Sample records for chiral lc method

  1. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid

    NASA Astrophysics Data System (ADS)

    Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D.

    2014-08-01

    New liquid crystalline (LC) materials were prepared by derivatization of lactic acid. First compound possesses the lactic acid unit as the only chiral center and the second group of LC materials contains two chiral centers. Mesomorphic properties of both the newly synthesized LC materials were studied and the presence of the SmA*-SmC* or exhibit the twist grain boundary (TGB) phases, namely TGBA and TGBC, in a wide range of temperatures down to the room temperature was established. The potential of high-performance liquid chromatography (HPLC) applying chiral stationary phases to separate enantiomers or diastereoisomers of the synthesized LC compounds was evaluated. Two different brands of commercial chiral sorbents, Lux Amylose-2 and Chiralpak AD-3, both based on modified silica with derivatized polysaccharide, were employed in the development of separation procedures. The optimized chiral HPLC method provided a baseline separation of the individual enantiomers for the LC material containing one chiral center. In the case of the more complex compound with two asymmetric carbon atoms, where four isomers exist, partial separation was reached only using the current chiral HPLC.

  2. Nano-liquid chromatography applied to enantiomers separation.

    PubMed

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  4. Direct chiral determination of free amino acid enantiomers by two-dimensional liquid chromatography: application to control transformations in E-beam irradiated foodstuffs.

    PubMed

    Guillén-Casla, Vanesa; León-González, María Eugenia; Pérez-Arribas, Luis Vicente; Polo-Díez, Luis María

    2010-05-01

    Changes in free amino acids content and its potential racemization in ready-to-eat foods treated with E-beam irradiation between 1 and 8 kGy for sanitation purposes were studied. A simple heart cut two-dimensional high performance liquid chromatographic method (LC-LC) for the simultaneous enantiomeric determination of three pairs of amino acids used as markers (tyrosine, phenylalanine, and tryptophan) is presented. The proposed method involves the use of two chromatographs in an LC-LC achiral-chiral coupling. Amino acids and their decomposition products were firstly separated in a primary column (C(18)) using a mixture of ammonium acetate buffer (20 mM, pH 6) (94%) and methanol (6%) as the mobile phase. Then, a portion of each peak was transferred by heart cutting through a switching valve to a teicoplanin-chiral column. Methanol (90%)/water (10%) was used as the mobile phase. Ultraviolet detection was at 260 nm. Detection limits were between 0.16 and 3 mg L(-1) for each enantiomer. Recoveries were in the range 79-98%. The LC-LC method combined with the proposed sample extraction procedure is suitable for complex samples; it involves an online cleanup, and it prevents degradation of protein, racemization of L-enantiomers, and degradation of tryptophan. Under these conditions, D-amino acids were not found in any of the analyzed samples at detection levels of the proposed method.

  5. Direct high-performance liquid chromatographic determination of the enantiomeric purity of levodopa and methyldopa: comparison with pharmacopoeial polarimetric methods.

    PubMed

    Dolezalová, M; Tkaczyková, M

    1999-03-01

    Chiral high-performance liquid chromatography was employed for determination of the enantiomeric purity of levodopa and methyldopa. The determination of D-DOPA in levodopa was accomplished using a chiral ligand-exchange chromatograpy with an ordinary C18 column and a chiral mobile phase containing N,N-dimethyl-L-phenylalanine and Cu(II) acetate or by means of LC on a teicoplanin column in conjunction with ethanol-water (65:35, v/v). Both methods gave good performance, however, the latter was faster and more convenient and suitable for routine analyses. For the determination of D-methyldopa a LC method based on the use of a teicoplanin column in polar organic mode with methanol-acetic acid-triethylamine (1,000:0.05:0.05, v/v/v) mobile phase was developed. The precision, accuracy, linearity and selectivity were satisfactory. In comparison with pharmacopoeial polarimetric methods (according to the European Pharmacopoeia and the Pharmacopoea Bohemoslovaca), the LC methods proved to be much more sensitive giving detection limits 0.04% of D-DOPA and 0.3% of D-methyldopa.

  6. A Simple Method to Measure the Twist Elastic Constant of a Nematic Liquid Crystal

    DTIC Science & Technology

    2015-01-01

    for measuring the twist elastic constant (K22) of a nematic liquid crystal (LC). By adding some chiral dopant to an LC host, the LC directors rotate......of Optics and Photonics , University of Central Florida, Orlando, FL, USA (Received 14 June 2015; accepted 6 July 2015) We demonstrate a simple method

  7. Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Park, Minwook; Choi, Yu-Jin; Kang, Shin-Woong; Jeong, Kwang-Un

    2015-04-21

    A photochromic chiral molecule with azobenzene mesogens and a (R)-configuration naphthyl moiety (abbreviated as NCA2M) was specifically designed and synthesized for the demonstration of chameleon-like color changes responding to multitudinous external stimuli, such as temperature, light and electric field. The basic phase transition behaviors of NCA2M were first studied by the combination of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Based on the structure-sensitive X-ray diffraction results obtained at different temperatures, it was comprehended that the NCA2M molecule exhibited the tilted version of highly ordered smectic crystal phase with 5.45 nm layer thickness. Chiral nematic (N*) liquid crystals (LC) with helical superstructures were formed by doping the NCA2M photochromic chiral molecule in an achiral nematic (N) LC medium. By controlling the helical pitch length of N*-LC with respect to temperature, light and electric field, the wavelength of selectively reflected light from the N* photonic crystal was finely tuned. The light-induced color change of N*-LC film was the most efficient method for covering the whole visible region from blue to green and to red, which allowed us to fabricate remote-controllable photo-responsive devices.

  8. Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Meera Jay

    The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude.more » Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for flexibility in method development. For APCI, lower flow rates did not increase sensitivity as significantly as was previously found for ESI-MS detection. The chiral analysis of native amino acids was evaluated using both APCI and ESI sources. For free amino acids and small peptides, APCI was found to have better sensitivities over ESI at high flow rates. For larger peptides, however, sensitivity was greatly improved with the use of electrospray. Additionally, sensitivity was enhanced with the use of non-volatile additives, This optimized method was then used to simultaneously separate all 19 native amino acids enantiomerically in less than 20 minutes, making it suitable for complex biological analysis. The previously developed amino acid method was then used to enantiomerically separate theanine, a free amino acid found in tea leaves. Native theanine was found to have lower limits of detection and better sensitivity over derivatized theanine samples. The native theanine method was then used to determine the enantiomeric composition of six commercially available L-theanine products. Five out of the six samples were found to be a racemic mixture of both D- and L-theanine. Concern over the efficacy of these theanine products led to our final study evaluating the pharmacokinetics and pharmacodynamics of theanine in rats using LC-ESI/MS. Rats were administered D-, L, and QL-theanine both orally and intra-peritoneally. Oral administration data demonstrated that intestinal absorption of L-theanine was greater than that of D-theanine, while i.p. data showed equal plasma uptake of both isomers. This suggested a possible competitive binding effect with respect to gut absorption. Additionally, it was found that regardless of administration method, the presence of the other enantiomer always decreased overall theanine plasma concentration. This indicated that D- and L- theanine exhibit competitive binding with respect to urinary reabsorption as well. The large quantities of D-theanine detected in the urine suggested that D-themine was eliminated with minimal metabolism, while L-theanine was preferentially reabsorbed and metabolized to ethylamine. Clearly, the metabolic fate of racemic theanine and its individual enantiomers was quite different, placing into doubt the utility of the commercial theanine products.« less

  9. "Heart-cut" bidimensional achiral-chiral liquid chromatography applied to the evaluation of stereoselective metabolism, in vivo biological activity and brain response to chiral drug candidates targeting the central nervous system.

    PubMed

    Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe

    2016-04-22

    A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug concentration in whole brain tissue and provides continuous monitoring of extracellular concentrations of single chiral drug enantiomers along with its metabolites in specific brain regions at each selected time point for a desired period by using a single animal. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Use of chiral derivatization for the determination of dichlorprop in tea samples by ultra performance LC with fluorescence detection.

    PubMed

    Inoue, Koichi; Prayoonhan, Nuntawat; Tsutsui, Haruhito; Sakamoto, Tasuku; Nishimura, Maiko; Toyo'oka, Toshimasa

    2013-04-01

    Dichlorprop is available for agricultural use as a chiral pesticide. In this study, the stereoselective determination of dichlorprop enantiomers in tea samples such as green, black, jasmine, and oolong was developed by ultra performance LC with fluorescence spectrometry after covalent chiral derivatization. The separation was achieved on an Acquity BEH C18 column with the mobile phase consisting of 0.1% formic acid in acetonitrile/water at a flow rate of 0.4 mL/min. In the covalent chiral derivatization using (S)-(+)-4-(N,N-dimethylaminosulfonyl)-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole, the peak resolution between the S and R-dichlorprop enantiomers was 2.6. LODs and LOQs values were 10 and 50 ng/mL standard solution. The linearity of the calibration curves yielded the coefficients (r(2) > 0.99, ranging from 0.05 to 5 μg/mL) of determination of each of the dichlorprop enantiomers. SPE extraction was used for the sample preparation of dichlorprop in various tea samples. Recoveries were in the range of 82.4-97.6% with associated precision values (within-day: 82.4-95.8%, n = 6, and between-day: 83.7-97.6% for 3 days) for repeatability and reproducibility. Based on this result, our method has been proven to be highly efficient and suitable for the routine assay of dichlorprop enantiomers in various tea samples. We propose that the ultra performance LC assay after covalent chiral derivatization would be the renewed tools in the era of chiral stationary platform for chiral pesticide residues in foods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous analysis of D-alanine, D-aspartic acid, and D-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues.

    PubMed

    Karakawa, Sachise; Shimbo, Kazutaka; Yamada, Naoyuki; Mizukoshi, Toshimi; Miyano, Hiroshi; Mita, Masashi; Lindner, Wolfgang; Hamase, Kenji

    2015-11-10

    A highly sensitive and selective chiral LC-MS/MS method for D-alanine, D-aspartic acid and D-serine has been developed using the precolumn derivatization reagents, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Tag) or p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS). The thus N-tagged enantiomers of the derivatized amino acids were nicely separated within 20min using the cinchona alkaloid-based zwittterionic ion-exchange type enantioselective column, Chiralpak ZWIX(+). The selected reaction monitoring was applied for detecting the target d-amino acids in biological matrices. By using the present chiral LC-MS/MS method, the three d-amino acids and their l-forms could be simultaneously determined in the range of 0.1-500nmol/mL. Finally, the technique was successfully applied to rat plasma and tissue samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    NASA Astrophysics Data System (ADS)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  13. Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Yao, Miao; Wu, Shuang-jie; Yao, Dan-Shu; Hu, Jian-She; He, Xiao-zhi; Tian, Mei

    2017-12-01

    Four multi-arm liquid crystals (LCs) based on chenodeoxycholic acid, termed as 2G-PD, 2G-IB, 2G-BD and 5G-GC, respectively, have been synthesised by convergent method, which nematic LC, 6-(4-((4-ethoxybenzoyl)oxy)phenoxy)-6-oxohexanoic acid, was used as side arm, and chenodeoxycholic acid (CDCA) was used as the first core, 1,2-propanediol (PD), isosorbide (IB), 4,4‧-biphenyldiol (BD) and glucose (GC) were used as the second core, respectively. The first generation product, CDCA2EA, displayed cholesteric phase. The second generation products 2G-BD and 5G-GC displayed cholesteric phase, while 2G-PD and 2G-IB exhibited nematic phase. The multi-arm LC, 2G-IB, did not display cholesteric phase although the two cores were all chiral ones. The result indicated that chirality of the second core sometimes made the multi-arm LCs display nematic phase when cholesteric CDCA-derivative were introduced into the second core. Some attention should be paid on molecular conformation besides the introduction of chiral cores for multi-chiral-core LCs to obtain cholesteric phase.

  14. Enantiomeric separation of metolachlor and its metabolites using LC-MS and CZE

    USGS Publications Warehouse

    Klein, C. John; Schneider, R.J.; Meyer, M.T.; Aga, D.S.

    2006-01-01

    The stereoisomers of metolachlor and its two polar metabolites [ethane sulfonic acid (ESA) and oxanilic acid (OXA)] were separated using liquid chromatography-mass spectrometry (LC-MS) and capillary zone electrophoresis (CZE), respectively. The separation of metolachlor enantiomers was achieved using a LC-MS equipped with a chiral stationary phase based on cellulose tris(3,5-dimethylphenyl carbamate) and an atmospheric pressure chemical ionization source operated under positive ion mode. The enantiomers of ESA and OXA were separated using CZE with gamma-cyclodextrin (??-CD) as chiral selector. Various CZE conditions were investigated to achieve the best resolution of the ESA and OXA enantiomers. The optimum background CZE electrolyte was found to consist of borate buffer (pH = 9) containing 20% methanol (v/v) and 2.5% ??-CD (w/v). Maximum resolution of ESA and OXA enantiomers was achieved using a capillary temperature of 15??C and applied voltage of 30 kV. The applicability of the LC-MS and CZE methods was demonstrated successfully on the enantiomeric analysis of metolachlor and its metabolites in samples from a soil and water degradation study that was set up to probe the stereoselectivity of metolachlor biodegradation. These techniques allow the enantiomeric ratios of the target analytes to be followed over time during the degradation process and thus will prove useful in determining the role of chirality in pesticide degradation and metabolite formation. ?? 2005 Elsevier Ltd. All rights reserved.

  15. Improvement in device performance from a mixture of a liquid crystal and photosensitive acrylic prepolymer with the photoinduced vertical alignment method

    PubMed Central

    Ho, Czung-Yu; Lin, Fa-Hsin; Tao, Yu-Tai; Lee, Jiunn-Yih

    2011-01-01

    In a multicomponent nematic liquid crystal (NLC) mixture of a liquid crystal (negative-type NLC) and a photosensitive acrylic prepolymer, photopolymerization upon UV irradiation induces the separation of the LC and photosensitive acrylic prepolymer layers, thereby leading to a vertical arrangement of LC molecules. In this study, we propose a simple vertical alignment method for LC molecules, by adding a chiral smectic A (SmA∗) liquid crystal having homeotropic texture characteristics to an NLC mixture solution. Measurements of electro-optical properties revealed that the addition of the SmA∗ LC not only strengthened the anchoring force of the copolymer alignment film surface, but also significantly enhanced the contrast ratio (∼73%), response time and grayscale switching performance of the device. PMID:27877462

  16. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids.

    PubMed

    Nakano, Yosuke; Konya, Yutaka; Taniguchi, Moyu; Fukusaki, Eiichiro

    2017-01-01

    d-Amino acids have recently attracted much attention in various research fields including medical, clinical and food industry due to their important biological functions that differ from l-amino acid. Most chiral amino acid separation techniques require complicated derivatization procedures in order to achieve the desirable chromatographic behavior and detectability. Thus, the aim of this research is to develop a highly sensitive analytical method for the enantioseparation of chiral amino acids without any derivatization process using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By optimizing MS/MS parameters, we established a quantification method that allowed the simultaneous analysis of 18 d-amino acids with high sensitivity and reproducibility. Additionally, we applied the method to food sample (vinegar) for the validation, and successfully quantified trace levels of d-amino acids in samples. These results demonstrated the applicability and feasibility of the LC-MS/MS method as a novel, effective tool for d-amino acid measurement in various biological samples. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess "in-vivo" inter-conversion of chiral drug molecules.

    PubMed

    Goel, Meenakshi; Larson, Eli; Venkatramani, C J; Al-Sayah, Mohammad A

    2018-05-01

    Enantioselective analysis is an essential requirement during the pharmaceutical development of chiral drug molecules. In pre-clinical and clinical studies, the Food and Drug Administration (FDA) mandates the assessment of "in vivo" inter-conversion of chiral drugs to determine their physiological effects. In-vivo analysis of the active pharmaceutical ingredient (API) and its potential metabolites could be quite challenging due to their low abundance (ng/mL levels) and matrix interferences. Therefore, highly selective and sensitive analytical techniques are required to separate the API and its metabolites from the matrix components and one another. Additionally, for chiral APIs, further analytical separation is required to resolve the API and its potential metabolites from their corresponding enantiomers. In this work, we demonstrate the optimization of our previously designed two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFC -MS) system to achieve 10 ng/mL detection limit [1]. The first LC dimension, used as a desalting step, could efficiently separate the API from its potential metabolites and matrix components. The API and its metabolites were then trapped/focused on small trapping columns and transferred onto the second SFC dimension for chiral separation. Detection can be achieved by ultra-violet (UV) or MS detection. Different system parameters such as column dimensions, transfer volumes, trapping column stationary phase, system tubing internal diameter (i.d.), and detection techniques, were optimized to enhance the sensitivity of the 2D-LC-SFC-MS system. The limit of detection was determined to be 10 ng/mL. An application is described where a mouse hepatocyte treated sample was analyzed using the optimized 2D-LC-SFC-MS system with successful assessment of the ratio of API to its metabolite (1D-LC), as well as the corresponding enantiomeric excess values (% e.e.) of each (2D-SFC). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement.

    PubMed

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M; Clark, Noel A; Yoon, Dong Ki

    2017-02-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'- n -pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

  19. Structural transitions and guest/host complexing of liquid crystal helical nanofilaments induced by nanoconfinement

    PubMed Central

    Kim, Hanim; Ryu, Seong Ho; Tuchband, Michael; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Yoon, Dong Ki

    2017-01-01

    A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4′-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions. PMID:28246642

  20. [Identification of Methamphetamine Abuse and Selegiline Use: Chiral Analysis of Methamphetamine and Amphetamine in Urine].

    PubMed

    Xiang, P; Bu, J; Qiao, Z; Zhuo, X Y; Wu, H J; Shen, M

    2017-12-01

    To study the content variation of selegiline and its metabolites in urine, and based on actual cases, to explore the feasibility for the identification of methamphetamine abuse and selegiline use by chiral analysis. The urine samples were tested by chiral separation and LC-MS/MS method using CHIROBIOTIC™ V2 chiral liquid chromatography column. The chiral analysis of methamphetamine and amphetamine were performed on the urine samples from volunteers of selegiline use and drug addicts whom suspected taking selegiline. After 5 mg oral administration, the positive test time of selegiline in urine was less than 7 h. The mass concentrations of R(-)-methamphetamine and R(-)-amphetamine in urine peaked at 7 h which were 0.86 μg/mL and 0.18 μg/mL and couldn't be detected after 80 h and 168 h, respectively. The sources of methamphetamine and amphetamine in the urine from the drug addicts whom suspected taking selegiline were analysed successfully by present method. The chiral analysis of methamphetamine and amphetamine, and the determination of selegiline's metabolites can be used to distinguish methamphetamine abuse from selegiline use. Copyright© by the Editorial Department of Journal of Forensic Medicine

  1. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Shin, Jungsoon; Lee, Keechang; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-01

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

  2. Microsecond-range optical shutter for unpolarized light with chiral nematic liquid crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadimasoudi, Mohammad, E-mail: Mohammad.Mohammadimasoudi@elis.ugent.be; Neyts, Kristiaan; Beeckman, Jeroen

    2015-04-15

    A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containingmore » a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.« less

  3. Density of photon states in dye-doped chiral nematic liquid crystal cells in the presence of losses and gain.

    PubMed

    Mavrogordatos, Th K; Morris, S M; Castles, F; Hands, P J W; Ford, A D; Coles, H J; Wilkinson, T D

    2012-07-01

    We calculate the density of photon states (DOS) of the normal modes in dye-doped chiral nematic liquid crystal (LC) cells in the presence of various loss mechanisms. Losses and gain are incorporated into the transmission characteristics through the introduction of a small imaginary part in the dielectric constant perpendicular and along the director, for which we assume no frequency dispersion. Theoretical results are presented on the DOS in the region of the photonic band gap for a range of values of the loss coefficient and different values of the optical anisotropy. The obtained values of the DOS at the photonic band gap edges predict a reversal of the dominant modes in the structure. Our results are found to be in good agreement with the experimentally obtained excitation thresholds in chiral nematic LC lasers. The behavior of the DOS is also discussed for amplifying LC cells providing additional insight to the lasing mechanism of these structures.

  4. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that

  5. Analysis of Chiral Carboxylic Acids in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Elsila, J. E.; Hein, J. E.; Aponte, J. C.; Parker, E. T.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    Homochirality of amino acids in proteins and sugars in DNA and RNA is a critical feature of life on Earth. In the absence of a chiral driving force, however, reactions leading to the synthesis of amino acids and sugars result in racemic mixtures. It is currently unknown whether homochirality was necessary for the origins of life or if it was a product of early life. The observation of enantiomeric excesses of certain amino acids of extraterrestrial origins in meteorites provides evidence to support the hypothesis that there was a mechanism for the preferential synthesis or destruction of a particular amino acid enantiomer [e.g., 1-3]. The cause of the observed chiral excesses is un-clear, although at least in the case of the amino acid isovaline, the degree of aqueous alteration that occurred on the meteorite parent body is correlated to the isovaline L-enantiomeric excess [3, 4]. This suggests that chiral symmetry is broken and/or amplified within the meteorite parent bodies. Besides amino acids, there have been only a few reports of other meteoritic compounds found in enantiomeric excess: sugars and sugar acids [5, 6] and the hydroxy acid lactic acid [7]. Determining whether or not additional types of molecules in meteorites are also present in enantiomeric excesses of extraterrestrial information will provide insights into mechanisms for breaking chiral symmetry. Though the previous measurements (e.g., enantiomeric composition of lactic acid [7], and chiral carboxylic acids [8]) were made by gas chromatography-mass spectrometry, the potential for increased sensitivity of liquid chromatography-mass spectrometry (LC-MS) analyses is important because for many meteorite samples, only small sample masses are available for study. Furthermore, at least in the case of amino acids, many of the largest amino acid enantiomeric excesses were observed in samples that contained lower abundances (tens of ppb) of a given amino acid enantiomer. In the present work, we describe our efforts to develop highly sensitive LC-MS methods for the analysis of chiral carboxylic acids including hydroxy acids.

  6. Chiral analyses of dextromethorphan/levomethorphan and their metabolites in rat and human samples using LC-MS/MS.

    PubMed

    Kikura-Hanajiri, Ruri; Kawamura, Maiko; Miyajima, Atsuko; Sunouchi, Momoko; Goda, Yukihiro

    2011-04-01

    In order to develop an analytical method for the discrimination of dextromethorphan (an antitussive medicine) from its enantiomer, levomethorphan (a narcotic) in biological samples, chiral analyses of these drugs and their O-demethyl and/or N-demethyl metabolites in rat plasma, urine, and hair were carried out using LC-MS/MS. After the i.p. administration of dextromethorphan or levomethorphan to pigmented hairy male DA rats (5 mg/kg/day, 10 days), the parent compounds and their three metabolites in plasma, urine and hair were determined using LC-MS/MS. Complete chiral separation was achieved in 12 min on a Chiral CD-Ph column in 0.1% formic acid-acetonitrile by a linear gradient program. Most of the metabolites were detected as being the corresponding O-demethyl and N, O-didemethyl metabolites in the rat plasma and urine after the hydrolysis of O-glucuronides, although obvious differences in the amounts of these metabolites were found between the dextro and levo forms. No racemation was observed through O- and/or N-demethylation. In the rat hair samples collected 4 weeks after the first administration, those differences were more clearly detected and the concentrations of the parent compounds, their O-demethyl, N-demethyl, and N, O-didemethyl metabolites were 63.4, 2.7, 25.1, and 0.7 ng/mg for the dextro forms and 24.5, 24.6, 2.6, and 0.5 ng/mg for the levo forms, respectively. In order to fully investigate the differences of their metabolic properties between dextromethorphan and levomethorphan, DA rat and human liver microsomes were studied. The results suggested that there might be an enantioselective metabolism of levomethorphan, especially with regard to the O-demethylation, not only in DA rat but human liver microsomes as well. The proposed chiral analyses might be applied to human samples and could be useful for discriminating dextromethorphan use from levomethorphan use in the field of forensic toxicology, although further studies should be carried out using authentic human samples.

  7. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhou, Ting; Zeng, Jing; Liu, Shan; Zhao, Ting; Wu, Jie; Lai, Wenshi; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-10-01

    The chiral inversion has been a concerned issue during the research and development of a chiral drug. In this study, a sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of salbutamol enantiomers in human plasma and urine. The chiral inversion mechanism of R-salbutamol was fully investigated for the first time by studying the effects of physicochemical factors, including pH, temperature and time. A fitted model to predict the chiral inversion ratio of R-salbutamol was proposed using a Box-Behnken design. All the samples were separated on an Astec Chirobiotic T column and detected by a tandem mass spectrometer in multiple reaction monitoring mode. Lower limit of quantification of 0.100ng/mL was achieved under the optimized conditions. The method was fully validated and successfully applied to the clinical pharmacokinetic study of R-salbutamol in healthy volunteers. Chiral inversion of R-salbutamol to S-salbutamol has been detected in urine samples. The results indicated that pH and temperature were two dominant factors that caused the chiral inversion of R-salbutamol, which should be taken into consideration during the analysis of chiral drugs. The chiral inversion of R-salbutamol determined in this study was confirmed resulted from the gastric acid in stomach rather than caused by the analysis conditions. Moreover, the calculated results of the fitted model matched very well with the enantioselective pharmacokinetic study of R-salbutamol, and the individual difference of the chiral inversion ratio of R-salbutamol was related to the individual gastric environment. On the basis of the results, this study provides important and concrete information not only for the chiral analysis but also for the metabolism research of chiral drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Self-Assembly of Topological Solitons and Functional Nanoparticles in Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ackerman, Paul Jeffrey

    As a result of their intrinsic orientational order, soft elasticity, and facile response to external stimuli, liquid crystals (LCs) provide a rich environment for both fundamental science and viable technological applications. In this thesis I explore the emergent properties of confinement-frustrated chiral nematic LCs and nanoparticle-LC composites. Due to a complex free energy landscape, con- fined LCs exhibit a large number of local and global energy minima and can facilitate self-assembly of many types of topological solitons. These localized configurations of molecular orientation field are useful for technological applications, have properties that are enhanced by colloidal inclusions and enable the fundamental studies of nanoparticle interactions. Experimental and numerical ex- ploration of these topologically nontrivial solitons may influence the experimental realization of their analogs in physical systems ranging from elementary particles to cosmology. The delicate interplay of topology, chirality and confinement of LCs can enable spontaneous or optical vortex initiated self-assembly of solitons. In turn, the optical generation and patterning of reconfigurable LC solitons can enable the production of optical vortices in laser beams, demon- strating hierarchical control of defects in matter and light with potential technological applications. The elasticity and facile response of LCs to applied fields facilitates the self-assembly of crystals and chains of solitons, giant electrostriction, as well as electrically driven nonequilibrium dynamics in the form of reversible directional motion of stable defect pairs. Concepts of chirality and topo- logical invariants, such as Hopf index and Skyrmion number, are invoked to examine and classify a variety of spatial solitons, including Skyrmions, Hopfions, and torons, as well as to analyze the role of chirality and the unexpected observation of twist handedness reversal that enables soliton stability. By introducing colloidal particles to the confined chiral LCs, we probe how new composite material properties can emerge spontaneously or be pre-designed and then probed by combining the facile response of the LC host and the unique properties of nanoparticles. This allows us to achieve polar ferromagnetic response in chiral ferromagnetic LC colloids as well as to probe plasmon- exciton interactions through controlling metal and semiconductor quantum dot nanoparticles within topological defects.

  9. Enantioselective extraction of (+)-(S)-citalopram and its main metabolites using a tailor-made stir bar chiral imprinted polymer for their LC-ESI-MS/MS quantitation in urine samples.

    PubMed

    Unceta, Nora; Gómez-Caballero, Alberto; García, Deiene; Díaz, Goretti; Guerreiro, Antonio; Piletsky, Sergey; Goicolea, M Aránzazu; Barrio, Ramón J

    2013-11-15

    This paper reports the application of a chiral imprinted polymer (CIP)-coated stir bar for the selective extraction of (+)-(S)-citalopram (SCIT) and its main metabolites, (+)-(S)-desmethylcitalopram (SDCIT) and (+)-(S)-didesmethylcitalopram (SDDCIT), from urine samples. The developed device has been demonstrated to be capable of selectively extracting the three target analytes from urine samples without saturating the imprinted sites. A CIP-coated stir bar sorptive extraction procedure (CIP-SBSE) is proposed for the isolation of SCIT, SDCIT and SDDCIT followed by their subsequent analysis using liquid chromatography ion trap mass spectrometry (LC-ITMS). Deuterated SCIT-d6 was used as an internal standard. The method was validated using a standard procedure, which revealed that a quantification of 5 ng mL(-1) was obtained in urine samples and that the accuracy and precision were within the established values while no matrix effect was observed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study.

    PubMed

    Zhou, Ting; Liu, Shan; Zhao, Ting; Zeng, Jing; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-08-01

    A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous chiral analysis of an antiasthma drug bambuterol, its key intermediate monocarbamate bambuterol and its active drug terbutaline in human plasma. All samples were extracted with ethyl acetate and separated on an Astec Chirobiotic T column under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20mm ammonium acetate and 0.005% (v/v) formic acid at 0.6mL/min. The analytes were detected by a Xevo TQ-S tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method has high sensitivity with the lower limit of quantifications of 25.00pg/mL for bambuterol enantiomers, and 50.00pg/mL for monocarbamate bambuterol and terbutaline enantiomers, respectively. The calibration curves for bambuterol enantiomers were linear in the range of 25.00-2500pg/mL, and for monocarbamate bambuterol and terbutaline enantiomers were linear in the range of 50.00-5000pg/mL. The intra- and inter-day precisions were <12.4%. All the analytes were separated in 18.0min. For the first time, the validated method was successfully applied to an enantioselective pharmacokinetic study of rac-bambuterol in 8 healthy volunteers. According to the results, this chiral LC-MS/MS assay provides a suitable and robust method for the enantioselectivity and interaction study of the prodrug bambuterol, the key intermediate monocarbamate bambuterol and its active drug terbutaline in human. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Thermally controllable reflective characteristics from rupture and self-assembly of hydrogen bonds in cholesteric liquid crystals.

    PubMed

    Hu, Wang; Cao, Hui; Song, Li; Zhao, Haiyan; Li, Sijin; Yang, Zhou; Yang, Huai

    2009-10-22

    A cholesteric liquid crystal (Ch-LC) composite, made of a series of cholesteryl esters, a nematic LC, and a hydrogen bond (H-bond) chiral dopant (HCD), was prepared and filled into a planar treated cell. When the cell was heated, the selective reflection of the cell exhibited an unusual blue shift. One of the reasonable mechanisms was that the helical twisting power (HTP) value of cholesteryl esters increased with an increasing temperature. The other one was that the H-bonds of HCD were ruptured when the temperature was above 60.0 degrees C and HCD was split into two kinds of new chiral dopants, which made the HTP value of the chiral dopants change a lot, thus changing the pitch length of the composite greatly. On the basis of this mechanism, a novel thermally controllable reflective color paper could be achieved.

  12. Enantioselective determination of 3-n-butylphthalide (NBP) in human plasma by liquid chromatography on a teicoplanin-based chiral column coupled with tandem mass spectrometry.

    PubMed

    Diao, Xingxing; Ma, Zhiyu; Lei, Peng; Zhong, Dafang; Zhang, Yifan; Chen, Xiaoyan

    2013-11-15

    A novel and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the exposure of 3-n-butylphthalide (NBP) enantiomers in human plasma. The NBP enantiomers were extracted from human plasma using methyl tert-butyl ether. The baseline separation of R-(+)-NBP and S-(-)-NBP was achieved within 11.0min using a teicoplanin-based Astec Chirobiotic T column (250mm×4.6mm i.d., 5μm) under isocratic conditions at a flow rate of 0.6mL/min. The selection of the chiral stationary phase and the effect of the mobile phase composition on the resolution of the enantiomers were discussed. The selectivity, linearity, precision, accuracy, matrix effect, recovery, and stability were evaluated under optimized conditions. The LC-MS/MS method using 200μL of human plasma was linear over the concentration range of 5.00-400ng/mL for each enantiomer. The lower limit of quantification (LLOQ) for both enantiomers was 5.00ng/mL. The intra- and inter-assay precision values of the replicated quality control samples were within 8.0% for each enantiomer. The mean accuracy values for the quality control samples were within ±6.1% of the nominal values for R-(+)-NBP and S-(-)-NBP. No chiral inversion was observed during sample storage, preparation, and analysis. The method proved suitable for enantioselective pharmacokinetic studies of NBP after an oral administration of a therapeutic dose of racemic NBP. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey.

    PubMed

    Rimkus, Gerhard G; Hoffmann, Dirk

    2017-06-01

    Chloramphenicol (CAP) is a broad-spectrum antibiotic used widely in both human and veterinary medication. Since 1994, CAP has not been authorised for use in food-producing animals in the European Union due to several adverse effects. A minimum required performance level (MRPL) of 0.3 µg kg - 1 was established in 2003. The CAP molecule contains two asymmetric centres, thus in total four para-CAP stereoisomers exist. Only the RR-CAP enantiomer is bioactive, having significant antimicrobial activity. For the first time a chiral LC-MS/MS method is reported to identify and quantify the four CAP enantiomers at residue levels in honey samples. The method was validated at two concentration levels. The decision limits (CCα) and detection capabilities (CCß) were well below 0.3 µg kg - 1 , with limits of quantification (LOQs) between 0.08 and 0.12 µg kg - 1 for all four enantiomers. The method provides a sensitive and reliable analysis of CAP enantiomers in honey, and proved its robustness during the daily routine analyses of numerous honey samples. In an internal honey survey, in total 40 honey samples from different geographical regions with identified CAP residues at or above the MRPL were reanalysed by chiral LC-MS/MS. In nine honey samples only the bioactive RR-CAP was detected as anticipated. However, in all other 31 honey samples the non-bioactive SS-CAP was also identified and quantified unambiguously. In 10 of these samples, mixtures of RR- and SS-CAP were analysed, and in 21 samples only the SS-CAP enantiomer, with concentrations up to 2.2 µg kg - 1 . Most of these samples are honeys from Ukraine and Eastern Europe. This is the first report of SS-CAP residues in food samples. The potential sources for these findings are discussed and the need of further systematic studies emphasised. It is recommended to examine in more depth the toxicological profile of the individual CAP stereoisomers.

  14. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Laser-induced erasable patterns in a N* liquid crystal on an iron doped lithium niobate surface.

    PubMed

    Habibpourmoghadam, Atefeh; Lucchetti, Liana; Evans, Dean R; Reshetnyak, Victor Y; Omairat, Faissal; Schafforz, Samuel L; Lorenz, Alexander

    2017-10-16

    A chiral nematic (N*) liquid crystal (LC) was hybridized with a z-cut iron doped lithium niobate (Fe:LN) substrate and exposed with a focused continuous wave diode laser beam. The N* LC layer was confined with a cover glass to provide a homogeneous LC layer thickness. Two distinct kinds of test cells were investigated, one with an uncoated glass covering slip and one with an indium tin oxide (ITO) coated cover glass. Photo generated electric fields (generated in the Fe:LN) resulted in a localized defect formation and textural transitions in the N* LC. Due to field confinement, the field induced responses were more localized in samples with ITO coated cover glasses. By scanning the laser beam on programmed trajectories, formation of persistent patterns could be achieved in the N* LC layer. Polarized optical microscopy of the exposed samples revealed that these patterns consisted of adjacent circular Frank-Pryce defects. Exposure with a slightly defocused laser beam could be applied selectively to erase these patterns. Thus, a promising method is reported to generate reconfigurable patterns, photonic motives, and touch sensitive devices in a hybridized N* LC with micron accuracy.

  16. Lasing properties of polymerized chiral nematic Bragg onion microlasers.

    PubMed

    Humar, Matjaž; Araoka, Fumito; Takezoe, Hideo; Muševič, Igor

    2016-08-22

    Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

  17. Stereoselective quantitation of mecoprop and dichlorprop in natural waters by supramolecular solvent-based microextraction, chiral liquid chromatography and tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2013-01-25

    Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.9 and 160.6 for MCPP and DCPP, respectively) using a hybrid triple quadrupole mass spectrometer equipped with an electrospray source operating in the negative ion mode. Similar recoveries (ca. 75%) and actual concentration factors (ca. 94) were obtained for both phenoxypropanoic acids (PPAs). The quantitation limits were 1 ng L(-1) for R- and S-MCPP, and 4 ng L(-1) for R- and S-DCPP, and the precision, expressed as relative standard deviation (n = 6) was in the ranges 2.4-2.7% ([R-MCPP] = [S-MCPP] = 5 ng L(-1) and [R-DCPP] = [S-DCPP] = 15 ng L(-1)) and 1.6-1.8% (100 ng L(-1) of each enantiomer). The SUSME-LC-MS/MS method was successfully applied to the determination of the enantiomers of MCPP and DCPP in river and underground waters, fortified at concentrations between 15 and 180 ng L(-1) at variable enantiomeric ratios (ER = 1-9). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Tunable reflectance of an inverse opal-chiral nematic liquid crystal multilayer device by electric- or thermal-control.

    PubMed

    Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua

    2017-05-21

    A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .

  19. Self-assembly of gelator molecules in liquid crystals studied by ESR

    NASA Astrophysics Data System (ADS)

    Andreis, Mladen; Carić, Dejana; Vujičić, Nataša Šijaković; Jokić, Milan; Žinić, Mladen; Kveder, Marina

    2012-07-01

    Thermotropic liquid crystal trans-4-heptylcyclohexanecarboxylic acid (HCCA) doped with 4-oxo-2,2,6,6,-tetramethyl-1-piperidinyloxy spin probe (Tempone) is investigated by electron spin resonance (ESR) spectroscopy in the presence of chiral bisoxalamide gelator 1 during both cooling and heating cycles. In the temperature range 295-383 K, where HCCA displays isotropic, nematic, smectic B and crystalline phases, the impact of 1 self-organization was detected via (non) homogeneous partitioning of the spin probe in the environments varying in the polarity, an effect dependent on the gelator concentration. In particular, the evidence of the onset of the gelator network self-assembly in the nematic phase was detected by ESR at higher temperatures than the ones reported so far by other experimental techniques. Additionally, the spectral analysis points to the switching of the polarity in the vicinity of the spin probe when the transfer of chirality from 1 to HCCA upon cooling of the sample from isotropic to chiral nematic phase appears and when the event of LC gelation results in the achiral nematic phase during chiral gel fibers formation. When the gelation proceeds in the smectic phase, the melting of the gelator network is studied in the nematic phase during the heating cycle. Furthermore, the event of HCCA crystallization is shown to be strongly affected by the presence of 1 as well. The experimental evidence is provided that gelator network confines the HCCA into the domains within the bulk crystalline matrix where the local molecular dynamics are still not frozen. Therefore, we propose that non-homogeneous polarity profile of molecular organization/packing within LC gels could be determinable for the physical properties of various LC gel phases.

  20. Analysis of oxcarbazepine and the 10-hydroxycarbazepine enantiomers in plasma by LC-MS/MS: application in a pharmacokinetic study.

    PubMed

    de Jesus Antunes, Natalicia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Lanchote, Vera Lucia

    2013-12-01

    Oxcarbazepine is a second-generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic-clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10-hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)-(+)- and R-(-)-MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert-butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD-H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC-MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD and an AUC(0-12) S-(+)/R-(-) ratio of 5.44. © 2013 Wiley Periodicals, Inc.

  1. Relative quantification of enantiomers of chiral amines by high-throughput LC-ESI-MS/MS using isotopic variants of light and heavy L-pyroglutamic acids as the derivatization reagents.

    PubMed

    Mochizuki, Toshiki; Taniguchi, Sayuri; Tsutsui, Haruhito; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2013-04-22

    L-Pyroglutamic acid (L-PGA) was evaluated as a chiral labeling reagent for the enantioseparation of chiral amines in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. Several amines and amino acid methyl esters were used as typical representatives of the chiral amines. Both enantiomers of the chiral amines were easily labeled with L-PGAS at room temperature for 60 min in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxy-1H-benzotriazole as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.6-6.8). A highly sensitive detection at a low-fmol level (1-4 fmol) was also obtained from the multiple reaction monitoring (MRM) chromatograms. Therefore, a high-throughput determination was achieved by the present UPLC-ESI-MS/MS method. An isotope labeling strategy using light and heavy L-PGAs for the differential analysis of chiral amines in different sample groups was also proposed in this paper. As a model study, the differential analysis of the R and S ratio of 1-phenylethylamine (PEA) was performed according to the proposed procedure using light and heavy reagents, i.e., L-PGA and L-PGA-d5. The R/S ratio of PEA, spiked at the different concentrations in rat plasma, was almost similar to the theoretical values. Consequently, the proposed strategy using light and heavy chiral labeling reagents seems to be applicable for the differential analysis of chiral amine enantiomers in different sample groups, such as healthy persons and disease patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on flexible substrates. The wide tunability of the HTP furnishes reflection colors encompassing the whole visible spectrum and beyond in a reversible manner. Photomodulation of the helical pitch of the CLCs has been achieved by UV, visible, and near-infrared (NIR) light irradiation. NIR-light-induced red, green, and blue (RGB) reflections have been leveraged only by varying the power density of the IR laser. Some chiral switches are found to confer helix inversion to the cholesteric systems, which qualifies the CLCs for applications where circularly polarized light is involved. Dynamic and static primary RGB reflection colors have been achieved in a single film. LC BPs have been fabricated and investigated in the context of self-organized 3D photonic band gap (PBG) materials, and dynamic phototuning of the PBG over the visible region has been achieved. Omnidirectional lasing and tuning of the laser emission wavelength have also been attained in monodisperse photoresponsive CLC microshells fabricated by a capillary-based microfluidic technique. This Account covers the research and development in our laboratory starting from the design concepts and synthesis of photodynamic chiral molecular switches to their applications in the fabrication of photoresponsive CLCs and BPs. Potential and demonstrated practical applications of photoresponsive CLCs, microshells, and BPs are discussed, and the Account concludes with a brief forecast of what lies beyond the horizon in this rapidly expanding and fascinating field.

  3. Development and validation of LC-HRMS and GC-NICI-MS methods for stereoselective determination of MDMA and its phase I and II metabolites in human urine

    PubMed Central

    Schwaninger, Andrea E.; Meyer, Markus R.; Huestis, Marilyn A.; Maurer, Hans H.

    2013-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a racemic drug of abuse and its R- and S-enantiomers are known to differ in their dose-response curve. The S-enantiomer was shown to be eliminated at a higher rate than the R-enantiomer most likely explained by stereoselective metabolism that was observed in various in vitro experiments. The aim of this work was the development and validation of methods for evaluating the stereoselective elimination of phase I and particularly phase II metabolites of MDMA in human urine. Urine samples were divided into three different methods. Method A allowed stereoselective determination of the 4-hydroxy-3-methoxymethamphetamine (HMMA) glucuronides and only achiral determination of the intact sulfate conjugates of HMMA and 3,4-dihydroxymethamphetamine (DHMA) after C18 solid-phase extraction by liquid chromatography–high-resolution mass spectrometry with electrospray ionization. Method B allowed the determination of the enantiomer ratios of DHMA and HMMA sulfate conjugates after selective enzymatic cleavage and chiral analysis of the corresponding deconjugated metabolites after chiral derivatization with S-heptafluorobutyrylprolyl chloride using gas chromatography–mass spectrometry with negativeion chemical ionization. Method C allowed the chiral determination of MDMA and its unconjugated metabolites using method B without sulfate cleavage. The validation process including specificity, recovery, matrix effects, process efficiency, accuracy and precision, stabilities and limits of quantification and detection showed that all methods were selective, sensitive, accurate and precise for all tested analytes. PMID:21656610

  4. [The enantioselective pharmacokinetic study of desvenlafaxine sustained release tablet in Chinese healthy male volunteers after oral administration].

    PubMed

    Chen, Yin-xia; Du, Jiang-bo; Zhang, Yi-fan; Chen, Xiao-yan; Zhong, Da-fang

    2015-04-01

    A chiral LC-MS/MS method for the simultaneous analysis of desvenlafaxine (DVS) enantiomers in human plasma was developed and applied to a pharmacokinetic study on 12 Chinese healthy volunteers. d6-Desvenlafaxine was used as internal standard (IS). Chromatographic separation was performed on the Astec Chirobiotic V chiral column (150 mm x 4.6 mm, 5 μm). The assay was linear over the concentration range of 0.500-150 ng x mL(-1) for both enantiomers (r2 > 0.99). The method was successfully applied to a stereoselective pharmacokinetic study of 100 mg desvenlafaxine sustained release tablets on 12 Chinese healthy volunteers under fasting conditions. The results showed that the pharmacokinetic parameters were similar to both enantiomers in Chinese healthy volunteers. The AUC(0-t), and C(max) of the two enantiomers were about 1.5 times higher than those of blacks and whites reported in the literature.

  5. Parallel achiral-chiral determination of oxybutynin, N-desethyl oxybutynin and their enantiomers in human plasma by LC-MS/MS to support a bioequivalence trial.

    PubMed

    Sharma, Primal; Patel, Daxesh P; Sanyal, Mallika; Guttikar, Swati; Shrivastav, Pranav S

    2014-01-01

    A parallel achiral and chiral determination of oxybutynin, its pharmacologically active metabolite N-desethyl oxybutynin and their enantiomers in human plasma is described using LC-MS/MS. Both the methods were developed and validated using deuterated analogues as internal standards. Achiral analysis of racemic oxybutynin and N-desethyl oxybutynin was carried out on Phenomenex Gemini C18 (150mm×4.6mm, 5μm) column under isocratic conditions using acetonitrile-5.0mM ammonium acetate, pH 4.0 (90:10, v/v) as the mobile phase. Separation of (S)- and (R)-enantiomers of the analytes was performed on Phenomenex Lux Amylose-2 (150mm×4.6mm, 3μm) chiral column using a mixture of solvent A [acetonitrile:10mM ammonium bicarbonate, 80:20 (v/v)] and solvent B [2-propanol:methanol, 50:50 (v/v)] in 20:80 (v/v) ratio as the mobile phase. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate-diethyl ether-n-hexane solvent mixture. A linear range was established from 0.025 to 10.0ng/mL and 0.25 to 100ng/mL for the enantiomers of oxybutynin and N-desethyl oxybutynin respectively. The extraction recovery varied from 96.0 to 105.1%, while the IS-normalized matrix factors ranged from 0.96 to 1.07 for all the enantiomers. The validated method was applied for a pilot bioequivalence study with 5mg oxybutynin tablet formulation in 8 healthy subjects. The pharmacokinetic profiles showed that the plasma concentration of (R)-oxybutynin was lower than that of (S)-oxybutynin, while a reverse trend was observed for the enantiomers of N-desethyl oxybutynin. The reproducibility in the measurement of study data was demonstrated by reanalysis of 20 incurred samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis

    PubMed Central

    Cheng, Qing-Yun; Xiong, Jun; Huang, Wei; Ma, Qin; Ci, Weimin; Feng, Yu-Qi; Yuan, Bi-Feng

    2015-01-01

    2-hydroxyglutarate (2HG) is a potent competitor of α-ketoglutarate (α-KG) and can inhibit multiple α-KG dependent dioxygenases that function on the epigenetic modifications. The accumulation of 2HG contributes to elevated risk of malignant tumors. 2HG carries an asymmetric carbon atom in its carbon backbone and differentiation between D-2-hydroxyglutarate (D-2HG) and L-2-hydroxyglutarate (L-2HG) is crucially important for accurate diagnosis of 2HG related diseases. Here we developed a strategy by chiral derivatization combined with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive determination of D-2HG and L-2HG enantiomers. N-(p-toluenesulfonyl)-L-phenylalanyl chloride (TSPC) was used to derivatize 2HG. The formed diastereomers by TSPC labeling can efficiently improve the chromatographic separation of D-2HG and L-2HG. And derivatization by TSPC could also markedly increase the detection sensitivities by 291 and 346 folds for D-2HG and L-2HG, respectively. Using the developed method, we measured the contents of D-2HG and L-2HG in clear cell renal cell carcinoma (ccRCC) tissues. We observed 12.9 and 29.8 folds increase of D-2HG and L-2HG, respectively, in human ccRCC tissues compared to adjacent normal tissues. The developed chiral derivatization combined with LC-ESI-MS/MS analysis offers sensitive determination of D-2HG and L-2HG enantiomers, which benefits the precise diagnosis of 2HG related metabolic diseases. PMID:26458332

  7. Photochemically and Thermally Driven Full-Color Reflection in a Self-Organized Helical Superstructure Enabled by a Halogen-Bonded Chiral Molecular Switch.

    PubMed

    Wang, Hao; Bisoyi, Hari Krishna; Wang, Ling; Urbas, Augustine M; Bunning, Timothy J; Li, Quan

    2018-02-05

    Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography.

    PubMed

    Fantacuzzi, Marialuigia; Bettoni, Giancarlo; D'Orazio, Giovanni; Fanali, Salvatore

    2006-03-01

    The enantiomeric separation of some demethylated analogues of clofibric acid, namely 2-(6-chloro-benzothiazol-2-ylsulfanyl)-, 2-(6-methoxy-benzothiazol-2-ylsulfanyl)-, 2-(quinolin-2-yloxy)-, 2-(6-chloro-quinolin-2-yloxy)-, 2-(7-chloro-quinolin-4-yloxy)-propionic acid (compounds A-E, respectively), has been studied by CZE and nano-LC using for the first technique two beta-CD derivatives and vancomycin added to the BGE and vancomycin-modified silica particles for the second one, with the aim to find the optimum experimental conditions for the baseline resolution. The type and the concentration of the chiral selector added to the BGE, the buffer pH, the type of organic modifier and its concentration, the capillary temperature and the applied voltage played a very important role in the enantioresolution of the analysed compounds. The use of 6-monodeoxy-6-monoamino-beta-CD allowed to achieve baseline resolution of four of five clofibric acid derivatives in less than 10 min while heptakis-(2,3,6-tri-O-methyl)-beta-CD partially resolved the same compounds in their enantiomers. Employing vancomycin as the chiral selector in CZE, the counter-current partial filling method was chosen achieving baseline resolution of four analytes. All the studied compounds were enantioresolved employing a capillary column packed with vancomycin stationary phase by nano-LC, and the resolution was strongly influenced by the concentration of the organic modifier and by the pH of the mobile phase. The best results were achieved at pH 4.5 in presence of 60% of methanol (MeOH). However, longer analysis times were observed in the experiments carried out by nano-LC.

  9. Cholesteryl-containing ionic liquid crystals composed of alkylimidazolium cations and different anions

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Bai, Lu; Li, Xin; Ma, Shuang; He, Xiaozhi; Meng, Fanbao

    2014-10-01

    Cholesteryl-containing ionic liquid crystals (ILCs) 1-cholesteryloxycarbonylmethyl(propyl)-3-methyl(butyl)imidazolium chlorides ([Ca-Me-Im]Cl, [Ca-Bu-Im]Cl, [Cb-Me-Im]Cl and [Cb-Bu-Im]Cl) and corresponding imidazolium tetrachloroaluminates ([Ca-Me-Im]AlCl4, [Ca-Bu-Im]AlCl4, [Cb-Me-Im]AlCl4 and [Cb-Bu-Im]AlCl4) were synthesized in this work, and the chemical structure, LC behavior and ionic conductivity of all these ILCs were characterized by several technical methods. The imidazolium-based salts with Cl- ions showed chiral smectic A (SA*) phase on both heating and cooling cycles, while the tetrachloroaluminates exhibited chiral nematic (N*) phase. The mesophase was confirmed by characteristic LC textures observed by polarizing optical microscopy and typical diffractogram obtained by X-ray diffraction measurements. The samples with similar cholesteryl-linkage component showed similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than alkyl substituents on the imidazole ring. The imidazolium tetrachloroaluminates display relatively low phase transition temperature compared with the precursor chlorides. The functional difference in LC behavior and ionic conductivity were discussed by investigated the structural difference between the Cl--containing and AlCl4-containing materials. The imidazolium chlorides exhibited layer structure both in crystal and mesophase states, and should be organized with a ‘head-to-tail’ organization to form interdigitated monolayer structures due to the tight ion pairs. But the imidazolium tetrachloroaluminates displayed layer structure only in crystal phase, and should be organized in ‘head-to-head’ arrangements form bilayer structures due to loose combination of ion pairs despite of hydrogen-bond and electrostatic attraction interaction.

  10. Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Chen, Xiu; Han, Yongtao; Liang, Xuyang; Zheng, Yongquan

    2013-04-15

    A novel and sensitive chiral liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous measuring individual enantiomers of 9 pesticides including herbicides, insecticides, and fungicides in soil and water. The separation and determination were performed using reversed-phase chromatography on an amylose chiral stationary phase, a Chiralpak AD-RH column, under gradient elution using a mixture of ACN-2mM ammonium acetate in water as the mobile phase at 0.45 mL/min flow rate. The effects of three cellulose-based columns and three amylose-based columns on the separation were also investigated. The QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the extraction and clean-up of the soil and water samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Under optimal conditions, the mean recoveries for all enantiomers from the soil and water samples were ranged from 77.8% to 106.2% with the relative standard deviations (RSD) less than 14.2%. Good linearity (at least R(2) ≥ 0.9986) was obtained for all studied analytes in the soil and water matrix calibration curves over the range from 2.0 to 125 μg/L. The limits of detection (LOD) for all enantiomers in the soil and water were less than 1.8 μg/kg or μg/L, whereas the limit of quantification (LOQ) did not exceed 5.0 μg/kg or μg/L. The results of the method validation confirm that this proposed method is convenient and reliable for the enantioselective determination of the enantiomers of 9 chiral pesticides in soil and water. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry.

    PubMed

    Fontanarosa, Carolina; Pane, Francesca; Sepe, Nunzio; Pinto, Gabriella; Trifuoggi, Marco; Squillace, Marta; Errico, Francesco; Usiello, Alessandro; Pucci, Piero; Amoresano, Angela

    2017-01-01

    Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75-110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.

  12. Synthesis of Three-dimensional Polymer Nanostructures via Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Kenneth

    Chemical vapor deposition (CVD) is a widely practiced methodology for preparing thin film polymer coatings, and the coatings can be applied to a broad range of materials, including three-dimensional solid structures and low-vapor pressure liquids. Reactive poly(p-xylylene) (PPX) coatings prepared by CVD can be used as a powerful tool for surface functionalization and bio-conjugation. The first portion of this dissertation serves to extend the use of CVD-based reactive PPX coatings as a surface functionalization strategy for the conjugation of biomolecules. Micro-structured PPX coatings having multiple surface reactive groups were fabricated. Multiple orthogonal click reactions were then employed to selectively immobilize galactose and mannobiose to the micro-structured polymer coatings. The presence of different types of carbohydrate enables lectins binding for examining ligands/cell receptor interactions. This dissertation also demonstrates the use of CVD-based reactive PPX coatings as intermediate layers to immobilize adenoviral vectors onto tissue scaffolds. The ability to tether adenoviral vectors on tissue scaffolds localizes the transduction near the scaffold surface and reduces acute toxicity and hepatic pathology cause by direct administration of the viral vector, providing a safe and efficient gene therapy delivery strategy. In the second portion of this dissertation, we explore the CVD of PPX onto surfaces coated with a thin layer of liquid crystal (LC). Instead of forming a conformal PPX coating encapsulating the LC layer, PPX assembled into an array of high-aspect ratio nanofibers inside the LC layer. The LC layer was demonstrated to act as a template where the anisotropic internal ordering of the LC facilitated the formation of nanofibers. The diameter of the nanofibers was in the range of 100 nm and could be tuned by type of LC template used, and the length of the nanofibers could be precisely controlled by varying the thickness of the LC film. The overall shape of the nanofibers could be controlled by the internal ordering of the LC template, as exemplified by the assembly of helical nanofibers using cholesteric LC as the template. PPX nanofibers could be applied to a broad range of materials, such as curved surface, metal meshes and microparticles. We successfully created nanofibers with different surface functionalities and utilized them to capture molecules of interest. We also demonstrated the synthesis of twisted nanofibers using chiral-substituted precursors. The direction and the degree of twisting of nanofibers could be controlled by the handedness and the enantiomeric excess of the chiral precursor. Finally, we showed that the LC-templated CVD method could be extended to fabricating nanofibers made of other CVD-based polymer systems, such as poly(lutidine) and poly(p-phenylene vinylene). Our work opens a new platform for designing functional polymer nanostructures with programmable geometry, alignment and chemistry. The polymer nanostructures can be attractive for applications ranging from sensors, affinity filtration, and catalytic supports.

  13. Strong Aggregation-Induced CPL Response Promoted by Chiral Emissive Nematic Liquid Crystals (N*-LCs).

    PubMed

    Li, Xiaojing; Li, Qian; Wang, Yuxiang; Quan, Yiwu; Chen, Dongzhong; Cheng, Yixiang

    2018-05-29

    In this paper we designed a kind of aggregation-induced emission (AIE) chiral fluorescence emitters (R/S-BINOL-CN enantiomers) in the aggregate state. Chiral emissive nematic liquid crystals (N*-LCs) prepared by doping this kind of AIE-active R/S-BINOL-CN enantiomers into a common achiral nematic liquid crystal (N-LC, E7) can self-assemble as the regularly planar Grandjean texture leading to high luminescence dissymmetry factor (glum) of aggregation-induced circularly polarized luminescence (AI-CPL) signal up to 0.41, which can be attributed to dipolar interactions from polar cyano groups and π-π interactions between binaphthyl moiety of the dopant R/S-BINOL-CN and biphenyl group of the host molecules (E7). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photo-manipulated photonic bandgap devices based on optically tristable chiral-tilted homeotropic nematic liquid crystal.

    PubMed

    Huang, Kuan-Chung; Hsiao, Yu-Cheng; Timofeev, Ivan V; Zyryanov, Victor Ya; Lee, Wei

    2016-10-31

    We report on the spectral properties of an optically switchable tristable chiral-tilted homeotropic nematic liquid crystal (LC) incorporated as a tunable defect layer in one-dimensional photonic crystal. By varying the polarization angle of the incident light and modulating the light intensity ratio between UV and green light, various transmission characteristics of the composite were obtained. The hybrid structure realizes photo-tunability in transmission of defect-mode peaks within the photonic bandgap in addition to optical switchability among three distinct sets of defect modes via photoinduced tristable state transitions. Because the fabrication process is easier and less critical in terms of cell parameters or sample preparation conditions and the LC layer itself possesses an extra stable state compared with the previously reported bistable counterpart operating on the basis of biased-voltage dual-frequency switching, it has much superior potential for photonic applications such as a low-power-consumption multichannel filter and an optically controllable intensity modulator.

  15. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility.

    PubMed

    Huang, Yuhua; Zhou, Ying; Doyle, Charlie; Wu, Shin-Tson

    2006-02-06

    We have investigated the physical and optical properties of the left-handed chiral dopant ZLI-811 mixed in a nematic liquid crystal (LC) host BL006. The solubility of ZLI-811 in BL006 at room temperature is ~24 wt%, but can be enhanced by increasing the temperature. Consequently, the photonic band gap of the cholesteric liquid crystal (CLC) mixed with more than 24 wt% chiral dopant ZLI-811 is blue shifted as the temperature increases. Based on this property, we demonstrate two applications in thermally tunable band-pass filters and dye-doped CLC lasers.

  16. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes.

    PubMed

    Albals, Dima; Heyden, Yvan Vander; Schmid, Martin G; Chankvetadze, Bezhan; Mangelings, Debby

    2016-03-20

    The screening part of an earlier defined chiral separation strategy in capillary electrochromatography (CEC) was used for the separation of ten cathinone- and amphetamine derivatives. They were analyzed using 4 polysaccharide-based chiral stationary phases (CSPs), containing cellulose tris(3,5-dimethylphenylcarbamate) (ODRH), amylose tris(3,5-dimethylphenylcarbamate) (ADH), amylose tris(5-chloro-2-methylphenylcarbamate) (LA2), and cellulose tris(4-chloro-3-methylphenylcarbamate) (LC4) as chiral selectors. After applying the screening to each compound, ADH and LC4 showed the highest success rate. In a second part of the study, a comparison between CEC and other analytical techniques used for chiral separations i.e., supercritical fluid chromatography (SFC), polar organic solvent chromatography (POSC), reversed-phase (RPLC) and normal-phase liquid chromatography (NPLC), was made. For this purpose, earlier defined screening approaches for each technique were applied to separate the 10 test substances. This allowed an overall comparison of the success rates of the screening steps of the 5 techniques for these compounds. The results showed that CEC had a similar enantioselectivity rate as NPLC and RPLC, producing the highest number of separations (9 out of 10 racemates). SFC resolved 7 compounds, while POSC gave only 2 separations. On the other hand, the baseline separation success rates for NPLC and RPLC was better than for CEC. For a second comparison, the same chiral stationary phases as in the CEC screening were also tested with all techniques at their specific screening conditions, which allowed a direct comparison of the performance of CEC versus the same CSPs in the other techniques. This comparison revealed that RPLC was able to separate all tested compounds, and also produced the highest number of baseline separations on the CSP that were used in the CEC screening step. CEC and NPLC showed the same success rate: nine out of ten substances were separated. When CEC and NPLC are combined, separation of the ten compounds can be achieved. SFC and POSC resolved eight and three compounds, respectively. POSC was the least attractive option as it expressed only limited enantioselectivity toward these compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Enantioselective Analytical- and Preparative-Scale Separation of Hexabromocyclododecane Stereoisomers Using Packed Column Supercritical Fluid Chromatography.

    PubMed

    Riddell, Nicole; Mullin, Lauren Gayle; van Bavel, Bert; Ericson Jogsten, Ingrid; McAlees, Alan; Brazeau, Allison; Synnott, Scott; Lough, Alan; McCrindle, Robert; Chittim, Brock

    2016-11-10

    Hexabromocyclododecane (HBCDD) is an additive brominated flame retardant which has been listed in Annex A of the Stockholm Convention for elimination of production and use. It has been reported to persist in the environment and has the potential for enantiomer-specific degradation, accumulation, or both, making enantioselective analyses increasingly important. The six main stereoisomers of technical HBCDD (i.e., the (+) and (-) enantiomers of α-, β-, and γ-HBCDD) were separated and isolated for the first time using enantioselective packed column supercritical fluid chromatography (pSFC) separation methods on a preparative scale. Characterization was completed using published chiral liquid chromatography (LC) methods and elution profiles, as well as X-ray crystallography, and the isolated fractions were definitively identified. Additionally, the resolution of the enantiomers, along with two minor components of the technical product (δ- and ε-HBCDD), was investigated on an analytical scale using both LC and pSFC separation techniques, and changes in elution order were highlighted. Baseline separation of all HBCDD enantiomers was achieved by pSFC on an analytical scale using a cellulose-based column. The described method emphasizes the potential associated with pSFC as a green method of isolating and analyzing environmental contaminants of concern.

  18. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  19. Quantitative chiral and achiral determination of ketamine and its metabolites by LC-MS/MS in human serum, urine and fecal samples.

    PubMed

    Hasan, Mahmoud; Hofstetter, Robert; Fassauer, Georg M; Link, Andreas; Siegmund, Werner; Oswald, Stefan

    2017-05-30

    Ketamine (KET) is a widely used anesthetic drug which is metabolized by CYP450 enzymes to norketamine (n-KET), dehydronorketamine (DHNK), hydroxynorketamine (HNK) and hydroxyketamine (HK). Ketamine is a chiral compound and S-ketamine is known to be the more potent enantiomer. Here, we present the development and validation of three LC-MS/MS assays; the first for the quantification of racemic KET, n-KET and DHNK in human serum, urine and feces; the second for the separation and quantification of the S- and R-enantiomers of KET, n-KET and DHNK, and the third for separation and quantification of 2S,6S-hydroxynorketamine (2S,6S-HNK) and 2R,6R-hydroxynorketamine (2R,6R-HNK) in serum and urine with the ability to separate and detect 10 additional hydroxylated norketamine metabolites of racemic ketamine. Sample preparation was done by liquid-liquid extraction using methyl tert-butyl ether. For achiral determination of KET and its metabolites, an isocratic elution with ammonium acetate (pH 3.8; 5mM) and acetonitrile on a C18 column was performed. For the separation of S- and R-enantiomers of KET, n-KET and DHNK, a gradient elution was applied using a mobile phase of ammonium acetate (pH 7.5; 10mM) and isopropanol on the CHIRAL-AGP ® column. The enantioselective separation of the HNK metabolites was done on the chiral column Lux ® -Amylose-2 with a gradient method using ammonium acetate (pH 9; 5mM) and a mixture of isopropanol and acetonitrile (4:1). The mass spectrometric detection monitored for each analyte 2-3 mass/charge transitions. D4-ketamine and D4-n-KET were used as internal standards. The assays were successfully validated according to current bioanalytical guidelines and applied to a pilot study in one healthy volunteer. Compared to previously published methods, our assays have superior analytical features such as a lower amount of required matrix, faster sample preparation, shorter analytical run time and higher sensitivity (LLOQ up to 0.1ng/ml). Moreover, our assay enables for the first time the enantioselective determination of 2R,6R- and 2S,6S-HNK which were shown to be responsible for the promising antidepressant effects of ketamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantitation of the enantiomers of tramadol and its three main metabolites in human whole blood using LC-MS/MS.

    PubMed

    Haage, Pernilla; Kronstrand, Robert; Carlsson, Björn; Kugelberg, Fredrik C; Josefsson, Martin

    2016-02-05

    The analgesic drug tramadol and its metabolites are chiral compounds, with the (+)- and (-)-enantiomers showing different pharmacological and toxicological effects. This novel enantioselective method, based on LC-MS/MS in reversed phase mode, enabled measurement of the parent compound and its three main metabolites O-desmethyltramadol, N-desmethyltramadol and N,O-didesmethyltramadol simultaneously. Whole blood samples of 0.5g were fortified with internal standards (tramadol-(13)C-D3 and O-desmethyl-cis-tramadol-D6) and extracted under basic conditions (pH 11) by liquid-liquid extraction. Chromatography was performed on a chiral alpha-1-acid glycoprotein (AGP) column preceded by an AGP guard column. The mobile phase consisted of 0.8% acetonitrile and 99.2% ammonium acetate (20mM, pH 7.2). A post-column infusion with 0.05% formic acid in acetonitrile was used to enhance sensitivity. Quantitation as well as enantiomeric ratio measurements were covered by quality controls. Validation parameters for all eight enantiomers included selectivity (high), matrix effects (no ion suppression/enhancement), calibration model (linear, weight 1/X(2), in the range of 0.25-250ng/g), limit of quantitation (0.125-0.50ng/g), repeatability (2-6%) and intermediate precision (2-7%), accuracy (83-114%), dilution integrity (98-115%), carry over (not exceeding 0.07%) and stability (stable in blood and extract). The method was applied to blood samples from a healthy volunteer administrated a single 100mg dose and to a case sample concerning an impaired driver, which confirmed its applicability in human pharmacokinetic studies as well as in toxicological and forensic investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Light-Driven Reversible Transformation between Self-Organized Simple Cubic Lattice and Helical Superstructure Enabled by a Molecular Switch Functionalized Nanocage.

    PubMed

    Zhou, Kang; Bisoyi, Hari Krishna; Jin, Jian-Qiu; Yuan, Cong-Long; Liu, Zhen; Shen, Dong; Lu, Yan-Qing; Zheng, Zhi-Gang; Zhang, Weian; Li, Quan

    2018-04-23

    Self-organized stimuli-responsive smart materials with adjustable attributes are highly desirable for a plethora of device applications. Simple cubic lattice is quite uncommon in soft condensed matter due to its lower packing factor. Achieving a stable simple cubic soft lattice and endowing such a lattice with dynamic reconstruction capability solely by a facile light irradiation are of paramount significance for both fundamental studies and engineering explorations. Herein, an elegant stable self-organized simple cubic soft lattice, i.e., blue phase II, in a chiral liquid crystal (LC) system is disclosed, which is stable down to room temperature and exhibits both reversible lattice deformation and transformation to a helical superstructure, i.e., cholesteric LC, by light stimulation. Such an amazing trait is attained by doping a judiciously designed achiral photoresponsive molecular switch functionalized polyhedral oligomeric silsesquioxane nanocage into a chiral LC host. An unprecedented reversible collapse and reconstruction of such a high symmetric simple cubic blue phase II driven by light has been achieved. Furthermore, a well-defined conglomerate micropattern composed of simple cubic soft lattice and helical superstructure, which is challenging to fabricate in organic and inorganic crystalline materials, is produced using photomasking technology. Moreover, the promising photonic application based on such a micropattern is demonstrated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reflective-emissive liquid-crystal displays constructed from AIE luminogens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tang, Ben Zhong; Zhao, Dongyu; Qin, Anjun

    2015-10-01

    The chiral nematic liquid crystal (N*-LC) has plenty of prospective applications in LC display (LCD) owing to the selective reflection and circular dichroism. The molecules in the N*-LC are aligned forming a helically twisted structure and the specific wavelength of incident light is reflected by the periodically varying refractive index in the N*-LC plane without the aid of a polarizer or color filter. However, N*-LC do not emit light which restricts its application in the dark environment. Moreover, the view angle of N*-LC display device was severe limited due to the strong viewing angle dependence of the structure color of the one dimensional photonic crystal of a N*-LC. In order to overcome these weaknesses, we have synthesized a luminescent liquid crystalline compound consisting of a tetraphenylethene (TPE) core, TPE-PPE, as a luminogen with mesogenic moieties. TPE-PPE exhibits both the aggregate-induced emission (AIE) and thermotropic liquid crystalline characteristics. By dissolving a little amount of TPE-PPE into N*-LC host, a circular polarized emission was obtained on the unidirectional orientated LC cell. Utilizing the circular polarized luminescence property of the LC mixture, we fabricated a photoluminescent liquid crystal display (PL-LCD) device which can work under both dark and sunlit conditions. This approach has simplified the device design, lowered the energy consumption and increased brightness and application of the LCD.

  3. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    PubMed

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Using chiral liquid chromatography quadrupole time-of-flight mass spectrometry for the analysis of pharmaceuticals and illicit drugs in surface and wastewater at the enantiomeric level.

    PubMed

    Bagnall, J P; Evans, S E; Wort, M T; Lubben, A T; Kasprzyk-Hordern, B

    2012-08-03

    This paper presents and compares for the first time two chiral LC-QTOF-MS methodologies (utilising CBH and Chirobiotic V columns with cellobiohydrolase and vancomycin as chiral selectors) for the quantification of amphetamine, methamphetamine, MDA (methylenedioxyamphetamine), MDMA (methylenedioxymethamphetamine), propranolol, atenolol, metoprolol, fluoxetine and venlafaxine in river water and sewage effluent. The lowest MDLs (0.3-5.0 ng L(-1) and 1.3-15.1 ng L(-1) for river water and sewage effluent respectively) were observed using the chiral column Chirobiotic V. This is with the exception of methamphetamine and MDMA which had lower MDLs using the CBH column. However, the CBH column resulted in better resolution of enantiomers (R(s)=2.5 for amphetamine compared with R(s)=1.2 with Chirobiotic V). Method recovery rates were typically >80% for both methodologies. Pharmaceuticals and illicit drugs detected and quantified in environmental samples were successfully identified using MS/MS confirmation. In sewage effluent, the total beta-blocker concentrations of propranolol, atenolol and metoprolol were on average 77.0, 1091.0 and 3.6 ng L(-1) thus having EFs (Enantiomeric Fractions) of 0.43, 0.55 and 0.54 respectively. In river water, total propranolol and atenolol was quantified on average at <10.0 ng L(-1). Differences in EF between sewage and river water matrices were evident: venlafaxine was observed with respective EF of 0.43 ± 0.02 and 0.58 ± 0.02. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Fast, simple and efficient supramolecular solvent-based microextraction of mecoprop and dichlorprop in soils prior to their enantioselective determination by liquid chromatography-tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2014-02-01

    A simple, sensitive, rapid and economic method was developed for the quantification of enantiomers of chiral pesticides as mecoprop (MCPP) and dichlorprop (DCPP) in soil samples using supramolecular solvent-based microextraction (SUSME) combined with liquid chromatography coupled to mass spectrometry (LC-MS/MS). SUSME has been described for the extraction of chiral pesticides in water, but this is firstly applied to soil samples. MCPP and DCPP are herbicides widely used in agriculture that have two enantiomeric forms (R- and S-) differing in environmental fate and toxicity. Therefore, it is essential to have analytical methods for monitoring individual DCPP and MCPP enantiomers in environmental samples. MCPP and DCPP were extracted in a supramolecular solvent (SUPRAS) made up of dodecanoic acid aggregates, the extract was dried under a nitrogen stream, the two herbicides dissolved in acetate buffer and the aqueous extract directly injected in the LC-MS/MS system. The recoveries obtained were independent of soil composition and age of herbicide residues. The detection and quantitation limits of the developed method for the determination of R- and S-MCPP and R- and S-DCPP in soils were 0.03 and 0.1 ng g(-1), respectively, and the precision, expressed as relative standard deviation (n=6), for enantiomer concentrations of 5 and 100 ng g(-1) were in the ranges 4.1-6.1% and 2.9-4.1%. Recoveries for soil samples spiked with enantiomer concentrations within the interval 5-180 ng g(-1) and enantiomeric ratios (ERs) of 1, 3 and 9, ranged between 93 and 104% with standard deviations of the percent recovery varying between 0.3% and 6.0%. Because the SUPRAS can solubilize analytes through different type of interactions (dispersion, dipole-dipole and hydrogen bonds), it could be used to extract a great variety of pesticides (including both polar and non-polar) in soils. © 2013 Published by Elsevier B.V.

  6. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars

    PubMed Central

    2011-01-01

    Background Recently, the accuracies of many commercially available immunoassays for Vitamin D have been questioned. Liquid chromatography tandem mass spectrometry (LC- MS/MS) has been shown to facilitate accurate separation and quantification of the major circulating metabolite 25-hydroxyvitamin-D3 (25OHD3) and 25-hydroxyvitamin-D2 (25OHD2) collectively termed as 25OHD. However, among other interferents, this method may be compromised by overlapping peaks and identical masses of epimers and isobars, resulting in inaccuracies in circulating 25OHD measurements. The aim of this study was to develop a novel LC-MS/MS method that can accurately identify and quantitate 25OHD3 and 25OHD2 through chromatographic separation of 25OHD from its epimers and isobars. Methods A positive ion electrospray ionisation (ESI) LC-MS/MS method was used in the Multiple Reaction Monitoring (MRM) mode for quantification. It involved i) liquid-liquid extraction, ii) tandem columns (a high resolution ZORBAX C18 coupled to an ULTRON chiral, with guard column and inlet filter), iii) Stanozolol-D3 as internal standard, and iv) identification via ESI and monitoring of three fragmentation transitions. To demonstrate the practical usefulness of our method, blood samples were collected from 5 healthy male Caucasian volunteers; age range 22 to 37 years and 25OHD2, 25OHD3 along with co-eluting epimers and analogues were quantified. Results The new method allowed chromatographic separation and quantification of 25OHD2, 25OHD3, along with 25OHD3 epimer 3-epi-25OHD3 and isobars 1-α-hydroxyvitamin-D3 (1αOHD3), and 7-α-hydroxy-4-cholesten-3-one (7αC4). The new assay was capable of detecting 0.25 ng/mL of all analytes in serum. Conclusions To our knowledge, this is the first specific, reliable, reproducible and robust LC-MS/MS method developed for the accurate detection of 25OHD (Vitamin D). The method is capable of detecting low levels of 25OHD3 and 25OHD2 together with chromatographic separation from the co-eluting epimers and isobars and circumvents other instrumental/analytical interferences. This analytical method does not require time-consuming derivatisation and complex extraction techniques and could prove very useful in clinical studies. PMID:21569549

  7. 3D chiral nanoplasmonics: fabrication, chiroptic engineering, mechanism, and application in enantioselection (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng

    2015-09-01

    Chirality does naturally exist, and the building blocks of life (e.g. DNA, proteins, peptides and sugars) are usually chiral. Chirality inherently imposes chemical/biological selectivity on functional molecules; hence the discrimination in molecular chirality from an enantiomer to the other mirror image (i.e. enantioselection) has fundamental and application significance. Enantiomers interact with left and right handed circularly polarized light in a different manner with respect to optical extinction; hence, electronic circular dichroism (ECD) has been widely used for enantioselection. However, enantiomers usually have remarkably low ECD intensity, mainly owing to the small electric transition dipole moment induced by molecular sizes compared to the ECD-active wavelength in the UV-visible-near IR region. To enhance ECD magnitude, recently it has being developed 3D chiral nanoplasmonic structures having a helical path, and the dimensions are comparable to the ECD wavelength. However, it is still ambiguous the origin of 3D chiroplasmonics, and there is a lack of studying the interaction of 3D chiroplasmoncs with enantiomers for the application of enantioselection. Herein, we will present a one-step fabrication of 3D silver nanospirals (AgNSs) via low-substrate-temperature glancing angle deposition. AgNSs can be deposited on a wide range of substrates (including transparent and flexible substrates), in an area on the order of cm2. A set of spiral dimensions (such as spiral pitches, number of turns and handedness) have been easily engineered to tune the chiroptic properties, leading to studying the chiroplasmonic principles together with finite element simulation and the LC model. At the end, it will be demonstrated that 3D chiroplasmonics can differentiate molecular chirality of enantiomers with dramatic enhancement in the anisotropy g factor. This study opens a door to sensitively discriminate enantiomer chirality.

  8. Misleading measures in Vitamin D analysis: a novel LC-MS/MS assay to account for epimers and isobars.

    PubMed

    Shah, Iltaf; James, Ricky; Barker, James; Petroczi, Andrea; Naughton, Declan P

    2011-05-14

    Recently, the accuracies of many commercially available immunoassays for Vitamin D have been questioned. Liquid chromatography tandem mass spectrometry (LC- MS/MS) has been shown to facilitate accurate separation and quantification of the major circulating metabolite 25-hydroxyvitamin-D3 (25OHD3) and 25-hydroxyvitamin-D2 (25OHD2) collectively termed as 25OHD. However, among other interferents, this method may be compromised by overlapping peaks and identical masses of epimers and isobars, resulting in inaccuracies in circulating 25OHD measurements. The aim of this study was to develop a novel LC-MS/MS method that can accurately identify and quantitate 25OHD3 and 25OHD2 through chromatographic separation of 25OHD from its epimers and isobars. A positive ion electrospray ionisation (ESI) LC-MS/MS method was used in the Multiple Reaction Monitoring (MRM) mode for quantification. It involved i) liquid-liquid extraction, ii) tandem columns (a high resolution ZORBAX C18 coupled to an ULTRON chiral, with guard column and inlet filter), iii) Stanozolol-D3 as internal standard, and iv) identification via ESI and monitoring of three fragmentation transitions. To demonstrate the practical usefulness of our method, blood samples were collected from 5 healthy male Caucasian volunteers; age range 22 to 37 years and 25OHD2, 25OHD3 along with co-eluting epimers and analogues were quantified. The new method allowed chromatographic separation and quantification of 25OHD2, 25OHD3, along with 25OHD3 epimer 3-epi-25OHD3 and isobars 1-α-hydroxyvitamin-D3 (1αOHD3), and 7-α-hydroxy-4-cholesten-3-one (7αC4). The new assay was capable of detecting 0.25 ng/mL of all analytes in serum. To our knowledge, this is the first specific, reliable, reproducible and robust LC-MS/MS method developed for the accurate detection of 25OHD (Vitamin D). The method is capable of detecting low levels of 25OHD3 and 25OHD2 together with chromatographic separation from the co-eluting epimers and isobars and circumvents other instrumental/analytical interferences. This analytical method does not require time-consuming derivatisation and complex extraction techniques and could prove very useful in clinical studies.

  9. Simultaneous enantioselective determination of phenylpyrazole insecticide flufiprole and its chiral metabolite in paddy field ecosystem by ultra-high performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Jing; Zhang, Yuting; Cheng, Youpu; Yuan, Shankui; Liu, Lei; Shao, Hui; Li, Hui; Li, Na; Zhao, Pengyue; Guo, Yongze

    2016-03-20

    A novel and sensitive ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous enantioselective determination of flufiprole and its hydrolysis metabolite in paddy field ecosystem. The separation and determination were performed using reversed-phase chromatography on a novel cellulose chiral stationary phase, a Lux Cellulose-4 (150 mm × 2.0 mm) column, under isocratic conditions at 0.25 mL/min flow rate. The effects of other four different polysaccharide-based chiral stationary phases (CSPs) on the separation and simultaneous enantioseparation of the two target compounds were also evaluated. The elution orders of the eluting enantiomers were identified by an optical rotation detector. Modified QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the enrichment and cleanup of paddy water, rice straw, brown rice and paddy soil samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under the optimal conditions, the mean recoveries for all enantiomers from the above four sample matrix were ranged from 83.6% to 107%, with relative standard deviations (RSD) in the range of 1.0-5.8%. Coefficients of determination R(2)≥0.998 were achieved for each enantiomer in paddy water, rice straw, brown rice and paddy soil matrix calibration curves within the range of 5-500 μg/kg. The limits of quantification (LOQ) for all stereoisomers in the above four matrices were all below 2.0 μg/kg. The methodology was successfully applied for simultaneously enantioselective analysis of flufiprole enantiomers and their chiral metabolite in the real samples, indicating its efficacy in investigating the environmental stereochemistry of flufiprole in paddy field ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples.

    PubMed

    Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon

    2016-07-01

    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development and Validation of a Sensitive LC-MS/MS Method for the Determination of Fenoterol in Human Plasma and Urine Samples

    PubMed Central

    Sanghvi, M.; Ramamoorthy, A.; Strait, J.; Wainer, I. W.; Moaddel, R.

    2013-01-01

    Due to the lack of sensitivity in current methods for the determination of fenoterol (Fen). A rapid, LC-MS/MS method was developed for the determination of (R,R′)-Fen and (R,R′;S,S′)-Fen in plasma and urine. The method was fully validated and was linear from 50 pg/ml to 2000 pg/ml for plasma and from 2.500 ng/ml to 160 ng/ml for urine with a lower limit of quantitation of 52.8 pg/ml in plasma. The coefficient of variation was <15% for the high QC standards and <10% for the low QC standards in plasma and was <15% for the high and low QC standards in urine. The relative concentrations of (R,R′)-Fen and (S,S′)-Fen were determined using a chirobiotic T chiral stationary phase. The method was used to determine the concentration of (R,R′)-Fen in plasma and urine samples obtained in an oral cross-over study of (R,R′)-Fen and (R,R′;S,S′)-Fen formulations. The results demonstrated a potential pre-systemic enantioselective interaction in which the (S,S′)-Fen reduces the sulfation of the active (R,R′)-Fen. The data suggests that a non-racemic mixture of the Fen enantiomers may provide better bioavailability of the active (R,R′)-Fen for use in the treatment of cardiovascular disease PMID:23872161

  13. Induced cholesteric systems based on some cyano derivatives as host phases

    NASA Astrophysics Data System (ADS)

    Shkolnikova, Natalya I.; Kutulya, Lidiya A.; Vashchenko, V. V.; Fedoryako, A. P.; Lapanik, V. I.; Posledovich, N. R.

    2002-12-01

    Macroscopical properties of some induced cholesteric compositions based on 4-pentyl-4'-cyano derivatives of biphenyl and phenylcyclohexane as host phases have been investigated. The series of N-arylidene derivatives of (S)-1-phenylethylamine with varied both rigid moiety of the N-arylidene fragment and terminal substituent was used as chiral dopants. The influence of the chiral dopant molecular structure as well as of physical properties of the host phases used on the helical twisting power, the temperature dependence of the induced helical pitch and the N* mesophase thermal stability has been characterized. It has been concluded that the distinctions in properties of the LC systems containing the OCH2 and COO linking groups are caused by their different conformational states.

  14. Phase transitions in nanocomposites of hydrogen-bonded dimeric liquid crystals with mesogenic and non-mesogenic components

    NASA Astrophysics Data System (ADS)

    Katranchev, Boyko; Petrov, Minko

    2016-02-01

    Microtextural polarization, phase transitions, and electro-optical effects are studied in a series of nanocomposites, grown by mixing alkyloxybenzoic acids (nOBAs), displaying hydrogen-bonded dimeric liquid crystal (LC) state, with non-mesogens (single-walled carbon nanotubes (SWCNTs), perfluorooctanoic acid) or mesogens (bent-core LC compound D14F3). Each of the studied nanocomposites, in which the nOBA serves as a matrix, forms complexes with bent-shaped dimeric, caused by the interaction between the dopant structural units and the dimer rings. This feature, coordinated with the surface anchoring, bulk and electrical effects, leads to drastic reduction of the LC system symmetry. As a result, transitions from achiral (characteristic for the pristine nOBA) to chiral states (including ferroelectric smectic C with C2 symmetry and ferroelectric smectic CG with the lowest C1 triclinic one) take place. The functionalization of the SWCNTs causes drastic increase of the ferroelectricity.

  15. Optical characterization of polymer liquid crystal cell exhibiting polymer blue phases.

    PubMed

    Zhang, Bao-Yan; Meng, Fan-Bao; Cong, Yue-Hua

    2007-08-06

    The optical properties of polymer liquid crystal cell exhibiting polymer blue phases (PBPs) have been determined using ultraviolet-visible spectrophotometry, polarizing optical microscopy (POM), differential scanning calorimetry (DSC), X-ray measurements, FTIR imaging and optical rotation technique. PBPs are thermodynamically stabile mesophases, which appear in chiral systems between isotropic and liquid crystal phases. A series of cyclosiloxane-based blue phase polymers were synthesized using a cholesteric LC monomer and a nematic LC monomer, and some of the polymers exhibit PBPs in temperature range over 300 degrees in cooling cycles. The unique property based on their structure and different twists formed and expect to open up new photonic application and enrich polymer blue phase contents and theory.

  16. Fabrication of micro- and nanometre-scale polymer structures in liquid crystal devices for next generation photonics applications

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-09-01

    Direct Laser Writing (DLW) by two-photon photopolymerization (TPP) enables the fabrication of micron-scale polymeric structures in soft matter systems. The technique has implications in a broad range of optics and photonics; in particular fast-switching liquid crystal (LC) modes for the development of next generation display technologies. In this paper, we report two different methodologies using our TPP-based fabrication technique. Two explicit examples are provided of voltage-dependent LC director profiles that are inherently unstable, but which appear to be promising candidates for fast-switching photonics applications. In the first instance, 1 μm-thick periodic walls of polymer network are written into a planar aligned (parallel rubbed) nematic pi-cell device containing a nematic LC-monomer mixture. The structures are fabricated when the device is electrically driven into a fast-switching nematic LC state and aberrations induced by the device substrates are corrected for by virtue of the adaptive optics elements included within the DLW setup. Optical polarizing microscopy images taken post-fabrication reveal that polymer walls oriented perpendicular to the rubbing direction promote the stability of the so-called optically compensated bend mode upon removal of the externally applied field. In the second case, polymer walls are written in a nematic LC-optically adhesive glue mixture. A polymer- LCs-polymer-slices or `POLICRYPS' template is formed by immersing the device in acetone post-fabrication to remove any remaining non-crosslinked material. Injecting the resultant series of polymer microchannels ( 1 μm-thick) with a short-pitch, chiral nematic LC mixture leads to the spontaneous alignment of a fast-switching chiral nematic mode, where the helical axis lies parallel to the glass substrates. Optimal contrast between the bright and dark states of the uniform lying helix alignment is achieved when the structures are spaced at the order of the device thickness, which was also found to be the case for the achiral system. The high resolution DLW technique limits structures to the focal spot size of the beam, 1 μm in diameter, such that the transmittance is expected to be significantly enhanced relative to other stabilization techniques. Moreover, both devices remain stable under electrical and thermal cycling.

  17. A validated stability-indicating LC method for the separation of enantiomer and potential impurities of Linezolid using polar organic mode.

    PubMed

    Satyanarayana Raju, T; Vishweshwari Kutty, O; Ganesh, V; Yadagiri Swamy, P

    2012-08-01

    Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm×4.6 mm, 5 μm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.

  18. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less

  19. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  20. Development and validation of a sensitive LC-MS/MS method for the determination of fenoterol in human plasma and urine samples.

    PubMed

    Sanghvi, M; Ramamoorthy, A; Strait, J; Wainer, I W; Moaddel, R

    2013-08-15

    Due to the lack of sensitivity in current methods for the determination of fenoterol (Fen), a rapid LC-MS/MS method was developed for the determination of (R,R')-Fen and (R,R';S,S')-Fen in plasma and urine. The method was fully validated and was linear from 50pg/ml to 2000pg/ml for plasma and from 2.500ng/ml to 160ng/ml for urine with a lower limit of quantitation of 52.8pg/ml in plasma. The coefficient of variation was <15% for the high QC standards and <10% for the low QC standards in plasma and was <15% for the high and low QC standards in urine. The relative concentrations of (R,R')-Fen and (S,S')-Fen were determined using a chirobiotic T chiral stationary phase. The method was used to determine the concentration of (R,R')-Fen in plasma and urine samples obtained in an oral cross-over study of (R,R')-Fen and (R,R';S,S')-Fen formulations. The results demonstrated a potential pre-systemic enantioselective interaction in which the (S,S')-Fen reduces the sulfation of the active (R,R')-Fen. The data suggest that a non-racemic mixture of the Fen enantiomers may provide better bioavailability of the active (R,R')-Fen for use in the treatment of cardiovascular disease. Published by Elsevier B.V.

  1. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  2. Enantioselective determination of (R)-zopiclone and (S)-zopiclone (eszopiclone) in human hair by micropulverized extraction and chiral liquid chromatography/high resolution mass spectrometry.

    PubMed

    Miyaguchi, Hajime; Kuwayama, Kenji

    2017-10-13

    Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Liquid Crystals for Laser Applications

    DTIC Science & Technology

    1992-07-01

    336. Zei’dovich, B . Ya. and Tabiryan, N. V., Induced light scattering in the mesophase of a nematic liquid crystal (NLC), JETP Lett., 30, 478- 482 ...and devices. ADVANCES IN MATERIALS I Ferroelectric LC’s Ferroelectricity in liquid crystals was first suggested in 1974 by R. B . Meyer2 3 who, by means...most recently, 2 4 the M* phase. These tilted chiral smectic phases are classified according to the nature of the intermolecular I I packing within

  4. Production of structured triacylglycerols from microalgae.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2014-08-01

    Structured triacylglycerols (TAGs) were isolated from nine cultivated strains of microalgae belonging to different taxonomic groups, i.e. Audouinella eugena, Balbiania investiens, Myrmecia bisecta, Nannochloropsis limnetica, Palmodictyon varium, Phaeodactylum tricornutum, Pseudochantransia sp., Thorea ramosissima, and Trachydiscus minutus. They were separated and isolated by means of NARP-LC/MS-APCI and chiral LC and the positional isomers and enantiomers of TAGs with two polyunsaturated, i.e. arachidonic (A) and eicosapentaenoic (E) acids and one saturated, i.e. palmitic acid (P) were identified. Algae that produce eicosapentaenoic acid were found to biosynthesize more asymmetrical TAGs, i.e. PPE or PEE, whereas algae which produced arachidonic acid give rise to symmetrical TAGs, i.e. PAP or APA, irrespective of their taxonomical classification. Nitrogen and phosphorus starvation consistently reversed the ratio of asymmetrical and symmetrical TAGs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.

    PubMed

    Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-04-01

    A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).

  6. Theoretical Foundation for Electric-Dipole-Allowed Chiral-Specific Fluorescence Optical Rotary Dispersion (F-ORD) from Interfacial Assemblies.

    PubMed

    Deng, Fengyuan; Ulcickas, James R W; Simpson, Garth J

    2016-11-03

    Fluorescence optical rotary dispersion (F-ORD) is proposed as a novel chiral-specific and interface-specific spectroscopic method. F-ORD measurements of uniaxial assemblies are predicted to be fully electric-dipole-allowed, with corresponding increases in sensitivity to chirality relative to chiral-specific measurements in isotropic assemblies that are commonly interpreted through coupling between electric and magnetic dynamic dipoles. Observations of strong chiral sensitivity in prior single-molecule fluorescence measurements of chiral interfacial molecules are in excellent qualitative agreement with the predictions of the F-ORD mechanism and challenging to otherwise explain. F-ORD may provide methods to suppress background fluorescence in studies of biological interfaces, as the detected signal requires both polar local order and interfacial chirality. In addition, the molecular-level descriptions of the mechanisms underpinning F-ORD may also potentially apply to aid in interpreting chiral-specific Raman and surface-enhanced Raman spectroscopy measurements of uniaxially oriented assemblies, opening up opportunities for chiral-specific and interface-specific vibrational spectroscopy.

  7. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome

    PubMed Central

    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J.; Bupp, James E.; Green, Carol E.; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E.; Torjman, Marc C.; Wainer, Irving W.

    2010-01-01

    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in Complex Regional Pain Syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)-and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric metabolites hydroxynorketamine, (2S,6S)-/(2R,6R)-HNK and two hydroxyketamines, (2S,6S)-HKet and (2S,6R)-Hket. In this method, (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK and the diastereomeric hydroxyl-metabolites were separated and quantified using a C18 stationary phase and the relative enantiomeric concentrations of (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK were determined using an AGP-CSP. The analysis of the results of microsomal incubations of (R)- and (S)-Ket and a plasma and urine sample from a CRPS patient indicated the presence of 10 additional compounds and glucuronides. The data from the analysis of the patient sample also demonstrated that a series of HNK metabolites were the primary metabolites in plasma and (R)- and (S)-DHNK were the major metabolites found in urine. The results suggest that norKet is the initial, but not the primary, metabolite and that downstream norKet metabolites play a role in (R,S)-Ket-related pain relief in CRPS patients. PMID:20875593

  8. A parallel chiral-achiral liquid chromatographic method for the determination of the stereoisomers of ketamine and ketamine metabolites in the plasma and urine of patients with complex regional pain syndrome.

    PubMed

    Moaddel, Ruin; Venkata, Swarajya Lakshmi Vattem; Tanga, Mary J; Bupp, James E; Green, Carol E; Iyer, Lalitha; Furimsky, Anna; Goldberg, Michael E; Torjman, Marc C; Wainer, Irving W

    2010-10-15

    A parallel chiral/achiral LC-MS/MS assay has been developed and validated to measure the plasma and urine concentrations of the enantiomers of ketamine, (R)- and (S)-Ket, in complex regional pain syndrome (CRPS) patients receiving a 5-day continuous infusion of a sub-anesthetic dose of (R,S)-Ket. The method was also validated for the determination of the enantiomers of the Ket metabolites norketamine, (R)- and (S)-norKet and dehydronorketamine, (R)- and (S)-DHNK, as well as the diastereomeric metabolites hydroxynorketamine, (2S,6S)-/(2R,6R)-HNK and two hydroxyketamines, (2S,6S)-HKet and (2S,6R)-Hket. In this method, (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK and the diastereomeric hydroxyl-metabolites were separated and quantified using a C(18) stationary phase and the relative enantiomeric concentrations of (R,S)-Ket, (R,S)-norKet and (R,S)-DHNK were determined using an AGP-CSP. The analysis of the results of microsomal incubations of (R)- and (S)-Ket and a plasma and urine sample from a CRPS patient indicated the presence of 10 additional compounds and glucuronides. The data from the analysis of the patient sample also demonstrated that a series of HNK metabolites were the primary metabolites in plasma and (R)- and (S)-DHNK were the major metabolites found in urine. The results suggest that norKet is the initial, but not the primary metabolite and that downstream norKet metabolites play a role in (R,S)-Ket-related pain relief in CRPS patients. Published by Elsevier B.V.

  9. Development of achiral and chiral 2D HPLC methods for analysis of albendazole metabolites in microsomal fractions using multivariate analysis for the in vitro metabolism.

    PubMed

    Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V

    2013-08-01

    In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Simple Method to Determine the "R" or "S" Configuration of Molecules with an Axis of Chirality

    ERIC Educational Resources Information Center

    Wang, Cunde; Wu, Weiming

    2011-01-01

    A simple method for the "R" or "S" designation of molecules with an axis of chirality is described. The method involves projection of the substituents along the chiral axis, utilizes the Cahn-Ingold-Prelog sequence rules in assigning priority to the substituents, is easy to use, and has broad applicability. (Contains 5 figures.)

  11. CHIRAL METHODS AND ANALYSIS OF PCB 95 AND CIS -PERMETHRIN IN ENVIRONMENTAL SAMPLES FROM THE CTEPP STUDY

    EPA Science Inventory

    The creation of chiral chromatography techniques significantly advanced the development of methods for the analysis of individual enantiomers of chiral compounds. These techniques are being employed at the US EPA for human exposure and ecological research studies with indoor samp...

  12. Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-03-01

    Cetirizine is an antihistaminic drug used to prevent and treat allergic conditions. It is currently marketed as a racemate. The H1-antagonist activity of cetirizine is primarily due to (R)-levocetirizine. This has led to the introduction of (R)-levocetirizine into clinical practice, and the chiral switching is expected to be more selective and safer. The present work represents three methods for the analysis and chiral discrimination of cetirizine. The first method was based on the enantioseparation of cetirizine on silica gel TLC plates using different chiral selectors as mobile phase additives. The mobile phase enabling successful resolution was acetonitrile-water 17: 3, (v/v) containing 1 mM of chiral selector, namely hydroxypropyl-beta-cyclodextrin, chondroitin sulphate or vancomycin hydrochloride. The second method was a validated high performance liquid chromatography (HPLC), based on stereoselective separation of cetirizine and quantitative determination of its eutomer (R)-levocetirizine on a monolithic C18 column using hydroxypropyl-beta-cyclodextrin as a chiral mobile phase additive. The resolved peaks of (R)-levocetirizine and (S)-dextrocetirizine were confirmed by further mass spectrometry. The third method used a (1)H-NMR technique to characterize cetirizine and (R)-levocetirizine. These methods are selective and accurate, and can be easily applied for chiral discrimination and determination of cetirizine in drug substance and drug product in quality control laboratory. Moreover, chiral purity testing of (R)-levocetirizine can also be monitored by the chromatographic methods. Copyright 2009 John Wiley & Sons, Ltd.

  13. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory.

    PubMed

    Maeda, Katsuhiro; Hirose, Daisuke; Okoshi, Natsuki; Shimomura, Kouhei; Wada, Yuya; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji

    2018-03-07

    We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.

  14. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    PubMed

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Rodriguez-Lojo, D.; Agra-Kooijman, D. M.; Vij, J. K.; Panov, V. P.; Panov, A.; Fisch, M. R.; Kumar, Satyendra; Stevenson, P. J.

    2018-02-01

    New chiral de Vries smectic liquid-crystalline compounds are designed, synthesized, and investigated for perspective applications in defect-free bistable surface-stabilized ferroelectric liquid-crystal displays. In these compounds, a 5-phenyl-pyrimidine benzoate core is terminated on one side by a tri- or tetra-carbosilane group linked through an alkoxy group and an alkyl spacer and on the opposite side terminated by a chiral 2-octanol group. The stereogenic center contains either a methyl or perfluoromethyl functional group. These compounds exhibit Iso-Sm A*-Sm C*-Sm X -Cr phases under cooling from the isotropic state. Measurements of the temperature-dependent smectic layer spacing by x-ray diffraction experiments combined with the measured apparent optical tilt angle and the birefringence reveal that Sm A* phase in these compounds is of the de Vries type. In addition, the chiral compound with a tetra-carbosilane backbone, DR277, exhibits good de Vries properties with the Sm C* phase exhibited over a wide temperature range. By varying the carbosilane end group, the de Vries properties are enhanced, that is, the layer shrinkage of ˜1.9 % for the tri-carbosilane DR276 is reduced to ˜0.9 % for tetra-carbosilane DR277 at 10°C below Sm A* to Sm C* transition temperature, TAC. For DR277, the reduction factor R ≈0.22 for T =(TAC-10 )°C is reasonably low and the apparent optical tilt angle θapp=35.1°, hence this compound is a "good de Vries smectic" LC. Therefore, synthesis of the chiral mesogen with an even higher number of carbosilane groups may lead to a further reduction or even zero-layer shrinkage exhibited at TAC with Sm C* phase extending over a wide temperature range close to the room temperature for perspective suitability in device applications. Our results for 5-phenyl-pyrimidine benzoate core-based compounds support a recently drawn conclusion by Schubert et al. [J. Mater. Chem. C 4, 8483 (2016), 10.1039/C6TC03120J] from a different compound, namely that a carbosilane backbone in chiral mesogens strongly influences the de Vries properties.

  16. Simultaneous determination of fluoxetine and norfluoxetine enantiomers using isotope discrimination mass spectroscopy solution method and its application in the CYP2C9-mediated stereoselective interactions.

    PubMed

    Yu, Lushan; Wang, Shengjia; Jiang, Huidi; Zhou, Hui; Zeng, Su

    2012-05-04

    In this study, we developed an LC-MS/MS method based on an isotope discrimination mass spectroscopy solution (IDMSS) technology to simultaneously quantify enantiomers of fluoxetine (FLX) and norfluoxetine (NFLX) in a CYP2C9 incubation mixture. S-FLX and S-NFLX were labeled to form S-FLX-d5 and S-NFLX-d5. The method has several advantages over conventional chiral separation methods, in terms of the analysis period, resolution, and lower limit of quantification. The primary advantage of the method is that the two enantiomers can always be simultaneously determined by mass spectroscopy regardless if they are separated on column or not, owing to which it has high throughput and high sensitivity. The lower limit of quantification (amount on column) is 12.5 and 1.25 pg for FLX and NFLX, respectively. The retention time of FLX, NFLX, and the internal standard is only 1.9 min. The calibration curves were linear over the concentration range of 0.1-100 ng/ml for NFLX and 1-1000 ng/ml for FLX with an accepted reproducible (RSD<10%) and accurate (CV<10%). No significant kinetic isotope effect was found in the metabolism of S-FLX-d5 catalyzed by CYP2C9*1 and CYP2C9*2. The half-maximal inhibitory concentration values between R-FLX and S-FLX catalyzed by CYP2C9*1 and CYP2C9*2 were determined in this study. The inhibitory effects of R- to S-FLX were stronger than those of S- to R-FLX in both CYP2C9*1 and CYP2C9*2. The IDMSS technology is useful for stereoselective study of chiral compound in vitro. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Minimally doubled fermions and spontaneous chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  18. Solving the problems with chirality as a biomarker for alien life

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2010-09-01

    The basis for chiral biomarkers that have been increasingly proposed to obtain evidence for life is reviewed. Specific problems in accepting them and other biomarkers as proof of life are cited. A new chiral method is offered to overcome these difficulties, a method that can make an unambiguous determination of extant microbial life.

  19. Chiral Drug Analysis in Forensic Chemistry: An Overview.

    PubMed

    Ribeiro, Cláudia; Santos, Cristiana; Gonçalves, Valter; Ramos, Ana; Afonso, Carlos; Tiritan, Maria Elizabeth

    2018-01-28

    Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.

  20. An implemented method of asymmetric transmission for arbitrary polarization base in multi-layered chiral meta-surface

    NASA Astrophysics Data System (ADS)

    Xiao, Zhong-yin; Zou, Huan-ling; Xu, Kai-Kai; Tang, Jing-yao

    2018-03-01

    Asymmetric transmission of linearly or circularly polarized waves is a well-established property not only for three-layered chiral structures but for multi-layered ones. Here we show a method which can simultaneously implement asymmetric transmission for arbitrary base vector polarized wave in multi-layered chiral meta-surface. We systematically study the implemented method based on a multi-layered chiral structure consisting of a y-shape, a half gammadion and an S-shape in the terahertz gap. A numerical simulation was carried out, followed by an explanation of the asymmetric transmission mechanism in these structures proposed in this work. The simulated results indicate that the multi-layered chiral structure can realize a maximum asymmetric transmission of 0.89 and 0.28 for circularly and linearly polarized waves, respectively, which exhibit magnitude improvement over previous chiral metamaterials. Specifically, the maximum asymmetric transmitted coefficient of the multi-layered chiral structure is insensitivity to the incident angles from 0° to 45° for circularly polarized components. Additionally, we also study the influence of structural parameters on the asymmetric transmission effect for both linearly and circularly polarized waves in detail.

  1. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  2. METHODS DEVELOPMENT FOR THE ANALYSIS OF CHIRAL PESTICIDES

    EPA Science Inventory

    Chiral compounds exist as a pair of nonsuperimposable mirror images called enantiomers. Enantiomers have identical physical-chemical properties, but their interactions with other chiral molecules, toxicity, biodegradation, and fate are often different. Many pharmaceutical com...

  3. Enantioselective column coupled electrophoresis employing large bore capillaries hyphenated with tandem mass spectrometry for ultra-trace determination of chiral compounds in complex real samples.

    PubMed

    Piešťanský, Juraj; Maráková, Katarína; Kovaľ, Marián; Havránek, Emil; Mikuš, Peter

    2015-12-01

    A new multidimensional analytical approach for the ultra-trace determination of target chiral compounds in unpretreated complex real samples was developed in this work. The proposed analytical system provided high orthogonality due to on-line combination of three different methods (separation mechanisms), i.e. (1) isotachophoresis (ITP), (2) chiral capillary zone electrophoresis (chiral CZE), and (3) triple quadrupole mass spectrometry (QqQ MS). The ITP step, performed in a large bore capillary (800 μm), was utilized for the effective sample pretreatment (preconcentration and matrix clean-up) in a large injection volume (1-10 μL) enabling to obtain as low as ca. 80 pg/mL limits of detection for the target enantiomers in urine matrices. In the chiral CZE step, the different chiral selectors (neutral, ionizable, and permanently charged cyclodextrins) and buffer systems were tested in terms of enantioselectivity and influence on the MS detection response. The performance parameters of the optimized ITP - chiral CZE-QqQ MS method were evaluated according to the FDA guidance for bioanalytical method validation. Successful validation and application (enantioselective monitoring of renally eliminated pheniramine and its metabolite in human urine) highlighted great potential of this chiral approach in advanced enantioselective biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  5. Development and validation of a rapid, selective, and sensitive LC-MS/MS method for simultaneous determination of D- and L-amino acids in human serum: application to the study of hepatocellular carcinoma.

    PubMed

    Han, Minlu; Xie, Mengyu; Han, Jun; Yuan, Daoyi; Yang, Tian; Xie, Ying

    2018-04-01

    A validated liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of D- and L-amino acids in human serum. Under the optimum conditions, except for DL-proline, L-glutamine, and D-lysine, the enantioseparation of the other 19 enantiomeric pairs of proteinogenic amino acids and nonchiral glycine was achieved with a CROWNPAK CR-I(+) chiral column within 13 min. The lower limits of quantitation for L-amino acids (including glycine) and D-amino acids were 5-56.25 μM and 0.625-500 nM, respectively, in human serum. The intraday precision and interday precision for all the analytes were less than 15%, and the accuracy ranged from -12.84% to 12.37% at three quality control levels. The proposed method, exhibiting high rapidity, enantioresolution, and sensitivity, was successfully applied to the quantification of D- and L-amino acid levels in serum from hepatocellular carcinoma patients and healthy individuals. The serum concentrations of L-arginine, L-isoleucine, L-aspartate, L-tryptophan, L-alanine, L-methionine, L-serine, glycine, L-valine, L-leucine, L-phenylalanine, L-threonine, D-isoleucine, D-alanine, D-glutamate, D-glutamine, D-methionine, and D-threonine were significantly reduced in the hepatocellular carcinoma patients compared with the healthy individuals (P < 0.01). D-Glutamate and D-glutamine were identified as the most downregulated serum markers (fold change greater than 1.5), which deserves further attention in hepatocellular carcinoma research. Graphical abstract Simultaneous determination of D- and L-amino acids in human serum from hepatocellular carcinoma patients and healthy individuals. AA amino acid, HCC hepatocellular carcinoma, LC liquid chromatography, MS/MS tandem mass spectrometry, NC normal control, TIC total ion chromatogram.

  6. Validation of a chiral LC-MS/MS-ESI method for the simultaneous quantification of darolutamide diastereomers in mouse plasma and its application to a stereoselective pharmacokinetic study in mice.

    PubMed

    Balaji, Narayanan; Sulochana, Suresh P; Saini, Neeraj Kumar; A, Siva Kumar; Mullangi, Ramesh

    2018-05-01

    A simple, selective and reliable LC-MS/MS method was validated for simultaneous quantitation of darolutamide diastereomers in 50 μL mouse plasma using warfarin as an internal standard (IS) as per regulatory guidelines. Plasma samples were extracted by liquid-liquid extraction and the chromatographic separation was achieved on a Chiralpak IA column with an isocratic mobile phase 5 mm ammonium acetate-absolute alcohol (20:80, v/v) at a flow rate of 1.0 mL/min. Detection and quantitation was done in multiple reaction monitoring mode following the transitions m/z 397 → 202 and 307 → 250 for darolutamide diastereomers and the IS, respectively, in the negative ionization mode. The linearity range was 100-2400 ng/mL for each diastereomer. The intra- and inter-day precisions were in the ranges of 1.78-4.20 and 4.34-14.6, and 3.63-4.74 and 4.78-5.15 for diastereomer-1 and diastereomer-2, respectively. Both diastereomers were found to be stable under different stability conditions. The validated method was applied to a pharmacokinetic study in mice. Following oral administration of darolutamide at 10 mg/kg, maximum concentration in plasma was 4189 and 726 ng/mL for diastereomer-1 and diastereomer-2, respectively. The terminal half-life was found to be ~0.50 h for both the diastereomers. The AUC (0-t) was found to be 18,961 ng*h/mL for diastereomer-1 and 1340 ng*h/mL diastereomer-2. Copyright © 2018 John Wiley & Sons, Ltd.

  7. An HPLC-DAD and LC-MS study of condensation oscillations with S(+)-ketoprofen dissolved in acetonitrile.

    PubMed

    Sajewicz, Mieczysław; Gontarska, Monika; Kronenbach, Dorota; Berry, Etienne; Kowalska, Teresa

    2012-03-01

    In our earlier studies, a spontaneous chiral conversion of the selected low-molecular-weight carboxylic acids (i.e., amino acids, hydroxy acids, and profen drugs) dissolved in aqueous ethanol medium, running in vitro was described. Then it became clear that this spontaneous chiral conversion is accompanied by the spontaneous condensation of the discussed compounds. With several acids, it was established that this condensation is also oscillatory in nature. The theoretical models were developed aiming to give a rough explanation of the observed non-linear processes. In this paper, the results of these studies on the dynamics of condensation with S(+)-ketoprofen, a very popular profen drug, when stored for certain amount of time dissolved in a non-aqueous medium (i.e., acetonitrile) is presented. These investigations were carried out with the aid of two independent high-performance liquid chromatographic systems with the diode array detection and of a third high-performance liquid chromatographic system equipped with mass spectrometric detection. In one cycle of chromatographic measurements, it was possible to monitor condensation of S(+)-ketoprofen in 25-min intervals for 30 h, thus obtaining kinetic information on the progress of this process. Mass spectrometric detection confirmed the presence of new species in the stored solution with molecular weights much higher than that of S(+)-ketoprofen, which can be attributed to the condensation products. The obtained data show that condensation of S(+)-ketoprofen dissolved in acetonitrile progresses in a rapid manner, and that the observed oscillatory concentration changes with S(+)-ketoprofen and with the main condensation product characterize with an irregularity and shallow amplitudes. A theoretical model was referenced that jointly describes the oscillatory chiral conversion and the oscillatory condensation with the low-molecular-weight chiral carboxylic acids.

  8. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M. X.; Guo, B., E-mail: binguo@whut.edu.cn; Peng, L.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  9. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  10. Chiral Polymers.

    DTIC Science & Technology

    1984-10-01

    regardless of the method of polymerization. The styrene-bead copolymers were packed in HPLC columns, but none were especiall, effective in separating...enantiomers in a racemic mixture. The chiral butyrolactone polymer was coated on silica, but this material did not effect resolution of racemic mixtures in an...been effected utilizing chiral oxazolines3 prompted the initial efforts to synthesize various chiral 2-vinyl- oxazoline monomers for incorporation

  11. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.

    PubMed

    Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang

    2010-01-15

    Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.

  12. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  13. Development and Validation of a Reversed-Phase Chiral HPLC Method to Determine the Chiral Purity of Bulk Batches of (S)-Enantiomer in Afoxolaner.

    PubMed

    Padivitage, Nilusha; Kumar, Satish; Rustum, Abu

    2017-01-01

    Afoxolaner is a new antiparasitic molecule from the isoxazoline family that acts on insect acarine g-aminobutyric acid and glutamate receptors. Afoxolaner is a racemic mixture, which has a chiral center at the isoxazoline ring. A reversed-phase chiral HPLC method has been developed to determine the chiral purity of bulk batches of (S)-enantiomer in afoxolaner for the first time. This method can also be used to verify that afoxolaner is a racemic mixture, which was demonstrated by specific rotation. ChromSword, an artificial intelligence method development tool, was used for initial method development. The column selected for the final method was CHIRALPAK AD-RH (150 × 4.6 mm, 5 μm particle size), maintained at 45°C, and isocratic elution using water-isopropanol-acetonitrile (40 + 50 + 10, v/v/v) as the mobile phase with a detection wavelength of 312 nm. The run time for the method was 11 min. The resolution and selectivity factors of the two enantiomers were 2.3 and 1.24, respectively. LOQ and LOD of the method were 1.6 and 0.8 μg/mL, respectively. This method was appropriately validated according to International Conference on Harmonization guidelines for its intended use.

  14. Non-equilibrium dynamics of 2D liquid crystals driven by transmembrane gas flow.

    PubMed

    Seki, Kazuyoshi; Ueda, Ken; Okumura, Yu-ichi; Tabe, Yuka

    2011-07-20

    Free-standing films composed of several layers of chiral smectic liquid crystals (SmC*) exhibited unidirectional director precession under various vapor transfers across the films. When the transferred vapors were general organic solvents, the precession speed linearly depended on the momentum of the transmembrane vapors, where the proportional constant was independent of the kind of vapor. In contrast, the same SmC* films under water transfer exhibited precession in the opposite direction. As a possible reason for the rotational inversion, we suggest the competition of two origins for the torques, one of which is microscopic and the other macroscopic. Next, we tried to move an external object by making use of the liquid crystal (LC) motion. When a solid or a liquid particle was set on a film under vapor transfer, the particle was rotated in the same direction as the LC molecules. Using home-made laser tweezers, we measured the force transmitted from the film to the particle, which we found to be several pN.

  15. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2017-12-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  16. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  17. Cooperative expression of atomic chirality in inorganic nanostructures.

    PubMed

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-02-02

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  18. Cooperative expression of atomic chirality in inorganic nanostructures

    PubMed Central

    Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-01-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957

  19. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.

    PubMed

    Naziroglu, Hayriye Nevin; Durmaz, Mustafa; Bozkurt, Selahattin; Sirit, Abdulkadir

    2011-07-01

    Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids. Copyright © 2011 Wiley-Liss, Inc.

  20. Determination of the absolute configurations at stereogenic centers in the presence of axial chirality.

    PubMed

    Polavarapu, Prasad L; Jeirath, Neha; Kurtán, Tibor; Pescitelli, Gennaro; Krohn, Karsten

    2009-01-01

    Cephalochromin, a homodimeric naphthpyranone natural product, contains both axial chirality due to the hindered rotation along the biaryl axis and central chirality due to the C-2, C-2' stereogenic centers of the fused pyranone ring. For determining the absolute configurations (ACs) of central chirality elements, different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR), have been used. From these experimental data, in conjunction with corresponding quantum chemical predictions at B3LYP/6-311G* level, it is found that the ECD spectra of cephalochromin are dominated by its axial chirality and are not suitable to distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers and hence to determine the ACs of the central chirality elements. OR signs also did not distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers. On other hand, VCD spectrum of cephalochromin exhibited separate spectral features attributable to axial chirality and stereogenic centers, thereby allowing the determination of both types of chirality elements. This is the first investigation demonstrating that, because of vibrations specific to the studied stereogenic centers, VCD spectroscopy can be used to simultaneously determine the ACs of axial and central chirality elements whenever other chiroptical methods (ECD and OR) fail to report on them. (c) 2009 Wiley-Liss, Inc.

  1. Tailorable chiroptical activity of metallic nanospiral arrays.

    PubMed

    Deng, Junhong; Fu, Junxue; Ng, Jack; Huang, Zhifeng

    2016-02-28

    The engineering of the chiroptical activity of the emerging chiral metamaterial, metallic nanospirals, is in its infancy. We utilize glancing angle deposition (GLAD) to facilely sculpture the helical structure of silver nanospirals (AgNSs), so that the scope of chiroptical engineering factors is broadened to include the spiral growth of homochiral AgNSs, the combination of left- and right-handed helical chirality to create heterochiral AgNSs, and the coil-axis alignment of the heterochiral AgNSs. It leads to flexible control over the chiroptical activity of AgNS arrays with respect to the sign, resonance wavelength and amplitude of circular dichroism (CD) in the UV and visible regime. The UV chiroptical mode has a distinct response from the visible mode. Finite element simulation together with LC circuit theory illustrates that the UV irradiation is mainly adsorbed in the metal and the visible is preferentially scattered by the AgNSs, accounting for the wavelength-related chiroptical distinction. This work contributes to broadening the horizons in understanding and engineering chiroptical responses, primarily desired for developing a wide range of potential chiroplasmonic applications.

  2. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Feng; Xu, Yanyan; Guo, Yuan

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarizationmore » dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.« less

  3. Methods of analysis and separation of chiral flavonoids.

    PubMed

    Yáñez, Jaime A; Andrews, Preston K; Davies, Neal M

    2007-04-01

    Although the analysis of the enantiomers and epimers of chiral flavanones has been carried out for over 20 years, there often remains a deficit within the pharmaceutical, agricultural, and medical sciences to address this issue. Hence, despite increased interest in the potential therapeutic uses, plant physiology roles, and health-benefits of chiral flavanones, the importance of stereoselectivity in agricultural, nutrition, pharmacokinetic, pharmacodynamic, pharmacological activity and disposition has often been ignored. This review presents both the general principles that allow separation of chiral flavanones, and discusses both the advantages and disadvantages of the available chromatographic assay methods and procedures used to separately quantify flavanone enantiomers and epimers in biological matrices.

  4. Transfer of chirality from light to a Disperse Red 1 molecular glass surface.

    PubMed

    Mazaheri, Leila; Lebel, Olivier; Nunzi, Jean-Michel

    2017-12-01

    Chiral structures and materials interact with light in well-documented ways, but light can also interact with achiral materials to generate chirality by inscribing its asymmetric configuration on photoresponsive materials, such as azobenzene derivatives. While it is thus possible to generate both two-dimensional (2D) and three-dimensional (3D) chirality, 2D chirality is especially attractive because of its non-reciprocity. Herein, 2D chirality is induced on the surface of a glass-forming Disperse Red 1 derivative by irradiation with a single laser beam, yielding crossed spontaneous surface relief gratings with different pitches. Azimuth rotations up to 10° have been observed, and the absence of 3D chirality has been confirmed. This method thus allows generating non-reciprocal planar chiral objects by a simple, single irradiation process on a thin film of a material that can easily be processed over large areas or onto small objects.

  5. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.

    PubMed

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  6. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  7. Chiroptical studies on supramolecular chirality of molecular aggregates.

    PubMed

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.

  8. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    PubMed

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation

    PubMed Central

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-01-01

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. PMID:23891368

  11. Diastereoselective synthesis of chiral 1,3-cyclohexadienals

    PubMed Central

    de la Granja, Ángela P.; Capitán, M. Carmen; Moro, R. F.; Marcos, Isidro S.; Garrido, Narciso M.; Sanz, Francisca; Calle, Emilio

    2018-01-01

    A novel approach to the production of chiral 1,3-cyclohexadienals has been developed. The organocatalysed asymmetric reaction of different β-disubstituted-α,β-unsaturated aldehydes with a chiral α,β-unsaturated aldehyde in the presence of a Jørgensen-Hayashi organocatalyst provides easy and stereocontrolled access to the cyclohexadienal backbone. This method allows for the synthesis of potential photoprotective chiral 1,3-cyclohexadienals and extra extended conjugation compounds in a simple manner. PMID:29438416

  12. Diastereoselective synthesis of chiral 1,3-cyclohexadienals.

    PubMed

    Urosa, Aitor; Tobal, Ignacio E; de la Granja, Ángela P; Capitán, M Carmen; Moro, R F; Marcos, Isidro S; Garrido, Narciso M; Sanz, Francisca; Calle, Emilio; Díez, David

    2018-01-01

    A novel approach to the production of chiral 1,3-cyclohexadienals has been developed. The organocatalysed asymmetric reaction of different β-disubstituted-α,β-unsaturated aldehydes with a chiral α,β-unsaturated aldehyde in the presence of a Jørgensen-Hayashi organocatalyst provides easy and stereocontrolled access to the cyclohexadienal backbone. This method allows for the synthesis of potential photoprotective chiral 1,3-cyclohexadienals and extra extended conjugation compounds in a simple manner.

  13. Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.

    PubMed

    Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan

    2013-01-01

    In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

  14. Chiral separation of β-blockers by MEEKC using neutral microemulsion: Analysis of separation mechanism and further elucidation of resolution equation.

    PubMed

    Hu, Shao-Qiang; Lü, Wen-Juan; Ma, Yan-Hua; Hu, Qin; Dong, Li-Jun; Chen, Xing-Guo

    2013-01-01

    Based on the investigation of the effect of microemulsion charge on the chiral separation, a new chiral separation method with MEEKC employing neutral microemulsion was established. The method used a microemulsion containing 3.0% (w/v) neutral surfactant Tween 20 and 0.8% (w/v, 30 mM) dibutyl l-tartrate in 40 mM sodium tetraborate buffer to separate the enantiomers of β-blockers. The effect of major parameters on the chiral separation was investigated. The applied voltage had little effect on the resolution, but the chiral separation could be improved by suppressing the EOF. Nine racemic β-blockers obtained relatively good enantioseparation after appropriate concentrations of tetradecyl trimethyl ammonium bromide were added into the microemulsion to suppress the EOF. These results were explained based on the analysis of the separation mechanism of the method and deduced separation equations. The resolution equation of the method was further elucidated. It was found that the fourth term in the resolution equation, an additional term compared to the conventional resolution equation for column chromatography, represents the ratio of the relative movement distance between the analyte and microemulsion droplets relative to the effective capillary length. It can be regarded as a correction for the effective capillary length. These findings are significant for the development of the theory of MEEKC and the development of new chiral MEEKC method. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Circularly polarized guided modes in dielectrically chiral photonic crystal fiber.

    PubMed

    Li, Junqing; Su, Qiyao; Cao, Yusheng

    2010-08-15

    The effect of dielectric chirality on the polarization states and mode indices of guided modes in photonic crystal fiber (PCF) is investigated by a modified plane-wave expansion (PWE) method. Using a solid-core chiral PCF as a numerical example, we show that circular polarization is the eigenstate of the fundamental mode. Mode index divergence between right-handed circularly polarized (RCP) and left-handed circularly polarized (LCP) states is demonstrated. Chirality's effect on mode index and circular birefringence (CB) in such a PCF is found to be similar to that in bulk chiral media.

  16. Topics in high-energy physics: The standard model and beyond

    NASA Astrophysics Data System (ADS)

    Blechman, Andrew Eric

    This thesis is compiled from the various projects I completed as a graduate student at the Johns Hopkins University Physics Department. The first project studied threshold effects in excited charmed baryon decays. The strong decays of the L+c (2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in L+c1 → L+c pi+pi- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the L+c (2593) mass and couplings. A fit is performed to unpublished CLEO data which gives M( L+c (2593))---M( L+c ) = 305.6 +/- 0.3 MeV and h22=0.24+0.23 -0.11 , with h2 the L+c → Sigmacpi strong coupling in the chiral Lagrangian. In the second project, by shining a hypermultiplet from one side of the bulk of a flat five-dimensional orbifold, supersymmetry is broken. The extra dimension is stabilized in a supersymmetric way, and supersymmetry breaking does not damage the radius stabilization mechanism. The low energy theory contains the radion and two complex scalars that are massless in the global supersymmetric limit and are stabilized by tree level supergravity effects. It is shown that radion mediation can play the dominant role in communicating supersymmetry breaking to the visible sector and contact terms are exponentially suppressed at tree level. The third project studied lepton flavor violation in flavor anarchic Randall-Sundrum models. All Yukawa couplings and mixing matrices are generated at the TeV-scale by wavefunction overlaps in the five-dimensional Anti-deSitter geometry present in this theory, without introducing any additional structure. This leads to a TeV-scale solution to both the flavor and electroweak hierarchy problems. A thorough scan of the available parameter space is performed, including the effects of allowing the Higgs boson to propagate in the full five-dimensional space-time. These models give constraints at the few TeV level throughout the natural range of parameters. Near-future experiments will definitively test this model.

  17. Polarization-independent refractive index tuning using gold nanoparticle-stabilized blue phase liquid crystals.

    PubMed

    Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori

    2011-09-15

    Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

  18. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.

    PubMed

    Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-06-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

  19. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    PubMed Central

    Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741

  20. Parameter retrieval of chiral metamaterials based on the state-space approach.

    PubMed

    Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali

    2013-08-01

    This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

  1. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    PubMed

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  2. Development of a temperature gradient focusing method for in situ extraterrestrial biomarker analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-08-01

    Scanning temperature gradient focusing (TGF) is a recently described technique for the simultaneous concentration and separation of charged analytes. It allows for high analyte peak capacities and low LODs in microcolumn electrophoretic separations. In this paper, we present the application of scanning TGF for chiral separations of amino acids. Using a mixture of seven carboxyfluorescein succinimidyl ester-labeled amino acids (including five chiral amino acids) which constitute the Mars7 standard, we show that scanning TGF is a very simple and efficient method for chiral separations. The modulation of TGF separation parameters (temperature window, pressure scan rate, temperature range, and chiral selector concentration) allows optimization of peak efficiencies and analyte resolutions. The use of hydroxypropyl-beta-CD at low concentration (1-5 mmol/L) as a chiral selector, with an appropriate pressure scan rate ( -0.25 Pa/s) and with a low temperature range (3-25 degrees C over 1 cm) provided high resolution between enantiomers (Rs >1.5 for each pair of enantiomers) using a short, 4 cm long capillary. With these new results, the scanning TGF method appears to be a viable method for in situ trace biomarker analysis for future missions to Mars or other solar system bodies.

  3. Absolute Configuration of 3-METHYLCYCLOHEXANONE by Chiral Tag Rotational Spectroscopy and Vibrational Circular Dichroism

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Holdren, Martin S.; Mayer, Kevin J.; Smart, Taylor; West, Channing; Pate, Brooks

    2017-06-01

    The absolute configuration of 3-methylcyclohexanone was established by chiral tag rotational spectroscopy measurements using 3-butyn-2-ol as the tag partner. This molecule was chosen because it is a benchmark measurement for vibrational circular dichroism (VCD). A comparison of the analysis approaches of chiral tag rotational spectroscopy and VCD will be presented. One important issue in chiral analysis by both methods is the conformational flexibility of the molecule being analyzed. The analysis of conformational composition of samples will be illustrated. In this case, the high spectral resolution of molecular rotational spectroscopy and potential for spectral simplification by conformational cooling in the pulsed jet expansion are advantages for chiral tag spectroscopy. The computational chemistry requirements for the two methods will also be discussed. In this case, the need to perform conformer searches for weakly bound complexes and to perform reasonably high level quantum chemistry geometry optimizations on these complexes makes the computational time requirements less favorable for chiral tag rotational spectroscopy. Finally, the issue of reliability of the determination of the absolute configuration will be considered. In this case, rotational spectroscopy offers a "gold standard" analysis method through the determination of the ^{13}C-subsitution structure of the complex between 3-methylcyclohexanone and an enantiopure sample of the 3-butyn-2-ol tag.

  4. Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong

    2017-02-01

    The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.

  5. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    PubMed Central

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  6. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    PubMed

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  7. Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering

    NASA Astrophysics Data System (ADS)

    Chauleau, Jean-Yves; Legrand, William; Reyren, Nicolas; Maccariello, Davide; Collin, Sophie; Popescu, Horia; Bouzehouane, Karim; Cros, Vincent; Jaouen, Nicolas; Fert, Albert

    2018-01-01

    Chirality in condensed matter has recently become a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physical mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters, are therefore essential. Here we report x-ray resonant magnetic scattering as a straightforward tool to reveal directly the properties of chiral magnetic systems. We show that it can straightforwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e., its chiral nature, the quantitative winding sense (clockwise or counterclockwise), and its type, i.e., Néel [cycloidal] or Bloch [helical]. This method is model independent, does not require a priori knowledge of the magnetic parameters, and can be applied to any system with magnetic domains ranging from a few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities driven by spin-orbit-related effects at Co |Pt interfaces, we illustrate the strength of this method.

  8. Central-to-axial chirality transfer revealed by liquid crystals: a combined experimental and computational approach for the determination of absolute configuration of carboxylic acids with an α chirality centre.

    PubMed

    Ferrarini, Alberta; Ferroni, Fiammetta; Pieraccini, Silvia; Rosini, Carlo; Superchi, Stefano; Spada, Gian Piero

    2011-10-01

    The conversion into 6,7-dihydro-5H-dibenz[c,e]azepine (DAZ) N-protected amides is a viable route for the determination of the absolute configuration of chiral 2-substituted carboxylic acids. The biphenyl moiety of DAZ, besides being a probe of chirality for the electronic circular dichroism (ECD) spectroscopy, makes these systems suitable for configuration assignment by exploiting the chirality amplification which occurs in nematic liquid crystals. To assess the reliability of the liquid crystal method in detecting the absolute stereochemistry of chiral amides bound to a biphenyl group, we measured the helical twisting power of a series of DAZ-N-protected amides and compared these data with the results obtained from ECD measurements. We will show that the liquid crystal method, corroborated by HTP predictions, is trustworthy with our biphenyl derivatives, even when ECD spectra are ambiguous for the presence of aryl moieties displaying strong UV absorptions in the same range of the biphenyl chromophore. © 2011 Wiley-Liss, Inc.

  9. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth.

    PubMed

    Xu, Ziwei; Qiu, Lu; Ding, Feng

    2018-03-21

    Depending on its specific structure, or so-called chirality, a single-walled carbon nanotube (SWCNT) can be either a conductor or a semiconductor. This feature ensures great potential for building ∼1 nm sized electronics if chirality-selected SWCNTs could be achieved. However, due to the limited understanding of the growth mechanism of SWCNTs, reliable methods for chirality-selected SWCNTs are still pending. Here we present a theoretical model on the chirality assignment and control of SWCNTs during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of pentagons, especially the last (6 th ) one, during the nucleation stage. Our analysis showed that the chirality of a SWCNT is randomly assigned on a liquid or liquid-like catalyst surface, and two routes of synthesizing chirality-selected SWCNTs, which are verified by recent experimental achievements, are demonstrated. They are (i) by using high melting point crystalline catalysts, such as Ta, W, Re, Os, or their alloys, and (ii) by frequently changing the chirality of SWCNTs during their growth. This study paves the way for achieving chirality-selective SWCNT growth for high performance SWCNT based electronics.

  10. Validation of an enantioselective LC-MS/MS method to quantify enantiomers of (±)-OTX015 in mice plasma: Lack of in vivo inversion of (-)-OTX015 to its antipode.

    PubMed

    Balaji, Narayanan; Chinnapattu, Murugan; Dixit, Abhishek; Sahu, Promod; P S, Suresh; Mullangi, Ramesh

    2017-04-01

    A highly sensitive, specific and enantioselective assay has been validated for the quantitation of OTX015 enantiomers [(+)-OTX015 and (-)-OTX015] in mice plasma on LC-MS/MS-electrospray ionization as per regulatory guidelines. Protein precipitation was used to extract (±)-OTX015 enantiomers and internal standard (IS) from mice plasma. The active [(-)-OTX015] and inactive [(+)-OTX015] enantiomers were resolved on a Chiralpak-IA column using an isocratic mobile phase (0.2% ammonia/acetonitrile 20 : 80, v/v) at a flow rate of 1.2 mL/min. The total run time was 6.0 min. (+)-OTX015, (-)-OTX015 and IS eluted at 3.34, 4.08 and 4.77 min, respectively. The MS/MS ion transitions monitored were m/z 492 → 383 for OTX015 and m/z 457 → 401 for IS. The standard curves for OTX015 enantiomers were linear (r 2  > 0.998) in the concentration range 1.03-1030 ng/mL. The inter- and intraday precisions were in the range 2.20-13.3 and 8.03-12.1% and 3.80-14.4 and 8.97-13.6% for (+)-OTX015 and (-)-OTX015, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method has been applied to the study of stereoselective oral pharmacokinetics of (-)-OTX015 and unequivocally demonstrated that (-)-OTX015 does not undergo chiral inversion to its antipode in vivo in mice. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, Jose Manuel

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  12. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    PubMed Central

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  13. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation.

    PubMed

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-08-30

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3,5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying

    My graduate research has focused on separation science and bioanalytical analysis, which emphasized in method development. It includes three major areas: enantiomeric separations using high performance liquid chromatography (HPLC), Super/subcritical fluid chromatography (SFC), and capillary electrophoresis (CE); drug-protein binding behavior studies using CE; and carbohydrate analysis using liquid chromatograph-electrospray ionization mass spectrometry (LC-ESI-MS). Enantiomeric separations continue to be extremely important in the pharmaceutical industry. An in-depth evaluation of the enantiomeric separation capabilities of macrocyclic glycopeptides CSPs with SFC mobile phases was investigated using a set of over 100 chiral compounds. It was found that the macrocyclic based CSPs were ablemore » to separate enantiomers of various compounds with different polarities and functionalities. Seventy percent of all separations were achieved in less than 4 min due to the high flow rate (4.0 ml/min) that can be used in SFC. Drug-protein binding is an important process in determining the activity and fate of a drug once it enters the body. Two drug/protein systems have been studied using frontal analysis CE method. More sensitive fluorescence detection was introduced in this assay, which overcame the problem of low sensitivity that is common when using UV detection for drug-protein studies. In addition, the first usage of an argon ion laser with 257 nm beam coupled with CCD camera as a frontal analysis detection method enabled the simultaneous observation of drug fluorescence as well as the protein fluorescence. LC-ESI-MS was used for the separation and characterization of underivatized oligosaccharide mixtures. With the limits of detection as low as 50 picograms, all individual components of oligosaccharide mixtures (up to 11 glucose-units long) were baseline resolved on a Cyclobond I 2000 column and detected using ESI-MS. This system is characterized by high chromatographic resolution, high column stability, and high sensitivity. In addition, this method showed potential usefulness for the sensitive and quick analysis of hydrolysis products of polysaccharides, and for trace level analysis of individual oligosaccharides or oligosaccharide isomers from biological systems.« less

  15. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram.

    PubMed

    Ciogli, Alessia; Ismail, Omar H; Mazzoccanti, Giulia; Villani, Claudio; Gasparrini, Francesco

    2018-03-01

    The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    PubMed

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.

  17. Enantioselective recognition at mesoporous chiral metal surfaces.

    PubMed

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  18. Isotope chirality in long-armed multifunctional organosilicon ("Cephalopod") molecules.

    PubMed

    Barabás, Béla; Kurdi, Róbert; Zucchi, Claudia; Pályi, Gyula

    2018-07-01

    Long-armed multifunctional organosilicon molecules display self-replicating and self-perfecting behavior in asymmetric autocatalysis (Soai reaction). Two representatives of this class were studied by statistical methods aiming at determination of probabilities of natural abundance chiral isotopomers. The results, reported here, show an astonishing richness of possibilities of the formation of chiral isotopically substituted derivatives. This feature could serve as a model for the evolution of biological chirality in prebiotic and early biotic stereochemistry. © 2018 Wiley Periodicals, Inc.

  19. On exact correlation functions of chiral ring operators in 2 d N=(2, 2) SCFTs via localization

    NASA Astrophysics Data System (ADS)

    Chen, Jin

    2018-03-01

    We study the extremal correlation functions of (twisted) chiral ring operators via superlocalization in N=(2, 2) superconformal field theories (SCFTs) with central charge c ≥ 3, especially for SCFTs with Calabi-Yau geometric phases. We extend the method in arXiv: 1602.05971 with mild modifications, so that it is applicable to disentangle operators mixing on S 2 in nilpotent (twisted) chiral rings of 2 d SCFTs. With the extended algorithm and technique of localization, we compute exactly the extremal correlators in 2 d N=(2, 2) (twisted) chiral rings as non-holomorphic functions of marginal parameters of the theories. Especially in the context of Calabi-Yau geometries, we give an explicit geometric interpretation to our algorithm as the Griffiths transversality with projection on the Hodge bundle over Calabi-Yau complex moduli. We also apply the method to compute extremal correlators in Kähler moduli, or say twisted chiral rings, of several interesting Calabi-Yau manifolds. In the case of complete intersections in toric varieties, we provide an alternative formalism for extremal correlators via localization onto Higgs branch. In addition, as a spinoff we find that, from the extremal correlators of the top element in twisted chiral rings, one can extract chiral correlators in A-twisted topological theories.

  20. Chiral analysis of UV nonabsorbing compounds by capillary electrophoresis using macrocyclic antibiotics: 1. Separation of aspartic and glutamic acid enantiomers.

    PubMed

    Bednar, P; Aturki, Z; Stransky, Z; Fanali, S

    2001-07-01

    Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.

  1. Application of chiral critical clusters to assymetric synthesis

    DOEpatents

    Ferrieri, Richard A.

    2002-01-01

    Disclosed is a composition, a method of making and a method of using critical clusters for asymmetric synthesis using substantially optically-pure chiral solvent molecules in a supercritical fluid. The solvent molecules are capable of forming a multipoint hydrogen bonded solvate as they encage at least one solute molecule. The encaged solute molecule is capable of reacting to form an optically active chiral center. In another aspect, there is disclosed a method of directing the position of bonding between a solute molecule and a ligand involving encaging the solute molecule and the ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution in the solute molecule. In yet another aspect, disclosed is a method of making pharmaceutical compounds involving encaging a solute molecule, which is capable of forming a chiral center, and a ligand with polar solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to change electric charge distribution of the solute molecule. The solute molecule and ligand are then reacted whereby the ligand bonds to the solute molecule forming a chiral center. Also disclosed is a method for racemic resolution using critical clusters involving encaging racemic mixtures of solute molecules with substantially optically-pure chiral solvent molecules in a supercritical fluid under conditions of temperature and pressure sufficient to form critical clusters. The solvent molecules are capable of multipoint hydrogen bonding with the solute molecules. The encaged solute molecules are then nonenzymatically reacted to enhance the optical purity of the solute molecules.

  2. Piezoelectric Characteristics of Chiral Polymer Composite Films Obtained under Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakiri, Takuo; Okuno, Masaki; Maki, Nobuyuki; Kanasaki, Masayoshi; Morimoto, Yu; Okamoto, Satoshi; Ishizuka, Masayuki; Fukuda, Kazuyuki; Takaki, Toshihiko; Tajitsu, Yoshiro

    2005-09-01

    It is difficult to obtain a drawn chiral polymer/inorganic material composite membrane with shear piezoelectricity by the conventional method because the chiral polymer/inorganic material composite membrane breaks during the drawing process by which shear piezoelectricity is realized. Using a strong magnetic field, we propose to manufacture a drawn composite membrane of poly-l-lactic acid (PLLA), a chiral polymer, and hydroxyapatite (Hap), an inoroganic material (PLLA/Hap composite membrane). The manufacturing method used here is effective for obtaining a drawn PLLA/Hap composite membrane with a large uniform area. Also, the shear piezoelectric constant of the drawn PLLA/Hap composite membrane is about 20 pC/N. This value is large for piezoelectric polymers.

  3. Method of Moments Analysis of Scattering by Chiral Media

    DTIC Science & Technology

    1991-07-01

    Application to Chiral Polymer Design," J. Appl. Phys., vol. 63, pp. 280-284, Jan. 1988. [98] T. Guire, M. Umari , V. V. Varadan, and V. K. Varadan...34Microwave Mea- surements on Chiral Composites," June 1988 URSI Radio Science Meeting, Syracuse, NY. [99] M. H. Umari , V. V. Varadan, and V. K. Varadan

  4. A surrogate analyte method to determine D-serine in mouse brain using liquid chromatography-tandem mass spectrometry.

    PubMed

    Kinoshita, Kohnosuke; Jingu, Shigeji; Yamaguchi, Jun-ichi

    2013-01-15

    A bioanalytical method for determining endogenous d-serine levels in the mouse brain using a surrogate analyte and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. [2,3,3-(2)H]D-serine and [(15)N]D-serine were used as a surrogate analyte and an internal standard, respectively. The surrogate analyte was spiked into brain homogenate to yield calibration standards and quality control (QC) samples. Both endogenous and surrogate analytes were extracted using protein precipitation followed by solid phase extraction. Enantiomeric separation was achieved on a chiral crown ether column with an analysis time of only 6 min without any derivatization. The column eluent was introduced into an electrospray interface of a triple-quadrupole mass spectrometer. The calibration range was 1.00 to 300 nmol/g, and the method showed acceptable accuracy and precision at all QC concentration levels from a validation point of view. In addition, the brain d-serine levels of normal mice determined using this method were the same as those obtained by a standard addition method, which is time-consuming but is often used for the accurate measurement of endogenous substances. Thus, this surrogate analyte method should be applicable to the measurement of d-serine levels as a potential biomarker for monitoring certain effects of drug candidates on the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Strigone, isolation and identification as a natural strigolactone from Houttuynia cordata.

    PubMed

    Kisugi, Takaya; Xie, Xiaonan; Kim, Hyun Il; Yoneyama, Kaori; Sado, Aika; Akiyama, Kohki; Hayashi, Hideo; Uchida, Kenichi; Yokota, Takao; Nomura, Takahito; Yoneyama, Koichi

    2013-03-01

    (+)-Strigone was described earlier in a paper on isolation of strigol and then recently examined for hyphal branching activity in arbuscular mycorrhizal fungi as a strigolactone. Herein, it was isolated from root exudates of Houttuynia cordata, and its structure was confirmed by direct comparison with synthetic standards in LC-MS/MS, GC-MS, and (1)H and (13)C NMR analyses. The stereochemistry of strigone was determined by comparing the CD spectra and RR(t) in chiral LC-MS/MS with those of synthetic (+)-strigone and (-)-strigone. Four stereoisomers of strigone exhibited clearly different levels of stimulation activity on the seeds of three root parasitic plants, Orobanche minor, Phelipanche ramosa, and Striga hermonthica. (+)-Strigone was a highly potent germination stimulant on S. hermonthica and also on P. ramosa, but less active than ent-2'-epi-strigone on O. minor. In addition to strigone, H. cordata was found to produce strigol, sorgomol, and 5-deoxystrigol, indicating that this plant produces mainly strigol-type strigolactones derived from 5-deoxystrigol. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Generation of intensity-tunable structural color from helical photonic crystals for full color reflective-type display.

    PubMed

    Kim, Se-Um; Lee, Sin-Hyung; Lee, In-Ho; Lee, Bo-Yeon; Na, Jun-Hee; Lee, Sin-Doo

    2018-05-14

    A new concept of intensity-tunable structural coloration is proposed on the basis of a helical photonic crystal (HPC). The HPCs are constructed from a mixture of chiral reactive mesogens by spin-coating, followed by the photo-polymerization. A liquid crystal (LC) layer, being homogeneously aligned, is prepared on the HPCs to serve as a tunable waveplate. The electrical modulation of the phase retardation through the LC layer directly leads to the intensity-tunable Bragg reflection from the HPCs upon the incidence of the polarized light. The bandwidths of the structural colors are found to be well preserved regardless of the applied voltage. A prototype of a full color reflective-type display, incorporated with three primary color units, is demonstrated. Our concept of decoupling two mutually independent functions, the intensity modulation by the tunable waveplate and the color reflection by the HPCs provides a simple and powerful way of producing a full color reflective-type display which possesses high color purity, high optical efficiency, the cycling durability, and the design flexibility.

  7. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.

    PubMed

    Sanganyado, Edmond; Lu, Zhijiang; Fu, Qiuguo; Schlenk, Daniel; Gan, Jay

    2017-11-01

    More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effect of molecular structure of tartrates on chiral recognition of tartrate-boric acid complex chiral selectors in chiral microemulsion electrokinetic chromatography.

    PubMed

    Hu, Shao-Qiang; Chen, Yong-Lei; Zhu, Hua-Dong; Shi, Hai-Jun; Yan, Na; Chen, Xing-Guo

    2010-08-20

    Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of beta-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 degrees C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

    PubMed Central

    Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V.; Wan, Leo Q.

    2016-01-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels. PMID:28360944

  10. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    PubMed

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  11. Conformational Analysis of Stiff Chiral Polymers with End-Constraints

    PubMed Central

    Kim, Jin Seob; Chirikjian, Gregory S.

    2010-01-01

    We present a Lie-group-theoretic method for the kinematic and dynamic analysis of chiral semi-flexible polymers with end constraints. The first is to determine the minimum energy conformations of semi-flexible polymers with end constraints, and the second is to perform normal mode analysis based on the determined minimum energy conformations. In this paper, we use concepts from the theory of Lie groups and principles of variational calculus to model such polymers as inextensible or extensible chiral elastic rods with coupling between twisting and bending stiffnesses, and/or between twisting and extension stiffnesses. This method is general enough to include any stiffness and chirality parameters in the context of elastic filament models with the quadratic elastic potential energy function. As an application of this formulation, the analysis of DNA conformations is discussed. We demonstrate our method with examples of DNA conformations in which topological properties such as writhe, twist, and linking number are calculated from the results of the proposed method. Given these minimum energy conformations, we describe how to perform the normal mode analysis. The results presented here build both on recent experimental work in which DNA mechanical properties have been measured, and theoretical work in which the mechanics of non-chiral elastic rods has been studied. PMID:20198114

  12. Self-organized internal architectures of chiral micro-particles

    NASA Astrophysics Data System (ADS)

    Provenzano, Clementina; Mazzulla, Alfredo; Pagliusi, Pasquale; De Santo, Maria P.; Desiderio, Giovanni; Perrotta, Ida; Cipparrone, Gabriella

    2014-02-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials.

  13. Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.

  14. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER)

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr; Fischer, Peer; Krämer, Steffen

    2016-09-01

    Direct detection of molecular chirality is practically impossible by methods of standard nuclear magnetic resonance (NMR) that is based on interactions involving magnetic-dipole and magnetic-field operators. However, theoretical studies provide a possible direct probe of chirality by exploiting an enantiomer selective additional coupling involving magnetic-dipole, magnetic-field, and electric field operators. This offers a way for direct experimental detection of chirality by nuclear magneto-electric resonance (NMER). This method uses both resonant magnetic and electric radiofrequency (RF) fields. The weakness of the chiral interaction though requires a large electric RF field and a small transverse RF magnetic field over the sample volume, which is a non-trivial constraint. In this study, we present a detailed study of the NMER concept and a possible experimental realization based on a loop-gap resonator. For this original device, the basic principle and numerical studies as well as fabrication and measurements of the frequency dependence of the scattering parameter are reported. By simulating the NMER spin dynamics for our device and taking the 19F NMER signal of enantiomer-pure 1,1,1-trifluoropropan-2-ol, we predict a chirality induced NMER signal that accounts for 1%-5% of the standard achiral NMR signal.

  15. Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with β-cyclodextrin.

    PubMed

    Pérez-Trujillo, Míriam; Lindon, John C; Parella, Teodor; Keun, Hector C; Nicholson, Jeremy K; Athersuch, Toby J

    2012-03-20

    Differences in molecular chirality remain an important issue in drug metabolism and pharmacokinetics for the pharmaceutical industry and regulatory authorities, and chirality is an important feature of many endogenous metabolites. We present a method for the rapid, direct differentiation and identification of chiral drug enantiomers in human urine without pretreatment of any kind. Using the well-known anti-inflammatory chemical ibuprofen as one example, we demonstrate that the enantiomers of ibuprofen and the diastereoisomers of one of its main metabolites, the glucuronidated carboxylate derivative, can be resolved by (1)H NMR spectroscopy as a consequence of direct addition of the chiral cosolvating agent (CSA) β-cyclodextrin (βCD). This approach is simple, rapid, and robust, involves minimal sample manipulation, and does not require derivatization or purification of the sample. In addition, the method should allow the enantiodifferentiation of endogenous chiral metabolites, and this has potential value for differentiating metabolites from mammalian and microbial sources in biofluids. From these initial findings, we propose that more extensive and detailed enantiospecific metabolic profiling could be possible using CSA-NMR spectroscopy than has been previously reported.

  16. A Simple Method for Specifying the R/S Configuration about a Chiral Center.

    ERIC Educational Resources Information Center

    Idoux, John P.

    1982-01-01

    Describes a method for specifying R/S (clockwise/counterclockwise) configuration about a chiral center which does not require the use of a three-dimensional physical model, the mental visualization of the molecule, or the memorization of a recently reported arbitrary number system. (Author/JN)

  17. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  18. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Silva, Mariana; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel; Marina, María Luisa; Aturki, Zeineb; Fanali, Salvatore

    2017-03-24

    In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage using the Staudinger reaction. The CSP was packed into fused silica capillaries 100μm I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) using model compounds for the enantio- and the diastereomeric separation. The compounds flavanone, 2'-hydroxyflavanone, 4'-hydroxyflavanone, 6-hydroxyflavanone, 4'-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar organic elution modes. Baseline stereoisomer resolution and good results in terms of peak efficiency and short analysis time of all studied flavonoids and flavanones glycosides were achieved in reversed phase mode, using as mobile phase a mixture of MeOH/H 2 O, 10mM ammonium acetate pH 4.5 at different ratios. For the polar organic mode using 100% of MeOH as mobile phase, the CSP showed better performances and the baseline chiral separation of several studied compounds occurred in an analysis time of less than 10min. Good results were also achieved by CEC employing two different mobile phases. The use of MeOH/H 2 O, 5mM ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of flavanone and its methoxy and hydroxy derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    PubMed

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Natural terpene derivatives as new structural task-specific ionic liquids to enhance the enantiorecognition of acidic enantiomers on teicoplanin-based stationary phase by high-performance liquid chromatography.

    PubMed

    Flieger, Jolanta; Feder-Kubis, Joanna; Tatarczak-Michalewska, Małgorzata; Płazińska, Anita; Madejska, Anna; Swatko-Ossor, Marta

    2017-06-01

    We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R,2S,5R)-(-)-menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0 ) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β-d-glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as "structural task-specific ionic liquids" responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Slippery interfaces: lubrication of director and helix rotation motions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Sakatsuji, Waki; Nishiyama, Isa

    2017-02-01

    Anchoring effects on the polymer films in the liquid crystal (LC) display devices plays key role to create the restoring force to the black state. However, the chiral materials with spontaneous helix, such as deformed helix mode in SmC* (DH-FLC) or the polymer stabilized blue phase (PSChBP), can recover black state by rewinding motion of the helix itself. We have invented the principle and design of slippery interfaces, which has zero anchoring force for attached LC molecules on the interfaces, and confirmed the drastic reduction of driving voltage in DH-FLC mode of SmC* (<1 order) keeping the fast switching response (tau 50 micro sec). We have reported the lateral slippery interfaces consist of the phase separated liquid phases created by tran-cis isomerization of doped azo dye. It is not enough to the complete transmission of the light(I/I0 1) by applying the typical driving voltage ( 1.0V/micro m) for current IPS panels. It is also problem that slippery interface become effective only just below the I-SmC phase transition temperature (TIC-T<20°). Here, we report new type of the vertical slippery interface realized by the spin coated swollen azo-LC gel films on the glass substrates. Under UV irradiation, trans-cis isomerization of the azo-dye co-polymerized in the azo-LC gel film, induces the vertical slippery interfaces by the disordering effect. Since the co-polymerized azo-dye cannot be dissolved into LC, the disordering effect is completely localized in the interface between swollen azo-LC gel and bulk SmC* material. Then the slippery interfaces can be stabilized over wide temperature range. We greatly improve the reduction of the driving voltage, I/Io=1, 1.0V/micro m for rather slow change of the driving voltage (tau 1msec 2.5msec pulse), I/I0=0.6, 1.5V/micro m for fast change (tau 50 micro sec, 250 micro sec pulse) by lubrication of intra and inter helix C-director rotation motions.

  2. a Chiral Tag Study of the Absolute Configuration of Camphor

    NASA Astrophysics Data System (ADS)

    Pratt, David; Evangelisti, Luca; Smart, Taylor; Holdren, Martin S.; Mayer, Kevin J.; West, Channing; Pate, Brooks

    2017-06-01

    The chiral tagging method for rotational spectroscopy uses an established approach in chiral analysis of creating a complex with an enantiopure tag so that enantiomers of the molecule of interest are converted to diastereomer complexes. Since the diastereomers have distinct structure, they give distinguishable rotational spectra. Camphor was chosen as an example for the chiral tag method because it has spectral properties that could pose challenges to the use of three wave mixing rotational spectroscopy to establish absolute configuration. Specifically, one of the dipole moment components of camphor is small making three wave mixing measurements challenging and placing high accuracy requirements on computational chemistry for calculating the dipole moment direction in the principal axis system. The chiral tag measurements of camphor used the hydrogen bond donor 3-butyn-2-ol. Quantum chemistry calculations using the B3LYP-D3BJ method and the def2TZVP basis set identified 7 low energy isomers of the chiral complex. The two lowest energy complexes of the homochiral and heterochiral complexes are observed in a measurement using racemic tag. Absolute configuration is confirmed by the use of an enantiopure tag sample. Spectra with ^{13}C-sensitivity were acquired so that the carbon substitution structure of the complex could be obtained to provide a structure of camphor with correct stereochemistry. The chiral tag complex spectra can also be used to estimate the enantiomeric excess of the sample and analysis of the broadband spectrum indicates that the sample enantiopurity is higher than 99.5%. The structure of the complex is analyzed to determine the extent of geometry modification that occurs upon formation of the complex. These results show that initial isomer searches with fixed geometries will be accurate. The reduction in computation time from fixed geometry assumptions will be discussed.

  3. Unusual dimeric tetrahydroxanthone derivatives from Aspergillus lentulus and the determination of their axial chiralities

    NASA Astrophysics Data System (ADS)

    Li, Tian-Xiao; Yang, Ming-Hua; Wang, Ying; Wang, Xiao-Bing; Luo, Jun; Luo, Jian-Guang; Kong, Ling-Yi

    2016-12-01

    The research on secondary metabolites of Aspergillus lentulus afforded eight unusual heterodimeric tetrahydroxanthone derivatives, lentulins A-H (2-9), along with the known compound neosartorin (1). Compounds 1-6 exhibited potent antimicrobial activities especially against methicillin-resistant Staphylococci. Their absolute configurations, particularly the axial chiralities, were unambiguously demonstrated by a combination of electronic circular dichroism (ECD), Rh2(OCOCF3)4-induced ECD experiments, modified Mosher methods, and chemical conversions. Interestingly, compounds 1-4 were the first samples of atropisomers within the dimeric tetrahydroxanthone class. Further investigation of the relationships between their axial chiralities and ECD Cotton effects led to the proposal of a specific CD Exciton Chirality rule to determine the axial chiralities in dimeric tetrahydroxanthones and their derivatives.

  4. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    NASA Astrophysics Data System (ADS)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  5. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    PubMed

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  7. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry.

    PubMed

    Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela

    2007-05-05

    The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported. (c) 2007 Wiley-Liss, Inc.

  8. Compound analysis via graph kernels incorporating chirality.

    PubMed

    Brown, J B; Urata, Takashi; Tamura, Takeyuki; Arai, Midori A; Kawabata, Takeo; Akutsu, Tatsuya

    2010-12-01

    High accuracy is paramount when predicting biochemical characteristics using Quantitative Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel methods combined with machine learning techniques are efficient for QSPR model construction, they cannot distinguish topologically identical chiral compounds which often exhibit different biological characteristics. In this paper, we propose a new method that extends the recently developed tree pattern graph kernel to accommodate stereoisomers. We show that Support Vector Regression (SVR) with a chiral graph kernel is useful for target property prediction by demonstrating its application to a set of human vitamin D receptor ligands currently under consideration for their potential anti-cancer effects.

  9. Phonon Dispersion in Chiral Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Vamivakas, Anthony Nickolas; Fang, Yan; Wang, Bolin

    The method to obtain phonon dispersion of achiral single-wall carbon nanotubes (SWNTs) from 6×6 matrix proposed by Mahan and Jeon7 has been extended to chiral SWNTs. The number of calculated phonon modes of a chiral SWNT (10, 1) is much larger than that of a zigzag one (10, 0) because the number of atoms in the translational unit cell of chiral SWNT is larger than that of an achiral one even though they have relative similar radius. The possible application of our approach to other models with more phonon potential terms beyond Mahan and Jeon's model is discussed.

  10. Characterization of Crystal Chirality in Amino Acids Using Low-Frequency Raman Spectroscopy.

    PubMed

    Aviv, Hagit; Nemtsov, Irena; Mastai, Yitzhak; Tischler, Yaakov R

    2017-10-19

    We present a new method for differentiating racemic crystals from enantiopure crystals. Recently, developments in optical filters have enabled the facile use of Raman spectroscopy to detect low-frequency vibrational (LFV) modes. Here, for the first time, we use Raman spectroscopy to characterize the LFV modes for crystalline organic materials composed of chiral molecules. The LF-Raman spectra of racemic and enantiopure crystals exhibit a significant variation, which we attribute to different hydrogen-bond networks in the chiral crystal structures. Across a representative set of amino acids, we observed that when comparing racemic versus enantiopure crystals, the available LFV modes and their relative scattering intensity are strong functions of side chain polarity. Thus, LF-Raman can be used as a method that is complementary to the currently used methods for characterizing crystal chirality due to simpler, faster, and more sensitive measurements, along with the small sample size required, which is limited by the laser-beam diameter in the focus.

  11. Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism.

    PubMed

    Główka, Franciszek; Karaźniewicz, Marta

    2007-08-01

    A stereospecific CE method was elaborated for the quantification of ibuprofen enantiomers and their major phase I metabolites: 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen in plasma and urine. Optimal temperature and pH of BGE were established to obtain complete separation of eight ibuprofen chiral compounds and (+)-S indobufen, applied as an internal standard, during one analytical run. After isolation from biological matrices using SPE on an octadecyl stationary phase, the analytes were separated and resolved up to 10 min in a silica capillary filled with BGE, consisting of heptakis 2,3,6-tri-O-methyl-beta-CD in triethanolamine-phosphate buffer, pH 5.0. Complete enantioseparation of the all analytes confirmed specificity of the method. The calibration curves were linear in the range of 0.1-25.0 mg/L for IBP enantiomers and their chiral metabolites in 0.5 mL of plasma and 1.0-200.0 mg/L in 0.05 mL of urine. Following SPE procedure, recovery of the chiral analytes from the two media was in the ranges of 82-87%, 90-95% and 70-76% for ibuprofen, 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen enantiomers, respectively. The validated method was successfully applied in pharmacokinetic investigations of IBP enantiomers as well as free chiral metabolites in reference to the genetic polymorphism of CYP450 2C isoenzymes.

  12. Enantiospecific Detection of Chiral Nanosamples Using Photoinduced Force

    NASA Astrophysics Data System (ADS)

    Kamandi, Mohammad; Albooyeh, Mohammad; Guclu, Caner; Veysi, Mehdi; Zeng, Jinwei; Wickramasinghe, Kumar; Capolino, Filippo

    2017-12-01

    We propose a high-resolution microscopy technique for enantiospecific detection of chiral samples down to sub-100-nm size based on force measurement. We delve into the differential photoinduced optical force Δ F exerted on an achiral probe in the vicinity of a chiral sample when left and right circularly polarized beams separately excite the sample-probe interactive system. We analytically prove that Δ F is entangled with the enantiomer type of the sample enabling enantiospecific detection of chiral inclusions. Moreover, we demonstrate that Δ F is linearly dependent on both the chiral response of the sample and the electric response of the tip and is inversely related to the quartic power of probe-sample distance. We provide physical insight into the transfer of optical activity from the chiral sample to the achiral tip based on a rigorous analytical approach. We support our theoretical achievements by several numerical examples highlighting the potential application of the derived analytic properties. Lastly, we demonstrate the sensitivity of our method to enantiospecify nanoscale chiral samples with chirality parameter on the order of 0.01 and discuss how the sensitivity of our proposed technique can be further improved.

  13. Coupling mesodomain positional ordering to intra-domain orientational ordering in block copolymer assembly

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory

    Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.

  14. Study of the Mechanism of Irreversible Adsorption of Single-Walled Carbon Nanotubes to Sephacryl Hydrogel

    NASA Astrophysics Data System (ADS)

    Rolsma, Caleb

    As a class of carbon-based nanomaterials, single-walled carbon nanotubes (SWNT) have many structural variations, called chiralities, each with different properties. Many potential applications of SWNT require the properties of a single chirality, but current synthesis methods can only produce single chiralities at prohibitive costs, or mixtures of chiralities at more affordable prices. Post-synthesis chirality separations provide a solution to this problem, and hydrogel separations are one such method. Despite much work in this field, the underlying interactions between SWNT and hydrogel are not fully understood. During separation, large quantities of SWNT are irretrievably lost due to irreversible adsorption to the hydrogel, posing a major problem to separation efficiency, while also offering an interesting scientific problem concerning the interaction of SWNT with hydrogels and surfactants. This thesis explores the problem of irreversible adsorption, offering an explanation for the process from a mechanistic viewpoint, opening new ways for improvement in separation. In brief, this work concludes adsorption follows three pathways, two of which lead to irreversible adsorption, both mediated by the presence of surfactants and limited by characteristics of the hydrogel surface. These findings stand to increase the general understanding of hydrogel SWNT separations, leading to improvements in separation, and bringing the research field closer to the many potential applications of single-chirality SWNT.

  15. Molecular-Level Design of Heterogeneous Chiral Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by formingmore » naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration, and the development of ways to imprint chiral centers on achiral solid surfaces. Chiral catalysis is not only a problem of great importance in its own right, but also the ultimate test of how to control selectivity in catalysis. The time is ripe for fundamental work in heterogeneous chiral catalysis to provide the U.S. with a leadership role in developing the next generation of catalytic processes for medicinal and agrochemical manufacturing. Our team provides the required expertise for a synergistic and comprehensive integration of physical and chemical experimentation with solid state and molecular reactivity theories to solve this problem.« less

  16. a Chiral Tagging Strategy for Determining Absolute Configuration and Enantiomeric Excess by Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Caminati, Walther; Patterson, David; Thomas, Javix; Xu, Yunjie; West, Channing; Pate, Brooks

    2017-06-01

    The introduction of three wave mixing rotational spectroscopy by Patterson, Schnell, and Doyle [1,2] has expanded applications of molecular rotational spectroscopy into the field of chiral analysis. Chiral analysis of a molecule is the quantitative measurement of the relative abundances of all stereoisomers of the molecule and these include both diastereomers (with distinct molecular rotational spectra) and enantiomers (with equivalent molecular rotational spectra). This work adapts a common strategy in chiral analysis of enantiomers to molecular rotational spectroscopy. A "chiral tag" is attached to the molecule of interest by making a weakly bound complex in a pulsed jet expansion. When this tag molecule is enantiopure, it will create diastereomeric complexes with the two enantiomers of the molecule being analyzed and these can be differentiated by molecule rotational spectroscopy. Identifying the structure of this complex, with knowledge of the absolute configuration of the tag, establishes the absolute configuration of the molecule of interest. Furthermore, the diastereomer complex spectra can be used to determine the enantiomeric excess of the sample. The ability to perform chiral analysis will be illustrated by a study of solketal using propylene oxide as the tag. The possibility of using current methods of quantum chemistry to assign a specific structure to the chiral tag complex will be discussed. Finally, chiral tag rotational spectroscopy offers a "gold standard" method for determining the absolute configuration of the molecule through determination of the substitution structure of the complex. When this measurement is possible, rotational spectroscopy can deliver a quantitative three dimensional structure of the molecule with correct stereochemistry as the analysis output. [1] David Patterson, Melanie Schnell, John M. Doyle, Nature 497, 475 (2013). [2] David Patterson, John M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).

  17. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  18. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth† †Electronic supplementary information (ESI) available: Details of density functional theory (DFT) calculations, definition of interfacial formation energy (IFE), cap formation energy and fitting equation, Fig. S1–S4 and Table S1. See DOI: 10.1039/c7sc04714b

    PubMed Central

    Xu, Ziwei; Qiu, Lu

    2018-01-01

    Depending on its specific structure, or so-called chirality, a single-walled carbon nanotube (SWCNT) can be either a conductor or a semiconductor. This feature ensures great potential for building ∼1 nm sized electronics if chirality-selected SWCNTs could be achieved. However, due to the limited understanding of the growth mechanism of SWCNTs, reliable methods for chirality-selected SWCNTs are still pending. Here we present a theoretical model on the chirality assignment and control of SWCNTs during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of pentagons, especially the last (6th) one, during the nucleation stage. Our analysis showed that the chirality of a SWCNT is randomly assigned on a liquid or liquid-like catalyst surface, and two routes of synthesizing chirality-selected SWCNTs, which are verified by recent experimental achievements, are demonstrated. They are (i) by using high melting point crystalline catalysts, such as Ta, W, Re, Os, or their alloys, and (ii) by frequently changing the chirality of SWCNTs during their growth. This study paves the way for achieving chirality-selective SWCNT growth for high performance SWCNT based electronics. PMID:29732090

  19. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    PubMed

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Enantioselective decarboxylative chlorination of β-ketocarboxylic acids

    PubMed Central

    Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji

    2017-01-01

    Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylative chlorination of β-ketocarboxylic acids to obtain α-chloroketones under mild organocatalytic conditions. The present method is also applicable for the enantioselective synthesis of tertiary α-chloroketones. The conversions of the resulting α-chloroketones into α-aminoketones and α-thio-substituted ketones via SN2 reactions at the tertiary carbon centres are also demonstrated. These results constitute an efficient approach for the synthesis of chiral organohalides and are expected to enhance the availability of enantiomerically enriched chiral compounds with heteroatom-substituted chiral stereogenic centres. PMID:28580951

  1. Enantioselective decarboxylative chlorination of β-ketocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Shibatomi, Kazutaka; Kitahara, Kazumasa; Sasaki, Nozomi; Kawasaki, Yohei; Fujisawa, Ikuhide; Iwasa, Seiji

    2017-06-01

    Stereoselective halogenation is a highly useful organic transformation for multistep syntheses because the resulting chiral organohalides can serve as precursors for various medicinally relevant derivatives. Even though decarboxylative halogenation of aliphatic carboxylic acids is a useful and fundamental synthetic method for the preparation of a variety of organohalides, an enantioselective version of this reaction has not been reported. Here we report a highly enantioselective decarboxylative chlorination of β-ketocarboxylic acids to obtain α-chloroketones under mild organocatalytic conditions. The present method is also applicable for the enantioselective synthesis of tertiary α-chloroketones. The conversions of the resulting α-chloroketones into α-aminoketones and α-thio-substituted ketones via SN2 reactions at the tertiary carbon centres are also demonstrated. These results constitute an efficient approach for the synthesis of chiral organohalides and are expected to enhance the availability of enantiomerically enriched chiral compounds with heteroatom-substituted chiral stereogenic centres.

  2. Validation and use of three complementary analytical methods (LC-FLS, LC-MS/MS and ICP-MS) to evaluate the pharmacokinetics, biodistribution and stability of motexafin gadolinium in plasma and tissues.

    PubMed

    Miles, Dale R; Mesfin, Mimi; Mody, Tarak D; Stiles, Mark; Lee, Jean; Fiene, John; Denis, Bernie; Boswell, Garry W

    2006-05-01

    Liquid chromatography-fluorescence (LC-FLS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) methods were developed and validated for the evaluation of motexafin gadolinium (MGd, Xcytrin) pharmacokinetics and biodistribution in plasma and tissues. The LC-FLS method exhibited the greatest sensitivity (0.0057 microg mL(-1)), and was used for pharmacokinetic, biodistribution, and protein binding studies with small sample sizes or low MGd concentrations. The LC-MS/MS method, which exhibited a short run time and excellent selectivity, was used for routine clinical plasma sample analysis. The ICP-MS method, which measured total Gd, was used in conjunction with LC methods to assess MGd stability in plasma. All three methods were validated using human plasma. The LC-FLS method was also validated using plasma, liver and kidneys from mice and rats. All three methods were shown to be accurate, precise and robust for each matrix validated. For three mice, the mean (standard deviation) concentration of MGd in plasma/tissues taken 5 hr after dosing with 23 mg kg(-1) MGd was determined by LC-FLS as follows: plasma (0.025+/-0.002 microg mL(-1)), liver (2.89+/-0.45 microg g(-1)), and kidney (6.09+/-1.05 microg g(-1)). Plasma samples from a subset of patients with brain metastases from extracranial tumors were analyzed using both LC-MS/MS and ICP-MS methods. For a representative patient, > or = 90% of the total Gd in plasma was accounted for as MGd over the first hour post dosing. By 24 hr post dosing, 63% of total Gd was accounted for as MGd, indicating some metabolism of MGd.

  3. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. On possibility of time reversal symmetry violation in neutrino elastic scattering on polarized electron target

    NASA Astrophysics Data System (ADS)

    Sobków, W.; Błaut, A.

    2018-03-01

    In this paper we indicate a possibility of utilizing the elastic scattering of Dirac low-energy (˜ 1 MeV) electron neutrinos (ν _es) on a polarized electron target (PET) in testing the time reversal symmetry violation (TRSV). We consider a scenario in which the incoming ν _e beam is a superposition of left chiral (LC) and right chiral (RC) states. LC ν _e interact mainly by the standard V-A and small admixture of non-standard scalar S_L, pseudoscalar P_L, tensor T_L interactions, while RC ones are only detected by the exotic V + A and S_R, P_R, T_R interactions. As a result of the superposition of the two chiralities the transverse components of ν e spin polarization (T-even and T-odd) may appear. We compute the differential cross section as a function of the recoil electron azimuthal angle and scattered electron energy, and show how the interference terms between standard V-A and exotic S_R, P_R, T_R couplings depend on the various angular correlations among the transversal ν _e spin polarization, the polarization of the electron target, the incoming neutrino momentum and the outgoing electron momentum in the limit of relativistic ν _e. We illustrate how the maximal value of recoil electrons azimuthal asymmetry and the asymmetry axis location of outgoing electrons depend on the azimuthal angle of the transversal component of the ν _e spin polarization, both for the time reversal symmetry conservation (TRSC) and TRSV. Next, we display that the electron energy spectrum and polar angle distribution of the recoil electrons are also sensitive to the interference terms between V-A and S_R, P_R, T_R couplings, proportional to the T-even and T-odd angular correlations among the transversal ν _e polarization, the electron polarization of the target, and the incoming ν _e momentum, respectively. We also discuss the possibility of testing the TRSV by observing the azimuthal asymmetry of outgoing electrons, using the PET without the impact of the transversal ν polarization related to the production process. In this scenario the predicted effects depend only on the interferences between S_R and T_R couplings. Our model-independent analysis is carried out for the flavor ν _e. To make such tests feasible, the intense (polarized) artificial ν _e source, PET and the appropriate detector measuring the directionality of the outgoing electrons and/or the recoil electrons energy with a high resolution have to be identified.

  5. General Catalytic Enantioselective Access to Monohalomethyl and Trifluoromethyl Cyclopropanes.

    PubMed

    Huang, Wei-Sheng; Schlinquer, Claire; Poisson, Thomas; Pannecoucke, Xavier; Charette, André B; Jubault, Philippe

    2018-05-29

    An efficient catalytic enantioselective access to chiral functionalized trifluoromethyl cyclopropanes from two classes of diazo compounds and alpha-trifluoromethyl styrenes using Rh2((S)-BTPCP)4 as a catalyst is described. This method provides an efficient and practical strategy for the synthesis of highly functionalized CF3-cyclopropanes with excellent diastereoselectivities (up to 20:1) and enantioselectivities (up to 99% ee). The depicted methodology represents up to date the most efficient catalytic enantioselective method to access highly decorated chiral CF3-cyclopropanes. Extension to chiral monohalomethyl cyclopropanes in high ee is also reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Incomplete immunity to backscattering in chiral one-way photonic crystals.

    PubMed

    Cheng, Pi-Ju; Tien, Chung-Hao; Chang, Shu-Wei

    2015-04-20

    We show that the propagating modes in a strongly-guided chiral one-way photonic crystal are not backscattering-immune even though they are indeed insensitive to many kinds of scatters. Since these modes are not protected by the nonreciprocity, the backscattering does occur under certain circumstances. We use a perturbative method to derive criteria for the prominent backscattering in such chiral structures. From both our theory and numerical examinations, we find that the amount of backscattering critically depends on the symmetry of scatters. Additionally, for these chiral photonic modes, disturbances at the most intense parts of field profiles do not necessarily lead to the most effective backscattering.

  7. Comparison of various liquid chromatographic methods involving UV and atmospheric pressure chemical ionization mass spectrometric detection for the efficient trace analysis of phenylurea herbicides in various types of water samples.

    PubMed

    van der Heeft, E; Dijkman, E; Baumann, R A; Hogendoorn, E A

    2000-05-19

    The performance of mass spectrometric (MS) detection and UV detection in combination with reversed-phase liquid chromatography without and with the use of coupled column RPLC (LC-LC) has been compared for the trace analysis of phenylurea herbicides in environmental waters. The selected samples of this comparative study originated from an inter-laboratory study. For both detection modes, a 50 mm x 4.6 mm I.D. column and a 100 mm x 4.6 mm I.D. column packed with 3 microm C18 were used as the first (C-1) and second (C-2) column, respectively. Atmospheric pressure chemical ionization mass spectrometry was performed on a magnetic sector instrument. The LC-LC-MS analysis was carried out on-line by means of direct large volume (11.7 ml) injection (LVI). The performance of both on-line (LVI, 4 ml of sample) and off-line LC-LC-UV (244 nm) analysis was investigated. The latter procedure consisted of a solid-phase extraction (SPE) of 250 ml of water sample on a 500 mg C18 cartridge. The comparative study showed that LC-LC-MS is more selective then LC-LC-UV and, in most cases, more sensitive. The LVI-LC-LC-MS approach combines direct quantification and confirmation of most of the analytes down to a level of 0.01 microg/l in water samples in less then 30 min. As regards LC-LC-UV, the off-line method appeared to be a more viable approach in comparison with the on-line procedure. This method allows the screening of phenylurea's in various types of water samples down to a level of at least 0.05 microg/l. On-line analysis with LVI provided marginal sensitivity (limits of detection of about 0.1 microg/l) and selectivity was sometimes less in case of surface water samples. Both the on-line LVI-LC-LC-MS method and the LC-LC-UV method using off-line SPE were validated by analysing a series of real-life reference samples. These samples were part of an inter-laboratory test and contained residues of herbicides ranging from 0.02 to 0.8 microg/l. Beside good correlation between the methods the data agreed very well with the true values of the samples.

  8. Comparison of chiral electrophoretic separation methods for phenethylamines and application on impurity analysis.

    PubMed

    Borst, Claudia; Holzgrabe, Ulrike

    2010-12-15

    A chiral microemulsion electrokinetic chromatography method has been developed for the separation of the enantiomers of the phenethylamines ephedrine, N-methylephedrine, norephedrine, pseudoephedrine, adrenaline (epinephrine), 2-amino-1-phenylethanol, diethylnorephedrine, and 2-(dibutylamino)-1-phenyl-1-propanol, respectively. The separations were achieved using an oil-in-water microemulsion consisting of the oil-component ethyl acetate, the surfactant sodium dodecylsulfate, the cosurfactant 1-butanol, the organic modifier propan-2-ol and 20mM phosphate buffer pH 2.5 as aqueous phase. For enantioseparation sulfated beta-cyclodextrin was added. The method was compared to an already described CZE method, which made use of heptakis(2,3-di-O-diacetyl-6-O-sulfo)-beta-cyclodextrin (HDAS) as chiral selector. Additionally, the developed method was successfully applied to the related substances analysis of noradrenaline, adrenaline, dipivefrine, ephedrine and pseudoephedrine monographed in the European Pharmacopoeia 6. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.

    PubMed

    Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang

    2018-06-20

    Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.

  10. Direct organocatalytic enantioselective functionalization of SiOx surfaces.

    PubMed

    Parkin, John David; Chisholm, Ross; Frost, Aileen B; Bailey, Richard G; Smith, Andrew David; Hähner, Georg

    2018-06-05

    Traditional methods to prepare chiral surfaces involve either the adsorption of a chiral molecule onto an achiral surface, or adsorption of a species that forms a chiral template creating lattices with long range order. To date only limited alternative strategies to prepare chiral surfaces have been studied. In this manuscript a "bottom up" approach is developed that allows the preparation of chiral surfaces by direct enantioselective organocatalysis on a functionalized Si-oxide supported self-assembled monolayer (SAM). The efficient catalytic generation of enantiomerically enriched organic surfaces is achieved using a commercially available homogeneous isothiourea catalyst (HyperBTM) that promotes an enantioselective Michael-lactonization process upon a Si-oxide supported self-assembled monolayer functionalized with a reactive trifluoroenone group. Chiral atomic force microscopy (chi-AFM) is used to probe the enantiomeric enrichment of the organic films by measurement of the force distributions arising from interaction of D- or L-cysteine modified AFM tips and the organic films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Mechanisms for the inversion of chirality: global reaction route mapping of stereochemical pathways in a probable chiral extraterrestrial molecule, 2-aminopropionitrile.

    PubMed

    Kaur, Ramanpreet; Vikas

    2015-02-21

    2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than the dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life.

  12. Chiral discrimination in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  13. Enantioselectivity in Developmental Toxicity of rac-metalaxyl and R-metalaxyl in Zebrafish (Danio rerio) Embryo.

    PubMed

    Zhang, Yinjun; Zhang, Yi; Chen, An; Zhang, Wei; Chen, Hao; Zhang, Quan

    2016-06-01

    Enantioselectivity of chiral pesticides in environmental safety has attracted more and more attention. In this study, we evaluated the enantioselective toxicity of rac-metalaxyl and R-metalaxyl to zebrafish (Danio rerio) embryos through various malformations including pericardial edema, yolk sac edema, crooked body, and short tails. The results showed that there were significant differences in toxicity to zebrafish embryos caused by rac-metalaxyl and R-metalaxyl, and the LC50 s at 96 h are 416.41 (353.91, 499.29) mg · L(-1) and 320.650 (279.80, 363.46) mg · L(-1) , respectively. In order to explore the possible mechanism of the development defects, the genes involved in the hypothalamic-pituitary-gonadal axis (vtg1, vtg2, cyp17, cyp19a, cyp19b) and hypothalamic-pituitary-thyroid axis (dio1, dio2, nis, tg, tpo) were quantified by quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that there were no significant differences in the expression of vtg1, vtg2, cyp17, cyp19a, and cyp19b after exposure to rac-metalaxyl. However, the expression of vtg1, cyp19a, and cyp19b decreased significantly after exposure to R-metalaxyl. And likewise, rac-metalaxyl only caused the upregulation of dio2, while R-metalaxyl suppressed the expression of dio1 and tpo and induced the expression of dio2 and nis. The change of gene expression may cause the enantioselectivity in developmental toxicity in zebrafish embryo. The data provided here will be helpful for us to comprehensively understand the potential ecological risks of the currently used chiral fungicides. Chirality 28:489-494, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Asymmetric Fluorination of α-Branched Cyclohexanones Enabled by a Combination of Chiral Anion Phase-Transfer Catalysis and Enamine Catalysis using Protected Amino Acids

    PubMed Central

    2015-01-01

    We report a study involving the successful merger of two separate chiral catalytic cycles: a chiral anion phase-transfer catalysis cycle to activate Selectfluor and an enamine activation cycle, using a protected amino acid as organocatalyst. We have demonstrated the viability of this approach with the direct asymmetric fluorination of α-substituted cyclohexanones to generate quaternary fluorine-containing stereocenters. With these two chiral catalytic cycles operating together in a matched sense, high enantioselectivites can be achieved, and we envisage that this dual catalysis method has the potential to be more broadly applicable, given the breadth of enamine catalysis. It also represents a rare example of chiral enamine catalysis operating successfully on α-branched ketones, substrates commonly inert to this activation mode. PMID:24684209

  15. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Bin; Zheng, Sheng-Cai; Hu, Yu-Mei; Tan, Bin

    2017-05-01

    The axially chiral arylquinazolinone acts as a privileged structural scaffold, which is present in a large number of natural products and biologically active compounds as well as in chiral ligands. However, a direct catalytic enantioselective approach to access optically pure arylquinazolinones has been underexplored. Here we show a general and efficient approach to access enantiomerically pure arylquinazolinones in one-pot fashion catalysed by chiral phosphoric acids. A variety of axially chiral arylquinazolinones were obtained in high yields with good to excellent enantioselectivities under mild condition. Furthermore, we disclosed a method for atroposelective synthesis of alkyl-substituted arylquinazolinones involving Brønsted acid-catalysed carbon-carbon bond cleavage strategy. Finally, the asymmetric total synthesis of eupolyphagin bearing a cyclic arylquinazolinone skeleton was accomplished with an overall yield of 32% in six steps by utilizing the aforementioned methodology.

  16. Chiral Analysis by Tandem Mass Spectrometry Using the Kinetic Method, by Polarimetry, and by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Fedick, Patrick W.; Bain, Ryan M.; Bain, Kinsey; Cooks, R. Graham

    2017-01-01

    The goal of this laboratory exercise was for students to understand the concept of chirality and how enantiomeric excess (ee) is experimentally determined using the analysis of ibuprofen as an example. Students determined the enantiomeric excess of the analyte by three different instrumental methods: mass spectrometry, nuclear magnetic resonance…

  17. Minimization of Poisson’s ratio in anti-tetra-chiral two-phase structure

    NASA Astrophysics Data System (ADS)

    Idczak, E.; Strek, T.

    2017-10-01

    One of the most important goal of modern material science is designing structures which exhibit appropriate properties. These properties can be obtained by optimization methods which often use numerical calculations e.g. finite element method (FEM). This paper shows the results of topological optimization which is used to obtain the greatest possible negative Poisson’s ratio of the two-phase composite. The shape is anti-tetra-chiral two-dimensional unit cell of the whole lattice structure which has negative Poisson’s ratio when it is built of one solid material. Two phase used in optimization are two solid materials with positive Poisson’s ratio and Young’s modulus. Distribution of reinforcement hard material inside soft matrix material in anti-tetra-chiral domain influenced mechanical properties of structure. The calculations shows that the resultant structure has negative Poisson’s ratio even eight times smaller than homogenous anti-tetra chiral structure made of classic one material. In the analysis FEM is connected with algorithm Method of Moving Asymptote (MMA). The results of materials’ properties parameters are described and calculated by means of shape interpolation scheme - Solid Isotropic Material with Penalization (SIMP) method.

  18. Double-layered liquid crystal light shutter for control of absorption and scattering of the light incident to a transparent display device

    NASA Astrophysics Data System (ADS)

    Huh, Jae-Won; Yu, Byeong-Hun; Shin, Dong-Myung; Yoon, Tae-Hoon

    2015-03-01

    Recently, a transparent display has got much attention as one of the next generation display devices. Especially, active studies on a transparent display using organic light-emitting diodes (OLEDs) are in progress. However, since it is not possible to obtain black color using a transparent OLED, it suffers from poor visibility. This inevitable problem can be solved by using a light shutter. Light shutter technology can be divided into two types; light absorption and scattering. However, a light shutter based on light absorption cannot block the background image perfectly and a light shutter based on light scattering cannot provide black color. In this work we demonstrate a light shutter using two liquid crystal (LC) layers, a light absorption layer and a light scattering layer. To realize a light absorption layer and a light scattering layer, we use the planar state of a dye-doped chiral nematic LC (CNLC) cell and the focal-conic state of a long-pitch CNLC cell, respectively. The proposed light shutter device can block the background image perfectly and show black color. We expect that the proposed light shutter can increase the visibility of a transparent display.

  19. Nuclear electromagnetic charge and current operators in Chiral EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girlanda, Luca; Marcucci, Laura Elisa; Pastore, Saori

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  20. Chiral separation of the β2-sympathomimetic fenoterol by HPLC and capillary zone electrophoresis for pharmacokinetic studies.

    PubMed

    Ullrich, Thomas; Wesenberg, Dirk; Bleuel, Corinna; Krauss, Gerd-Joachim; Schmid, Martin G; Weiss, Michael; Gübitz, Gerald

    2010-10-01

    The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Validation of a Chiral Liquid Chromatographic Method for the Degradation Behavior of Flumequine Enantiomers in Mariculture Pond Water.

    PubMed

    Wang, Yan-Fei; Gao, Xiao-Feng; Jin, Huo-Xi; Wang, Yang-Guang; Wu, Wei-Jian; Ouyang, Xiao-Kun

    2016-09-01

    In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD-H column, with n-hexane-ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high-performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649-655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Development of a chiral micellar electrokinetic chromatography-tandem mass spectrometry assay for simultaneous analysis of warfarin and hydroxywarfarin metabolites: application to the analysis of patients serum samples.

    PubMed

    Wang, Xiaochun; Hou, Jingguo; Jann, Michael; Hon, Yuen Yi; Shamsi, Shahab A

    2013-01-04

    The enantioseparation of warfarin (WAR) along with the five positional and optical isomers is challenging because of the difficulty to simultaneously separate and quantitate these chiral compounds. Currently, no effective chiral CE-MS methods exist for the simultaneous enantioseparation of WAR and all its hydroxylated metabolites in a single run. Polymeric surfactants (aka. molecular micelles) are particularly compatible with micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) because they have a wider elution window for enantioseparation and do not interfere with the MS detection of chiral drugs. Using polysodium N-undecenoyl-L,L-leucylvalinate (poly-L,L-SULV) as a chiral pseudophase in MEKC-MS baseline separation of WAR, its five metabolites along with the internal standard was obtained in 45 min. This is in comparison to 100 min required for separation of the same mixture with packed column CEC-MS using a vancomycin chiral stationary phase. Serum samples were extracted with mixed-mode anion-exchange (MAX) cartridge with recoveries of greater than 85.2% for all WAR and hydroxywarfarin (OH-WAR) metabolites. Utilizing the tandem MS and multiple reaction monitoring mode, the MEKC-MS/MS method was used to simultaneously generate calibration curves over a concentration range from 2 to 5000 ng/mL for R- and S-warfarin, 5 to 1000 ng/mL for R- and S-6-, 7-, 8- and 10-OH-WAR and 10 to 1000 ng/mL for R and S-4'-OH-WAR. For the first time, the limits of detection and quantitation for most WAR metabolites by MEKC-MS/MS were found to be at levels of 2 and 5 ng/mL, respectively. The method was successfully applied for the first time to analyze WAR and its metabolites in plasma samples of 55 patients undergoing WAR therapy, demonstrating the potential of chiral MEKC-MS/MS method to accurately quantitate with high sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    PubMed

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

  4. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances.

    PubMed

    Li, Dongmei; Guan, Tian; He, Yonghong; Liu, Fang; Yang, Anping; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-07-01

    A new chiral sensor based on weak measurement to accurately measure the optical rotation (OR) has been developed for the estimation of a trace amount of chiral molecule. With the principle of optical weak measurement in frequency domain, the central wavelength shift of output spectra is quantitatively relative to the angle of preselected polarization. Hence, a chiral molecule (e.g., L-amino acid, or D-amino acid) can be enantioselectively determined by modifying the preselection angle with the OR, which will cause the rotation of a polarization plane. The concentration of the chiral sample, corresponding to its optical activity, is quantitatively analyzed with the central wavelength shift of output spectra, which can be collected in real time. Immune to the refractive index change, the proposed chiral sensor is valid in complicated measuring circumstance. The detections of Proline enantiomer concentration in different solvents were implemented. The results demonstrated that weak measurement acted as a reliable method to chiral recognition of Proline enantiomers in diverse circumstance with the merits of high precision and good robustness. In addition, this real-time monitoring approach plays a crucial part in asymmetric synthesis and biological systems. Copyright © 2018. Published by Elsevier B.V.

  5. Staggered heavy baryon chiral perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(m{sub {pi}}{supmore » 3}), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a{sup 2}). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.« less

  6. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  7. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA Epigenetic Patterns

    PubMed Central

    Ma, Yue; Fu, Hualin; Zhang, Chunlei; Cheng, Shangli; Gao, Jie; Wang, Zhen; Jin, Weilin; Conde, João; Cui, Daxiang

    2016-01-01

    Epigenetic modifications sit ‘on top of’ the genome and influence DNA transcription, which can force a significant impact on cellular behavior and phenotype and, consequently human development and disease. Conventional methods for evaluating epigenetic modifications have inherent limitations and, hence, new methods based on nanoscale devices are needed. Here, we found that antioxidant (glutathione) chiral gold nanoclusters induce a decrease of 5-hydroxymethylcytosine (5hmC), which is an important epigenetic marker that associates with gene transcription regulation. This epigenetic change was triggered partially through ROS activation and oxidation generated by the treatment with glutathione chiral gold nanoclusters, which may inhibit the activity of TET proteins catalyzing the conversion of 5-methylcytosine (5mC) to 5hmC. In addition, these chiral gold nanoclusters can downregulate TET1 and TET2 mRNA expression. Alteration of TET-5hmC signaling will then affect several downstream targets and be involved in many aspects of cell behavior. We demonstrate for the first time that antioxidant-based chiral gold nanomaterials have a direct effect on epigenetic process of TET-5hmC pathways and reveal critical DNA demethylation patterns. PMID:27633378

  8. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  9. Validation of a two-dimensional liquid chromatography method for quality control testing of pharmaceutical materials.

    PubMed

    Yang, Samuel H; Wang, Jenny; Zhang, Kelly

    2017-04-07

    Despite the advantages of 2D-LC, there is currently little to no work in demonstrating the suitability of these 2D-LC methods for use in a quality control (QC) environment for good manufacturing practice (GMP) tests. This lack of information becomes more critical as the availability of commercial 2D-LC instrumentation has significantly increased, and more testing facilities begin to acquire these 2D-LC capabilities. It is increasingly important that the transferability of developed 2D-LC methods be assessed in terms of reproducibility, robustness and performance across different laboratories worldwide. The work presented here focuses on the evaluation of a heart-cutting 2D-LC method used for the analysis of a pharmaceutical material, where a key, co-eluting impurity in the first dimension ( 1 D) is resolved from the main peak and analyzed in the second dimension ( 2 D). A design-of-experiments (DOE) approach was taken in the collection of the data, and the results were then modeled in order to evaluate method robustness using statistical modeling software. This quality by design (QBD) approach gives a deeper understanding of the impact of these 2D-LC critical method attributes (CMAs) and how they affect overall method performance. Although there are multiple parameters that may be critical from method development point of view, a special focus of this work is devoted towards evaluation of unique 2D-LC critical method attributes from method validation perspective that transcend conventional method development and validation. The 2D-LC method attributes are evaluated for their recovery, peak shape, and resolution of the two co-eluting compounds in question on the 2 D. In the method, linearity, accuracy, precision, repeatability, and sensitivity are assessed along with day-to-day, analyst-to-analyst, and lab-to-lab (instrument-to-instrument) assessments. The results of this validation study demonstrate that the 2D-LC method is accurate, sensitive, and robust and is ultimately suitable for QC testing with good method transferability. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Conductance of AFM Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Maiti, Amitesh; Anatram, M. P.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the electrical conductivity of carbon nanotubes upon deformation by atomic force microscopy (AFM). The density of states and conductance were computed using four orbital tight-binding method with various parameterizations. Different chiralities develop bandgap that varies with chirality.

  11. Role of Chirality in Drugs… An Overview

    PubMed

    Alkadi, Hourieh; Jbeily, Rajwa

    2017-03-29

    Stereochemistry has been occupied a great role in manufacture and development of pharmaceuti-cals. Chiral properties play an important role in the determination of pharmacological actions of the drug. In recent years, there is a considerable interest in chiral separation to isolate and examine both enantiomers. This article provides an overview about the stereochemistry and its role in drugs, and also, offers approved isolation methods for enantiomeric pairs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Asymmetric Iridium Catalyzed C-C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition

    PubMed Central

    Shin, Inji; Krische, Michael J.

    2015-01-01

    Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C-H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions. PMID:26187028

  13. Method for the synthesis of chiral allylic alcohols utilizing selone based chiral derivatizing agents

    DOEpatents

    Silks, III, Louis A.

    2002-01-01

    Molecules containing a chiral 1,2-diol unit are synthesized from reactions between aldehydes and N-acyl selones. A chilled N-acyl selone is reacted with a Lewis acid such as TiCl.sub.4 and mixed with a tertiary amine such as diisopropylethylamine to generate an enolate solution. Upon further chilling of the enolate solution a desired aldehyde is added and after an acceptable reaction period a quencher is introduced and the product isolated.

  14. A rapid and efficient one-pot method for the reduction of N-protected α-amino acids to chiral α-amino aldehydes using CDI/DIBAL-H.

    PubMed

    Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf

    2015-11-14

    N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.

  15. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  16. Chiral Luttinger liquids and a generalized Luttinger's theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; Zaletel, Michael; Moore, Joel

    2014-03-01

    We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.

  17. Interactions between pyrazole derived enantiomers and Chiralcel OJ: Prediction of enantiomer absolute configurations and elution order by molecular dynamics simulations.

    PubMed

    Hu, Guixiang; Huang, Meilan; Luo, Chengcai; Wang, Qi; Zou, Jian-Wei

    2016-05-01

    The separation of enantiomers and confirmation of their absolute configurations is significant in the development of chiral drugs. The interactions between the enantiomers of chiral pyrazole derivative and polysaccharide-based chiral stationary phase cellulose tris(4-methylbenzoate) (Chiralcel OJ) in seven solvents and under different temperature were studied using molecular dynamics simulations. The results show that solvent effect has remarkable influence on the interactions. Structure analysis discloses that the different interactions between two isomers and chiral stationary phase are dependent on the nature of solvents, which may invert the elution order. The computational method in the present study can be used to predict the elution order and the absolute configurations of enantiomers in HPLC separations and therefore would be valuable in development of chiral drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Enantioselective remote meta-C-H arylation and alkylation via a chiral transient mediator.

    PubMed

    Shi, Hang; Herron, Alastair N; Shao, Ying; Shao, Qian; Yu, Jin-Quan

    2018-06-18

    Enantioselective carbon-hydrogen (C-H) activation reactions by asymmetric metallation could provide new routes for the construction of chiral molecules 1,2 . However, current methods are typically limited to the formation of five- or six-membered metallacycles, thereby preventing the asymmetric functionalization of C-H bonds at positions remote to existing functional groups. Here we report enantioselective remote C-H activation using a catalytic amount of a chiral norbornene as a transient mediator, which relays initial ortho-C-H activation to the meta position. This was used in the enantioselective meta-C-H arylation of benzylamines, as well as the arylation and alkylation of homobenzylamines. The enantioselectivities obtained using the chiral transient mediator are comparable across different classes of substrates containing either neutral σ-donor or anionic coordinating groups. This relay strategy could provide an alternative means to remote chiral induction, one of the most challenging problems in asymmetric catalysis 3,4 .

  19. Stereospecific ring expansion from orthocyclophanes with central chirality to metacyclophanes with planar chirality.

    PubMed

    Ishida, Naoki; Sawano, Shota; Murakami, Masahiro

    2014-01-01

    Carbon-carbon bonds constitute the major framework of organic molecules and carbon-hydrogen bonds are abundant in their peripheries. Such nonpolar σ-bonds are thermodynamically stable and kinetically inert in general. Nonetheless, selective activation of those ubiquitous bonds may offer a straightforward method to construct and/or functionalize organic skeletons. Herein we describe ring expansion from orthocyclophanes to metacyclophanes occurring upon sequential action of light and a metal catalyst. Formally, specific non-strained carbon-hydrogen and carbon-carbon bonds are cleaved and exchanged without elimination of any leaving groups. Notably, the product is energetically uphill from the starting material, but the endergonic photocyclization step makes it possible to drive the transformation forward. The ring expansion is extended to the stereospecific synthesis of metacyclophanes possessing planar chirality, during which central chirality on a tertiary carbon is transferred to planar chirality.

  20. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  1. Disappearing Enantiomorphs: Single Handedness in Racemate Crystals.

    PubMed

    Parschau, Manfred; Ernst, Karl-Heinz

    2015-11-23

    Although crystallization is the most important method for the separation of enantiomers of chiral molecules in the chemical industry, the chiral recognition involved in this process is poorly understood at the molecular level. We report on the initial steps in the formation of layered racemate crystals from a racemic mixture, as observed by STM at submolecular resolution. Grown on a copper single-crystal surface, the chiral hydrocarbon heptahelicene formed chiral racemic lattice structures within the first layer. In the second layer, enantiomerically pure domains were observed, underneath which the first layer contained exclusively the other enantiomer. Hence, the system changed from a 2D racemate into a 3D racemate with enantiomerically pure layers after exceeding monolayer-saturation coverage. A chiral bias in form of a small enantiomeric excess suppressed the crystallization of one double-layer enantiomorph so that the pure minor enantiomer crystallized only in the second layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain

    NASA Astrophysics Data System (ADS)

    Li, Dongmei; Guan, Tian; Liu, Fang; Yang, Anping; He, Yonghong; He, Qinghua; Shen, Zhiyuan; Xin, Meiguo

    2018-05-01

    A transmission optical rotation detection scheme based on a weak measurement was proposed for the chirality detection of enantiomers. In this transmission weak measurement system in the frequency domain, the optical activity of the chiral liquid sample was estimated with the central wavelength shift, by modifying the preselected polarization state with the optical rotation (OR). The central wavelength shift of output spectra is sensitive to the OR angle but immune to the interference of the refractive index change caused by measuring circumstances. Two isomers of chiral amino acid acquired opposite responses with this system, and a resolution of 2.17 × 10-9 mol/ml for Proline detection could be obtained. Such a resolution is about 2 orders of magnitude higher than that of common methods, which shows a high sensitivity. This proposed weak measurement scenario suggested an approach to polarimetry and provided a way to accurately assess molecular chirality.

  3. Two Synthetic Methods for Preparation of Chiral Stationary Phases Using Crystalline Degradation Products of Vancomycin: Column Performance for Enantioseparation of Acidic and Basic Drugs.

    PubMed

    Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba

    2017-07-01

    Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.

  4. Assessment of chemically separated carbon nanotubes for nanoelectronics.

    PubMed

    Zhang, Li; Zaric, Sasa; Tu, Xiaomin; Wang, Xinran; Zhao, Wei; Dai, Hongjie

    2008-02-27

    It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.

  5. Influence of optical activity on rogue waves propagating in chiral optical fibers.

    PubMed

    Temgoua, D D Estelle; Kofane, T C

    2016-06-01

    We derive the nonlinear Schrödinger (NLS) equation in chiral optical fiber with right- and left-hand nonlinear polarization. We use the similarity transformation to reduce the generalized chiral NLS equation to the higher-order integrable Hirota equation. We present the first- and second-order rational solutions of the chiral NLS equation with variable and constant coefficients, based on the modified Darboux transformation method. For some specific set of parameters, the features of chiral optical rogue waves are analyzed from analytical results, showing the influence of optical activity on waves. We also generate the exact solutions of the two-component coupled nonlinear Schrödinger equations, which describe optical activity effects on the propagation of rogue waves, and their properties in linear and nonlinear coupling cases are investigated. The condition of modulation instability of the background reveals the existence of vector rogue waves and the number of stable and unstable branches. Controllability of chiral optical rogue waves is examined by numerical simulations and may bring potential applications in optical fibers and in many other physical systems.

  6. Hybridation of different chiral separation techniques with ICP-MS detection for the separation and determination of selenomethionine enantiomers: chiral speciation of selenized yeast.

    PubMed

    Méndez, S P; González, E B; Sanz-Medel, A

    2001-05-01

    Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast. Copyright 2001 John Wiley & Sons, Ltd.

  7. Elucidation of the Chromatographic Enantiomer Elution Order Through Computational Studies.

    PubMed

    Sardella, Roccaldo; Ianni, Federica; Macchiarulo, Antonio; Pucciarini, Lucia; Carotti, Andrea; Natalini, Benedetto

    2018-01-01

    During the last twenty years, the interest towards the development of chiral compound has exponentially been increased. Indeed, the set-up of suitable asymmetric enantioselective synthesis protocols is currently one of the focuses of many pharmaceutical research projects. In this scenario, chiral HPLC separations have gained great importance as well, both for analytical- and preparative-scale applications, the latter devoted to the quantitative isolation of enantiopure compounds. Molecular modelling and quantum chemistry methods can be fruitfully applied to solve chirality related problems especially when enantiomerically pure reference standards are missing. In this framework, with the aim to explain the molecular basis of the enantioselective retention, we performed computational studies to rationalize the enantiomer elution order with both low- and high-molecular weight chiral selectors. Semi-empirical and quantum mechanical computational procedures were successfully applied in the domains of chiral ligand-exchange and chiral ion-exchange chromatography, as well as in studies dealing with the use of polysaccharide-based enantioresolving materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Mechanisms for the inversion of chirality: Global reaction route mapping of stereochemical pathways in a probable chiral extraterrestrial molecule, 2-aminopropionitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Ramanpreet; Vikas, E-mail: qlabspu@pu.ac.in, E-mail: qlabspu@yahoo.com

    2015-02-21

    2-Aminopropionitrile (APN), a probable candidate as a chiral astrophysical molecule, is a precursor to amino-acid alanine. Stereochemical pathways in 2-APN are explored using Global Reaction Route Mapping (GRRM) method employing high-level quantum-mechanical computations. Besides predicting the conventional mechanism for chiral inversion that proceeds through an achiral intermediate, a counterintuitive flipping mechanism is revealed for 2-APN through chiral intermediates explored using the GRRM. The feasibility of the proposed stereochemical pathways, in terms of the Gibbs free-energy change, is analyzed at the temperature conditions akin to the interstellar medium. Notably, the stereoinversion in 2-APN is observed to be more feasible than themore » dissociation of 2-APN and intermediates involved along the stereochemical pathways, and the flipping barrier is observed to be as low as 3.68 kJ/mol along one of the pathways. The pathways proposed for the inversion of chirality in 2-APN may provide significant insight into the extraterrestrial origin of life.« less

  9. A Liquid Chromatographic-Mass Spectrometric (LC-MS) Method for the Analysis of the Bis-pyridinium Oxime ICD-585 in Plasma: Application in a Guinea Pig Model

    DTIC Science & Technology

    2010-01-01

    Chrom LC –MS...Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE A liquid chromatographic–mass spectrometric ( LC –MS) method for the analysis of the 5a...Journal of Chromatography B journa l homepage: www.e lsev ier .com/ locate /chromb A liquid chromatographic–mass spectrometric ( LC –MS) method for

  10. Stability study of the anticonvulsant enaminone (E118) using HPLC and LC-MS.

    PubMed

    Abdel-Hamid, Mohammed E; Edafiogho, Ivan O; Hamza, Huda M

    2002-01-01

    The stability of the new chemical synthetic enaminone derivative (E118) was investigated using a stability-indicating high-performance liquid chromatography (HPLC) procedure. The examined samples were analyzed using a chiral HSA column and a mobile phase (pH 7.5) containing n-octanoic acid (5 mM), isopropyl alcohol and 100 mM disodium hydrogen phosphate solution (1:9 v/v) at a flow rate of 1 ml min(-1). The developed method was specific, accurate and reproducible. The HPLC chromatograms exhibited well-resolved peaks of E118 and the degradation products at retention times <5 min. The stability of E118 was performed in 0.1 M hydrochloric acid, 0.1 M sodium hydroxide, water/ethanol (1:1) and phosphate buffer (pH approximately 7.5) solutions. E118 was found to undergo fast hydrolysis in 0.1 M hydrochloric acid solution. The decomposition of E118 followed first order kinetics under the experimental conditions. The results confirmed that protonation of the enaminone system in the molecule enhanced the hydrolysis of E118 at degradation rate constant of 0.049 min(-1) and degradation half-life of 14.1 min at 25 degrees C. However, E118 was significantly stable in 0.1 M sodium hydroxide, physiological phosphate buffer (pH 7.5) and ethanol/water (1:1) solutions. The degradation rate constants and degradation half-lives were in the ranges 0.0023-0.0086 h(-1) and 80.6-150.6 h, respectively. Analysis of the acid-induced degraded solution of E118 by liquid chromatography-mass spectrometry (LC-MS) revealed at least two degradation products of E118 at m/z 213.1 and 113.1, respectively.

  11. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    PubMed

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  12. Development of simulation approach for two-dimensional chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface

    NASA Astrophysics Data System (ADS)

    Qin, Yuan; Yao, Man; Hao, Ce; Wan, Lijun; Wang, Yunhe; Chen, Ting; Wang, Dong; Wang, Xudong; Chen, Yonggang

    2017-09-01

    Two-dimensional (2D) chiral self-assembly system of 5-(benzyloxy)-isophthalic acid derivative/(S)-(+)-2-octanol/highly oriented pyrolytic graphite was studied. A combined density functional theory/molecular mechanics/molecular dynamics (DFT/MM/MD) approach for system of 2D chiral molecular self-assembly driven by hydrogen bond at the liquid/solid interface was thus proposed. Structural models of the chiral assembly were built on the basis of scanning tunneling microscopy (STM) images and simplified for DFT geometry optimization. Merck Molecular Force Field (MMFF) was singled out as the suitable force field by comparing the optimized configurations of MM and DFT. MM and MD simulations for hexagonal unit model which better represented the 2D assemble network were then preformed with MMFF. The adhesion energy, evolution of self-assembly process and characteristic parameters of hydrogen bond were obtained and analyzed. According to the above simulation, the stabilities of the clockwise and counterclockwise enantiomorphous networks were evaluated. The calculational results were supported by STM observations and the feasibility of the simulation method was confirmed by two other systems in the presence of chiral co-absorbers (R)-(-)-2-octanol and achiral co-absorbers 1-octanol. This theoretical simulation method assesses the stability trend of 2D enantiomorphous assemblies with atomic scale and can be applied to the similar hydrogen bond driven 2D chirality of molecular self-assembly system.

  13. [Topological models of retention index of thin-layer chromatogram for chiral organic acids].

    PubMed

    Li, Mingjian; Wang, Yuxiao; Feng, Hui; Feng, Changjun

    2014-03-01

    On the basis of Kier's molecular connectivity indices and conjugated matrix, novel molecular connectivity indices ((m) G(t)(v)) were defined and calculated for 18 chiral hydroxyl acids and amino acids. The chiral connectivity indices ((m)C(t)(v)) were introduced by extending (m)G(t)(v): (m)C(t)(v) = (m)G(t)(v) x w(j), where w(j) is the chiral index. The quantitative structure-retention index relationship (QSRR) between the retention index (R(M)) of thin-layer chromatogram for the chiral organic acids and (m)C(t)(v) was studied by multivariate statistical regression. By leaps-and-bounds regression analysis, the best four-parameter QSRR model was set up, and the traditional correlation coefficient (R2) and the cross-validation correlation coefficient (Q2) of leave-one-out (LOO) were 0.973 and 0.950, respectively. The results demonstrated that the model was highly reliable and had good predictive ability from the point of view of statistics. From the four parameters (0C(p)(v), 2C(p)(v), C(ch),(v), 5C(p)(v)) of the model, it is known that the dominant influence factors of the retention index were the molecular structure characteristics of two-dimensional and the space factors: the chiral characteristics, the flexibility and the puckered degree of molecules for the chiral organic acids. The results showed that the new parameter mC(t)(v) had good rationality and efficiency for the retention indices of the chiral organic acids. Therefore, an effective method was provided to predict the retention indices of the chiral organic acids.

  14. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    PubMed Central

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  15. Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.

    2016-11-01

    Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.*

  16. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    PubMed Central

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  17. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGES

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  18. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth.

    PubMed

    Zhang, Mengling; Hu, Lulu; Wang, Huibo; Song, Yuxiang; Liu, Yang; Li, Hao; Shao, Mingwang; Huang, Hui; Kang, Zhenhui

    2018-06-27

    Chiral compounds/materials have important effects on the growth of plants. Chiral carbon dots (CDs), as an emerging chiral carbon nanomaterial, have great potential in bio-application and bio-nanotechnology. Herein, we report a hydrothermal method to synthesize chiral CDs from cysteine (cys) and citric acid. These chiral CDs were further demonstrated to have systemic effects on the growth of mung bean plants, in which case both l- and d-CDs can promote the growth of the root in mung bean plants, stem length of mung bean sprouts and water absorption of bean seeds. The elongation of mung bean sprouts presented an increasing trend with the treatment of chiral CDs of increasing concentration (below 500 μg mL-1). Furthermore, in the optimal concentration (100 μg mL-1), the l-CDs can improve root vigor and the activity of the Rubisco enzyme of bean sprouts by 8.4% and 20.5%, while the d-CDs increased by 28.9% and 67.5%. Due to more superior properties in improving root vigor and the activity of the Rubisco enzyme of mung bean sprouts, d-CDs are able to enhance photosynthesis better and accumulate more carbohydrate in mung bean plants.

  19. High quality bergamot oil from Greece: Chemical analysis using chiral gas chromatography and larvicidal activity against the West Nile virus vector.

    PubMed

    Melliou, Eleni; Eleni, Melliou; Michaelakis, Antonios; Antonios, Michaelakis; Koliopoulos, George; George, Koliopoulos; Skaltsounis, Alexios-Leandros; Alexios-Leandros, Skaltsounis; Magiatis, Prokopios; Prokopios, Magiatis

    2009-02-18

    Tauhe essential oils contained in the rind of the fruit and the leaves of bergamot from Greece (Citrus aurantium subsp. bergamia) were studied. The bergamot trees in question were cultivated on Kefalonia Island. The plant material (leaves and fruits in different stages of maturity) was collected between December and March for a two year period. The rind of the fruit was separated manually and the essential oil was obtained either by cold pressing or by hydrodistillation. The maximum yield calculated on a wet weight of fresh rinds basis was 1.8%. The essential oils were first analyzed by GC-MS with a DB-5 column and then with a beta-Dex enantiomeric column. The main constituent of the cold pressed essential oil of the rind was (-)-linalyl acetate with optical purity >99.9%. Other important constituents were (-)-linalool, (+)-limonene and gamma-terpinene. The best value of linalool/linalyl acetate ratio was 0.38 and the maximum sum of linalool+linalyl acetate was found to be 55.8%. The larvacidal activities of the obtained essential oils and the compounds (+/-)-linalyl acetate, (+/-)-linalool and (-)-linalool were evaluated against larvae of the mosquito species Culex pipiens (Diptera: Culicidae), the West Nile virus vector, under laboratory conditions. The cold pressed essential oil showed an LC(50) value of 58 mg/L, while the LC(50) value of the corresponding essential oil obtained by hydrostillation was 106 mg/L. The essential oil of the leaves presented similar larvicidal toxicity with the cold pressed oil of the rind (LC(50)=68 mg/L).

  20. Chirality sensing with stereodynamic biphenolate zinc complexes.

    PubMed

    Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian

    2015-10-01

    Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.

  1. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC

    PubMed Central

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-01-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408

  2. ANALYSIS OF THE ENANTIOMERS OF CHIRAL PESTICIDES AND OTHER POLLUTANTS IN ENVIRONMENTAL SAMPLES BY CAPILLARY ELECTROPHORESIS

    EPA Science Inventory

    The generic method described here involves typical capillary electrophoresis (CE) techniques, with the addition of cyclodextrin chiral selectors to the electrolyte for enantiomer separation and also, in the case of neutral analytes, the further addition of a micelle forming comp...

  3. Homochiral drugs: a demanding tendency of the pharmaceutical industry.

    PubMed

    Núñez, María C; García-Rubiño, M Eugenia; Conejo-García, Ana; Cruz-López, Olga; Kimatrai, María; Gallo, Miguel A; Espinosa, Antonio; Campos, Joaquín M

    2009-01-01

    The issue of drug chirality is now a major theme in the design and development of new drugs, underpinned by a new understanding of the role of molecular recognition in many pharmacologically relevant events. In general, three methods are utilized for the production of a chiral drug: the chiral pool, separation of racemates, and asymmetric synthesis. Although the use of chiral drugs predates modern medicine, only since the 1980's has there been a significant increase in the development of chiral pharmaceutical drugs. An important commercial reason is that as patents on racemic drugs expire, pharmaceutical companies have the opportunity to extend patent coverage through development of the chiral switch enantiomers with desired bioactivity. Stimulated by the new policy statements issued by the regulatory agencies, the pharmaceutical industry has systematically begun to develop chiral drugs in enantiometrically enriched pure forms. This new trend has caused a tremendous change in the industrial small- and large-scale production to enantiomerically pure drugs, leading to the revisiting and updating of old technologies, and to the development of new methodologies of their large-scale preparation (as the use of stereoselective syntheses and biocatalyzed reactions). The final decision whether a given chiral drug will be marketed in an enantiomerically pure form, or as a racemic mixture of both enantiomers, will be made weighing all the medical, financial and social proficiencies of one or other form. The kinetic, pharmacological and toxicological properties of individual enantiomers need to be characterized, independently of a final decision.

  4. Evaluation of Normalization Methods to Pave the Way Towards Large-Scale LC-MS-Based Metabolomics Profiling Experiments

    PubMed Central

    Valkenborg, Dirk; Baggerman, Geert; Vanaerschot, Manu; Witters, Erwin; Dujardin, Jean-Claude; Burzykowski, Tomasz; Berg, Maya

    2013-01-01

    Abstract Combining liquid chromatography-mass spectrometry (LC-MS)-based metabolomics experiments that were collected over a long period of time remains problematic due to systematic variability between LC-MS measurements. Until now, most normalization methods for LC-MS data are model-driven, based on internal standards or intermediate quality control runs, where an external model is extrapolated to the dataset of interest. In the first part of this article, we evaluate several existing data-driven normalization approaches on LC-MS metabolomics experiments, which do not require the use of internal standards. According to variability measures, each normalization method performs relatively well, showing that the use of any normalization method will greatly improve data-analysis originating from multiple experimental runs. In the second part, we apply cyclic-Loess normalization to a Leishmania sample. This normalization method allows the removal of systematic variability between two measurement blocks over time and maintains the differential metabolites. In conclusion, normalization allows for pooling datasets from different measurement blocks over time and increases the statistical power of the analysis, hence paving the way to increase the scale of LC-MS metabolomics experiments. From our investigation, we recommend data-driven normalization methods over model-driven normalization methods, if only a few internal standards were used. Moreover, data-driven normalization methods are the best option to normalize datasets from untargeted LC-MS experiments. PMID:23808607

  5. Nano-flow vs standard-flow: Which is the more suitable LC/MS method for quantifying hepcidin-25 in human serum in routine clinical settings?

    PubMed

    Vialaret, Jérôme; Picas, Alexia; Delaby, Constance; Bros, Pauline; Lehmann, Sylvain; Hirtz, Christophe

    2018-06-01

    Hepcidin-25 peptide is a biomarker which is known to have considerable clinical potential for diagnosing iron-related diseases. Developing analytical methods for the absolute quantification of hepcidin is still a real challenge, however, due to the sensitivity, specificity and reproducibility issues involved. In this study, we compare and discuss two MS-based assays for quantifying hepcidin, which differ only in terms of the type of liquid chromatography (nano LC/MS versus standard LC/MS) involved. The same sample preparation, the same internal standards and the same MS analyzer were used with both approaches. In the field of proteomics, nano LC chromatography is generally known to be more sensitive and less robust than standard LC methods. In this study, we established that the performances of the standard LC method are equivalent to those of our previously developed nano LC method. Although the analytical performances were very similar in both cases. The standard-flow platform therefore provides the more suitable alternative for accurately determining hepcidin in clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Empirical Equation Based Chirality (n, m) Assignment of Semiconducting Single Wall Carbon Nanotubes from Resonant Raman Scattering Data

    PubMed Central

    Arefin, Md Shamsul

    2012-01-01

    This work presents a technique for the chirality (n, m) assignment of semiconducting single wall carbon nanotubes by solving a set of empirical equations of the tight binding model parameters. The empirical equations of the nearest neighbor hopping parameters, relating the term (2n− m) with the first and second optical transition energies of the semiconducting single wall carbon nanotubes, are also proposed. They provide almost the same level of accuracy for lower and higher diameter nanotubes. An algorithm is presented to determine the chiral index (n, m) of any unknown semiconducting tube by solving these empirical equations using values of radial breathing mode frequency and the first or second optical transition energy from resonant Raman spectroscopy. In this paper, the chirality of 55 semiconducting nanotubes is assigned using the first and second optical transition energies. Unlike the existing methods of chirality assignment, this technique does not require graphical comparison or pattern recognition between existing experimental and theoretical Kataura plot. PMID:28348319

  7. Spin-orbit beams for optical chirality measurement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  8. Quantum Monte Carlo calculations of neutron matter with chiral three-body forces

    DOE PAGES

    Tews, I.; Gandolfi, Stefano; Gezerlis, A.; ...

    2016-02-02

    Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N 2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and formore » the energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less

  9. Application of LC/MS/MS Techniques to Development of US ...

    EPA Pesticide Factsheets

    This presentation will describe the U.S. EPA’s drinking water and ambient water method development program in relation to the process employed and the typical challenges encountered in developing standardized LC/MS/MS methods for chemicals of emerging concern. The EPA’s Drinking Water Contaminant Candidate List and Unregulated Contaminant Monitoring Regulations, which are the driving forces behind drinking water method development, will be introduced. Three drinking water LC/MS/MS methods (Methods 537, 544 and a new method for nonylphenol) and two ambient water LC/MS/MS methods for cyanotoxins will be described that highlight some of the challenges encountered during development of these methods. This presentation will provide the audience with basic understanding of EPA's drinking water method development program and an introduction to two new ambient water EPA methods.

  10. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  11. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  12. Catalytic enantioselective addition of Grignard reagents to aromatic silyl ketimines

    NASA Astrophysics Data System (ADS)

    Rong, Jiawei; Collados, Juan F.; Ortiz, Pablo; Jumde, Ravindra P.; Otten, Edwin; Harutyunyan, Syuzanna R.

    2016-12-01

    α-Chiral amines are of significant importance in medicinal chemistry, asymmetric synthesis and material science, but methods for their efficient synthesis are scarce. In particular, the synthesis of α-chiral amines with the challenging tetrasubstituted carbon stereocentre is a long-standing problem and catalytic asymmetric additions of organometallic reagents to ketimines that would give direct access to these molecules are underdeveloped. Here we report a highly enantioselective catalytic synthesis of N-sulfonyl protected α-chiral silyl amines via the addition of inexpensive, easy to handle and readily available Grignard reagents to silyl ketimines. The key to this success was our ability to suppress any unselective background addition reactions and side reduction pathway, through the identification of an inexpensive, chiral Cu-complex as the catalytically active structure.

  13. Light-Nuclei Spectra from Chiral Dynamics

    NASA Astrophysics Data System (ADS)

    Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.

  14. Stereospecific analysis of loxoprofen in plasma by chiral column liquid chromatography with a circular dichroism-based detector.

    PubMed

    Kanazawa, Hideko; Tsubayashi, Akane; Nagata, Yoshiko; Matsushima, Yoshikazu; Mori, Chiharu; Kizu, Junko; Higaki, Megumu

    2002-03-01

    The chiral separation of loxoprofen was achieved on a chiral column with UV and circular dichroism (CD) detection. The good resolution of four loxoprofen stereoisomers was obtained. The column used for the chiral separation was Chiralcel OJ column (250 x 4.6 mm) using hexane-2-propanol-trifluoroacetic acid (95:5:0.1), as an eluent. The flow-rate was 1.0 ml/min and the detection was at 225 nm. In addition, CD and UV spectra were obtained by stopped flow scanning. The method allows the determination of the stereoisomers of loxoprofen in human plasma after the administration of therapeutic dose of the racemic drug, thus HPLC with CD detector is useful for the stereospecific determination of loxoprofen products in biological samples.

  15. Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated

    DOE PAGES

    Argyres, Philip C.; Lü, Yongchao; Martone, Mario

    2017-06-27

    Coulomb branch chiral rings of N = 2 SCFTs are conjectured to be freely generated. While no counter-example is known, no direct evidence for the conjecture is known either. We initiate a systematic study of SCFTs with Coulomb branch chiral rings satisfying non-trivial relations, restricting our analysis to rank 1. The main result of our study is that (rank-1) SCFTs with non-freely generated CB chiral rings when deformed by relevant deformations, always flow to theories with non-freely generated CB rings. This implies that if they exist, they must thus form a distinct subset under RG flows. We also nd manymore » interesting characteristic properties that these putative theories satisfy which may be helpful in proving or disproving their existence using other methods.« less

  16. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality

    PubMed Central

    Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Singh, Ajay V.; Wan, Leo Q.

    2015-01-01

    Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype–dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo. PMID:26294010

  17. Long-range Coulomb interaction effects on the topological phase transitions between semimetals and insulators

    NASA Astrophysics Data System (ADS)

    Han, SangEun; Moon, Eun-Gook

    2018-06-01

    Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.

  18. Quantitation in chiral capillary electrophoresis: theoretical and practical considerations.

    PubMed

    D'Hulst, A; Verbeke, N

    1994-06-01

    Capillary electrophoresis (CE) represents a decisive step forward in stereoselective analysis. The present paper deals with the theoretical aspects of the quantitation of peak separation in chiral CE. Because peak shape is very different in CE with respect to high performance liquid chromatography (HPLC), the resolution factor Rs, commonly used to describe the extent of separation between enantiomers as well as unrelated compounds, is demonstrated to be of limited value for the assessment of chiral separations in CE. Instead, the conjunct use of a relative chiral separation factor (RCS) and the percent chiral separation (% CS) is advocated. An array of examples is given to illustrate this. The practical aspects of method development using maltodextrins--which have been proposed previously as a major innovation in chiral selectors applicable in CE--are documented with the stereoselective analysis of coumarinic anticoagulant drugs. The possibilities of quantitation using CE were explored under two extreme conditions. Using ibuprofen, it has been demonstrated that enantiomeric excess determinations are possible down to a 1% level of optical contamination and stereoselective determinations are still possible with a good precision near the detection limit, increasing sample load by very long injection times. The theoretical aspects of this possibility are addressed in the discussion.

  19. Simultaneous determination of diastereoisomeric and enantiomeric impurities in SSS-octahydroindole-2-carboxylic acid by chiral high-performance liquid chromatography with pre-column derivatization.

    PubMed

    Wang, Jin Zhao; Zeng, Su; Hu, Gong Yun; Wang, Dan Hua

    2009-04-10

    SSS-Octahydroindole-2-carboxylic acid (SSS-Oic) is a key intermediate used in the synthesis of some angiotensin-converting enzyme (ACE) inhibitors. The separation of diastereoisomers and enantiomers of Oic was performed using a pre-column derivatization chiral HPLC method. Phenyl isothiocyanate (PITC) was used as the derivatization reagent. Three PITC derivatives of Oic stereoisomers were separated on an Ultron ES-OVM chiral column (150 mm x 4.6 mm, 5 microm). Derivatization conditions such as reaction temperature, reaction time and derivatization reagent concentration were investigated. The chromatographic conditions for separation of the three PITC-Oic derivatives were optimized. The method was successfully applied in the diastereoisomeric and enantiomeric purity test of SSS-Oic.

  20. Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.

    PubMed

    Twu, Ruey-Ching; Wang, Jhao-Sheng

    2015-10-10

    Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.

  1. Baryon axial charges from chirally improved fermions - first results

    NASA Astrophysics Data System (ADS)

    Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.

    We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.

  2. A Novel Method for Assigning R, S Labels to Enantiomers.

    ERIC Educational Resources Information Center

    Huheey, James E.

    1986-01-01

    Discusses ways of teaching students about how to assign R (rectus) and S (sinister) labels to enantiomers by using their hands as models. The chirality of the human hands follows the Cahn-Ingold-Prelog Rules for assigning enantiomers and infers the correct chirality of molecules shown in two-dimensional drawings. (TW)

  3. Full-color reflective cholesteric liquid crystal display

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Yang; Khan, Asad A.; Davis, Donald J.; Podojil, Gregg M.; Jones, Chad M.; Miller, Nick; Doane, J. William

    1999-03-01

    We report a full color 1/4 VGA reflective cholesteric display with 4096 colors. The display can deliver a brightness approaching 40 percent reflected luminance, far exceeding all other reflective technologies. With its zero voltage bistability, images can be stored for days and months without ny power consumption. This property can significantly extend the battery life. The capability of displaying full color complex graphics and images is a must in order to establish a market position in this multimedia age. Color is achieved by stacking RGB cells. The top layer is blue with right chirality, the middle layer is green with left chirality, and the bottom layer is red with right chirality. The choice of opposite chirality prevents the loss in the green and red spectra from the blue layer on the top. We also adjusted the thickness of each layer to achieve color balance. We implement gray scale in each layer with pulse width modulation. This modulation method is the best choice consideration of lower driver cost, simpler structure with fewer cross talk problems. Various drive schemes and modulation methods will be discussed in the conference.

  4. Theoretical Investigation of Regioselectivity and Stereoselectivity in AIBN/HSnBu3-Mediated Radical Cyclization of N-(2-Iodo-4,6-dimethylphenyl)-N,2-dimethyl-(2E)-butenamide.

    PubMed

    Li, Bai-Jian; Zhong, Hua; Yu, Hai-Tao

    2016-12-22

    In this study, we employed the density functional method to simulate AIBN/HSnBu 3 -mediated radical cyclizations with different axially chiral conformers of N-(2-iodo-4,6-dimethylphenyl)-N,2-dimethyl-(2E)-butenamide as substrates. We constructed a reaction potential energy profile using the Gibbs free energies of the located stationary points. The thermodynamic and kinetic data of the profile were further used to evaluate the regioselectivity, stereoselectivity, and product distribution of the cyclizations. Additionally, we compared the present HSnBu 3 -mediated radical cyclization with the experimentally available Heck reaction and found that such a radical cyclization can convert (M,Z) and (P,Z) o-iodoanilide substrates to centrally chiral products with high chirality transfer. The goal of this study was to estimate the practicality of theoretically predicting the memory of chirality in such radical cyclizations. The present results can provide a strategy from a theoretical viewpoint for experimentally synthesizing highly stereoselective carbocyclic and heterocyclic compounds using radical cyclization methods.

  5. Liquid chromatographic separation and thermodynamic investigation of lorcaserin hydrochloride enantiomers on immobilized amylose-based chiral stationary phase.

    PubMed

    Wani, Dattatraya V; Rane, Vipul P; Mokale, Santosh N

    2018-03-01

    A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5-dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n-hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S-enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink' versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose-based chiral stationary phase. © 2017 Wiley Periodicals, Inc.

  6. Chirality measures of α-amino acids.

    PubMed

    Jamróz, Michał H; Rode, Joanna E; Ostrowski, Sławomir; Lipiński, Piotr F J; Dobrowolski, Jan Cz

    2012-06-25

    To measure molecular chirality, the molecule is treated as a finite set of points in the Euclidean R(3) space supplemented by k properties, p(1)((i)), p(2)((i)), ..., p(k)((i)) assigned to the ith atom, which constitute a point in the Property P(k) space. Chirality measures are described as the distance between a molecule and its mirror image minimized over all its arbitrary orientation-preserving isometries in the R(3) × P(k) Cartesian product space. Following this formalism, different chirality measures can be estimated by taking into consideration different sets of atomic properties. Here, for α-amino acid zwitterionic structures taken from the Cambridge Structural Database and for all 1684 neutral conformers of 19 biogenic α-amino acid molecules, except glycine and cystine, found at the B3LYP/6-31G** level, chirality measures have been calculated by a CHIMEA program written in this project. It is demonstrated that there is a significant correlation between the measures determined for the α-amino acid zwitterions in crystals and the neutral forms in the gas phase. Performance of the studied chirality measures with changes of the basis set and computation method was also checked. An exemplary quantitative structure–activity relationship (QSAR) application of the chirality measures was presented by an introductory model for the benchmark Cramer data set of steroidal ligands of the sex-hormone binding globulin.

  7. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.

    PubMed

    Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W

    2014-03-01

    Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  8. Label-free protein sensing by employing blue phase liquid crystal.

    PubMed

    Lee, Mon-Juan; Chang, Chung-Huan; Lee, Wei

    2017-03-01

    Blue phases (BPs) are mesophases existing between the isotropic and chiral nematic phases of liquid crystals (LCs). In recent years, blue phase LCs (BPLCs) have been extensively studied in the field of LC science and display technology. However, the application of BPLCs in biosensing has not been explored. In this study, a BPLC-based biosensing technology was developed for the detection and quantitation of bovine serum albumin (BSA). The sensing platform was constructed by assembling an empty cell with two glass slides coated with homeotropic alignment layers and with immobilized BSA atop. The LC cells were heated to isotropic phase and then allowed to cool down to and maintained at distinct BP temperatures for spectral measurements and texture observations. At BSA concentrations below 10 -6 g/ml, we observed that the Bragg reflection wavelength blue-shifted with increasing concentration of BSA, suggesting that the BP is a potentially sensitive medium in the detection and quantitation of biomolecules. By using the BPLC at 37 °C and the same polymorphic material in the smectic A phase at 20 °C, two linear correlations were established for logarithmic BSA concentrations ranging from 10 -9 to 10 -6 g/ml and from 10 -6 to 10 -3 g/ml. Our results demonstrate the potential of BPLCs in biosensing and quantitative analysis of biomolecules.

  9. Selective identification of specialized pro-resolving lipid mediators from their biosynthetic double di-oxygenation isomers.

    PubMed

    Hansen, Trond V; Dalli, Jesmond; Serhan, Charles N

    The n-3 polyunsaturated fatty acids are substrates for lipoxygenases and cyclooxygenases. During inflammatory processes, these enzymes form several distinct families of oxygenated polyunsaturated fatty acids coined specialized pro-resolving lipid mediators. Structural elucidation of these natural products using LC-MS/MS based metabololipidomics with the pico- to nanogram amounts of biosynthetic material available have been performed. The specialized pro-resolving lipid mediators display stereospecific and potent anti-inflammatory and pro-resolving actions. Most often the different families among these mediators are chemically characterized by two or three chiral, secondary alcohols, separated by either an E,E,Z -triene or an E,Z,E,E -tetraenemoiety. The lipoxygenases also form other oxygenated polyunsaturated natural products, coined double di-oxygenation products, that are constitutional isomers of the protectin and maresin families of specialized pro-resolving lipid mediators. Very often these products exhibit similar chromatographic properties and mass spectrometrical fragment ions as the pro-resolving mediators. In addition, the double di-oxygenation products are sometimes formed in larger amounts than the specialized pro-resolving lipid mediators. Thus, it is not always possible to distinguish between the specialized pro-resolving mediators and their double di-oxygenation isomers in biological systems, using LC/MS-based techniques. Herein, a convenient and easy-to-use protocol to meet this challenge is presented.

  10. Establishment and comparison of three novel methods for the determination of the photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in human serum.

    PubMed

    Chen, Lin; Xiao, Qingqing; Zhang, Xian; Yang, Jin

    2016-03-20

    2-[1-Hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) is a second-generation photosensitizer that has been applied in clinical studies of photodynamic therapy for a variety of malignant lesions. Based on the differences in selectivity and labour intensity, three novel methods - fluorescence detection coupled with high performance liquid chromatography (LC-FLD), LC-tandem mass spectrometry (LC-MS/MS) and fluorescence-based microplate reader methods - were developed for the determination of HPPH in human serum, which allowed comparison of fluorescence and MS platform for HPPH quantification. All three methods have been validated and successfully applied to support the clinical pharmacokinetic study of HPPH. The concentrations measured by LC-FLD matched those by LC-MS/MS with a correlation coefficient (r=0.994) and coefficient of determination (r(2)=0.989). Data consistency was also found between the measurements of microplate reader and LC-MS/MS with a correlation coefficient (r=0.999) and coefficient of determination (r(2)=0.998), indicating that fluorescence assay, the low cost alternative with a relatively poorer selectivity, is clearly suitable for the quantification of HPPH. Calibration curves in the methods of LC-FLD and microplate reader were linear (r˃0.998) over the concentration range from 50 to 5000 ng/mL, and linearity was obtained over the concentration range from 5 to 1000 ng/mL in the LC-MS/MS method. Compared with the other two methods, the fluorescence-based microplate reader method with proven high selectivity should be strongly recommended because of obvious advantages such as the lowest labour intensity, the lowest instrument cost, a better sensitivity than LC-FLD and the very rapid determination of large number of samples (24 samples/40 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Supercritical fluid chromatography versus high performance liquid chromatography for enantiomeric and diastereoisomeric separations on coated polysaccharides-based stationary phases: Application to dihydropyridone derivatives.

    PubMed

    Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle

    2018-05-11

    For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. (-)-Catechin in cocoa and chocolate: occurrence and analysis of an atypical flavan-3-ol enantiomer.

    PubMed

    Kofink, Michael; Papagiannopoulos, Menelaos; Galensa, Rudolf

    2007-07-04

    Cocoa contains high levels of different flavonoids. In the present study, the enantioseparation of catechin and epicatechin in cocoa and cocoa products by chiral capillary electrophoresis (CCE) was performed. A baseline separation of the catechin and epicatechin enantiomers was achieved by using 0.1 mol x L(-1) borate buffer (pH 8.5) with 12 mmol x L(-1) (2-hydroxypropyl)-gamma-cyclodextrin as chiral selector, a fused-silica capillary with 50 cm effective length (75 microm I.D.), +18 kV applied voltage, a temperature of 20 degrees C and direct UV detection at 280 nm. To avoid comigration or coelution of other similar substances, the flavan-3-ols were isolated and purified using polyamide-solid-phase-extraction and LC-MS analysis. As expected, we found (-)-epicatechin and (+)-catechin in unfermented, dried, unroasted cocoa beans. In contrast, roasted cocoa beans and cocoa products additionally contained the atypical flavan-3-ol (-)-catechin. This is generally formed during the manufacturing process by an epimerization which converts (-)-epicatechin to its epimer (-)-catechin. High temperatures during the cocoa bean roasting process and particularly the alkalization of the cocoa powder are the main factors inducing the epimerization reaction. In addition to the analysis of cocoa and cocoa products, peak ratios were calculated for a better differentiation of the cocoa products.

  13. Beta functions in Chirally deformed supersymmetric sigma models in two dimensions

    NASA Astrophysics Data System (ADS)

    Vainshtein, Arkady

    2016-10-01

    We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 = (2, 2) supersymmetry to the chiral one, 𝒩 = (0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.

  14. Beta Functions in Chirally Deformed Supersymmetric Sigma Models in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Vainshtein, Arkady

    We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 =(2, 2) supersymmetry to the chiral one, 𝒩 =(0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.

  15. Enantioselective determination by capillary electrophoresis with cyclodextrins as chiral selectors.

    PubMed

    Fanali, S

    2000-04-14

    This review surveys the separation of enantiomers by capillary electrophoresis using cyclodextrins as chiral selector. Cyclodextrins or their derivatives have been widely employed for the direct chiral resolution of a wide number of enantiomers, mainly of pharmaceutical interest, selected examples are reported in the tables. For method optimisation, several parameters influencing the enantioresolution, e.g., cyclodextrin type and concentration, buffer pH and composition, presence of organic solvents or complexing additives in the buffer were considered and discussed. Finally, selected applications to real samples such as pharmaceutical formulations, biological and medical samples are also discussed.

  16. Resonant Raman scattering of double wall carbon nanotubes prepared by chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ci, Lijie; Zhou, Zhenping; Yan, Xiaoqin; Liu, Dongfang; Yuan, Huajun; Song, Li; Gao, Yan; Wang, Jianxiong; Liu, Lifeng; Zhou, Weiya; Wang, Gang; Xie, Sishen; Tan, Pingheng

    2003-11-01

    Resonant Raman spectra of double wall carbon nanotubes (DWCNTs), with diameters from 0.4 to 3.0 nm, were investigated with several laser excitations. The peak position and line shape of Raman bands were shown to be strongly dependent on the laser energies. With different excitations, the diameter and chirality of the DWCNTs can be discussed in detail. We show that tubes (the inner or outer layers of DWCNTs) with all kinds of chiralities could be synthesized, and a DWCNT can have any combination of chiralities of the inner and outer tubes.

  17. Neutron matter with Quantum Monte Carlo: chiral 3N forces and static response

    DOE PAGES

    Buraczynski, M.; Gandolfi, S.; Gezerlis, A.; ...

    2016-03-14

    Neutron matter is related to the physics of neutron stars and that of neutron-rich nuclei. Moreover, Quantum Monte Carlo (QMC) methods offer a unique way of solving the many-body problem non-perturbatively, providing feedback on features of nuclear interactions and addressing scenarios that are inaccessible to other approaches. Our contribution goes over two recent accomplishments in the theory of neutron matter: a) the fusing of QMC with chiral effective field theory interactions, focusing on local chiral 3N forces, and b) the first attempt to find an ab initio solution to the problem of static response.

  18. Chiral Separation of G-type Chemical Warfare Nerve Agents via Analytical Supercritical Fluid Chromatography

    PubMed Central

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-01-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(–) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(–) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. Chirality 26:817–824, 2014. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc. PMID:25298066

  19. Bayesian Normalization Model for Label-Free Quantitative Analysis by LC-MS

    PubMed Central

    Nezami Ranjbar, Mohammad R.; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2016-01-01

    We introduce a new method for normalization of data acquired by liquid chromatography coupled with mass spectrometry (LC-MS) in label-free differential expression analysis. Normalization of LC-MS data is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences but experimental bias. There are different sources of bias including variabilities during sample collection and sample storage, poor experimental design, noise, etc. In addition, instrument variability in experiments involving a large number of LC-MS runs leads to a significant drift in intensity measurements. Although various methods have been proposed for normalization of LC-MS data, there is no universally applicable approach. In this paper, we propose a Bayesian normalization model (BNM) that utilizes scan-level information from LC-MS data. Specifically, the proposed method uses peak shapes to model the scan-level data acquired from extracted ion chromatograms (EIC) with parameters considered as a linear mixed effects model. We extended the model into BNM with drift (BNMD) to compensate for the variability in intensity measurements due to long LC-MS runs. We evaluated the performance of our method using synthetic and experimental data. In comparison with several existing methods, the proposed BNM and BNMD yielded significant improvement. PMID:26357332

  20. Chiral separation and quantitation of cetirizine and hydroxyzine by maltodextrin-mediated CE in human plasma: effect of zwitterionic property of cetirizine on enantioseparation.

    PubMed

    Nojavan, Saeed; Fakhari, Ali Reza

    2011-03-01

    In the present study, a very simple CE method for chiral separation and quantitation of zwitterionic cetirizine (CTZ), as the main metabolite of hydroxyzine (HZ), and HZ has been developed. In addition, the effect of zwitterionic property of CTZ on enantioseparation was investigated. Maltodextrin, a linear polysaccharide, as a chiral selector was used and several parameters affecting the separation such as pH of BGE, concentration of chiral selector and applied voltage were studied. The best BGE conditions for CTZ and HZ enantiomers were optimized as 75 mM sodium phosphate solution at pH of 2.0, containing 5% w/v maltodextrin. Results showed that, compared to HZ, pH of BGE was an effective parameter in enantioseparation of CTZ due to the zwitterionic property of CTZ. The linear range of the method was over 30-1200 ng/mL for all enantiomers of CTZ and HZ. The quantification and detection limits (S/N=3) of all enantiomers were 30 and 10 ng/mL, respectively. The method was used to quantitative enantioseparation of CTZ and HZ in spiked human plasma. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. METHOD 544. DETERMINATION OF MICROCYSTINS AND NODULARIN IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    EPA Science Inventory

    Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensi...

  2. Methods for the analysis of organophosphorus flame retardants-Comparison of GC-EI-MS, GC-NCI-MS, LC-ESI-MS/MS, and LC-APCI-MS/MS.

    PubMed

    Tokumura, Masahiro; Miyake, Yuichi; Wang, Qi; Nakayama, Hayato; Amagai, Takashi; Ogo, Sayaka; Kume, Kazunari; Kobayashi, Takeshi; Takasu, Shinji; Ogawa, Kumiko

    2018-04-16

    Organophosphorus flame retardants (PFRs) are extensively used as alternatives to banned polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). In this study, we analyzed 14 PFRs by means of four mass-spectrometry-based methods: gas chromatography combined with electron-impact mass spectrometry (GC-EI-MS) or negative-chemical-ionization mass spectrometry (GC-NCI-MS) and liquid chromatography combined with tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS) or atmospheric pressure chemical ionization (LC-APCI-MS/MS). The limits of quantification (LOQs) for LC-ESI-MS/MS and LC-APCI-MS/MS (0.81-970 pg) were 1-2 orders of magnitude lower than the LOQs for GC-EI-MS and GC-NCI-MS (2.3-3900 pg). LC-APCI-MS/MS showed the lowest LOQs (mean = 41 pg; median = 3.4 pg) for all but two of the PFRs targeted in this study. For LC-APCI-MS/MS, the lowest LOQ was observed for tributyl phosphate (TBP) (0.81 pg), and the highest was observed for tris(butoxyethyl) phosphate (TBOEP) (36 pg). The results of this study indicate that LC-APCI-MS/MS is the optimum analytical method for the target PFRs, at least in terms of LOQ.

  3. Online immunoaffinity LC/MS/MS. A general method to increase sensitivity and specificity: How do you do it and what do you need?

    PubMed

    Dufield, Dawn R; Radabaugh, Melissa R

    2012-02-01

    There is an increased emphasis on hyphenated techniques such as immunoaffinity LC/MS/MS (IA-LC/MS/MS) or IA-LC/MRM. These techniques offer competitive advantages with respect to sensitivity and selectivity over traditional LC/MS and are complementary to ligand binding assays (LBA) or ELISA's. However, these techniques are not entirely straightforward and there are several tips and tricks to routine sample analysis. We describe here our methods and procedures for how to perform online IA-LC/MS/MS including a detailed protocol for the preparation of antibody (Ab) enrichment columns. We have included sample trapping and Ab methods. Furthermore, we highlight tips, tricks, minimal and optimal approaches. This technology has been shown to be viable for several applications, species and fluids from small molecules to proteins and biomarkers to PK assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Light-Nuclei Spectra from Chiral Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piarulli, M.; Baroni, A.; Girlanda, L.

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  5. Light-Nuclei Spectra from Chiral Dynamics

    DOE PAGES

    Piarulli, M.; Baroni, A.; Girlanda, L.; ...

    2018-02-01

    In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. Here in this Letter, we present Green’s function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levelsmore » and level ordering of nuclei in the mass range A=4–12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.« less

  6. Structural and electronic properties of chiral single-wall copper nanotubes

    NASA Astrophysics Data System (ADS)

    Duan, YingNi; Zhang, JianMin; Xu, KeWei

    2014-04-01

    The structural, energetic and electronic properties of chiral ( n, m) (3⩽ n⩽6, n/2⩽ m⩽ n) single-wall copper nanotubes (CuNTs) have been investigated by using projector-augmented wave method based on density-functional theory. The (4, 3) CuNT is energetically stable and should be observed experimentally in both free-standing and tip-suspended conditions, whereas the (5, 5) and (6, 4) CuNTs should be observed in free-standing and tip-suspended conditions, respectively. The number of conductance channels in the CuNTs does not always correspond to the number of atomic strands comprising the nanotube. Charge density contours show that there is an enhanced interatomic interaction in CuNTs compared with Cu bulk. Current transporting states display different periods and chirality, the combined effects of which lead to weaker chiral currents on CuNTs.

  7. Chiral dynamics in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2014-09-01

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.

  8. Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Nishigaki, Shinsuke M.

    2018-02-01

    We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.

  9. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  10. Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials

    NASA Astrophysics Data System (ADS)

    Muljarov, E. A.; Weiss, T.

    2018-05-01

    The resonant-state expansion, a recently developed powerful method in electrodynamics, is generalized here for open optical systems containing magnetic, chiral, or bi-anisotropic materials. It is shown that the key matrix eigenvalue equation of the method remains the same, but the matrix elements of the perturbation now contain variations of the permittivity, permeability, and bi-anisotropy tensors. A general normalization of resonant states in terms of the electric and magnetic fields is presented.

  11. Chiral pesticides: identification, description, and environmental implications.

    PubMed

    Ulrich, Elin M; Morrison, Candice N; Goldsmith, Michael R; Foreman, William T

    2012-01-01

    Of the 1,693 pesticides considered in this review, 1,594 are organic chemicals, 47 are inorganic chemicals, 53 are of biological origin (largely non chemical; insect,fungus, bacteria, virus, etc.), and 2 have an undetermined structure. Considering that the EPA's Office of Pesticide Programs found 1,252 pesticide active ingredients(EPA Pesticides Customer Service 2011), we consider this dataset to be comprehensive; however, no direct comparison of the compound lists was undertaken. Of all pesticides reviewed, 482 (28%) are chiral; 30% are chiral when considering only the organic chemical pesticides. A graph of this distribution is shown in Fig. 7a. Each pesticide is classified with up to three pesticidal utilities (e.g., fungicide, plant growth regulator, rodenticide, etc.), taken first from the Pesticide Manual as a primary source, and the Compendium of Common Pesticide Names website as a secondary source. Of the chiral pesticides, 195 (34%) are insecticides (including attractants, pheromones, and repellents), 150 (27%) are herbicides (including plant growth regulators and herbicide safeners), 104 (18%) are fungicides, and 55 (10%)are acaricides. The distribution of chiral pesticides by utility is shown in Fig. 7b,including categories of pesticides that make up 3%t or less of the usage categories.Figure 7c shows a similar distribution of non chiral pesticide usage categories. Of the chiral pesticides, 270 (56%) have one chiral feature, 105 (22%) have two chiral features, 30 (6.2%) have three chiral features, and 29 (6.0%) have ten or more chiral features.Chiral chemicals pose many difficulties in stereospecific synthesis, characterization, and analysis. When these compounds are purposely put into the environment,even more interesting complications arise in tracking, monitoring, and predicting their fate and risks. More than 475 pesticides are chiral, as are other chiral contaminants such as pharmaceuticals, polychlorinated biphenyls, brominated flame retardants, synthetic musks, and their degradates (Kallenborn and Hiihnerfuss 2001;Heeb et al. 2007; Hihnerfuss and Shah 2009). The stereoisomers of pesticides can have widely different efficacy, toxicity to nontarget organisms, and metabolic rates in biota. For these reasons, it is important to first be aware of likely fate and effect differences, to incorporate molecular asymmetry insights into research projects, and to study the individual stereoisomers of the applied pesticide material.With the advent of enantioselective chromatography techniques, the chirality of pesticides has been increasingly studied. While the ChirBase (Advanced ChemistryDevelopment 1997-2010) database does not include all published chiral analytical separations, it does contain more than 3,500 records for 146 of the 482 chiral pesticides (30%). The majority of the records are found in the liquid chromatography database (2,677 or 76%), followed by the gas chromatography database (652 or 18%),and the capillary electrophoresis database (203 or 6%). The finding that only 30% of the chiral pesticides covered in this review have entries in ChirBase highlights the need for expanded efforts to develop additional enantioselective chromatographic methods. Other techniques (e.g., nuclear magnetic resonance and other spectroscopy)are available for investigation of chiral compounds, but often are not utilized because of cost, complexity, or simply not recognizing that a pesticide is chiral.In this review, we have listed and have briefly described the general nature of chiral fungicides, herbicides, insecticides, and other miscellaneous classes. A data-set generated for this review contains 1,693 pesticides, the number of enantioselective separation records in ChirBase, pesticide usage class, SMILES structure string and counts of stereogenic centers. This dataset is publically available for download at the following website: http://www.epa.gov/heasd/products/products.html. With the information herein coupled to the publically accessible dataset, we can begin to develop the tools to handle molecular asymmetry as it applies to agrochemicals.Additional structure-based resources would allow further analysis of key parameters (e.g., exposure, toxicity, environmental fate, degradation, and risks) for individual stereoisomers of chiral compounds.

  12. Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, J.; ...

    2017-11-30

    Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less

  13. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    PubMed Central

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360

  14. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  15. Analysis of formononetin from black cohosh (Actaea racemosa).

    PubMed

    Jiang, B; Kronenberg, F; Balick, M J; Kennelly, E J

    2006-07-01

    Black cohosh has been widely used as an herbal medicine for the treatment of symptoms related to menopause in America and Europe during the past several decades, but the bioactive constituents are still unknown. Formononetin is an isoflavone with known estrogen-like activity. This compound was first reported to be isolated from black cohosh in 1985, but subsequent research in 2002 using HPLC-PDA and LC-MS revealed no evidence to show the presence of formononetin in 13 populations of American black cohosh. A more recent report published in 2004 claimed to detect formononetin in an extract of black cohosh rhizomes using a TLC-fluorescent densitometry method. To further resolve these conflicting reports, we analyzed black cohosh roots and rhizomes for the presence of formononetin, using a combined TLC, HPLC-PDA and LC-MS method. We examined both methanolic and aqueous methanolic black cohosh extracts by HPLC-PDA and LC-MS methods, and did not detect formononetin in any extracts. We further determined the limits of detection of formononetin by HPLC-PDA and LC-MS. Our experimental results indicated that the sensitivity and accuracy of the HPLC-PDA and LC-MS methods for the analysis of formononetin were slightly higher than those of the reported fluorescent method, suggesting that the HPLC-PDA and LC-MS methods were reliable for the analysis of formononetin from black cohosh. We also repeated the reported TLC method to concentrate two fractions from a modern black cohosh sample and an 86-year-old black cohosh sample, respectively, and then analyzed these two fractions for formononetin using the HPLC-PDA and LC-MS method instead of the fluorescent method. Formononetin was not detected by HPLC-PDA or LC-MS. From the results of the present study it is not reasonable to attribute the estrogen-like activity of black cohosh extracts to formononetin.

  16. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry

    NASA Astrophysics Data System (ADS)

    Mu, Hongtao; Xu, Zhenlin; Liu, Yingju; Sun, Yuanming; Wang, Baoling; Sun, Xiulan; Wang, Zhanhui; Eremin, Sergei; Zherdev, Anatoly V.; Dzantiev, Boris B.; Lei, Hongtao

    2018-04-01

    Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.

  17. Chiral quantum supercrystals with total dissymmetry of optical response

    NASA Astrophysics Data System (ADS)

    Baimuratov, Anvar S.; Gun'Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2016-03-01

    Since chiral nanoparticles are much smaller than the optical wavelength, their enantiomers show little difference in the interaction with circularly polarized light. This scale mismatch makes the enhancement of enantioselectivity in optical excitation of nanoobjects a fundamental challenge in modern nanophotonics. Here we demonstrate that a strong dissymmetry of optical response from achiral nanoobjects can be achieved through their arrangement into chiral superstructures with the length scale comparable to the optical wavelength. This concept is illustrated by the example of the simple helix supercrystal made of semiconductor quantum dots. We show that this supercrystal almost fully absorbs light with one circular polarization and does not absorb the other. The giant circular dichroism of the supercrystal comes from the formation of chiral bright excitons, which are the optically active collective excitations of the entire supercrystal. Owing to the recent advances in assembly and self-organization of nanocrystals in large superparticle structures, the proposed principle of enantioselectivity enhancement has great potential of benefiting various chiral and analytical methods, which are used in biophysics, chemistry, and pharmaceutical science.

  18. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  19. Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong

    2016-08-01

    The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

  20. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light

    NASA Astrophysics Data System (ADS)

    Vitkin, I. Alex; Laszlo, Richard D.; Whyman, Claire L.

    2002-02-01

    The use of polarized light for investigation of optically turbid systems has generated much recent interest since it has been shown that multiple scattering does not fully scramble the incident polarization states. It is possible under some conditions to measure polarization signals in diffusely scattered light, and use this information to characterize the structure or composition of the turbid medium. Furthermore, the idea of quantitative detection of optically active (chiral) molecules contained in such a system is attractive, particularly in clinical medicine where it may contribute to the development of a non-invasive method of glucose sensing in diabetic patients. This study uses polarization modulation and synchronous detection in the perpendicular and in the exact backscattering orientations to detect scattered light from liquid turbid samples containing varying amounts of L and D (left and right) isomeric forms of a chiral sugar. Polarization preservation increased with chiral concentrations in both orientations. In the perpendicular orientation, the optical rotation of the linearly polarized fraction also increased with the concentration of chiral solute, but in different directions for the two isomeric forms. There was no observed optical rotation in the exact backscattering geometry for either isomer. The presence of the chiral species is thus manifest in both detection directions, but the sense of the chiral asymmetry is not resolvable in retroreflection. The experiments show that useful information may be extracted from turbid chiral samples using polarized light.

  1. Achiral and Chiral Separations Using Micellar Electrokinetic Chromatography, Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques with Molecular Micelles

    PubMed Central

    Luces, Candace A.; Warner, Isiah M.

    2014-01-01

    Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738

  2. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.

    PubMed

    Frkanec, Leo; Zinić, Mladen

    2010-01-28

    Bis(amino acid)- and bis(amino alcohol)oxalamide gelators represent the class of versatile gelators whose gelation ability is a consequence of strong and directional intermolecular hydrogen bonding provided by oxalamide units and lack of molecular symmetry due to the presence of two chiral centres. Bis(amino acid)oxalamides exhibit ambidextrous gelation properties, being capable to form gels with apolar and also highly polar solvent systems and tend to organise into bilayers or inverse bilayers in hydrogel or organic solvent gel assemblies, respectively. (1)H NMR and FTIR studies of gels revealed the importance of the equilibrium between the assembled network and smaller dissolved gelator assemblies. The organisation in gel assemblies deduced from spectroscopic structural studies are in certain cases closely related to organisations found in the crystal structures of selected gelators, confirming similar organisations in gel assemblies and in the solid state. The pure enantiomer/racemate gelation controversy is addressed and the evidence provided that rac-16 forms a stable toluene gel due to resolution into enantiomeric bilayers, which then interact giving gel fibres and a network of different morphology compared to its (S,S)-enantiomer gel. The TEM investigation of both gels confirmed distinctly different gel morphologies, which allowed the relationship between the stereochemical form of the gelator, the fibre and the network morphology and the network solvent immobilisation capacity to be proposed. Mixing of the constitutionally different bis(amino acid) and bis(amino alcohol)oxalamide gelators resulted in some cases in highly improved gelation efficiency denoted as synergic gelation effect (SGE), being highly dependent also on the stereochemistry of the component gelators. Examples of photo-induced gelation based on closely related bis(amino acid)-maleic acid amide and -fumaramide and stilbene derived oxalamides where gels form by irradiation of the solution of a non-gelling isomer and its photo-isomerisation into gelling isomer are provided, as well as examples of luminescent gels, gel-based fluoride sensors, LC-gels and nanoparticle-hydrogel composites.

  3. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography

    PubMed Central

    Liu, Huaping; Nishide, Daisuke; Tanaka, Takeshi; Kataura, Hiromichi

    2011-01-01

    Monostructured single-wall carbon nanotubes (SWCNTs) are important in both scientific research and electronic and biomedical applications; however, the bulk separation of SWCNTs into populations of single-chirality nanotubes remains challenging. Here we report a simple and effective method for the large-scale chirality separation of SWCNTs using a single-surfactant multicolumn gel chromatography method utilizing one surfactant and a series of vertically connected gel columns. This method is based on the structure-dependent interaction strength of SWCNTs with an allyl dextran-based gel. Overloading an SWCNT dispersion on the top column results in the adsorption sites of the column becoming fully occupied by the nanotubes that exhibit the strongest interaction with the gel. The unbound nanotubes flow through to the next column, and the nanotubes with the second strongest interaction with the gel are adsorbed in this stage. In this manner, 13 different (n, m) species were separated. Metallic SWCNTs were finally collected as unbound nanotubes because they exhibited the lowest interaction with the gel. PMID:21556063

  4. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory

    NASA Astrophysics Data System (ADS)

    Chair, Noureddine

    2014-02-01

    We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott's conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory.

  5. HPLC and LC-MS/MS methods for determination of sodium benzoate and potassium sorbate in food and beverages: performances of local accredited laboratories via proficiency tests in Turkey.

    PubMed

    Gören, Ahmet C; Bilsel, Gökhan; Şimşek, Adnan; Bilsel, Mine; Akçadağ, Fatma; Topal, Kevser; Ozgen, Hasan

    2015-05-15

    High Performance Liquid Chromatography LC-UV and LC-MS/MS methods were developed and validated for quantitative analyses of sodium benzoate and potassium sorbate in foods and beverages. HPLC-UV and LC-MS/MS methods were compared for quantitative analyses of sodium benzoate and potassium sorbate in a representative ketchup sample. Optimisation of the methods enabled the chromatographic separation of the analytes in less than 4 min. A correlation coefficient of 0.999 was achieved over the measured calibration range for both compounds and methods (HPLC and LC-MS/MS). The uncertainty values of sodium benzoate and potassium sorbate were found as 0.199 and 0.150 mg/L by HPLC and 0.072 and 0.044 mg/L by LC-MS/MS, respectively. Proficiency testing performance of Turkish accredited laboratories between the years 2005 and 2013 was evaluated and reported herein. The aim of the proficiency testing scheme was to evaluate the performance of the laboratories, analysing benzoate and sorbate in tomato ketchup. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Sensitivity of GC-EI/MS, GC-EI/MS/MS, LC-ESI/MS/MS, LC-Ag(+) CIS/MS/MS, and GC-ESI/MS/MS for analysis of anabolic steroids in doping control.

    PubMed

    Cha, Eunju; Kim, Sohee; Kim, Ho Jun; Lee, Kang Mi; Kim, Ki Hun; Kwon, Oh-Seung; Lee, Jaeick

    2015-01-01

    This study compared the sensitivity of various separation and ionization methods, including gas chromatography with an electron ionization source (GC-EI), liquid chromatography with an electrospray ionization source (LC-ESI), and liquid chromatography with a silver ion coordination ion spray source (LC-Ag(+) CIS), coupled to a mass spectrometer (MS) for steroid analysis. Chromatographic conditions, mass spectrometric transitions, and ion source parameters were optimized. The majority of steroids in GC-EI/MS/MS and LC-Ag(+) CIS/MS/MS analysis showed higher sensitivities than those obtained with other analytical methods. The limits of detection (LODs) of 65 steroids by GC-EI/MS/MS, 68 steroids by LC-Ag(+) CIS/MS/MS, 56 steroids by GC-EI/MS, 54 steroids by LC-ESI/MS/MS, and 27 steroids by GC-ESI/MS/MS were below cut-off value of 2.0 ng/mL. LODs of steroids that formed protonated ions in LC-ESI/MS/MS analysis were all lower than the cut-off value. Several steroids such as unconjugated C3-hydroxyl with C17-hydroxyl structure showed higher sensitivities in GC-EI/MS/MS analysis relative to those obtained using the LC-based methods. The steroids containing 4, 9, 11-triene structures showed relatively poor sensitivities in GC-EI/MS and GC-ESI/MS/MS analysis. The results of this study provide information that may be useful for selecting suitable analytical methods for confirmatory analysis of steroids. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Chiral discrimination of sibutramine enantiomers by capillary electrophoresis and proton nuclear magnetic resonance spectroscopy.

    PubMed

    Lee, Yong-Jae; Choi, Seungho; Lee, Jinhoo; Nguyen, NgocVan Thi; Lee, Kyungran; Kang, Jong Seong; Mar, Woongchon; Kim, Kyeong Ho

    2012-03-01

    Capillary electrophoresis (CE) and proton nuclear magnetic resonance spectroscopy ((1)H-NMR) have been used to discriminate the enantiomers of sibutramine using cyclodextrin derivatives. Possible correlation between CE and (1)H-NMR was examined. Good correlation between the (1)H-NMR shift non-equivalence data for sibutramine and the degree of enantioseparation in CE was observed. In CE study, a method of enantiomeric separation and quantitation of sibutramine was developed using enantiomeric standards. The method was based on the use of 50 mM of phosphate buffer of pH 3.0 with 10 mM of methyl-beta-cyclodextrin (M-β-CD). 0.05% of LOD, 0.2% of LOQ for S-sibutramine enantiomer was achieved, and the method was validated and applied to the quantitative determination of sibutramine enantiomers in commercial drugs. On a 600 MHz (1)H-NMR analysis, enantiomer signal separation of sibutramine was obtained by fast diastereomeric interaction with a chiral selector M-β-CD. For chiral separation and quantification, N-methyl proton peaks (at 2.18 ppm) were selected because of its being singlet and simple for understanding of diastereomeric interaction. Effects of temperature and concentration of chiral selector on enantiomer signal separation were investigated. The optimum condition was 0.5 mg/mL of sibutramine and 10 mg/mL of M-β-CD at 10°C. Distinguishment of 0.5% of S-sibutramine in R-sibutramine was found to be possible by (1)H-NMR with M-β-CD as chiral selector. Host-guest interaction between sibutramine and M-β-CD was confirmed by (1)H-NMR studies and CE studies. A Structure of the inclusion complex was proposed considering (1)H-NMR and 2D ROESY studies.

  8. Enantioresolution of (RS)-baclofen by liquid chromatography: A review.

    PubMed

    Batra, Sonika; Bhushan, Ravi

    2017-01-01

    Baclofen is a commonly used racemic drug and has a simple chemical structure in terms of the presence of only one stereogenic center. Since the desirable pharmacological effect is in only one enantiomer, several possibilities exist for the other enantiomer for evaluation of the disposition of the racemic mixture of the drug. This calls for the development of enantioselective analytical methodology. This review summarizes and evaluates different methods of enantioseparation of (RS)-baclofen using both direct and indirect approaches, application of certain chiral reagents and chiral stationary phases (though very expensive). Methods of separation of diastereomers of (RS)-baclofen prepared with different chiral derivatizing reagents (under microwave irradiation at ease and in less time) on reversed-phase achiral columns or via a ligand exchange approach providing high-sensitivity detection by the relatively less expensive methods of TLC and HPLC are discussed. The methods may be helpful for determination of enantiomers in biological samples and in pharmaceutical formulations for control of enantiomeric purity and can be practiced both in analytical laboratories and industry for routine analysis and R&D activities. Copyright © 2016 John Wiley & Sons, Ltd.

  9. The Chiral Separation Effect in quenched finite-density QCD

    NASA Astrophysics Data System (ADS)

    Puhr, Matthias; Buividovich, Pavel

    2018-03-01

    We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.

  10. Enantioselective simultaneous analysis of selected pharmaceuticals in environmental samples by ultrahigh performance supercritical fluid based chromatography tandem mass spectrometry.

    PubMed

    Camacho-Muñoz, Dolores; Kasprzyk-Hordern, Barbara; Thomas, Kevin V

    2016-08-31

    In order to assess the true impact of each single enantiomer of pharmacologically active compounds (PACs) in the environment, highly efficient, fast and sensitive analytical methods are needed. For the first time this paper focuses on the use of ultrahigh performance supercritical fluid based chromatography coupled to a triple quadrupole mass spectrometer to develop multi-residue enantioselective methods for chiral PACs in environmental matrices. This technique exploits the advantages of supercritical fluid chromatography, ultrahigh performance liquid chromatography and mass spectrometry. Two coated modified 2.5 μm-polysaccharide-based chiral stationary phases were investigated: an amylose tris-3,5-dimethylphenylcarbamate column and a cellulose tris-3-chloro-4-methylphenylcarbamate column. The effect of different chromatographic variables on chiral recognition is highlighted. This novel approach resulted in the baseline resolution of 13 enantiomers PACs (aminorex, carprofen, chloramphenicol, 3-N-dechloroethylifosfamide, flurbiprofen, 2-hydroxyibuprofen, ifosfamide, imazalil, naproxen, ofloxacin, omeprazole, praziquantel and tetramisole) and partial resolution of 2 enantiomers PACs (ibuprofen and indoprofen) under fast-gradient conditions (<10 min analysis time). The overall performance of the methods was satisfactory. The applicability of the methods was tested on influent and effluent wastewater samples. To the best of our knowledge, this is the first feasibility study on the simultaneous separation of chemically diverse chiral PACs in environmental matrices using ultrahigh performance supercritical fluid based chromatography coupled with tandem mass spectrometry. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    PubMed

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Comparison of surface light scattering of acrylic intraocular lenses made by lathe-cutting and cast-molding methods--long-term observation and experimental study].

    PubMed

    Nishihara, Hitoshi; Ayaki, Masahiko; Watanabe, Tomiko; Ohnishi, Takeo; Kageyama, Toshiyuki; Yaguchi, Shigeo

    2004-03-01

    To compare the long-term clinical and experimental results of soft acrylic intraocular lenses(IOLs) manufactured by the lathe-cut(LC) method and by the cast-molding(CM) method. This was a retrospective study of 20 patients(22 eyes) who were examined in a 5- and 7-year follow-up study. Sixteen eyes were implanted with polyacrylic IOLs manufactured by the LC method and 6 eyes were implanted with polyacrylic IOLs manufactured by the CM method. Postoperative measurements included best corrected visual acuity, contrast sensitivity, biomicroscopic examination, and Scheimpflug slit-lamp images to evaluate surface light scattering. Scanning electron microscopy and three-dimensional surface analysis were conducted. At 7 years, the mean visual acuity was 1.08 +/- 0.24 (mean +/- standard deviation) in the LC group and 1.22 +/- 0.27 in the CM group. Surface light-seatter was 12.0 +/- 4.0 computer compatible tapes(CCT) in the LC group and 37.4 +/- 5.4 CCT in the CM group. Mean surface roughness was 0.70 +/- 0.07 nm in the LC group and 6.16 +/- 0.97 nm in the CM group. Acrylic IOLs manufactured by the LC method are more stable in long-termuse.

  13. Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.

    2013-10-01

    We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.

  14. On the interplay between chirality and exciton coupling: a DFT calculation of the circular dichroism in π-stacked ethylene.

    PubMed

    Norman, Patrick; Linares, Mathieu

    2014-09-01

    The chirality of stacked weakly interacting π-systems was interpreted in terms of Frenkel exciton states and the formation of excitonic circular dichroism (CD) bands was monitored for ethylene stacks of varying sizes. Convergence of CD bands with respect to the system size was observed for stacks involving around 10 molecules. By means of rotation around the C-C double bond in ethylene, chirality was induced in the monomeric system and which was shown to dominate the spectral responses, even for polymer aggregates. In helical assemblies of chiral entities, there will always be a mix of excitonic and monomeric contributions to the CD signal and it is demonstrated that the complex polarization propagator approach in combination with Density Functional Theory is a suitable method to address this situation. © 2014 Wiley Periodicals, Inc.

  15. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; Petrie, C.; Carlson, J.; Schmidt, K. E.; Schwenk, A.

    2018-04-01

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this work, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei with 3 ≤A ≤16 . Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. The outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to 16O, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.

  16. Synthetic versatility of 2-substituted-6-methyl 2,3-dihydropyridinones in the synthesis of polyfunctional piperidine-based compounds and related β amino acid derivatives.

    PubMed

    Yang, Yang; Hardman, Clayton

    2017-10-18

    Chiral 2-substituted-6-methyl 2,3-dihydropyidinones 9, which can be facilely obtained from an asymmetric vinylogous Mannich reaction (VMR) with 1,3-bis-trimethysily enol ether, were used as versatile intermediates in constructing chiral polyfunctional piperidine-based compounds. The 6-methyl group of such compounds can be conveniently functionalized via alkylation and acylation reactions to provide efficient entries to the synthesis of a variety of chiral multi-substituted piperidine-based compounds. Further elaboration of the corresponding intermediates also provided access to polyfunctional indolizidine-based compounds. These methods were showcased in an asymmetric synthesis of 2,6-di-substituted piperidine compound 13, reported as the key intermediate in the synthesis of (+)-calvine and a natural alkaloid (-)-indolizidine 209D. Furthermore, selective C5 iodination of compound 9 enabled the installation of additional functional groups at this position. Finally, we demonstrated that the oxidative cleavage of 2-substituted-6-methyl-2,3-dihydropyidinones is a practical and efficient method for the enantioselective synthesis of β-amino acids, which can undergo further intra-molecular cyclization to give the corresponding chiral four-membered β-lactam derivatives.

  17. Chiral Analysis of Isopulegol by Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Chiral analysis on molecules with multiple chiral centers can be performed using pulsed-jet Fourier transform rotational spectroscopy. This analysis includes quantitative measurement of diastereomer products and, with the three wave mixing methods developed by Patterson, Schnell, and Doyle (Nature 497, 475-477 (2013)), quantitative determination of the enantiomeric excess of each diastereomer. The high resolution features enable to perform the analysis directly on complex samples without the need for chromatographic separation. Isopulegol has been chosen to show the capabilities of Fourier transform rotational spectroscopy for chiral analysis. Broadband rotational spectroscopy produces spectra with signal-to-noise ratio exceeding 1000:1. The ability to identify low-abundance (0.1-1%) diastereomers in the sample will be described. Methods to rapidly identify rotational spectra from isotopologues at natural abundance will be shown and the molecular structures obtained from this analysis will be compared to theory. The role that quantum chemistry calculations play in identifying structural minima and estimating their spectroscopic properties to aid spectral analysis will be described. Finally, the implementation of three wave mixing techniques to measure the enantiomeric excess of each diastereomer and determine the absolute configuration of the enantiomer in excess will be described.

  18. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  19. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients.

    PubMed

    Remily-Wood, Elizabeth R; Benson, Kaaron; Baz, Rachid C; Chen, Y Ann; Hussein, Mohamad; Hartley-Brown, Monique A; Sprung, Robert W; Perez, Brianna; Liu, Richard Z; Yoder, Sean J; Teer, Jamie K; Eschrich, Steven A; Koomen, John M

    2014-10-01

    Quantitative MS assays for Igs are compared with existing clinical methods in samples from patients with plasma cell dyscrasias, for example, multiple myeloma (MM). Using LC-MS/MS data, Ig constant region peptides, and transitions were selected for LC-MRM MS. Quantitative assays were used to assess Igs in serum from 83 patients. RNA sequencing and peptide-based LC-MRM are used to define peptides for quantification of the disease-specific Ig. LC-MRM assays quantify serum levels of Igs and their isoforms (IgG1-4, IgA1-2, IgM, IgD, and IgE, as well as kappa (κ) and lambda (λ) light chains). LC-MRM quantification has been applied to single samples from a patient cohort and a longitudinal study of an IgE patient undergoing treatment, to enable comparison with existing clinical methods. Proof-of-concept data for defining and monitoring variable region peptides are provided using the H929 MM cell line and two MM patients. LC-MRM assays targeting constant region peptides determine the type and isoform of the involved Ig and quantify its expression; the LC-MRM approach has improved sensitivity compared with the current clinical method, but slightly higher inter-assay variability. Detection of variable region peptides is a promising way to improve Ig quantification, which could produce a dramatic increase in sensitivity over existing methods, and could further complement current clinical techniques. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    PubMed

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  1. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality

    PubMed Central

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-01-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction–mediated chirality induction and the intrinsic stereogenic center–controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, (S)-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction–mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly. PMID:29119137

  2. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids.

    PubMed

    Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos

    2017-09-20

    We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.

  3. A chiral diamine: practical implications of a three-stereoisomer cocrystallization.

    PubMed

    Dolinar, Brian S; Samedov, Kerim; Maloney, Andrew G P; West, Robert; Khrustalev, Victor N; Guzei, Ilia A

    2018-01-01

    A brief comparison of seven straightforward methods for molecular crystal-volume estimation revealed that their precisions are comparable. A chiral diamine, N 2 ,N 3 -bis[2,6-bis(propan-2-yl)phenyl]butane-2,3-diamine, C 28 H 44 N 2 , has been used to illustrate the application of the methods. Three stereoisomers of the diamine cocrystallize in the centrosymmetric space group P2 1 /c with Z' = 1.5. The molecules occupying general positions are RR and SS, whereas that residing on an inversion center is meso. This is one of only ten examples of three stereoisomers with two asymmetric atoms cocrystallizing together reported to the Cambridge Structural Database (CSD). The conformations of the SS/RR and meso molecules differ considerably and lead to statistically significantly different C(asymmetric)-C(asymmetric) bond lengths in the diastereomers. An advanced Python script-based CSD searching technique for chiral compounds is presented.

  4. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes.

    PubMed

    Li, Guangyue; Wang, Jian-Bo; Reetz, Manfred T

    2018-04-01

    Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    PubMed

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  6. Electric line source illumination of a chiral cylinder placed in another chiral background medium

    NASA Astrophysics Data System (ADS)

    Aslam, M.; Saleem, A.; Awan, Z. A.

    2018-05-01

    An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.

  7. Rapid and interference-free analysis of nine B-group vitamins in energy drinks using trilinear component modeling of liquid chromatography-mass spectrometry data.

    PubMed

    Hu, Yong; Wu, Hai-Long; Yin, Xiao-Li; Gu, Hui-Wen; Xiao, Rong; Xie, Li-Xia; Liu, Zhi; Fang, Huan; Wang, Li; Yu, Ru-Qin

    2018-04-01

    The aim of the present work was to develop a rapid and interference-free method based on liquid chromatography-mass spectrometry (LC-MS) for the simultaneous determination of nine B-group vitamins in various energy drinks. A smart and green strategy that modeled the three-way data array of LC-MS with second-order calibration methods based on alternating trilinear decomposition (ATLD) and alternating penalty trilinear decomposition (APTLD) algorithms was developed. By virtue of "mathematical separation" and "second-order advantage", the proposed strategy successfully solved the co-eluted peaks and unknown interferents in LC-MS analysis with the elution time less than 4.5min and simple sample preparation. Satisfactory quantitative results were obtained by the ATLD-LC-MS and APTLD-LC-MS methods for the spiked recovery assays, with the average spiked recoveries ranging from 87.2-113.9% to 92.0-111.7%, respectively. These results acquired from the proposed methods were confirmed by the LC-MS/MS method, which shows a quite good consistency with each other. All these results demonstrated that the developed chemometrics-assisted LC-MS strategy had advantages of being rapid, green, accurate and low-cost, and it could be an attractive alternative for the determination of multiple vitamins in complex food matrices, which required no laborious sample preparation, tedious condition optimization or more sophisticated instrumentations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Excited meson spectroscopy with two chirally improved quarks

    NASA Astrophysics Data System (ADS)

    Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.

    The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.

  9. Ultra-performance liquid chromatography/tandem mass spectrometric quantification of structurally diverse drug mixtures using an ESI-APCI multimode ionization source.

    PubMed

    Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S

    2007-01-01

    We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.

  10. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  11. What Is in Your Wallet? Quantitation of Drugs of Abuse on Paper Currency with a Rapid LC-MS/MS Method

    ERIC Educational Resources Information Center

    Parker, Patrick D.; Beers, Brandon; Vergne, Matthew J.

    2017-01-01

    Laboratory experiments were developed to introduce students to the quantitation of drugs of abuse by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Undergraduate students were introduced to internal standard quantitation and the LC-MS/MS method optimization for cocaine. Cocaine extracted from paper currency was…

  12. Liver Cirrhosis: Evaluation, Nutritional Status, and Prognosis

    PubMed Central

    Nishikawa, Hiroki; Osaki, Yukio

    2015-01-01

    The liver is the major organ for the metabolism of three major nutrients: protein, fat, and carbohydrate. Chronic hepatitis C virus infection is the major cause of chronic liver disease. Liver cirrhosis (LC) results from different mechanisms of liver injury that lead to necroinflammation and fibrosis. LC has been seen to be not a single disease entity but one that can be graded into distinct clinical stages related to clinical outcome. Several noninvasive methods have been developed for assessing liver fibrosis and these methods have been used for predicting prognosis in patients with LC. On the other hand, subjects with LC often have protein-energy malnutrition (PEM) and poor physical activity. These conditions often result in sarcopenia, which is the loss of skeletal muscle volume and increased muscle weakness. Recent studies have demonstrated that PEM and sarcopenia are predictive factors for poorer survival in patients with LC. Based on these backgrounds, several methods for evaluating nutritional status in patients with chronic liver disease have been developed and they have been preferably used in the clinical field practice. In this review, we will summarize the current knowledge in the field of LC from the viewpoints of diagnostic method, nutritional status, and clinical outcomes. PMID:26494949

  13. Scaleable catalytic asymmetric Strecker syntheses of unnatural alpha-amino acids.

    PubMed

    Zuend, Stephan J; Coughlin, Matthew P; Lalonde, Mathieu P; Jacobsen, Eric N

    2009-10-15

    Alpha-amino acids are the building blocks of proteins and are widely used as components of medicinally active molecules and chiral catalysts. Efficient chemo-enzymatic methods for the synthesis of enantioenriched alpha-amino acids have been developed, but it is still a challenge to obtain non-natural amino acids. Alkene hydrogenation is broadly useful for the enantioselective catalytic synthesis of many classes of amino acids, but it is not possible to obtain alpha-amino acids bearing aryl or quaternary alkyl alpha-substituents using this method. The Strecker synthesis-the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis-is an especially versatile chemical method for the synthesis of racemic alpha-amino acids. Asymmetric Strecker syntheses using stoichiometric amounts of a chiral reagent have been applied successfully on gram-to-kilogram scales, yielding enantiomerically enriched alpha-amino acids. In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent could provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen limited use on preparative scales (more than a gram). The limited utility of existing catalytic methods may be due to several important factors, including the relatively complex and precious nature of the catalysts and the requisite use of hazardous cyanide sources. Here we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-natural amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. This catalyst is robust, without sensitive functional groups, so it is compatible with aqueous cyanide salts, which are safer and easier to handle than other cyanide sources; this makes the method adaptable to large-scale synthesis. We have used this new method to obtain enantiopure amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation.

  14. LC-UV assay method and UPLC/Q-TOF-MS characterisation of saponins from Ilex paraguariensis A. St. Hil. (mate) unripe fruits.

    PubMed

    Peixoto, Maria Paula Garofo; Kaiser, Samuel; Verza, Simone Gasparin; de Resende, Pedro Ernesto; Treter, Janine; Pavei, Cabral; Borré, Gustavo Luís; Ortega, George González

    2012-01-01

    Ilex paraguariensis A. St. Hil. (mate) is known in several South American countries because of the use of its leaves in stimulant herbal beverages. High saponin contents were reported in mate leaves and unripe fruits that possess a dissimilar composition. Two LC-UV methods previously reported for mate saponins assay focused on mate leaves and the quantification of the less polar saponin fraction in mate fruits. To develop and validate a LC-UV method to assay the total content of saponins in unripe mate fruits and characterise the chemical structure of triterpenic saponins by UPLC/Q-TOF-MS. From unripe fruits of mate a crude ethanolic extract was prepared (EX40) and the mate saponin fraction (MSF) purified by solid phase extraction. The LC-UV method was validated using ilexoside II as external standard. UPLC/Q-TOF-MS was adjusted from the LC-UV method to obtain the fragmentation patterns of the main saponins present in unripe fruits. Both LC-UV and UPLC/Q-TOF-MS methods indicate a wide range of Ilex saponins polarity. The ilexoside II and total saponin content of EX40 were 8.20% (w/w) and 47.60% (w/w), respectively. The total saponin content in unripe fruits was 7.28% (w/w). The saponins present in MSF characterised by UPLC/Q-TOF-MS are derived mainly from ursolic/oleanolic, acetyl ursolic or pomolic acid. The validated LC-UV method was shown to be linear, precise, accurate and to cover several saponins previously isolated from Ilex species and could be applied for the quality control of unripe fruit saponins. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds

    NASA Astrophysics Data System (ADS)

    Weckbecker, Andrea; Gröger, Harald; Hummel, Werner

    Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.

  16. Enantioselective Synthesis of SNAP-7941

    PubMed Central

    Goss, Jennifer M.; Schaus, Scott E.

    2009-01-01

    An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihydropyrimidone with the 3-(4-phenylpiperidin-1-yl)propyl amine side chain fragment. The synthesis of SNAP-7921 highlights the utility of asymmetric organocatalytic methods in the construction of an important class of chiral heterocycles. PMID:18767801

  17. An assessment of two-step linear regression and a multifactor probit analysis as alternatives to acute to chronic ratios in the estimation of chronic response from acute toxicity data to derive water quality guidelines.

    PubMed

    Slaughter, Andrew R; Palmer, Carolyn G; Muller, Wilhelmine J

    2007-04-01

    In aquatic ecotoxicology, acute to chronic ratios (ACRs) are often used to predict chronic responses from available acute data to derive water quality guidelines, despite many problems associated with this method. This paper explores the comparative protectiveness and accuracy of predicted guideline values derived from the ACR, linear regression analysis (LRA), and multifactor probit analysis (MPA) extrapolation methods applied to acute toxicity data for aquatic macroinvertebrates. Although the authors of the LRA and MPA methods advocate the use of extrapolated lethal effects in the 0.01% to 10% lethal concentration (LC0.01-LC10) range to predict safe chronic exposure levels to toxicants, the use of an extrapolated LC50 value divided by a safety factor of 5 was in addition explored here because of higher statistical confidence surrounding the LC50 value. The LRA LC50/5 method was found to compare most favorably with available experimental chronic toxicity data and was therefore most likely to be sufficiently protective, although further validation with the use of additional species is needed. Values derived by the ACR method were the least protective. It is suggested that there is an argument for the replacement of ACRs in developing water quality guidelines by the LRA LC50/5 method.

  18. Enhancing and reducing chirality by opposite circularly-polarized light irradiation on crystalline chiral domains consisting of nonchiral photoresponsive W-shaped liquid crystal molecules.

    PubMed

    Choi, Suk-Won; Takezoe, Hideo

    2016-09-28

    We found possible chirality enhancement and reduction in chiral domains formed by photoresponsive W-shaped molecules by irradiation with circularly polarized light (CPL). The W-shaped molecules exhibit a unique smectic phase with spontaneously segregated chiral domains, although the molecules are nonchiral. The chirality control was generated in the crystalline phase, which shows chiral segregation as in the upper smectic phase, and the result appeared to be as follows: for a certain chiral domain, right-CPL stimuli enhanced the chirality, while left-CPL stimuli reduced the chirality, and vice versa for another chiral domain. Interestingly, no domain-size change could be observed after CPL irradiation, suggesting some changes in the causes of chirality. In this way, the present system can recognize the handedness of the applied chiral stimuli. In other words, the present material can be used as a sensitive chiral-stimuli-recognizing material and should find invaluable applications, including in chiroptical switches, sensors, and memories as well as in chiral recognition.

  19. Three site Higgsless model at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya

    2007-04-01

    In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less

  20. Enantioselective construction of C-chiral allylic sulfilimines via the iridium-catalyzed allylic amination with S,S-diphenylsulfilimine: asymmetric synthesis of primary allylic amines† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc01317d Click here for additional data file.

    PubMed Central

    Grange, Rebecca L.; Clizbe, Elizabeth A.; Counsell, Emma J.

    2015-01-01

    We have devised a highly regio- and enantioselective iridium-catalyzed allylic amination reaction with the sulfur-stabilized aza-ylide, S,S-diphenylsulfilimine. This process provides a robust and scalable method for the construction of aryl-, alkyl- and alkenyl-substituted C-chiral allylic sulfilimines, which are important functional groups for organic synthesis. Additionally, the combination of the allylic amination with an in situ deprotection of the sulfilimine constitutes a convenient one-pot protocol for the construction of chiral nonracemic primary allylic amines. PMID:28936319

  1. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  2. Ferroelectric Liquid Crystals: Synthesis and Thermal Behavior of Optically Active, Three-Ring Schiff Bases and Salicylaldimines.

    PubMed

    Veerabhadraswamy, Bhyranalyar N; Rao, Doddamane S Shankar; Yelamaggad, Channabasaveshwar V

    2018-04-16

    The chiral ferroelectric smectic C (SmC*) phase, characterized by a helical superstructure, has been well exploited in developing high-resolution microdisplays that have been effectively employed in the fabrication of a wide varieties of portable devices. Although, an overwhelming number of optically active (chiral) liquid crystals (LCs) exhibiting a SmC* phase have been designed and synthesized, the search for new systems continues so as to realize mesogens capable of meeting technical necessities and specifications for their end-use. In continuation of our research work in this direction, herein we report the design, synthesis, and thermal behavior of twenty new optically active, three-ring calamitic LCs belonging to four series. The first two series comprise five pairs of enantiomeric Schiff bases whereas the other two series are composed of five pairs of enantiomeric salicylaldimines. In each pair of optical isomers, the configuration of a chiral center in one stereoisomer is opposite to that of the analogous center in the other isomer as they are derived from (3 S)-3,7-dimethyloctyloxy and (3 R)-3,7-dimethyloctyloxy tails. To probe the structure-property correlations in each series, the length of the n-alkoxy tail situated at the other end of the mesogens has been varied from n-octyloxy to n-dodecyloxy. The measurement of optical activity of these chiral mesogens was carried out by recording their specific rotations. As expected, enantiomers rotate plane polarized light in the opposite direction but by the same magnitude. The thermal behavior of the compounds was established by using a combination of optical polarizing microscopy, differential scanning calorimetry, and powder X-ray diffraction. These complementary techniques demonstrate the existence of the expected, thermodynamically stable, chiral smectic C (SmC*) LC phase besides blue phase I/II (BPI or BPII) and chiral nematic (N*) phase. However, as noted in our previous analogous study, the vast majority of the Schiff bases show an additional metastable, unfamiliar smectic (SmX) phase just below the SmC* phase. Notably, the SmC* phase persists over the temperature range ≈80-115 °C. Two mesogens chosen each from Schiff bases and salicylaldimines were investigated for their electrical switching behavior. The study reveals the ferroelectric switching characteristics of the SmC* phase featuring the spontaneous polarization (P S ) in the range 69-96 nC cm -2 . The helical twist sense of the SmC* phase as well as the N* phase formed by a pair of enantiomeric Schiff bases and salicylaldimines has been established with the help of circular dichroism (CD) spectroscopic technique. As expected, the SmC* and the N* phase of a pair of enantiomers showed mirror image CD signals. Most importantly, the reversal of helical handedness from left to right and vice versa has been evidenced during the N* to SmC* phase transition, implying that the screw sense of the helical array of the N* phase and the SmC* phase of an enantiomer is opposite. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. What Can We Learn from Hadronic and Radiative Decays of Light Mesons?

    NASA Astrophysics Data System (ADS)

    Kubis, Bastian

    2013-04-01

    Chiral perturbation theory offers a powerful tool for the investigation of light pseudoscalar mesons. It incorporates the fundamental symmetries of QCD, interrelates various processes, and allows to link these to the light quark masses. Its shortcomings lie in a limited energy range: the radius of convergence of the chiral expansion is confined to below resonance scales. Furthermore, the strongest consequences of chiral symmetry are manifest for pseudoscalars (pions, kaons, eta) only: vector mesons, e.g., have a severe impact in particular for reactions involving photons. In this talk, I advocate dispersions relations as another model-independent tool to extend the applicability range of chiral perturbation theory. They even allow to tackle the physics of vector mesons in a rigorous way. It will be shown how dispersive methods can be used to resum large rescattering effects, and to provide model-independent links between hadronic and radiative decay modes. Examples to be discussed will include decays of the eta meson, giving access to light-quark-mass ratios or allowing to test the chiral anomaly; and meson transition form factors, which have an important impact on the hadronic light-by-light-scattering contribution to the anomalous magnetic moment of the muon.

  4. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    PubMed

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  5. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    PubMed

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  6. Quality profile determination of Chios mastic gum essential oil and detection of adulteration in mastic oil products with the application of chiral and non-chiral GC-MS analysis.

    PubMed

    Paraschos, Sotirios; Magiatis, Prokopios; Gikas, Evagelos; Smyrnioudis, Ilias; Skaltsounis, Alexios-Leandros

    2016-10-01

    The determination of mastic oil profile, with emphasis on its chiral characteristics, could serve as a method for detecting adulteration in products found in the market with a claim of mastic oil content aiming towards protecting it from counterfeiting. Furthermore the evaluation of the raw material is crucial, as the profile is potentially affected by factors as mastic origin and storage time. Thus 45 authentic mastic oil samples were analyzed by GC-MS employing a chiral column and content limits for all major constituents were determined. The chiral GC-MS analysis proved that selected concentration ratios between these constituents, namely those of (-)/(+)-α-pinene (≤1:100) and (-)-α-pinene/myrcene (1.9:100-11:100) could serve as markers for the determination of mastic oil authenticity. Employing this methodology, the analysis of 25 mastic oils contained in cosmetic and dietary products, as well as an artificial mastic oil sample, exhibited several differentiations that could indicate adulteration either with artificial essential oils or volatile compounds, or the use of aged mastic oil. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of street drugs in seized material without primary reference standards.

    PubMed

    Laks, Suvi; Pelander, Anna; Vuori, Erkki; Ali-Tolppa, Elisa; Sippola, Erkki; Ojanperä, Ilkka

    2004-12-15

    A novel approach was used to analyze street drugs in seized material without primary reference standards. Identification was performed by liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS), essentially based on accurate mass determination using a target library of 735 exact monoisotopic masses. Quantification was carried out by liquid chromatography/chemiluminescence nitrogen detection (LC/CLND) with a single secondary standard (caffeine), utilizing the detector's equimolar response to nitrogen. Sample preparation comprised dilution, first with methanol and further with the LC mobile phase. Altogether 21 seized drug samples were analyzed blind by the present method, and results were compared to accredited reference methods utilizing identification by gas chromatography/mass spectrometry and quantification by gas chromatography or liquid chromatography. The 31 drug findings by LC/TOFMS comprised 19 different drugs-of-abuse, byproducts, and adulterants, including amphetamine and tryptamine designer drugs, with one unresolved pair of compounds having an identical mass. By the reference methods, 27 findings could be confirmed, and among the four unconfirmed findings, only 1 apparent false positive was found. In the quantitative analysis of 11 amphetamine, heroin, and cocaine findings, mean relative difference between the results of LC/CLND and the reference methods was 11% (range 4.2-21%), without any observable bias. Mean relative standard deviation for three parallel LC/CLND results was 6%. Results suggest that the present combination of LC/TOFMS and LC/CLND offers a simple solution for the analysis of scheduled and designer drugs in seized material, independent of the availability of primary reference standards.

  8. Enantioselective determination of representative profens in wastewater by a single-step sample treatment and chiral liquid chromatography-tandem mass spectrometry.

    PubMed

    Caballo, C; Sicilia, M D; Rubio, S

    2015-03-01

    This manuscript describes, for the first time, the simultaneous enantioselective determination of ibuprofen, naproxen and ketoprofen in wastewater based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The method uses a single-step sample treatment based on microextraction with a supramolecular solvent made up of hexagonal inverted aggregates of decanoic acid, formed in situ in the wastewater sample through a spontaneous self-assembly process. Microextraction of profens was optimized and the analytical method validated. Isotopically labeled internal standards were used to compensate for both matrix interferences and recoveries. Apparent recoveries for the six enantiomers in influent and effluent wastewater samples were in the interval 97-103%. Low method detection limits (MDLs) were obtained (0.5-1.2 ng L(-1)) as a result of the high concentration factors achieved in the microextraction process (i.e. actual concentration factors 469-736). No analyte derivatization or evaporation of extracts, as it is required with GC-MS, was necessary. Relative standard deviations for enantiomers in wastewater were always below 8%. The method was applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in influents and effluents from three wastewater treatment plants. All the values found for profen enantiomers were consistent with those previously reported and confirmed again the suitability of using the enantiomeric fraction of ibuprofen as an indicator of the discharge of untreated or poorly treated wastewaters. Both the analytical and operational features of this method make it applicable to the assessment of the enantiomeric fate of profens in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    PubMed

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  10. Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making

    PubMed Central

    Vázquez-Rowe, Ian

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting. PMID:25654136

  11. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    PubMed Central

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-01-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (∼30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response. PMID:27156514

  12. Simultaneous enantioselective quantification of fluoxetine and norfluoxetine in human milk by direct sample injection using 2-dimensional liquid chromatography-tandem mass spectrometry.

    PubMed

    Alvim, Joel; Lopes, Bianca Rebelo; Cass, Quezia Bezerra

    2016-06-17

    A two-dimensional liquid chromatography system coupled to triple quadrupole tandem mass spectrometer (2D LC-MS/MS) was employed for the simultaneously quantification of fluoxetine (FLX) and norfluoxetine (NFLX) enantiomers in human milk by direct injection of samples. A restricted access media of bovine serum albumin octadecyl column (RAM-BSAC18) was used in the first dimension for the milk proteins depletion, while an antibiotic-based chiral column was used in the second dimension. The results herein described show good selectivity, extraction efficiency, accuracy, and precision with limits of quantification in the order of 7.5ngmL(-1)for the FLX enantiomers and 10.0ngmL(-1) for NFLX enantiomers. Furthermore, it represents a practical tool in terms of sustainability for the sample preparation of such a difficult matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Temperature tuning of lasing emission from dye-doped liquid crystal at intermediate twisted phase

    NASA Astrophysics Data System (ADS)

    Liao, Kuan-Cheng; Lin, Ja-Hon; Jian, Li-Hao; Chen, Yao-Hui; Wu, Jin-Jei

    2015-07-01

    Temperature tuning of lasing emission from dye-doped cholesteric liquid crystal (CLC) at intermediate twisted phase has been demonstrated in this work. With heavily doping of 42.5% chiral molecules into the nematic liquid crystals, the shifts of photonic bandgap versus temperature is obviously as thermal controlling of the sample below the certain value. By the differential scanning calorimetr measuremet, we demonstrate the phase transition from the CLC to the smectic phase when the temperature is lowered to be about 15°C. Between CLC and smectic phase, the liquid crystal mixtures are operated at intermediate twisted phase that can be used the temperature related refractive mirror. After pump by the Q-switched Nd:YAG laser, the lasing emission from this dye doped LC mixtures has been demonstrated whose emission wavelength can be tuned from 566 to 637 nm with 1.4°C variation.

  14. Spontaneous helix formation in non-chiral bent-core liquid crystals with fast linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Sithara P.; Panarin, Yuri P.; Vij, Jagdish K.; Panov, Vitaly P.; Lehmann, Anne; Poppe, Marco; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Liquid crystals (LCs) represent one of the foundations of modern communication and photonic technologies. Present display technologies are based mainly on nematic LCs, which suffer from limited response time for use in active colour sequential displays and limited image grey scale. Herein we report the first observation of a spontaneously formed helix in a polar tilted smectic LC phase (SmC phase) of achiral bent-core (BC) molecules with the axis of helix lying parallel to the layer normal and a pitch much shorter than the optical wavelength. This new phase shows fast (~30 μs) grey-scale switching due to the deformation of the helix by the electric field. Even more importantly, defect-free alignment is easily achieved for the first time for a BC mesogen, thus providing potential use in large-scale devices with fast linear and thresholdless electro-optical response.

  15. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    PubMed

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. SAR Simulation with Magneto Chiral Effects for Human Head Radiated from Cellular Phones

    NASA Astrophysics Data System (ADS)

    Torres-Silva, H.

    2008-09-01

    A numerical method for a microwave signal emitted by a cellular phone, propagating in a magneto-chiral media, characterized by an extended Born-Fedorov formalism, is presented. It is shown that the use of a cell model, combined with a real model of the human head, derived from the magnetic resonance of images allows a good determination of the near fields induced in the head when the brain chirality and the battery magnetic field are considered together. The results on a 2-Dim human head model show the evolution of the specific absorption rate, (SAR coefficient) and the spatial peak specific absorption rate which are sensitives to the magneto-chiral factor, which is important in the brain layer. For GSM/PCN phones, extremely low frequency real pulsed magnetic fields (in the order of 10 to 60 milligauss) are added to the model through the whole of the user's head. The more important conclusion of our work is that the head absorption is bigger than the results for a classical model without the magneto chiral effect. Hot spots are produced due to the combination of microwave and the magnetic field produced by the phone's operation. The FDTD method was used to compute the SARs inside the MRI based head models consisting of various tissues for 1.8 GHz. As a result, we found that in the head model having more than four kinds of tissue, the localized peak SAR reaches maximum inside the head for over five tissues including skin, bone, blood and brain cells.

  17. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Jafari, Marzieh; Tashkhourian, Javad; Absalan, Ghodratollah

    2017-10-01

    A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH 7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4 × 10-7-9.1 × 10-6 and 9.1 × 10-6-3.1 × 10-5 mol L-1 for both enantiomers and detection limits of 7.4 × 10-8 mol L- 1 and 9.5 × 10-8 mol L-1 were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.

  18. Theoretical Sum Frequency Generation Spectroscopy of Peptides

    PubMed Central

    2015-01-01

    Vibrational sum frequency generation (SFG) has become a very promising technique for the study of proteins at interfaces, and it has been applied to important systems such as anti-microbial peptides, ion channel proteins, and human islet amyloid polypeptide. Moreover, so-called “chiral” SFG techniques, which rely on polarization combinations that generate strong signals primarily for chiral molecules, have proven to be particularly discriminatory of protein secondary structure. In this work, we present a theoretical strategy for calculating protein amide I SFG spectra by combining line-shape theory with molecular dynamics simulations. We then apply this method to three model peptides, demonstrating the existence of a significant chiral SFG signal for peptides with chiral centers, and providing a framework for interpreting the results on the basis of the dependence of the SFG signal on the peptide orientation. We also examine the importance of dynamical and coupling effects. Finally, we suggest a simple method for determining a chromophore’s orientation relative to the surface using ratios of experimental heterodyne-detected signals with different polarizations, and test this method using theoretical spectra. PMID:25203677

  19. Chiral signs of TPPS co-assemblies with chiral gelators: role of molecular and supramolecular chirality.

    PubMed

    Wang, Qiuling; Zhang, Li; Yang, Dong; Li, Tiesheng; Liu, Minghua

    2016-10-13

    A dianionic tetrakis(4-sulfonatophenyl)porphyrin (TPPS) self-assembled into J-aggregates when it co-assembled with a chiral cationic amphiphile via supramolecular gelation. The chiral signs of TPPS J aggregates followed the supramolecular chirality of amphiphilic assemblies rather than the molecular chirality of the amphiphile.

  20. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  1. Quantitative analysis of three chiral pesticide enantiomers by high-performance column liquid chromatography.

    PubMed

    Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang

    2008-01-01

    Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.

  2. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin.

    PubMed

    Xu, Yujing; Hong, Tingting; Chen, Xueping; Ji, Yibing

    2017-05-01

    Baseline separation of omeprazole (OME) enantiomers was achieved by affinity capillary electrophoresis (ACE), using human serum albumin (HSA) as the chiral selector. The influence of several experimental variables such as HSA concentration, the type and content of organic modifiers, applied voltage and running buffer concentration on the separation was evaluated. The binding of esomeprazole (S-omeprazole, S-OME) and its R-enantiomer (R-omeprazole, R-OME) to HSA under simulated physiological conditions was studied by ACE and fluorescence spectroscopy which was considered as a reference method. ACE studies demonstrated that the binding constants of the two enantiomers and HSA were 3.18 × 10 3 M -1 and 5.36 × 10 3 M -1 , respectively. The binding properties including the fluorescence quenching mechanisms, binding constants, binding sites and the number of binding sites were obtained by fluorescence spectroscopy. Though the ACE method could not get enough data when compared with the fluorescence spectrum method, the separation and binding studies of chiral drugs could be achieved simultaneously via this method. This study is of great significance for the investigation and clinical application of chiral drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chirality sensing with stereodynamic copper(I) complexes.

    PubMed

    De Los Santos, Zeus A; Legaux, Nicholas M; Wolf, Christian

    2017-11-01

    Three Cu(I) complexes derived from stereodynamic diphosphine ligands were synthesized and used for chirality sensing. The coordination of diamines and amino acids to these complexes generates distinct circular dichroism signals. The chiroptical sensor response allows determination of the absolute configuration and the enantiomeric excess of the analyte at low concentrations. This method is operationally simple, fast, and attractive for high-throughput sensing applications. © 2017 Wiley Periodicals, Inc.

  4. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    PubMed

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc.

  5. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting.

    PubMed

    Zeman, David; Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance.

  6. High-Throughput Quantification of GFP-LC3+ Dots by Automated Fluorescence Microscopy.

    PubMed

    Bravo-San Pedro, J M; Pietrocola, F; Sica, V; Izzo, V; Sauvat, A; Kepp, O; Maiuri, M C; Kroemer, G; Galluzzi, L

    2017-01-01

    Macroautophagy is a specific variant of autophagy that involves a dedicated double-membraned organelle commonly known as autophagosome. Various methods have been developed to quantify the size of the autophagosomal compartment, which is an indirect indicator of macroautophagic responses, based on the peculiar ability of microtubule-associated protein 1 light chain 3 beta (MAP1LC3B; best known as LC3) to accumulate in forming autophagosomes upon maturation. One particularly convenient method to monitor the accumulation of mature LC3 within autophagosomes relies on a green fluorescent protein (GFP)-tagged variant of this protein and fluorescence microscopy. In physiological conditions, cells transfected temporarily or stably with a GFP-LC3-encoding construct exhibit a diffuse green fluorescence over the cytoplasm and nucleus. Conversely, in response to macroautophagy-promoting stimuli, the GFP-LC3 signal becomes punctate and often (but not always) predominantly cytoplasmic. The accumulation of GFP-LC3 in cytoplasmic dots, however, also ensues the blockage of any of the steps that ensure the degradation of mature autophagosomes, calling for the implementation of strategies that accurately discriminate between an increase in autophagic flux and an arrest in autophagic degradation. Various cell lines have been engineered to stably express GFP-LC3, which-combined with the appropriate controls of flux, high-throughput imaging stations, and automated image analysis-offer a relatively straightforward tool to screen large chemical or biological libraries for inducers or inhibitors of autophagy. Here, we describe a simple and robust method for the high-throughput quantification of GFP-LC3 + dots by automated fluorescence microscopy. © 2017 Elsevier Inc. All rights reserved.

  7. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  8. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  9. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Shuchen; Kang, Lixing; Wang, Xiao; Tong, Lianming; Yang, Liangwei; Wang, Zequn; Qi, Kuo; Deng, Shibin; Li, Qingwen; Bai, Xuedong; Ding, Feng; Zhang, Jin

    2017-02-01

    The semiconductor industry is increasingly of the view that Moore’s law—which predicts the biennial doubling of the number of transistors per microprocessor chip—is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.

  10. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    NASA Astrophysics Data System (ADS)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  11. New synthetic routes toward enantiopure nitrogen donor ligands.

    PubMed

    Sala, Xavier; Rodríguez, Anna M; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; von Zelewsky, Alexander; Llobet, Antoni; Benet-Buchholz, Jordi

    2006-12-08

    New polypyridylic chiral ligands, having either C3 or lower symmetry, have been prepared via a de novo construction of the pyridine nucleus by means of Kröhnke methodology in the key step. The chiral moieties of these ligands originate from the monoterpen chiral pool, namely (-)-alpha-pinene ((-)-14, (-)-15) and (-)-myrtenal ((-)-9, (-)-10). Extension of the above-mentioned asymmetric synthesis procedure to the preparation of enantiopure derivatives of some commonly used polypyridylic ligands has been achieved through a new aldehyde building block ((-)-16). As an example, the synthesis of a chiral derivative of N,N-bis(2-pyridylmethyl)ethylamine (bpea) ligand, (-)-19, has been performed to illustrate the viability of the method. The coordinative ability of the ligands has been tested through the synthesis and characterization of complexes [Mn((-)-19)Br2], (-)-20, and [RuCl((-)-10)(bpy)](BF4), (-)-21. Some preliminary results related to the enantioselective catalytic epoxidation of styrene with the ruthenium complex are also presented.

  12. Effective chiral restoration in the ρ' meson in lattice QCD

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-11-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.

  13. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  14. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    PubMed

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  15. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  16. Supramolecular features of 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino]-2,3-dihydroquinazolin-4(1H)-ones: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Mandal, Arkalekha; Patel, Bhisma K.

    2018-03-01

    The molecular structures of two isomeric 2-(chlorophenyl)-3-[(chlorobenzylidene)-amino] substituted 2,3-dihydroquinazolin-4(1H)-ones have been determined via single crystal XRD. Both isomers contain chloro substitutions on each of the phenyl rings and as a result a broad spectrum of halogen mediated weak interactions are viable in their crystal structures. The crystal packing of these compounds is stabilized by strong N-H⋯O hydrogen bond and various weak, non-classical hydrogen bonds acting synergistically. Both the molecules contain a chiral center and the weak interactions observed in them are either chiral self-discriminatory or chiral self-recognizing in nature. The weak interactions and spectral features of the compounds have been studied through experimental as well as computational methods including DFT, MEP, NBO and Hiresfeld surface analyses. In addition, the effect of different weak interactions to dictate either chiral self-recognition or self-discrimination in crystal packing has been elucidated.

  17. Phase structure of NJL model with weak renormalization group

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  18. Auxiliary field diffusion Monte Carlo calculations of light and medium-mass nuclei with local chiral interactions

    DOE PAGES

    Lonardoni, D.; Gandolfi, S.; Lynn, J. E.; ...

    2018-04-24

    Quantum Monte Carlo methods have recently been employed to study properties of nuclei and infinite matter using local chiral effective-field-theory interactions. In this paper, we present a detailed description of the auxiliary field diffusion Monte Carlo algorithm for nuclei in combination with local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We show results for the binding energy, charge radius, charge form factor, and Coulomb sum rule in nuclei withmore » $$3{\\le}A{\\le}16$$. Particular attention is devoted to the effect of different operator structures in the three-body force for different cutoffs. Finally, the outcomes suggest that local chiral interactions fit to few-body observables give a very good description of the ground-state properties of nuclei up to $$^{16}\\mathrm{O}$$, with the exception of one fit for the softer cutoff which predicts overbinding in larger nuclei.« less

  19. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  20. Simultaneous determination of five coumarins in Angelicae dahuricae Radix by HPLC/UV and LC-ESI-MS/MS.

    PubMed

    Park, Ah Yeon; Park, So-Young; Lee, Jaehyun; Jung, Mihye; Kim, Jinwoong; Kang, Sam Sik; Youm, Jeong-Rok; Han, Sang Beom

    2009-10-01

    Rapid, simple and reliable HPLC/UV and LC-ESI-MS/MS methods for the simultaneous determination of five active coumarins of Angelicae dahuricae Radix, byakangelicol (1), oxypeucedanin (2), imperatorin (3), phellopterin (4) and isoimperatorin (5) were developed and validated. The separation condition for HPLC/UV was optimized using a Develosil RPAQUEOUS C(30) column using 70% acetonitrile in water as the mobile phase. This HPLC/UV method was successful for providing the baseline separation of the five coumarins with no interfering peaks detected in the 70% ethanol extract of Angelicae dahuricae Radix. The specific determination of the five coumarins was also accomplished by a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source (LC-ESI-MS/MS). Multiple reaction monitoring (MRM) in the positive mode was used to enhance the selectivity of detection. The LC-ESI-MS/MS methods were successfully applied for the determination of the five major coumarins in Angelicae dahuricae Radix. These HPLC/UV and LC-ESI-MS/MS methods were validated in terms of recovery, linearity, accuracy and precision (intra- and inter-day validation). Taken together, the shorter analysis time involved makes these HPLC/UV and LC-ESI-MS/MS methods valuable for the commercial quality control of Angelicae dahuricae Radix extracts and its pharmaceutical preparations. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Mini-ISES identifies promising carbafructopyranose-based salens for asymmetric catalysis: Tuning ligand shape via the anomeric effect

    PubMed Central

    Karukurichi, Kannan R.; Fei, Xiang; Swyka, Robert A.; Broussy, Sylvain; Shen, Weijun; Dey, Sangeeta; Roy, Sandip K.; Berkowitz, David B.

    2015-01-01

    This study introduces new methods of screening for and tuning chiral space and in so doing identifies a promising set of chiral ligands for asymmetric synthesis. The carbafructopyranosyl-1,2-diamine(s) and salens constructed therefrom are particularly compelling. It is shown that by removing the native anomeric effect in this ligand family, one can tune chiral ligand shape and improve chiral bias. This concept is demonstrated by a combination of (i) x-ray crystallographic structure determination, (ii) assessment of catalytic performance, and (iii) consideration of the anomeric effect and its underlying dipolar basis. The title ligands were identified by a new mini version of the in situ enzymatic screening (ISES) procedure through which catalyst-ligand combinations are screened in parallel, and information on relative rate and enantioselectivity is obtained in real time, without the need to quench reactions or draw aliquots. Mini-ISES brings the technique into the nanomole regime (200 to 350 nmol catalyst/20 μl organic volume) commensurate with emerging trends in reaction development/process chemistry. The best-performing β-d-carbafructopyranosyl-1,2-diamine–derived salen ligand discovered here outperforms the best known organometallic and enzymatic catalysts for the hydrolytic kinetic resolution of 3-phenylpropylene oxide, one of several substrates examined for which the ligand is “matched.” This ligand scaffold defines a new swath of chiral space, and anomeric effect tunability defines a new concept in shaping that chiral space. Both this ligand set and the anomeric shape-tuning concept are expected to find broad application, given the value of chiral 1,2-diamines and salens constructed from these in asymmetric catalysis. PMID:26501130

  2. Chiral Molecules Revisited by Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    2014-06-01

    Chiral molecules have fascinated chemists for more than 150 years. While their physical properties are to a very good approximation identical, the two enantiomers of a chiral molecule can have completely different (bio)chemical activities. For example, the right-handed enantiomer of carvone smells of spearmint while the left-handed one smells of caraway. In addition, the active components of many drugs are of one specific handedness, such as in the case of ibuprofen. However, in nature as well as in pharmaceutical applications, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) remains a challenging task for analytical chemistry, despite its importance for modern drug development. We present here a new method of differentiating enantiomers of chiral molecules in the gas phase based on broadband rotational spectroscopy. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the combined quantity, μ_a μ_b μ_c, which is of opposite sign between enantiomers. It thus also provides information on the absolute configuration of the particular enantiomer. Furthermore, the signal amplitude is proportional to the ee. A significant advantage of our technique is its inherent mixture compatibility due to the fingerprint-like character of rotational spectra. In this contribution, we will introduce the technique and present our latest results on chiral molecule spectroscopy and enantiomer differentiation. D. Patterson, M. Schnell, J.M. Doyle, Nature 497 (2013) 475-477 V.A. Shubert, D. Schmitz, D. Patterson, J.M. Doyle, M. Schnell, Angewandte Chemie International Edition 53 (2014) 1152-1155

  3. Determination of linuron and related compounds in soil by microwave-assisted solvent extraction and reversed-phase liquid chromatography with UV detection.

    PubMed

    Molins, C; Hogendoorn, E A; Dijkman, E; Heusinkveld, H A; Baumann, R A

    2000-02-11

    The combination of microwave-assisted solvent extraction (MASE) and reversed-phase liquid chromatography (RPLC) with UV detection has been investigated for the efficient determination of phenylurea herbicides in soils involving the single-residue method (SRM) approach (linuron) and the multi-residue method (MRM) approach (monuron, monolinuron, isoproturon, metobromuron, diuron and linuron). Critical parameters of MASE, viz, extraction temperature, water content and extraction solvent were varied in order to optimise recoveries of the analytes while simultaneously minimising co-extraction of soil interferences. The optimised extraction procedure was applied to different types of soil with an organic carbon content of 0.4-16.7%. Besides freshly spiked soil samples, method validation included the analysis of samples with aged residues. A comparative study between the applicability of RPLC-UV without and with the use of column switching for the processing of uncleaned extracts, was carried out. For some of the tested analyte/matrix combinations the one-column approach (LC mode) is feasible. In comparison to LC, coupled-column LC (LC-LC mode) provides high selectivity in single-residue analysis (linuron) and, although less pronounced in multi-residue analysis (all six phenylurea herbicides), the clean-up performance of LC-LC improves both time of analysis and sample throughput. In the MRM approach the developed procedure involving MASE and LC-LC-UV provided acceptable recoveries (range, 80-120%) and RSDs (<12%) at levels of 10 microg/kg (n=9) and 50 microg/kg (n=7), respectively, for most analyte/matrix combinations. Recoveries from aged residue samples spiked at a level of 100 microg/kg (n=7) ranged, depending of the analyte/soil type combination, from 41-113% with RSDs ranging from 1-35%. In the SRM approach the developed LC-LC procedure was applied for the determination of linuron in 28 sandy soil samples collected in a field study. Linuron could be determined in soil with a limit of quantitation of 10 microg/kg.

  4. Polymeric Sulfated Amino Acid Surfactants: A New Class of Versatile Chiral Selectors for Micellar Electrokinetic Chromatography (MEKC) and MEKC-MS

    PubMed Central

    Ali Rizvi, Syed Asad; Zheng, Jie; Apkarian, Robert P.; Dublin, Steven N.; Shamsi, Shahab A.

    2008-01-01

    In this work, three amino acids derived (L-leucinol, L-isoleucinol and L-valinol) sulfated chiral surfactants are synthesized and polymerized. These chiral sulfated surfactants are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation and partial specific volume. For the first time the morphological behavior of polymeric sulfated surfactants is revealed using cryogenic high-resolution electron microscopy (cryo-HRSEM). The polysodium N-undecenoyl-L-leucine sulfate (poly-L-SUCLS) shows distinct tubular structure, while polysodium N-undecenoyl-L-valine sulfate (poly-L-SUCVS) also shows tubular morphology but without any distinct order of the tubes. On the other hand, polysodium N-undecenoyl-L-isoleucine sulfate (poly-L-SUCILS) displays random distribution of coiled/curved filaments with heavy association of tightly and loosely bound water. All three polymeric sulfated surfactants are compared for enantio-separation of broad range of structurally diverse racemic compounds at very acidic, neutral and basic pH conditions in micellar electrokinetic chromatography (MEKC). A small combinatorial library of 10 structurally related phenylethylamines (PEAs) is investigated for chiral separation under acidic and moderately acidic to neutral pH conditions using an experimental design. In contrast to neutral pH conditions, at acidic pH, significantly enhanced chiral resolution is obtained for class I and class II PEAs due to the compact structure of polymeric sulfated surfactants. It is observed that the presence of hydroxy group on the benzene ring of PEAs resulted in deterioration of enantioseparation. A sensitive MEKC-mass spectrometry (MS) method is developed for one of the PEA (e.g., (±)-pseudoephedrine) in human urine. Very low limit of detection (LOD) is obtained at pH 2.0 (LOD 325 ng/mL), which is ca 16 times better compared to pH 8.0 (LOD 5.2 µg/mL). Other broad range of chiral analytes (β-blockers, phenoxypropionic acid, benzoin derivatives, PTH-amino acids, and benzodiazepinones) studied also provided improved chiral separation at low pH compared to high pH conditions. Among the three polymeric sulfated surfactants, poly-L-SUCILS with two chiral centers on the polymer head group provided overall higher enantioresolution for the investigated acidic, basic and neutral compounds. This work clearly demonstrates for the first time the superiority of chiral separation and sensitive MS detection at low pH over conventional high pH chiral separation and detection employing anionic chiral polymeric surfactants in MEKC and MEKC-MS. PMID:17263313

  5. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    PubMed

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  6. LC-MSMS assays of urinary cortisol, a comparison between four in-house assays.

    PubMed

    Brossaud, Julie; Leban, Monique; Corcuff, Jean-Benoit; Boux de Casson, Florence; Leloupp, Anne-Gaëlle; Masson, Damien; Moal, Valérie; Bach-Ngohou, Kalyane

    2018-06-27

    Twenty-four hour urinary free cortisol (UFC) determination can be used for screening and follow-up of Cushing syndrome (CS). As immunoassay methods lack specificity for UFC measurement, the use of high-performance liquid chromatography coupled to mass spectrometer (LC-MSMS) is recommended. The aim of our study was to compare UFC results using four LC-MSMS methods performed in four independent laboratories in order to evaluate interlaboratory agreement. Frozen aliquots of 24-h urine samples (78 healthy volunteers and 20 patients with CS) were sent to four different laboratories for analysis. Following liquid-liquid or solid-liquid extraction, UFC were determined using four different LC-MSMS assay. UFC intra- and interassays variation coefficients were lower than 10% for each centre. External quality control results were not significantly different. UFC normal ranges (established from healthy volunteers) were 17-126, 15-134, 12-118 and 27-157 nmol/day, respectively. Classification of UFC from healthy volunteers and patients with CS using a 95th percentile threshold was similar. However, for extreme UFC values (<50 or >270 nmol/day), negative or positive bias was noted. Even for highly specific methods such as LC-MSMS, variations of results can be found depending on analytical process. Validation of LC-MSMS methods including determination of the reference range is essential.

  7. Liquid Chromatography Electrospray Ionization Mass Spectrometric (LC-ESI-MS) and Desorption Electrospray Ionization Mass Spectrometric (DESI-MS) Identification of Chemical Warfare Agents in Consumer Products

    DTIC Science & Technology

    2007-06-01

    T ACanadaY Approved for PublicR Distribution Uln& Liquid Chromatography Electrospray Ionization Mass Spectrometric ( LC -ESI- MS) and Desorption...consumer products with chemical warfare agents or other toxic chemicals. Liquid chromatography electrospray ionization mass spectrometry ( LC -ESI-MS) and...house LC -ESI-MS and LC -ESI-MS/MS methods were evaluated for the determination of chemical warfare agents in spiked bottled water samples. The

  8. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    PubMed

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  10. Congener specific determination and enantiomeric ratios of chiral polychlorinated biphenyls in striped dolphins (Stenella coeruleoalba) from the Mediterranean Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, S.; Schurig, V.; Jimenez, B.

    1999-06-01

    Blubber and liver samples from six striped dolphins (Stenella coeruleoalba) found dead in the Mediterranean Sea in 1989--1990 were tested for 37 coplanar and chiral polychlorinated biphenyls (PCBs), including the enantiomeric ratios of 9 chiral PCBs. The method includes a fractionation step using HPLC (PYE column) for separating the PCBs according to the number of chlorine atoms in the ortho positions. HRGC/ECD and HRGC/LRMS with an a chiral column (DB-5) were used to determine the PCB congeners. The enantiomeric ratios of nine chiral PCBs were determined by HRGC/LRMS (SIM) with a chiral column (Chirasil-Dex) and by MDGC as the confirmatorymore » technique. The total PCB concentration (sum of 37 congeners) ranged from 7.2 to 89.6 {micro}g/g (wet weight) and from 0.52 to 29.2 {micro}g/g (wet weight) for blubber and liver samples, respectively. PCB profiles were dominated by congeners 138, 153, 170, and 180. The toxic equivalent values (TEQ) ranged from 0.17 to 3.93 ng/g (wet weight) and from 0.02 to 0.73 ng/g (wet weight) for blubber and liver samples, respectively. PCBs 95, 132, 135, 149, and 176 revealed an enantiomeric excess of the second eluted enantiomer in almost all of the samples, whereas PCBs 136 and 174 were racemic or almost racemic. PCBs 88 and 91 were under the detection limits of the methodology used.« less

  11. Comparison of the docetaxel concentration in human plasma measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a nanoparticle immunoassay and clinical applications of that assay.

    PubMed

    Geng, Chunmei; Li, Pingli; Chen, Xuwang; Yuan, Guiyan; Guo, Nan; Liu, Huanjun; Zhang, Rui; Guo, Ruichen

    2017-05-23

    To determine the feasibility of using a nanoparticle immunoassay for clinical therapeutic drug monitoring (TDM) of docetaxel concentrations, a sensitive and simple method of liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established to measure the docetaxel concentration in human plasma and the results of LC-MS/MS and the immunoassay were compared. Docetaxel and paclitaxel (the internal standard, or IS) in human plasma were extracted through protein precipitation, separated on a Diamonsil C18 column (150 mm × 4.6 mm, 5 μm), ionized with positive ions, and detected with LC-MS/MS in multi-reaction monitoring (MRM) mode. Plasma samples from 248 cancer patients were assayed with LC-MS/MS and a nanoparticle immunoassay. Data from the samples were analyzed with the statistical software SPSS and the software MedCalc. Results indicated that the calibration curve of the validated method of LC-MS/MS was linear over the range of 10-2,000 ng/mL, with an lowest limit of quantitation (LLOQ) of 10 ng/mL, and the intra- and inter- day precision and accuracy were both < ± 15%. Comparison of the two methods indicated that results of the LC-MS/MS were closely related to those of the nanoparticle immunoassay, with a correlation coefficient (R) of 0.965 and acceptable 95% confidence intervals (CI) of ‒ 231.7-331.1 ng/mL. Overall, the established method of LC-MC/MS and the nanoparticle immunoassay were both suitable for measurement of the docetaxel concentration in human plasma, and the immunoassay was far more cost-effective and better at clinical TDM of docetaxel in clinical practice.

  12. Chirality in adsorption on solid surfaces.

    PubMed

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral chromatography, and enantioselective catalysis.

  13. Electrochemistry coupled online to liquid chromatography-mass spectrometry for fast simulation of biotransformation reactions of the insecticide chlorpyrifos.

    PubMed

    Mekonnen, Tessema F; Panne, Ulrich; Koch, Matthias

    2017-05-01

    An automated method is presented for fast simulation of (bio)transformation products (TPs) of the organophosphate insecticide chlorpyrifos (CPF) based on electrochemistry coupled online to liquid chromatography-mass spectrometry (EC-LC-MS). Oxidative TPs were produced by a boron doped diamond (BDD) electrode, separated by reversed phase HPLC and online detected by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, EC oxidative TPs were investigated by HPLC-tandem mass spectrometry (LC-MS/MS) and FT-ICR high resolution mass spectrometry (HRMS) and compared to in vitro assay metabolites (rat and human liver microsomes). Main phase I metabolites of CPF: chlorpyrifos oxon (CPF oxon), trichloropyridinol (TCP), diethylthiophosphate (DETP), diethylphosphate (DEP), desethyl chlorpyrifos (De-CPF), and desethyl chlorpyrifos oxon (De-CPF oxon), were successfully identified by the developed EC-LC-MS method. The EC-LC-MS method showed similar metabolites compared to the in vitro assay with possibilities of determining reactive species. Our results reveal that online EC-(LC)-MS brings an advantage on time of analysis by eliminating sample preparation steps and matrix complexity compared to conventional in vivo or in vitro methods.

  14. A chiral HPLC method for the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin.

    PubMed

    Abu-Lafi, S; Turujman, S A

    1997-01-01

    We report an HPLC method that allows the simultaneous separation of configurational isomers of the predominant cis/trans forms of astaxanthin. The configurational isomers of the all-trans-, and most of the configurational isomers of the 9-cis-, 13-cis- and 15-cis-astaxanthin were separated on a Sumichiral OA-2000 column, which is manufactured and packed in Japan with a Pirkle covalent D-phenylglycine chiral stationary phase (CSP). The large separation of the cis isomers from the all-trans isomers that we report here ensure the suitability of this method for the routine determination of the ratio of the configurational isomers of all-trans-astaxanthin.

  15. Quantitative detection of the respective concentrations of chiral compounds with weak measurements

    NASA Astrophysics Data System (ADS)

    Xie, Linguo; Qiu, Xiaodong; Luo, Lan; Liu, Xiong; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei; Wang, Deqiang

    2017-11-01

    In this letter, we determine the respective concentrations of glucose and fructose in the mixed chiral solution by simultaneously measuring the optical rotation angle (ORA) and the refractive index change (RIC) with weak measurements. The photonic spin Hall effect (PSHE) serves as a probe in our scheme. The measurement of ORA is based on the high sensitivity of the amplification factor to the polarization state in weak measurements. The measurement of RIC is based on the rapid variation of spin splitting of the PSHE. The measurement precision of the respective concentrations can be achieved to be 0.02 mg/ml. This method can detect traces of enantiomeric impurities and has a potential application in chiral sensing.

  16. Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives.

    PubMed

    Shirai, Tatsuya; Shuai, Min; Nakamura, Keita; Yamaguchi, Akihiro; Naka, Yumiko; Sasaki, Takeo; Clark, Noel A; Le, Khoa V

    2018-02-28

    We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 μm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.

  17. The Chiral and Angular Momentum Content of the ρ-Meson

    NASA Astrophysics Data System (ADS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2010-01-01

    It is possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark Fock component of a meson in the infrared, where mass is generated. Using the variational method and a set of interpolators that span a complete chiral basis we extract in a lattice QCD Monte Carlo simulation with n f = 2 dynamical light quarks the orbital angular momentum and spin content of the ρ-meson. We obtain in the infrared a simple 3 S 1 component as a leading component of the ρ-meson with a small admixture of the 3 D 1 partial wave, in agreement with the SU(6) flavor-spin symmetry.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyres, Philip C.; Lü, Yongchao; Martone, Mario

    Coulomb branch chiral rings of N = 2 SCFTs are conjectured to be freely generated. While no counter-example is known, no direct evidence for the conjecture is known either. We initiate a systematic study of SCFTs with Coulomb branch chiral rings satisfying non-trivial relations, restricting our analysis to rank 1. The main result of our study is that (rank-1) SCFTs with non-freely generated CB chiral rings when deformed by relevant deformations, always flow to theories with non-freely generated CB rings. This implies that if they exist, they must thus form a distinct subset under RG flows. We also nd manymore » interesting characteristic properties that these putative theories satisfy which may be helpful in proving or disproving their existence using other methods.« less

  19. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.

    PubMed

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M

    2017-05-31

    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  20. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.

    PubMed

    Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  1. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  2. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  3. Application of Fluorescence Spectrometry With Multivariate Calibration to the Enantiomeric Recognition of Fluoxetine in Pharmaceutical Preparations.

    PubMed

    Poláček, Roman; Májek, Pavel; Hroboňová, Katarína; Sádecká, Jana

    2016-04-01

    Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of β-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.

  4. Highly selective fluorescence detection of Cu2+ in water by chiral dimeric Zn2+ complexes through direct displacement.

    PubMed

    Khatua, Snehadrinarayan; Choi, Shin Hei; Lee, Junseong; Huh, Jung Oh; Do, Youngkyu; Churchill, David G

    2009-03-02

    Fluorescent dinuclear chiral zinc complexes were synthesized in a "one-pot" method in which the lysine-based Schiff base ligand was generated in situ. This complex acts as a highly sensitive and selective fluorescent ON-OFF probe for Cu(2+) in water at physiological pH. Other metal ions such as Hg(2+), Cd(2+), and Pb(2+) gave little fluorescence change.

  5. Copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted enones. Construction of all-carbon quaternary chiral centers.

    PubMed

    Martin, David; Kehrli, Stefan; d'Augustin, Magali; Clavier, Hervé; Mauduit, Marc; Alexakis, Alexandre

    2006-07-05

    The copper-catalyzed asymmetric conjugate addition of Grignard reagents to trisubstituted cyclic enones affords enantioenriched all-carbon quaternary centers with up to 96% ee. The chiral ligand is a diaminocarbene, directly generated in situ. The combination of Grignard reagent and diaminocarbene is unprecedented in conjugate addition, and the additon of the phenyl group, on such enones, cannot be done by other conjugate addition methods.

  6. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation.

    PubMed

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin-phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin-phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity.

  7. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    PubMed Central

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  8. A simple method to determine IgG light chain to heavy chain polypeptide ratios expressed by CHO cells.

    PubMed

    Gerster, Anja; Wodarczyk, Claas; Reichenbächer, Britta; Köhler, Janet; Schulze, Andreas; Krause, Felix; Müller, Dethardt

    2016-12-01

    To establish a high-throughput method for determination of antibodies intra- and extracellular light chain (LC) to heavy chain (HC) polypeptide ratio as screening parameter during cell line development. Chinese Hamster Ovary (CHO) TurboCell pools containing different designed vectors supposed to result in different LC:HC polypeptide ratios were generated by targeted integration. Cell culture supernatants and cell lysates of a fed batch experiment were purified by combined Protein A and anti-kappa affinity batch purification in 96-well format. Capture of all antibodies and their fragments allowed the determination of the intra- and extracellular LC:HC peptide ratios by reduced SDS capillary electrophoresis. Results demonstrate that the method is suitable to show the significant impact of the vector design on the intra- and extracellular LC:HC polypeptide ratios. Determination of LC:HC polypeptide ratios can give important information in vector design optimization leading to CHO cell lines with optimized antibody assembly and preferred product quality.

  9. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chiral separation and enantioselective degradation of vinclozolin in soils.

    PubMed

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  11. Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.

    PubMed

    Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J

    2014-10-01

    A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Assessment of Intrathecal Free Light Chain Synthesis: Comparison of Different Quantitative Methods with the Detection of Oligoclonal Free Light Chains by Isoelectric Focusing and Affinity-Mediated Immunoblotting

    PubMed Central

    Kušnierová, Pavlína; Švagera, Zdeněk; Všianský, František; Byrtusová, Monika; Hradílek, Pavel; Kurková, Barbora; Zapletalová, Olga; Bartoš, Vladimír

    2016-01-01

    Objectives We aimed to compare various methods for free light chain (fLC) quantitation in cerebrospinal fluid (CSF) and serum and to determine whether quantitative CSF measurements could reliably predict intrathecal fLC synthesis. In addition, we wished to determine the relationship between free kappa and free lambda light chain concentrations in CSF and serum in various disease groups. Methods We analysed 166 paired CSF and serum samples by at least one of the following methods: turbidimetry (Freelite™, SPAPLUS), nephelometry (N Latex FLC™, BN ProSpec), and two different (commercially available and in-house developed) sandwich ELISAs. The results were compared with oligoclonal fLC detected by affinity-mediated immunoblotting after isoelectric focusing. Results Although the correlations between quantitative methods were good, both proportional and systematic differences were discerned. However, no major differences were observed in the prediction of positive oligoclonal fLC test. Surprisingly, CSF free kappa/free lambda light chain ratios were lower than those in serum in about 75% of samples with negative oligoclonal fLC test. In about a half of patients with multiple sclerosis and clinically isolated syndrome, profoundly increased free kappa/free lambda light chain ratios were found in the CSF. Conclusions Our results show that using appropriate method-specific cut-offs, different methods of CSF fLC quantitation can be used for the prediction of intrathecal fLC synthesis. The reason for unexpectedly low free kappa/free lambda light chain ratios in normal CSFs remains to be elucidated. Whereas CSF free kappa light chain concentration is increased in most patients with multiple sclerosis and clinically isolated syndrome, CSF free lambda light chain values show large interindividual variability in these patients and should be investigated further for possible immunopathological and prognostic significance. PMID:27846293

  13. Simultaneous enantiomeric analysis of eight pesticides in soils and river sediments by chiral liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhao, Pengfei; Zhao, Jing; Lei, Shuo; Guo, Xingjie; Zhao, Longshan

    2018-08-01

    A rapid and sensitive multi-residue method was developed for the simultaneous quantification of eight chiral pesticides (including diniconazole, metalaxyl, paclobutrazol, epoxiconazole, myclobutanil, hexaconazole, napropamide and isocarbophos) at enantiomeric levels in environmental soils and sediments using chiral liquid chromatography-tandem mass spectrometry based on a combined pretreatment of matrix solid-phase dispersion and dispersive liquid-liquid microextraction (MSPD-DLLME). Under optimized conditions, 0.1 g of solid sample was dispersed with 0.4 g of C18-bonded silica sorbent, and 3 mL of methanol was used for eluting the analytes. The collected eluant was dried and then further purified by DLLME with 550 μL of dichloromethane and 960 μL of acetonitrile as extraction and disperser solvent, respectively. The established method was validated and found to be linear, precise, and accurate over the concentration range of 2-500 ng g -1 for epoxiconazole, paclobutrazol and metalaxyl and 4-500 ng g -1 for isocarbophos, hexaconazole, myclobutanil, diniconazole and napropamide. Recoveries of sixteen enantiomers varied from 87.0 to 104.1% and the relative standard deviations (RSD) were less than 10.1%. Method detection and quantification limits (MDLs and MQLs) varied from 0.22 to 1.54 ng g -1 and from 0.91 to 4.00 ng g -1 , respectively. Finally, the method was successfully applied to analyze the enantiomeric composition of the eight chiral pesticides in environmental solid matrices, which will help better understand the behavior of individual enantiomer and make accurate risk assessment on the ecosystem. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE.

    PubMed

    Silva, Mariana; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2017-08-01

    A method for simultaneous separation and determination of four enantiomeric pairs of β-blockers in waters by chiral CE has been developed. Off-line SPE was employed using functionalized ordered mesoporous silica as sorbent. Separation by CE was achieved using a BGE composed by methylated-β-CD (1.25% w/v) dissolved in a 50 mM phosphate buffer (pH 2.5) and 30°C, with good chiral resolution for all enantiomers. Mesoporous silica functionalized with octadecyl groups (denoted SBA15-C18) was prepared by a postsynthesis method and applied for the preconcentration of atenolol, propranolol, metoprolol, and pindolol enantiomers in waters by off-line SPE. Under optimized conditions, a preconcentration factor of 300 was achieved, employing 100 mg of SBA15-C18 as sorbent, with recoveries between 96 and 105% in tap water and good repeatability (% RSD = 7-11%, n = 6). Commercial C18 amorphous silica (ExtraBond R C 18 ) was also tested as sorbent for SPE, but results revealed better extraction capacity with higher recoveries for the SBA15-C18 material. The analytical characteristics of the off-line SPE-chiral CE method were evaluated, showing good precision, linearity, and accuracy with method quantification limits between 5.3 and 13.7 μg/L for all enantiomers. The SBA15-C18 material allowed the extraction of four enantiomeric pairs of β-blockers spiked in tap water, river water, and ground water with recoveries between 58 and 105%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chiral Magnetic Effect in Condensed Matters

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in the 3D Dirac and Weyl semimetals having a linear dispersion relation. Recently, the chiral magnetic effect was discovered in a 3D Dirac semimetal - zirconium pentatelluride, ZrTe5, in which a large negative magnetoresistance is observed when magnetic field is parallel with the current. It is now reported in more than a dozen Dirac and Weyl semimetals. Broadly speaking, the chiral magnetic effect can exist in a variety of condensed matters. In some cases, a material may be transformed into a Weyl semimetal by magnetic field, exhibiting the chiral magnetic effect. In other cases, the chiral magnetic current may be generated in magnetic Dirac semimetals without external magnetic field, or in asymmetric Weyl semimetals without electric field where only a magnetic field and the source of chiral quasipartiles would be necessary. In the limit of conserved quasiparticle chirality, charge transport by the chiral magnetic current is non-dissipative. The powerful notion of chirality, originally discovered in high-energy and nuclear physics, holds promise in new ways of transmitting and processing information and energy. At the same time, chiral materials have opened a fascinating possibility to study the quantum dynamics of relativistic field theory in condensed matter experiments.

  16. Two-Dimensional Liquid Chromatography Analysis of Polystyrene/Polybutadiene Block Copolymers.

    PubMed

    Lee, Sanghoon; Choi, Heejae; Chang, Taihyun; Staal, Bastiaan

    2018-05-15

    A detailed characterization of a commercial polystyrene/polybutadiene block copolymer material (Styrolux) was carried out using two-dimensional liquid chromatography (2D-LC). The Styrolux is prepared by statistical linking reaction of two different polystyrene- block-polybutadienyl anion precursors with a multivalent linking agent. Therefore, it is a mixture of a number of branched block copolymers different in molecular weight, composition, and chain architecture. While individual LC analysis, including size exclusion chromatography, interaction chromatography, or liquid chromatography at critical condition, is not good enough to resolve all the polymer species, 2D-LC separations coupling two chromatography methods were able to resolve all polymer species present in the sample; at least 13 block copolymer species and a homopolystyrene blended. Four different 2D-LC analyses combining a different pair of two LC methods provide their characteristic separation results. The separation characteristics of the 2D-LC separations are compared to elucidate the elution characteristics of the block copolymer species.

  17. Scaleable catalytic asymmetric Strecker syntheses of unnatural α-amino acids

    PubMed Central

    Zuend, Stephan J.; Coughlin, Matthew P.; Lalonde, Mathieu P.; Jacobsen, Eric N.

    2009-01-01

    α-Amino acids are essential building blocks for protein synthesis, and are also widely useful as components of medicinally active molecules and chiral catalysts.1,2,3,4,5 Efficient chemo-enzymatic methods for the synthesis of enantioenriched α-amino acids have been devised, but the scope of these methods for the synthesis of unnatural amino acids is limited.6,7 Alkene hydrogenation is broadly useful for enantioselective catalytic synthesis of many classes of amino acids,8,9 but this approach is not applicable to the synthesis of α-amino acids bearing aryl or quaternary alkyl α-substituents. The Strecker synthesis—the reaction of an imine or imine equivalent with hydrogen cyanide, followed by nitrile hydrolysis—is an especially versatile chemical method for the synthesis of racemic α-amino acids (Fig. 1).10,11 Asymmetric Strecker syntheses using stoichiometric chiral reagents have been applied successfully on gram-to-multi-kilogram scales to the preparation of enantiomerically enriched α-amino acids.12,13,14 In principle, Strecker syntheses employing sub-stoichiometric quantities of a chiral reagent provide a practical alternative to these approaches, but the reported catalytic asymmetric methods have seen only limited use on preparative scales (e.g., > 1 gram).15,16 The limited use of existing catalytic methodologies may be ascribed to several important practical drawbacks, including the relatively complex and precious nature of the catalysts, and the requisite use of hazardous cyanide sources. Herein we report a new catalytic asymmetric method for the syntheses of highly enantiomerically enriched non-proteinogenic amino acids using a simple chiral amido-thiourea catalyst to control the key hydrocyanation step. Because this catalyst is robust and lacks sensitive functional groups, it is compatible with safely handled aqueous cyanide salts, and is thus adaptable to large-scale synthesis. This new methodology can be applied to the efficient syntheses of amino acids that are not readily prepared by enzymatic methods or by chemical hydrogenation. PMID:19829379

  18. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    ERIC Educational Resources Information Center

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  19. Meta-Chirality: Fundamentals, Construction and Applications

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2017-01-01

    Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560

  20. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the implicit assumptions made in Hund's paradox. E. Hirota, 3rd Molecular Science Symposium, Nagoya, September 2009, E. Hirota, Proc. Jpn. Acad. Ser. B, 88, 120 (2012). D. Patterson, M. Schnell and J. M. Doyle, Nature 497, 475 (2013), D. Patterson and J. M. Doyle, Phys. Rev. Lett. 111, 023008 (2013). F. Hund, Z. Phys. 43, 805 (1927).

  1. Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm.

    PubMed

    De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat

    2010-03-01

    Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.

  2. A multiclass multiresidue LC-MS/MS method for analysis of veterinary drugs in bovine kidney

    USDA-ARS?s Scientific Manuscript database

    The increased efficiency permitted by multiclass, multiresidue methods has made such approaches very attractive to laboratories involved in monitoring veterinary drug residues in animal tissues. In this current work, evaluation of a multiclass multiresidue LC-MS/MS method in bovine kidney is describ...

  3. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    PubMed Central

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-01-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a ‘right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas ‘left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a ‘mother' subunit nanoparticle spawns a slightly tilted, consequential ‘daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures. PMID:28406143

  4. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  5. Photoexcitation circular dichroism in chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  6. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    PubMed

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  7. Cell chirality: its origin and roles in left–right asymmetric development

    PubMed Central

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  8. Cell chirality: its origin and roles in left-right asymmetric development.

    PubMed

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  9. Method of preparing a tunable-focus liquid-crystal (LC) lens

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zuowei; Ren, Hongwen

    2018-02-01

    A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from 30 to 120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.

  10. Simultaneous analysis of 17 diuretics in dietary supplements by HPLC and LC-MS/MS.

    PubMed

    Woo, H; Kim, J W; Han, K M; Lee, J H; Hwang, I S; Lee, J H; Kim, J; Kweon, S J; Cho, S; Chae, K R; Han, S Y; Kim, J

    2013-01-01

    In order to test health foods for illegally added diuretics for weight loss, we developed simple, rapid, selective, and sensitive methods using HPLC and LC-MS/MS for the simultaneous analysis of 17 diuretics in dietary supplements. HPLC conditions were set with a Capcell-pak C18, using a mobile phase consisting of gradient conditions, UV detection at 254 nm and validated for linearity (r(2)> 0.999), precision (CV ≤ 3%), recoveries (90.4-102.8%) and reproducibility. Identification and quantification of 17 diuretics were accomplished by ion-spray LC-MS/MS using multiple reaction monitoring (MRM). The chromatographic separation was carried out under the reversed-phase mechanism on an HSS-T3 column. The LC-MS/MS method was validated for linearity (r(2)> 0.99) and precision (CV < 13%). Sixteen dietary supplements were tested with the developed methods. Diuretics were not detected in all samples. Extraction recovery was also investigated and the extraction recoveries in different formulations were from 88% to 110% and from 81% to 116% using HPLC and LC-MS/MS, respectively. There was no significant difference in recoveries in the type of dietary supplements. Based on this result, the developed methods to monitor illegal drug adulterations in dietary supplements using HPLC and LC-MS/MS are simple, fast and reliable. Therefore, it is applicable to routine drug-adulteration screening.

  11. Analysis of Natural Toxins by Liquid Chromatography-Chemiluminescence Nitrogen Detection and Application to the Preparation of Certified Reference Materials.

    PubMed

    Thomas, Krista; Wechsler, Dominik; Chen, Yi-Min; Crain, Sheila; Quilliam, Michael A

    2016-09-01

    The implementation of instrumental analytical methods such as LC-MS for routine monitoring of toxins requires the availability of accurate calibration standards. This is a challenge because many toxins are rare, expensive, dangerous to handle, and/or unstable, and simple gravimetric procedures are not reliable for establishing accurate concentrations in solution. NMR has served as one method of qualitative and quantitative characterization of toxin calibration solution Certified Reference Materials (CRMs). LC with chemiluminescence N detection (LC-CLND) was selected as a complementary method for comprehensive characterization of CRMs because it provides a molar response to N. Here we report on our investigation of LC-CLND as a method suitable for quantitative analysis of nitrogenous toxins. It was demonstrated that a wide range of toxins could be analyzed quantitatively by LC-CLND. Furthermore, equimolar responses among diverse structures were established and it was shown that a single high-purity standard such as caffeine could be used for instrument calibration. The limit of detection was approximately 0.6 ng N. Measurement of several of Canada's National Research Council toxin CRMs with caffeine as the calibrant showed precision averaging 2% RSD and accuracy ranging from 97 to 102%. Application of LC-CLND to the production of calibration solution CRMs and the establishment of traceability of measurement results are presented.

  12. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  13. Silver Films with Hierarchical Chirality.

    PubMed

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hadron spectroscopy with dynamical chirally improved fermions

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof; Hagen, Christian; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2009-03-01

    We simulate two dynamical, mass-degenerate light quarks on 163×32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.

  15. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  16. The collective and quantum nature of proton transfer in the cyclic water tetramer on NaCl(001)

    NASA Astrophysics Data System (ADS)

    Feng, Yexin; Wang, Zhichang; Guo, Jing; Chen, Ji; Wang, En-Ge; Jiang, Ying; Li, Xin-Zheng

    2018-03-01

    Proton tunneling is an elementary process in the dynamics of hydrogen-bonded systems. Collective tunneling is known to exist for a long time. Atomistic investigations of this mechanism in realistic systems, however, are scarce. Using a combination of ab initio theoretical and high-resolution experimental methods, we investigate the role played by the protons on the chirality switching of a water tetramer on NaCl(001). Our scanning tunneling spectroscopies show that partial deuteration of the H2O tetramer with only one D2O leads to a significant suppression of the chirality switching rate at a cryogenic temperature (T), indicating that the chirality switches by tunneling in a concerted manner. Theoretical simulations, in the meantime, support this picture by presenting a much smaller free-energy barrier for the translational collective proton tunneling mode than other chirality switching modes at low T. During this analysis, the virial energy provides a reasonable estimator for the description of the nuclear quantum effects when a traditional thermodynamic integration method cannot be used, which could be employed in future studies of similar problems. Given the high-dimensional nature of realistic systems and the topology of the hydrogen-bonded network, collective proton tunneling may exist more ubiquitously than expected. Systems of this kind can serve as ideal platforms for studies of this mechanism, easily accessible to high-resolution experimental measurements.

  17. Simultaneous chiral discrimination of multiple profens by cyclodextrin-modified capillary electrophoresis in normal and reversed polarity modes.

    PubMed

    La, Sookie; Kim, Jiyung; Kim, Jung-Han; Goto, Junichi; Kim, Kyoung-Rae

    2003-08-01

    Simultaneous enantioseparations of nine profens for their accurate chiral discrimination were achieved by capillary electrophoresis (CE) in the normal polarity (NP) mode with a single cyclodextrin (CD) system and in the reversed polarity (RP) mode with a dual CD system. The single CD system in the NP mode employed heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TMbetaCD) added at 75 mM-100 mM 2-(N-morpholino)ethanesulfonic acid buffer (pH 6.0) as the optimum run buffer. The dual CD system operated in the RP mode used 30 mM TMbetaCD and 1.0% anionic carboxymethyl-beta-cyclodextrin dissolved in pH 3.0, 100 mM phosphoric acid-triethanolamine buffer containing 0.01% hexadimethrine bromide added to reverse the electroosmotic flow. Fairly good enantiomeric resolutions and the opposite enantiomer migration orders were achieved in the two modes. Relative migration times to internal standard under respective optimum conditions were characteristic of each enantiomer with good precision (< 2% relative standard deviation, RSD), thereby enabling to crosscheck the chemical identification of profens and also their accurate chiralities. The method linearity in the two modes was found to be adequate (r > or = 0.9991) for the chiral assay of the profens investigated. Simultaneous enantiomeric purity test of ibuprofen, ketoprofen and flurbiprofen in a mixture was feasible in a single analysis by the present method.

  18. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    PubMed

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  19. Maltodextrins as chiral selectors in CE: molecular structure effect of basic chiral compounds on the enantioseparation.

    PubMed

    Tabani, Hadi; Fakhari, Ali Reza; Nojavan, Saeed

    2014-10-01

    Prediction of chiral separation for a compound using a chiral selector is an interesting and debatable work. For this purpose, in this study 23 chiral basic drugs with different chemical structures were selected as model solutes and the influence of their chemical structures on the enantioseparation in the presence of maltodextrin (MD) as chiral selector was investigated. For chiral separation, a 100-mM phosphate buffer solution (pH 3.0) containing 10% (w/v) MD with dextrose equivalent (DE) of 4-7 as chiral selector at the temperature of 25°C and voltage of 20 kV was used. Under this condition, baseline separation was achieved for nine chiral compounds and partial separation was obtained for another six chiral compounds while no enantioseparation was obtained for the remaining eight compounds. The results showed that the existence of at least two aromatic rings or cycloalkanes and an oxygen or nitrogen atom or -CN group directly bonded to the chiral center are necessary for baseline separation. With the obtained results in this study, chiral separation of a chiral compound can be estimated with MD-modified capillary electrophoresis before analysis. This prediction will minimize the number of preliminary experiments required to resolve enantiomers and will save time and cost. © 2014 Wiley Periodicals, Inc.

  20. Switching chiral solitons for algebraic operation of topological quaternary digits

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hwan; Cheon, Sangmo; Yeom, Han Woong

    2017-02-01

    Chiral objects can be found throughout nature; in condensed matter chiral objects are often excited states protected by a system's topology. The use of chiral topological excitations to carry information has been demonstrated, where the information is robust against external perturbations. For instance, reading, writing, and transfer of binary information have been demonstrated with chiral topological excitations in magnetic systems, skyrmions, for spintronic devices. The next step is logic or algebraic operations of such topological bits. Here, we show experimentally the switching between chiral topological excitations or chiral solitons of different chirality in a one-dimensional electronic system with Z4 topological symmetry. We found that a fast-moving achiral soliton merges with chiral solitons to switch their handedness. This can lead to the realization of algebraic operation of Z4 topological charges. Chiral solitons could be a platform for storage and operation of robust topological multi-digit information.

  1. Chirality-controlled crystallization via screw dislocations.

    PubMed

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  2. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  3. Chiral permselectivity in surface-modified nanoporous opal films.

    PubMed

    Cichelli, Julie; Zharov, Ilya

    2006-06-28

    Nanoporous 7 mum thin opal films comprising 35 layers of 200 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with chiral selector moieties on the silica surface. Diffusion of chiral redox species through the opals was studied by cyclic voltammetry. The chiral opal films demonstrate high selectivity for transport of one enantiomer over the other. This chiral permselectivity is attributed to the surface-facilitated transport utilizing noncovalent interactions between the chiral permeant molecules and surface-bound chiral selectors.

  4. Chiral filtration-induced spin/valley polarization in silicene line defects

    NASA Astrophysics Data System (ADS)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  5. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  6. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  7. Surface operators in 5d gauge theories and duality relations

    NASA Astrophysics Data System (ADS)

    Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.

    2018-05-01

    We study half-BPS surface operators in 5d N = 1 gauge theories compactified on a circle. Using localization methods and the twisted chiral ring relations of coupled 3d/5d quiver gauge theories, we calculate the twisted chiral superpotential that governs the infrared properties of these surface operators. We make a detailed analysis of the localization integrand, and by comparing with the results from the twisted chiral ring equations, we obtain constraints on the 3d and 5d Chern-Simons levels so that the instanton partition function does not depend on the choice of integration contour. For these values of the Chern-Simons couplings, we comment on how the distinct quiver theories that realize the same surface operator are related to each other by Aharony-Seiberg dualities.

  8. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.; Kikuchi, Yuta; Meyer, René

    2018-05-01

    We describe a new type of the chiral magnetic effect (CME) that should occur in Weyl semimetals (WSMs) with an asymmetry in the dispersion relations of the left- and right-handed (LH and RH) chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source can generate a non-vanishing chiral chemical potential. This is due to the different capacities of the LH and RH chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant WSM with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a WSM with Weyl nodes at different energies. We argue that this effect is generically present in WSMs with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a WSM with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.

  9. Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.

    PubMed

    Kim, Seulong; Kim, Kihong

    2016-01-25

    It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.

  10. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  11. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  12. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    PubMed

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  13. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach.

    PubMed

    Salbaum, J Michael; Cirelli, Chiara; Walcott, Elisabeth; Krushel, Les A; Edelman, Gerald M; Tononi, Giulio

    2004-07-30

    The noradrenergic locus coeruleus (LC) has been implicated in the promotion of arousal, in focused attention and learning, and in the regulation of the sleep/waking cycle. The complex biological functions of the central noradrenergic system have been investigated largely through electrophysiological recordings and neurotoxic lesions of LC neurons. Activation of LC neurons through electrical or chemical stimulation has also led to important insights, although these techniques have limited cellular specificity and short-term effects. Here, we describe a novel method aimed at stimulating the central noradrenergic system in a highly selective manner for prolonged periods of time. This was achieved through the conditional expression of a transgene for chlorotoxin (Cltx) in the LC of adult mice. Chlorotoxin is a component of scorpion venom that partially blocks small conductance chloride channels. In this manner, the influence of GABAergic and glycinergic inhibitory inputs on LC cells is greatly reduced, while their ability to respond to excitatory inputs is unaffected. We demonstrate that the unilateral induction of Cltx expression in the LC is associated with a concomitant ipsilateral increase in the expression of markers of noradrenergic activity in LC neurons. Moreover, LC disinhibition is associated with the ipsilateral induction of the immediate early gene NGFI-A in cortical and subcortical target areas. Unlike previous gain of function approaches, transgenic disinhibition of LC cells is highly selective and persists for at least several weeks. This method represents a powerful new tool to assess the long-term effects of LC activation and is potentially applicable to other neuronal systems.

  14. Patient-specific lean body mass can be estimated from limited-coverage computed tomography images.

    PubMed

    Devriese, Joke; Beels, Laurence; Maes, Alex; van de Wiele, Christophe; Pottel, Hans

    2018-06-01

    In PET/CT, quantitative evaluation of tumour metabolic activity is possible through standardized uptake values, usually normalized for body weight (BW) or lean body mass (LBM). Patient-specific LBM can be estimated from whole-body (WB) CT images. As most clinical indications only warrant PET/CT examinations covering head to midthigh, the aim of this study was to develop a simple and reliable method to estimate LBM from limited-coverage (LC) CT images and test its validity. Head-to-toe PET/CT examinations were retrospectively retrieved and semiautomatically segmented into tissue types based on thresholding of CT Hounsfield units. LC was obtained by omitting image slices. Image segmentation was validated on the WB CT examinations by comparing CT-estimated BW with actual BW, and LBM estimated from LC images were compared with LBM estimated from WB images. A direct method and an indirect method were developed and validated on an independent data set. Comparing LBM estimated from LC examinations with estimates from WB examinations (LBMWB) showed a significant but limited bias of 1.2 kg (direct method) and nonsignificant bias of 0.05 kg (indirect method). This study demonstrates that LBM can be estimated from LC CT images with no significant difference from LBMWB.

  15. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data

    PubMed Central

    2015-01-01

    A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively. PMID:24533635

  16. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  17. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.

    PubMed

    Speybrouck, David; Lipka, Emmanuelle

    2016-10-07

    In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The engagement of optical angular momentum in nanoscale chirality

    NASA Astrophysics Data System (ADS)

    Andrews, David L.

    2017-09-01

    Wide-ranging developments in optical angular momentum have recently led to refocused attention on issues of material chirality. The connection between optical spin and circular polarization, linking to well-known and utilized probes of chirality such as circular dichroism, has prompted studies aiming to achieve enhanced means of differentiating enantiomers - molecules or particles of opposite handedness. A number of newly devised schemes for physically separating mirror-image components by optical methods have also been gaining traction, together with a developing appreciation of how the scale of physical dimensions ultimately determines any capacity to differentially select for material chirality. The scope of such enquiries has substantially widened on recognition that suitably structured, topologically charged beams of light - often known as `twisted light' or `optical vortices' can additionally convey orbital angular momentum. A case can be made that understanding the full scope and constraints upon chiroptical interactions in the nanoscale regime involves the resolution of CPT symmetry conditions governing the fundamental interactions between matter and photons. The principles provide a sound theoretical test-bed for new methodologies.

  19. Functional characterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate.

    PubMed

    Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng

    2018-06-01

    The two enantiomers of ethyl 3-hydroxybutyrate are important intermediates for the synthesis of a great variety of valuable chiral drugs. The preparation of chiral drug intermediates through kinetic resolution reactions catalyzed by esterases/lipases has been demonstrated to be an efficient and environmentally friendly method. We previously functionally characterized microbial esterase PHE21 and used PHE21 as a biocatalyst to generate optically pure ethyl (S)-3-hydroxybutyrate. Herein, we also functionally characterized one novel salt-tolerant microbial esterase WDEst17 from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. Esterase WDEst17 was further developed as an efficient biocatalyst to generate (R)-3-hydroxybutyrate, an important chiral drug intermediate, with the enantiomeric excess being 99% and the conversion rate being 65.05%, respectively, after process optimization. Notably, the enantio-selectivity of esterase WDEst17 was opposite than that of esterase PHE21. The identification of esterases WDEst17 and PHE21 through genome mining of microorganisms provides useful biocatalysts for the preparation of valuable chiral drug intermediates. © 2018 Wiley Periodicals, Inc.

  20. Characterization of a single-isomer carboxymethyl-beta-cyclodextrin in chiral capillary electrophoresis.

    PubMed

    Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Malanga, Milo; Sohajda, Tamás; Szemán, Julianna; Béni, Szabolcs

    2017-08-01

    In this work, the synthesis, characterization, and chiral capillary electrophoretic study of heptakis-(2,3-di-O-methyl-6-O-carboxymethyl)-β-CD (HDMCM), a single-isomer carboxymethylated CD, are presented. The pH-dependent and selector concentration-dependent enantiorecognition properties of HDMCM were investigated and discussed herein. The enantioseparation was assessed applying a structurally diverse set of noncharged, basic, and zwitterionic racemates. The increase in the selector concentration and gross negative charge of HDMCM improved the enantioseparation that could be observed in the majority of the cases. HDMCM was also successfully applied as BGE additive in NACE using a methanol-based system in order to prove the separation selectivity features and to highlight the broad applicability of HDMCM. Over 25 racemates showed partial or baseline separation with HDMCM under the conditions investigated, among which optimal enantiomer migration order was found for the four stereoisomers of tadalafil, tapentadol, and dapoxetine, offering the possibility of a chiral CE method development for chiral purity profiling of these drugs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laser mass spectrometry with circularly polarized light: circular dichroism of cold molecules in a supersonic gas beam.

    PubMed

    Titze, Katharina; Zollitsch, Tilo; Heiz, Ulrich; Boesl, Ulrich

    2014-09-15

    An experiment on chiral molecules that combines circular dichroism (CD) spectroscopy, mass-selective detection by laser mass spectrometry (MS), and cooling of molecules by using a supersonic beam is presented. The combination of the former two techniques (CD-laser-MS) is a new method to investigate chiral molecules and is now used by several research groups. Cooling in a supersonic beam supplies a substantial increase in spectroscopic resolution, a feature that has not yet been used in CD spectroscopy. In the experiments reported herein, a large variation in the electronic CD of carbonyl 3-methylcyclopentanone was observed depending on the excited vibrational modes in the n → π* transition. This finding should be of interest for the detection of chiral molecules and for the theoretical understanding of the CD of vibronic bands. It is expected that this effect will show up in other chiral carbonyls because the n → π* transition is typical for the carbonyl group. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A high-performance liquid chromatography-electronic circular dichroism online method for assessing the absolute enantiomeric excess and conversion ratio of asymmetric reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Wang, Mingchao; Li, Li; Yin, Dali

    2017-03-01

    Asymmetric reactions often need to be evaluated during the synthesis of chiral compounds. However, traditional evaluation methods require the isolation of the individual enantiomer, which is tedious and time-consuming. Thus, it is desirable to develop simple, practical online detection methods. We developed a method based on high-performance liquid chromatography-electronic circular dichroism (HPLC-ECD) that simultaneously analyzes the material conversion ratio and absolute optical purity of each enantiomer. In particular, only a reverse-phase C18 column instead of a chiral column is required in our method because the ECD measurement provides a g-factor that describes the ratio of each enantiomer in the mixtures. We used our method to analyze the asymmetric hydrosilylation of β-enamino esters, and we discussed the advantage, feasibility, and effectiveness of this new methodology.

  3. Approach to method development and validation in capillary electrophoresis for enantiomeric purity testing of active basic pharmaceutical ingredients.

    PubMed

    Sokoliess, Torsten; Köller, Gerhard

    2005-06-01

    A chiral capillary electrophoresis system allowing the determination of the enantiomeric purity of an investigational new drug was developed using a generic method development approach for basic analytes. The method was optimized in terms of type and concentration of both cyclodextrin (CD) and electrolyte, buffer pH, temperature, voltage, and rinsing procedure. Optimal chiral separation of the analyte was obtained using an electrolyte with 2.5% carboxymethyl-beta-CD in 25 mM NaH2PO4 (pH 4.0). Interchanging the inlet and outlet vials after each run improved the method's precision. To assure the method's suitability for the control of enantiomeric impurities in pharmaceutical quality control, its specificity, linearity, precision, accuracy, and robustness were validated according to the requirements of the International Conference on Harmonization. The usefulness of our generic method development approach for the validation of robustness was demonstrated.

  4. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.

  5. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical chains from self-assembly. The handedness of the twisted lamella can be determined by using rotation experiment of polarized light microscopy (PLM). Similar to the self-assembly of BCPs*, the examined results suggest the homochiral evolution in the crystallized chiral polylactides. The results presented in this Account demonstrate the notable progress in the spectral and morphological determination for the examination of molecular, conformational, and hierarchical chirality in self-assembled twisted superstructures of chiral polymers and helical phases of block copolymers and suggest the attainability of homochiral evolution in the self-assembly of chiral homopolymers and BCPs*. The suggested methodologies for the understanding of the mechanisms of the chirality transfer at different length scales provide the approaches to give Supporting Information for disclosing the mysteries of the homochiral evolution from molecular level.

  6. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    PubMed

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  7. Some recent experimental results related to nuclear chirality

    NASA Astrophysics Data System (ADS)

    Timár, J.; Kuti, I.; Sohler, D.; Starosta, K.; Koike, T.; Paul, E. S.

    2014-09-01

    Detailed band structures of three chiral-candidate nuclei, 134Pr, 132La and 103Rh have been studied. The aim of the study was twofold. First, to try to explore the reasons behind the contradiction between the theoretically predicted chirality in these nuclei and the recently observed fingerprints that suggest non-chiral interpretation for the previous chiral candidate band doublets. Second, to search for multiple chiral bands of different types in these nuclei. In 134Pr a new πh11/2vh11/2 band has been observed besides the previously known chiral-candidate πh11/2vh11/2 doublet. This new band and the yrare πh11/2vh11/2 band show the expected features of a chiral doublet structure. This fact combined with the observed similarity between the band structures of 134Pr and 132La suggests that chirality might exist in these nuclei. The detailed study of the 103Rh band structure resulted in the observation of two new chiral-doublet looking structures besides the previously known one. This is indicative of possible existence of multiple chiral doublet structure in this nucleus.

  8. On-Chip Microfluidic Components for In Situ Analysis, Separation, and Detection of Amino Acids

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Getty, Stephanie; Dworkin, Jason; Balvin, Manuel; Kotecki, Carl

    2013-01-01

    The Astrobiology Analytical Laboratory at GSFC has identified amino acids in meteorites and returned cometary samples by using liquid chromatography-electrospray ionization time-of-flight mass spectrometry (LCMS). These organic species are key markers for life, having the property of chirality that can be used to distinguish biological from non-biological amino acids. One of the critical components in the benchtop instrument is liquid chromatography (LC) analytical column. The commercial LC analytical column is an over- 250-mm-long and 4.6-mm-diameter stainless steel tube filled with functionized microbeads as stationary phase to separate the molecular species based on their chemistry. Miniaturization of this technique for spaceflight is compelling for future payloads for landed missions targeting astrobiology objectives. A commercial liquid chromatography analytical column consists of an inert cylindrical tube filled with a stationary phase, i.e., microbeads, that has been functionalized with a targeted chemistry. When analyte is sent through the column by a pressurized carrier fluid (typically a methanol/ water mixture), compounds are separated in time due to differences in chemical interactions with the stationary phase. Different species of analyte molecules will interact more strongly with the column chemistry, and will therefore take longer to traverse the column. In this way, the column will separate molecular species based on their chemistry. A lab-on-chip liquid analysis tool was developed. The microfluidic analytical column is capable of chromatographically separating biologically relevant classes of molecules based on their chemistry. For this analytical column, fabrication, low leak rate, and stationary phase incorporation of a serpentine microchannel were demonstrated that mimic the dimensions of a commercial LC column within a 5 10 1 mm chip. The microchannel in the chip has a 75- micrometer-diameter oval-shaped cross section. The serpentine microchannel has four different lengths: 40, 60, 80, and 100 mm. Functionized microbeads were filled inside the microchannel to separate molecular species based on their chemistry.

  9. Current progress and technical challenges of flexible liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Fujikake, Hideo; Sato, Hiroto

    2009-02-01

    We focused on several technical approaches to flexible liquid crystal (LC) display in this report. We have been developing flexible displays using plastic film substrates based on polymer-dispersed LC technology with molecular alignment control. In our representative devices, molecular-aligned polymer walls keep plastic-substrate gap constant without LC alignment disorder, and aligned polymer networks create monostable switching of fast-response ferroelectric LC (FLC) for grayscale capability. In the fabrication process, a high-viscosity FLC/monomer solution was printed, sandwiched and pressed between plastic substrates. Then the polymer walls and networks were sequentially formed based on photo-polymerization-induced phase separation in the nematic phase by two exposure processes of patterned and uniform ultraviolet light. The two flexible backlight films of direct illumination and light-guide methods using small three-primary-color light-emitting diodes were fabricated to obtain high-visibility display images. The fabricated flexible FLC panels were driven by external transistor arrays, internal organic thin film transistor (TFT) arrays, and poly-Si TFT arrays. We achieved full-color moving-image displays using the flexible FLC panel and the flexible backlight film based on field-sequential-color driving technique. Otherwise, for backlight-free flexible LC displays, flexible reflective devices of twisted guest-host nematic LC and cholesteric LC were discussed with molecular-aligned polymer walls. Singlesubstrate device structure and fabrication method using self-standing polymer-stabilized nematic LC film and polymer ceiling layer were also proposed for obtaining LC devices with excellent flexibility.

  10. An efficient and highly stereoselective synthesis of new P-chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation.

    PubMed

    Chen, Weiping; Roberts, J Stanley M; Whittall, John; Steiner, Alexander

    2006-07-21

    An efficient and highly stereoselective synthesis of P-chiral 1,5-diphosphanylferrocene ligands has been developed, and the introduction of P-chirality in ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding catalyst when matching of the planar chirality, the chirality at carbon and the chirality at phosphorus occurs.

  11. Application of LC/MS/MS Techniques to Development of US EPA Standardized Methods for Chemicals of Emerging Concern

    EPA Science Inventory

    This presentation will describe the U.S. EPA’s drinking water and ambient water method development program in relation to the process employed and the typical challenges encountered in developing standardized LC/MS/MS methods for chemicals of emerging concern. The EPA&rsquo...

  12. Cell Chirality Drives Left-Right Asymmetric Morphogenesis

    PubMed Central

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila, we discovered that cells can have an intrinsic chirality to their structure, and that this “cell chirality” is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF (Myo31DF), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans, chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine. PMID:29666795

  13. Analytical Stability-Indicating Methods for Alogliptin in Tablets by LC-CAD and LC-UV.

    PubMed

    Bertol, Charise Dallazem; Friedrich, Maria Tereza; Carlos, Graciela; Froehlich, Pedro Eduardo

    2017-03-01

    Stability-indicating LC methods using a UV detector and a charged aerosol detector (CAD) simultaneously were validated for the assessment of alogliptin (ALG) in tablets. The analysis was performed on a C8 column (250 × 4.6 mm, 5 μm) at a flow of 0.8 mL/min, using acetonitrile-10 mM ammonium acetate buffer (pH 3.5; 90 + 10, v/v) as mobile phase and UV detection at 275 nm. Validation followed the International Conference on Harmonization guidelines. The method was linear over the range of 25-200 μg/mL. Normality of the residuals showed a normal distribution, no autocorrelation, and homoscedasticity. LODs were 6.25 and 2.65 µg/mL and LOQs were 20.85 and 8.84 µg/mL for the CAD and the UV detector, respectively. The methods were precise and accurate. Excipients and degradation products did not interfere in the methods in studies of specificity. None of the factors studied in the analysis of robustness had a significant effect on the quantification of the ALG by the Pareto chart. The results of the assay obtained with LC-CAD and LC-UV were similar. The methods could be considered interchangeable and stability-indicating, and can be applied as an appropriate QC tool for analysis of ALG in tablets.

  14. FATE AND EFFECTS OF THE ENANTIOMERS OF CHIRAL ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral compounds, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. This holds true for pesticides, about 25% of which are chiral molecules, and other chiral environmental...

  15. Chiral magnetic effect in lattice QCD with a chiral chemical potential.

    PubMed

    Yamamoto, Arata

    2011-07-15

    We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.

  16. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  17. A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands.

    PubMed

    Chen, Weiping; Mbafor, William; Roberts, Stanley M; Whittall, John

    2006-03-29

    A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands has been developed. On the basis of this new methodology, several new families of ferrocene-based phosphine ligands have been prepared coupling chirality at phosphorus with other, more standard stereogenic features. The introduction of P-chirality into ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding Rh catalyst when a matching among the planar chirality, carbon chirality, and the chirality of phosphorus is achieved.

  18. Clinical Implications of In Vivo Lamina Cribrosa Imaging in Glaucoma.

    PubMed

    Kim, Yong Woo; Jeoung, Jin Wook; Kim, Young Kook; Park, Ki Ho

    2017-09-01

    The lamina cribrosa (LC) is a multilayered, collagenous, sieve-like structure at the deep optic nerve head, and is presumed to be the primary site of axonal injury. According to biomechanical theory, intraocular pressure-induced posterior deformation of the LC causes blockage of axonal transport and alters the ocular blood flow, so that the axons of the retinal ganglion cells lead to apoptosis, which results in glaucomatous optic disc change. Although most of the research on the LC to date has been limited to experimental animal or histologic studies, the recent advances in optical coherence tomography devices and image processing techniques have made possible the visualization of the LC structure in vivo. LC deformation in glaucoma typically has been evaluated in terms of its position from a structural reference plane (LC depth), entire curvature or shape, thickness, or localized structural change (focal LC defects or LC pore change). In this review, we highlight the methods of assessing LC deformation from in vivo optical coherence tomography scans, and we discuss the clinical implications of the recent investigations of the in vivo structure of LC in glaucoma.

  19. Determination of Grayanotoxins from Rhododendron brachycarpum in Dietary Supplements and Homemade Wine by Liquid Chromatography-Quadrupole Time-of-Flight-Mass Spectrometry and Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Hwang, Taeik; Noh, Eunyoung; Jeong, Ji Hye; Park, Sung-Kwan; Shin, Dongwoo; Kang, Hoil

    2018-02-28

    A sensitive and specific high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (LC-QTOF-MS) method combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of grayanotoxins I and III in dietary supplements and homemade wine. Grayanotoxins I and III were successfully extracted using solid-phase extraction cartridges, characterized by LC-QTOF-MS, and quantitated by LC-MS/MS. The LC-MS/MS calibration curves were linear over concentrations of 10-100 ng/mL (grayanotoxin I) and 20-400 ng/mL (grayanotoxin III). Grayanotoxins I and III were found in 51 foodstuffs, with quantitative determinations revealing total toxin concentrations of 18.4-101 000 ng/mL (grayanotoxin I) and 15.3-56 000 ng/mL (grayanotoxin III). The potential of the validated method was demonstrated by successful quantitative analysis of grayanotoxins I and III in dietary supplements and homemade wine; the method appears suitable for the routine detection of grayanotoxins I and III from Rhododendron brachycarpum.

  20. Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of α-hexachlorocyclo-hexane in the environment.

    PubMed

    Badea, Silviu-Laurentiu; Vogt, Carsten; Gehre, Matthias; Fischer, Anko; Danet, Andrei-Florin; Richnow, Hans-Hermann

    2011-05-30

    α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly < ± 0.5‰. In order to test the chiral GC-C-IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment. Copyright © 2011 John Wiley & Sons, Ltd.

Top