene (nitro-BaP) are environmental contaminants, potent mutagens in Salmonella, and moderate mutagens in Chinese hamster ovary (CHO) cells. The mutagenicity of their oxidized metabolites, trans-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydro-1-nitrobenzol[a]pyrene (1-nitro-BaP-DE) and trans-7,8-dihydroxy-anti-9, 10-epoxy-7,8,9,10-tetrahydro-3-nitrobenzo[a]pyrene (3-nitro-BaP-DE), together with trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzol[a]pyren (BaP-DE), was determined in CHO-K1 cells, and the resulting mutations at the hprt locus were characterized by polymerase chain reaction (PCR) amplification of reverse-transcribed hprt mRNA, followed by DNA sequence analysis. The mutant frequencies, in mutants/10{sup 6} clonable cells, at 30 and 100 ng/ml, were BaP-DE, 248 and 456; 1-nitro-BaP-DE, 68 and 260; 3-nitro-BaP-DE, 81 and 232, respectively. In general, the three diolepoxides exhibited similar mutational spectra: (1) 64% (23/36 sequenced mutants) of BaP-DE, 53% (19/36) of 1-nitro-BaP-DE, and 64% (23/36) of 3-nitro-BaP-DE mutants resulted from simple base pair substitution, with the predominant mutation being G{r_arrow}T transversion: (2) 90%, 100%, and 100% of mutations at G:C had the mutated dG on the nontranscribed DNA strand; and (3) about one quarter of the mutants produced by each mutagen had one or more PCR products with partial or complete exon deletions. 61 refs., 1 fig., 7 tabs.

  12. Liver cirrhosis reversion is improved in hamsters with a neurointermediate pituitary lobectomy.

    PubMed

    Quintanar-Stephano, A; Ventura-Juárez, J; Sánchez-Alemán, E; Aldaba-Muruato, L R; Cervantes-García, D; Gonzalez-Blas, D; Muñoz-Ortega, M H

    2017-09-05

    Regulating mechanisms of fibrosis is an important goal in the treatment of fibrosis and liver cirrhosis. The role of arginine vasopressin (AVP) in promoting fibrosis in several organs has been well documented. However, the result of an AVP deficiency during liver fibrosis has not been reported. We herein study the effects of an AVP deficiency, which was induced by neurointermediate pituitary lobectomy (NIL), on liver cirrhosis and liver cirrhosis reversion. Hamsters were intact (control) or underwent CCl4-induced cirrhosis, the latter animals divided into four groups: Cirrhotic, NIL-cirrhotic, Cirrhotic-reversion (R) and NIL-cirrhotic-R. Liver function, liver histopathology (including the fibrosis area and collagen types) and liver expression of MMP-13 and TIMP-2 were assessed. Results show that the AVP deficiency decreased the levels of alkaline phosphatase in serum and the expression of type I collagen and TIMP-2, and increased type III collagen deposition, MMP-13 expression and the size of regeneration nodules in NIL-cirrhotic and NIL-cirrhotic-R animals. A significantly greater recovery was found in the NIL-cirrhotic-R than the Cirrhotic-R group. We conclude that an AVP deficiency participates importantly in hamster liver regeneration by: 1) prompting the fibroblasts to produce type III collagen deposit, 2) influencing the activity of AP from bile duct cells, and 3) inhibiting TIMP-2 expression while favoring the fibrolytic activity of MMP-13. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. [Quantitative characteristics of the migration ability of different types of fibroblast-like cells cultured on substrates with an ordered relief].

    PubMed

    Slavnaia, I L; Rovenskiĭ, Iu A

    1975-03-01

    Reactions to the geometrical configuration of the underlying surface of fibroblast-like cells of various species (mouse, rat, chick, hamster, human) were compared quantitatively. All normal cells migrated from 25-40 mcm deep grooves but not from the less deep ones -5-15 mcm. Migration ability was the highest in the mouse cells;it was less pronounced in rat and chick cells; hamster and human cells had the lowest migration ability. The offered quantitative method can be used for estimation of the reaction to the ordered relief of the substratum of different minds of cultured cells - normal as well as pathologically changed.

  14. Transformation of Hamster Embryo Cells and Tumor Induction in Newborn Hamsters by Simian Adenovirus SV11

    PubMed Central

    Casto, Bruce C.

    1969-01-01

    Simian adenovirus, SV11, readily transformed hamster embryo cell cultures in vitro and produced tumors in vivo when inoculated into newborn hamsters. Foci consisting of small, loosely attached, rounded cells could be seen as early as 7 days postinoculation. Many of these cells contained several nuclei or the nucleus was multilobed. The cells grew without extensive cell to cell contact or formed small chains or clusters when passaged in vitro. This pattern of cell morphology and growth has not been reported with other simian or human adenovirus-transformed cells. Linearity of foci formation with virus dilution was observed when the virus multiplicity was less than 3 plaque-forming units (PFU)/cell. The PFU to focus-forming units ratio for SV11 was found to be 2 × 104 to 4 × 104, which is approximately 5- to 10-fold and 50- to 100-fold lower than those reported for simian adenovirus, SA7, and human adenovirus type 12, respectively. Cells transformed by SV11: (i) produced tumors when inoculated into young hamsters, (ii) contained tumor antigen which reacts with serum obtained from hamsters bearing SV11 passaged tumors, and (iii) could be propagated in vitro through an indefinite number of generations. Images PMID:5786181

  15. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes

    EPA Science Inventory

    Nuclei isolated from spermatozoa of various species (golden hamster, mouse, human, rooster, and the fish tilapia) were heated at 60 degrees-125 degrees C for 20-120 min and then microinjected into hamster oocytes to determine whether they could decondense and develop into pronucl...

  16. Thermostability of sperm nuclei assessed by microinjection into hamster oocytes

    EPA Science Inventory

    Nuclei isolated from spermatozoa of various species (golden hamster, mouse, human, rooster, and the fish tilapia) were heated at 60 degrees-125 degrees C for 20-120 min and then microinjected into hamster oocytes to determine whether they could decondense and develop into pronucl...

  17. Characteristics of 263K Scrapie Agent in Multiple Hamster Species

    PubMed Central

    Barbian, Kent D.; Race, Brent; Favara, Cynthia; Gardner, Don; Taubner, Lara; Porcella, Stephen; Race, Richard

    2009-01-01

    Transmissible spongiform encephalopathy (TSE) diseases are known to cross species barriers, but the pathologic and biochemical changes that occur during transmission are not well understood. To better understand these changes, we infected 6 hamster species with 263K hamster scrapie strain and, after each of 3 successive passages in the new species, analyzed abnormal proteinase K (PK)–resistant prion protein (PrPres) glycoform ratios, PrPres PK sensitivity, incubation periods, and lesion profiles. Unique 263K molecular and biochemical profiles evolved in each of the infected hamster species. Characteristics of 263K in the new hamster species seemed to correlate best with host factors rather than agent strain. Furthermore, 2 polymorphic regions of the prion protein amino acid sequence correlated with profile differences in these TSE-infected hamster species. PMID:19193264

  18. Photoperiodic regulation of compensatory testicular hypertrophy in hamsters.

    PubMed

    Paul, Matthew J; Park, Jin Ho; Horton, Teresa H; Alvarez, Maria I; Burke, Morgan K; Place, Ned J; Zucker, Irving

    2006-08-01

    In mammals, removal of one testis results in compensatory testicular hypertrophy (CTH) of the remaining gonad. Although CTH is ubiquitous among juveniles of many species, laboratory rats, laboratory mice, and humans unilaterally castrated in adulthood fail to display CTH. We documented CTH in pre- and postpubertally hemi-castrated Syrian and Siberian hamsters and tested whether day length affects CTH in juvenile and adult Siberian hamsters. Robust CTH was evident in long-day hemi-castrates of both species and was preceded by increased serum FSH concentrations in juvenile Siberian hamsters. In sharp contrast, CTH was undetectable in short-day hemi-castrated Siberian hamsters for several months and only made its appearance with the development of neuroendocrine refractoriness to short day lengths; serum FSH concentrations of juveniles also did not increase above sham-castrate values until the onset of refractoriness. Long-day hemi-castrated Siberian hamsters with hypertrophied testes underwent complete gonadal regression after transfer to short days, albeit at a reduced rate for the first 3 weeks of treatment. Blood testosterone concentrations of adult hamsters did not differ between long-day hemicastrates and sham-castrates 9-12 weeks after surgery. We conclude that CTH is suppressed by short day lengths in Siberian hamsters at all ages and stages of reproductive development; in short day lengths, but not long day lengths, the remaining testis produces sufficient negative feedback inhibition to restrain FSH hypersecretion and prevent CTH.

  19. Circadian rhythms accelerate wound healing in female Siberian hamsters.

    PubMed

    Cable, Erin J; Onishi, Kenneth G; Prendergast, Brian J

    2017-03-15

    Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are impaired in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3h after light onset (ZT03) or 2h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing.

  20. Autoradiographic study of /sup 3/H-methylated elastase in hamster lungs

    SciTech Connect

    Morris, S.M.; Stone, P.J.; Snider, G.L.; Albright, J.T.; Franzblau, C.

    1983-05-01

    An emphysemalike condition can be induced in animal lungs by the instillation of a single dose of elastase. Autoradiography was used to determine the location of /sup 3/H-methylated porcine pancreatic elastase in hamster lungs at four time points. Six hours after instillation of radiolabeled enzyme the distribution of silver grains was very patchy, but in heavily labeled areas grains were concentrated over macrophages, connective tissue areas and over some fibroblasts. By 24 hr the labeling of connective tissue areas was no longer evident and almost all silver grains were associated with macrophages or with the edema fluid that filled many alveoli at this time. By 4 days only macrophages exhibited concentrations of silver grains. The labeling of macrophages was still evident at 7 days. Elastase inactivated by N-acetyl-(L-alanyl)3-L-alanine chloromethyl ketone showed a different distribution 6 hr after instillation. Silver grains were concentrated over macrophages and alveolar type II cells but showed no affinity for connective tissue areas or fibroblasts. By 24 hr almost all grains were located over heavily labeled macrophages.

  1. Pearl extract enhances the migratory ability of fibroblasts in a wound healing model.

    PubMed

    Li, Yi-Chen; Chen, Chi-Ruei; Young, Tai-Horng

    2013-03-01

    For 2000 years, traditional Chinese medicine has been used as a remedy for general health improvement, including the fight against aging. Pearl powder has recently been used as a health food that has antioxidant, antiaging, antiradioactive, and tonic activities for cells; it is also applied to cure aphthous ulcer, gastric ulcer, and duodenal ulcer on clinical therapy. In addition, the mother of pearl, nacre, could enhance the cell adhesion and tissue regeneration of skin fibroblasts. Fibroblast is regarded as indispensable in the processes of wound healing. Therefore, the effect of pearl extract (PL) on fibroblasts is investigated in this study. PL is produced by a room temperature super extraction system (Taiwan patent no. I271 220). DMEM medium containing PL (300 μg/mL) was used to examine the effect of migration-promoting potential on human fibroblast cell line or human primary fibroblast cells in a wound healing model in vitro. Medium containing PL (300 μg/mL) demonstrated that the migratory cell numbers of fibroblasts were three times more than that without PL, and mRNA expression of collagen type III was higher than in collagen type I in fibroblasts. It revealed a migration-promoting potential of human fibroblasts in a wound healing model in vitro. The present study found that the migration-promoting effect in PL, which could be a supplement in cell culture. These data suggest PL could be useful for enhancing the wound healing of fibroblasts.

  2. Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment.

    PubMed

    Clark, R A; Wikner, N E; Doherty, D E; Norris, D A

    1988-08-25

    Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell

  3. [Regulations of berberine on gene expression of BMP4 transcriptional pathways to improve visceral white adipose tissues insulin resistance in type 2 diabetic hamsters].

    PubMed

    Li, Guo-Sheng; Liu, Xu-Han; Li, Xin-Yu; Gao, Zheng-Nan; Huang, Lan; Liu, Ya-Li

    2016-02-01

    To study the effects of berberine on the gene mRNA expressions of BMP4 transcriptional pathways and brown/white adipose tissue conversion transcriptional pathways in visceral white adipose tissues(VWAT) in type 2 diabetic hamsters and explore the relevant mechanisms. The obese insulin-resistant hamster model were induced by using high-fat diet, and then the type 2 diabetic hamster model was created through injection with low-dose streptozotocin in the obese insulin-resistant hamster model. After the modeling, the hamsters were randomly divided into normal control, obese insulin-resistant, type 2 diabetic and berberine-treated diabetic groups. After the nine-week treatment, real-time quantitative PCR was used to measure the changes in gene mRNA expressions of VWAT BMP4 transcriptional pathways, brown/white adipose tissue conversion transcriptional pathways and their target genes in different groups. The results showed that the gene mRNA expressions of BMP4, BMPRⅡ, BMPRlA, Smad1, Smad5, Smad8, p38/MAPK, ATF2, PRDM16, C/EBPβ, PGC1α, PPARγ and brown adipose tissue-specific genes was decreased and that of Smad6, Smurf1 and white adipose tissue-specific genes was increased in VWAT of model hamsters. Treatment with berberine regulated BMP4 transcriptional pathways and brown adipose tissue transcriptional pathways and induced the gene mRNA expression of brown adipose tissue-specific genes in VWAT to develop browning gene phenotype of white adipose tissues, and then improved fat-induced insulin resistance. These findings indicated that BMP4 transcriptional pathways involved in the formation of fat-induced visceral white adipose tissues insulin resistance (FIVWATIR) and the browning molecular mechanism of white adipose tissues induced by berberine. Copyright© by the Chinese Pharmaceutical Association.

  4. Reversion in Hamster Cells Transformed by Rous Sarcoma Virus.

    PubMed

    Macpherson, I

    1965-06-25

    Hamster cells of the BHK-21 line are transformable by Rous sarcoma virus (Schmidt-Ruppin strain). The transformed cells form colonies in agar suspension culture, grow on glass in disarray, and initiate tumors in hamsters and chickens, but extracts do not induce tumors in chickens. Chickens bearing tumors develop neutralizing antibody against the virus. Transformed cell clones give rise to "revertants" which form colonies on glass with cells oriented parallel to each other like the original uninfected cells. These revertants do not grow in agar or initiate chicken tumors, and they regain the original low transplantability of untransformed cells in hamsters.

  5. Differential regulation of bile acid and cholesterol metabolism by the farnesoid X receptor in Ldlr −/− mice versus hamsters[S

    PubMed Central

    Gardès, Christophe; Chaput, Evelyne; Staempfli, Andreas; Blum, Denise; Richter, Hans; Benson, G. Martin

    2013-01-01

    Modulating bile acid synthesis has long been considered a good strategy by which to improve cholesterol homeostasis in humans. The farnesoid X receptor (FXR), the key regulator of bile acid synthesis, was, therefore, identified as an interesting target for drug discovery. We compared the effect of four, structurally unrelated, synthetic FXR agonists in two fat-fed rodent species and observed that the three most potent and selective agonists decreased plasma cholesterol in LDL receptor-deficient (Ldlr −/−) mice, but none did so in hamsters. Detailed investigation revealed increases in the expression of small heterodimer partner (Shp) in their livers and of intestinal fibroblast growth factor 15 or 19 (Fgf15/19) in mice only. Cyp7a1 expression and fecal bile acid (BA) excretion were strongly reduced in mice and hamsters by all four FXR agonists, whereas bile acid pool sizes were reduced in both species by all but the X-Ceptor compound in hamsters. In Ldlr −/− mice, the predominant bile acid changed from cholate to the more hydrophilic β-muricholate due to a strong repression of Cyp8b1 and increase in Cyp3a11 expression. However, FXR agonists caused only minor changes in the expression of Cyp8b1 and in bile acid profiles in hamsters. In summary, FXR agonist-induced decreases in bile acid pool size and lipophilicity and in cholesterol absorption and synthesis could explain the decreased plasma cholesterol in Ldlr −/− mice. In hamsters, FXR agonists reduced bile acid pool size to a smaller extent with minor changes in bile acid profile and reductions in sterol absorption, and consequently, plasma cholesterol was unchanged. PMID:23431047

  6. Antidepressants activat