Science.gov

Sample records for chiral cationic diphosphine

  1. Chiral biphenyl diphosphines for asymmetric catalysis: stereoelectronic design and industrial perspectives.

    PubMed

    Jeulin, Séverine; de Paule, Sébastien Duprat; Ratovelomanana-Vidal, Virginie; Genêt, Jean-Pierre; Champion, Nicolas; Dellis, Philippe

    2004-04-20

    Two original chiral diphosphines, SYNPHOS and DIFLUORPHOS, have been synthesized on multigram scales. Their steric and electronic profiles have been established in comparison with the commonly used 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl and 6,6'-dimethoxy-2,2'-bis(diphenylphosphino)-1,1'-biphenyl ligands. A screening study of the four ligands in Ru(II)-catalyzed asymmetric hydrogenation of prochiral ketones and olefins has been performed. It revealed that the stereoelectronic features of the ligand and the substrate deeply influenced the enantioselectivities obtained in asymmetric hydrogenation, SYNPHOS and DIFLUORPHOS being fully complementary in terms of enantioselectivity for this reaction.

  2. Highly regio- and enantioselective Heck reaction of N-methoxycarbonyl-2-pyrroline with planar chiral diphosphine-oxazoline ferrocenyl ligands.

    PubMed

    Tu, Tao; Hou, Xue-Long; Dai, Li-Xin

    2003-10-02

    [reaction: see text] A series of planar chiral diphosphine-oxazoline ferrocene ligands were effectively applied in the asymmetric arylation of N-methoxycarbonyl-2-pyrroline, and up to 99% ee was observed for the product 3. The regioselectivity of this reaction was strongly affected by the different precursors of the palladium species and the polarity of the solvent.

  3. Chiral biphenyl diphosphines for asymmetric catalysis: Stereoelectronic design and industrial perspectives

    PubMed Central

    Jeulin, Séverine; de Paule, Sébastien Duprat; Ratovelomanana-Vidal, Virginie; Genêt, Jean-Pierre; Champion, Nicolas; Dellis, Philippe

    2004-01-01

    Two original chiral diphosphines, SYNPHOS and DIFLUORPHOS, have been synthesized on multigram scales. Their steric and electronic profiles have been established in comparison with the commonly used 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl and 6,6′-dimethoxy-2,2′-bis(diphenylphosphino)-1,1′-biphenyl ligands. A screening study of the four ligands in RuII-catalyzed asymmetric hydrogenation of prochiral ketones and olefins has been performed. It revealed that the stereoelectronic features of the ligand and the substrate deeply influenced the enantioselectivities obtained in asymmetric hydrogenation, SYNPHOS and DIFLUORPHOS being fully complementary in terms of enantioselectivity for this reaction. PMID:15031423

  4. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions.

    PubMed

    Xie, Jian-Hua; Zhou, Qi-Lin

    2008-05-01

    The preparation of chiral compounds in enantiomerically pure form is a challenging goal in modern organic synthesis. The use of chiral metal complex catalysis is a powerful, economically feasible tool for the preparation of optically active organic compounds on both laboratory and industrial scales. In particular, the metals coordinated by one or more chiral phosphorus ligands exhibit amazing enantioselectivity and reactivity. Many chiral phosphorus ligands have been synthesized and used in transition-metal-catalyzed asymmetric reactions in past decades. However, a large number of reactions still lack effective chiral ligands, and the enantioselectivities in many reactions are substrate-dependent. The development of effective chiral phosphorus ligands, especially ligands having novel chiral backbones, is still an important task in the area of asymmetric catalysis. Molecules containing a spirocyclic framework are ubiquitous in nature. The synthesis of molecules with this spiro structure can be traced back to 100 years ago. However, the use of this spirocyclic framework to construct chiral phosphorus ligands is a recent event. This Account outlines the design and synthesis of a new family of chiral spiro phosphorus ligands including spiro diphosphines and spiro monodentate phosphorus ligands with 1,1'-spirobiindane and 9,9'-spirobifluorene backbone and their applications in transition-metal-catalyzed asymmetric hydrogenation and carbon-carbon bond formation reactions. The chiral spiro diphosphine lgands SDP with a 1,1'-spirobiindane backbone and SFDP with a 9,9'-spirobifluorene backbone, and the spiro monophosphorus ligands including phosphoramidites, phosphites, phosphonites, and phospholane with a 1,1'-spirobiindane backbone were synthesized in good yields from enantiomerically pure 1,1'-spirobiindane-7,7'-diol and 9,9'-spirobifluoren-1,1'-diol. The ruthenium complexes of chiral spiro diphosphine ligands proved to be very effective catalysts for asymmetric

  5. Novel C2-symmetric planar chiral diphosphine ligands and their application in pd-catalyzed asymmetric allylic substitutions.

    PubMed

    Liu, Delong; Xie, Fang; Zhang, Wanbin

    2007-08-31

    Novel C(2)-symmetric diphosphine ligands possessing only the planar chirality of ruthenocene, 1,1'-bis(diphenylphosphino)-2,2'-disubstituted-ruthenocenes (4), were prepared. With this kind of ligands, excellent enantioselectivity and especially highly catalytic activity in palladium-catalyzed asymmetric allylic substitutions of rac-1,3-diphenyl-2-propenyl acetate (9) were observed, compared to their ferrocene analogues 1. Good enantioselectivity and highly catalytic activity were also obtained with 4 in palladium-catalyzed asymmetric allylic substitutions of cyclohexen-1-yl acetate (12). Further study on the effect of R in ester group on enantioselectivity of 4 showed an opposite trend compared with their ferrocene analogues 1 in asymmetric allylic substitutions. For ruthenocene ligands 4, the one with the smaller R in the ester group gave higher enantioselectivity for the palladium-catalyzed asymmetric allylic substitutions of 9, while a converse trend had been observed with 1. However, for the palladium-catalyzed asymmetric allylic substitutions of 12, ligand 4 with a larger R in the ester group resulted in somewhat higher enantioselectivity but still an opposite trend with ligand 1. The X-ray diffraction study of crystal structures of 4 and 1 with Pd(II) was carried out and showed that the enantioselectivity was correlated to the twist angle existing in the palladium complex.

  6. Planar Chiral, Ferrocene-Stabilized Silicon Cations.

    PubMed

    Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin

    2016-04-04

    The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29)Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3))-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen.

  7. Induced circular dichroism of polyoxometalates via electrostatic encapsulation with chiral organic cations.

    PubMed

    Wang, Yizhan; Shi, Lei; Yang, Yang; Li, Bao; Wu, Lixin

    2014-09-21

    To explore the principle of chiral induction in inorganic clusters, chiral organic cations with two stereocenters, R- and S-BPEA, are used to encapsulate a series of polyoxometalates (POMs) bearing different structures and transition absorption bands in aqueous solution, constructing a series of chiral supramolecular complexes. Due to the induction of chiral organic cations, POMs possessing both chiral and achiral structures show an induced circular dichroism (ICD) effect. ICD signals in the absorption bands corresponding to ligand to metal charge transfer (LMCT) transitions, d-d transitions and intervalence charge transfer (IVCT) transitions are observed for different complexes. Moreover, the ICD of the POMs exhibits a direct correlation with the degree of POM distortion and the distance between the chiral center and the POM surface. The encapsulation of POMs with chiral organic cations via electrostatic interactions provides a facile and effective method for constructing optically pure POM-based materials.

  8. Cationic Chiral Fluorinated Oxazaborolidines. More Potent, Second-Generation Catalysts for Highly Enantioselective Cycloaddition Reactions.

    PubMed

    Mahender Reddy, Karla; Bhimireddy, Eswar; Thirupathi, Barla; Breitler, Simon; Yu, Shunming; Corey, E J

    2016-02-24

    The coordination of chiral ligands to Lewis acid metal derivatives, a useful strategy for enantioselective, electrophilic catalysis, generally leads to a lower level of catalytic activity than that of the original uncomplexed compound. Activation by further attachment of a proton or strong Lewis acid to the complex provides a way to overcome the deactivating effect of a chiral ligand. The research described herein has demonstrated that further enhancement of catalytic activity is possible by the judicious placement of fluorine substituents in the chiral ligand. This approach has led to a new, second-generation family of chiral oxazaborolidinium cationic species which can be used to effect many Diels-Alder reactions in >95% yield and >95% ee using catalyst loadings at the 1-2 mol % level. The easy recovery of the chiral ligand makes the application of these new catalysts especially attractive for large-scale synthesis.

  9. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    PubMed Central

    Puentes, Cira Mollings

    2017-01-01

    The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III) and ytterbium(III) further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins. PMID:28179947

  10. Chiral DNA packaging in DNA-cationic liposome assemblies.

    PubMed

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  11. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    PubMed

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated.

  12. Synthesis and phytotoxicity of new ionic liquids incorporating chiral cations and/or chiral anions.

    PubMed

    Bałczewski, Piotr; Bachowska, Barbara; Białas, Tomasz; Biczak, Robert; Wieczorek, Wanda M; Balińska, Agnieszka

    2007-03-07

    The aim of this work was to synthesize chiral ionic liquids as chiral solvents for organic synthesis and to evaluate the phyto(eco)toxicity of the new products and starting N-alkylimidazoles and their potential environmental influence on soil and plants. Chiral ionic liquids containing anions such as Cl-, Br-, TsO-, PF6(-), NO3(-), CF3SO3(-), and (+)- and (-)-C6H5CH(OH)C(O)O- were synthesized using (-)-(1R)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-ethyl [(-)-(1R)-nopyl] halides (X = Cl, Br) and tosylate in 62-100% yields. The chloride 7 and the nitrate 13 ionic liquids possessed a toxicity dependent on the applied concentration. The lowest concentration causing a distinct reduction in plant germination/growth was 100 mg/kg. Spring barley better tolerated the ionic liquids (200 mg/kg) than common radish (100 mg/kg). The nitrate liquid did not exhibit an inhibiting effect on the germination ability of seeds. The starting N-methylimidazole used in lower concentrations (1 and 10 mg/kg of soil dry weight) was not phytotoxic, in contrast to higher doses (>1000 mg/kg).

  13. Chiral [Mo3S4H3(diphosphine)3]+ hydrido clusters and study of the effect of the metal atom on the kinetics of the acid-assisted substitution of the coordinated hydride: Mo vs W.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Feliz, Marta; Guillamón, Eva; Llusar, Rosa; Sorribes, Ivan; Vicent, Cristian

    2010-07-05

    The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.

  14. Emergence of symmetry and chirality in crown ether complexes with alkali metal cations.

    PubMed

    Martínez-Haya, Bruno; Hurtado, Paola; Hortal, Ana R; Hamad, Said; Steill, Jeffrey D; Oomens, Jos

    2010-07-08

    Crown ethers provide a valuable benchmark for the comprehension of molecular recognition mediated by inclusion complexes. One of the most relevant crown ethers, 18-crown-6 (18c6), features a flexible six-oxygen cyclic backbone that is well-known for its selective cation binding. This study employs infrared spectroscopy and quantum mechanical calculations to elucidate the structure of the gas-phase complexes formed by the 18c6 ether with the alkali metal cations. It is shown that symmetric and chiral arrangements play a dominant role in the conformational landscape of the 18c6-alkali system. Most stable 18c6-M(+) conformers are found to have symmetries C(3v) and C(2) for Cs(+), D(3d) for K(+), C(1) and D(3d) for Na(+), and D(2) for Li(+). Remarkably, whereas the bare 18c6 ether is achiral, chirality emerges in the C(2) and D(2) 18c6-M(+) conformations, both of which involve pairs of stable atropoisomers capable of acting as enantiomeric selective substrates.

  15. Cationic permethylated 6-monoamino-6-monodeoxy-β-cyclodextrin as chiral selector of dansylated amino acids in capillary electrophoresis.

    PubMed

    Németh, Krisztina; Domonkos, Celesztina; Sarnyai, Virág; Szemán, Julianna; Jicsinszky, László; Szente, Lajos; Visy, Júlia

    2014-10-01

    The resolution power of permethylated 6-monoamino-6-monodeoxy-βCD (PMMABCD) - a single isomer, cationic CD derivative - developed previously for chiral analyses in capillary electrophoresis was further studied here. Dansylated amino acids (Dns-AA) were chosen as amphoteric chiral model compounds. Changes in the resolutions of Dns-AAs by varying pH and selector concentrations were investigated and correlated with their structures and chemical properties (isoelectric point and lipophilicity). Maximal resolutions could be achieved at pH 6 or pH 4. The separations improved with increasing concentration of the selector. Baseline or substantially better resolution for 8 pairs of these Dns-AAs could be achieved. Low CD concentration was enough for the separation of the most apolar Dns-AAs. Chiral discrimination ability of PMMABCD was demonstrated by the separation of an artificial mixture of 8 Dns-AA pairs.

  16. Anion size control of the packing in the metallic versus semiconducting chiral radical cation salts (DM-EDT-TTF)2XF6 (X = P, As, Sb).

    PubMed

    Pop, Flavia; Auban-Senzier, Pascale; Canadell, Enric; Avarvari, Narcis

    2016-10-13

    Control of the structural type in metallic enantiopure and racemic radical cation salts is achieved through hydrogen bonding interactions between the chiral donor DM-EDT-TTF and the XF6 anions (X = P, As, Sb), determined by the anion size and the chiral information.

  17. Enantioseparation of dansyl amino acids by ultra-high pressure liquid chromatography using cationic β-cyclodextrins as chiral additives.

    PubMed

    Xiao, Yin; Tan, Timothy Thatt Yang; Ng, Siu-Choon

    2011-04-07

    This work reports the application of ultra-high pressure liquid chromatography (UHPLC) for reasonably fast enantiorecognition of some dansyl amino acids by employing three cationic β-cyclodextrins (β-CDs) as chiral additives. Good resolutions were obtained on an Agilent C18 column (2.1 mm i.d.; 1.8 μm; 50 mm length) with 1% (v/v) triethylammonium acetate buffered at pH 4.7 and acetonitrile as the mobile phase. Most of the analytes could be baseline resolved within 10 min. Increased cationic CD concentration or acetonitrile proportion in the mobile phase results in a decreased retention factor but accentuated selectivity. Furthermore, molecular mechanics calculation was performed and found to be consistent with the experimental results.

  18. Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks

    SciTech Connect

    Zhang, Zhi-Ming; Duan, Xiaopin; Yao, Shuang; Wang, Zhishu; Lin, Zekai; Li, Yang-Guang; Long, La-Sheng; Wang, En-Bo; Lin, Wenbin

    2016-01-01

    We report the crystallization of homochiral polyoxometalate (POM) macroanions {CoSb6O4(H2O)3[Co(hmta)SbW8O31]3}15- (1, hmta = hexamethylenetetramine) via the counter cation-mediated chiral symmetry breaking and asymmetric autocatalytic processes. In the presence of low Co2+ concentrations both Δ- and Λ-enantiomers of 1 formed in the reaction, crystallizing into the racemic crystal rac-1. At a high Co2+ concentration, the polyoxoanion enantiomers showed a high level of chiral recognition via H-bonding interactions to crystallize into enantiopure crystals of Δ- or Λ-[Co(H2O)6{CoSb6O4(H2O)3[Co(hmta)SbW8O31]3}]13-. During crystallization, a microscale symmetry-breaking event and a nonlinear asymmetric autocatalysis process make the enantiomers crystallize in different batches, which provides an opportunity to isolate the homochiral bulk materials. The defined structures of the racemic and homochiral crystals thus provide a molecular-level illustration that H-bonding interactions are responsible for such high-level chiral recognition, in a process similar to the supramolecular chirality frequently observed in biology. These POM macroanions showed a high cytotoxicity against various cancer cells, particularly ovarian cancer cells. The antitumor activity of these compounds resulted at least in part from the activation of the apoptotic pathways, as shown by the flow cytometry, Annexin V staining, DNA ladder, and TUNEL assay, likely by blocking the cell cycle and complexing with proteins in cells. The POM macroanions reported herein provide promising and novel antitumor agents for the potential treatment of various cancers.

  19. Synthesis and Lewis acid properties of a ferrocene-based planar-chiral borenium cation.

    PubMed

    Chen, Jiawei; Lalancette, Roger A; Jäkle, Frieder

    2013-05-28

    The first planar chiral ferrocenylborenium species (pR)-3(+) is obtained in the enantiopure form by halide abstraction from the corresponding chloroborane adduct (pR)-2 using Krossing's salt. Competition experiments suggest that the Lewis acidity of (pR)-3(+) is higher than that of B(C6F5)3 towards anions and slightly lower towards neutral Lewis bases. The ferrocenylborenium species (pR)-3(+) is examined as a catalyst for the stereoselective hydrosilylation of ketones.

  20. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling.

    PubMed

    Luo, Yi-Er; He, Yan-Mei; Fan, Qing-Hua

    2016-12-01

    This personal account is focused on the asymmetric hydrogenation of quinolines and their analogues recently developed by using phosphorus-free chiral cationic ruthenium(II)/η(6) -arene-N-monosulfonylated diamine complexes. In our initial study, the chiral Ru-diamine complexes were found to be highly effective catalysts for the asymmetric hydrogenation of difficult quinoline substrates in room temperature ionic liquids (RTILs) with unprecedentedly excellent enantioselectivity. Our further systematic study revealed that a wide range of quinoline derivatives could be efficiently hydrogenated in alcoholic solvents, or under solvent-free and concentrated conditions with good to excellent stereoselectivity. Complexes of iridium analogues could also efficiently catalyze the asymmetric hydrogenation of quinolines in undegassed solvent. Asymmetric tandem reduction of various 2-(aroylmethyl)quinolines was achieved in high yield with excellent enantioselectivity and good diastereoselectivity. More challenging substrates, alkyl- and aryl-substituted 1,5- and 1,8-naphthyridine derivatives were successfully hydrogenated with these chiral ruthenium catalysts to give 1,2,3,4-tetrahydronaphthyridines with good to excellent enantioselectivity. Unlike the asymmetric hydrogenation of ketones, quinoline is reduced via a stepwise H(+) /H(-) transfer process outside the coordination sphere rather than a concerted mechanism. The enantioselectivity originates from the CH/π attraction between the η(6) -arene ligand in the Ru-complex and the fused phenyl ring of dihydroquinoline via a 10-membered ring transition state with the participation of TfO(-) anion. In addition, the Ru-catalyzed asymmetric hydrogenation of quinolines could be carried out in some environmentally benign reaction media, such as undegassed water, RTILs and oligo(ethylene glycol)s (OEGs). In the latter two cases, unique chemoselectivity and/or reactivity were observed. Catalyst recycling could also be realized by using

  1. Gold(I)-catalyzed asymmetric induction of planar chirality by intramolecular nucleophilic addition to chromium-complexed alkynylarenes: asymmetric synthesis of planar chiral (1H-isochromene and 1,2-dihydroisoquinoline)chromium complexes.

    PubMed

    Murai, Masato; Sota, Yumi; Onohara, Yuki; Uenishi, Jun'ichi; Uemura, Motokazu

    2013-11-01

    Gold(I)-catalyzed asymmetric intramolecular cyclization of prochiral 1,3-dihydroxymethyl-2-alkynylbenzene or 1,3-bis(carbamate)-2-alkynylbenzene tricarbonylchromium complexes with axially chiral diphosphine ligand gave planar chiral tricarbonylchromium complexes of 1H-isochromene or 1,2-dihydroisoquinoline with high enantioselectivity. An enantiomeric excess of the planar chiral arene chromium complexes was largely affected by a combination of axially chiral diphosphine(AuCl)2 precatalysts and silver salts. In the case of 1,3-dihydroxymethyl-2-alkynylbenzene chromium complexes, a system of segphos(AuCl)2 with AgBF4 resulted in the formation of the corresponding antipode.

  2. Chiroptical properties of cation complexes of chiral phenazino-18-crown-6 ether-type hosts.

    PubMed

    Szarvas, Szilvia; Szalay, Luca; Vass, Elemér; Hollósi, Miklós; Samu, Erika; Huszthy, Péter

    2005-06-01

    Herein we report CD spectroscopic studies on complexes of (R,R)-dimethyl-, (R,R)-diisobutyl-, and (S,S)-di-sec-butyl-phenazino-18-crown-6 ligands (Scheme 1) with selected alkali (Na+, K+), alkaline earth (Mg2+, Ca2+), and transition-metal (Ag+, Zn2+, Ni2+, Cd2+, Pb2+) cations. The complexation was monitored in the 300- to 240-nm region of the CD spectra comprising mainly the 1Bb band of the heteroaromatic subunit. The CD spectra of the complexes showed an unexpected diversity. In the most characteristic 1Bb spectral region, the number, position, and intensity of band(s) depend not only on the heteroaromatic subunit and the size of the substituents but also on the diameter, ion strength, and coordination geometry of the cation. The appearance of two weak 1Bb CD bands (type-I spectra) with the sign pattern of the host is an indication of two complexes of comparable stability. The "type-II" spectra differ from that of the host in the number, sign pattern, and intensity of the bands. Complexes of transition-metal cations generally show CD spectra with more intense bands. The CD spectra of complexes of (S,S)-di-sec-butyl-phenazino-18-crown-6 ligand with Na+, K+, and Pb2+ (type III) strongly suggest exciton coupling caused by the closeness of the heteroaromatic rings of two 1:1 complex molecules.

  3. Asymmetric catalysis with chiral ferrocene ligands.

    PubMed

    Dai, Li-Xin; Tu, Tao; You, Shu-Li; Deng, Wei-Ping; Hou, Xue-Long

    2003-09-01

    Chiral ferrocene ligands have been widely used in asymmetric catalysis. The advantages of using ferrocene as a scaffold for chiral ligands are described, particularly those regarding planar chirality, rigid bulkiness, and ease of derivatization. The role of planar chirality in 1,2- and 1,1'-disubstituted ferrocene systems is discussed. By using a bulky ferrocene fragment, novel ferrocene ligands were designed, and high enantioselectivity and regioselectivity were achieved in the allylic substitution reaction of monosubstituted allyl substrates. Using the tunable electronic properties of a diphosphine-oxazoline ferrocenyl ligand, the regioselectivity of the intermolecular asymmetric Heck reaction was also examined.

  4. Synthesis and characterization of two novel chiral-type formate frameworks templated by protonated diethylamine and ammonium cations

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hanuza, Jerzy; Pikul, Adam; Drozd, Marek

    2017-01-01

    Two novel formate frameworks templated by ammonium and diethylammonium (DEtA+) cations have been synthesized. Chemical analysis as well as optical, Raman and IR studies showed partial substitution of nickel ions by Cr(III) or Fe(III). X-ray diffraction revealed that these compounds crystallize in the chiral-type structure of P6322 symmetry. The oxygen atoms from formate ligands form octahedral coordination around the metal centers and the octahedra are bridged by the formate groups in the anti-anti mode configuration forming the hexagonal structure with large channels expanding along the c direction. The channels are filled with disordered DEtA+ and NH4+ ions and they show unusual compression with the c/a ratio of only 0.862 and 0.852 for the iron- and chromium-containing compound, respectively. Magnetic studies revealed that the both compounds order magnetically at low temperatures but the ordering temperature is significantly higher for the iron compound (37 K) compared to the chromium analogue (26 K).

  5. Triphos derivatives and diphosphines as ligands in the ruthenium-catalysed alcohol amination with NH3.

    PubMed

    Nakagawa, N; Derrah, E J; Schelwies, M; Rominger, F; Trapp, O; Schaub, T

    2016-04-28

    The ruthenium-triphos and diphosphine-catalysed amination of alcohols with ammonia is reported. Various types of triphos derivatives with electron-donating functional group were synthesized and used as ligands in the Ru-catalysed alcohol amination with NH3. The triphos derivatives are effective for the formation of primary amines. On the other hand, if hemilabile diphosphines as tridentate ligands are used, mixtures of secondary-along with primary amines are obtained. It was found that even simple diphosphines can be used as ligands for the selective formation of the secondary amines. The diphosphine system allows a new entry to the Ru-catalysed formation of secondary amines.

  6. Approaching over 10 000-fold sensitivity increase in chiral capillary electrophoresis: Cation-selective exhaustive injection and sweeping cyclodextrin-modified micellar electrokinetic chromatography.

    PubMed

    Mikuma, Toshiyasu; Iwata, Yuko T; Miyaguchi, Hajime; Kuwayama, Kenji; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Kanazawa, Hideko; Inoue, Hiroyuki

    2016-11-01

    A novel and simple method that combines an online concentration technique with an enantioseparation technique for capillary electrophoresis-namely, cation-selective exhaustive injection and sweeping cyclodextrin-modified micellar electrokinetic chromatography (CSEI-sweeping CD-modified MEKC)-realizes the effective enantioseparation of cationic analytes while keeping a significant increase of detection sensitivity. This technique consists of a slight modification of the basic CSEI-sweeping MEKC. The main idea is to simply add an anionic CD as a chiral selector into the micellar buffer including sodium dodecyl sulfate, but not to change any other buffers in order to preserve the online concentration mechanism. When applied to analysis of the street drug, methamphetamine, the method achieved not only a baseline enantioseparation but also limits of detection (LODs; S/N = 3) of 70-90 pg/mL (ppt) for each isomer. This translates to a more than 10 000-fold improvement compared to the LODs by the usual injection method. The present technique, which was made from a slight modification of CSEI-sweeping MEKC, would give an attractive approach that is applicable to almost any analytes for which CSEI-sweeping MEKC is applicable; all that is required is the selection of an appropriate anionic CD to be added to the micellar buffer.

  7. Diphosphine and diarsine complexes of germanium(II) halides-preparation, spectroscopic, and structural studies.

    PubMed

    Cheng, Fei; Hector, Andrew L; Levason, William; Reid, Gillian; Webster, Michael; Zhang, Wenjian

    2010-01-18

    The Ge(II) halide complexes [GeX(2)(L-L)] (L-L = o-C(6)H(4)(PPh(2))(2), o-C(6)H(4)(PMe(2))(2), Me(2)P(CH(2))(2)PMe(2); X = Cl, Br, I. L-L = Et(2)P(CH(2))(2)PEt(2); X = Cl or Br. L-L = o-C(6)H(4)(AsMe(2))(2); X = Br or I) and [GeCl(L-L)][GeCl(3)] (L-L = o-C(6)H(4)(AsMe(2))(2)) have been prepared and characterized by IR, (1)H and (31)P{(1)H} NMR spectroscopy, and microanalyses. The crystal structures of [GeX(2){o-C(6)H(4)(PPh(2))(2)}] (X = Cl, Br, I) reveal discrete mononuclear units with a very asymmetric bidentate o-C(6)H(4)(PPh(2))(2) ligand and a bent GeX(2) unit. Those of [GeX(2){o-C(6)H(4)(PMe(2))(2)}] show symmetrically coordinated diphosphine with loosely associated dimer arrangements, formed through long Ge...X bridges between adjacent monomer units. [GeX(2){R(2)P(CH(2))(2)PR(2)}] (R = Me; X = Cl, Br, I. R = Et; X = Cl, Br) all show discrete monomer structures with 2-fold crystallographic symmetry and based upon four-coordinate Ge, with the diphosphine chelating and approximately linear GeX(2) units. [GeI(2){o-C(6)H(4)(AsMe(2))(2)}] involves significant intermolecular Ge...I interactions, giving rise to a zigzag polymer chain. Finally, the structure of [GeCl{o-C(6)H(4)(AsMe(2))(2)}][GeCl(3)] shows pyramidal cations and anions both with crystallographic mirror symmetry, with the diarsine symmetrically chelating, and long Ge...Cl interactions give a loosely associated chain polymer with alternating cations and anions. Comparisons across this series of structurally diverse complexes are discussed.

  8. Synthesis of Chiral Vicinal Diamines by Silver(I)-Catalyzed Enantioselective Aminolysis of N-Tosylaziridines.

    PubMed

    Chai, Zhuo; Yang, Pei-Jun; Zhang, Hu; Wang, Shaowu; Yang, Gaosheng

    2017-01-09

    The kinetic resolution of 2-aryl-N-tosylaziridines and the asymmetric desymmetrization of meso-N-tosylaziridines by ring openings with various primary and secondary anilines, and aliphatic amines as nucleophile have been realized by using a single silver(I)/chiral diphosphine complex as catalyst for the first time. The simple starting materials, broad scope, and easy scalability render this protocol a practical way to chiral vicinal diamine derivatives.

  9. PREPARATION AND EVALUATION OF HPLC CHIRAL STATIONARY PHASES BASED ON CATIONIC/BASIC DERIVATIVES OF CYCLOFRUCTAN 6

    PubMed Central

    Padivitage, Nilusha L.; Smuts, Jonathan P.; Breitbach, Zachary S.; Armstrong, Daniel W.; Berthod, Alain

    2014-01-01

    The cyclofructan 6 (CF6) macrocyclic-oligosaccharide was derivatized with five different substituents able to bear positive charges: propyl imidazole (IM) methyl benzimidazole (BIM), dimethyl aminopropyl (AP), pyridine (PY) and dimethyl aminophenyl (DMAP). The derivatized cyclofructans were reacted with triethoxysilyl-propylisocyanate as a linker to bond them to 5 μm spherical silica gel particles and then used to prepare HPLC columns. The bonded silica particles were analyzed to establish the bonding densities. A set of 34 chiral compounds including acids, neutral compounds and bases was tested with nine different mobile phase compositions including two reverse phase (RP) acetonitrile/pH 4 buffer, three polar organic (PO) acetonitrile/methanol and four normal phase (NP) heptane/ethanol mobile phases. No compounds could be separated in the RP mode. Eight compounds only could be enantioseparated in the PO mode and 21 compounds in the NP mode. The most effective chiral stationary phase was the propyl imidazole derivatized CF6 phase, provided that no more than six imidazole substituents and two linkers are attached per CF6 unit. PMID:25663797

  10. PREPARATION AND EVALUATION OF HPLC CHIRAL STATIONARY PHASES BASED ON CATIONIC/BASIC DERIVATIVES OF CYCLOFRUCTAN 6.

    PubMed

    Padivitage, Nilusha L; Smuts, Jonathan P; Breitbach, Zachary S; Armstrong, Daniel W; Berthod, Alain

    2015-03-01

    The cyclofructan 6 (CF6) macrocyclic-oligosaccharide was derivatized with five different substituents able to bear positive charges: propyl imidazole (IM) methyl benzimidazole (BIM), dimethyl aminopropyl (AP), pyridine (PY) and dimethyl aminophenyl (DMAP). The derivatized cyclofructans were reacted with triethoxysilyl-propylisocyanate as a linker to bond them to 5 μm spherical silica gel particles and then used to prepare HPLC columns. The bonded silica particles were analyzed to establish the bonding densities. A set of 34 chiral compounds including acids, neutral compounds and bases was tested with nine different mobile phase compositions including two reverse phase (RP) acetonitrile/pH 4 buffer, three polar organic (PO) acetonitrile/methanol and four normal phase (NP) heptane/ethanol mobile phases. No compounds could be separated in the RP mode. Eight compounds only could be enantioseparated in the PO mode and 21 compounds in the NP mode. The most effective chiral stationary phase was the propyl imidazole derivatized CF6 phase, provided that no more than six imidazole substituents and two linkers are attached per CF6 unit.

  11. Water-soluble Mo3S4 clusters bearing hydroxypropyl diphosphine ligands: synthesis, crystal structure, aqueous speciation, and kinetics of substitution reactions.

    PubMed

    Basallote, Manuel G; Fernández-Trujillo, M Jesús; Pino-Chamorro, Jose Ángel; Beltrán, Tomás F; Corao, Carolina; Llusar, Rosa; Sokolov, Maxim; Vicent, Cristian

    2012-06-18

    The [Mo(3)S(4)Cl(3)(dhprpe)(3)](+) (1(+)) cluster cation has been prepared by reaction between Mo(3)S(4)Cl(4)(PPh(3))(3) (solvent)(2) and the water-soluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1](2)[Mo(6)Cl(14)] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo(3)S(4)(dhprpe-H)(3)](+) (2(+)). A detailed study based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid-base equilibria and the kinetics of interconversion between the 1(+) and the 2(+) forms. Both conversion of 1(+) to 2(+) and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride.

  12. Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands With Pendant Amines

    SciTech Connect

    Welch, Kevin D.; Dougherty, William G.; Kassel, W. S.; DuBois, Daniel L.; Bullock, R. Morris

    2010-10-01

    Addition of the pendant amine ligand PNRP (PNRP = Et2PCH2NRCH2PEt2; R = Me, Ph, n-Bu) to Mn(CO)5Br gives fac-Mn(PNRP)(CO)3Br. Photolysis of fac-Mn(PNRP)(CO)3Br with dppm [dppm = 1,2-bis(diphenylphosphino)methane] provides mixed bis(diphosphine) complexes, trans-Mn(PNRP)(dppm)(CO)(Br). Reaction of trans-Mn(PNRP)(dppm)(CO)(Br) with LiAlH4 leads to trans-Mn(PNRP)(dppm)(CO)(H). The crystal structure of trans-Mn(PNMeP)(dppm)(CO)(H) determined by x-ray diffraction shows an unusual distortion of the Mn-H towards one C-H of the dppm ligand, resulting in an H Mn CO angle of 155(1)° and C H • • • H Mn distance of 2.10(3) Å. Mn(P2PhN2Bn)(dppm)(CO)(H) [P2PhN2Bn = 1, 5-diphenyl-3,7-dibenzyl-1,5-diaza-3,7-diphosphacyclooctane] can be prepared in a similar manner; its structure has one chelate ring in a chair conformation and the second in a boat conformation. The boat-conformer ring directs the nitrogen of the ring towards the carbonyl ligand, and the N • • • C distance between one N of the P2PhN2Bn ligand and CO is 3.171(4) Å, indicating a weak interaction between the N of the pendant amine and the CO ligand. Reaction of NaBArF4 (ArF = = 3,5-bis(trifluoromethyl)phenyl) with Mn(P P)(dppm)(CO)(Br) produces the cations [Mn(P P)(dppm)(CO)]+. The crystal structure of [Mn(PNMeP)(dppm)(CO)][BArF4] shows two very weak agostic interactions between C-H bonds on the phenyl ring and the Mn. The cationic complexes [Mn(P P)(dppm)(CO)]+ react with H2 to form dihydrogen complexes [Mn(H2)(P P)(dppm)(CO)]+ (Keq = 1 - 90 atm-1 in fluorobenzene, for a series of different P P ligands). Similar equilibria with N2 produce [Mn(N2)(P P)(dppm)(CO)]+ (Keq generally 1-3.5 atm-1 in fluorobenzene). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes

    SciTech Connect

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M.; Hall, Michael B.; Bullock, R. Morris

    2016-06-07

    Unusual cleavage of P-C and C-H bonds of the P2N2 ligand in heteroleptic [Ni(P2N2)(diphosphine)]2+ complexes results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode.

  14. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    PubMed Central

    Rubina, Marina; Sherrill, William M; Barkov, Alexey Yu

    2014-01-01

    Summary A novel class of chiral phosphanyl-oxazoline (PHOX) ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands. PMID:25161709

  15. From a chiral switch to a ligand portfolio for asymmetric catalysis.

    PubMed

    Blaser, Hans-Ulrich; Pugin, Benoît; Spindler, Felix; Thommen, Marc

    2007-12-01

    This Account is divided into two sections. In the first section, the development of an enantioselective manufacturing process for ( S)-metolachlor, the active ingredient of the grass herbicide Dual Magnum, is described. This is today's largest application of asymmetric catalysis, and the Ir-Xyliphos hydrogenation catalyst achieves unprecedented 2 millions turnovers. The development started in 1982 and ended when the first production batch was run in November 1996. The strategies and approaches used for attaining the elusive goal are described, and the lessons learned are discussed. In the second section, the development and performance of a portfolio of chiral diphosphines for industrial asymmetric applications are described. Central to the portfolio is the idea of modular ligand families, i.e., diphosphines with the same backbone, where steric and electronic properties are easily tuned by the choice of the substituents at the phosphorous atoms.

  16. Facile P-C/C-H Bond-Cleavage Reactivity of Nickel Bis(diphosphine) Complexes.

    PubMed

    Zhang, Shaoguang; Li, Haixia; Appel, Aaron M; Hall, Michael B; Bullock, R Morris

    2016-07-04

    Unusual cleavage of P-C and C-H bonds of the P2 N2 ligand, in heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes under mild conditions, results in the formation of an iminium formyl nickelate featuring a C,P,P-tridentate coordination mode. The structures of both the heteroleptic [Ni(P2 N2 )(diphosphine)](2+) complexes and the resulting iminium formyl nickelate have been characterized by NMR spectroscopy and single-crystal X-ray diffraction analysis. Density functional theory (DFT) calculations were employed to investigate the mechanism of the P-C/C-H bond cleavage, which involves C-H bond cleavage, hydride rotation, Ni-C/P-H bond formation, and P-C bond cleavage.

  17. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  18. Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile

    SciTech Connect

    Wilson, Aaron D.; Miller, Alexander J.; DuBois, Daniel L.; Labinger, Jay A.; Bercaw, John E.

    2010-04-19

    Thermodynamic studies of a series of [H2Rh(PP)2]+ and [HRh(PP)2(CH3CN)]2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to [Rh(PP)2]+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for [HRh(PP)2(CH3CN)]2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)2]+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Thermodynamic Studies of [H2Rh(diphosphine)2]+ and [HRh(diphosphine)2(CH3CN)]2+ Complexes in Acetonitrile

    SciTech Connect

    Aaron D. Wilson; Alexander J. M. Miller; Daniel L. DuBois; Jay A. Labinger; John E. Bercaw

    2011-04-01

    Thermodynamic studies of a series of [H2Rh(PP)2]+ and [HRh(PP)2(CH3CN)]2+ complexes have been carried out in acetonitrile. Seven different diphosphine (PP) ligands were selected to allow variation of the electronic properties of the ligand substituents, the cone angles, and the natural bite angles (NBAs). Oxidative addition of H2 to [Rh(PP)2]+ complexes is favored by diphosphine ligands with large NBAs, small cone angles, and electron donating substituents, with the NBA being the dominant factor. Large pKa values for [HRh(PP)2(CH3CN)]2+ complexes are favored by small ligand cone angles, small NBAs, and electron donating substituents with the cone angles playing a major role. The hydride donor abilities of [H2Rh(PP)2]+ complexes increase as the NBAs decrease, the cone angles decrease, and the electron donor abilities of the substituents increase. These results indicate that if solvent coordination is involved in hydride transfer or proton transfer reactions, the observed trends can be understood in terms of a combination of two different steric effects, NBAs and cone angles, and electron-donor effects of the ligand substituents.

  20. Chiral ionic liquids: synthesis, properties, and enantiomeric recognition.

    PubMed

    Yu, Shaofang; Lindeman, Sergey; Tran, Chieu D

    2008-04-04

    We have synthesized a series of structurally novel chiral ionic liquids which have a either chiral cation, chiral anion, or both. Cations are an imidazolium group, while anions are based on a borate ion with spiral structure and chiral substituents. Both (or all) stereoisomeric forms of each compound in the series can be readily synthesized in optically pure form by a simple one-step process from commercially available reagents. In addition to the ease of preparation, most of the chiral ILs in this series are liquid at room temperature with a solid to liquid transformation temperature as low as -70 degrees C and have relatively high thermal stability (up to at least 300 degrees C). Circular dichroism and X-ray crystallographic results confirm that the reaction to form the chiral spiral borate anion is stereospecific, namely, only one of two possible spiral stereoisomers was formed. Results of NMR studies including 1H{15N} heteronuclear single quantum coherence (HSQC) show that these chiral ILs exhibit intramolecular as well as intermolecular enantiomeric recognition. Intramolecularly, the chiral anion of an IL was found to exhibit chiral recognition toward the cation. Specifically, for a chiral IL composing with a chiral anion and a racemic cation, enantiomeric recognition of the chiral anion toward both enantiomers of the cation lead to pronounced differences in the NMR bands of the cation enantiomers. The chiral recognition was found to be dependent on solvent dielectric constant, concentration, and structure of the ILs. Stronger enantiomeric recognition was found in solvent with relatively lower dielectric constants (CDCl3 compared to CD3CN) and at higher concentration of ILs. Also, stronger chiral recognition was found for anions with a relatively larger substituent group (e.g., chiral anion with a phenylmethyl group exhibits stronger chiral recognition compared to that with a phenyl group, and an anion with an isobutyl group has the weakest chiral recognition

  1. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. Scott; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; DuBois, M. Rakowski

    2010-01-01

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. Finally, the turnover rate of 50 s-1 under 1.0 atm H2 at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H2 oxidation catalyst.

  2. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines.

    PubMed

    Yang, Jenny Y; Chen, Shentan; Dougherty, William G; Kassel, W Scott; Bullock, R Morris; DuBois, Daniel L; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Rakowski DuBois, M

    2010-12-07

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(P(Cy)(2)N(t-Bu)(2))(2)](2+) has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turnover rate of 50 s(-1) under 1.0 atm H(2) at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H(2) oxidation catalyst.

  3. Pt-Catalyzed Enantioselective Cycloisomerization for the Synthesis of Planar-Chiral Ferrocene Derivatives.

    PubMed

    Shibata, Takanori; Uno, Ninna; Sasaki, Tomoya; Kanyiva, Kyalo Stephen

    2016-08-05

    Enantioselective cycloisomerization of 2-ethynyl-1-ferrocenylbenzene derivatives proceeded by using a chiral cationic platinum catalyst at room temperature. The intramolecular reaction gave planar-chiral naphthalene- and anthracene-fused ferrocene derivatives with high to excellent ee.

  4. Asymmetric 1,3-dipolar cycloaddition with a P-stereogenic dipolarophile: an efficient approach to novel P-stereogenic 1,2-diphosphine systems.

    PubMed

    Vinokurov, Nikolai; Pietrusiewicz, K Michał; Frynas, Sławomir; Wiebcke, Michael; Butenschön, Holger

    2008-11-14

    The asymmetric 1,3-dipolar cycloaddition of the P-stereogenic dipolarophile (S(p),S(p))-6 to C,N-diphenylnitrone (7) led to previously unknown P-stereogenic isoxazolinyl diphosphine dioxides (R(p),S(p))-8 in enantio- and diastereomerically pure form; their stereospecific reduction with Ti(OiPr)(4)/PMHS proceeds in high yield with retention of configuration at the phosphorus atoms to give enantio- and diastereomerically pure diphosphines, which are conveniently purified via the corresponding diphosphine-diboranes.

  5. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures

    NASA Astrophysics Data System (ADS)

    Yang, Huayan; Wang, Yu; Zheng, Nanfeng

    2013-03-01

    The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions.The combined use of thiolate and diphosphine as surface ligands helps to stabilize subnanometer Ag(0) nanoclusters, resulting in the successful crystallization of two Ag(0)-containing nanoclusters (Ag16 and Ag32) for X-ray single crystal analysis. Both clusters have core-shell structures with Ag86+ and Ag2212+ as their cores, which are not simply either fragments of face-centered cubic metals or their five-fold twinned counterparts. The clusters display UV-Vis absorption spectra consisting of molecule-like optical transitions. Electronic supplementary information (ESI) available: Experimental details, more pictures of the structure and XPS spectra of the clusters. CCDC 916463 and 916464. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr34328f

  6. Proton solvates, H +· nH 2O· mL, formed by diphosphine dioxides with chlorinated cobalt(III) dicarbollide acid

    NASA Astrophysics Data System (ADS)

    Stoyanov, Evgenii S.; Smirnov, Igor'V.

    2005-04-01

    Interaction of hydrated proton, H 5O 2+·(H 2O) 4, in dichloroethane solutions with diphosphine dioxides (L) having methyl (Ph 4Me), ethyl (Ph 4Et) and polyoxyethylene chains (Ph 4PEG) linking two diphenyl phosphine oxide groups has been investigated. A bulky counter ion: chlorinated cobalt(III) bis(dicarbollide), [Co(C 2B 9H 8Cl 3) 2] -, minimizes perturbation of the cation. At low concentrations, Ph 4Et and Ph 4PEG form anhydrous 1:1 complexes with (P dbnd6 )O-H +-O( dbnd6 P) fragment having very strong symmetrical H-bonds. At these conditions Ph 4Me form another compound, H 5O 2+·L(H 2O) 2, due to lower P dbnd6 O basicity and optimal geometry of the chelate cycle. At higher concentrations, Ph 4Me and Ph 4Et form isostructural complexes H 5O 2+·L 2, whereas Ph 4PEG forms only a 1:1 complex with proton dihydrate, H 3O +·H 2O. In excess of free Ph 4Me and Ph 4Et a water molecule is introduced to the first coordination sphere of H 5O 2+ and the average molar ratio L/H 5O 2+ of the complexes exceeds 2. The composition of these complexes as a function of L and its concentration is discussed.

  7. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  8. Influence of the ligand alkyl chain length on the solubility, aqueous speciation, and kinetics of substitution reactions of water-soluble M3S4 (M = Mo, W) clusters bearing hydroxyalkyl diphosphines.

    PubMed

    Beltrán, Tomás F; Llusar, Rosa; Sokolov, Maxim; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Pino-Chamorro, Jose Ángel

    2013-08-05

    Water-soluble [M3S4X3(dhbupe)3](+) diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1(+) (M = Mo, X = Cl) and 2(+) (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3](+) cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3](+) (1OH(+)) and [W3S4(OH)3(dhbupe)3](+) (2OH(+)) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH(+) or 2 and 2OH(+). On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH(-) attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH(-) ligands followed by substitution of coordinated water by X(-).

  9. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines.

    PubMed

    Zuo, Weiwei; Lough, Alan J; Li, Young Feng; Morris, Robert H

    2013-11-29

    A rational approach is needed to design hydrogenation catalysts that make use of Earth-abundant elements to replace the rare elements such as ruthenium, rhodium, and palladium that are traditionally used. Here, we validate a prior mechanistic hypothesis that partially saturated amine(imine)diphosphine ligands (P-NH-N-P) activate iron to catalyze the asymmetric reduction of the polar bonds of ketones and imines to valuable enantiopure alcohols and amines, with isopropanol as the hydrogen donor, at turnover frequencies as high as 200 per second at 28°C. We present a direct synthetic approach to enantiopure ligands of this type that takes advantage of the iron(lI) ion as a template. The catalytic mechanism is elucidated by the spectroscopic detection of iron hydride and amide intermediates.

  10. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen. [Jupiter atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Benson, R.

    1980-01-01

    The photolysis of phosphine to red phosphorus (P4) and hydrogen is investigated in light of the potential significance of the reaction in the atmospheric chemistry of Jupiter. It is reported that the photolysis of PH3 at room temperature by a 206.2-nm light source gave rise to a product identified by its UV and IR spectra and gas chromatographic retention time as P2H4, the yield of which is found to increase to a maximum and then decrease to 20% of the maximum value with illumination time. A mechanism for phosphine photolysis including diphosphine formation as an intermediate step is proposed, and it is concluded that P2H4 is a likely constituent of the atmospheres of the Jovian planets.

  11. Hydrogen Oxidation Catalysis by a Nickel Diphosphine Complex with Pendant tert-Butyl Amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Rakowski DuBois, Mary

    2010-11-09

    A bis-diphosphine nickel complex with t-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turn-over rate of 50 s 1 under 1.0 atm H2 at a potential of –0.77 V vs the ferrocene couple is 5 times faster than the rate reported heretofore for any other molecular H2 oxidation catalyst. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. Computational resources were provided by the Environmental Molecular Science Laboratory (EMSL) and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

  12. Biferrocene-Based Diphosphine Ligands: Synthesis and Application of Walphos Analogues in Asymmetric Hydrogenations

    PubMed Central

    2013-01-01

    A total of four biferrocene-based Walphos-type ligands have been synthesized, structurally characterized, and tested in the rhodium-, ruthenium- and iridium-catalyzed hydrogenation of alkenes and ketones. Negishi coupling conditions allowed the biferrocene backbone of these diphosphine ligands to be built up diastereoselectively from the two nonidentical and nonracemic ferrocene fragments (R)-1-(N,N-dimethylamino)ethylferrocene and (SFc)-2-bromoiodoferrocene. The molecular structures of (SFc)-2-bromoiodoferrocene, the coupling product, two ligands, and the two complexes ([PdCl2(L)] and [RuCl(p-cymene)(L)]PF6) were determined by X-ray diffraction. The structural features of complexes and the catalysis results obtained with the newly synthesized biferrocene-based ligands were compared with those of the corresponding Walphos ligands. PMID:23457421

  13. Double-Stereodifferentiation in Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair.

    PubMed

    Augé, Mylène; Feraldi-Xypolia, Alexandra; Barbazanges, Marion; Aubert, Corinne; Fensterbank, Louis; Gandon, Vincent; Kolodziej, Emilie; Ollivier, Cyril

    2015-08-07

    The first enantioselective metal-catalyzed [2 + 2 + 2] cycloaddition involving a double asymmetric induction has been devised. It relies on the use of an in situ generated chiral cationic rhodium(I) catalyst with a matched chiral ligand/chiral counterion pair. Careful optimization of the catalytic system, as well as of the reaction conditions, led to atroposelective [2 + 2 + 2] pyridone cycloadducts with high ee's up to 96%. This strategy outperformed those previously described involving a chiral ligand only or a chiral counterion only.

  14. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  15. Chiral Polymers.

    DTIC Science & Technology

    1984-10-01

    Oxazoline or 1,3-Dioxane Groups. Two other chiral monomers containing polymerizable methacrylate functions were synthesized. The 2- methyl -5-phenyl-4...BOTTOM) MONOMERS the quaternary carbon of poly( methyl methacrylate ). 10 If this peak assignment for the triads in poly( a-methylene-y- 1 butyrolactone...Imd entify by block number) Vinyl oxazolines, ’Chiral Monomers * cx~-Methylene-4- methyl -’V-butyrolactone HPChia ooynr Chromatography Cia ooyes

  16. Combinatorial synthesis of functionalized chiral and doubly chiral ionic liquids and their applications as asymmetric covalent/non-covalent bifunctional organocatalysts.

    PubMed

    Zhang, Long; Luo, Sanzhong; Mi, Xueling; Liu, Song; Qiao, Yupu; Xu, Hui; Cheng, Jin-Pei

    2008-02-07

    A facile combinatorial strategy was developed for the construction of libraries of functionalized chiral ionic liquids (FCILs) including doubly chiral ionic liquids and bis-functional chiral ionic liquids. These FCIL libraries have the potential to be used as asymmetric catalysts or chiral ligands. As an example, novel asymmetric bifunctional catalysts were developed by simultaneously incorporating functional groups onto the cation and anion. The resultant bis-functionalized CILs showed significantly improved stereoselectivity over the mono-functionalized parent CILs.

  17. Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] as Proton Reduction Catalysts.

    PubMed

    Rahaman, Ahibur; Ghosh, Shishir; Unwin, David G; Basak-Modi, Sucharita; Holt, Katherine B; Kabir, Shariff E; Nordlander, Ebbe; Richmond, Michael G; Hogarth, Graeme

    2014-03-24

    The mixed-valence triiron complexes [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 0-2; edt = SCH2CH2S) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2] (diphosphine = dppv, dppe, dppb, dppn) have been prepared and structurally characterized. All adopt an anti arrangement of the dithiolate bridges, and PPh3 substitution occurs at the apical positions of the outer iron atoms, while the diphosphine complexes exist only in the dibasal form in both the solid state and solution. The carbonyl on the central iron atom is semibridging, and this leads to a rotated structure between the bridged diiron center. IR studies reveal that all complexes are inert to protonation by HBF4·Et2O, but addition of acid to the pentacarbonyl complexes results in one-electron oxidation to yield the moderately stable cations [Fe3(CO)5(PPh3)2(μ-edt)2](+) and [Fe3(CO)5(κ(2)-diphosphine)(μ-edt)2](+), species which also result upon oxidation by [Cp2Fe][PF6]. The electrochemistry of the formally Fe(I)-Fe(II)-Fe(I) complexes has been investigated. Each undergoes a quasi-reversible oxidation, the potential of which is sensitive to phosphine substitution, generally occurring between 0.15 and 0.50 V, although [Fe3(CO)5(PPh3)2(μ-edt)2] is oxidized at -0.05 V. Reduction of all complexes is irreversible and is again sensitive to phosphine substitution, varying between -1.47 V for [Fe3(CO)7(μ-edt)2] and around -1.7 V for phosphine-substituted complexes. In their one-electron-reduced states, all complexes are catalysts for the reduction of protons to hydrogen, the catalytic overpotential being increased upon successive phosphine substitution. In comparison to the diiron complex [Fe2(CO)6(μ-edt)], [Fe3(CO)7(μ-edt)2] catalyzes proton reduction at 0.36 V less negative potentials. Electronic structure calculations have been carried out in order to fully elucidate the nature of the oxidation and reduction processes. In all complexes, the HOMO comprises an iron-iron bonding orbital localized between the two iron atoms

  18. Isomerization of the diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) at a triosmium cluster and P C bond cleavage in the unsaturated cluster 1,1-Os3(CO)9(bmf): Synthesis and X-ray diffraction structures of the isomeric Os3(CO)10(bmf) clusters and HOs3(CO)8( -C6H4)[ -PhPCC(Ph2P)CH(OMe)OC(O)

    SciTech Connect

    Kandala, Srikanth; Yang, Li; Campana, Charles F.; Nesterov, Vladimir; Richmond, Michael G.

    2010-07-01

    The labile cluster 1,2-Os3(CO)10(MeCN)2 (1) reacts with the chiral diphosphine ligand 3,4-bis(diphenylphosphino)-5-methoxy-2(5H)-furanone (bmf) to furnish 1,2-Os3(CO)10(bmf) (2a) in high yield. Heating cluster 2a over the temperature range 358 383 K under CO leads to isomerization of the bmf ligand and formation of the diphosphine-chelated cluster 1,1-Os3(CO)10(bmf) (2b) and an equilibrium mixture consisting of 2a and 2b in a 15:85 ratio. Extended thermolysis of an equilibrium mixture of Os3(CO)10(bmf) is accompanied by CO loss and ortho-metalation of an aryl ring to afford an inseparable mixture of three diastereomeric hydride clusters HOs3(CO)9(C29H23O3P2) (3a c). Thermolysis of HOs3(CO)9(C29H23O3P2) (3a c) in refluxing toluene leads to P C bond cleavage and formation of the benzyne-substituted clusters HOs3(CO)8( -C6H4)( -C23H19O3P2) (4a,b) as a 4:1 mixture of diastereomers. The unequivocal identity of the major benzyne-substituted cluster has been determined by X-ray diffraction analysis, where the activation of one of the phenyl groups situated to the furanone carbonyl group in the bmf ligand has been established. The isomerization and activation of the bmf ligand are contrasted with other Os3(CO)10(diphosphine) derivatives prepared by our groups.

  19. Prebiotic chirality

    NASA Astrophysics Data System (ADS)

    Mekki-Berrada, Ali

    Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality

  20. Synthesis and resolution of planar-chiral ruthenium-palladium complexes with ECE' pincer ligands.

    PubMed

    Bonnet, Sylvestre; Li, Jie; Siegler, Maxime A; von Chrzanowski, Lars S; Spek, Anthony L; van Koten, Gerard; Klein Gebbink, Robertus J M

    2009-01-01

    Feel the pinch! Planar-chiral, cationic, ruthenium-palladium complexes based on eta(6),eta(1)-coordinated ECE' pincer ligands are synthesized as racemic mixtures by reacting ECE'-palladium complexes and [Ru(C(5)R(5))(MeCN)(3)](+) arenophiles (R=H or Me). Chiral resolution of the cationic complexes was achieved by using the chiral counterion [Delta-TRISPHAT](-), and solving the X-ray crystal structure of one diastereoisomer (shown here).

  1. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality.

    PubMed

    Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J

    2016-02-24

    Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate.

  2. Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes.

    PubMed

    Okano, Yuka; Ohara, Hiroki; Kobayashi, Atsushi; Yoshida, Masaki; Kato, Masako

    2016-06-06

    We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet-triplet energy difference (ΔE = 523 and 564 cm(-1) for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the Cu(I) ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

  3. Dipalladium(I) Terphenyl Diphosphine Complexes as Models for Two-Site Adsorption and Activation of Organic Molecules

    PubMed Central

    Lin, Sibo; Herbert, David E.; Velian, Alexandra; Day, Michael W.; Agapie, Theodor

    2013-01-01

    Well-defined models for binding of organic molecules across two metal centers are relatively rare. A paraterphenyl diphosphine was employed to support a dipalladium(I) moiety. Unlike previously reported dipalladium(I) species, the present system provides a single molecular hemisphere for binding of ligands across two metal centers, enabling the characterization and comparison of the binding of a wide variety of saturated and unsaturated organic molecules. The dipalladium(I) terphenyl diphosphine toluene-capped complex was synthesized from a dipalladium(I) hexaacetonitrile precursor in the presence of toluene. The palladium centers display interactions with the π-systems of the central ring of the terphenyl unit and that of the toluene. Exchange of toluene for anisole, 1,3-butadiene, 1,3-cyclohexadiene, thiophenes, pyrroles, or furans resulted in well-defined π-bound complexes which were studied by crystallography, nuclear magnetic resonance (NMR) spectroscopy, and density functional theory. Structural characterization shows that the interactions of the dipalladium unit with the central arene of the diphosphine does not vary significantly in this series allowing for a systematic comparison of the binding of the incoming ligands to the dipalladium moiety. Several of the complexes exhibit rare μ2-η2:η2 or μ2-η2:η1 (O or S) bridging motifs. Hydrogenation of the thiophene and benzothiophene adducts was demonstrated to proceed at room temperature. The relative binding strength of the neutral ligands was determined by competition experiments monitored by NMR spectroscopy. The relative equilibrium constants for ligand substitution span over 13 orders of magnitude. This represents the most comprehensive analysis to date of the relative binding of heterocycles and unsaturated ligands to bimetallic sites. Binding interactions were computationally studied with electrostatic potentials and molecular orbital analysis. Anionic ligands were also demonstrated to form

  4. Highly active and selective catalysis of copper diphosphine complexes for the transformation of carbon dioxide into silyl formate.

    PubMed

    Motokura, Ken; Kashiwame, Daiki; Takahashi, Naoki; Miyaji, Akimitsu; Baba, Toshihide

    2013-07-22

    Copper diphosphine complexes have been found to be highly active and selective homogeneous catalysts for the hydrosilylation of CO2. The structure of the phosphine ligands strongly affects their catalytic activity. Turnover number (TON) reaches 70,000 after 24 hours with 1,2-bis(diisopropylphosphino)benzene as a ligand under 1 atmosphere of CO2. (1)H and (13)C NMR spectra, carried out under the reaction conditions, showed the reaction mechanism through insertion of CO2 into Cu-H to afford Cu/formate species.

  5. Chiral streamers

    SciTech Connect

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  6. Hydrogen-bonded pillars of alternating chiral complex cations and anions: 1. Synthesis, characterization, X-ray structure and thermal stability of catena-{[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O} and of its precursor (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O.

    PubMed

    Bélombé, M M; Nenwa, J; Mbiangué, Y A; Majoumo-Mbé, F; Lönnecke, P; Hey-Hawkins, E

    2009-06-21

    Compound (H(3)oxado)[Co(H(2)oxado)(3)](SO(4))(2).2H(2)O () (H(3)oxado(+) = oxamide dioximemonoximium) reacted metathetically with Ba(6)(H(2)O)(17)[Cr(C(2)O(4))(3)](4).7H(2)O in water to give the one-dimensional complex salt {[Co(H(2)oxado)(3)][Cr(C(2)O(4))(3)].5H(2)O}(infinity) () (H(2)oxado = oxamide dioxime). Compounds and were characterized by elemental analysis, FTIR, UV-Vis and by single crystal X-ray structure determination. The structure of consists of infinite pillars of alternating chiral complex cations and anions linked together along [100] by electrostatic and longitudinal O-HO interactions, with an average intrachain CoCr separation of 4.94 A. Equatorial N-HO bridges cross-link neighboring pillars (which are of opposite chirality) and consolidate a three-dimensional lattice framework which delineates elliptic nanochannels parallel to the a axis, encapsulating highly disordered water molecules. The thermal stability of both compounds was assessed by TGA, and the effective magnetic moment of , checked at room temperature, revealed considerable spin-orbit coupling.

  7. Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis.

    PubMed

    Tran, Chieu D; Mejac, Irena

    2008-09-19

    A chiral ionic liquid (IL), S-[3-(chloro-2-hydroxypropyl)trimethylammonium] [bis((trifluoromethyl)sulfonyl)amide] (S-[CHTA](+)[Tf(2)N](-)), which can be easily and readily synthesized in a one-step process from commercially available reagents, can be successfully used both as co-electrolyte and as a chiral selector for CE. A variety of pharmaceutical products including atenolol, propranolol, warfarin, indoprofen, ketoprofen, ibuprofen and flurbiprofen, can be successfully and baseline separated with the use of this IL as electrolyte. Interestingly, while S-[CHTA](+)[Tf(2)N](-) can also serve as a chiral selector, enantioseparation cannot be successfully achieved with S-[CHTA](+)[Tf(2)N](-) as the only chiral selector. In the case of ibuprofen, a second chiral selector, namely a chiral anion (sodium cholate), is needed for the chiral separation. For furbiprofen, in addition to S-[CHTA](+)[Tf(2)N](-) and sodium cholate, a third and neutral chiral selector, 1-S-octyl-beta-d-thioglucopyranoside (OTG), is also needed. Due to the fact that the chirality of this chiral IL resides on the cation (i.e., -[CHTA](+)), and that needed additional chiral selector(s) are either chiral anion (i.e., cholate) or chiral neutral compound (OTG), the results obtained seem to suggest that additional chiral selector(s) are needed to provide the three-point interactions needed for chiral separations.

  8. Synthesis, reactivity, structures, and dynamic properties of gyroscope like iron complexes with dibridgehead diphosphine cages: pre- vs. post-metathesis substitutions as routes to adducts with neutral dipolar Fe(CO)(NO)(X) rotors.

    PubMed

    Lang, Georgette M; Skaper, Dirk; Hampel, Frank; Gladysz, John A

    2016-10-18

    Three routes are explored to the title halide/cyanide complexes trans-Fe(CO)(NO)(X)(P((CH2)14)3P) (9c-X; X = Cl/Br/I/CN), the Fe(CO)(NO)(X) moieties of which can rotate within the diphosphine cages (ΔH(‡)/ΔS(‡) (kcal mol(-1)/eu(-1)) 5.9/-20.4 and 7.4/-23.9 for 9c-Cl and 9c-I from variable temperature (13)C NMR spectra). First, reactions of the known cationic complex trans-[Fe(CO)2(NO)(P((CH2)14)3P)](+) BF4(-) and Bu4N(+) X(-) give 9c-Cl/-Br/-I/-CN (75-83%). Second, reactions of the acyclic complexes trans-Fe(CO)(NO)(X)(P((CH2)mCH[double bond, length as m-dash]CH2)3)2 and Grubbs' catalyst afford the tris(cycloalkenes) trans-Fe(CO)(NO)(X)(P((CH2)mCH[double bond, length as m-dash]CH(CH2)m)3P) (m/X = 6/Cl,Br,I,CN, 7/Cl,Br, 8/Cl,Br) as mixtures of Z/E isomers (24-41%). Third, similar reactions of trans-[Fe(CO)2(NO)(P((CH2)mCH[double bond, length as m-dash]CH2)3)2](+) BF4(-) and Grubbs' catalyst afford crude trans-[Fe(CO)2(NO)P((CH2)mCH[double bond, length as m-dash]CH(CH2)m)3P)](+) BF4(-) (m = 6, 8). However, the C[double bond, length as m-dash]C hydrogenations required to consummate routes 2 and 3 are problematic. Crystal structures of 9c-Cl/-Br/-CN are determined. Although the CO/NO/X ligands are disordered, the void space within the diphosphine cages is analyzed in terms of horizontal and vertical constraints upon Fe(CO)(NO)(X) rotation and the NMR data. The molecules pack in identical motifs with parallel P-Fe-P axes, and without intermolecular impediments to rotation in the solid state.

  9. Relationship between the bite size of diphosphine ligands and tetrahedral distortions of square-planar nickel(II) complexes: Stabilization of nickel(I) and palladium(I) complexes using diphosphine ligands with large bites

    SciTech Connect

    Miedaner, A.; DuBois, D.L. ); Haltiwanger, R.C. )

    1991-02-06

    Nickel and palladium complexes of the type (M(L{sub 2}){sub 2})(BF{sub 4}){sub 2} and (M(L{sub 2})(L{sub 2}{prime}))(BF{sub 4}){sub 2} (where L{sub 2} and L{sub 2}{prime} are diphosphine ligands) have been synthesized. The lowest energy electronic absorption band for the nickel complexes decreases in energy as the bite size of the diphosphine ligand increases. Similarly, the half-wave potentials for the Ni(II/I) and Pd(II/O) couples become more positive as the bite size increases. Structural studies of (Ni(dppm){sub 2})(BF{sub 4}){sub 2} (where dppm is bis(diphenylphosphino)methane) and (Ni-(dppb){sub 2})(PF{sub 6}){sub 2} (where dppb is 1,2-bis(diphenylphosphino)benzene) show that increasing the bite size of the diphosphine ligands results in larger tetrahedral distortions. The crystal structure of (Ni(Dppm){sub 2})(BF{sub 4}){sub 2}(C{sub 50}H{sub 44}B{sub 2}F{sub 8}NiP{sub 4}) and (Ni(Dppb){sub 2})(PF{sub 6}){sub 2}(C{sub 74}H{sub 64}F{sub 12}NiP{sub 6}) were measured and are reported herein. Calculations made using the extended Huckel theory indicate that the observed distortions may have an electronic as well as a steric component. The calculations also allow rationalization of the electronic absorption spectra, electrochemical data, and the stability of the Ni(I) and Pd(I) complexes (Ni(dppp){sub 2})(BF{sub 4}) (where dppp is 1,3-bis(diphenylphosphino)propane) and (Pd(dppx){sub 2})(BF{sub 4}) (where dppx is {alpha},{alpha}{prime}-bis(diphenylphosphino)-o-xylene). Complexes containing the ligand dppm have a marked tendency to become five-coordinate, as indicated by the structural determination of (Ni(dppm){sub 2}(CH{sub 3}CN))(PF{sub 6}){sub 2}. The crystal structure for the latter complex is reported.

  10. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    PubMed

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes.

  11. Comprehensive Thermodynamics of Nickel Hydride Bis(Diphosphine) Complexes: A Predictive Model through Computations

    SciTech Connect

    Chen, Shentan; Rousseau, Roger J.; Raugei, Simone; Dupuis, Michel; DuBois, Daniel L.; Bullock, R. Morris

    2011-11-28

    Prediction of thermodynamic quantities such as redox potentials and homolytic and heterolytic metal hydrogen bond energies is critical to the a priori design of molecular catalysts. In this paper we expound upon a density functional theory (DFT)-based isodesmic methodology for the accurate computation of the above quantities across a series of Ni(diphosphine)2 complexes compounds that are potential catalysts for production of H2 from protons and electrons, or oxidation of H2 to electrons and protons. Isodesmic schemes give relative free energies between the complex of interest and a reference system. A natural choice is to use as a reference a compound that shares similarities with the chemical species under study and for which the properties of interest have been measured with accuracy. However, this is not always possible as in the case of the Ni complexes considered here where data are experimentally available for only some species. To overcome this difficulty we employed a theoretical reference compound, Ni(PH3)4, which is amenable to highly accurate electron-correlated calculations, which allows one to explore thermodynamics properties even when no experimental input is accessible. The reliability of this reference is validated against the available thermodynamics data in acetonitrile solution. Overall the proposed protocol yields excellent accuracy for redox potentials (~ 0.10 eV of accuracy), for acidities (~1.5 pKa units of accuracy), for hydricities (~2 kcal/mol of accuracy), and for homolytic bond dissociation free energies (~ 1-2 kcal/mol of accuracy). The calculated thermodynamic properties are then analyzed for a broad set of Ni complexes. The power of the approach is demonstrated through the validation of previously reported linear correlations among properties. New correlations are revealed. It emerges that only two quantities, the Ni(II)/Ni(I) and Ni(I)/Ni(0) redox potentials (which are easily accessible experimentally), suffice to predict with high

  12. Synthesis and Structure of Vanadium Halide Complexes Containing Diphosphine Ligands with Pendant Amines

    SciTech Connect

    Egbert, Jonathan D.; Labios, Liezel A.; Darmon, Jonathan M.; Piro, Nicholas A.; Scott Kassel, W.; Mock, Michael T.

    2016-02-18

    A series of vanadium(III) diiodide complexes of the formula CpV(PRNR'PR)I2 (Cp = 5-C5H5; PRNR'PR = (R2PCH2)2N(R)), where R = Et, R = Me (1a), R = Ph (1b); R = Ph, R = Me (1c)) is reported. The corresponding vanadium(II) monoiodide complexes of the formula CpV(PRNR'PR)I, where R = Et, R = Me (2a), R = Ph (2b); R = Ph, R = Me (2c)) were prepared in THF by reduction of 1a-c with Zn powder. The paramagnetic complexes 1a-c and 2a-c are characterized by elemental analysis, 1H NMR spectroscopy, and by cyclic voltammetry for complexes 2b and 4b. Complexes 1c and 2a-c were also characterized in the single crystal by X-ray crystallography. We report the preparation of the vanadium(II) complexes CpV(PPh2NPh2)I (3) (PPh2NPh2 = 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) and trans-[VCl2(PEtNMePEt)2] (4a) and trans-[VCl2(PEtNPhPEt)2] (4b). These complexes represent initial coordination chemistry of vanadium complexes with PRNR'PR and PPh2NPh2 diphosphine ligands, which contain a pendant amine in the second coordination sphere. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  14. Atroposelective [2+2+2] cycloadditions catalyzed by a rhodium(I)-chiral phosphate system.

    PubMed

    Augé, Mylène; Barbazanges, Marion; Tran, Anh Tuan; Simonneau, Antoine; Elley, Paulin; Amouri, Hani; Aubert, Corinne; Fensterbank, Louis; Gandon, Vincent; Malacria, Max; Moussa, Jamal; Ollivier, Cyril

    2013-09-14

    Enantioselective cationic Rh(I)-catalyzed [2+2+2] cycloaddition reactions between diynes and isocyanates relying on the chiral anion strategy have been devised. In the presence of [Rh(cod)Cl]2, 1,4-bis(diphenylphosphino)butane, and the silver phosphate salt Ag(S)-TRIP as the unique source of chirality, axially chiral pyridones were isolated with ees up to 82%. This approach is novel in the field of chiral anion-mediated asymmetric catalysis since atroposelective transformations have so far remained unprecedented. It also proves to be complementary to the classical strategy based on chiral L-type ligands.

  15. Chiral mirrors

    SciTech Connect

    Plum, Eric; Zheludev, Nikolay I.

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  16. Understanding complex chiral plasmonics.

    PubMed

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-11-07

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.

  17. Enantioselective Oxidation of Alkenes with Potassium Permanganate Catalyzed by Chiral Dicationic Bisguanidinium.

    PubMed

    Wang, Chao; Zong, Lili; Tan, Choon-Hong

    2015-08-26

    Chiral anion-controlled ion-pairing catalysis was demonstrated to be a wide-ranging strategy that can utilize a variety of cationic metal species. In a similar manner, we envision a complementary strategy using chiral cation in partnership with inorganic anionic metal salts. Herein, we report a chiral dicationic bisguanidinium-catalyzed asymmetric oxidation reaction of alkenes with potassium permanganate. Chiral induction is attributed to ion-pairing interaction between chiral cation and enolate anion. The success of the current permanganate oxidation reaction together with mechanistic insights should provide inspiration for expansion to other anionic metal salts and would open up new paradigms for asymmetric transition metal catalysis, phase-transfer catalysis, and ion-pairing catalysis.

  18. Syntheses and Structural Characterizations of Iron(II) Complexes Containing Cyclic Diphosphine Ligands with Positioned Pendant Nitrogen Bases

    SciTech Connect

    Jacobsen, George M.; Shoemaker, R. K.; McNevin, Michael J.; Rakowski DuBois, Mary; DuBois, Daniel L.

    2007-09-24

    A series of new iron(II) complexes that contain cyclic diphosphine ligands with pendant amine bases, P2RN2R’, have been synthesized and characterized (where P2RN2R’ are substituted 1,5-diaza-3,7-diphosphacyclooctanes). These compounds include [Fe(P2PhN2Ph)(CH3CN)4](BF4)2 (1), cis-[Fe(CH3CN)2(P2PhN2Ph)2](BF4)2 (2a), cis-[Fe(CH3CN)2(P2CyN2Bz)2](BF4)2 (2b), cis-Fe(CH3CN)2(P2PhN2Bz)2](BF4)2 (2c), cis-Fe (P2PhN2Ph)2(Cl)2 (3), and trans-[HFe(CH3CN)(P2PhN2Ph)2](BF4), (4). The molecular structures of 1, 2b, and 4 have been confirmed by X-ray diffraction studies. For all complexes the cyclic diphosphine ligands contain one six-membered ring in a chair conformation and one six-membered ring in a boat conformation. For complex 4, the two rings that are in boat conformations result in N--H distances between the pendant amine nitrogens and the hydride ligand of 2.6 to 2.7 Å. Protonation of the pendant bases in complex 4 have been found to form several products. A structural assignment for a dominant protonated isomer has been assigned on the basis of 1H, 31P and 15N spectroscopic techniques. This work was supported by Grant CHE-0240106 from the National Science Foundation. D. L. D. acknowledges the support of the Office of Basic Energy Sciences of the Department of Energy, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Chiral separation of new designer drugs (Cathinones) on chiral ion-exchange type stationary phases.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Moulisová, Alena; Kuchař, Martin; Gerner, Christopher; Lindner, Wolfgang; Kohout, Michal

    2016-02-20

    We present the enantioseparation of new designer drugs from the cathinone family on structurally different chiral ion-exchange type stationary phases. A novel strong cation-exchange type chiral stationary phase was synthesized and its performance compared with previously reported ion-exchange type chiral stationary phases. The influence of structural elements of the chiral selectors on their chromatographic performance was studied and the possibilities of tuning chromatographic parameters by varying the polarity of the employed mobile phases were determined. Evidence is provided that a change in mobile phase composition strongly influences the solvation shell of the polarized and polarizable units of the selectors and analytes, as well as ionizable mobile phase additives. Furthermore, the structural features of the selectors (e.g. the size of aromatic units and their substitution pattern) are shown to play a key role in the effective formation of diastereomeric complexes with analytes. Thus, we have achieved the enantioseparation of all test analytes with a mass spectrometry-compatible mobile phase with a chiral strong cation-exchange type stationary phase.

  20. Study of a new chiral selector: Sodium arsenyl-(l)-(+) tartrate for capillary electrophoresis.

    PubMed

    Tong, Man-Yung; Payagala, Tharanga; Perera, Sirantha; Macdonnell, Frederick M; Armstrong, Daniel W

    2010-02-12

    Sodium arsenyl-(l)-(+) tartrate (Na(2)[As(2)(+)-tart(2)].3H(2)O) was examined and evaluated as a chiral selector using capillary electrophoresis. This chiral selector showed enantioselective associations with many cationic analytes, including primary, secondary, and tertiary amines. Also, baseline separations of ruthenium(II) polypyridyl complexes were achieved within 10min. The effect of buffer type, chiral selector concentration, voltage applied, buffer concentration, buffer pH and organic modifier concentration were examined and optimized.

  1. Chirality of Viral Capsids

    NASA Astrophysics Data System (ADS)

    Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph

    Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.

  2. Orientation Preferences of Backbone Secondary Amide Functional Groups in Peptide Nucleic Acid Complexes: Quantum Chemical Calculations Reveal an Intrinsic Preference of Cationic D-Amino Acid-Based Chiral PNA Analogues for the P-form

    SciTech Connect

    Smith, Jeremy C; Topham, Christopher

    2007-01-01

    Geometric descriptions of nonideal interresidue hydrogen bonding and backbone-base water bridging in the minor groove are established in terms of polyamide backbone carbonyl group orientation from analyses of residue junction conformers in experimentally determined peptide nucleic acid (PNA) complexes. Two types of interresidue hydrogen bonding are identified in PNA conformers in heteroduplexes with nucleic acids that adopt A-like base pair stacking. Quantum chemical calculations on the binding of a water molecule to an O2 base atom in glycine-based PNA thymine dimers indicate that junctions modeled with P-form backbone conformations are lower in energy than a dimer comprising the predominant conformation observed in A-like helices. It is further shown in model systems that PNA analogs based on D-lysine are better able to preorganize in a conformation exclusive to P-form helices than is glycine-based PNA. An intrinsic preference for this conformation is also exhibited by positively charged chiral PNA dimers carrying 3-amino-D-alanine or 4-aza-D-leucine residue units that provide for additional rigidity by side-chain hydrogen bonding to the backbone carbonyl oxygen. Structural modifications stabilizing P-form helices may obviate the need for large heterocycles to target DNA pyrimidine bases via PNADNA-PNA triplex formation. Quantum chemical modeling methods are used to propose candidate PNA Hoogsteen strand designs.

  3. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II).

    PubMed

    Das, Atanu K; Engelhard, Mark H; Lense, Sheri; Roberts, John A S; Bullock, R Morris

    2015-07-21

    Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex.

  4. Baryons and chiral symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  5. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  6. Highly Enantioselective Direct Synthesis of Endocyclic Vicinal Diamines through Chiral Ru(diamine)-Catalyzed Hydrogenation of 2,2'-Bisquinoline Derivatives.

    PubMed

    Ma, Wenpeng; Zhang, Jianwei; Xu, Cong; Chen, Fei; He, Yan-Mei; Fan, Qing-Hua

    2016-10-04

    An asymmetric hydrogenation of 2,2'-bisquinoline and bisquinoxaline derivatives, catalyzed by chiral cationic ruthenium diamine complexes, was developed. A broad range of chiral endocyclic vicinal diamines were obtained in high yields with excellent diastereo- and enantioselectivity (up to 93:7 dl/meso and >99 % ee). These chiral diamines could be easily transformed into a new class of chiral N-heterocyclic carbenes (NHCs), which are important but difficult to access.

  7. Understanding complex chiral plasmonics

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  8. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    PubMed

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  9. Emerging chirality in nanoscience.

    PubMed

    Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu

    2013-04-07

    Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.

  10. Chiral rotational spectroscopy

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.

    2016-09-01

    We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.

  11. Planar plasmonic chiral nanostructures

    NASA Astrophysics Data System (ADS)

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-01

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response.A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. Electronic supplementary information (ESI) available

  12. Periodic chiral structures

    NASA Technical Reports Server (NTRS)

    Jaggard, Dwight L.; Engheta, Nader; Pelet, Philippe; Liu, John C.; Kowarz, Marek W.; Kim, Yunjin

    1989-01-01

    The electromagnetic properties of a structure that is both chiral and periodic are investigated using coupled-mode equations. The periodicity is described by a sinusoidal perturbation of the permittivity, permeability, and chiral admittance. The coupled-mode equations are derived from physical considerations and used to examine bandgap structure and reflected and transmitted fields. Chirality is observed predominantly in transmission, whereas periodicity is present in both reflection and transmission.

  13. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  14. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  15. Contribution of cation-π interactions in iminium catalysis.

    PubMed

    Mori, Yukie; Yamada, Shinji

    2012-02-21

    Ab initio calculations were carried out for a benzyl-substituted iminium cation derived from (E)-crotonaldehyde and a chiral imidazolidinone that was developed as an organocatalyst by MacMillan et al. At the MP2 level of theory it is predicted that the phenyl group is close to the iminium moiety in the most stable conformer, suggesting that the cation-π interaction contributes to the stabilization of this conformer. Energy decomposition analyses on model systems indicate that the electrostatic and polarization terms make significant contribution to the attractive interactions between the benzene ring and the iminium cation.

  16. Comparative studies of various run buffers for chiral capillary electrophoresis using chiral crown ether as a chiral selector.

    PubMed

    Jang, J; Cho, S I; Chung, D S

    2001-12-01

    In the capillary electrophoretic separation of primary amine enantiomers using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, the presence of run buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+ competing with analytes for 18C6H4, diminishes the effectiveness of 18C6H4. In order to determine appropriate buffer systems for 18C6H4, various run buffer cationic components including Tris, 1,3-bis[tris(hydroxymethyl)methylamino]propane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, triethanolamine, tetramethylammonium, and Na+ were compared. Quantitative studies of the effects of the competitive constituents were carried out by measuring the electrophoretic mobilities of histidine as a function of the 18C6H4 concentration. We also derived a simple equation to estimate the optimal chiral selector concentration for a maximum mobility difference in the presence of a competitive inhibitor.

  17. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

    PubMed

    Zheng, Jianzhong; Wu, Yijin; Deng, Ke; He, Meng; He, Liangcan; Cao, Jing; Zhang, Xugang; Liu, Yaling; Li, Shunxing; Tang, Zhiyong

    2016-09-27

    Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

  18. Diiron species containing a cyclic P(Ph)2N(Ph)2 diphosphine related to the [FeFe]H2ases active site.

    PubMed

    Lounissi, Sondès; Capon, Jean-François; Gloaguen, Frédéric; Matoussi, Fatma; Pétillon, François Y; Schollhammer, Philippe; Talarmin, Jean

    2011-01-21

    A new dissymmetrically disubstituted diiron dithiolate species, [Fe(2)(CO)(4)(κ(2)-P(Ph)(2)N(Ph)(2))(μ-pdt)] (pdt = S(CH(2))(3)S), was prepared by using a flexible cyclic base-containing diphosphine, 1,3,5,7-tetraphenyl 1,5-diaza-3,7-diphosphacyclooctane (P(Ph)(2)N(Ph)(2) = {PhPCH(2)NPh}(2)). Preliminary investigations of proton and electron transfers on the diiron system have been done.

  19. Chiral magnetic superconductivity

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.

    2017-03-01

    Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  20. Superenantioselective chiral surface explosions.

    PubMed

    Gellman, Andrew J; Huang, Ye; Feng, Xu; Pushkarev, Vladimir V; Holsclaw, Brian; Mhatre, Bharat S

    2013-12-26

    Chiral inorganic materials predated life on Earth, and their enantiospecific surface chemistry may have played a role in the origins of biomolecular homochirality. However, enantiospecific differences in the interaction energies of chiral molecules with chiral surfaces are small and typically lead to modest enantioselectivities in adsorption, catalysis, and chemistry on chiral surfaces. To yield high enantioselectivities, small energy differences must be amplified by reaction mechanisms such as autocatalytic surface explosions which have nonlinear kinetics. Herein, we report the first observations of superenantiospecificity resulting from an autocatalytic surface explosion reaction of a chiral molecule on a naturally chiral surface. R,R- and S,S-tartaric acid decompose via a vacancy-mediated surface explosion mechanism on Cu single crystal surfaces. When coupled with surface chirality, this leads to decomposition rates that exhibit extraordinarily high enantiospecificity. On the enantiomorphs of naturally chiral Cu(643)(R&S), Cu(17,5,1)(R&S), Cu(531)(R&S) and Cu(651)(R&S) single crystal surfaces, R,R- and S,S-tartaric acid exhibit enantiospecific decomposition rates that differ by as much as 2 orders of magnitude, despite the fact that the effective rates constants for decomposition differ by less than a factor of 2.

  1. Chiral discrimination by ionic liquids: impact of ionic solutes.

    PubMed

    Brown, Christopher J; Hopkins, Todd A

    2015-04-01

    Chiral ionic liquids hold promise in many asymmetric applications. This study explores the impact of ionic solutes on the chiral discrimination of five amino acid methyl ester-based ionic liquids, including L- and D-alanine methyl ester, L-proline methyl ester, L-leucine methyl ester, and L-valine methyl ester cations combined with bis(trifluoromethanesulfonimide) anion. Circularly polarized luminescence spectroscopy was used to study the chiral discrimination by measuring the racemization equilibrium of a dissymmetric europium complex, Eu(dpa)3(3-) (where dpa = 2,6-pyridinedicarboxylate). The chiral discrimination measured was dependent on the concentration of Eu(dpa)3(3-) and this concentration-dependence was different in each of the ionic liquids. Ionic liquids with L-leucine methyl ester and L-valine methyl ester even switched enantiomeric preference based on the solute concentration. Changing the cation of the Eu(dpa)3(3-) salt from tetrabutylammonium to tetramethylammonium ion also affected the chiral discrimination demonstrated by the ionic liquids.

  2. Arene C-H Amination at Nickel in Terphenyl Diphosphine Complexes with Labile Metal-Arene Interactions

    PubMed Central

    Herbert, David E.; Lara, Nadia C.

    2013-01-01

    The meta-terphenyl diphosphine, m-P2: 1, was utilized to support Ni centers in the oxidation states 0, I and II. A series of complexes bearing different substituents and/or ligands at Ni were prepared to investigate the dependence of metal-arene interactions on oxidation state and substitution at the metal. Compound (m-P2)Ni (2), shows close Ni(0)-arene interactions between the metal centre and the central arene ring of the terphenyl ligand both in solution and the solid-state. These interactions are significantly less pronounced in Ni(0) complexes bearing L-type ligands (2-L: L = CH3CN, CO, Ph2CN2), Ni(I)X complexes [3-X: X = Cl, BF4, N3, N3B(C6F5)3] and (m-P2)Ni(II)Cl2 (4). Complex 2 reacts with substrates such as diphenyldiazoalkane, sulfur ylides (Ph2S=CH2), organoazides (RN3: R = para-C6H5OMe, para-C6H5CF3, 1-adamantyl) and N2O with the locus of observed reactivity dependent on the nature of the substrate, leading to isolation of an η1-diphenyldiazoalkane adduct (2-Ph2CN2), methylidene insertion into a Ni-P bond, followed by rearrangement of a nickel-bound phosphorus ylide (5) to a benzylphosphine (6), Staudinger oxidation of the phosphine arms and metal-mediated nitrene insertion into an arene C-H bond of 1 to give the insertion product 8, all derived from the same compound (2). Hydrogen atom abstraction from a nickel(I)-amide (9) and resulting nitrene transfer chemistry supports the viability of nickel-imide intermediates in the reaction of 1 with 1-azido-arenes. PMID:24127196

  3. Molecular model for chirality phenomena.

    PubMed

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  4. Chiral discotic columnar germs of nucleosome core particles.

    PubMed Central

    Livolant, F; Leforestier, A

    2000-01-01

    In concentrated solution and in the presence of high concentrations of monovalent cations, nucleosome core particles order into a discotic columnar mesophase. This phase is limited to finite-sized hexagonal germs that further divide into six coiled branches, following an iterative process. We show how the structure of the germs comes from the competition between hexagonal packing and chirality with a combination of dendritic facetting and double-twist configurations. Geometrical considerations lead us to suspect that the chirality of the eukaryotic chromosomes may originate from the same competition. PMID:10777768

  5. Applications of chiral symmetry

    SciTech Connect

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  6. Synthesis, Reactivity Investigation, and X-ray Diffraction Structures of New Platinum(II) Compounds Containing Redox-Active Diphosphine Ligands

    SciTech Connect

    Wang, Xiaoping; Richmond, Michael G.; Hunt, Sean W

    2009-01-01

    Substitution of the 1,5-cyclooctadiene (cod) ligand in PtCl2(cod) (1) by the diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) yields PtCl2(bpcd) (2). Knoevenagel condensation of 2 with 9-anthracenecarboxaldehyde leads to the functionalization of the bpcd ligand and formation of the corresponding 2-(9-anthracenylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (abpcd) substituted compound PtCl2(abpcd) (3), which is also obtained from the direct reaction of 1 with the abpcd ligand in near quantitative yield. The reaction of 3 with disodium maleonitriledithiolate (Na2mnt) affords the chelating dithiolate compound Pt(mnt)(abpcd) (4). Compounds 2 C4 have been fully characterized in solution by IR and NMR spectroscopies (1H and 31P), and their molecular structures established by X-ray crystallography. The electrochemical properties of 2 C4 have examined by cyclic voltammetry, and the nature of the HOMO and LUMO levels in these systems has been established by MO calculations at the extended H ckel level, the results of which are discussed with respect to electrochemical data and related diphosphine derivatives.

  7. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  8. Catalysis of dynamical chiral symmetry breaking by chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Braguta, V. V.; Kotov, A. Yu.

    2016-05-01

    In this paper, we study the properties of media with chiral imbalance parametrized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus, the chiral chemical potential plays the role of the catalyst of dynamical chiral symmetry breaking. Physically, this effect results from the appearance of the Fermi surface and additional fermion states on this surface, which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  9. Asymmetric Synthesis of Chiral Bimetallic [Ag28Cu12(SR)24](4-) Nanoclusters via Ion Pairing.

    PubMed

    Yan, Juanzhu; Su, Haifeng; Yang, Huayan; Hu, Chengyi; Malola, Sami; Lin, Shuichao; Teo, Boon K; Häkkinen, Hannu; Zheng, Nanfeng

    2016-10-05

    In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24](4-), was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymmetric synthesis of optically active enantiomers of [Ag28Cu12(SR)24](4-) was achieved by using appropriate chiral ammonium cations (such as N-benzylcinchoninium vs N-benzylcinchonidinium) in the cluster synthesis. These simple strategies, ion-pairing enantioseparation and direct asymmetric synthesis using chiral counterions, may be of general use in preparing chiral metal nanoparticles.

  10. Chiral Hypervalent, Pentacoordinated Phosphoranes.

    PubMed

    Krasowska, Dorota; Chrzanowski, Jacek; Kiełbasiński, Piotr; Drabowicz, Józef

    2016-11-21

    This review presents synthetic procedures applied to the preparation of chiral (mainly optically active) pentacoordinated, hypervalent mono and bicyclic phosphoranes. The mechanisms of their stereoisomerization and their selected interconversions are also presented.

  11. Relativistic Chiral Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Stephanov, Mikhail

    2016-12-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi:10.1103/PhysRevLett.113.182302; J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: 10.1103/PhysRevLett.115.021601; M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: 10.1103/PhysRevLett.116.122302].

  12. Spintronics: Chiral damping

    PubMed Central

    Kim, Kyoung-Whan; Lee, Hyun-Woo

    2016-01-01

    The analysis of the magnetic domain wall motion in a nanostructured magnetic system with strong spin-orbit coupling shows that the energy dissipation can be chiral when the inversion symmetry is broken. PMID:26906956

  13. The quest for chirality

    SciTech Connect

    Bonner, W.A.

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  14. Electrodynamics of chiral matter

    NASA Astrophysics Data System (ADS)

    Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang

    2017-02-01

    Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.

  15. Chirality and protein biosynthesis.

    PubMed

    Banik, Sindrila Dutta; Nandi, Nilashis

    2013-01-01

    Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.

  16. Chiral nihility effects on energy flow in chiral materials.

    PubMed

    Qiu, Cheng-Wei; Burokur, Nawaz; Zouhd, Saïd; Li, Le-Wei

    2008-01-01

    The propagation of electromagnetic plane waves in an isotropic chiral medium is characterized, and a special interest is shown in chiral nihility and the effects of chirality on energy transmission. In particular, the wave impedance is matched to that of free space. Moreover, the refractive index n is also matched in impedance to that of free space when an appropriate value of the chirality is chosen. A "chiral nihility" medium is explored in which both the permittivity and the permeability tend to zero. Some specific case studies of chiral nihility are presented, and Brewster angles are found to cover an extremely wide range. The E-field distributions in these different cases where the chiral slab is placed in free space are analyzed by using the appropriate constitutive relations. It is shown from numerical calculations that one can obtain some critical characteristics of the effects of chirality on energy transmission and reflection, such as transparency and power tunneling.

  17. Double interpenetration in a chiral three-dimensional magnet with a (10,3)-a structure.

    PubMed

    Grancha, Thais; Mon, Marta; Lloret, Francesc; Ferrando-Soria, Jesús; Journaux, Yves; Pasán, Jorge; Pardo, Emilio

    2015-09-21

    A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.

  18. Dual chiral recognition system involving cyclodextrin derivatives in capillary electrophoresis II. Enhancement of enantioselectivity.

    PubMed

    Jakubetz, H; Juza, M; Schurig, V

    1998-05-01

    The enantiomer separation of hexobarbital was investigated by open tubular electrochromatography (OTEC) using the chiral stationary phase (CSP) CHIRASIL-DEX (a permethylated beta-cyclodextrin covalently linked to a dimethylpolysiloxane) and by cyclodextrin-electrokinetic chromatogaphy (CD-EKC) using anionic beta-cyclodextrin-sulfo-n-propyl ether (SPE-beta-CD) and cationic beta-cyclodextrin-2-hydroxy-3-trimethylammoniumpropyl ether chloride (HTAP-beta-CD) added to the running buffer. By employing two chiral selectors, the enantiomer separation of hexobarbital was then studied simultaneously by OTEC with CHIRASIL-DEX and by CD-EKC with either SPE-beta-CD or HTAP-beta-CD in the dual chiral recognition mode. In conjunction with CHIRASIL-DEX, anionic SPE-beta-CD decreased the chiral separation factor alpha due to compensation of enantioselectivity whereas the cationic additive HTAP-beta-CD increased the chiral separation factor alpha due to enhancement of enantioselectivity. It is concluded that CHIRASIL-DEX imparts an opposite enantioselectivity to the enantiomers of hexobarbital as compared to the charged CDs SPE-beta-CD and HTAP-beta-CD. Unusual peak broadening phenomena are observed in the dual chiral recognition system comprised of CHIRASIL-DEX and HTAP-beta-CD. The possible consequences of accidental dual chiral recognition systems caused by wall stacking effects of the mobile phase additives onto the inner surface of the capillary column are discussed.

  19. Chiral Graphene Quantum Dots.

    PubMed

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  20. Superconductivity in a chiral nanotube

    PubMed Central

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-01-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures. PMID:28205518

  1. Superconductivity in a chiral nanotube

    NASA Astrophysics Data System (ADS)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  2. Superconductivity in a chiral nanotube.

    PubMed

    Qin, F; Shi, W; Ideue, T; Yoshida, M; Zak, A; Tenne, R; Kikitsu, T; Inoue, D; Hashizume, D; Iwasa, Y

    2017-02-16

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity-unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  3. Chiral anomalies and differential geometry

    SciTech Connect

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  4. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  5. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions.

    PubMed

    Zhang, Li; Qin, Long; Wang, Xiufeng; Cao, Hai; Liu, Minghua

    2014-10-29

    Supramolecular chirality, which arises from the nonsymmetric spatial arrangement of components in the self-assembly systems, has gained great attention owing to its relation to the natural biological structures and the possible new functions in advanced materials. During the self-assembling process, both chiral and achiral components are possible to form chiral nanostructures. Therefore, it becomes an important issue how to fabricate these molecular components into chiral nanostructures. Furthermore, once the chiral nanostructure is obtained, will it show new functions that simple component molecule could not? In this research news, we report our recent development in the regulation of chiral nanostructures in soft gels or vesicle materials. We have further developed several new functions pertaining to the soft gel materials, which single chiral molecules could not perform, such as the chiroptical switch, chiral recognition and the asymmetry catalysis.

  6. Creating chiral anomalies

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry; Cano, Jennifer; Wang, Zhijun; Hirschberger, Max; Ong, N. Phuan; Bernevig, B. Andrei

    Materials with intrinsic Weyl points should present exotic magnetotransport phenomena due to spectral flow between Weyl nodes of opposite chirality - the so-called ``chiral anomaly''. However, to date, the most definitive transport data showing the presence of a chiral anomaly comes from Dirac (not Weyl) materials. These semimetals develop Weyl fermions only in the presence of an externally applied magnetic field, when the four-fold degeneracy is lifted. In this talk we examine Berry phase effects on transport due to the emergence of these field-induced Weyl point and (in some cases) line nodes. We pay particular attention to the differences between intrinsic and field-induced Weyl fermions, from the point of view of kinetic theory. Finally, we apply our analysis to a particular material relevant to current experiments performed at Princeton.

  7. [Chirality and drugs].

    PubMed

    Testa, B; Reist, M; Carrupt, P A

    2000-07-01

    The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.

  8. Doped Chiral Polymer Metamaterials

    NASA Technical Reports Server (NTRS)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  9. Enantioselective, chirally templated sol-gel thin films.

    PubMed

    Fireman-Shoresh, Sharon; Popov, Inna; Avnir, David; Marx, Sharon

    2005-03-02

    Enantioselective surfactant-templated thin films were fabricated through the sol-gel (SG) process. The enantioselectivity is general in the sense that it discriminates between pairs of enantiomers not used for the imprinting process. The chiral cationic surfactant (-)-N-dodecyl-N-methylephedrinium bromide (1) was used as the surfactant template, and after its extraction chiral domains were created. The chiral discriminative feature of these films was examined by challenging with pure enantiomer solutions for rebinding. Selective adsorption was shown using (R)- and (S)-propranolol, (R)-2 and (S)-2, respectively, and (R)- and (S)-2,2,2-trifluoro-1-(9-anthryl)ethanol, (R)-3 and (S)-3, respectively, as the chiral probes. The selective adsorption was measured by fluorescence analysis, and the chiral selectivity factors were found to be 1.6 for 2 and 2.25 for 3. In both cases, (R)-enantiomer was adsorbed preferably. The resulting material was characterized by transmission electron microscopy, by diffraction, and by surface area measurements, and was found to be semicrystalline with short-range ordered domains (50 A) of hexagonal symmetry.

  10. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  11. Chiral symmetry in quarkyonic matter

    SciTech Connect

    Kojo, T.

    2012-05-15

    The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.

  12. Molybdenum Hydride and Dihydride Complexes Bearing Diphosphine Ligands with a Pendant Amine: Formation of Complexes With Bound Amines

    SciTech Connect

    Zhang, Shaoguang; Bullock, R. Morris

    2015-07-06

    CpMo(CO)(PNP)H complexes (PNP = (R2PCH2)2NMe, R = Et or Ph) were synthesized by displacement of two CO ligands of CpMo(CO)3H by the PNP ligand; these complexes were characterized by IR and variable temperature 1H and 31P NMR spectroscopy. CpMo(CO)(PNP)H complexes are formed as mixture of cis and trans-isomers. Both cis-CpMo(CO)(PEtNMePEt)H and trans-CpMo(CO)(PPhNMePPh)H were analyzed by single crystal X-ray diffraction. Electrochemical oxidation of CpMo(CO)(PEtNMePEt)H and CpMo(CO)(PPhNMePPh)H in CH3CN are both irreversible at slow scan rates and quasi-reversible at higher scan rates, with E1/2 = -0.36 V (vs. Cp2Fe+/0) for CpMo(CO)(PEtNMePEt)H and E1/2 = -0.18 V for CpMo(CO)(PPhNMePPh)H. Hydride abstraction from CpMo(CO)(PNP)H with [Ph3C]+[A]- (A = B(C6F5)4 or BArF4; [ArF = 3,5-bis(trifluoromethyl)phenyl]) afforded “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes that feature the amine bound to the metal. Displacement of the κ3 Mo-N bond by CD3CN gives [CpMo(CO)(PNP)(CD3CN)]+. The kinetics of this reaction were studied by NMR spectroscopy, providing the activation parameters ΔH‡ = 22.1 kcal/mol, ΔS‡ = 1.89 cal/(mol·K), Ea = 22.7 kcal/mol. Protonation of CpMo(CO)(PEtNMePEt)H affords [CpMo(CO)(κ2-PEtNMePEt)(H)2]+ as a Mo dihydride complex, which loses H2 to generate [CpMo(CO)(κ3-PEtNMePEt)]+ at room temperature. CpMo(CO)(dppp)H (dppp = 1,2-bis(diphenylphosphino)propane) was studied as a Mo diphosphine analogue without a pendant amine, and the product of protonation of this complex gives [CpMo(CO)(dppp)(H)2]+. Our results show that the pendant amine has a strong driving force to form stable “tuck-in” [CpMo(CO)(κ3-PNP)]+ complexes, and also promotes hydrogen elimination from [CpMo(CO)(PNP)(H)2]+ complexes by formation of Mo-N dative bond. We thank the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for support. Pacific Northwest National Laboratory is operated by

  13. Conformational control in a bipyridine linked π-conjugated oligomer: cation mediated helix unfolding and refolding.

    PubMed

    Divya, Kizhumuri P; Sreejith, Sivaramapanicker; Suresh, Cherumuttathu H; Ajayaghosh, Ayyappanpillai

    2010-11-28

    A chiral π-conjugated oligomer having alternate bipyridine and carbazole moieties connected through acetylinic bonds undergoes helical folding in chloroform-acetonitrile (40/60, v/v) as evident by fluorescence and circular dichroism changes. In the presence of transition metal cations such as Zn(2+) defolding of the helical conformation occurs. Upon decomplexation of the cation with EDTA, the helical conformation is regained.

  14. Chiral fiber sensors

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.

    2010-04-01

    We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.

  15. Tuning spontaneous radiation of chiral molecules by asymmetric chiral nanoparticles.

    PubMed

    Guzatov, Dmitry V; Klimov, Vasily V; Chan, Hsun-Chi; Guo, Guang-Yu

    2017-03-20

    We have obtained analytical expressions for the radiative decay rate of the spontaneous emission of a chiral molecule located near a dielectric spherical particle with a chiral nonconcentric spherical shell made of a bi-isotropic material. Our numerical and graphical analyses show that material composition, thickness and degree of non-concentricity of the shell can influence significantly the spontaneous radiation of the chiral molecule. In particular, the radiative decay rates can differ in orders of magnitude for a chiral molecule located near the thin and thick parts of a nonconcentric shell as well as near a concentric shell made of chiral metamaterial. We also find that the radiative decay rates of the "right" and "left" chiral molecule enantiomers located near a nanoparticle with a chiral metamaterial shell can differ pronouncedly from each other. Our findings therefore suggest a way to tune the spontaneous emission of chiral molecules by varying the material composition, thickness and degree of non-concentricity of the shell in the nearby composite nanoparticle and also to enhance the chirality selection of chiral molecules in racemic mixtures.

  16. Cooperative self-assembly of chiral L-malate and achiral succinate in the formation of a three-dimensional homochiral framework.

    PubMed

    Zingiryan, Areg; Zhang, Jian; Bu, Xianhui

    2008-10-06

    Chiral l-malate and achiral succinate ligands have been integrated into a three-dimensional homochiral framework by reacting transition-metal cations (Mn (2+)), l-(-)-malic acid ( l-H 2ma), succinic acid (H 2suc), and 4,4'-bipyridine (4,4'-bipy). Chiral l-malate bonds to Mn (2+) without using the -OH group, which is very unusual for malate. Such unusual bonding of chiral malate results from the cooperative effect of chiral malate and achiral succinate ligands during the self-assembly process, further assisted by the third complementary bipyridine ligand.

  17. ENANTIOMER-SPECIFIC EFFECTS OF CHIRAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral pollutants, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. Considerable research has shown, for example, that chiral pesticides are degraded selectively by micr...

  18. Optical properties of chiral nanotubes

    NASA Astrophysics Data System (ADS)

    Cecilia, Noguez; Román-Velázquez Carlos, E.; Ariadna, Sánchez; Montes Lilia, Meza

    2004-03-01

    A recent theoretical model [1] is applied to study the optical properties chiral nanostructures like carbon nanotubes. We calculate the Circular Dichroism (CD) spectra for carbon nanotubes with different chirality. The calculated CD spectra show features that allow us to distinguish between nanotubes with different indexes of chirality. Other nanostructures, like chiral fullerenes are also investigated.These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral. This work has been partly financed by CONACyT grant No. 36651-E and by DGAPA-UNAM grants No. IN104201. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003)

  19. Modes of structurally chiral lasers

    NASA Astrophysics Data System (ADS)

    Topf, René D. M.; McCall, Martin W.

    2014-11-01

    We employ coupled wave theory to enumerate the lasing modes of structurally chiral lasers. The elliptical modes are shown to be fundamentally distinct from those of a scalar distributed feedback laser. High threshold modes are shown to lase with the opposite chirality as the active medium, in contrast to their low-threshold counterparts that lase with the same chirality as the active medium. The lasing mode structure suggests the intriguing possibility of dynamically changing the polarization handedness of a chiral laser, as well as the possibility of lasing within the forbidden band-gap region. These observations arise from the fundamental interplay between the distributed chirality-preserving reflections within the active medium and the localized chirality-reversing reflections at the medium's boundaries.

  20. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    SciTech Connect

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen; Cohen, Seth M.; Raymond,Kenneth N.

    2006-07-10

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.

  1. Chiral Dynamics 2006

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  2. Chiral Biomarkers in Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  3. [Chirality and drugs].

    PubMed

    Husson, H P

    1997-01-01

    Following a brief historical review of the notion of chirality, the importance of the relationship between pharmacological activity and the enantiomeric forms of drugs is indicated. Different approaches for the preparation of optically-pure molecules are discussed, and an original strategy, known as the "CN(R,S) method", is described. To conclude, an application of this method in the synthesis of a pharmacologically-active molecule is presented.

  4. Chiral symmetry and pentaquarks

    SciTech Connect

    Dmitri Diakonov

    2004-07-01

    Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.

  5. Microchip electrophoresis for chiral separations.

    PubMed

    Belder, Detlev; Ludwig, Martin

    2003-08-01

    Microchip electrophoresis (MCE) is a promising new technique for the separation of enantiomers. This recently introduced technique enables chiral separations to be performed in seconds on tiny micromachined devices. This review is intended to give a brief introduction into the principles of chiral separations with MCE with regard to methodology and instrumentation. Different approaches to realize chiral separations in microfluidic devices are described and discussed. This review gives an overview of original work done in this field with emphasis on approaches to improve detection and resolution in chiral MCE.

  6. Free-standing chiral plasmonics

    NASA Astrophysics Data System (ADS)

    Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun

    2014-11-01

    Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.

  7. Gyroscope-like molecules consisting of PdX₂/PtX₂ rotators within three-spoke dibridgehead diphosphine stators: syntheses, substitution reactions, structures, and dynamic properties.

    PubMed

    Nawara-Hultzsch, Agnieszka J; Stollenz, Michael; Barbasiewicz, Michał; Szafert, Sławomir; Lis, Tadeusz; Hampel, Frank; Bhuvanesh, Nattamai; Gladysz, John A

    2014-04-14

    Threefold intramolecular ring-closing metatheses of trans-[MCl2(P{(CH2)(m)CH=CH2}3)2] are effected with Grubbs' catalyst. Following hydrogenation catalyzed by [RhCl(PPh3)3], the title complexes trans-[MCl2(P((CH2)n)3P)] (n=2m+2; M/n=Pt/14, 4 c; Pt/16, 4 d; Pt/18, 4 e; Pd/14, 5 c; Pd/18, 5 e) and sometimes isomers partly derived from intraligand metathesis, trans-[MCl2{P(CH2)n(CH2)n}P(CH2)n)] (4'c-e, 5'e), are isolated. These react with LiBr, NaI, and KCN to give the corresponding MBr2, MI2, and M(CN)2 species (58-99%). (13)C NMR data show that the MX2 moieties rapidly rotate within the diphosphine cage on the NMR timescale, even at -120 °C. The reaction of 4 c and KSCN gives separable Pt(NCS)2 and Pt(NCS)(SCN) adducts (13 c, 28%; 14 c, 20%), and those of 4 c,e and Ph2Zn give PtPh2 species (15 c, 61%; 15 e, 90%). (13)C NMR spectra of 13 c-15 c show two sets of CH2 signals (ca. 2:1 intensity ratios), indicating that MX2 rotation is no longer rapid. Reactions of 4 c or 4'c and excess NaC≡CH afford the free diphosphines P{(CH2)14}3P (91%) and (CH2)14P(CH2)14P(CH2)14 (90%). The latter has been crystallographically characterized as a bis(BH3) adduct. The crystal structures of eight complexes with P(CH2)14P linkages (PtCl2, PtBr2, PtI2, Pt(NCS)2, PtPh2, PdCl2, PdBr2, PdI2) and 15 e have been determined, and intramolecular distances analyzed with respect to MX2 rotation. The conformations of the (CH2)14 moieties and features of the crystal lattices are also discussed.

  8. Self-assembled switching gels with multiresponsivity and chirality.

    PubMed

    Zhao, Wenrong; Wang, Dong; Lu, Hongsheng; Wang, Yangyang; Sun, Xuan; Dong, Shuli; Hao, Jingcheng

    2015-03-03

    A multiresponsive hydrogel material consisting of a commercial cationic surfactant and an azobenzene derivative functionalized with four carboxylic acid groups was constructed. The achiral azobenzene molecule as a gelator produces chirality at the supramolecular level in the presence of H(+). The acid-induced gelation and morphology change of supramolecular gels were investigated in detail by cryogenic transmission electron microscopy (cryo-TEM), rheological measurements, circular dichroism (CD), and (1)H NMR spectra. Based on the results, a mechanism of the intermolecular H-bond-directed gelation and supramolecular chirality was proposed. Other than the pH sensitivity, the microstructure and the chirality of the hydrogel demonstrate reversible switching behavior in response to photoirradiation, on account of the photoisomerization of the azobenzene derivative. Accordingly, a chiroptical switch comprising four different states in response to pH and light stimuli is strategically constructed. Not only does the present system provide a good opportunity for investigating the gelation-induced supramolecular chirality by symmetry breaking totally based on achiral molecules, but it also proposes a new strategy to build multiresponsive supramolecular switches as particularly attractive for the future development of functional materials.

  9. Molecule-based magnets formed by bimetallic three-dimensional oxalate networks and chiral tris(bipyridyl) complex cations. The series [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion).

    PubMed

    Coronado, E; Galán-Mascarós, J R; Gómez-García, C J; Martínez-Agudo, J M

    2001-01-01

    The synthesis, structure, and physical properties of the series of molecular magnets formulated as [ZII(bpy)3][ClO4][MIICrIII(ox)3] (ZII = Ru, Fe, Co, and Ni; MII = Mn, Fe, Co, Ni, Cu, and Zn; ox = oxalate dianion) are presented. All the compounds are isostructural to the [Ru(bpy)3][ClO4][MnCr(ox)3] member whose structure (cubic space group P4(1)32 with a = 15.506(2) A, Z = 4) consists of a three-dimensional bimetallic network formed by alternating MII and CrIII ions connected by oxalate anions. The identical chirality (lambda in the solved crystal) of all the metallic centers determines the 3D chiral structure adopted by these compounds. The anionic 3D sublattice leaves some holes where the chiral [Z(bpy)3]2+ and ClO4- counterions are located. These compounds behave as soft ferromagnets with ordering temperatures up to 6.6 K and coercive fields up to 8 mT.

  10. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    PubMed

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  11. Chiral Crystallization of Ethylenediamine Sulfate

    ERIC Educational Resources Information Center

    Koby, Lawrence; Ningappa, Jyothi B.; Dakesssian, Maria; Cuccia, Louis A.

    2005-01-01

    The optimal conditions for the crystallization of achiral ethylenediamine sulfate into large chiral crystals that are ideal for polarimetry studies and observation using Polaroid sheets are presented. This experiment is an ideal undergraduate experiment, which clearly demonstrates the chiral crystallization of an achiral molecule.

  12. CHIRAL PESTICIDES: OCCURRENCE AND SIGNIFICANCE

    EPA Science Inventory

    Like amino acids, certain pesticides exist in "left-handed" and "right-handed" (chiral) forms. Commercially available chiral pesticides are produced as racemic mixtures in which the ratio of the two forms (or enantiomers) is 1:1. Enantiomers have the same ...

  13. Mass-Selective Chiral Analysis

    NASA Astrophysics Data System (ADS)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  14. Controlling Chirality of Entropic Crystals.

    PubMed

    Damasceno, Pablo F; Karas, Andrew S; Schultz, Benjamin A; Engel, Michael; Glotzer, Sharon C

    2015-10-09

    Colloidal crystal structures with complexity and diversity rivaling atomic and molecular crystals have been predicted and obtained for hard particles by entropy maximization. However, thus far homochiral colloidal crystals, which are candidates for photonic metamaterials, are absent. Using Monte Carlo simulations we show that chiral polyhedra exhibiting weak directional entropic forces self-assemble either an achiral crystal or a chiral crystal with limited control over the crystal handedness. Building blocks with stronger faceting exhibit higher selectivity and assemble a chiral crystal with handedness uniquely determined by the particle chirality. Tuning the strength of directional entropic forces by means of particle rounding or the use of depletants allows for reconfiguration between achiral and homochiral crystals. We rationalize our findings by quantifying the chirality strength of each particle, both from particle geometry and potential of mean force and torque diagrams.

  15. Quark structure of chiral solitons

    SciTech Connect

    Dmitri Diakonov

    2004-05-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  16. Chiral models: Geometrical aspects

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.

    1987-02-01

    Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

  17. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  18. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  19. From chiral vibration to static chirality in ^135Nd

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Almehed, D.; Garg, U.; Frauendorf, S.; Li, T.; Madhusudhana Rao, P. V.; Wang, X.; Ghugre, S. S.; Carpenter, M. P.; Gros, S.; Hecht, A.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Zhu, S.

    2007-10-01

    Lifetimes were obtained in a DSAM measurement at Gammasphere, using the ^100Mo(^40Ar, 5n)^135Nd reaction. Electromagnetic transition probabilities have been measured for the intra- and inter-band transitions in the two sequences in the nucleus ^135Nd that were previously identified as a composite chiral bands [1]. The measurements are in good agreement with results of a new combination of TAC and RPA calculations. The chiral character of the bands is affirmed and it is observed that their behavior is associated with a transition from a vibrational into a static chiral regime. [1] S. Zhu et al., Phys. Rev. Lett.91, 132501 (2003).

  20. Chiral Conjugated Corrals.

    PubMed

    Ball, Melissa; Fowler, Brandon; Li, Panpan; Joyce, Leo A; Li, Fang; Liu, Taifeng; Paley, Daniel; Zhong, Yu; Li, Hexing; Xiao, Shengxiong; Ng, Fay; Steigerwald, Michael L; Nuckolls, Colin

    2015-08-12

    We present here a new design motif for strained, conjugated macrocycles that incorporates two different aromatics into the cycle with an -A-B-A-B- pattern. In this study, we demonstrate the concept by alternating electron donors and acceptors in a conjugated cycle. The donor is a bithiophene, and the acceptor is a perylene diimide derivative. The macrocycle formed has a persistent elliptiform cavity that is lined with the sulfur atoms of the thiophenes and the π-faces of the perylene diimide. Due to the linkage of the perylene diimide subunits, the macrocycles exist in both chiral and achiral forms. We separate the three stereoisomers using chiral high-performance liquid chromatography and study their interconversion. The mechanism for interconversion involves an "intramolecular somersault" in which one of the PDIs rotates around its transverse axis, thereby moving one of its diimide heads through the plane of the cavity. These unusual macrocycles are black in color with an absorption spectrum that spans the visible range. Density functional theory calculations reveal a photoinduced electron transfer from the bithiophene to the perylene diimide.

  1. The hierarchy of chirality.

    PubMed

    Schulgasser, Kalman; Witztum, Allan

    2004-09-21

    Twisting is a prevalent feature of long, thin vertical leaves; it has been shown that this twist contributes to the mechanical integrity of the leaf. We address the question as to how this twist comes about, and posit that it is a reflection of twist at a lower structural (geometric) level. The stiffness required for maintaining verticality in leaves is due to turgescent parenchyma cells, sometimes thickened epidermis, cuticle, and is generally most significantly contributed to by vascular bundles and fibers. These contain cellulose in the cell walls. Such cellulose chains spiral upward within the cell wall layers which are of a characteristic handedness. This results in an isolated cell behaving mechanically in a chiral manner; specifically elongation (contraction) of a single cell will result in rotation of the cell about its axis of particular handedness. We propose a mathematical model that shows that when cells are mechanically associated in groups, the chiral behavior of the cell will be expressed at larger scales, albeit to a mitigated degree. Thus cell extension during leaf development may explain the characteristic twist of such leaves.

  2. Chiral quantum optics.

    PubMed

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  3. Chiral limit of QCD

    SciTech Connect

    Gupta, R.

    1994-12-31

    This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.

  4. Chiral quantum optics

    NASA Astrophysics Data System (ADS)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-01

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light–matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin–photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  5. Diastereomeric resolution directed towards chirality determination focussing on gas-phase energetics of coordinated sodium dissociation

    PubMed Central

    Kanie, Osamu; Shioiri, Yuki; Ogata, Koji; Uchida, Waka; Daikoku, Shusaku; Suzuki, Katsuhiko; Nakamura, Shinichiro; Ito, Yukishige

    2016-01-01

    Defining chiral centres is addressed by introducing a pair of chiral auxiliary groups. Ions of diastereomeric pairs of molecules could be distinguished utilising energy-resolved mass spectrometry, and the applicability of the method to a series of compounds carrying amine, carboxylic acid, alcohol, and all the amino acids was verified. The method was further strengthened by distinguishing diastereomeric ions that did not undergo fragmentation. Mass spectrometric evaluation of the dissociation process of adducted sodium cations from the diastereomeric precursors agreed with the theoretical calculations, indicating the potential usefulness of the method for the determination of absolute configurations. PMID:27040078

  6. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  7. Chiral perturbation theory with nucleons

    SciTech Connect

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.

  8. Epitaxial Electrodeposition of Chiral Metal Oxide Films

    NASA Astrophysics Data System (ADS)

    Switzer, Jay

    2006-03-01

    Chirality is ubiquitous in Nature. One enantiomer of a molecule is often physiologically active, while the other enantiomer may be either inactive or toxic. Chiral surfaces offer the possibility of developing heterogeneous enantiospecific catalysts that can more readily be separated from the products and reused. Chiral surfaces might also serve as electrochemical sensors for chiral molecules- perhaps even implantable chiral sensors that could be used to monitor drug levels in the body. Our trick to produce chiral surfaces is to electrodeposit low symmetry metal oxide films with chiral orientations on achiral substrates (see, Nature 425, 490, 2003). The relationship between three-dimensional and two-dimensional chirality will be discussed. Chiral surfaces lack mirror or glide plane symmetry. It is possible to produce chiral surfaces of materials which do not crystallize in chiral space groups. We have deposited chiral orientations of achiral CuO onto single-crystal Au and Cu using both tartaric acid and the amino acids alanine and valine to control the handedness of the electrodeposited films. We will present results on the chiral recognition of molecules such as tartaric or malic acid and L-dopa on the chiral electrodeposited CuO. Initial work on the electrochemical biomineralization of chiral nanostructures of calcite will also be discussed.

  9. Bimolecular Coupling Reactions through Oxidatively Generated Aromatic Cations: Scope and Stereocontrol

    PubMed Central

    Cui, Yubo; Villafane, Louis A.; Clausen, Dane J.

    2013-01-01

    Chromenes, isochromenes, and benzoxathioles react with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone to form stable aromatic cations that react with a range of nucleophiles. These oxidative fragment coupling reactions provide rapid access to structurally diverse heterocycles. Conducting the reactions in the presence of a chiral Brønsted acid results in the formation of an asymmetric ion pair that can provide enantiomerically enriched products in a rare example of a stereoselective process resulting from the generation of a chiral electrophile through oxidative carbon–hydrogen bond cleavage. PMID:23913987

  10. Enantioselective C-H bond addition of pyridines to alkenes catalyzed by chiral half-sandwich rare-earth complexes.

    PubMed

    Song, Guoyong; O, Wylie W N; Hou, Zhaomin

    2014-09-03

    Cationic half-sandwich scandium alkyl complexes bearing monocyclopentadienyl ligands embedded in chiral binaphthyl backbones act as excellent catalysts for the enantioselective C-H bond addition of pyridines to various 1-alkenes, leading to formation of a variety of enantioenriched alkylated pyridine derivatives in high yields and excellent enantioselectivity (up to 98:2 er).

  11. Deformed chiral nucleons

    NASA Astrophysics Data System (ADS)

    Price, C. E.; Shepard, J. R.

    1991-04-01

    We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.

  12. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  13. Chiral discrimination in optical binding

    NASA Astrophysics Data System (ADS)

    Forbes, Kayn A.; Andrews, David L.

    2015-05-01

    The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed "optical binding." Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported.

  14. Chirally motivated K - nuclear potentials

    NASA Astrophysics Data System (ADS)

    Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.

    2011-08-01

    In-medium subthreshold Kbar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K- atom data across the periodic table. Substantially deeper K- nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold Kbar N amplitudes, with Re VK-chiral = - (85 ± 5) MeV at nuclear matter density. When Kbar NN contributions are incorporated phenomenologically, a very deep K- nuclear potential results, Re VK-chiral + phen . = - (180 ± 5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K--nuclear quasibound states generated by VK-chiral are reported and discussed.

  15. Chiral Bosonization of Superconformal Ghosts

    NASA Technical Reports Server (NTRS)

    Shi, Deheng; Shen, Yang; Liu, Jinling; Xiong, Yongjian

    1996-01-01

    We explain the difference of the Hilbert space of the superconformal ghosts (beta,gamma) system from that of its bosonized fields phi and chi. We calculate the chiral correlation functions of phi, chi fields by inserting appropriate projectors.

  16. Spontaneous compactification and chiral fermions

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.; Yamamoto, Katsuji

    The question is addressed of which chiral fermions survive in spontaneously compactified solutions of the generalized Einstein-Yang-Mills field equations for higher even space-time dimensions. First, we study the allowed fermion representations of SU( N) which have no gauge or gravitational chiral anomalies in arbitrary even dimension and show how to find all such representations for the case of totally antisymmetric SU( N) tensors. Second, we look explicitly at monopole-induced spontaneous compactification in six dimensions; here, interesting chiral fermions in four dimensions do not occur easily but instead require highly artificial assignments of quantum numbers under the U(1) gauge group associated with the monopole. Finally, we consider instanton-induced spontaneous compactification in eight dimensions; for this case, we may readily obtain acceptable chiral fermions in four dimensions, including Georgi's three-family SU(11) model.

  17. Two Pathways for Electrocatalytic Oxidation of Hydrogen by a Nickel Bis(diphosphine) Complex with Pendant Amines in the Second Coordination Sphere

    SciTech Connect

    Yang, Jenny Y.; Smith, Stuart E.; Liu, Tianbiao L.; Dougherty, William G.; Hoffert, Wesley A.; Kassel, W. S.; Rakowski DuBois, Mary; DuBois, Daniel L.; Bullock, R. Morris

    2013-07-03

    A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(PCy2Nt-Bu2)2](BF4)2 (PCy2Nt-Bu2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. Under 1.0 atm H2 using NEt3 as a base and with added water, a turnover frequency of 45 s-1 is observed at 23 °C; this is the fastest observed for a molecular catalyst. The addition of hydrogen to the NiII complex gives thee isomers of the doubly protonated Ni0 complex [Ni(PCy2HNt-Bu2)2](BF4)2; these complexes have been studied by 1H and 31P NMR spectroscopy, and for one isomer, an X-ray diffraction study. Using the pKa values and NiII/I and NiI/0 redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(PCy2Nt-Bu2)2]2+ was determined to be -7.9 kcal mol-1. The catalytic rate observed in dry acetonitrile for the oxidation of H2 at the NiII/I couple depends on base size, with larger bases (NEt3, tert-BuNH2) resulting in slower catalysis than n-BuNH2. Addition of water accelerates the rate of catalysis, especially for the larger bases. The results of these studies provide important insights into the design of catalysts for hydrogen oxidation that facilitate proton movement and operate at moderate potentials. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  18. Molecular cable-like 1-D iodic spiral chains covered with triple helices stabilized in guest-included chiral porous framework.

    PubMed

    Tadokoro, Makoto; Tanaka, Yasuko; Noguchi, Khoichiro; Sugaya, Tomoaki; Isoda, Kyosuke

    2012-07-21

    The supramolecular crystal {[Pr(DMFA)](3)[Ni(II)(Hbim)(3)](2)I}(n) with intricate chiral networks of [Ni(II)(Hbim)(3)](-) molecules is reported. It includes a cationic architecture as a guest, constructed from chiral nanotubes that penetrate I(-) chains with spiral channels wrapped by triple helices. The I(-) chains have AC conductivity in crystals like a molecular cable.

  19. Optical properties of chiral nanostructures

    NASA Astrophysics Data System (ADS)

    Cecilia, Noguez; Román-Velázquez, Carlos E.; Garzón, Ignacio L.

    2004-03-01

    We present a computational model to study the optical properties chiral nanostructures[1] . In this work the nanostructures of interest are composed by N atoms, where each one is represented by a polarizable point dipole located at theposition of the atom. We assume that the dipole located is characterized by a polarizability. The nanostructure is excited by a circularly polarized incident wave, such that, each dipole is subject to a total electric field due to: (i) the incident radiation field, plus (ii) the radiation field resulting from all of the other induced dipoles. Once we solve the complex-linear equations, the dipole moment on each atom in the cluster can be determined and we can find the extinction cross section of the whole nanoparticle. Circular dichroism (CD) spectra of chiral bare and thiol-passivated gold nanoclusters have been calculated within the dipole approximation. The calculated CD spectra show features that allow us to distinguish between clusters with different indexes of chirality. The main factor responsible of the differences in the CD lineshapes is the distribution of interatomic distances that characterize the chiral cluster geometry. These results provide theoretical support for the quantification of chirality and its measurement, using the CD lineshapes of chiral metal nanoclusters. [1] C. E. Roman-Velazquez, et al., J. of Phys. Chem. B (Letter) 107, 12035 (2003) This work has been partly supported by DGAPA-UNAM grants No. IN104201 and IN104402, and by CONACyT grant 36651-E.

  20. Gain properties of an uncoated and chiral coated slotted sphere embedded in a chiral background.

    PubMed

    Awan, Z A

    2016-10-10

    The gain properties of an uncoated and a chiral coated slotted sphere embedded in a chiral background have been investigated using numerical simulations. In this paper, it is found that a chiral background medium enhances the gain of an uncoated slotted sphere in the forward direction as compared to the free space background. It is shown that the forward direction gain of a chiral coated slotted sphere embedded in a chiral background increases with the increase in the background chirality. It is further determined that the maximum gain moves away from the polar direction toward the forward direction as the chirality of the coating increases for a fixed background chirality. Also, this maximum gain gradually decreases as the chirality of the coating increases. An interesting feature of an angular window is introduced for a chiral coated slotted sphere embedded in a chiral background where the gain is nearly constant for a specific range of angles.

  1. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-12

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  2. Improvement of chiral stationary phases based on cinchona alkaloids bonded to crown ethers by chiral modification.

    PubMed

    Zhao, Jianchao; Wu, Haixia; Wang, Dongqiang; Wu, Haibo; Cheng, Lingping; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao

    2015-09-17

    To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S, 2S)-2-aminocyclohexyl phenylcarbamate. Both quinine and quinidine-based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion-exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, respectively, which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids.

  3. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    NASA Astrophysics Data System (ADS)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  4. Enantioselective Catalysis of the Aza-Cope Rearrangement by a Chiral Supramolecular Assembly

    SciTech Connect

    Brown, Casey J.; Bergman, Robert G.; Raymond, Kenneth N.

    2009-07-29

    The chiral supramolecular catalyst Ga{sub 4}L{sub 6} [L = 1,5-bis(2,3-dihydroxybenzoylamino)naphthalene] is a molecular tetrahedron that catalyzes the 3-aza-Cope rearrangement of allyl enammonium cations. This catalysis is accomplished by preorganizing the substrate in a reactive conformation within the host. This work demonstrates that through the use of enantiopure assembly, its chiral cavity is capable of catalyzing the 3-aza-Cope rearrangement enantioselectively, with yields of 21-74% and enantiomeric excesses from 6 to 64% at 50 C. At lower temperatures, the enantioselectivity improved, reaching 78% ee at 5 C. This is the highest enantioselectivity to date induced by the chiral cavity of a supramolecular assembly.

  5. Diphosphine-bridged digold(I) compounds: Structural and computational studies on the aurophilic interaction in Au2Cl2(μ-bpcd) and Au2Cl2(μ-bmi)

    NASA Astrophysics Data System (ADS)

    Nyamwihura, Rogers; Yang, Li; Nesterov, Vladimir N.; Richmond, Michael G.

    2017-02-01

    The reaction of AuCl(tht) with the diphosphine donors 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and 2,3-bis(diphenylphosphino)-N-phenylmaleimide (bmi) in a 2:1 stoichiometry affords the diphosphine-bridged digold(I) complexes Au2Cl2(bpcd) (1) and Au2Cl2(bmi) (2), respectively. 1 and 2 have been isolated and characterized in solution by IR and NMR spectroscopy (1H and 31P), and the solid-state structures established by X-ray crystallography. The X-Au-Au-X (X = Cl, P) atoms in both Au2 dimers exhibit a gauche-type (staggered) interaction based on a torsion angle of -54° for 1 (X = Cl) and -70° for 2 (X = Cl, mean angle for the two independent molecules). Each Au2 product displays a weak aurophilic interaction based on a Au-Au internuclear distance on the order of 2.9 Å. The bonding in 1 and 2 has been investigated by electronic structure calculations and the composition of the HOMO and LUMO levels determined in the case of 2. The potential energy surface for the interconversion of 2 to an alternative staggered conformation has been computed, and this transformation takes place through an eclipsed transition structure. The preference for a structure that contains a staggered orientation of Cl-Au-Au-Cl and P-Au-Au-Cl atoms is discussed.

  6. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons.

    PubMed

    Gorbar, E V; Miransky, V A; Shovkovy, I A; Sukhachov, P O

    2017-03-24

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.

  7. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.

  8. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    ERIC Educational Resources Information Center

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  9. ENZYME DEGRADATION OF CHIRAL ORGANIC PHOSPHORUS INSECTICIDES

    EPA Science Inventory

    Chiral organic phosphorus pesticides (OPs) are expected to be biologically degraded enantioselectively by endogenous enzymes. Various chiral Ops were treated with the enzyme phosphotriesterase (PTE) obtained from partially purified extracts of Escherichia coli strain DH-5- carryi...

  10. Chiral Chlordane Components in Environmental Matrices

    EPA Science Inventory

    Chlordane, a persistent, bioaccumulative and toxic organochlorine pesticide, has been studied for many years. Since the advent of chiral analysis for environmental samples, over 2,400 measurements have been made of various chiral chlordane components. Chlordane enantiomer fractio...

  11. Enantioselective Recognition by Chiral Supramolecular Gels.

    PubMed

    Zhang, Li; Jin, Qingxian; Liu, Minghua

    2016-10-06

    Chiral supramolecular gels, in which small organic molecules self-assemble into chiral nanostructures and entangle each other to immobilize solvents through various noncovalent interactions, can work as a matrix for enantioselective recognition on chiral analytes. Through gelation and the formation of well-defined nanostructures, the chiral sense of the component molecules can be accumulated or amplified, and thus, the enantioselective recognition ability can be enhanced. Furthermore, a chiral microenvironment formed in the gel networks could provide additional stereochemical recognition geometry and attribute to efficient recognition. In this focus review, enantioselective recognition on chiral analytes through chiral supramolecular gels, with either amplified signals or the gel-sol phase transition, is discussed. This review is expected to provide useful insights into the design and fabrication of supramolecular gel systems with chiral features and high enantioselectivity.

  12. Phase diagram of chirally imbalanced QCD matter

    SciTech Connect

    Chernodub, M. N.; Nedelin, A. S.

    2011-05-15

    We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations.

  13. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  14. Chiral multi-electron emission

    NASA Astrophysics Data System (ADS)

    Berakdar, Jamal; Klar, Hubert

    2001-01-01

    In this report we review recent progress in the understanding of the role of chirality in the multi-electron emission. A brief account of the chiral single-electron photoemission is given. In this case the chirality of the experimental set-up is brought about by an initial orientation of the target or/and by specifying a certain projection of the photoelectron spin. The dependence of the photoelectron spectrum on the chirality of the experiment is probed by changing the initial orientation of the target or by inverting the photoelectron spin projection. In a further section we envisage the direct transition of chiral electron pairs from an isotropic bound initial state into a double-continuum state following the absorption of a circularly polarised photon. We work out the necessary conditions under which the spectrum of the correlated photoelectron pair shows a chiral character, i.e. a dependence on the chirality of the exciting photon. The magnitude and the general behaviour of the chiral effects are estimated from simple analytical models and more elaborate numerical methods are presented for a more quantitative predictions. As a further example for the chiral multi-electron emission we study the photoelectron Auger-electron coincidence spectrum. The Auger hole is created by ionising a randomly oriented target by a circular polarised photon. We investigate how the helicity the photon is transferred to the emitted photoelectron pair. The theoretical findings are analysed and interpreted in light of recent experiments. In a final section we focus on the emission of correlated electrons where the initial state is already oriented, e.g. via optical pumping by circularly polarised light. The initial orientation of the atom is transferred to the continuum states following the ionisation of the target by low-energy electrons. We formulate and analyse the theoretical concepts for the transition of the screw sense of the initially bound atomic electron to the continuum

  15. Hydrogen-regulated chiral nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Kamin, Simon; Sterl, Florian; Giessen, Harald; Liu, Na

    2016-11-01

    Chirality is a highly important topic in modern chemistry, given the dramatically different pharmacological effects that enantiomers can have on the body. Chirality of natural molecules can be controlled by reconfiguration of molecular structures through external stimuli. Despite the rapid progress in plasmonics, active regulation of plasmonic chirality, particularly in the visible spectral range, still faces significant challenges. In this Letter, we demonstrate a new class of hybrid plasmonic metamolecules composed of magnesium and gold nanoparticles. The plasmonic chirality from such plasmonic metamolecules can be dynamically controlled by hydrogen in real time without introducing macroscopic structural reconfiguration. We experimentally investigate the switching dynamics of the hydrogen-regulated chiroptical response in the visible spectral range using circular dichroism spectroscopy. In addition, energy dispersive X-ray spectroscopy is used to examine the morphology changes of the magnesium particles through hydrogenation and dehydrogenation processes. Our study can enable plasmonic chiral platforms for a variety of gas detection schemes by exploiting the high sensitivity of circular dichroism spectroscopy.

  16. Chiral Thirring–Wess model

    SciTech Connect

    Rahaman, Anisur

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  17. Tactoids of chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  18. Extreme chirality in Swiss roll metamaterials.

    PubMed

    Demetriadou, A; Pendry, J B

    2009-09-16

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90° in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  19. Chirality: a relational geometric-physical property.

    PubMed

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.

  20. Chiral vibrations in the A=135 region

    SciTech Connect

    Almehed, Daniel; Doenau, Friedrich; Frauendorf, Stefan

    2011-05-15

    Chiral vibrations in the A=135 region are studied in the framework of a RPA plus self-consistent tilted axis cranking formalism. In this model chiral vibrations appear as a precursor toward the static chiral regime. The properties of the RPA phonons are discussed and compared to experimental data. We discuss the limits of the chiral region and the transition to the nonharmonic regime.

  1. Bifurcated, modular syntheses of chiral annulet triazacyclononanes.

    PubMed

    Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C

    2003-12-21

    Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.

  2. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  3. Chiral Block Copolymer Structures for Metamaterial Applications

    DTIC Science & Technology

    2015-01-27

    Final 3. DATES COVERED (From - To) 25-August-2011 to 24-August-2014 4. TITLE AND SUBTITLE Chiral Block Copolymer Structures for...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...valuable for both their optical and mechanical properties, particularly for their potential as chiral metamaterials and lightweig energy absorbing

  4. Self-Assembly of Chiral Plasmonic Nanostructures.

    PubMed

    Lan, Xiang; Wang, Qiangbin

    2016-12-01

    Plasmonic chiroptical effects have attracted significant attention for their widespread potential applications in negative-refractive-index materials, advanced light-polarization filters, and ultrasensitive sensing devices, etc. As compared to top-down fabrication methods, the bottom-up self-assembly strategy provides nanoscale resolution, parallel production, and isotropic optical response, and therefore plays an indispensable role in the fabrication of chiral plasmonic nanostructures. The optical properties of these chiral structures can be predicted based on the near-field coupling of localized surface plasmons in structural components, which offers a route to tune or enhance optical activity by selecting building blocks and designing structural configurations. To date, three main types of chiral plasmonic nanostructures, i.e., chiral "plasmonic molecules", chiral superstructures, and chiral-molecule-metal hybrid complexes, are usually assembled, in which metal nanoparticles with various sizes, shapes, and compositions, and/or chiral molecules are employed as building blocks. Here, recent achievements in the self-assembly of chiral plasmonic nanostructures are highlighted and perspectives on the future directions of chiral plasmonics integrated with bottom-up self-assembly are presented, showing three typical examples, including chiral plasmonic switches, chiral nanoparticles, and chiral metamaterials.

  5. Chiral scalars from an extended system

    SciTech Connect

    Kim, W.; Kim, J. ); Park, Y. )

    1991-07-15

    We propose a new action with a modified linear chiral constraint, which contains a chiral boson (a single self-dual theory) or left-right chiral bosons (free scalar field theory) according to the parameter {alpha}, and discuss the constraint algebra between the two theories.

  6. Chiral bag with vector mesons

    NASA Astrophysics Data System (ADS)

    Hosaka, A.; Toki, H.; Weise, W.

    1990-01-01

    We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.

  7. Chiral separation of agricultural fungicides.

    PubMed

    Pérez-Fernández, Virginia; García, Maria Ángeles; Marina, Maria Luisa

    2011-09-23

    Fungicides are very important and diverse environmental and agricultural concern species. Their determination in commercial formulations or environmental matrices, requires highly efficient, selective and sensitive methods. A significant number of these chemicals are chiral with the activity residing usually in one of the enantiomers. The different toxicological and degradation behavior observed in many cases for fungicide enantiomers, results in the need to investigate them separately. For this purpose, separation techniques such as GC, HPLC, supercritical fluid chromatography (SFC) and CE have widely been employed although, at present, HPLC still dominates chromatographic chiral analysis of fungicides. This review covers the literature concerning the enantiomeric separation of fungicides usually employed in agriculture grouping the chiral separation methodologies developed for their analysis in environmental, biological, and food samples.

  8. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.

  9. Chiral symmetry on the lattice

    SciTech Connect

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  10. Mechanical chirality: A chiral catalyst with a ring to it

    NASA Astrophysics Data System (ADS)

    Goldup, Stephen M.

    2016-05-01

    A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked -- rather than being encoded in the covalent connectivity of the components themselves -- has been shown to act as an enantioselective organocatalyst.

  11. Chiral xenobiotics bioaccumulations and environmental health prospectives.

    PubMed

    Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran

    2015-08-01

    The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed.

  12. Chiral magnetic effect in condensed matter systems

    SciTech Connect

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.

  13. Chiral Nanoarchitectonics: Towards the Design, Self-Assembly, and Function of Nanoscale Chiral Twists and Helices.

    PubMed

    Zhang, Li; Wang, Tianyu; Shen, Zhaocun; Liu, Minghua

    2016-02-10

    Helical structures such as double helical DNA and the α-helical proteins found in biological systems are among the most beautiful natural structures. Chiral nanoarchitectonics, which is used here to describe the hierarchical formation and fabrication of chiral nanoarchitectures that can be observed by atomic force microscopy (AFM), scanning tunneling microscopy (STM), scanning electron microscopy (SEM), or transmission electron microscopy (TEM), is one of the most effective ways to mimic those natural chiral nanostructures. This article focuses on the formation, structure, and function of the most common chiral nanoarchitectures: nanoscale chiral twists and helices. The types of molecules that can be designed and how they can form hierarchical chiral nanoarchitectures are explored. In addition, new and unique functions such as amplified chiral sensing, chiral separation, biological effects, and circularly polarized luminescence associated with the chiral nanoarchitectures are discussed.

  14. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate.

    PubMed

    Jiang, Wenge; Pacella, Michael S; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M; Gray, Jeffrey J; McKee, Marc D

    2017-04-13

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a 'right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas 'left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a 'mother' subunit nanoparticle spawns a slightly tilted, consequential 'daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures.

  15. Is there a "most chiral tetrahedron"?

    PubMed

    Rassat, André; Fowler, Patrick W

    2004-12-03

    A degree of chirality is a function that purports to measure the amount of chirality of an object: it is equal for enantiomers, vanishes only for achiral or degenerate objects and is similarity invariant, dimensionless and normalisable to the interval [0,1]. For a tetrahedron of non-zero three-dimensional volume, achirality is synonymous with the presence of a mirror plane containing one edge and bisecting its opposite, and hence it is easy to design degree-of-chirality functions based on edge length that incorporate all constraints. It is shown that such functions can have largest maxima at widely different points in the tetrahedral shape space, and by incorporation of appropriate factors, the maxima can be pushed to any point in the space. Thus the phrase "most chiral tetrahedron" has no general meaning: any chiral tetrahedron is the most chiral for some legitimate choice of degree of chirality.

  16. Helical motion of chiral liquid crystal droplets

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takaki; Sano, Masaki

    Artificial swimmers have been intensively studied to understand the mechanism of the locomotion and collective behaviors of cells and microorganisms. Among them, most of the artificial swimmers are designed to move along the straight path. However, in biological systems, chiral dynamics such as circular and helical motion are quite common because of the chirality of their bodies, which are made of chiral biomolecules. To understand the role of the chirality in the physics of microswimmers, we designed chiral artificial swimmers and the theoretical model for the chiral motion. We found that chiral liquid crystal droplets, when dispersed in surfactant solutions, swim in the helical path induced by the Marangoni effect. We will discuss the mechanism of the helical motion with our phenomenological model. This work is supported by Grant-in-Aid for JSPS Fellows (Grant No. 26.9814), and MEXT KAKENHI Grant No. 25103004.

  17. Chiral magnetic plasmons in anomalous relativistic matter

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long-wavelength limit, but also affect the qualitative dependence on the wave vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  18. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  19. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  20. A homochiral magnet based on D₃ symmetric [(NaO₃)Co₃] clusters: from spontaneous resolution to absolute chiral induction.

    PubMed

    Yao, Ru-Xin; Cui, Xin; Wang, Jun; Zhang, Xian-Ming

    2015-03-25

    A pair of novel enantiomeric 3D magnetic complexes [NaCo3(IA)6](NO3)·H2O (1Δ and 1Λ) have been synthesized using an achiral ligand HIA via spontaneous resolution, which crystallize in the hexagonal crystal system with a chiral P63 space group, and diamagnetic sodium cations are located at the center of D3 symmetric clusters. This kind of spontaneous resolution is uncontrollable and dependent on batches. By utilizing cheap enantiopure mandelic acid as a chiral inducing agent, they are driven to controllable homochiral crystallization of the desired enantiomorph, confirmed by circular dichroism spectra.

  1. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  2. Flow methods in chiral analysis.

    PubMed

    Trojanowicz, Marek; Kaniewska, Marzena

    2013-11-01

    The methods used for the separation and analytical determination of individual isomers are based on interactions with substances exhibiting optical activity. The currently used methods for the analysis of optically active compounds are primarily high-performance separation methods, such as gas and liquid chromatography using chiral stationary phases or chiral selectors in the mobile phase, and highly efficient electromigration techniques, such as capillary electrophoresis using chiral selectors. Chemical sensors and biosensors may also be designed for the analysis of optically active compounds. As enantiomers of the same compound are characterised by almost identical physico-chemical properties, their differentiation/separation in one-step unit operation in steady-state or dynamic flow systems requires the use of highly effective chiral selectors. Examples of such determinations are reviewed in this paper, based on 105 references. The greatest successes for isomer determination involve immunochemical interactions, enantioselectivity of the enzymatic biocatalytic processes, and interactions with ion-channel receptors or molecularly imprinted polymers. Conducting such processes under dynamic flow conditions may significantly enhance the differences in the kinetics of such processes, leading to greater differences in the signals recorded for enantiomers. Such determinations in flow conditions are effectively performed using surface-plasmon resonance and piezoelectric detections, as well as using common spectroscopic and electrochemical detections.

  3. Chiral phosphines in nucleophilic organocatalysis

    PubMed Central

    Xiao, Yumei; Sun, Zhanhu

    2014-01-01

    Summary This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH) acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols. PMID:25246969

  4. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen Smith; Andersen, Peter; Agger, Else Marie

    2011-04-01

    The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.

  5. Chiral non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Sur, Shouvik; Lee, Sung-Sik

    2014-07-01

    A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.

  6. Light-induced geometric isomerization of 1,2-diphenylcyclopropanes included within Y zeolites: role of cation-guest binding.

    PubMed

    Kaanumalle, Lakshmi S; Sivaguru, J; Sunoj, R B; Lakshminarasimhan, P H; Chandrasekhar, J; Ramamurthy, V

    2002-12-13

    Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenylcylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum approximately 10% ee).

  7. Mild access to planar-chiral ortho-condensed aromatic ferrocenes via gold(i)-catalyzed cycloisomerization of ortho-alkynylaryl ferrocenes.

    PubMed

    Urbano, Antonio; Hernández-Torres, Gloria; Del Hoyo, Ana M; Martínez-Carrión, Alicia; Carmen Carreño, M

    2016-05-11

    An efficient approach to (Rp) planar-chiral tri- and tetracyclic ortho-condensed aromatic ferrocenes was developed through the enantioselective cationic Au(i)-catalyzed cycloisomerization, in the presence of bidentate phosphine ligand (R)-DTBM-Segphos, from readily available ortho-alkynylaryl ferrocenes under very mild conditions (11 examples, up to 92% yield and 93% ee).

  8. Chiral NH-Controlled Supramolecular Metallacycles.

    PubMed

    Dong, Jinqiao; Tan, Chunxia; Zhang, Kang; Liu, Yan; Low, Paul J; Jiang, Jianwen; Cui, Yong

    2017-02-01

    Chiral NH functionalities-based discrimination is a key feature of Nature's chemical armory, yet selective binding of biologically active molecules in synthetic systems with high enantioselectivity poses significant challenges. Here we report the assembly of three chiral fluorescent Zn6L6 metallacycles from pyridyl-functionalized Zn(salalen) or Zn(salen) complexes. Each of these metallacycles has a nanoscale hydrophobic cavity decorated with six, three, or zero chiral NH functionalities and packs into a three-dimensional supramolecular porous framework. The binding affinity and enantioselectivity of the metallacycles toward α-hydroxycarboxylic acids, amino acids, small molecule pharamaceuticals (l-dopa, d-penicillamine), and chiral amines increase with the number of chiral NH moieties in the cyclic structure. From single-crystal X-ray diffraction, molecular simulations, and quantum chemical calculations, the chiral recognition and discrimination are attributed to the specific binding of enantiomers in the chiral pockets of the metallacycles. The parent metallacycles are fluorescent with the intensity of emission being linearly related to the enantiomeric composition of the chiral biorelevant guests, which allow them to be utilized in chiral sensing. The fact that manipulation of chiral NH functionalities in metallacycles can control the enantiorecognition of biomolecular complexes would facilitate the design of more effective supramolecular assemblies for enantioselective processes.

  9. Chiral logarithms in quenched QCD

    SciTech Connect

    Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang

    2004-08-01

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.

  10. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  11. Big, strong, neutral, twisted, and chiral π acids.

    PubMed

    Zhao, Yingjie; Huang, Guangxi; Besnard, Celine; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2015-04-13

    General synthetic access to expanded π-acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion-π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron-withdrawing substituents decreases and the high π acidity needed for strong anion-π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion-π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from -3.96 to -4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X-ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation-π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches -4.45 eV, whereas two sulfone moieties give a value of -4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion-π interactions, these conceptually innovative π-acidic surfaces are also of interest as electron transporters in conductive materials.

  12. Chirality affects aggregation kinetics of single-walled carbon nanotubes.

    PubMed

    Khan, Iftheker A; Afrooz, A R M Nabiul; Flora, Joseph R V; Schierz, P Ariette; Ferguson, P Lee; Sabo-Attwood, Tara; Saleh, Navid B

    2013-02-19

    Aggregation kinetics of chiral-specific semiconducting single-walled carbon nanotubes (SWNTs) was systematically studied through time-resolved dynamic light scattering. Varied monovalent (NaCl) and divalent (CaCl(2)) electrolyte composition was used as background solution chemistry. Suwannee River humic acid (SRHA) was used to study the effects of natural organic matter on chirally separated SWNT aggregation. Increasing salt concentration and introduction of divalent cations caused aggregation of SWNT clusters by suppressing the electrostatic repulsive interaction from the oxidized surfaces. The (6,5) SWNTs, i.e., SG65, with relatively lower diameter tubes compared to (7,6), i.e., SG76, showed substantially higher stability (7- and 5-fold for NaCl and CaCl(2), respectively). The critical coagulation concentration (CCC) values were 96 and 13 mM NaCl in the case of NaCl and 2.8 and 0.6 mM CaCl(2) for SG65 and SG76, respectively. The increased tube diameter for (7,6) armchair SWNTs likely presented with higher van der Waals interaction and thus increased the aggregation propensity substantially. The presence of SRHA enhanced SWNT stability in divalent CaCl(2) environment through steric interaction from adsorbed humic molecules; however showed little or no effects for monovalent NaCl. The mechanism of aggregation-describing favorable interaction tendencies for (7,6) SWNTs-is probed through ab initio molecular modeling. The results suggest that SWNT stability can be chirality dependent in typical aquatic environment.

  13. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  14. Asymmetric synthesis using chiral-encoded metal

    PubMed Central

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  15. Asymmetric synthesis using chiral-encoded metal

    NASA Astrophysics Data System (ADS)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  16. Completely Chiral Optical Force for Enantioseparation

    PubMed Central

    Rukhlenko, Ivan D.; Tepliakov, Nikita V.; Baimuratov, Anvar S.; Andronaki, Semen A.; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2016-01-01

    Fast and reliable separation of enantiomers of chiral nanoparticles requires elimination of all the forces that are independent of the nanoparticle handedness and creation of a sufficiently strong force that either pushes different enantiomers in opposite directions or delays the diffusion of one of them with respect to the other. Here we show how to construct such a completely chiral optical force using two counterpropagating circularly polarized plane waves of opposite helicities. We then explore capabilities of the related enantioseparation method by analytically solving the problem of the force-induced diffusion of chiral nanoparticles in a confined region, and reveal that it results in exponential spatial dependencies of the quantities measuring the purity of chiral substances. The proposed concept of a completely chiral optical force can potentially advance enantioseparation and enantiopurification techniques for all kinds of chiral nanoparticles that strongly interact with light. PMID:27827437

  17. Spatial control of chirality in supramolecular aggregates.

    PubMed

    Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-03-09

    Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.

  18. Spatial control of chirality in supramolecular aggregates

    PubMed Central

    Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-01-01

    Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239

  19. Molecular chirality: language, history, and significance.

    PubMed

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed.

  20. Chiral nanoparticles in singular light fields

    PubMed Central

    Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2017-01-01

    The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre–Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams. PMID:28378842

  1. Spatial control of chirality in supramolecular aggregates

    NASA Astrophysics Data System (ADS)

    Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-03-01

    Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.

  2. Completely Chiral Optical Force for Enantioseparation

    NASA Astrophysics Data System (ADS)

    Rukhlenko, Ivan D.; Tepliakov, Nikita V.; Baimuratov, Anvar S.; Andronaki, Semen A.; Gun’Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2016-11-01

    Fast and reliable separation of enantiomers of chiral nanoparticles requires elimination of all the forces that are independent of the nanoparticle handedness and creation of a sufficiently strong force that either pushes different enantiomers in opposite directions or delays the diffusion of one of them with respect to the other. Here we show how to construct such a completely chiral optical force using two counterpropagating circularly polarized plane waves of opposite helicities. We then explore capabilities of the related enantioseparation method by analytically solving the problem of the force-induced diffusion of chiral nanoparticles in a confined region, and reveal that it results in exponential spatial dependencies of the quantities measuring the purity of chiral substances. The proposed concept of a completely chiral optical force can potentially advance enantioseparation and enantiopurification techniques for all kinds of chiral nanoparticles that strongly interact with light.

  3. Enantioselective recognition at mesoporous chiral metal surfaces

    PubMed Central

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes. PMID:24548992

  4. Enantioselective recognition at mesoporous chiral metal surfaces

    NASA Astrophysics Data System (ADS)

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-02-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  5. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  6. Chirality and the angular momentum of light.

    PubMed

    Cameron, Robert P; Götte, Jörg B; Barnett, Stephen M; Yao, Alison M

    2017-02-28

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions.This article is part of the themed issue 'Optical orbital angular momentum'.

  7. Chiral anomaly, bosonization, and fractional charge

    SciTech Connect

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-06-15

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.

  8. Chiral phases of fundamental and adjoint quarks

    SciTech Connect

    Natale, A. A.

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  9. Chiral Plasmonic Nanostructures on Achiral Nanopillars

    DTIC Science & Technology

    2013-10-10

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU Approved for public release; distribution is unlimited. Chiral Plasmonic Nanostructures on Achiral...Nanopillars Chirality of plasmonic films can be strongly enhanced by threedimensional (3D) out-of-plane geometries. The complexity of lithographic...methods currently used to produce such structures and other methods utilizing chiral templates impose limitations on spectral windows of chiroptical

  10. Chirality and the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-02-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.

  11. Chiral phases of fundamental and adjoint quarks

    NASA Astrophysics Data System (ADS)

    Natale, A. A.

    2016-01-01

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (nf ≈ 11 - 13) in agreement with lattice data.

  12. Chiral gold phosphate catalyzed tandem hydroamination/asymmetric transfer hydrogenation enables access to chiral tetrahydroquinolines.

    PubMed

    Du, Yu-Liu; Hu, Yue; Zhu, Yi-Fan; Tu, Xi-Feng; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-05-01

    A highly efficient chiral gold phosphate-catalyzed tandem hydroamination/asymmetric transfer hydrogenation reaction is described. A series of chiral tetrahydroquinolines were obtained in excellent yields and enantioselectivities. In this reaction, the gold catalyst enables both the hydroamination step as a π-Lewis acid and the asymmetric hydrogen-transfer process as an effective chiral Lewis acid.

  13. Staggered chiral random matrix theory

    SciTech Connect

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  14. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  15. Coupled wire construction of chiral spin liquids

    NASA Astrophysics Data System (ADS)

    Thomale, Ronny; Meng, Tobias; Neupert, Titus; Greiter, Martin

    We develop a coupled wire construction of chiral spin liquids. The starting point are individual wires of electrons in the Mott regime that are subject to a Zeeman field and Rashba spin-orbit coupling. Suitable spin-flip couplings between the wires yield an Abelian chiral spin liquid state which supports spinon excitations above a bulk gap, and chiral edge states. The approach generalizes to non-Abelian chiral spin liquids at level k with parafermionic edge states. RT is supported by the European Research Council through ERC-StG-336012-TOPOLECTRICS. MG and RT are supported by DFG-SFB 1170.

  16. Dimer crystallization of chiral proteoids.

    PubMed

    Wang, Po-Yuan; Mason, Thomas G

    2017-03-08

    Proteins can self-assemble into a variety of exquisitely organized structures through hierarchical reaction pathways. To examine how different core shapes of proteins and entropy combine to influence self-assembly, we create systems of lithographically fabricated proteomimetic colloids, or 'proteoids', and explore how Brownian monolayers of mobile proteoids, which have hard interactions, self-assemble as they are slowly crowded. Remarkably, chiral C-shaped proteoids having circular heads on only one side form enantiopure lock-and-key chiral dimers; these dimers have corrugated, shape-complementary perimeters, so they, in turn, form lock-and-key arrangements into chiral dimer crystals. Time-lapse video microscopy reveals the expulsion of monomers from the growing dimer crystals through tautomerization translocation reactions which expedite the crystallization kinetics. By lithographically mutating proteoids, we also tune the types and structures of the resulting dimer crystals. Thus, rational design of sub-particle features in hard-core colloidal shapes can be used to sterically select desired self-assembly pathways without introducing any site-specific attractions, thereby generating a striking degree of hierarchical self-ordering, reminiscent of protein crystallization.

  17. Chiral methyl-branched pheromones.

    PubMed

    Ando, Tetsu; Yamakawa, Rei

    2015-07-01

    Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.

  18. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  19. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  20. Potential of chiral anion-exchangers operated in various subcritical fluid chromatography modes for resolution of chiral acids.

    PubMed

    Pell, Reinhard; Lindner, Wolfgang

    2012-07-06

    Anion-exchange-type chiral stationary phases (CSPs) derived from quinine or quinidine were applied in subcritical fluid chromatography (SFC) for the direct separation of chiral acidic compounds. Employing subcritical (sc) mobile phase modes (CO₂ + methanol as co-solvent and acids and bases as additives) first the influence of type and amount of acidic and basic additives on separation performance was investigated. Secondly, water was tested as a neutral additive and the influence of temperature variation on enantioselectivity was studied. Thirdly, we could chromatographically confirm that the often verbalized "inherent acidity" of sc CO₂ + methanol is manifested by the in situ formation of methylcarbonic acids in the sc mobile phase and thus functioning as acidic additive. Accordingly the dissociated methylcarbonic acid, acting as a counterion, enables an anion exchange mechanism between the cationic CSP and the corresponding acidic analyte. In the absence of a dissociable acid in the mobile phase such an ion exchange mode would not work following a stoichiometric displacement model. This finding is further corroborated by the use of ammonia in methanol as co-solvent thus generating in situ the ammonium salt of methylcarbonic acid. In summary, we report on ion-exchange mediated chromatographic separations in SFC modes by merely using (i) sc CO₂ and MeOH, (ii) sc CO₂ and ammonia in MeOH, and (iii) sc CO₂ and MeOH plus acids and bases as additives. Comparisons to HPLC mode have been undertaken to evaluate merits and limitations. This mode exhibits high potential for preparative chromatography of chiral acids combining pronounced enantioselectivity with high column loadability and avoiding possibly troublesome mobile phase additives, as the in situ formed methylcarbonic acid disintegrates to CO₂ and methanol upon pressure release.

  1. Mechanistic dichotomy in the asymmetric allylation of aldehydes with allyltrichlorosilanes catalyzed by chiral pyridine N-oxides.

    PubMed

    Malkov, Andrei V; Stončius, Sigitas; Bell, Mark; Castelluzzo, Fabiomassimo; Ramírez-López, Pedro; Biedermannová, Lada; Langer, Vratislav; Rulíšek, Lubomír; Kočovský, Pavel

    2013-07-08

    Detailed kinetic and computational investigation of the enantio- and diastereoselective allylation of aldehydes 1 with allyltrichlorosilanes 5, employing the pyridine N-oxides METHOX (9) and QUINOX (10) as chiral organocatalysts, indicate that the reaction can proceed through a dissociative (cationic) or associative (neutral) mechanism: METHOX apparently favors a pentacoordinate cationic transition state, while the less sterically demanding QUINOX is likely to operate via a hexacoordinate neutral complex. In both pathways, only one molecule of the catalyst is involved in the rate- and selectivity-determining step, which is supported by both experimental and computational data.

  2. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  3. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates.

    PubMed

    Helmich, Floris; Lee, Cameron C; Schenning, Albertus P H J; Meijer, E W

    2010-12-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the coaggregates by axial ligation with a Lewis base. After this extraction, the preferred helicity observed for the aggregates containing achiral Cu porphyrins reveals a chiral memory effect that is stable and can be erased and partially restored upon subsequent heating and cooling.

  4. Spontaneous emission of a chiral molecule near a cluster of two chiral spherical particles

    SciTech Connect

    Guzatov, D V; Klimov, V V

    2015-03-31

    We have obtained and investigated analytical expressions for the radiative spontaneous decay rate of a chiral (optically active) molecule located near a cluster of two identical chiral (biisotropic) spherical particles. It is found that the composition of the particles, their location and size have a significant effect on the spontaneous emission of chiral molecules. In particular, it is shown that in the case of nanoparticles of chiral metamaterials, the radiative spontaneous decay rate for the 'right-' and 'left-handed' enantiomers of chiral molecules located in the gap of the cluster are significantly different. (metamaterials)

  5. Chiral magnetic effect in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  6. PROBING THE ENANTIOSELECTIVITY OF CHIRAL PESTICIDES

    EPA Science Inventory

    Up to 25% of all pesticides are chiral; that is, they exist as two mirror image isomers called enantiomers. It is known that enantiomers usually differ in their biological properties through their differential interaction with enzymes or other naturally occurring chiral molecule...

  7. Immobilization of enzyme on chiral polyelectrolyte surface.

    PubMed

    Ding, Chao; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2017-02-01

    Chiral D- and L-N-acryloyl aspartic acid (NAsp) polyelectrolyte (PE) surfaces with similar chemical compositions and physical properties but opposite chirality are designed for enzyme immobilization. Enzymes immobilized onto the chiral PE surfaces present high chiral preference, namely L-NAsp PE surface can keep most of the catalytic activity of the immobilized enzymes, however, for enzymes immobilized on D-NAsp PE surface a large decrease in catalytic activity occurred which was 11 times lower compared with L-NAsp PE surface. This phenomenon of chiral effect on enzymes immobilization can be explained by attenuated total reflectance (ATR) and circular dichroism (CD) results. The results exhibited that L-NAsp PE surface could preserve most of the secondary structures of immobilized enzymes while on D-NAsp PE surface with a large conformation alteration. These chiral surface induced differences after enzyme immobilization can be further used for logic operation. These results imply a novel strategy for the design of new enzymes immobilization materials based on the chiral effect and expand the applications of enzymes in biochips, chemical transformations and chiral biodevices.

  8. Chiral THz metamaterial with tunable optical activity

    SciTech Connect

    Zhou, Jiangfeng; Taylor, Antoinette; O' Hara, John; Chowdhury, Roy; Zhao, Rongkuo; Soukoullis, Costas M

    2010-01-01

    Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation

  9. Cosmic chirality both true and false.

    PubMed

    Barron, Laurence D

    2012-12-01

    The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life.

  10. Chirally-sensitive electron-molecule interactions

    NASA Astrophysics Data System (ADS)

    Dreiling, J. M.; Gay, T. J.

    2015-09-01

    All molecular forms of life have chemically-specific handedness. However, the origin of these asymmetries is not understood. A possible explanation was suggested by Vester and Ulbricht immediately following the discovery of parity violation in 1957: chiral beta radiation in cosmic rays may have preferentially destroyed one enantiomeric form of various biological precursors. In the experiments reported here, we observed chiral specificity in two electron- molecule interactions: quasi-elastic scattering and dissociative electron attachment. Using low- energy longitudinally spin-polarized (chiral) electrons as substitutes for beta rays, we found that chiral bromocamphor molecules exhibited both a transmission and dissociative electron attachment rate that depended on their handedness for a given direction of incident electron spin. Consequently, these results, especially those with dissociative electron attachment, connect the universal chiral asymmetry of the weak force with a molecular breakup process, thereby demonstrating the viability of the Vester-Ulbricht hypothesis.

  11. A liquid crystalline chirality balance for vapours

    NASA Astrophysics Data System (ADS)

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-Ichi

    2014-04-01

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of ‘zig’ and ‘zag.’ We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of ‘zig’ and ‘zag’ depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based ‘chirality balance’ offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  12. A liquid crystalline chirality balance for vapours.

    PubMed

    Ohzono, Takuya; Yamamoto, Takahiro; Fukuda, Jun-ichi

    2014-04-30

    Chiral discrimination of vapours plays an important role in olfactory perception of biological systems and its realization by artificial sensors has been an intriguing challenge. Here, we report a simple method that tangibly visualizes the chirality of a diverse variety of molecules dissolved from vapours with high sensitivity, by making use of a structural change in a periodic microstructure of a nematic liquid crystal confined in open microchannels. This microstructure is accompanied by a topological line defect of a zigzag form with equal lengths of 'zig' and 'zag.' We find that a tiny amount of vapour of chiral molecules injected onto the liquid crystal induces the imbalance of 'zig' and 'zag' depending on its enantiomeric excess within a few seconds. Our liquid-crystal-based 'chirality balance' offers a simple, quick and versatile chirality-sensing/-screening method for gas-phase analysis (for example, for odours, environmental chemicals or drugs).

  13. Chiral magnetic effect in condensed matter systems

    DOE PAGES

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less

  14. Supersymmetric chiral models: Geometrical aspects

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.

    1989-03-01

    We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.

  15. Status of chiral meson physics

    SciTech Connect

    Bijnens, Johan

    2016-01-22

    This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.

  16. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity.

    PubMed

    Zhao, Wenrong; Hao, Jingcheng

    2016-09-15

    Colloidal chirality in wormlike micellar systems exclusively originated from achiral species and discussion of the role of secondary assembly of fiber-like aggregates in chirality generation were presented in this paper. Herein, formation of colloidal wormlike micelles for the first time incorporated chirality and redox-responsiveness into one design via noncovalent interaction. A dual-stimuli-responsive gel of wormlike micelles which were designed by employing a dual-responsive cationic surfactant (FTMA) and a strong gelator (AzoNa4) and regulated by redox reaction and host-guest inclusion is presented. Both the redox and host-guest interaction play an important role in regulating the viscosity and supramolecular chirality of gels of the wormlike micelles. The supramolecular chirality and viscosity of the wormlike micelle gels were switched reversibly by exerting chemical redox onto the ferrocenyl groups. For the amphiphile FTMA containing redox-active ferrocenyl group, reversible control of the oxidation state of ferrocenyl groups leads to the charge and hydrophobicity changes of FTMA, therefore change its self-assembly behavior. Of equal interest, β-CD successfully detached the wormlike micelles via the recognition-inclusion behavior with FTMA and invalidate the H-bond and hydrophobic interaction between FTMA and AzoH4. This designed system provides a new strategy to tune the supramolecular chirality of colloidal aggregates and explore the specific packing mode detail within the micelles or the secondary assembly of the inter-micelles. We anticipate this dual-responsive H-bond-directed chiral gel switch could propose a new strategy when researchers designing new, multi-responsive functional gel materials.

  17. FATE AND EFFECTS OF THE ENANTIOMERS OF CHIRAL ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral compounds, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. This holds true for pesticides, about 25% of which are chiral molecules, and other chiral environmental...

  18. Chiral Potts spin glass in d=2 and 3 dimensions.

    PubMed

    Çağlar, Tolga; Berker, A Nihat

    2016-09-01

    The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration c, with determination of phase chaos and phase-boundary chaos. In d=3, the system has ferromagnetic, left-chiral, right-chiral, chiral spin-glass, and disordered phases. The phase boundaries to the ferromagnetic, left- and right-chiral phases show, differently, an unusual, fibrous patchwork (microreentrances) of all four (ferromagnetic, left-chiral, right-chiral, chiral spin-glass) ordered phases, especially in the multicritical region. The chaotic behavior of the interactions, under scale change, are determined in the chiral spin-glass phase and on the boundary between the chiral spin-glass and disordered phases, showing Lyapunov exponents in magnitudes reversed from the usual ferromagnetic-antiferromagnetic spin-glass systems. At low temperatures, the boundaries of the left- and right-chiral phases become thresholded in p and c. In d=2, the chiral spin-glass Potts system does not have a spin-glass phase, consistently with the lower-critical dimension of ferromagnetic-antiferromagnetic spin glasses. The left- and right-chirally ordered phases show reentrance in chirality concentration p.

  19. Asymmetric Cooperative Catalysis of Strong Brønsted Acid-Promoted Reactions Using Chiral Ureas

    PubMed Central

    Xu, Hao; Zuend, Stephan J.; Woll, Matthew G.; Tao, Ye; Jacobsen, Eric N.

    2010-01-01

    Cationic organic intermediates participate in a wide variety of useful synthetic transformations, but their high reactivity can render selectivity in competing pathways difficult to control. We describe a strategy for inducing enantioselectivity in reactions of protio-iminium ions, wherein a chiral catalyst interacts with the highly reactive intermediate through a network of non-covalent interactions. This leads to an attenuation of the reactivity of the iminium ion, and allows high enantioselectivity in cycloadditions with electron-rich alkenes (the Povarov reaction). A detailed experimental and computational analysis of this catalyst system has revealed the precise nature of the catalyst-substrate interactions and the likely basis for enantioinduction. PMID:20167783

  20. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-10-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

  1. Hierarchical chirality transfer in the growth of Towel Gourd tendrils.

    PubMed

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-10-31

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.

  2. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  3. Chiral magnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Randeria, Mohit

    2014-03-01

    There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.

  4. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  5. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  6. Tuning bilayer twist using chiral counterions

    NASA Astrophysics Data System (ADS)

    Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; Mackintosh, F. C.

    1999-06-01

    From seashells to DNA, chirality is expressed at every level of biological structures. In self-assembled structures it may emerge cooperatively from chirality at the molecular scale. Amphiphilic molecules, for example, can form a variety of aggregates and mesophases that express the chirality of their constituent molecules at a supramolecular scale of micrometres (refs 1-3). Quantitative prediction of the large-scale chirality based on that at themolecular scale remains a largely unsolved problem. Furthermore, experimental control over the expression of chirality at the supramolecular level is difficult to achieve: mixing of different enantiomers usually results in phase separation. Here we present an experimental and theoretical description of a system in which chirality can be varied continuously and controllably (`tuned') in micrometre-scale structures. We observe the formation of twisted ribbons consisting of bilayers of gemini surfactants (two surfactant molecules covalently linked at their charged head groups). We find that the degree of twist and the pitch of the ribbons can be tuned by the introduction of opposite-handed chiral counterions in various proportions. This degree of control might be of practical value; for example, in the use of thehelical structures as templates for helical crystallization of macromolecules,.

  7. Enantioselective Recognition for Many Different Kinds of Chiral Guests by One Chiral Receptor Based on Tetraphenylethylene Cyclohexylbisurea.

    PubMed

    Xiong, Jia-Bin; Xie, Wen-Zhao; Sun, Jian-Ping; Wang, Jin-Hua; Zhu, Zhi-Hua; Feng, Hai-Tao; Guo, Dong; Zhang, Hui; Zheng, Yan-Song

    2016-05-06

    A neutral chiral receptor based on TPE cyclohexylbisurea was synthesized and could discriminate the enantiomers of many different kinds of chiral reagents, including chiral acidic compounds, basic compounds, amino acids, and even neutral alcohols. The (1)H NMR spectra disclosed that the ability of chiral recognition could be ascribed to the multiple hydrogen bonds and CH-π interactions between the TPE urea receptor and the enantiomer of the chiral guest, which led to the selective aggregation of the receptor with one of the two enantiomers. This result exhibited a great potential in enantiomer discernment and high-throughput analysis of enantiomer composition of these chiral analytes by one chiral AIE molecule.

  8. Cation affinity numbers of Lewis bases.

    PubMed

    Lindner, Christoph; Tandon, Raman; Maryasin, Boris; Larionov, Evgeny; Zipse, Hendrik

    2012-01-01

    Using selected theoretical methods the affinity of a large range of Lewis bases towards model cations has been quantified. The range of model cations includes the methyl cation as the smallest carbon-centered electrophile, the benzhydryl and trityl cations as models for electrophilic substrates encountered in Lewis base-catalyzed synthetic procedures, and the acetyl cation as a substrate model for acyl-transfer reactions. Affinities towards these cationic electrophiles are complemented by data for Lewis-base addition to Michael acceptors as prototypical neutral electrophiles.

  9. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance

    NASA Astrophysics Data System (ADS)

    Kondratov, A. V.; Gorkunov, M. V.; Darinskii, A. N.; Gainutdinov, R. V.; Rogov, O. Y.; Ezhov, A. A.; Artemov, V. V.

    2016-05-01

    We study the physical origin of extreme optical chirality of subwavelength arrays of chiral holes in metal. We reconstruct the nanoscale relief of the hole arrays by the atomic-force microscopy and post-process the data to acquire an average unit-cell shape clear of noise and defects. For this shape, we perform the electromagnetic finite difference time domain simulations that reproduce all important features observed by the light-transmission experiments, including the notably strong circular dichroism and optical activity covering the whole range of possible values. To interpret the simulation results, we develop a chiral coupled-mode model which yields analytical expressions that fit accurately the numerical data in a broad wavelength range. Our conclusions undoubtedly link the extreme optical chirality to the plasmon resonances of chiral holes and the associated chiral Fano-type transmission resonance.

  10. "Inherently Chiral" Ionic-Liquid Media: Effective Chiral Electroanalysis on Achiral Electrodes.

    PubMed

    Rizzo, Simona; Arnaboldi, Serena; Mihali, Voichita; Cirilli, Roberto; Forni, Alessandra; Gennaro, Armando; Isse, Abdirisak Ahmed; Pierini, Marco; Mussini, Patrizia Romana; Sannicolò, Francesco

    2017-02-13

    To achieve enantioselective electroanalysis either chiral electrodes or chiral media are needed. High enantiodiscrimination properties can be granted by the "inherent chirality" strategy of developing molecular materials in which the stereogenic element responsible for chirality coincides with the molecular portion responsible for their specific properties, an approach recently yielding outstanding performances as electrode surfaces. Inherently chiral ionic liquids (ICILs) have now been prepared starting from atropisomeric 3,3'-bicollidine, synthesized from inexpensive reagents, resolved into antipodes without need of chiral HPLC and converted into long-chain dialkyl salts with melting points below room temperature. Both the new ICILs and shorter family terms, solid at room temperature, employed as low-concentration additives in achiral ILs, afford impressive enantioselection for the enantiomers of different probes on achiral electrodes, regularly increasing with additive concentration.

  11. Elastic waves in structurally chiral composites

    SciTech Connect

    Yang, Shiuhkuang.

    1990-01-01

    Elastic wave propagation through structurally chiral (handed) media was studied. The primary objectives are to construct structurally chiral composites and to characterize their properties. Structurally chiral composites are constructed by stacking identical uniaxial plates, whose consecutive symmetric axes describe either a right- or a left-handed spiral. A matrix representation method is used to solve the elastic wave propagation in such layered composites. Numerical computation of the plane wave reflection and transmission characteristics for chiral arrangements are compared with those for the non-chiral one. It is concluded that the co-polarized characteristics are unaffected by the structural chirality, while the cross-polarized reflected and transmitted fields are greatly influenced by it. Numerical modeling is also applied for the real samples. The polarization ellipse of the transmitted field of each sample is calculated. To verify the form chirality, four glass-reinforced chiral and non-chiral composite samples are made from helix tape, molded, debulked, and cured individually under identical temperature and pressure histories. The spiral composites are characterized using shear and longitudinal wave transducers in ultrasonic experiments. Both the material properties and the polarization ellipse of the transmitted field of each sample are measured. It is proved conclusively that left and right handedness in the microstructures of a material rotates the plane of polarization of a propagating shear wave in the opposite directions. Thus it is now possible to say that by reducing the length scale of the handed microstructures tone more appropriate to its propagating wavelength, a medium is obtained that gives rise to effects similar to optical radar and optical dichroism.

  12. Gain of an axially slotted cylinder covered with a chiral coating and embedded in a chiral medium.

    PubMed

    Awan, Z A

    2015-07-01

    The gain characteristics of an axially slotted cylinder coated with a chiral layer and placed in another chiral background have been investigated using numerical simulations. The effects of various types of chiral coatings and chiral backgrounds upon the gain pattern have been studied. It is shown that an increase in the chirality of the coating enhances the gain in the forward direction and reduces the gain in the backward direction for the fixed chirality of the background. It is also studied that, by increasing the chirality of the background medium, the gain in the backward direction also increases. It is further found that the chiral nihility coating makes the gain pattern nearly isotropic, and this gain is almost independent of the chirality of the background chiral medium.

  13. Chirality and the angular momentum of light

    PubMed Central

    Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-01-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light–matter interactions. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069764

  14. Structural Composites With Tuned EM Chirality

    DTIC Science & Technology

    2014-12-23

    AFRL-OSR-VA-TR-2015-0018 STRUCTURAL COMPOSITES WITH TUNED EM CHIRALITY Siavouche Nemat Nasser UNIVERSITY OF CALIFORNIA SAN DIEGO Final Report 12/23...REPORT Grant/Contract  Title:        STRUCTURAL  COMPOSITES  WITH  TUNED  EM   CHIRALITY     Grant  No.:  FA9550-­‐09-­‐1...structural   composites  with   tunable   chiral   elements   has   produced   some   impressive   results   in   the

  15. Partial restoration of chiral symmetry inside hadrons

    SciTech Connect

    Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji

    2016-01-22

    We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.

  16. Biocatalysis: synthesis of chiral intermediates for drugs.

    PubMed

    Patel, Ramesh N

    2006-11-01

    Chirality is a key factor in the safety and efficacy of many drug products and thus the production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand for the bulk preparation of drug substances and agricultural products. There has been an increasing awareness of the enormous potential of the use of microorganisms and microorganism-derived enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities. In this article, biocatalytic processes are described for the synthesis of chiral intermediates for drugs.

  17. Synthesis of chiral dopants based on carbohydrates.

    PubMed

    Tsuruta, Toru; Koyama, Tetsuo; Yasutake, Mikio; Hatano, Ken; Matsuoka, Koji

    2014-07-01

    Chiral dopants based on carbohydrates for nematic liquid crystals were synthesized from D-glucose, and their helical twisting power (HTP) values were evaluated. The chiral dopants induced helices in the host nematic liquid crystals. An acetyl derivative having an ether-type glycosidic linkage between carbohydrate and a mesogenic moiety showed the highest HTP value of 10.4 μm(-1), while an acetyl derivative having an anomeric ester-type linkage did not show any HTP. It was surprising that this molecule had no HTP despite the presence of chirality in the molecule. A relationship between HTP and specific rotation was not observed in this study.

  18. Edge current in a small chiral superconductor

    NASA Astrophysics Data System (ADS)

    Suzuki, Shu-Ichiro; Asano, Yasuhiro

    2016-10-01

    We discuss a theoretical description of the edge current in a chiral superconductor. On the basis of the quasiclassical Green function formalism, we derive a useful expression of the chiral edge current which enable us to understand how Cooper pairs contribute to the electric current. We will show that the chiral edge current is carried by the combinations of two Cooper pairs belonging to different pairing symmetries. One Cooper pair belongs to the usual even-frequency pairing symmetry class. However, the other belongs to the odd-frequency symmetry class.

  19. Structural resolution of 4-substituted proline diastereomers with ion mobility spectrometry via alkali metal ion cationization.

    PubMed

    Flick, Tawnya G; Campuzano, Iain D G; Bartberger, Michael D

    2015-03-17

    The chirality of substituents on an amino acid can significantly change its mode of binding to a metal ion, as shown here experimentally by traveling wave ion mobility spectrometry-mass spectrometry (TWIMS-MS) of different proline isomeric molecules complexed with alkali metal ions. Baseline separation of the cis- and trans- forms of both hydroxyproline and fluoroproline was achieved using TWIMS-MS via metal ion cationization (Li(+), Na(+), K(+), and Cs(+)). Density functional theory calculations indicate that differentiation of these diastereomers is a result of the stabilization of differing metal-complexed forms adopted by the diastereomers when cationized by an alkali metal cation, [M + X](+) where X = Li, Na, K, and Cs, versus the topologically similar structures of the protonated molecules, [M + H](+). Metal-cationized trans-proline variants exist in a linear salt-bridge form where the metal ion interacts with a deprotonated carboxylic acid and the proton is displaced onto the nitrogen atom of the pyrrolidine ring. In contrast, metal-cationized cis-proline variants adopt a compact structure where the carbonyl of the carboxylic acid, nitrogen atom, and if available, the hydroxyl and fluorine substituent solvate the metal ion. Experimentally, it was observed that the resolution between alkali metal-cationized cis- and trans-proline variants decreases as the size of the metal ion increases. Density functional theory demonstrates that this is due to the decreasing stability of the compact charge-solvated cis-proline structure with increased metal ion radius, likely a result of steric hindrance and/or weaker binding to the larger metal ion. Furthermore, the unique structures adopted by the alkali metal-cationized cis- and trans-proline variants results in these molecules having significantly different quantum mechanically calculated dipole moments, a factor that can be further exploited to improve the diastereomeric resolution when utilizing a drift gas with a

  20. Triptycene-Based Chiral Macrocyclic Hosts for Highly Enantioselective Recognition of Chiral Guests Containing a Trimethylamino Group.

    PubMed

    Zhang, Geng-Wu; Li, Peng-Fei; Meng, Zheng; Wang, Han-Xiao; Han, Ying; Chen, Chuan-Feng

    2016-04-18

    A new class of chiral macrocyclic arene composed of three chiral 2,6-dihydroxyltriptycene subunits bridged by methylene groups was designed and synthesized. Structural studies showed that the macrocyclic molecule adopts a hex-nut-like structure with a helical chiral cavity and highly fixed conformation. Efficient resolution was achieved through the introduction of chiral auxiliaries to give a couple of enantiopure macrocycles, which exhibited high enantioselectivity towards three pairs of chiral compounds containing a trimethylamino group.

  1. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    PubMed

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  2. Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-amino-indanol by gas phase spectroscopy.

    PubMed

    Bouchet, Aude; Klyne, Johanna; Piani, Giovanni; Dopfer, Otto; Zehnacker, Anne

    2015-10-21

    Chirality effects on the intramolecular interactions strongly depend on the charge and protonation states. Here, the influence of chirality on the structure of the neutral, protonated, and radical cation forms of (1R,2S)-cis- and (1R,2R)-trans-1-amino-2-indanol diastereomers, prototypical molecules with two chiral centers, is investigated in a molecular beam by laser spectroscopy coupled with quantum chemical calculations. The neutral systems are structurally characterised by double resonance IR-UV spectroscopy, while IR-induced dissociation spectroscopy is employed for the charged molecules. The sterical constraints due to the cyclic nature of the molecule emphasise the chirality effects, which manifest themselves by the formation of an intramolecular hydrogen bond in neutral or protonated (1R,2S)-cis-amino-indanol. In contrast, this interaction is not possible in (1R,2R)-trans-amino-indanol. In the protonated species, chirality also influences the spectroscopic probes in the NH/OH stretch range by fine-tuning subtle effects such as the hyperconjugation between the σ(OH) orbital and σ* orbitals localised on the alicyclic ring. The radical cation undergoes opening of the alicyclic ring, which results in an ionisation-induced loss of the chirality effects.

  3. Halogenated silanes, radicals, and cations

    NASA Astrophysics Data System (ADS)

    Wang, Liming; He, Yi-Liang

    2008-09-01

    Quantum chemistry study has been carried out on the structure and energetics of halogenated silanes, radicals, and cations (SiHxXy0,+1, X = F, Cl, Br; x + y = 1-4). The geometries are optimized at B3LYP/6-31+G(2df,p) level. The adiabatic ionization energiess (IEas), relative energetics of cations, proton affinities (PAs) of silanes, and the enthalpies of formation are predicted using G3(CC) model chemistry. Non-classical ion complex structures are found for hydrogenated cations and transition states connecting classical and non-classical structures are also located. The most stable cations for silylene and silyl radicals have their classical divalent and trivalent structures, and those for silanes have non-classical structures except for SiH3Br+ and SiH2Br2+. The non-classical structures for halosilane cations imply difficulty in experimentally measurement of the adiabatic ionization energies using photoionization or photoelectron studies. For SiH3X, SiH2X2, and SiHX3, the G3(CC) adiabatic IEas to classical ionic structures closest to their neutrals agree better with the photoelectron spectroscopic measurements. The transition states between classical and non-classical structures also hamper the photoionization determination of the appearance energies for silylene cations from silanes. The G3(CC) results for SiHx0,+1 agree excellently with the photoionization mass spectrometric study, and the results for fluorinated and chlorinated species also agree with the previous theoretical predictions at correlation levels from BAC-MP4 to CCSD(T)/CBS. The predicted enthalpy differences between SiH2Cl+, SiHCl2+, and SiCl3+ are also in accordance with previous kinetics study. The G3(CC) results show large discrepancies to the collision-induced charge transfer and/or dissociation reactions involving SiFx+ and SiClx+ ions, for which the G3(CC) enthalpies of formation are also significantly differed from the previous theoretical predictions, especially on SiFx+ (x = 2-4). The G3

  4. Chiral exceptional points in metasurfaces

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Chen, Jing; Chong, Y. D.

    2016-09-01

    An exceptional point (EP) is a degeneracy occurring in a non-energy-conserving system, in which two eigenvectors of a non-Hermitian Hamiltonian coalesce. We explore how EPs can be realized in a metamaterial surface, or metasurface, consisting of a pair of lossy coupled linear antennas in each unit cell. EPs appear in the eigenvectors of the transmission matrix by tuning the frequency and the coupling and loss rates of the metasurface. Each EP is associated with the appearance of a circularly polarized transmission eigenstate; hence, within the parameter space of the system, the EPs lie along pairs of curves with distinct chirality. Our results are obtained using finite-difference time-domain simulations, as well as a fitted coupled-mode theory. The coupled-mode theory agrees well with the numerical results and is capable of accurately predicting the EP f curves.

  5. Controlling and imaging chiral spin textures

    NASA Astrophysics Data System (ADS)

    Chen, Gong

    Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials

  6. Personal recollections on chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  7. Chirality in thiolate-protected gold clusters.

    PubMed

    Knoppe, Stefan; Bürgi, Thomas

    2014-04-15

    Over recent years, research on thiolate-protected gold clusters Au(m)(SR)n has gained significant interest. Milestones were the successful determination of a series of crystal structures (Au102(SR)44, Au25(SR)18, Au38(SR)24, Au36(SR)24, and Au28(SR)20). For Au102(SR)44, Au38(SR)24, and Au28(SR)20, intrinsic chirality was found. Strong Cotton effects (circular dichroism, CD) of gold clusters protected by chiral ligands have been reported a long time ago, indicating the transfer of chiral information from the ligand into the cluster core. Our lab has done extensive studies on chiral thiolate-protected gold clusters, including those protected with chiral ligands. We demonstrated that vibrational circular dichroism can serve as a useful tool for the determination of conformation of the ligand on the surface of the cluster. The first reports on crystal structures of Au102(SR)44 and Au38(SR)24 revealed the intrinsic chirality of these clusters. Their chirality mainly arises from the arrangement of the ligands on the surface of the cluster cores. As achiral ligands are used to stabilize the clusters, racemic mixtures are obtained. However, the separation of the enantiomers by HPLC was demonstrated which enabled the measurement of their CD spectra. Thermally induced inversion allows determination of the activation parameters for their racemization. The inversion demonstrates that the gold-thiolate interface is anything but fixed; in contrast, it is rather flexible. This result is of fundamental interest and needs to be considered in future applications. A second line of our research is the selective introduction of chiral, bidentate ligands into the ligand layer of intrinsically chiral gold clusters. The ligand exchange reaction is highly diastereoselective. The bidentate ligand connects two of the protecting units on the cluster surface and thus effectively stabilizes the cluster against thermally induced inversion. A minor (but significant) influence of chiral ligands to

  8. Chiral dynamics with (non)strange quarks

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  9. Chiral Pesticide Pharmacokinetics: A Range of Values

    EPA Science Inventory

    Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...

  10. Chiral Magnetic Effect in Heavy Ion Collisions

    SciTech Connect

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview on the status of such efforts.

  11. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less

  12. Drag suppression in anomalous chiral media

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less

  13. Drag suppression in anomalous chiral media

    SciTech Connect

    Sadofyev, Andrey V.; Yin, Yi

    2016-06-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of a super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.

  14. Chiral nontopological solitons with perturbative quantum pions

    NASA Astrophysics Data System (ADS)

    Williams, A. G.; Dodd, L. R.

    1988-04-01

    We investigate chiral extensions of a broad class of nontopological soliton bag models. Chiral symmetry is restored in a nonlinear realization through the introduction of an elementary pion field. We show in particular that it is consistent to treat the pions as a perturbative quantum field, as is done in the cloudy-bag model. The cloudy-bag model is recovered as a limiting case. A careful comparison is made between predictions of chiral extensions of the Friedberg-Lee and the Nielsen-Patkos color-dielectric nontopological soliton models and the cloudy-bag model. Once the overall distance scale is fixed we find relative insensitivity to the detailed choice of nontopological soliton parameters. We investigate two versions of chiral nontopological solitons, analogous to the surface- and volume-coupled cloudy-bag model, and discuss their relation to current algebra.

  15. Development of safer molecules through chirality.

    PubMed

    Patil, P A; Kothekar, M A

    2006-10-01

    Many of the drugs currently used in medical practice are mixtures of enantiomers (racemates). Many a times, the two enantiomers differ in their pharmacokinetic and pharmacodynamic properties. Replacing existing racemates with single isomers has resulted in improved safety and/or efficacy profile of various racemates. In this review, pharmacokinetic and pharmacodynamic implications of chirality are discussed in brief, followed by an overview of some important chiral switches that have yielded safer alternatives. These include levosalbutamol, S-ketamine, levobupivacaine, S-zopiclone, levocetirizine, S-amlodipine, S-atenolol, S-metoprolol, S-omeprazole, S-pantoprazole and R-ondansetron. Few potential chiral switches under evaluation and some chiral switches that have not been successful are also discussed.

  16. Dominant chiral optical forces in the vicinity of optical nanofibers.

    PubMed

    Alizadeh, M H; Reinhard, B M

    2016-10-15

    Transverse spin angular momentum (SAM) of light and associated transverse chiral optical forces have received tremendous attention recently, as the latter may lead to an optical separation of chiral biomolecules. In this context, the relative magnitude of chiral and non-chiral forces is a challenge when implementing chiral separation schemes. In this work we have demonstrated that, by spatially separating the maxima of transverse spin density from the gradient of field intensity, it is possible to dominate chiral-specific components of the force over non-chiral ones. To that end, we studied optical nanofibers and nanowires as candidates for such a scheme and demonstrated that in their vicinity, chiral optical forces can emerge that are stronger than gradient and scattering forces. This finding may be of significance in the design of improved optical separation schemes for chiral biomolecules.

  17. Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.

    PubMed

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho

    2016-02-04

    Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks.

  18. Cationic electrodepositable coating composition comprising lignin

    DOEpatents

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  19. Chiral extrapolation of SU(3) amplitudes

    SciTech Connect

    Ecker, Gerhard

    2011-05-23

    Approximations of chiral SU(3) amplitudes at NNLO are proposed to facilitate the extrapolation of lattice data to the physical meson masses. Inclusion of NNLO terms is essential for investigating convergence properties of chiral SU(3) and for determining low-energy constants in a controllable fashion. The approximations are tested with recent lattice data for the ratio of decay constants F{sub K}/F{sub {pi}}.

  20. Open problems in understanding the nuclear chirality

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Zhang, S. Q.

    2010-06-01

    Open problems in the interpretation of the observed pair of near-degenerate ΔI = 1 bands with the same parity as the chiral doublet bands are discussed. The ambiguities for the existing fingerprints of the chirality in atomic nuclei and problems in existing theory are discussed, including the description of quantum tunneling in the mean field approximation as well as the deformation, core polarization and configuration of the particle rotor model (PRM). Future developments of the theoretical approach are anticipated.

  1. Nonlinear optical spectroscopy of chiral molecules.

    PubMed

    Fischer, Peer; Hache, François

    2005-10-01

    We review nonlinear optical processes that are specific to chiral molecules in solution and on surfaces. In contrast to conventional natural optical activity phenomena, which depend linearly on the electric field strength of the optical field, we discuss how optical processes that are nonlinear (quadratic, cubic, and quartic) functions of the electromagnetic field strength may probe optically active centers and chiral vibrations. We show that nonlinear techniques open entirely new ways of exploring chirality in chemical and biological systems: The cubic processes give rise to nonlinear circular dichroism and nonlinear optical rotation and make it possible to observe dynamic chiral processes at ultrafast time scales. The quadratic second-harmonic and sum-frequency-generation phenomena and the quartic processes may arise entirely in the electric-dipole approximation and do not require the use of circularly polarized light to detect chirality. They provide surface selectivity and their observables can be relatively much larger than in linear optical activity. These processes also give rise to the generation of light at a new color, and in liquids this frequency conversion only occurs if the solution is optically active. We survey recent chiral nonlinear optical experiments and give examples of their application to problems of biophysical interest.

  2. Staggered heavy baryon chiral perturbation theory

    SciTech Connect

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{sup 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  3. Chirality and chiroptical properties of amyloid fibrils.

    PubMed

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties.

  4. A Molecular Model for Chiral Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  5. Implications of Chirality of Drugs and Excipients in Physical Pharmacy.

    NASA Astrophysics Data System (ADS)

    Duddu, Sarma P.

    1993-01-01

    The interactions of enantiomers of a chiral drug with other chemical entities, which may lead to changes and stereoselective differences in the physicochemical properties of the drug, were investigated. The various interactions described below employed ephedrine, pseudoephedrine and some of their salts, and to a minor extent, propranolol hydrochloride. The interaction of ephedrinium or pseudoephedrinium with the achiral anion, salicylate, yielded crystalline salts with the notable exception of homochiral ephedrine. Racemic ephedrinium salicylate exists as a centrosymmetric crystal (P2_1/n) whereas racemic pseudoephedrinium salicylate is a mixture of homochiral crystals (P2 _1). The inability of ephedrinium to exist as a homochiral salicylate salt is attributed to a high energy conformation of the ephedrinium cation, following conformational analysis. Arising from conformationally favorable interactions, the crystallization of racemic ephedrinium salicylate from aqueous solutions was utilized to improve the enantiomeric purity of a partially resolved mixture of ephedrine from 60% to 82% in one crystallization step. Interaction of the opposite enantiomers of ephedrine and pseudoephedrine in the solid, liquid, solution and vapor state produced the respective racemic compounds. The formation of racemic ephedrine in the solid state as predominantly second order (k = 392 mol^{-1} hr^{-1}), probably mediated by the vapor phase. The formation of racemic pseudoephedrine was predominantly diffusion-controlled in the solid state via an intermediate non-crystalline phase. The interaction with traces of the opposite enantiomer during crystallization of (RS)-(-)-ephedrinium 2-naphthalenesulfonate and (SS)-(+)-pseudoephedrinium salicylate changed pharmaceutically important solid state properties, including dissolution rate. Uptake of the enantiomeric impurity was measured by a new, sensitive HPLC method. The enantiomeric impurity, at mole fractions <= 0.0027 greatly increased the

  6. Integration of inherent and induced chirality into subphthalocyanine analogue

    NASA Astrophysics Data System (ADS)

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-06-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices.

  7. Chiral medium produced by parallel electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Ruggieri, Marco; Peng, Guang Xiong; Chernodub, Maxim

    2016-11-01

    We compute (pseudo)critical temperature, Tc, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale τ, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time τ to be about ≈ 0:1 - 1 fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on Tc. We find Tc to be lowered by the external fields in the chiral medium.

  8. A study of steric chirality: the chiral nematic phase of a system of chiral two-site HGO molecules

    NASA Astrophysics Data System (ADS)

    Varga, Szabolcs; Jackson, George

    2011-03-01

    The liquid crystalline phase behaviour of a chiral two-site hard Gaussian overlap fluid is examined using the well-known Parsons-Lee extension of the theory of Onsager. The hard-core model is constructed such that the vector connecting the centers of two hard Gaussian segments is perpendicular to the long axes of both segments. The microscopic chirality of the particle can be controlled with the dihedral angle between the long axes of the hard Gaussian segments, the distance between the two segments, and the length-to-breath ratios of each segment. In the framework of the Parsons-Lee approach three different types of phases are considered, namely, the isotropic liquid state, and the nematic and the chiral nematic (cholesteric) liquid crystalline states. For simplicity, the orientation of the particles is restricted to the plane perpendicular to the twist axis, and the particles do not have internal freedom to rotate around their main symmetry axes. The geometric condition for the formation of a chiral nematic phase, the properties of the helical structure, and the phase boundary of the ordering transition are determined by means of a free energy minimization. It is shown that steric (shape) chirality always gives rise to a helical structure in the nematic phase, and that the low density chiral systems can undergo a transition from an isotropic liquid to a twisted nematic phase on increasing the density. Analytical expressions are obtained for the twist period (pitch) in the limit of parallel stacking of the rod-like segments in layers normal to the helical axis, which are only valid for systems characterized by weak chiral strengths. A key finding of the numerical calculations is that the pitch is very sensitive to the segment separation, but not to the density or aspect ratio. It is interesting to note that the inverse of the pitch is predicted to depend linearly on the dihedral angle in all of the cases studied.

  9. Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Nelson, Bradley J.; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  10. Chiral polymerization in open systems from chiral-selective reaction rates.

    PubMed

    Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari

    2012-08-01

    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.

  11. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  12. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality.

  13. Diastereoselective aziridination of chiral electron-deficient olefins with N-chloro-N-sodiocarbamates catalyzed by chiral quaternary ammonium salts.

    PubMed

    Murakami, Yuta; Takeda, Youhei; Minakata, Satoshi

    2011-08-05

    Chiral quaternary ammonium salt-catalyzed diastereoselective aziridination of electron-deficient olefins that possess a chiral auxiliary with N-chloro-N-sodiocarbamates was developed. The key to high stereoselectivity was found to be the employment of the "matching" stereochemical combination of chiral auxiliary/ammonium salt. For example, when 3-phenyl-(4R,7S)-4-methyl-7-isopropyl-4,5,6,7-tetrahydroindazole (L-menthopyrazole) as a chiral auxiliary and a cinchonidine-derived chiral ammonium salt as a catalyst were applied to the reaction system, perfect diastereoselectivity was realized. Furthermore, the preparation of enantiomerically pure aziridines by removal of the chiral auxiliary was demonstrated.

  14. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    NASA Astrophysics Data System (ADS)

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-12-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule.

  15. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  16. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    PubMed

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-12-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule.

  17. Phase-transfer-catalyzed asymmetric synthesis of axially chiral anilides.

    PubMed

    Liu, Kun; Wu, Xiangfei; Kan, S B Jennifer; Shirakawa, Seiji; Maruoka, Keiji

    2013-12-01

    Catalytic asymmetric synthesis of axially chiral o-iodoanilides and o-tert-butylanilides as useful chiral building blocks was achieved by means of binaphthyl-modified chiral quaternary ammonium-salt-catalyzed N-alkylations under phase-transfer conditions. The synthetic utility of axially chiral products was demonstrated in various transformations. For example, axially chiral N-allyl-o-iodoanilide was transformed to 3-methylindoline by means of radical cyclization with high chirality transfer from axial chirality to C-centered chirality. Furthermore, stereochemical information on axial chirality in o-tert-butylanilides could be used as a template to control the stereochemistry of subsequent transformations. The transition-state structure of the present phase-transfer reaction was discussed on the basis of the X-ray crystal structure of ammonium anilide, which was prepared from binaphthyl-modified chiral ammonium bromide and o-iodoanilide. The chiral tetraalkylammonium bromide as a phase-transfer catalyst recognized the steric difference between the ortho substituents on anilide to obtain high enantioselectivity. The size and structural effects of the ortho substituents on anilide were investigated, and a wide variety of axially chiral anilides that possess various functional groups could be synthesized with high enantioselectivities. This method is the only general way to access a variety of axially chiral anilides in a highly enantioselective fashion reported to date.

  18. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films.

    PubMed

    Natarajan, Bharath; Emiroglu, Caglar; Obrzut, Jan; Fox, Douglas M; Pazmino, Beatriz; Douglas, Jack F; Gilman, Jeffrey W

    2017-04-10

    A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 ○C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 nm to 600 nm. SEM imaging, and UV-Vis-NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a non-contact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC "matrix". In the case of hydrophilic Na modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (spherical to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium modified CNC films was found to reduce the pitch considerably, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC-water interactions as well as on CNC self-assembly mechanisms. More broadly we believe that

  19. Enantioconvergent Nucleophilic Substitution Reaction of Racemic Alkyne-Dicobalt Complex (Nicholas Reaction) Catalyzed by Chiral Brønsted Acid.

    PubMed

    Terada, Masahiro; Ota, Yusuke; Li, Feng; Toda, Yasunori; Kondoh, Azusa

    2016-08-31

    Catalytic enantioselective syntheses enable a practical approach to enantioenriched molecules. While most of these syntheses have been accomplished by reaction at the prochiral sp(2)-hybridized carbon atom, little attention has been paid to enantioselective nucleophilic substitution at the sp(3)-hybridized carbon atom. In particular, substitution at the chiral sp(3)-hybridized carbon atom of racemic electrophiles has been rarely exploited. To establish an unprecedented enantioselective substitution reaction of racemic electrophiles, enantioconvergent Nicholas reaction of an alkyne-dicobalt complex derived from racemic propargylic alcohol was developed using a chiral phosphoric acid catalyst. In the present enantioconvergent process, both enantiomers of the racemic alcohol were transformed efficiently to a variety of thioethers with high enantioselectivity. The key to achieving success is dynamic kinetic asymmetric transformation (DYKAT) of enantiomeric cationic intermediates generated via dehydroxylation of the starting racemic alcohol under the influence of the chiral phosphoric acid catalyst. The present fascinating DYKAT involves the efficient racemization of these enantiomeric intermediates and effective resolution of these enantiomers through utilization of the chiral conjugate base of the phosphoric acid.

  20. Chiral dynamics and peripheral transverse densities

    SciTech Connect

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  1. Chiral pesticides: identification, description, and environmental implications.

    PubMed

    Ulrich, Elin M; Morrison, Candice N; Goldsmith, Michael R; Foreman, William T

    2012-01-01

    Of the 1,693 pesticides considered in this review, 1,594 are organic chemicals, 47 are inorganic chemicals, 53 are of biological origin (largely non chemical; insect,fungus, bacteria, virus, etc.), and 2 have an undetermined structure. Considering that the EPA's Office of Pesticide Programs found 1,252 pesticide active ingredients(EPA Pesticides Customer Service 2011), we consider this dataset to be comprehensive; however, no direct comparison of the compound lists was undertaken. Of all pesticides reviewed, 482 (28%) are chiral; 30% are chiral when considering only the organic chemical pesticides. A graph of this distribution is shown in Fig. 7a. Each pesticide is classified with up to three pesticidal utilities (e.g., fungicide, plant growth regulator, rodenticide, etc.), taken first from the Pesticide Manual as a primary source, and the Compendium of Common Pesticide Names website as a secondary source. Of the chiral pesticides, 195 (34%) are insecticides (including attractants, pheromones, and repellents), 150 (27%) are herbicides (including plant growth regulators and herbicide safeners), 104 (18%) are fungicides, and 55 (10%)are acaricides. The distribution of chiral pesticides by utility is shown in Fig. 7b,including categories of pesticides that make up 3%t or less of the usage categories.Figure 7c shows a similar distribution of non chiral pesticide usage categories. Of the chiral pesticides, 270 (56%) have one chiral feature, 105 (22%) have two chiral features, 30 (6.2%) have three chiral features, and 29 (6.0%) have ten or more chiral features.Chiral chemicals pose many difficulties in stereospecific synthesis, characterization, and analysis. When these compounds are purposely put into the environment,even more interesting complications arise in tracking, monitoring, and predicting their fate and risks. More than 475 pesticides are chiral, as are other chiral contaminants such as pharmaceuticals, polychlorinated biphenyls, brominated flame retardants

  2. Diffusion of active chiral particles

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.

    2016-12-01

    The diffusion of chiral active Brownian particles in three-dimensional space is studied analytically, by consideration of the corresponding Fokker-Planck equation for the probability density of finding a particle at position x and moving along the direction v ̂ at time t , and numerically, by the use of Langevin dynamics simulations. The analysis is focused on the marginal probability density of finding a particle at a given location and at a given time (independently of its direction of motion), which is found from an infinite hierarchy of differential-recurrence relations for the coefficients that appear in the multipole expansion of the probability distribution, which contains the whole kinematic information. This approach allows the explicit calculation of the time dependence of the mean-squared displacement and the time dependence of the kurtosis of the marginal probability distribution, quantities from which the effective diffusion coefficient and the "shape" of the positions distribution are examined. Oscillations between two characteristic values were found in the time evolution of the kurtosis, namely, between the value that corresponds to a Gaussian and the one that corresponds to a distribution of spherical shell shape. In the case of an ensemble of particles, each one rotating around a uniformly distributed random axis, evidence is found of the so-called effect "anomalous, yet Brownian, diffusion," for which particles follow a non-Gaussian distribution for the positions yet the mean-squared displacement is a linear function of time.

  3. Improved Measure of Local Chirality

    SciTech Connect

    Terrence Draper; Andrei Alexandru; Ying Chen; Shao-Jing Dong; Ivan Horvath; Frank Lee; Nilmani Mathur; Harry B. Thacker; Sonali Tamhankar; Jianbo Zhang

    2004-06-01

    It is popular to probe the structure of the QCD vacuum indirectly by studying individual fermion eigenmodes, because this provides a natural way to filter out UV fluctuations. The double-peaking in the distribution of the local chiral orientation parameter (X) has been offered as evidence, by some, in support of a particular model of the vacuum. Here we caution that the X-distribution peaking varies significantly with various versions of the definition of X. Furthermore, each distribution varies little from that resulting from a random reshuffling of the left-handed (and independently the right-handed) fields, which destroys any QCD-induced left-right correlation; that is, the double-peaking is mostly a phase-space effect. We propose a new universal definition of the X parameter whose distribution is uniform for randomly reshuffled fields. Any deviations from uniformity for actual data can then be directly attributable to QCD-induced dynamics. We find that the familiar double peak disappears.

  4. METHODS DEVELOPMENT FOR THE ANALYSIS OF CHIRAL PESTICIDES

    EPA Science Inventory

    Chiral compounds exist as a pair of nonsuperimposable mirror images called enantiomers. Enantiomers have identical physical-chemical properties, but their interactions with other chiral molecules, toxicity, biodegradation, and fate are often different. Many pharmaceutical com...

  5. PESTICIDE EXPOSURE AND CHIRAL CHEMISTRY: THE PYRETHROID FAMILY

    EPA Science Inventory

    Advances in chiral chromatography significantly advanced the ability to analyze individual enantiomers of chiral compounds. These techniques are being employed at the U.S. EPA for human exposure and ecological research studies. Enantiomer fractions (EFs) were measured for cisp...

  6. Supramolecular helices: chirality transfer from conjugated molecules to structures.

    PubMed

    Yang, Yang; Zhang, Yajie; Wei, Zhixiang

    2013-11-13

    Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π-conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self-assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called "chiral electronics" is expected to gain wide popularity in the near future.

  7. A web site for calculating the degree of chirality.

    PubMed

    Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David

    2011-01-01

    The web site, http://www.csm.huji.ac.il/, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures.

  8. {eta}-{eta}{sup '}--glue Mixing from the Chiral Lagrangian

    SciTech Connect

    Mathieu, Vincent; Vento, Vicente

    2011-05-23

    The {eta}-{eta}{sup '} mixing from the chiral Lagrangian is reviewed. It is shown how the Feldman-Kroll-Stech ansatz can be derived from the chiral Lagrangian. The inclusion of the glueball is also discussed.

  9. Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters.

    PubMed

    Wang, Yizhan; Li, Haolong; Wu, Che; Yang, Yang; Shi, Lei; Wu, Lixin

    2013-04-22

    Managing the blues: Chiral heteropoly blues of achiral polyoxometalate clusters were created through an intermolecular interaction with a chiral organic compound. Controllable chiroptical switching of the cluster complexes was possible through reversible photochromism of the polyoxometalates (see picture).

  10. Preparation of a New Chiral Stationary Phase Based on Macrocyclic Amide Chiral Selector for the Liquid Chromatographic Chiral Separations.

    PubMed

    Sung, Ji Yeong; Choi, Seung Hyuck; Hyun, Myung Ho

    2016-03-01

    A new chiral stationary phase (CSP) based on macrocyclic amide receptor was prepared starting from (1R,2R)-1,2-diphenylethylenediamine. The new CSP was successfully applied to the resolution of various N-(substituted benzoyl)-α-amino amides with reasonably good separation factors and resolutions (α = 1.75 ~ 2.97 and RS  = 2.89 ~ 6.82 for 16 analytes). The new CSP was also applied to the resolution of 3-substituted 1,4-benzodiazepin-2-ones and some diuretic chiral drugs including bendroflumethiazide and methylchlothiazide and metolazone. The resolution results for 3-substituted 1,4-benzodiazepin-2-ones and some diuretic chiral drugs were also reasonably good.

  11. Rotating pigment cells exhibit an intrinsic chirality.

    PubMed

    Yamanaka, Hiroaki; Kondo, Shigeru

    2015-01-01

    In multicellular organisms, cell properties, such as shape, size and function are important in morphogenesis and physiological functions. Recently, 'cellular chirality' has attracted attention as a cellular property because it can cause asymmetry in the bodies of animals. In recent in vitro studies, the left-right bias of cellular migration and of autonomous arrangement of cells under some specific culture conditions were discovered. However, it is difficult to identify the molecular mechanism underlying their intrinsic chirality because the left-right bias observed to date is subtle or is manifested in the stable orientation of cells. Here, we report that zebrafish (Danio rerio) melanophores exhibit clear cellular chirality by unidirectional counterclockwise rotational movement under isolated conditions without any special settings. The chirality is intrinsic to melanophores because the direction of the cellular rotation was not affected by the type of extracellular matrix. We further found that the cellular rotation was generated as a counter action of the clockwise movement of actin cytoskeleton. It suggested that the mechanism that directs actin cytoskeleton in the clockwise direction is pivotal for determining cellular chirality.

  12. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  13. [Preparations and biological properties of chiral compounds].

    PubMed

    Sinko, Goran

    2005-12-01

    Enantiomers of chiral compounds may express various biological activities and also different toxicities. Examples of different pharmacological effects of some chiral drugs such as fluoxetine, penicillamine, ibuprofen and albuterol are provided in this paper. Due to possible differences in activity, the chiral drugs are required to be pure enantiomeric compounds in order to be more effective and safer to use. In the laboratory, enantiomers are mainly synthesized as racemates (an equimolar mixture of enantiomers) while in biological pathways only one enantiomeric form is produced, such as amino acids, sugars and lipids. This paper presents the principles of chirality, general information about enantiomers and their biological aspects. It gives an outline of stereoselective methods for chromatographic resolution of enantiomers with stereoselective protein stationary phases, i.e. capillary electrochromatography (CEC) and high performance liquid chromatography (HPLC). The use of enzyme biotransformations (hydrolysis, oxidation and reduction) in chiral syntheses of carboxyl-, phosphoryl- or beta-hydroxy esters, alcohols, epoxides and cis-carboxyl sulphoxide is described. This article also includes an example of lipase stereoselectivity improvement by amino acid mutations within the enzyme active site.

  14. On the chiral imbalance and Weibel instabilities

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Kaw, P. K.

    2016-06-01

    We study the chiral-imbalance and the Weibel instabilities in presence of the quantum anomaly using the Berry-curvature modified kinetic equation. We argue that in many realistic situations, e.g. relativistic heavy-ion collisions, both the instabilities can occur simultaneously. The Weibel instability depends on the momentum anisotropy parameter ξ and the angle (θn) between the propagation vector and the anisotropy direction. It has maximum growth rate at θn = 0 while θn = π / 2 corresponds to a damping. On the other hand the pure chiral-imbalance instability occurs in an isotropic plasma and depends on difference between the chiral chemical potentials of right and left-handed particles. It is shown that when θn = 0, only for a very small values of the anisotropic parameter ξ ∼ξc, growth rates of the both instabilities are comparable. For the cases ξc < ξ ≪ 1 or ξ ≳ 1 at θn = 0, the Weibel modes dominate over the chiral-imbalance instability if μ5 / T ≤ 1. However, when μ5 / T ≥ 1, it is possible to have dominance of the chiral-imbalance modes at certain values of θn for an arbitrary ξ.

  15. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis

    PubMed Central

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC. PMID:22649749

  16. From analytical methods to large scale chiral supercritical fluid chromatography using chlorinated chiral stationary phases.

    PubMed

    Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Mathur, Arvind

    2016-02-05

    While traditional non-chlorinated Cellulose- and Amylose-derivatized phases have been used successfully in supercritical fluid chromatography (SFC) to resolve a broad variety of chiral compounds, some chiral pharmaceutical compounds are not well resolved on these traditional chiral stationary phases (CSP) due to the lack of chiral selectivity. Since there are no universal CSP to resolve all chiral compounds, chlorinated CSP can be complementary to the non-chlorinated CSP. Chlorinated CSP such as 4-Chloro-3-methylphenyl-carbamatecellulose (Lux-Cellulose-4), 3-Chloro-4-methylphenyl-carbamatecellulose (Lux-Cellulose-2), 5-Chloro-2-methylphenyl-carbamateamylose (Lux-Amylose-2) and immobilized 3,5-dichlorophenyl-carbamatecellulose (Chiralpak IC) have provided a range of chiral recognition mechanisms which have allowed the authors to successfully achieve chiral SFC resolution on several structurally diverse compounds, which are not well resolved in the non-chlorinated CSP. In addition, chlorinated Lux-Cellulose-4, Chiralpak IC and Lux-Amylose-2 have enabled us to utilize non-alcohol solvents as sample diluents and as co-solvents to significantly improve compound solubility and selectivity. This article will discuss the challenges associated with several SFC applications on both coated and immobilized chlorinated CSP to deliver high-quality drug candidates in large quantity. The use of dichloromethane in both sample preparation and as co-solvent in CO2 to increase sample solubility will be presented in preparative example #2 and #3.

  17. Influence of Axial and Point Chirality in the Chiral Self-Assembly of Twin N-Annulated Perylenecarboxamides.

    PubMed

    Buendía, Julia; Greciano, Elisa E; Sánchez, Luis

    2015-12-18

    The synthesis of three bis(N-annulated perylenecarboxamides) endowed with achiral or chiral side chains is reported. The restricted rotation of the perylene moieties yields atropisomers that can be separated by chiral HPLC. The CD spectra of the six stereoisomers show a dichroic pattern in a good solvent that changes drastically upon adding a poor solvent that favors the aggregation. The cooperative character of the supramolecular polymerization mechanism of 1-3 has been determined by denaturation experiments, which reveal that the formation of homochiral aggregates is favored over the formation of heterochiral aggregates. A complete set of amplification of chirality experiments have been carried out, revealing the preponderance of axial chirality over point chirality. The results presented herein shed relevant light on the structural conditions exhibited by molecular units endowed with different elements of asymmetry to generate chiral supramolecular structures and the supremacy of axial chirality over point chirality in the origin of homochirality.

  18. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  19. Chirality Change by Grinding Crystals in Solution

    SciTech Connect

    Viedma, Cristobal

    2010-07-22

    One of the greatest unsolved problems in chemistry is the origin of homochirality in the biosphere, that is, the fact that l-amino acids and d-sugars dominate in biology, while laboratory experiments with stereoselective reactions only produce racemic mixtures. Several models have been proposed to address the question of how enantiomerically pure solutions or crystalline phases could have emerged from a presumably racemic prebiotic world. Here we show that two populations of amino acid crystals of 'left' and 'right' hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in our systems, under grinding, in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking has become firmly established but the underlying mechanism is being debated and we have no definitive answer.

  20. Chiral discrimination in platinum anticancer drugs.

    PubMed Central

    Benedetti, Michele; Malina, Jaroslav; Kasparkova, Jana; Brabec, Viktor; Natile, Giovanni

    2002-01-01

    In this article we review the biological activity of analogs of the antitumor drug cisplatin that contain chiral amine ligands. Interaction with DNA and formation of cross-links with adjacent purine bases are considered to be the crucial steps in the antitumor activity of this class of complexes. Because double-helical DNA has a chiral structure, interaction with enantiomeric complexes of platinum should lead to diastereomeric adducts. It has been demonstrated that DNA cross-links of platinum complexes with enantiomeric amine ligands not only can exhibit different conformational features but also can be processed differently by the cellular machinery as a consequence of these conformational differences. These results expand the general knowledge of how the stereochemistry of the platinum-DNA adduct can influence the cell response and contribute to understanding the processes that are crucial for antitumor activity. The steric requirements of the chiral ligands, in terms of configuration and flexibility, are also elucidated. PMID:12426131

  1. Subsecond chiral separations on a microchip.

    PubMed

    Piehl, Natalia; Ludwig, Martin; Belder, Detlev

    2004-11-01

    Fast chiral separation of DNS-amino acids could be realized using microchip electrophoresis with fluorescence detection. For this purpose, highly sulfated cyclodextrins (HS-gamma-CD) were used as chiral selectors enabling high selectivity. Even subsecond separation of DNS-tryptophan, DNS-norleucine, DNS-phenylalanine, DNS-methionine, and DNS-aspartic acid could be achieved. Baseline separation could be accomplished within 720 ms, which is the fastest separation of enantiomers reported to date. A more complex mixture consisting of three chiral DNS-amino acids could be separated within 3.3 s utilizing a separation length of only 7 mm and an electrical field strength of 2012 V/cm.

  2. Spontaneous chiral symmetry breaking in metamaterials.

    PubMed

    Liu, Mingkai; Powell, David A; Shadrivov, Ilya V; Lapine, Mikhail; Kivshar, Yuri S

    2014-07-18

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  3. Collective resonant dynamics of the chiral spin soliton lattice in a monoaxial chiral magnetic crystal

    NASA Astrophysics Data System (ADS)

    Goncalves, F. J. T.; Sogo, T.; Shimamoto, Y.; Kousaka, Y.; Akimitsu, J.; Nishihara, S.; Inoue, K.; Yoshizawa, D.; Hagiwara, M.; Mito, M.; Stamps, R. L.; Bostrem, I. G.; Sinitsyn, V. E.; Ovchinnikov, A. S.; Kishine, J.; Togawa, Y.

    2017-03-01

    The magnetic resonance properties of microsized monoaxial chiral crystals of CrNb3S6 are investigated. We observed that the resonance of the chiral soliton lattice is sensitive to the polarization of the driving microwave field. When the microwave field is parallel to the helical axis, the resonance is symmetric with regards to the magnetic field direction. In contrast, asymmetric field dependence emerges when the microwave field is perpendicular to the helical axis. The robustness of the chiral magnetic order, due to topological protection, allows tuning the resonance frequency in ways hardly accessible using nanopatterned films.

  4. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    DOEpatents

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  5. Liquid Crystalline Polymers by Cationic Polymerization,

    DTIC Science & Technology

    1986-01-01

    cation mechanism of Scholl reaction the Lewis acid and by the benzylic carbocations . Hydride transfer to benzylic carbenium ions leads to methyl groups...reviewed. Examples from ring-opening, carbocationic , and radical-cation poly- merizations and oligomerizations are discussed. Accesion For DrIC TAB3...Examples from ring- opening, carbocationic , and radical-cation polymeri- zations and oligomerizations are discussed. INTRODUCTION This paper will

  6. Separation of enantiomers of ephedrine by capillary electrophoresis using cyclodextrins as chiral selectors: comparative CE, NMR and high resolution MS studies.

    PubMed

    Vega, Elena D; Lomsadze, Ketevan; Chankvetadze, Lali; Salgado, Antonio; Scriba, Gerhard K E; Calvo, Enrique; López, Juan A; Crego, Antonio L; Marina, Maria L; Chankvetadze, Bezhan

    2011-10-01

    The enantiomer migration order (EMO) of ephedrine was investigated in the presence of various CDs in CE. The molecular mechanisms of chiral recognition were followed for the ephedrine complexes with native α- and β-CD and heptakis(2,3-di-O-acetyl-6-O-sulfo)-β-CD (HDAS-β-CD) by CE, NMR spectroscopy and high-resolution MS. Minor structural differences were observed between the complexes of ephedrine with α- and β-CD although the migration order of enantiomers was opposite when these two CDs were applied as chiral selectors in CE. The EMO was also opposite between β-CD and HDAS-β-CD. Significant structural differences were observed between ephedrine complexes with the native CDs and HDAS-β-CD. The latter CD was advantageous as chiral CE selector not only due to its opposite electrophoretic mobility compared with that of the cationic chiral analyte, but also primarily due to its enhanced chiral recognition ability towards the enantiomers of ephedrine.

  7. Chiral Molecules Revisited by Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    2014-06-01

    Chiral molecules have fascinated chemists for more than 150 years. While their physical properties are to a very good approximation identical, the two enantiomers of a chiral molecule can have completely different (bio)chemical activities. For example, the right-handed enantiomer of carvone smells of spearmint while the left-handed one smells of caraway. In addition, the active components of many drugs are of one specific handedness, such as in the case of ibuprofen. However, in nature as well as in pharmaceutical applications, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) remains a challenging task for analytical chemistry, despite its importance for modern drug development. We present here a new method of differentiating enantiomers of chiral molecules in the gas phase based on broadband rotational spectroscopy. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the combined quantity, μ_a μ_b μ_c, which is of opposite sign between enantiomers. It thus also provides information on the absolute configuration of the particular enantiomer. Furthermore, the signal amplitude is proportional to the ee. A significant advantage of our technique is its inherent mixture compatibility due to the fingerprint-like character of rotational spectra. In this contribution, we will introduce the technique and present our latest results on chiral molecule spectroscopy and enantiomer differentiation. D. Patterson, M. Schnell, J.M. Doyle, Nature 497 (2013) 475-477 V.A. Shubert, D. Schmitz, D. Patterson, J.M. Doyle, M. Schnell, Angewandte Chemie International Edition 53 (2014) 1152-1155

  8. Revealing atropisomer axial chirality in drug discovery.

    PubMed

    LaPlante, Steven R; Edwards, Paul J; Fader, Lee D; Jakalian, Araz; Hucke, Oliver

    2011-03-07

    An often overlooked source of chirality is atropisomerism, which results from slow rotation along a bond axis due to steric hindrance and/or electronic factors. If undetected or not managed properly, this time-dependent chirality has the potential to lead to serious consequences, because atropisomers can be present as distinct enantiomers or diastereoisomers with their attendant different properties. Herein we introduce a strategy to reveal and classify compounds that have atropisomeric chirality. Energy barriers to axial rotation were calculated using quantum mechanics, from which predicted high barriers could be experimentally validated. A calculated rotational energy barrier of 20 kcal mol(-1) was established as a suitable threshold to distinguish between atropisomers and non-atropisomers with a prediction accuracy of 86%. This methodology was applied to subsets of drug databases in the course of which atropisomeric drugs were identified. In addition, some drugs were exposed that were not yet known to have this chiral attribute. The most valuable utility of this tool will be to predict atropisomerism along the drug discovery pathway. When used in concert with our compound classification scheme, decisions can be made during early discovery stages such as "hit-to-lead" and "lead optimization," to foresee and validate the presence of atropisomers and to exercise options of removing, further stabilizing, or rendering the chiral axis of interest more freely rotatable via SAR design, thereby decreasing this potential liability within a compound series. The strategy can also improve drug development plans, such as determining whether a drug or series should be developed as a racemic mixture or as an isolated single compound. Moreover, the work described herein can be extended to other chemical fields that require the assessment of potential chiral axes.

  9. Chirality: a blueprint for the future.

    PubMed

    Burke, D; Henderson, D J

    2002-04-01

    The chirality that is inherent in the enzyme systems of living organisms results in an abundance of enantiopure organic molecules in the living world. In addition to the optical properties first noticed by Pasteur, stereospecific interactions at recognition sites result in differences in both biological and toxicological effects. This fact underlies the continuing growth in chiral chemistry, rooted as it is in fundamental biochemistry. The pharmaceutical industry has undergone a strategic shift and embraced the wide spectrum of asymmetrical synthetic methods now available. The use of these processes in developmental synthesis and large-scale manufacturing has provided new challenges in drug discovery, motivated by a desire to improve industrial efficacy and decrease the time from the conception of a new drug to the market. The economic impact of the industrial production of chiral drugs is now huge--more than 50% of the 500 top-selling drugs were single-enantiomers in 1997. Sales have continued to increase by more than 20% for the past 6 yr and worldwide annual sales of enantiomeric drugs exceeded US$100 billion for the first time in the year 2000, chiral drugs representing close to one-third of all sales worldwide. While some 'chiral switches' may be of less apparent benefit, or indeed detrimental in some cases, encouragement by the regulatory agencies and the ability to extend the life cycle of a drug coming off patent promotes the trend. However, it may turn out to be the ability to provide chiral templates, and thereby attack the key targets of selectivity and specificity, that will lead to the greatest benefits. Research into new chemical entities that can interact specifically with enzyme families may potentially lead to new therapies for complex disease processes. As Richards has stated, the approach is designed to create a made to measure product, rather than one off the peg.

  10. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    The holy grail of astrobiology is the discovery of a second sample of life that has emerged de novo, independently of life on Earth (as opposed to extraterrestrial life that shares a common origin with terrestrial life via a panspermia process). It would then be possible to separate aspects of biology that are lawlike and expected from those that are accidental and contingent, and thus to address the question of whether the laws of nature are intrinsically bio-friendly. The popular assumption that life is an almost inevitable product of physics and chemistry, and therefore widespread in the universe, is known as biological determinism. It remains an open question whether biological determinism is correct, as there is little direct evidence in its favour from fundamental physics. Homochirality is a deep property of known life, and provides an important test case for the competing ideas of contingency versus lawfulness - or chance versus necessity. Conceivably, a chiral signature is imprinted on life by fundamental physics via parity-violating mixing of the weak and electromagnetic interactions. If so, homochirality would be universal and lawlike. On the other hand, it may be the result of chance: a random molecular accident during the pre-biotic phase. If the latter explanation is correct, one could expect that a second sample of life may have opposite chiral signature even if it resembled known life in its basic biochemistry. There is thus a curious obverse relationship between chirality and biogenesis in relation to biological determinism. If the chiral signature of life is the product of chance, we may hope to discover "mirror life" (i.e. organisms with opposite chiral signature) as evidence of a second genesis, and the latter would establish that life's emergence from non-life is quasi-deterministic. On the other hand, if the chiral signature is determined by fundamental physics, then it may be much harder to establish an independent origin for extraterrestrial

  11. Probing Chiral Interactions in Light Nuclei

    SciTech Connect

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  12. Surface stress of stepped chiral metal surfaces.

    PubMed

    Blanco-Rey, M; Pratt, S J; Jenkins, S J

    2009-01-16

    The use of surface stress as a physical probe for examining chiral effects in surfaces is proposed. First-principles calculations of the surface stress in stepped achiral and chiral bcc metal surfaces (Fe, Mo, and W) are presented. When no mirror symmetry is present, principal stress orientations are unconstrained; nevertheless, we find that the stress is smoothly varying along a suitably chosen stereographic zone of surfaces. Stress ellipses for Fe differ qualitatively from those of Mo and W, suggesting that its surface stress has a distinct origin.

  13. Chiral Thermoelectrics with Quantum Hall Edge States

    NASA Astrophysics Data System (ADS)

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.

    2015-04-01

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  14. Chirality sensing with stereodynamic biphenolate zinc complexes.

    PubMed

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods.

  15. Microstrip antennas and arrays on chiral substrates

    NASA Astrophysics Data System (ADS)

    Pozar, David M.

    1992-10-01

    Results are presented for isolated microstrip antennas and infinite arrays of microstrip antennas printed on chiral substrates, computed from full-wave spectral domain moment method solutions. Data for resonant length, impedance, directivity, efficiency, cross-polarization level, and scan performance are given, and compared to results obtained for a dielectric substrate of the same thickness and permittivity. It is concluded that, from the point of view of antenna characteristics, there does not seem to be any advantage to using chiral antenna substrates, while there are disadvantages in terms of increased cross-pol levels and losses due to surface wave excitation.

  16. Chiral solidification of a phospholipid monolayer

    NASA Technical Reports Server (NTRS)

    Langer, J. S.

    1985-01-01

    The formation of chiral solidlike domains observed by Weiss and McConnell (1984) in monolayers of depalmitoylphosphatidylcholine (DPPC) floating on an air-water interface is investigated theoretically. It is proposed that the diffusion tensor for the two-dimensional fluidlike phase of the DPPC molecules has a chiral component acting perpendicular to the concentration gradient and coupled to the rotational motion of a pinwheellike molecule by the viscous forces. Diagrams are provided, and numerical estimates of the forces involved are shown to be in agreement with the observed behavior of the structures.

  17. Generalized Bloch theorem and chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  18. Chirality and biaxiality in cholesteric liquid crystals.

    PubMed

    Dhakal, Subas; Selinger, Jonathan V

    2011-02-01

    We investigate the statistical mechanics of chirality and biaxiality in liquid crystals through a variety of theoretical approaches, including Monte Carlo simulations, lattice mean-field theory, and Landau theory. All of these calculations show that there is an important interaction between cholesteric twist and biaxial order: The twist acts as a field on the biaxial order, and conversely, the biaxial order increases the twist, that is, reduces the pitch. We model the behavior of chiral biaxial liquid crystals as a function of temperature and discuss how the predictions can be tested in experiments.

  19. Long-range interactions between chiral molecules

    SciTech Connect

    Salam, A.

    2015-01-22

    Results of molecular quantum electrodynamics calculations of discriminatory interactions between two chiral molecules undergoing resonance energy transfer, van der Waals dispersion, and optical binding are presented. A characteristic feature of the theory is that the radiation field is quantized with signals consequently propagating between centres at the speed of light. In order to correctly describe optically active chromophores, it is necessary to include magnetic as well as electric dipole coupling terms in the time-dependent perturbation theory computations. Recent work investigating the effect of an absorptive and dispersive chiral medium on the rate of migration of energy will also be discussed.

  20. Chiral pesticides: Identification, description, and environmental implications

    USGS Publications Warehouse

    Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.

    2012-01-01

    Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.

  1. Supernovae, neutron stars and biomolecular chirality.

    PubMed

    Bonner, W A; Rubenstein, E

    1987-01-01

    Recent theoretical and experimental investigations of the origin of biomolecular chirality are reviewed briefly. Biotic and abiotic theories are evaluated critically with the conclusion that asymmetric photochemical processes with circulary polarized light (CPL), particularly asymmetric photolyses, constitute the most viable mechanisms. Solar CPL sources appear too weak and random to be effective. We suggest an alternative CPL source, namely, the synchrotron radiation from the neutron star remnants of supernova explosions. This could asymmetrically process racemic compounds in the organic mantles of the dust grains in interstellar clouds, and the resulting chiral molecules could be transferred to Earth by cold accretion as the solar system periodically traverses these interstellar clouds.

  2. Terahertz wave emission from plasmonic chiral metasurfaces

    NASA Astrophysics Data System (ADS)

    Matsui, Takahiro; Tomita, Satoshi; Asai, Motoki; Tadokoro, Yuzuru; Takano, Keisuke; Nakajima, Makoto; Hangyo, Masanori; Yanagi, Hisao

    2016-03-01

    Plasmonic chiral metasurfaces with pinwheel-like structures are fabricated on silver films using a focused ion-beam milling technique. In time-domain spectroscopy, we observe terahertz (THz) wave emission from metasurfaces irradiated by a near-infrared Ti:sapphire ultrashort pulsed laser. The origin of the THz wave generation is likely to be tunnelling ionization accompanied with photoelectron acceleration by ponderomotive force. Numerical simulation is carried out toward improvement of the chiral metasurfaces for better emission of circularly polarized THz waves.

  3. Chiral thermoelectrics with quantum Hall edge states.

    PubMed

    Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N

    2015-04-10

    The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.

  4. Band structure controlled by chiral imprinting

    NASA Astrophysics Data System (ADS)

    Castro-Garay, P.; Adrian Reyes, J.; Ramos-Garcia, R.

    2007-09-01

    Using the configuration of an imprinted cholesteric elastomer immersed in a racemic solvent, the authors find the solution of the boundary-value problem for the reflection and transmission of incident optical waves due to the elastomer. They show a significant width reduction of the reflection band for certain values of nematic penetration depth, which depends on the volume fraction of molecules from the solvent, whose handedness is preferably absorbed. The appearance of nested band gaps of both handednesses during the sorting mixed chiral process is also obtained. This suggests the design of chemically controlled optical filters and optically monitored chiral pumps.

  5. Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography.

    PubMed

    Wistuba, D; Schurig, V

    2000-04-14

    Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography (CEC) is achieved with open-tubular capillaries (o-CEC), with packed capillaries (p-CEC) or with monolithic capillaries. In o-CEC, capillaries are coated with a thin film containing cyclodextrin derivatives, cellulose, proteins, poly-terguride or molecularly imprinted polymers as chiral selectors. In p-CEC, typical chiral HPLC stationary phases such as silica-bonded cyclodextrin or cellulose derivatives, proteins, glycoproteins, macrocyclic antibiotics, quinine-derived and 'Pirkle' selectors, polyacrylamides and molecularly imprinted polymers are used as chiral selectors. Chiral monolithic stationary phases prepared by in situ polymerization into the capillary were also developed for electrochromatographic enantiomer separation.

  6. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  7. Chiroptical studies on supramolecular chirality of molecular aggregates.

    PubMed

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates.

  8. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    SciTech Connect

    Gao, M. X.; Guo, B. Peng, L.; Cai, X.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  9. Expanding proteomics into the analysis of chiral drugs.

    PubMed

    Sui, Jianjun; Zhang, Jianhua; Ching, Chi Bun; Chen, Wei Ning

    2009-06-01

    The chiralities of chiral drugs have been investigated extensively with the purpose of enlightening the role of chirality in drug action. Proteomics, though in its infancy, has recently emerged as the foremost technology in drug development research, possessing the advantage of providing more useful information about an organism than genomics, as it directly addresses the level of genome products and their interactions. In this review, we will discuss the background of chiral drug investigation from which contemporary drug chirality research has emerged, the techniques involved in proteomics technology, the application of proteomics in this exciting area, and the perspectives in future applications of this field.

  10. Nematic twist cell: Strong chirality induced at the surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chieh; Nemitz, Ian R.; Pendery, Joel S.; Schubert, Christopher P. J.; Lemieux, Robert P.; Rosenblatt, Charles

    2013-04-01

    A nematic twist cell having a thickness gradient was filled with a mixture containing a configurationally achiral liquid crystal (LC) and chiral dopant. A chiral-based linear electrooptic effect was observed on application of an ac electric field. This "electroclinic effect" varied monotonically with d, changing sign at d =d0 where the chiral dopant exactly compensated the imposed twist. The results indicate that a significant chiral electrooptic effect always exists near the surfaces of a twist cell containing molecules that can be conformationally deracemized. Additionally, this approach can be used to measure the helical twisting power (HTP) of a chiral dopant in a liquid crystal.

  11. Bis(N-confused porphyrin) as a semirigid receptor with a chirality memory: a two-way host enantiomerization through point-to-axial chirality transfer.

    PubMed

    Chmielewski, Piotr J; Siczek, Marta; Stępień, Marcin

    2015-02-02

    The adduct formation of protonated bis(N-confused porphyrin) (BNCP, 3,3'-bis(meso-tetratolyl-2-aza-21-carbaporphyrin) with chiral anions, carboxylic acids, and alcohols was studied in solution by means of (1) H NMR and circular dichroism (CD) spectroscopic analysis and DFT methods. The addition of enantiopure guests to the acidified BNCP resulted in optical activity that vanished after neutralization. Pairs of the (1) H NMR-distinguishable diastereomers were formed when enantiopure guests were applied, although a single form was observed upon the addition of the racemic mixtures in each case. Unidirectional configuration change that led to diastereomeric excess was observed in several instances. Such an excess was memorized by metalation of the adducts with AgBF4 , thus resulting in optically active silver(III) complexes of BNCP with some enantiomeric excess. Absolute configurations of BNCP cations and bis(zinc) and bis(silver(III)) complexes were determined on the basis of time-dependent (TD)-DFT calculations of their CD spectra. It was shown that some of the chiral carboxylates induced opposite directions of enantiomerization of di- and tetracations or di-/tetracation and bis(zinc) complexes. The source of the optical activity of the equimolar diastereomeric mixture of adducts is discussed.

  12. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  13. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  14. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Naaman, Ron; Waldeck, David H.

    2015-04-01

    Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule-based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.

  15. Critical temperature of chiral symmetry restoration for quark matter with a chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Peng, G. X.

    2016-12-01

    In this article we study the restoration of chiral symmetry at a finite temperature for quark matter with a chiral chemical potential, {μ }5, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows the introduction of, in the simplest way possible, a Euclidean momentum, p E , dependent quark mass function which decays (neglecting logarithms) as 1/{p}{E}2 for large p E , in agreement with the asymptotic behaviour expected in quantum chromodynamics in the presence of a nonperturbative quark condensate. We focus on the critical temperature for chiral symmetry restoration in the chiral limit, T c, versus {μ }5, as well as on the order of the phase transition. We find that T c increases with {μ }5, and that the transition remains of the second order for the whole range of {μ }5 considered.

  16. Memory of chirality generated by spontaneous crystallization and asymmetric synthesis using the frozen chirality.

    PubMed

    Sakamoto, Masami; Iwamoto, Takuya; Nono, Naoyuki; Ando, Masaru; Arai, Wataru; Mino, Takashi; Fujita, Tsutomu

    2003-02-07

    Asymmetric synthesis using frozen chirality generated by spontaneous crystallization was performed. Achiral asymmetrically substituted imide with a tetrahydronaphthyl group on the nitrogen atom crystallized in a chiral fashion, with space group P2(1)2(1)2(1). The molecular chirality generated by spontaneous crystallization was retained in cold THF. The half-life determined on the basis of decreasing optical activity followed by CD spectrometer was 7.8, 33.1, and 150.0 min at -20, -30, -40 degrees C, respectively. The energy barrier (DeltaG()) of racemization was calculated with the temperature dependence of the kinetic constant to be 18.24-18.36 kcal mol(-)(1) at 233-253 K. The memorized frozen chirality was transferred to permanent optically active alcohols by nucleophilic addition with n-buthyllithium.

  17. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  18. Spintronics and chirality: spin selectivity in electron transport through chiral molecules.

    PubMed

    Naaman, Ron; Waldeck, David H

    2015-04-01

    Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule-based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.

  19. Synthesis of a Chiral Crystal Form of MOF-5, CMOF-5, by Chiral Induction.

    PubMed

    Zhang, Shi-Yuan; Li, Dan; Guo, Dong; Zhang, Hui; Shi, Wei; Cheng, Peng; Wojtas, Lukasz; Zaworotko, Michael J

    2015-12-16

    Chiral variants of the prototypal metal-organic framework MOF-5, Λ-CMOF-5 and Δ-CMOF-5, have been synthesized by preparing MOF-5 in the presence of L-proline or D-proline, respectively. CMOF-5 crystallizes in chiral space group P213 instead of Fm3̅m as exhibited by MOF-5. The phase purity of CMOF-5 was validated by single-crystal and powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, N2 adsorption, microanalysis, and solid-state vibrational circular dichroism. CMOF-5 undergoes a reversible single crystal-to-single crystal phase change to MOF-5 when immersed in a variety of organic solvents, although N-methyl-2-pyrrolidone (NMP) does not induce loss of chirality. Indeed, MOF-5 undergoes chiral induction when immersed in NMP, affording racemic CMOF-5.

  20. Intelligent chiral sensing based on supramolecular and interfacial concepts.

    PubMed

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  1. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    PubMed Central

    Ariga, Katsuhiko; Richards, Gary J.; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P.

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized. PMID:22163577

  2. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOEpatents

    Wasserman, Stephen R.; Anderson, Kenneth B.; Song, Kang; Yuchs, Steven E.; Marshall, Christopher L.

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  3. Chiral separation by a terminal chirality triggered P-helical quinoline oligoamide foldamer.

    PubMed

    Noguchi, Hiroki; Takafuji, Makoto; Maurizot, Victor; Huc, Ivan; Ihara, Hirotaka

    2016-03-11

    A P-helical quinoline oligoamide foldamer was grafted on silica and applied as an HPLC stationary phase for chiral separation. The P-handedness of the quinoline oligoamide foldamer was induced by a (1S)-camphanyl group, which was introduced at the N-terminus of a tetrameric quinoline oligoamide foldamer (Cmp-Q4). To immobilize the foldamer on porous silica particles, a trimethoxysilyl group was introduced at the opposing end of the foldamer. Elemental analysis indicated that the amount of foldamer on the silica surface was 0.57μmol/m(2). Circular dichroism and vibrational CD spectra of Cmp-Q4 and Cmp-Q4-immobilized silica (Sil-Q4-Cmp) suggested that the helical structure of Cmp-Q4 was altered on the silica surface whilst retaining a chiral structure. The chiral recognition ability of Sil-Q4-Cmp was evaluated with various aromatic enantiomers. Sil-Q4-Cmp showed enantio-selectivity for axially chiral molecules (e.g., αTrigger's base=1.26 and αBinaphthol=1.07). Sil-Q4-Cmp showed remarkable recognition of helical octameric quinoline oligoamides with isobutoxy and triethylene glycol side chains (α=10.35 and 14.98, respectively). In contrast, an (1S)-camphanyl group-immobilized porous silica showed no chiral recognition for any enantiomers tested in this study. To elucidate the chiral separation mechanism of Sil-Q4-Cmp, thermodynamic parameters were calculated using van't Hoff plots. HPLC results and thermodynamic parameters suggested that the chiral recognition of Sil-Q4-Cmp is based on the helical structure of Cmp-Q4 and other thermally dependent interactions such as hydrophobic effects associated with aromatic stacking. This work represents the first known application of aromatic foldamers in chiral separation.

  4. New approach to a novel axially chiral ligand showing spontaneous enrichment of axial chirality.

    PubMed

    Hasegawa, Tomokuni; Omote, Masaaki; Sato, Kazuyuki; Ando, Akira; Kumadaki, Itsumaro

    2003-03-01

    We have synthesized novel axially chiral ligand with two chiral centers, (R)-(R)(2)- and (S)-(S)(2)-2,2'-bis(2,2,2-trifluoro-1-hydroxyethyl)biphenyl (1), which showed a high asymmetric induction when used as ligand. Here, another new approach to 1 by kinetic and thermodynamic resolution is presented which gave these ligands in a much shorter steps, in a higher yield, and in a higher enantiomeric excess.

  5. Chiral vortical effect generated by chiral anomaly in vortex-skyrmions

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2017-03-01

    We discuss the type of the general macroscopic parity-violating effects, when there is the current along the vortex, which is concentrated in the vortex core. We consider vortices in chiral superfluids with Weyl points. In the vortex core the positions of the Weyl points form the skyrmion structure. We show that the mass current concentrated in such a core is provided by the spectral flow through the Weyl points according to the Adler-Bell-Jackiw equation for chiral anomaly.

  6. Cooperative expression of atomic chirality in inorganic nanostructures

    PubMed Central

    Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-01-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957

  7. Cooperative expression of atomic chirality in inorganic nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O.; Ouyang, Min

    2017-02-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  8. Chiral phase transition in QED3 at finite temperature

    NASA Astrophysics Data System (ADS)

    Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi

    2016-12-01

    In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.

  9. Cooperative expression of atomic chirality in inorganic nanostructures.

    PubMed

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-02-02

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  10. Chirality detection of enantiomers using twisted optical metamaterials

    PubMed Central

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  11. Self-assembled Chiral Nanostructure as Scaffold for Asymmetric Reaction.

    PubMed

    Jiang, Jian; Ouyang, Guanghui; Zhang, Li; Liu, Minghua

    2017-03-25

    Asymmetric reaction is one of the most important reactions in organic synthesis. While large amount of efficient molecular catalysts have been developed and applied, supramolecular and nanostructured catalysts have been attracting recent interest. In this mini review, we focused on the self-assembled chiral nanostructures and reviewed their possibility and feasibility as the enantioselective catalyst. The design concept and the requirement of the chiral scaffold as the catalysts are discussed. Based on the chirality and catalytic performance of the building molecules and the supramolecular nanostructures, the nanocatalyst is divided into chiral nanostructure driven (CND) and chiral nanostructure enhanced (CNE) enantioselective catalysts. Then, several typical self-assembled chiral nanostructures such as nanocage, nanotube, nanorod, micelles and vesicles are selected as the chiral scaffold and their catalytic behaviors for the asymmetric reactions were demonstrated. Finally, the future development of the field is also outlooked.

  12. Enantioselective Nanoporous Carbon Based on Chiral Ionic Liquids.

    PubMed

    Fuchs, Ido; Fechler, Nina; Antonietti, Markus; Mastai, Yitzhak

    2016-01-04

    One of the greatest challenges in modern chemical processing is to achieve enantiospecific control in chemical reactions using chiral media such as chiral mesoporous materials. Herein, we describe a novel and effective synthetic pathway for the preparation of enantioselective nanoporous carbon, based on chiral ionic liquids (CILs). CILs of phenylalanine (CIL(Phe)) are used as precursors for the carbonization of chiral mesoporous carbon. We employ circular dichroism spectroscopy, isothermal titration calorimetry (ITC), and chronoamperometry in order to demonstrate the chiral nature of the mesoporous carbon. The approach presented in this paper is highly significant for the development of a new type of chiral porous materials for enantioselective chemistry. In addition, it contributes significantly to our understanding of the structure and nature of chiral nanoporous materials and surfaces.

  13. Chiral spiral induced by a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Abuki, Hiroaki

    2016-11-01

    We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a "continent" of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  14. Chirality detection of enantiomers using twisted optical metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies.

  15. Separation of chiral nanotubes with an opposite handedness by chiral oligopeptide adsorption: A molecular dynamics study.

    PubMed

    Raffaini, Giuseppina; Ganazzoli, Fabio

    2015-12-18

    The separation of enantiomeric chiral nanotubes that can form non-covalent complexes with an unlike stability upon adsorption of chiral molecules is a process of potential interest in different fields and applications. Using fully atomistic molecular dynamics simulations, we report in this paper a theoretical study of the adsorption and denaturation of an oligopeptide formed by 16 chiral amino acids having a helical structure in the native state on both the inner and the outer surface of the chiral (10, 20) and (20, 10) single-walled carbon nanotubes having an opposite handedness, and of the armchair (16, 16) nanotube with a similar diameter for comparison. In the final adsorbed state, the oligopeptide loses in all cases its native helical conformation, assuming elongated geometries that maximize its contact with the surface through all the 16 amino acids. We find that the complexes formed by the two chiral nanotubes and the chosen oligopeptide have a strongly unlike stability both when adsorption takes place on the outer convex surface of the nanotube, and when it occurs on the inner concave surface. Thus, our molecular simulations indicate that separation of chiral, enantiomeric carbon nanotubes for instance by chromatographic methods can indeed be carried out using oligopeptides of a sufficient length.

  16. Advancements in Anion Exchange Membrane Cations

    SciTech Connect

    Sturgeon, Matthew R.; Long, Hai; Park, Andrew M.; Pivovar, Bryan S.

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  17. Cation exchange capacity of pine bark substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cation exchange capacity (CEC) is an important soil and substrate chemical property. It describes a substrate's ability to retain cation nutrients. Higher CEC values for a substrate generally result in greater amounts of nutrients retained in the substrate and available for plant uptake, and great...

  18. Tripodal Receptors for Cation and Anion Sensors

    PubMed Central

    Kuswandi, Bambang; Nuriman; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selective recognition and sensing of cations and anions. Examples on the relationship between structure and selectivity towards cations and anions are described. Furthermore, their applications as potentiometric ion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  19. Chiral hexagonal cellular sandwich structures: dynamic response

    NASA Astrophysics Data System (ADS)

    Spadoni, A.; Ruzzene, M.; Scarpa, F.

    2005-05-01

    Periodic cellular configurations with negative Poisson's ratio have attracted the attention of several researchers because of their superior dynamic characteristics. Among the geometries featuring a negative Poisson's ratio, the chiral topology possesses a geometric complexity that guarantees unique deformed configurations when excited at one of its natural frequencies. Specifically, localized deformations have been observed even at relatively low excitation frequencies. This is of particular importance as resonance can be exploited to minimize the power required for the appearance of localized deformations, thus giving practicality to the concept. The particular nature of these deformed configurations and the authority provided by the chiral geometry, suggest the application of the proposed structural configuration for the design of innovative lifting bodies, such as helicopter rotor blades or airplane wings. The dynamic characteristics of chiral structures are here investigated through a numerical model and experimental investigations. The numerical formulation uses dynamic shape functions to accurately describe the behavior of the considered structural assembly over a wide frequency range. The model is used to predict frequency response functions, and to investigate the occurrence of localized deformations. Experimental tests are also performed to demonstrate the accuracy of the model and to illustrate the peculiarities of the behavior of the considered chiral structures.

  20. ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.

    SciTech Connect

    CREUTZ, M.

    2005-07-25

    With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.

  1. Polar Superhelices in Ferroelectric Chiral Nanosprings

    PubMed Central

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jian-Shan; Wang, Jie; Kitamura, Takayuki

    2016-01-01

    Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses. PMID:27713540

  2. A chiral soliton bag model of nucleons

    NASA Astrophysics Data System (ADS)

    Seki, Ryoichi; Ohta, Shigemi

    1984-11-01

    As a possible phenomenological model of nucleons, a model Lagrangian is numerically solved in the semiclassical approximation using the hedgehog ansatz. Soliton solutions with winding numbers Z=0 and 1 are examined as functions of the pion decay constant. The Z=0 solution is similar to the cloudy bag model, but the Z=1 solution is quite different from the little (chiral) bag model.

  3. Dispersing carbon nanotubes by chiral network surfactants.

    PubMed

    Lin, Pengcheng; Cong, Yuehua; Zhang, Baoyan

    2015-04-01

    Chiral network surfactants (CNSs) possessing miscibility with carbon nanotubes (CNTs) and chiral materials are applied to disperse CNTs. Ultraviolet-visible absorption spectroscopy is used to quantitatively determine the CNT concentration in homogeneous CNT-CNS dispersions, results indicate that CNSs with more mole fraction of polycyclic conjugated structure have better ability to load and disperse CNTs and the maximal concentration reaches 0.79 mg mL(-1). Fourier transform infrared imaging system is utilized to analyze the dispersibility of CNTs in CNT-CNS composites, and CNS with 6 mol % nonmesogens (S6) induces the best dispersibility. The CNT doped CNSs exhibit lower glass transition temperature, strengthened thermal stability, decreased the thermochromic temperature and enriched reflected colors of CNSs. Furthermore, S6 are used as a promoter to disperse CNTs in chiral host, here, a left-handed chiral liquid crystal (CLC) is selected, the miscibility between CNTs and CLCs is studied by polarized optical microscope, and CNTs can be effectively dispersed in CLCs by S6. The CNT dispersed CLCs can exhibit a faster electro-optical response process than neat CLCs.

  4. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    PubMed

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future.

  5. Monopoles and fractional vortices in chiral superconductors

    PubMed Central

    Volovik, G. E.

    2000-01-01

    I discuss two exotic objects that must be experimentally identified in chiral superfluids and superconductors. These are (i) the vortex with a fractional quantum number (N = 1/2 in chiral superfluids, and N = 1/2 and N = 1/4 in chiral superconductors), which plays the part of the Alice string in relativistic theories and (ii) the hedgehog in the ^l field, which is the counterpart of the Dirac magnetic monopole. These objects of different dimensions are topologically connected. They form the combined object that is called a nexus in relativistic theories. In chiral superconductors, the nexus has magnetic charge emanating radially from the hedgehog, whereas the half-quantum vortices play the part of the Dirac string. Each half-quantum vortex supplies the fractional magnetic flux to the hedgehog, representing 1/4 of the “conventional” Dirac string. I discuss the topological interaction of the superconductor's nexus with the ‘t Hooft–Polyakov magnetic monopole, which can exist in Grand Unified Theories. The monopole and the hedgehog with the same magnetic charge are topologically confined by a piece of the Abrikosov vortex. Such confinement makes the nexus a natural trap for the magnetic monopole. Other properties of half-quantum vortices and monopoles are discussed as well, including fermion zero modes. PMID:10716980

  6. Instanton-like solutions in chiral models

    NASA Astrophysics Data System (ADS)

    Perelomov, A. M.

    1981-10-01

    General two-dimensional Euclidean chiral models of field theory are considered in detail. It is shown that in the case when the field takes its values in an arbitrary Kähler manifold the “duality equations” reduce to the Cauchy- Riemann equations on this manifold. For homogeneous manifolds the solutions of these equations do exist and are given by rational functions.

  7. Chiral electrodes of magneto- electropolymerized polyaniline films

    NASA Astrophysics Data System (ADS)

    Mogi, I.; Watanabe, K.

    2006-12-01

    Polyaniline films were prepared by electropolymerization under a magnetic field of 5 T parallel (+5 T) or antiparallel (-5 T) to the faradaic currents. They were used as a modified electrode and their chiral properties were examined for L-ascorbic acid (L-AA), D-isoascorbic acid (D-AA) and L-3-(3,4-dihydroxyphenyl)alanine (L-DOPA) by cyclic voltammetry. The +5T-film electrode showed different oxidation currents between L- and D-AA, and the -5T-film electrode showed opposite chirality. The redox currents of L-DOPA on the +5T-film electrode were smaller than those on the -5T-film electrode, and the results for racemic mixture of L- and D-DOPA were the same on the two electrodes. These results indicate that the Lorentz force in the electropolymerization process under magnetic fields introduces chirality to the polyaniline films and such film electrodes have the ability of chiral recognition. Figs 8, Refs 14.

  8. Three-dimensional chiral photonic superlattices.

    PubMed

    Thiel, M; Fischer, H; von Freymann, G; Wegener, M

    2010-01-15

    We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.

  9. Leading chiral logarithms for the nucleon mass

    SciTech Connect

    Vladimirov, Alexey A.; Bijnens, Johan

    2016-01-22

    We give a short introduction to the calculation of the leading chiral logarithms, and present the results of the recent evaluation of the LLog series for the nucleon mass within the heavy baryon theory. The presented results are the first example of LLog calculation in the nucleon ChPT. We also discuss some regularities observed in the leading logarithmical series for nucleon mass.

  10. Local topological and chiral properties of QCD.

    SciTech Connect

    de Forcrand, Ph.

    1998-10-30

    To elucidate the role played by instantons in chiral symmetry breaking, the authors explore their properties, in full QCD, around the critical temperature. They study in particular, spatial correlations between low-lying Dirac eigenmodes and instantons. Their measurements are compared with the predictions of instanton-based models.

  11. Consistent gravitational anomalies for chiral bosons

    SciTech Connect

    Giaccari, Stefano; Menotti, Pietro

    2009-03-15

    Exact consistent gravitational anomalies for chiral bosons in two dimensions are treated both with the Schwinger-DeWitt regularization and independently through a cohomological procedure. The diffeomorphism transformations are described by a single ghost which allows one to climb the cohomological chain in a unique way.

  12. New chiral cyclooctatriene-based polycyclic architectures.

    PubMed

    Pieters, Grégory; Gaucher, Anne; Marrot, Jérôme; Maurel, François; Naubron, Jean-Valère; Jean, Marion; Vanthuyne, Nicolas; Crassous, Jeanne; Prim, Damien

    2011-08-19

    The synthesis and properties of new chiral polycyclic architectures that display both helicity and a saddle-type shape are described. The enantiomers have been separated, and their absolute configuration was determined by VCD and ECD. The unprecedented molecular architecture is based on a cyclooctatriene core surrounded by an association of benzo[c]fluorene and ortho-phenylene units.

  13. NN potentials from IR chiral EFT

    NASA Astrophysics Data System (ADS)

    Higa, R.

    Chiral perturbation theory is nowadays a well-established approach to incorporate the chiral constraints from QCD. Nevertheless, for systems involving one baryon, the power counting which dictates the chiral order of observables is not as simple and consensual as in the purely mesonic case. The heavy baryon approach, which relies on a non-relativistic expansion around the limit of infinitely heavy baryon, recovers the usual power counting but destroys some analytic properties of the scattering amplitude. Some years ago, Becher and Leutwyler proposed a Lorentz-invariant formulation of chiral perturbation theory that maintains the required analytic properties, but at the expense of a less intuitive power counting. Aware of the shortcomings of the heavy baryon formalism, the S\\~ao Paulo group derived the two-pion exchange component of the nucleon-nucleon potential in line with the works of Becher and Leutwyler. A striking result was that the long distance properties of the potential is determined by the specific low energy region of the pion-nucleon scattering amplitude where the heavy baryon expansion fails. In this talk I will discuss the origin of such failure and how it reflects in the asymptotics of the nucleon-nucleon interaction. Some results for phase shifts and deuteron properties will be shown, followed by a comparison with the heavy baryon predictions.

  14. Chiral damping of magnetic domain walls.

    PubMed

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).

  15. Structural and energetic study of cation-π-cation interactions in proteins.

    PubMed

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  16. The development of chiral nematic mesoporous materials.

    PubMed

    Kelly, Joel A; Giese, Michael; Shopsowitz, Kevin E; Hamad, Wadood Y; MacLachlan, Mark J

    2014-04-15

    Cellulose nanocrystals (CNCs) are obtained from the sulfuric acid-catalyzed hydrolysis of bulk cellulose. The nanocrystals have diameters of ~5-15 nm and lengths of ~100-300 nm (depending on the cellulose source and hydrolysis conditions). This lightweight material has mostly been investigated to reinforce composites and polymers because it has remarkable strength that rivals carbon nanotubes. But CNCs have an additional, less explored property: they organize into a chiral nematic (historically referred to as cholesteric) liquid crystal in water. When dried into a thin solid film, the CNCs retain the helicoidal chiral nematic order and assemble into a layered structure where the CNCs have aligned orientation within each layer, and their orientation rotates through the stack with a characteristic pitch (repeating distance). The cholesteric ordering can act as a 1-D photonic structure, selectively reflecting circularly polarized light that has a wavelength nearly matching the pitch. During CNC self-assembly, it is possible to add sol-gel precursors, such as Si(OMe)4, that undergo hydrolysis and condensation as the solvent evaporates, leading to a chiral nematic silica/CNC composite material. Calcination of the material in air destroys the cellulose template, leaving a high surface area mesoporous silica film that has pore diameters of ~3-10 nm. Importantly, the silica is brilliantly iridescent because the pores in its interior replicate the chiral nematic structure. These films may be useful as optical filters, reflectors, and membranes. In this Account, we describe our recent research into mesoporous films with chiral nematic order. Taking advantage of the chiral nematic order and nanoscale of the CNC templates, new functional materials can be prepared. For example, heating the silica/CNC composites under an inert atmosphere followed by removal of the silica leaves highly ordered, mesoporous carbon films that can be used as supercapacitor electrodes. The composition

  17. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality.

  18. Liquid chromatographic enantiomer separation of 1-naphthylamides of chiral acids using several amylose- and cellulose-derived chiral stationary phases.

    PubMed

    Islam, Md F; Adhikari, Suraj; Paik, Man-Jeong; Lee, Wonjae

    2017-03-01

    The liquid chromatographic enantiomer separation of various chiral acids as 1-naphthylamides was performed using several chiral stationary phases (CSPs). The CSPs used in this study were six covalently bonded and four coated type CSPs derived from amylose and cellulose derivatives as chiral selectors. The degree of enantioseparation is affected by the structure of chiral acids and the CSPs used, which have different chiral selectors and types of immobilization. For the enantiomer resolution of chiral acids as 1-naphthylamide derivatives, the performance of the coated type Lux Cellulose-1 was superior to those of the other CSPs, except for 2-aryloxypropionic acid derivatives. Owing to the strong ultraviolet absorbance of the 1-naphthyl group, the convenient analytical method developed and validated in this study could be expected to be very useful for the enantiomer separation of various chiral acids as 1-naphthylamide derivatives using polysaccharide-derived CSPs.

  19. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  20. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2006-07-11

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts. The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.103 degree-cm2/decimole to about 700.times.103 degree-cm2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  1. A Cross-chiral RNA Polymerase Ribozyme

    PubMed Central

    Sczepanski, Jonathan T.; Joyce, Gerald F.

    2014-01-01

    Thirty years ago it was shown that the non-enzymatic, template-directed polymerization of activated mononucleotides proceeds readily in a homochiral system, but is severely inhibited by the presence of the opposing enantiomer.1 This finding poses a severe challenge for the spontaneous emergence of RNA-based life, and has led to the suggestion that either RNA was preceded by some other genetic polymer that is not subject to chiral inhibition2 or chiral symmetry was broken through chemical processes prior to the origin of RNA-based life.3,4 Once an RNA enzyme arose that could catalyze the polymerization of RNA, it would have been possible to distinguish among the two enantiomers, enabling RNA replication and RNA-based evolution to occur. It is commonly thought that the earliest RNA polymerase and its substrates would have been of the same handedness, but this is not necessarily the case. Replicating D-and L-RNA molecules may have emerged together, based on the ability of structured RNAs of one handedness to catalyze the templated polymerization of activated mononucleotides of the opposite handedness. Such a cross-chiral RNA polymerase has now been developed using in vitro evolution. The D-RNA enzyme, consisting of 83 nucleotides, catalyzes the joining of L-mono- or oligonucleotide substrates on a complementary L-RNA template, and similarly for the L-enzyme with D-substrates and a D-template. Chiral inhibition is avoided because the 106-fold rate acceleration of the enzyme only pertains to cross-chiral substrates. The enzyme's activity is sufficient to generate full-length copies of its enantiomer through the templated joining of 11 component oligonucleotides. PMID:25363769

  2. Chiral Sensitivity in Electron-Molecule Interactions

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan

    2015-09-01

    All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.

  3. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  4. Gyroscope like molecules consisting of trigonal or square planar osmium rotators within three-spoked dibridgehead diphosphine stators: syntheses, substitution reactions, structures, and dynamic properties.

    PubMed

    Fiedler, Tobias; Bhuvanesh, Nattamai; Hampel, Frank; Reibenspies, Joseph H; Gladysz, John A

    2016-04-28

    Reactions of (NH4)2OsX6 (X = Cl, Br) with CO and the phosphines P((CH2)mCH[double bond, length as m-dash]CH2)3 (m = 6, a; 7, b; 8, c) give cis,cis,trans-Os(CO)2(X)2(P((CH2)mCH[double bond, length as m-dash]CH2)3)2 (46-73%). These are treated with Grubbs' catalyst (7 mol%, 0.0010 M, C6H5Cl). Subsequent hydrogenations (PtO2) yield the gyroscope like complexes cis,cis,trans-Os(CO)2(X)2(P((CH2)n)3P) (n = 2m + 2; X = Cl, 6a-c; Br, 7a-c ; 5-31%) and the isomers cis,cis,trans-Os(CO)2(X)2(P(CH2)n-1CH2)((CH2)n)(P(CH2)n-1CH2) (X = Cl, 6'ac; Br, 7'a-c;12-51%) derived from a combination of interligand and intraligand metatheses. Reductions of 6a,c, 6’b, and 7'b with C8K under CO atmospheres afford trans-Os(CO)3(P((CH2)n)3P) (9a,c, 79-82%) and trans-Os(CO)3(P(CH2)15CH2)((CH2)16)(P(CH2)15CH2) (9’b, 53-84%). Reaction of 9a and CF3SO3H yields the cationic hydride complex mer,trans-[Os(H)(CO)3(P((CH2)14)3P)](+) CF3SO3(-) (9a-H(+) CF3SO3(-); quantitative by NMR). Preparative reactions of 9a,c or 9'b and [H(OEt2)2](+) BArf(-) (BArf(-) = B(3,5-C6H3(CF3)2)4(-)) afford 9a,c-H(+) BArf(-) (80%) or 9'b-H(+) BArf(-) (68%). Reactions of 6a, 6’b, and 7a with MeLi or PhLi give cis,cis,trans-Os(CO)2(Me)2(P((CH2)14)3P) (11a, 98%), cis,cis,trans-Os(CO)2(Me)2(P(CH2)15CH2)((CH2)16)(P(CH2)15CH2) (98%), and cis,cis,trans-Os(CO)2(Ph)2(P((CH2)14)3P) (12a, 58%). NMR data for 6a–c, 7a–c, 9a,c, 9a,c-H(+) X(-), and 11a indicate that rotation of the OsLy moieties is fast on the NMR time scale at room temperature. In contrast, the phenyl groups in 12a act as "brakes" and two sets of (13)C NMR signals are observed for the methylene chains (2 : 1). The crystal structures of 6a–c, 7b,c, 7’a, 9a, 9a -H(+) BArf(-), 11a, and 12a are analyzed with respect to OsLy rotation in solution and the solid state.

  5. INORGANIC CATIONS IN RAT KIDNEY

    PubMed Central

    Tandler, C. J.; Kierszenbaum, A. L.

    1971-01-01

    For localization of pyroantimonate-precipitable cations, rat kidney was fixed by perfusion with a saturated aqueous solution of potassium pyroantimonate (pH about 9.2, without addition of any conventional fixative). A remarkably good preservation of the tissue and cell morphology was obtained as well as a consistent and reproducible localization of the insoluble antimonate salts of magnesium, calcium, and sodium. All proximal and distal tubules and glomeruli were delimited by massive electron-opaque precipitates localized in the basement membrane and, to a lesser extent, in adjacent connective tissue. In the intraglomerular capillaries the antimonate precipitate was encountered in the basement membranes and also between the foot processes. In addition to a more or less uniform distribution in the cytoplasm and between the microvilli of the brush border, antimonate precipitates were found in all cell nuclei, mainly between the masses of condensed chromatin. The mitochondria usually contained a few large antimonate deposits which probably correspond to the so-called "dense granules" observed after conventional fixations. PMID:4106544

  6. Cationic Bolaamphiphiles for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  7. Chiral corrections to the Adler-Weisberger sum rule

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  8. Optical properties and circular dichroism of chiral metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Fan, Zhiyuan; Govorov, Alexander; OU Team

    2013-03-01

    In nature, biological systems are built up by homochiral building blocks, such as a sugar and protein. Circular dichroism (CD) is an effective tool of resolving molecular conformations. It utilizes circularly polarized light to detect differential absorption of chiral materials. In medicine, it will help us to develop new drugs and therapies, if we understand the connection between the physical or chemical properties of drug molecules and their conformations. With the rapid development of nanotechnologies, chiral nanomaterials attract lots of attention nowadays. CD signals of chiral molecules can be enhanced or shifted to the visible band in the presence of plasmonic nanocrystals. Here we present a plasmonic CD mechanism from a single chiral metal nanocrystal. The mechanism is essentially different from the dipolar plasmon-plasmon interaction in a chiral NP assembly, which mimics the CD mechanism of chiral molecules. Chiral metal nanocrystals are expected to have promising applications in biosensing. Recently a few experimental papers reported successful realizations of chiral nanocrystals in a macroscopic ensemble in solution. Particularly the paper described silver nanoparticles grown on chiral template molecules and demonstrating characteristic CD signals at a plasmonic wavelength. The plasmonic CD signals in Ref. can come from a dipolar plasmon-molecule interaction or from a chiral shape of nanocrystals. This work was supported by the NSF (project: CBET- 0933782) and by the Volkswagen Foundation.

  9. Analyzing chiral condensate dependence on temperature and density

    NASA Astrophysics Data System (ADS)

    Rockcliffe, Keighley

    2016-09-01

    Determining the thermodynamic properties of the chiral condensate, the order parameter for chiral symmetry restoration, gives insight into whether there are phase transitions in dense astrophysical objects, such as young neutron stars. The chiral condensate is the scalar density of quarks in the ground state, and its presence violates chiral symmetry. Chiral effective field theory is used to study the behavior of the scalar quark condensate with changing temperature and density of neutron matter. Two-body and three-body chiral nuclear forces were employed to find the free energy and its dependence on the pion mass at lower temperatures. With increasing temperature (up to 100 MeV), the chiral condensate is strongly reduced, indicating a fast approach to chiral symmetry restoration. Chiral restoration seems to be hindered, however, at higher densities (around 0.2 fm-3). The role of the different perturbative contributions and their change with temperature and density was extracted. Although the dominant contribution is the noninteracting term in the perturbation series expansion, nuclear interactions are important particularly at high densities where they delay chiral symmetry restoration.

  10. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  11. Analysis of Chiral Carboxylic Acids in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe

  12. Cation distributions on rapidly solidified cobalt ferrite

    NASA Technical Reports Server (NTRS)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  13. Model of complex chiral drug metabolic systems and numerical simulation of the remaining chirality toward analysis of dynamical pharmacological activity.

    PubMed

    Ogino, Yoshiyuki; Asahi, Toru

    2015-05-21

    In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.

  14. Molecular-Level Design of Heterogeneous Chiral Catalysis

    SciTech Connect

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  15. Advanced dress-up chiral columns: New removable chiral stationary phases for enantioseparation of chiral carboxylic acids.

    PubMed

    Todoroki, Kenichiro; Ishii, Yasuhiro; Ide, Takafumi; Min, Jun Zhe; Inoue, Koichi; Huang, Xin; Zhang, Wei; Hamashima, Yoshitaka; Toyo'oka, Toshimasa

    2015-07-02

    This paper describes the preparation of new dress-up columns featuring reproducibly removable and replaceable chiral stationary phases. After synthesizing perfluroalkylated quinine and quinidine derivatives as chiral stationary phase compounds (F-CSPs), we adsorbed them reversibly onto a fluorous LC column through pumping of their solutions. Using this dress-up chiral column and fluorophobic elution of aqueous ammonium formate/MeOH mixtures, we could enantioseparate four racemic N-acetyl amino acids, dichlorprop, and sixteen fluorescent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC)-derivatized amino acids. Dressing and undressing of the coated F-CSPs could be controlled by varying the fluorophilicity and fluorophobicity of the eluent. The relative standard deviations of the retention times, the retention factors, the number of theoretical plates, the enantioseparation factors, and the resolutions of each of four preparations of such dress-up columns were all less than or equal to 5.26% (from 20 repeated analyses); the reproducibilities from four different preparations were all less than or equal to 10.6%. These columns also facilitated highly sensitive and selective analyses of AQC-amino acids when detected using LC-MS/MS.

  16. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    PubMed

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  17. Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity

    SciTech Connect

    Wensink, H. H. Morales-Anda, L.

    2015-10-14

    We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.

  18. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Papas, C. H.; Engheta, N.

    1988-01-01

    The reflection from and transmission through a semiinfinite chiral medium are analyzed by obtaining the Fresnel equations in terms of parallel- and perpendicular-polarized modes, and a comparison is made with results reported previously. The chiral medium is described electromagnetically by the constitutive relations D = (epsilon)E+i(gamma)B and H = i(gamma)E+(1/mu)B. The constants epsilon, mu and gamma are real and have values that are fixed by the size, the shape, and the spatial distribution of the elements that collectively compose the medium. The conditions are obtained for the total internal reflection of the incident wave from the interface and for the existence of the Brewster angle. The effects of the chirality on the polarization and the intensity of the reflected wave from the chiral half-space are discussed and illustrated by using the Stokes parameters. The propagation of electromagnetic wave through an infinite slab of chiral medium is formulated for oblique incidence and solved analytically for the case of normal incidence.

  19. Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases.

    PubMed

    Fernandes, Carla; Tiritan, Maria Elizabeth; Cass, Quezia; Kairys, Visvaldas; Fernandes, Miguel Xavier; Pinto, Madalena

    2012-06-08

    A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds.

  20. Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction.

    PubMed

    Zhou, Quan; Yu, Lu-Shan; Zeng, Su

    2014-08-01

    Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.

  1. Progress of quartz crystal microbalance in chiral analysis.

    PubMed

    Guo, Huishi

    2014-02-01

    Chiral analysis is one of the most important/challenging analytical tasks due to the necessity for differentiation of very slight differences in the molecular configurations between chiral isomers. It consists of two processes, chiral recognition and signal transduction. Quartz crystal microbalance (QCM) holds a great promise for the next-generation sensors, due to its remarkable mass sensitivity, fast response, capable of online detection and low cost. It has been the focus of academic and practical research on chiral analysis during the last two decades. This review provides a detailed overview of recent advances made in chiral analysis based on QCM detection with regard to the recognition elements, which include synthetic macromolecules, molecular imprinting polymers (MIPs), proteins, amino acids and their derivatives, etc. The prospects of using QCM for chiral analysis are also put forward.

  2. Study of surface plasmon chirality induced by Archimedes' spiral grooves.

    PubMed

    Ohno, Tomoki; Miyanishi, Shintaro

    2006-06-26

    A chirality of surface plasmons excited on a silver film with Archimedes' spiral grooves during incidence of a circularly polarized light is analytically and numerically studied by using the finite-difference time-domain (FDTD) modeling method. We found that the surface of a plasmon has selective chirality, which is given by the sum of the chiralities of the incident light and the spiral structure. The surface plasmons with the chirality lead to zero-order, first-order, and high-order evanescent Bessel beams with electric charge distributions on the film. This selectivity could be widely applied for chiral detection of the incident light and chiral excitation of several optical modes in nanophotonics.

  3. Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer

    2015-03-01

    Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.

  4. [Application of coating technology in capillary electrophoresis for chiral separation].

    PubMed

    Wang, Bingxiang; Chai, Weibo; Tang, Anna; Ding, Guosheng

    2015-04-01

    Chirality is one of the intrinsic attributes of the nature. Chiral separation and analysis are of great importance in many research fields, such as life science, environmental science, biological engineering and pharmaceutical engineering. Currently, chiral capillary electrophoresis technique used for the enantioselective resolution of different kinds of racemates has become one of the most distinctive research and application fields. However, the adsorption of the analytes (or chiral selectors) on the inner wall of the capillary is a common problem in capillary electrophoresis chiral separation. Coating technology, namely modification of the inner wall of the capillary, is the simplest and most effective way to suppress disadvantageous adsorption, and to improve the separation efficiency and analysis repeatability. In this review, the recent applications of different coating procedures in chiral analysis are presented, and the future developments in this field are also prospected.

  5. A molecular propeller effect for chiral separation and analysis.

    PubMed

    Clemens, Jonathon B; Kibar, Osman; Chachisvilis, Mirianas

    2015-07-28

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.

  6. Emergence of collective dynamical chirality for achiral active particles.

    PubMed

    Jiang, Huijun; Ding, Huai; Pu, Mingfeng; Hou, Zhonghuai

    2017-01-25

    Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.

  7. Development of chiral sulfoxide ligands for asymmetric catalysis.

    PubMed

    Trost, Barry M; Rao, Meera

    2015-04-20

    Nitrogen-, phosphorus-, and oxygen-based ligands with chiral backbones have been the historic workhorses of asymmetric transition-metal-catalyzed reactions. On the contrary, sulfoxides containing chirality at the sulfur atom have mainly been used as chiral auxiliaries for diastereoselective reactions. Despite several distinct advantages over traditional ligand scaffolds, such as the proximity of the chiral information to the metal center and the ability to switch between S and O coordination, these compounds have only recently emerged as a versatile class of chiral ligands. In this Review, we detail the history of the development of chiral sulfoxide ligands for asymmetric catalysis. We also provide brief descriptions of metal-sulfoxide bonding and strategies for the synthesis of enantiopure sulfoxides. Finally, insights into the future development of this underutilized ligand class are discussed.

  8. Integration of inherent and induced chirality into subphthalocyanine analogue

    PubMed Central

    Zhao, Luyang; Qi, Dongdong; Wang, Kang; Wang, Tianyu; Han, Bing; Tang, Zhiyong; Jiang, Jianzhuang

    2016-01-01

    Conventional conjugated systems are characteristic of only either inherent or induced chirality because of synthetic challenge in combination of chiral segment into the main chromophore. In this work, chiral binaphthyl segment is directly fused into the central chromophore of a subphthalocyanine skeleton, resulting in a novel type of chiral subphthalocyanine analogue (R/S)-1 of integrated inherent and induced chirality. Impressively, an obviously enhanced optical activity is discerned for (R/S)-1 molecules, and corresponding enhancement mechanism is elucidated in detail. The synthesis strategy based on rational molecular design will open the door towards fabrication of chiral materials with giant optical activity, which will have great potential in chiroptical devices. PMID:27294871

  9. QCD phase diagram with a chiral chemical potential

    NASA Astrophysics Data System (ADS)

    Lu, Ya; Cui, Zhu-Fang; Pan, Zan; Chang, Chao-Hsi; Zong, Hong-Shi

    2016-04-01

    The effect of chirality imbalance on the QCD phase diagram is studied within the two flavors Nambu-Jona-Lasinio model. We focus especially on the issues related to how the chiral chemical potential (μ5 ) affects the phase diagram, and find the "chiral catalysis" as well as "inverse chiral catalysis" effects, which are analogous to the magnetic catalysis and inverse magnetic catalysis effects. Furthermore, our results are different from the existing chiral model calculations, namely, there is no CEP5 on the T -μ5 plane, since the whole phase transition is a crossover. In addition, with the introduction of the chiral chemical potential, various QCD susceptibilities and the corresponding critical exponents are also studied.

  10. A molecular propeller effect for chiral separation and analysis

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-07-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.

  11. Manipulating the Lorentz force via the chirality of nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Maoyan; Li, Hailong; Dong, Yuliang; Zhang, Xiaochuan; Du, Ming; Wang, Rui; Xu, Tong; Wu, Jian

    2016-12-01

    We demonstrate that a single plane wave pulls a chiral nanoparticle toward the light source. The nanoparticle exhibits optical gain in a particular wavelength region. The equivalence of the generalized and alternative expressions of the Lorentz force density relating to bound charges for chiral media is numerically validated. By considering the two-dimensional electromagnetic problem of incident plane waves normally impinged on active chiral cylinders, it is shown that the gradient force is mainly contributed by the bound electric and magnetic current densities of the cross-polarized waves. We also investigate how the medium parameters and impedance mismatch can be used to manipulate the pulling or pushing Lorentz forces between two chiral cylinders. This finding may provide a recipe to understand the light interaction with multiple chiral nanoparticles of arbitrary shapes (in general) with the aid of the numerical approach. It could be a promising avenue in controlling the optical micromanipulation for chiral nanoparticles with mirroring asymmetry.

  12. Emergence of soliton chirality in a quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Braun, Hans-Benjamin; Kulda, Jiri; Roessli, Bertrand; Visser, Dirk; Krämer, Karl W.; Güdel, Hans-Ulrich; Böni, Peter

    2005-12-01

    Left- and right-handed chiral matter is present at every scale ranging from seashells to molecules to elementary particles. In magnetism, chirality may be inherited from the asymmetry of the underlying crystal structure, or it may emerge spontaneously. In particular, there has been a long-standing search for chiral spin states that emerge spontaneously with the disappearance of antiferromagnetic long-range order. Here we identify a generic system supporting such a behaviour and report on experimental evidence for chirality associated with the quantum dynamics of solitons in antiferromagnetic spin chains. The soliton chirality observed by polarized neutron scattering is in agreement with theoretical predictions and is a manifestation of a Berry phase. Our observations provide the first example of the emergence of spin currents and hidden chiral order that accompany the disappearance of antiferromagnetic order, a scheme believed to lie at the heart of the enigmatic normal state of cuprate superconductors.

  13. A molecular propeller effect for chiral separation and analysis

    PubMed Central

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved. PMID:26216219

  14. Synthesis and coordination behavior of planar-chiral ferrocene alkenylphosphines.

    PubMed

    Stepnicka, Petr; Císarova, Ivana

    2006-10-16

    A series of planar-chiral ferrocene alkenylphosphines, (S(p))-2-(diphenylphosphino)-1-vinylferrocene (2), (S(p))-2-(diphenylphosphino)-1-(prop-1-en-1-yl)ferrocene (3; as a mixture of Z and E isomers in ca. 5:1 ratio), and (E,S(p))-2-(diphenylphosphino)-1-(2-phenylethen-1-yl)ferrocene ((E)-4), was obtained by Wittig and Horner-Wadsworth-Emmons reactions from the common precursor, (S(p))-2-(diphenylphosphino)ferrocene-1-carboxaldehyde (1). Coordination properties of these novel ferrocene donors were studied in their palladium(II) and tungsten(0)-carbonyl complexes. The reaction between 2 and [{Pd(mu-Cl)(L(NC))}2] (5, L(NC) = 2-{(dimethylamino)methyl-kappaN}phenyl-kappaC(1)) gave the bridge-cleavage product [PdCl(L(NC))(2-kappaP)] (6) while the reaction with [Pd(L(NC))(MeCN)2]ClO4 (7) yielded the cationic bis(chelate) [Pd(L(NC))(2-eta2:kappaP)]ClO4 (8). Chelate complexes of the type [W(CO)4(L-eta2:kappaP)] (9 with L = 2; (Z/E)-10 with L = (Z/E)-3) were obtained by reacting [W(CO)4(cod)] (cod = eta2:eta2-cycloocta-1,5-diene) with the appropriate phosphinoalkene in refluxing toluene while a similar reaction with (E)-4 yielded mixtures of [W(CO)5(4-kappaP)] ((E)-11) and [W(CO)4(4-eta2:kappaP)] ((E)-12). All compounds were characterized by spectral methods (multinuclear NMR, IR, MS, and CD), and the structures of 1, 2, 8, 9, (Z/E)-10, and (E)-11 were corroborated by X-ray diffraction analysis. Ligands 2 and (E)-4 as well as their complexes 6, 8, 9, (E)-11, and (E)-12 were further studied by electrochemical methods.

  15. A theoretical study of the lowest-energy PtPd co-doped silicon clusters: Chirality and fluxional transformation

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Lu, Zhansheng; Yang, Feng; Zhang, Yi; Yang, Xinwei; Xu, Guoliang; Yang, Zongxian

    2017-03-01

    The lowest-energy structures of PtPdSiqn (n = 1- 7; q = 0 , ± 1) clusters are searched based on the PSO algorithm implemented in the CALYPSO code and the first-principle DFT-D computations implemented in DMol3 code. Interestingly, the chirality has been found for the lowest-energy structures of the neutral and charged PtPdSi4, neutral and anionic PtPdSi5, and cationic PtPdSi7 clusters. The first principles molecular dynamics (MD) simulations show that the fluxional transformation between the chiral configurations for neutral PtPdSi4 cluster can take place at 400 K, which is also confirmed by the rather small transformation barrier. The equivalent atoms involved in the bond breaking and formation, as well as the other atoms (modulator), may facilitate the dynamical behavior. The current finding is thus beyond imagination. It is noticeable that the current study provides a potential way to create interesting cluster with chirality and transformation, based on silicon.

  16. Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: improved chiral separations in capillary electrochromatography.

    PubMed

    Lu, Yang; Shamsi, Shahab A

    2014-10-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns.

  17. Comparison of Positively and Negatively Charged Achiral Co-Monomers Added to Cyclodextrin Monolith: Improved Chiral Separations in Capillary Electrochromatography

    PubMed Central

    Lu, Yang; Shamsi, Shahab A.

    2014-01-01

    Cyclodextrins (CDs) and their derivatives have been one of the most popular and successful chiral additives used in electrokinetic chromatography because of the presence of multiple chiral centers, which leads to multiple chiral interactions. However, there has been relatively less published work on the use of CDs as monolithic media for capillary electrochromatography (CEC). The goal of this study was to show how the addition of achiral co-monomer to a polymerizable CD such as glycidyl methacrylate β-cyclodextrin (GMA/β-CD) can affect the enantioselective separations in monolithic CEC. To achieve this goal, polymeric monoliths columns were prepared by co-polymerizing GMA/β-CD with cationic or anionic achiral co-monomers [(2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and vinyl benzyltrimethyl-ammonium (VBTA)] in the presence of conventional crosslinker (ethylene dimethacrylate) and ternary porogen system including butanediol, propanol and water. A total of 34 negatively charged compounds, 30 positively charged compounds and 33 neutral compounds were screened to compare the enantioresolution capability on the GMA/β-CD, GMA/β-CD-VBTA and GMA/β-CD-AMPS monolithic columns. PMID:24108813

  18. Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents.

    PubMed

    O'Farrell, Courtney M; Chudomel, J Matthew; Collins, Jan M; Dignam, Catherine F; Wenzel, Thomas J

    2008-04-04

    Water-soluble calix[4]resorcinarenes containing 3- and 4-hydroxyproline, d-nipecotic acid, (S)-2-(methoxymethyl)pyrrolidine, (S)-2-pyrrolidine methanol, and (S,S)-(+)-2,4-bis(methoxymethyl)pyrrolidine substituents are synthesized and evaluated as chiral NMR solvating agents. The derivatives with the hydroxyproline groups are especially effective at causing enantiomeric discrimination in the spectra of water-soluble cationic and anionic compounds with pyridyl, phenyl, and bicyclic aromatic rings. Binding studies show that mono- and ortho-substituted phenyl rings associate within the cavity of the calix[4]resorcinarenes, as do naphthyl rings with mono-, 2,3-, and 1,8-substitution patterns. Anthracene derivatives with an amino or sulfonyl group at the 1-position bind within the cavity, as well. Aromatic resonances of the substrates exhibit substantial upfield shifts because of shielding from the aromatic rings of the calix[4]resorcinarene. The effectiveness of the reagents at producing chiral recognition in 1H NMR spectra is demonstrated with sodium mandelate, the sodium salt of tryptophan, and doxylamine succinate. While no one reagent is consistently the most effective, the calix[4]resorcinarenes with trans-4-hydroxyproline and trans-3-hydroxyproline moieties generally produce the largest nonequivalence in the 1H NMR spectra of the substrates.

  19. Sensitive chiral analysis by CE: an update.

    PubMed

    Sánchez-Hernández, Laura; Crego, Antonio Luis; Marina, María Luisa; García-Ruiz, Carmen

    2008-01-01

    A general view of the different strategies used in the last years to enhance the detection sensitivity in chiral analysis by CE is provided in this article. With this purpose and in order to update the previous review by García-Ruiz et al., the articles appeared on this subject from January 2005 to March 2007 are considered. Three were the main strategies employed to increase the detection sensitivity in chiral analysis by CE: (i) the use of off-line sample treatment techniques, (ii) the employment of in-capillary preconcentration techniques based on electrophoretic principles, and (iii) the use of alternative detection systems to the widely employed on-column UV-Vis absorption detection. Combinations of two or three of the above-mentioned strategies gave rise to adequate concentration detection limits up to 10(-10) M enabling enantiomer analysis in a variety of real samples including complex biological matrices.

  20. Chiral bag model for the nucleon

    NASA Astrophysics Data System (ADS)

    Hosaka, Atsushi; Toki, Hiroshi

    1996-12-01

    We review the chiral bag model for the nucleon at low energy. The model is a hybrid model of quark and meson degrees of freedom, interpolating the two limits of the Skyrme model at R → 0 and the MIT bag model at R → ∞, where R is the bag radius. Baryon number one ( B = 1) solutions are obtained in the semiclassical method, where the nucleon is regarded as a slowly rotating hedgehog. We investigate static properties of the nucleon such as masses and magnetic moments as functions of R, first in the original chiral bag model and second in the models with vector mesons. We find a reasonably good description for the nucleon in both cases at an intermediate bag radius R ~ 0.6 fm. Results of the model calculations are then re-derived using a group theoretical method in the large- Nc limit.

  1. Active control of chirality in nonlinear metamaterials

    SciTech Connect

    Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong Gong, Qihuang

    2015-03-02

    An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm{sup 2} weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors.

  2. Self-shaping of bioinspired chiral composites

    NASA Astrophysics Data System (ADS)

    Rong, Qing-Qing; Cui, Yu-Hong; Shimada, Takahiro; Wang, Jian-Shan; Kitamura, Takayuki

    2014-08-01

    Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of self-shaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.

  3. Applications of partially quenched chiral perturbation theory

    SciTech Connect

    Golterman, M.F.; Leung, K.C.

    1998-05-01

    Partially quenched theories are theories in which the valence- and sea-quark masses are different. In this paper we calculate the nonanalytic one-loop corrections of some physical quantities: the chiral condensate, weak decay constants, Goldstone boson masses, B{sub K}, and the K{sup +}{r_arrow}{pi}{sup +}{pi}{sup 0} decay amplitude, using partially quenched chiral perturbation theory. Our results for weak decay constants and masses agree with, and generalize, results of previous work by Sharpe. We compare B{sub K} and the K{sup +} decay amplitude with their real-world values in some examples. For the latter quantity, two other systematic effects that plague lattice computations, namely, finite-volume effects and unphysical values of the quark masses and pion external momenta, are also considered. We find that typical one-loop corrections can be substantial. {copyright} {ital 1998} {ital The American Physical Society}

  4. Chiral fermions in asymptotically safe quantum gravity.

    PubMed

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  5. Nonperturbative Regulator for Chiral Gauge Theories?

    NASA Astrophysics Data System (ADS)

    Grabowska, Dorota M.; Kaplan, David B.

    2016-05-01

    We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.

  6. Check for chirality in {sup 102}Rh

    SciTech Connect

    Tonev, D.; Goutev, N.; Yavahchova, M. S.; Petkov, P.; Angelis, G. de; Bhowmik, R. K.; Singh, R. P.; Muralithar, S.; Madhavan, N.; Kumar, R.; Raju, M. Kumar; Kaur, J.; Mahanto, G.; Singh, A.; Kaur, N.; Garg, R.; Sukla, A.; Marinov, Ts. K.; Brant, S.

    2012-10-20

    Excited states in {sup 102}Rh, populated by the fusion-evaporation reaction {sup 94}Zr({sup 11}B,3n){sup 102}Rh at a beam energy of 36 MeV, were studied using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the gamma-ray transitions observed were investigated in details. A new chiral candidate sister band was found in the level-scheme of {sup 102}Rh. Lifetimes of exited states in {sup 102}Rh were measured by means of the Doppler-shift attenuation technique. The experimental results do not support the presence of static chirality in {sup 102}Rh.

  7. Chiral four-dimensional heterotic covariant lattices

    NASA Astrophysics Data System (ADS)

    Beye, Florian

    2014-11-01

    In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.

  8. On the origin of chirality in nanoplasmonic gyroid metamaterials.

    PubMed

    Oh, Sang Soon; Demetriadou, Angela; Wuestner, Sebastian; Hess, Ortwin

    2013-01-25

    Metallic single gyroids, a new class of self-assembled nanoplasmonic metamaterials, are analyzed on the basis of a tri-helical metamaterial model. The physical mechanisms underlying the chiral optical behavior of the nanoplasmonic single gyroid are identified and it is shown that the optical chirality in this metallic structure is primarily determined by structural chirality and the connectivity of helices along the main cubic axes.

  9. Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral

    SciTech Connect

    Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H.

    2011-01-07

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  10. First molecules, biological chirality, origin(s) of life.

    PubMed

    Caglioti, Luciano; Micskei, Károly; Pályi, Gyula

    2011-01-01

    Origin(s) of biological chirality appear(s) to be intimately connected to origin(s) of life. Prebiotic evolution toward these important turning points can be traced back to single chiral molecules. These can be small (monomeric) units as amino acids or monosaccharides or oligomers as oligo-RNA type molecules. Earlier speculations about these two kinds of entries to biological chirality are critically reviewed.

  11. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    AFRL-OSR-VA-TR-2014-0121 LIGHT-DRIVEN CHIRAL MOLECULAR MOTORS FOR PASSIVE AGILE FILTERS Quan Li KENT STATE UNIV OH Final Report 05/20/2014...Prescribed by ANSI Std. Z39.18 1 FINAL REPORT Title: Light-driven Chiral Molecular Motors for Passive Agile Filters AFOSR...As we proposed originally, the major objective of this project was to synthesize novel light- driven chiral molecular motors or switches targeted

  12. Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods

    DTIC Science & Technology

    2014-12-04

    AFRL-OSR-VA-TR-2014-0334 NOVEL ORGANO-SOLUBLE OPTICALLY TUNABLE CHIRAL HYBRID GOLD NANORODS Quan Li KENT STATE UNIV OH Final Report 12/04/2014...Prescribed by ANSI Std. Z39.18 1 FINAL REPORT Title: Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods AFOSR...Now this project has accomplished all the proposed objectives and beyond. Organo-soluble chiral azo thiol monolayer-protected gold nanorods, the

  13. Chirality in microswimmer motion: From circle swimmers to active turbulence

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2016-11-01

    In this minireview, recent progress in our understanding of the basic physical principles of microswimmers which perform a motion characterized by chirality is summarized. We discuss both the chiral motion of a single circle swimmer and the occurrence of bacterial turbulence where swirls of different chirality are formed spontaneously in an interacting ensemble of linear microswimmers. Some recent highlights in this context as obtained by theory, simulation and experiment are summarized and briefly discussed.

  14. Chiral closed strings: four massless states scattering amplitude

    NASA Astrophysics Data System (ADS)

    Leite, Marcelo M.; Siegel, Warren

    2017-01-01

    We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.

  15. Fermion self-energy in magnetized chirally asymmetric QED matter

    NASA Astrophysics Data System (ADS)

    Rybalka, D. O.

    2016-12-01

    The fermion self-energy is calculated for a cold QED plasma with chiral chemical potential in a magnetic field. It is found that a momentum shift parameter dynamically generated in such a plasma leads to a modification of the chiral magnetic effect current. It is argued that the momentum shift parameter can be relevant for the evolution of magnetic field in the chirally asymmetric primordial plasma in the early Universe.

  16. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    PubMed

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  17. Comparison of chiral recognition capabilities of cyclodextrins for the separation of basic drugs in capillary zone electrophoresis.

    PubMed

    Jin, L J; Li, S F

    1998-04-24

    The enantiomeric separation of some racemic anti-histamines and anti-malarials, namely (+/-)-pheniramine, (+/-)-brompheniramine, (+/-)-chlorpheniramine, (+/-)-doxylamine, and (+/-)-chloroquine, was investigated by capillary zone electrophoresis. The enantiomeric separation of five compounds was obtained by addition of approximately 7 mM (1%, w/v) sulfated-beta-cyclodextrin into the buffer as a chiral selector. The effects of sulfated-beta-cyclodextrin concentration and buffer pH on migration and resolution are discussed. Two other cyclodextrins, carboxyethylated-beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin were also investigated. Four of the racemic compounds were resolved using 14 mM (2%, w/v) carboxyethylated-beta-cyclodextrin while 28 mM (4%, w/v) hydroxypropyl-beta-cyclodextrin resolved only two of them. It was found that the type of substituent and the degree of substitution on the rim of the CD structure played an important role in enhancing the chiral recognition. Cyclodextrins with negatively charged substituents and higher degree of substitution on the rim of the structure proved to give better resolution to the cationic racemic compounds compared with cyclodextrin with neutral substituents. This is due to the countercurrent mobility of the negatively charged cyclodextrin relative to the cationic analytes thus allowing for a smaller difference in interaction constants to achieve a successful resolution of enantiomers. Furthermore, lower concentrations of negatively charged cyclodextrins were necessary to achieve the equivalent resolutions as compared with the neutral ones.

  18. A Study of Complexation-ability of Neutral Schiff Bases to Some Metal Cations

    PubMed Central

    Topal, Giray; Tümerdem, Recep; Basaran, Ismet; Gümüş, Arzu; Cakir, Umit

    2007-01-01

    The constants of the extraction equilibrium and the distribution for dichloromethane as an organic solvent having low dielectric constant of metal cations with chiral Schiff bases, benzaldehydene-(S)-2-amino-3-phenylpropanol (I), ohydroxybenzaldehydene-( S)-2-amino-3-phenyl-propanol (II), benzaldehydene-(S)-2- amino-3-methylbutanol (III) with anionic dyes [4-(2-pyridylazo)-resorcinol mono sodium monohydrate (NaPar), sodium picrat (NaPic) and potassium picrat (KPic)] and some heavy metal chlorides were determined at 25 ºC. All the ligands have given strongest complexation for NaPar. In contrast, similar behaviour for both alkali metal picrates is not apparent in the complexation of corresponding ligands.

  19. Cation locations and dislocations in zeolites

    NASA Astrophysics Data System (ADS)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  20. Chiral Biomarkers and Microfossils in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2010-01-01

    Homochirality of the biomolecules (D-sugars of DNA and RNA and L-amino acids of proteins) is a fundamental property of all life on Earth. Abiotic mechanisms yield racemic mixtures (D/L=1) of chiral molecules and after the death of an organism, the enantiopure chiral biomolecules slowly racemize. Several independent investigators have now established that the amino acids present in CI1 and CM2 carbonaceous meteorites have a moderate to strong excess of the L-enantiomer. Stable isotope data have established that these amino acids are both indigenous and extraterrestrial. Carbonaceous meteorites also contain many other strong chemical biomarkers including purines and pyrimidines (nitrogen heterocycles of nucleic acids); pristine and phytane (components of the chlorophyll pigment) and morphological biomarkers (microfossils of filamentous cyanobacteria). Energy dispersive X-ray Spectroscopy (EDS) analysis reveals that nitrogen is below the detectability level in most of the meteorite filaments as well as in Cambrian Trilobites and filaments of 2.7 Gya Archaean cyanobacteria from Karelia. The deficiency of nitrogen in the filaments and the total absence of sugars, of twelve of the life-critical protein amino acids, and two of the nucleobases of DNA and RNA provide clear and convincing evidence that these filaments are not modern biological contaminants. This paper reviews the chiral, chemical biomarkers morphological biomarkers and microfossils in carbonaceous meteorites. This paper reviews chiral and morphological biomarkers and discusses the missing nitrogen, sugars, protein amino acids, and nucleobases as ?bio-discriminators? that exclude modern biological contaminants as a possible explanation for the permineralized cyanobacterial filaments found in the meteorites.