Sample records for chiral mobile phase

  1. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  2. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On the effect of basic and acidic additives on the separation of the enantiomers of some basic drugs with polysaccharide-based chiral selectors and polar organic mobile phases.

    PubMed

    Mosiashvili, L; Chankvetadze, L; Farkas, T; Chankvetadze, B

    2013-11-22

    This article reports the systematic study of the effect of basic and acidic additives on HPLC separation of enantiomers of some basic chiral drugs on polysaccharide-based chiral columns under polar organic mobile-phase conditions. In contrary to generally accepted opinion that the basic additives improve the separation of enantiomers of basic compounds, the multiple scenarios were observed including the increase, decrease, disappearance and appearance of separation, as well as the reversal of the enantiomer elution order of studied basic compounds induced by the acidic additives. These effects were observed on most of the studied 6 chiral columns in 2-propanol and acetonitrile as mobile phases and diethylamine as a basic additive. As acidic additives formic acid was used systematically and acetic acid and trifluoroacetic acid were applied for comparative purposes. This study illustrates that the minor acidic additives to the mobile phase can be used as for the adjustment of separation selectivity and the enantiomer elution order of basic compounds, as well as for study of chiral recognition mechanisms with polysaccharide-based chiral stationary phases. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of basic and acidic additives on the separation of some basic drug enantiomers on polysaccharide-based chiral columns with acetonitrile as mobile phase.

    PubMed

    Gogaladze, Khatuna; Chankvetadze, Lali; Tsintsadze, Maia; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-03-01

    The separation of enantiomers of 16 basic drugs was studied using polysaccharide-based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate-based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β-blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase. © 2015 Wiley Periodicals, Inc.

  5. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  6. Chiral Recognition with Macrocyclic Glycopeptides: Mechanisms and Applications

    NASA Astrophysics Data System (ADS)

    Berthod, Alain; Qiu, Hai Xiao; Staroverov, Sergey M.; Kuznestov, Mikhail A.; Armstrong, Daniel W.

    The macrocyclic glycopeptide chiral selectors are natural molecules produced by bacterial fermentation. Purified and bonded to silica particles, they make very useful chiral stationary phases (CSP) with a broad spectrum of applicability in enantiomeric separation. The macrocyclic glycopeptide CSPs are multimodal, the same column being able to work in normal phase mode with apolar mobile phase, in reversed-phase mode, or in polar ionic mode with 100% alcoholic mobile phase of adjusted pH. The role of the carbohydrate units is described as well as the critical charge-charge docking interaction responsible for the amino acid enantiomer recognition. The complimentary phenomenon is also exposed.

  7. HPLC of fluoroquinolone antibacterials using chiral stationary phase based on enantiomeric (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6.

    PubMed

    Choi, Hee Jung; Cho, Hwan Sun; Han, Sang Cheol; Hyun, Myung Ho

    2009-02-01

    A residual silanol group-protecting chiral stationary phase (CSP) based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 was successfully applied to the resolution of fluoroquinolone compounds including gemifloxacin mesylate. The chiral recognition ability of the residual silanol group-protecting CSP was generally greater than that of the residual silanol group-containing CSP. From these results, it was concluded that the simple protection of the residual silanol groups of the latter CSP with lipophilic n-octyl groups can improve its chiral recognition ability for the resolution of racemic fluoroquinolone compounds. The chromatographic resolution behaviors were investigated as a function of the content and type of organic and acidic modifiers and the ammonium acetate concentration in aqueous mobile phase and the column temperature. Especially, the addition of ammonium acetate to the mobile phase was found to be a quite effective means of reducing the enantiomer retentions without sacrificing the chiral recognition efficiency of the CSP.

  8. Analytical Enantioseparation of β-Substituted-2-Phenylpropionic Acids by High-Performance Liquid Chromatography with Hydroxypropyl-β-Cyclodextrin as Chiral Mobile Phase Additive.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Yan, Jizhong

    2016-04-01

    Analytical enantioseparation of five β-substituted-2-phenylpropionic acids by high-performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral mobile phase additive was established in this paper, and chromatographic retention mechanism was studied. The effects of various factors such as the organic modifier, different ODS C18 columns and concentration of HP-β-CD were investigated. The chiral mobile phase was composed of methanol or acetonitrile and 0.5% triethylamine acetate buffer at pH 3.0 added with 25 mmol L(-1) of HP-β-CD, and baseline separations could be reached for all racemates. As for chromatographic retention mechanism, it was found that there was a negative correlation between the concentration of HP-β-CD in mobile phase and the retention factor under constant pH value and column temperature. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    PubMed

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Enantiomeric separation of six chiral pesticides that contain chiral sulfur/phosphorus atoms by supercritical fluid chromatography.

    PubMed

    Zhang, Lijun; Miao, Yelong; Lin, Chunmian

    2018-03-01

    Six chiral pesticides containing chiral sulfur/phosphorus atoms were separated by supercritical fluid chromatography with supercritical CO 2 as the main mobile phase component. The effect of the chiral stationary phase, different type and concentration of modifiers, column temperature, and backpressure on the separation efficiency was investigated to obtain the appropriate separation condition. Five chiral pesticides (isofenphos-methyl, isocarbophos, flufiprole, fipronil, and ethiprole) were baseline separated under experimental conditions, while isofenphos only obtained partial separation. The Chiralpak AD-3 column showed a better chiral separation ability than others for chiral pesticides containing chiral sulfur/phosphorus atoms. When different modifiers at the same concentration were used, the retention factor of pesticides except flufiprole decreased in the order of isopropanol, ethanol, methanol; meanwhile, the retention factor of flufiprole increased in the order of isopropanol, ethanol, methanol. For a given modifier, the retention factor and resolution decreased on the whole with the increase of its concentration. The enantiomer separation of five chiral pesticides was an "enthalpy-driven" process, and the separation factor decreased as the temperature increased. The backpressure of the mobile phase had little effect on the separation factor and resolution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  12. Enantiomeric separation of 2-arylpropionic acid nonsteroidal anti-inflammatory drugs by HPLC with hydroxypropyl-beta-cyclodextrin as chiral mobile phase additive.

    PubMed

    Ye, Jincui; Yu, Wenying; Chen, Guosheng; Shen, Zhengrong; Zeng, Su

    2010-08-01

    The enantio-separations of eight 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (2-APA NSAIDs) were established using reversed-phase high-performance liquid chromatography with hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral mobile phase additive for studying the stereoselective skin permeation of suprofen, ketoprofen, naproxen, indoprofen, fenoprofen, furbiprofen, ibuprofen and carprofen. The effects of the mobile phase composition, concentration of HP-beta-CD and column temperature on retention and enantioselective separation were investigated. With 2-APA NSAIDs as acidic analytes, the retention times and resolutions of the enantiomers were strongly related to the pH of the mobile phase. In addition, both the concentration of HP-beta-CD and temperature had a great effect on retention time, but only a slight or almost no effect on resolutions of the analytes. Enantioseparations were achieved on a Shimpack CLC-ODS (150 x 4.6 mm i.d., 5 microm) column. The mobile phase was a mixture of methanol and phosphate buffer (pH 4.0-5.5, 20 mM) containing 25 mM HP-beta-CD. This method was flexible, simple and economically advantageous over the use of chiral stationary phase, and was successfully applied to the enantioselective determination of the racemic 2-APA NSAIDs in an enantioselective skin permeation study.

  13. Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-03-01

    Cetirizine is an antihistaminic drug used to prevent and treat allergic conditions. It is currently marketed as a racemate. The H1-antagonist activity of cetirizine is primarily due to (R)-levocetirizine. This has led to the introduction of (R)-levocetirizine into clinical practice, and the chiral switching is expected to be more selective and safer. The present work represents three methods for the analysis and chiral discrimination of cetirizine. The first method was based on the enantioseparation of cetirizine on silica gel TLC plates using different chiral selectors as mobile phase additives. The mobile phase enabling successful resolution was acetonitrile-water 17: 3, (v/v) containing 1 mM of chiral selector, namely hydroxypropyl-beta-cyclodextrin, chondroitin sulphate or vancomycin hydrochloride. The second method was a validated high performance liquid chromatography (HPLC), based on stereoselective separation of cetirizine and quantitative determination of its eutomer (R)-levocetirizine on a monolithic C18 column using hydroxypropyl-beta-cyclodextrin as a chiral mobile phase additive. The resolved peaks of (R)-levocetirizine and (S)-dextrocetirizine were confirmed by further mass spectrometry. The third method used a (1)H-NMR technique to characterize cetirizine and (R)-levocetirizine. These methods are selective and accurate, and can be easily applied for chiral discrimination and determination of cetirizine in drug substance and drug product in quality control laboratory. Moreover, chiral purity testing of (R)-levocetirizine can also be monitored by the chromatographic methods. Copyright 2009 John Wiley & Sons, Ltd.

  14. High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases.

    PubMed

    Sipos, László; Ilisz, István; Nonn, Melinda; Fülöp, Ferenc; Pataj, Zoltán; Armstrong, Daniel W; Péter, Antal

    2012-04-06

    The enantiomers of four unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V) and vancomycin aglycone (Chirobiotic VAG) as chiral selectors. The effects of the mobile phase composition, the structure of the analytes and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 5-45 °C to study the effects of temperature, and thermodynamic parameters were calculated from plots of lnk or lnα versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomeric separations were in most cases enthalpy-driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography.

    PubMed

    West, Caroline; Konjaria, Mari-Luiza; Shashviashvili, Natia; Lemasson, Elise; Bonnet, Pascal; Kakava, Rusudan; Volonterio, Alessandro; Chankvetadze, Bezhan

    2017-05-26

    Asymmetric sulfoxides is a particular case of chirality that may be found in natural as well as synthetic products. Twenty-four original molecules containing a sulfur atom as a centre of chirality were analyzed in supercritical fluid chromatography on seven polysaccharide-based chiral stationary phases (CSP) with carbon dioxide - methanol mobile phases. While all the tested CSP provided enantioseparation for a large part of the racemates, chlorinated cellulosic phases proved to be both highly retentive and highly enantioselective towards these species. Favourable structural features were determined by careful comparison of the enantioseparation of the probe molecules. Molecular modelling studies indicate that U-shaped (folded) conformations were most favorable to achieve high enantioresolution on these CSP, while linear (extended) conformations were not so clearly discriminated. For a subset of these species adopting different conformations, a broad range of mobile phase compositions, ranging from 20 to 100% methanol in carbon dioxide, were investigated. While retention decreased continuously in this range, enantioseparation varied in a non-monotonous fashion. Abrupt changes in the tendency curves of retention and selectivity were observed when methanol proportion reaches about 60%, suggesting that a change in the conformation of the analytes and/or chiral selector is occurring at this point. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Green chiral HPLC enantiomeric separations using high temperature liquid chromatography and subcritical water on Chiralcel OD and Chiralpak AD.

    PubMed

    Droux, Serge; Félix, Guy

    2011-01-01

    We report here the application of subcritical water in chiral separations on two popular polysaccharide chiral stationary phases (CSPs): Chiralpak AD and Chiralcel OD. The behavior of these two CSPs was studied under reversed phase conditions at room temperature to discover the maximum percentage of water in the mobile phase, which provided the separation of enantiomers of flavanone and benzoin, respectively, in a reasonable time (i.e., less than 1 h). Then, the stability of Chiralpak AD and Chiralcel OD versus temperature was investigated and discussed. Chiralcel OD separation of flavanone racemate was obtained at 120 °C with water and 2-propanol (80/20) as the mobile phase, while benzoin racemate was separated in pure water at 160 °C. Separations of several racemates were also presented, and advantages and limitations of the technique were discussed. Copyright © 2011 Wiley Periodicals, Inc.

  17. Preparative supercritical fluid chromatography: A powerful tool for chiral separations.

    PubMed

    Speybrouck, David; Lipka, Emmanuelle

    2016-10-07

    In 2012, the 4 biggest pharmaceutical blockbusters were pure enantiomers and separating racemic mixtures is now frequently a key step in the development of a new drug. For a long time, preparative liquid chromatography was the technique of choice for the separation of chiral compounds either during the drug discovery process to get up to a hundred grams of a pure enantiomer or during the clinical trial phases needing kilograms of material. However the advent of supercritical Fluid Chromatography (SFC) in the 1990s has changed things. Indeed, the use of carbon dioxide as the mobile phase in SFC offers many advantages including high flow rate, short equilibration time as well as low solvent consumption. Despite some initial teething troubles, SFC is becoming the primary method for preparative chiral chromatography. This article will cover recent developments in preparative SFC for the separation of enantiomers, reviewing several aspects such as instrumentation, chiral stationary phases, mobile phases or purely preparative considerations including overloading, productivity or large scale chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC

    PubMed Central

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-01-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408

  19. Features of the adsoprtion of naproxen on the chiral stationary phase (S,S)-Whelk-O1 under reversed-phase conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asnin, Leonid; Gritti, Fabrice; Kaczmarski, Krzysztof

    Using elution chromatography, we studied the adsorption mechanism of the Naproxen enantiomers on the chiral stationary phase (S,S)-Whelk-O1, from buffered methanol-water solutions. We propose an adsorption mechanism that assumes monolayer adsorption of the more retained enantiomer and the associative adsorption of the less retained one. The effects of the mobile phase composition on the adsorption of Naproxen are discussed. The combination of an elevated column temperature and of the use of an acidic mobile phase led to the degradation of the column and caused a major loss of its separation ability. The use of a moderately acidic mobile phase atmore » temperature slightly above ambient did not produce rapid severe damages but, nevertheless, hampered the experiments and caused a slow gradual deterioration of the column.« less

  20. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    PubMed

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  1. Chiral ligand exchange high-speed countercurrent chromatography: mechanism, application and comparison with conventional liquid chromatography in enantioseparation of aromatic α-hydroxyl acids

    PubMed Central

    Tong, Shengqiang; Shen, Mangmang; Cheng, Dongping; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    This work concentrates on the separation mechanism and application of chiral ligand exchange high-speed countercurrent chromatography (HSCCC) in enantioseparations, and comparison with traditional chiral ligand exchange high performance liquid chromatography (HPLC). The enantioseparation of ten aromatic α-hydroxyl acids were performed by these two chromatographic methods. Results showed that five of the racemates were successfully enantioseparated by HSCCC while only three of the racemates could be enantioseparated by HPLC using a suitable chiral ligand mobile phase additive. For HSCCC, the two-phase solvent system was composed of butanol-water (1:1, v/v), to which N-n-dodecyl-L-proline was added in the organic phase as chiral ligand and cupric acetate was added in the aqueous phase as a transition metal ion. Various operation parameters in HSCCC were optimized by enantioselective liquid-liquid extraction. Based on the results of the present studies the separation mechanism for HSCCC was proposed. For HPLC, the optimized mobile phase composed of aqueous solution containing 6 mmol L−1 L-phenylalanine and 3 mmol L−1 cupric sulfate and methanol was used for enantioseparation. Among three ligands tested on a conventional reverse stationary phase column, only one was found to be effective. In the present studies HSCCC presented unique advantages due to its high versatility of two-phase solvent systems and it could be used as an alternative method for enantioseparations. PMID:25087742

  2. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases.

    PubMed

    Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2010-10-29

    The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases.

    PubMed

    Novell, Arnau; Méndez, Alberto; Minguillón, Cristina

    2015-07-17

    The chromatographic behaviour and performance of four polyproline-derived chiral stationary phases (CSPs) were tested using supercritical fluid chromatography (SFC). A series of structurally related racemic compounds, whose enantioseparation was proved to be sensitive to the type of mobile phase used in NP-HPLC, were chosen to be tested in the SFC conditions. Good enantioselection ability was shown by the CSPs for the analytes tested in the new conditions. Resolution, efficiency and analysis time, were considerably improved with respect to NP-HPLC when CO2/alcohol mobile phases were used. Monolithic columns clearly show enhanced chromatographic parameters and improved performance respect to their bead-based counterparts. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparing the selectivity and chiral separation of d- and l- fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact.

    PubMed

    Vera, C M; Shock, D; Dennis, G R; Farrell, W; Shalliker, R A

    2017-04-14

    The chiral separation of d- and l- FMOC amino acids was undertaken using the Lux Cellulose-1 polysaccharide based chiral column in HPLC (normal phase and reverse phase) and SFC conditions. This was done to compare the relative selectivity and separation between the three separation modes and to evaluate the potential benefits of SFC separations with regards to resolution, throughput, economic and environmental impact. It was established that the separation of d- and l- FMOC amino acids in SFC displayed behaviours that were similar to both normal phase and reversed phase, rather than distinctly one or the other. Additionally, although reversed phase conditions yielded significantly higher resolution values between enantiomers across the range of amino acids studied, improvements in selectivity in SFC via the introduction of higher concentrations of formic acid in the mobile phase allowed for better resolution per unit of time. Moreover since the SFC mobile phase is composed mostly of recyclable CO 2 , there is a reduction in organic solvent consumption, which minimises the economic and environmental costs. Copyright © 2017. Published by Elsevier B.V.

  5. Chiral ligand-exchange high-performance liquid chromatography with copper (II)-L-phenylalanine complexes for separation of 3,4-dimethoxy-α-methylphenylalanine racemes.

    PubMed

    Jia, Dong-Xu; Ai, Zheng-Gui; Xue, Ya-Ping; Zheng, Yu-Guo

    2014-11-01

    L-3, 4-dimethoxy-α-methylphenylalanine (L-DMMD) is an important intermediate for the synthesis of 3-hydroxy-α-methyl-L-tyrosine (L-methyldopa). This paper describes an efficient, accurate, and low-priced method of high-performance liquid chromatography (HPLC) using chiral mobile phase and conventional C18 column to separate L-DMMD from its enantiomers. The effects of ligands, copper salts, organic modifiers, pHs of mobile phase, and temperatures on the retention factors (k') and selectivity (α) were evaluated to achieve optimal separation performance. Then, thermal analysis of the optimal separation conditions was investigated as well. It was confirmed that the optimal mobile phase was composed of 20 % (v/v) methanol, 8 mM L-phenylalanine (L-Phe), and 4 mM cupric sulfate in water of pH 3.2, and the column temperature was set at 20 °C. Baseline separation of two enantiomers could be obtained through the conventional C18 column with a resolution (R) of 3.18 in less than 18 min. Thermodynamic data (∆∆H and ∆∆S) obtained by Van't Hoff plots revealed the chiral separation was an enthalpy-controlled process. To the best of our knowledge, this is the first report regarding the enantioseparation of DMMD by chiral ligand-exchange HPLC.

  6. Cyclodextrins as a chiral mobile phase additive in nano-liquid chromatography: comparison of reversed-phase silica monolithic and particulate capillary columns.

    PubMed

    Rocco, Anna; Maruška, Audrius; Fanali, Salvatore

    2012-03-01

    Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R(s) = 1.80 for naproxen to R(s) = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R(s) value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R(s) = 0.89).

  7. [[Chiral separation of five arylpropionic acid drugs and determination of their enantiomers in pharmaceutical preparations by reversed-phase high performance liquid chromatography with cellulose-tris-(4-methylbenzoate) stationary phase

    PubMed

    Luo, An; Wan, Qiang; Fan, Huajun; Chen, Zhi; Wu, Xuehao; Huang, Xiaowen; Zang, Linquan

    2014-09-01

    Chromatographic behaviors for enantiomeric separation of arylpropionic acid drugs were systematically developed by reversed phase-high performance liquid chromatography (RP-HPLC) using cellulose-tris-(4-methylbenzoate) (CTMB) as chiral stationary phase (CSP). The effects of the composition of the mobile phase, additives and temperature on chiral separation of flurbiprofen, pranoprofen, naproxen, ibuprofen and loxoprofen were further investigated. The enantiomers had been successfully separated on CSP of CTMB by the mobile phase of methanol-0.1% (v/v) formic acid except naproxen by acetonitrile-0.1% (v/v) formic acid at 25 °C. The mechanisms of the racemic resolution for the above mentioned five drugs are discussed thermodynamically and structurally. The resolutions between respective enantiomers for arylpropionic acid drugs on CTMB had significant differences due to their chromatographic behaviors. The order of resolutions ranked pranoprofen, loxoprofen, flurbiprofen, ibuprofen and naproxen. The method established has been successfully applied to the determination of the enantiomers of the five drugs in commercial preparations under the optimized conditions. It proved that the method is simple, reliable and accurate.

  8. Separation mechanism of chiral impurities, ephedrine and pseudoephedrine, found in amphetamine-type substances using achiral modifiers in the gas phase.

    PubMed

    Holness, Howard K; Jamal, Adeel; Mebel, Alexander; Almirall, José R

    2012-11-01

    A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte-modifier clusters was also performed, and showed either "bridged" or "independent" binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.

  9. The chiral separation of triazole pesticides enantiomers by amylose-tris (3,5-dimethylphenylcarbamate) chiral stationary phase.

    PubMed

    Wang, Peng; Liu, Donghui; Jiang, Shuren; Xu, Yangguang; Zhou, Zhiqiang

    2008-10-01

    The amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase was synthesized and used to separate the enantiomers of triazole pesticides by high-performance liquid chromatography. The mobile phase was n-hexane-isopropanol applying a flow rate of 1.0 mL/min. Six triazole pesticides were enantioselectively separated. Myclobutanil, paclobutrazol, tebuconazole, and uniconazole obtained complete separation with the resolution factors of 5.73, 2.99, 1.72, and 2.07, respectively, and imazalil and diniconazole obtained partial separation with the resolution factors of 0.79 and 0.77 under the optimized conditions. The effect of the content of isopropanol as well as column temperature on the separation was investigated. A circular dichroism detector was used to identify the enantiomers and determine the elution orders. The results showed the low temperature was good for the chiral separation except for diniconazole. The thermodynamic parameters calculated based on linear Van't Hoff plots showed the chiral separations were controlled by enthalpy.

  10. Enantioseparation of mandelic acid derivatives by high performance liquid chromatography with substituted β-cyclodextrin as chiral mobile phase additive and evaluation of inclusion complex formation

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang

    2014-01-01

    The enantioseparation of ten mandelic acid derivatives was performed by reverse phase high performance liquid chromatography with hydroxypropyl-β-cyclodextrin (HP-β-CD) or sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as chiral mobile phase additives, in which inclusion complex formations between cyclodextrins and enantiomers were evaluated. The effects of various factors such as the composition of mobile phase, concentration of cyclodextrins and column temperature on retention and enantioselectivity were studied. The peak resolutions and retention time of the enantiomers were strongly affected by the pH, the organic modifier and the type of β-cyclodextrin in the mobile phase, while the concentration of buffer solution and temperature had a relatively low effect on resolutions. Enantioseparations were successfully achieved on a Shimpack CLC-ODS column (150×4.6 mm i.d., 5 μm). The mobile phase was a mixture of acetonitrile and 0.10 mol L-1 of phosphate buffer at pH 2.68 containing 20 mmol L-1 of HP-β-CD or SBE-β-CD. Semi-preparative enantioseparation of about 10 mg of α-cyclohexylmandelic acid and α-cyclopentylmandelic acid were established individually. Cyclodextrin-enantiomer complex stoichiometries as well as binding constants were investigated. Results showed that stoichiomertries for all the inclusion complex of cyclodextrin-enantiomers were 1:1. PMID:24893270

  11. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    PubMed

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an ionic liquid and its chiral separation efficiency as stationary phase.

    PubMed

    Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping

    2014-04-11

    A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media.

  13. Synthesis of Cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an Ionic Liquid and Its Chiral Separation Efficiency as Stationary Phase

    PubMed Central

    Liu, Runqiang; Zhang, Yijun; Bai, Lianyang; Huang, Mingxian; Chen, Jun; Zhang, Yuping

    2014-01-01

    A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-aminopropylsilanized silica gel and the CBDMPC bonded chiral stationary phase (CSP) was obtained. Chromatographic evaluation of the prepared CSPs was conducted by high performance liquid chromatographic (HPLC) and baseline separation of three typical fungicides including hexaconazole, metalaxyl and myclobutanil was achieved using n-hexane/isopropanol as the mobile phase with a flow rate 1.0 mL/min. Experimental results also showed that AMIMCl could be recycled easily and reused in the preparation of CSPs as an effective reaction media. PMID:24733066

  14. Natural terpene derivatives as new structural task-specific ionic liquids to enhance the enantiorecognition of acidic enantiomers on teicoplanin-based stationary phase by high-performance liquid chromatography.

    PubMed

    Flieger, Jolanta; Feder-Kubis, Joanna; Tatarczak-Michalewska, Małgorzata; Płazińska, Anita; Madejska, Anna; Swatko-Ossor, Marta

    2017-06-01

    We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R,2S,5R)-(-)-menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0 ) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β-d-glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as "structural task-specific ionic liquids" responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. [Preparation of L-phenylalanine chiral ligand-exchange chromatographic stationary phase by atom transfer radical polymerization and resolution of racemates].

    PubMed

    Sun, Yang; Xu, Fei; Gong, Bolin

    2011-09-01

    A novel stationary phase was synthesized for chiral ligand-exchange chromatography via atom transfer radical polymerization (ATRP). Glycidyl methacrylate (GMA) was grafted onto the surface of the silica by ATRP using bromoisobutyryl bromide as an initiator, and the organic metal compound formed in the CuCl/2,2'-bipyridine(Bpy) system as a catalyst at room temperature. The chiral stationary phase was then synthesized by grafting L-phenylalanine on the surface of the silica. The stationary phase was characterized by means of elementary analysis and evaluated in detail to determine its separability. The amount of L-phenylalanine on the surface of silica was calculated to be 4.32 mg/m2. The results showed that the good enantioseparations of some DL-amino acids were obtained using ligand-exchange chromatography on the synthesized chiral stationary phase (50 degrees C) with 0.05 mol/L KH2PO4 and 0.1 mmol/L Cu(Ac)2 solution (pH 4.5) as the mobile phase at a flow rate of 1.0 mL/min and a wavelength of 223 nm. The influences of the mobile phase pH, concentration of Cu (II), and temperature of column on the resolution of DL-amino acids by ligand-exchange chromatography were investigated. The results showed that these conditions could affect the resolution of racemates. Compared with the column prepared by radical method using L-phenylalanine directly bonded onto the surface of the silica, the synthesized stationary phase showed a better separation ability, and the DL-aspartic acids and DL-asparagines could be separated at baseline.

  16. Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2007-01-01

    Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  17. Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.

    PubMed

    Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping

    2011-10-01

    The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.

  18. Enantiomeric separation of type I and type II pyrethroid insecticides with different chiral stationary phases by reversed-phase high-performance liquid chromatography.

    PubMed

    Zhang, Ping; Yu, Qian; He, Xiulong; Qian, Kun; Xiao, Wei; Xu, Zhifeng; Li, Tian; He, Lin

    2018-04-01

    The enantiomeric separation of type I (bifenthrin, BF) and type II (lambda-cyhalothrin, LCT) pyrethroid insecticides on Lux Cellulose-1, Lux Cellulose-3, and Chiralpak IC chiral columns was investigated by reversed-phase high-performance liquid chromatography. Methanol/water or acetonitrile/water was used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase composition, column temperature, and thermodynamic parameters on enantiomer separation were carefully studied. Bifenthrin got a partial separation on Lux Cellulose-1 column and baseline separation on Lux Cellulose-3 column, while LCT enantiomers could be completely separated on both Lux Cellulose-1 and Lux Cellulose-3 columns. Chiralpak IC provided no separation ability for both BF and LCT. Retention factor (k) and selectivity factor (α) decreased with the column temperature increasing from 10°C to 40°C for both BF and LCT enantiomers. Thermodynamic parameters including ∆H and ∆S were also calculated, and the maximum R s were not always obtained at lowest temperature. Furthermore, the quantitative analysis methods for BF and LCT enantiomers in soil and water were also established. Such results provide a new approach for pyrethroid separation under reversed-phase condition and contribute to environmental risk assessment of pyrethroids at enantiomer level. © 2017 Wiley Periodicals, Inc.

  19. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  20. [Chiral separation of five beta-blockers using di-n-hexyl L-tartrate-boric acid complex as mobile phase additive by reversed-phase liquid chromatography].

    PubMed

    Yang, Juan; Wang, Lijuan; Guo, Qiaoling; Yang, Gengliang

    2012-03-01

    A reversed-phase high performance liquid chromatographic (HPLC) method using the di-n-hexyl L-tartrate-boric acid complex as a chiral mobile phase additive was developed for the enantioseparation of five beta-blockers including propranolol, esmolol, metoprolol, bisoprolol and sotalol. In order to obtain a better enantioseparation, the influences of concentrations of di-n-butyl L-tartrate and boric acid, the type, concentration and pH of the buffer, methanol content as well as the molecular structure of analytes were extensively investigated. The separation of the analytes was performed on a Venusil MP-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 15 mmol/L ammonium acetate-methanol containing 60 mmol/L boric acid, 70 mmol/L di-n-hexyl L-tartrate (pH 6.00). The volume ratios of 15 mmol/L ammonium acetate to methanol were 20: 80 for propranolol, esmolol, metoprolol, bisoprolol and 30: 70 for sotalol. The flow rate was 0.5 mL/min and the detection wavelength was set at 214 nm. Under the optimized conditions, baseline enantioseparation was obtained separately for the five pairs of analytes.

  1. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Silva, Mariana; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel; Marina, María Luisa; Aturki, Zeineb; Fanali, Salvatore

    2017-03-24

    In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage using the Staudinger reaction. The CSP was packed into fused silica capillaries 100μm I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) using model compounds for the enantio- and the diastereomeric separation. The compounds flavanone, 2'-hydroxyflavanone, 4'-hydroxyflavanone, 6-hydroxyflavanone, 4'-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar organic elution modes. Baseline stereoisomer resolution and good results in terms of peak efficiency and short analysis time of all studied flavonoids and flavanones glycosides were achieved in reversed phase mode, using as mobile phase a mixture of MeOH/H 2 O, 10mM ammonium acetate pH 4.5 at different ratios. For the polar organic mode using 100% of MeOH as mobile phase, the CSP showed better performances and the baseline chiral separation of several studied compounds occurred in an analysis time of less than 10min. Good results were also achieved by CEC employing two different mobile phases. The use of MeOH/H 2 O, 5mM ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of flavanone and its methoxy and hydroxy derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...

  3. Liquid chromatographic separation and thermodynamic investigation of lorcaserin hydrochloride enantiomers on immobilized amylose-based chiral stationary phase.

    PubMed

    Wani, Dattatraya V; Rane, Vipul P; Mokale, Santosh N

    2018-03-01

    A novel liquid chromatographic method was developed for enantiomeric separation of lorcaserin hydrochloride on Chiralpak IA column containing chiral stationary phase immobilized with amylose tris (3.5-dimethylphenylcarbamate) as chiral selector. Baseline separation with resolution greater than 4 was achieved using mobile phase containing mixture of n-hexane/ethanol/methanol/diethylamine (95:2.5:2.5:0.1, v/v/v/v) at a flow rate of 1.2 mL/min. The limit of detection and limit of quantification of the S-enantiomer were found to be 0.45 and 1.5 μg/mL, respectively; the developed method was validated as per ICH guideline. The influence of column oven temperatures studied in the range of 20°C to 50°C on separation was studied; from this, retention, separation, and resolution were investigated. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were evaluated from van't Hoff plots,(Ink' versus 1/T) and used to explain the strength of interaction between enantiomers and immobilized amylose-based chiral stationary phase. © 2017 Wiley Periodicals, Inc.

  4. Cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase for the enantioseparation of drugs in supercritical fluid chromatography: comparison with HPLC.

    PubMed

    Kalíková, Květa; Martínková, Monika; Schmid, Martin G; Tesařová, Eva

    2018-03-01

    A cellulose tris-(3,5-dimethylphenylcarbamate)-based chiral stationary phase was studied as a tool for the enantioselective separation of 21 selected analytes with different pharmaceutical and physicochemical properties. The enantioseparations were performed using supercritical fluid chromatography. The effect of the mobile phase composition was studied. Four different additives (diethylamine, triethylamine, isopropylamine, and trifluoroacetic acid) and isopropylamine combined with trifluoroacetic acid were tested and their influence on enantioseparation was compared. The influence of two different mobile phase co-solvents (methanol and propan-2-ol) combined with all the additives was also evaluated. The best mobile phase compositions for the separation of the majority of enantiomers were CO 2 /methanol/isopropylamine 80:20:0.1 v/v/v or CO 2 /propan-2-ol/isopropylamine/trifluoroacetic acid 80:20:0.05:0.05 v/v/v/v. The best results were obtained from the group of basic β-blockers. A high-performance liquid chromatography separation system composed of the same stationary phase and mobile phase of similar properties prepared as a mixture of hexane/propan-2-ol/additive 80:20:0.1 v/v/v was considered for comparison. Supercritical fluid chromatography was found to yield better results, i.e. better enantioresolution for shorter analysis times than high-performance liquid chromatography. However, examples of enantiomers better resolved under the optimized conditions in high-performance liquid chromatography were also found. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nano-liquid chromatography applied to enantiomers separation.

    PubMed

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Column temperature programming in enantioseparation of dihydropyrimidinone compounds using derivatized cellulose and amylose chiral stationary phases.

    PubMed

    Wang, Fang; Yeung, David; Han, Jun; Semin, David; McElvain, James S; Cheetham, Janet

    2008-03-01

    We report the application of column temperature programs as a tool to examine unusual temperature-induced behaviors of polysaccharide chiral stationary phases (CSPs). Using dihydropyrimidinone (DHP) compounds as probes we observed the heating (10-50 degrees C) and cooling (50-10 degrees C) van't Hoff plots of retention factors and/or selectivities of DHP compounds were not superimposable on AD, IA, and AS-H columns solvated with ethanol (EtOH)/n-hexane (n-Hex) mobile phases. The plots were not superimposable on AD, IB, and AS-H columns solvated with 2-propanol (2-PrOH)/n-Hex mobile phases. The thermally induced path-dependant behaviors were caused by slow equilibration as evidenced by the disappearance of the hysteresis in the second heating to cooling cycle and in a cooling to heating cycle. From the step-temperature program (10-50-10 degrees C), only EtOH solvated AD and AS-H phases showed the change of retention factors and/or selectivities with time while only 2-PrOH solvated AS-H phase showed similar behaviors.

  7. High-performance liquid chromatographic enantioseparation of 2-aminomono- and dihydroxycyclopentanecarboxylic and 2-aminodihydroxycyclohexanecarboxylic acids on macrocyclic glycopeptide-based phases.

    PubMed

    Berkecz, Róbert; Ilisz, István; Benedek, Gabriella; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2009-02-06

    The direct separation of the enantiomers of four 2-aminomono- or dihydroxycyclopentanecarboxylic acids and four 2-aminodihydroxycyclohexanecarboxylic acids was performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG) or ristocetin A (Chirobiotic R) as chiral selectors. The effects of the nature of organic modifiers, the pH, the mobile phase composition and the structures of the analytes on the separation were investigated. Chirobiotic TAG, and in some cases Chirobiotic T, proved to be the most useful of these columns. The elution sequence was determined in most cases.

  8. Adsorption of ibuprofen enantiomers on a chiral stationary phase with a grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.; Asnin, L. D.

    2015-02-01

    The adsorption of ibuprofen enantiomers on a chiral stationary phase Nautilus-E with a grafted antibiotic eremomycin from aqueous ethanol acetate buffer solutions was studied by chromatography. The ethanol concentration in the mobile phase was varied from 40 to 60 vol %. The adsorption isotherms of both enantiomers had a complex shape characterized by non-Langmuir type curvature and the presence of an inflection point. This is explained by two factors: the energy heterogeneity of the surface of the stationary phase and the dissociation of ibuprofen in the liquid phase. The effect of the system peak on the shape of the chromatograms of the target component was investigated. The temperature effect on the adsorption equilibrium was discussed.

  9. HPLC enantioseparation of racemic bupropion, baclofen and etodolac: modification of conventional ligand exchange approach by pre-column formation of chiral ligand exchange complexes.

    PubMed

    Singh, Manisha; Bhushan, Ravi

    2016-11-01

    Separation of racemic mixture of (RS)-bupropion, (RS)-baclofen and (RS)-etodolac, commonly marketed racemic drugs, has been achieved by modifying the conventional ligand exchange approach. The Cu(II) complexes were first prepared with a few l-amino acids, namely, l-proline, l-histidine, l-phenylalanine and l-tryptophan, and to these was introduced a mixture of the enantiomer pair of (RS)-bupropion, or (RS)-baclofen or (RS)-etodolac. As a result, formation of a pair of diastereomeric complexes occurred by 'chiral ligand exchange' via the competition between the chelating l-amino acid and each of the two enantiomers from a given pair. The diastereomeric mixture formed in the pre-column process was loaded onto HPLC column. Thus, both the phases during chromatographic separation process were achiral (i.e. neither the stationary phase had any chiral structural feature of its own nor did the mobile phase have any chiral additive). Separation of diastereomers was successful using a C 18 column and a binary mixture of MeCN and TEAP buffer of pH 4.0 (60:40, v/v) as mobile phase at a flow rate of 1 mL/min and UV detection at 230 nm for (RS)-Bup, 220 nm for (RS)-Bac and 223 nm for (RS)-Etd. Baseline separation of the two enantiomers was obtained with a resolution of 6.63 in <15 min. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Direct high-performance liquid chromatographic determination of the enantiomeric purity of levodopa and methyldopa: comparison with pharmacopoeial polarimetric methods.

    PubMed

    Dolezalová, M; Tkaczyková, M

    1999-03-01

    Chiral high-performance liquid chromatography was employed for determination of the enantiomeric purity of levodopa and methyldopa. The determination of D-DOPA in levodopa was accomplished using a chiral ligand-exchange chromatograpy with an ordinary C18 column and a chiral mobile phase containing N,N-dimethyl-L-phenylalanine and Cu(II) acetate or by means of LC on a teicoplanin column in conjunction with ethanol-water (65:35, v/v). Both methods gave good performance, however, the latter was faster and more convenient and suitable for routine analyses. For the determination of D-methyldopa a LC method based on the use of a teicoplanin column in polar organic mode with methanol-acetic acid-triethylamine (1,000:0.05:0.05, v/v/v) mobile phase was developed. The precision, accuracy, linearity and selectivity were satisfactory. In comparison with pharmacopoeial polarimetric methods (according to the European Pharmacopoeia and the Pharmacopoea Bohemoslovaca), the LC methods proved to be much more sensitive giving detection limits 0.04% of D-DOPA and 0.3% of D-methyldopa.

  11. Ground-state and magnetocaloric properties of a coupled spin-electron double-tetrahedral chain (exact study at the half filling)

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia; Jakubczyk, Dorota

    2017-01-01

    Ground-state and magnetocaloric properties of a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with triangular clusters half filled with mobile electrons, are exactly investigated by using the transfer-matrix method in combination with the construction of the Nth tensor power of the discrete Fourier transformation. It is shown that the ground state of the model is formed by two non-chiral phases with the zero residual entropy and two chiral phases with the finite residual entropy S = NkB ln 2. Depending on the character of the exchange interaction between the localized Ising spins and mobile electrons, one or three magnetization plateaus can be observed in the magnetization process. Their heights basically depend on the values of Landé g-factors of the Ising spins and mobile electrons. It is also evidenced that the system exhibits both the conventional and inverse magnetocaloric effect depending on values of the applied magnetic field and temperature.

  12. Green synthesis of a typical chiral stationary phase of cellulose-tris(3, 5-dimethylphenylcarbamate)

    PubMed Central

    2013-01-01

    Background At present, the study on the homogeneous-phase derivatization of cellulose in ionic liquid is mainly focused on its acetylation. To the best of our knowledge, there has been no such report on the preparation of cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) with ionic liquid 1-allyl-3-methyl-imidazolium chloride (AmimCl) so far. Results With ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction solvent, cellulose-tris(3,5-dimethylphenylcarbamate) (CDMPC) was synthesized by the reaction of 3,5-dimethylphenyl isocyanate and soluble microcrystalline cellulose in a homogeneous phase. The synthesized CDMPC was then coated onto the surfaces of aminopropyl silica gel to prepare a chiral stationary phase (CSP). The prepared CSP was successfully used in chiral separation of seven racemic pesticides by high performance liquid chromatography (HPLC). Good chiral separation was obtained using n-hexane and different modifiers as the mobile phases under the optimal percentage and column temperature, with the resolution of metalaxyl, diniconazole, flutriafol, paclobutrazol, hexaconazole, myclobutanil and hexythiazox of 1.73, 1.56, 1.26, 1.00, 1.18, 1.14 and 1.51, respectively. The experimental results suggested it was a good choice using a green solvent of AmimCl for cellulose functionalization. Conclusion CDMPC was successfully synthesized as the chiral selector by reacting 3, 5-dimethylphenyl isocyanate with dissolved microcrystalline cellulose in a green ionic liquid of AmimCl. PMID:23890199

  13. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Enantioseparation of napropamide by supercritical fluid chromatography: Effects of the chromatographic conditions and separation mechanism.

    PubMed

    Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai

    2018-05-01

    Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.

  15. Validation of a Chiral Liquid Chromatographic Method for the Degradation Behavior of Flumequine Enantiomers in Mariculture Pond Water.

    PubMed

    Wang, Yan-Fei; Gao, Xiao-Feng; Jin, Huo-Xi; Wang, Yang-Guang; Wu, Wei-Jian; Ouyang, Xiao-Kun

    2016-09-01

    In this work, flumequine (FLU) enantiomers were separated using a Chiralpak OD-H column, with n-hexane-ethanol (20:80, v/v) as the mobile phase at a flow rate of 0.6 mL/min. Solid phase extraction (SPE) was used for cleanup and enrichment. The limit of detection, limit of quantitation, linearity, precision, and intra/interday variation of the chiral high-performance liquid chromatography (HPLC) method were determined. The developed method was then applied to investigate the degradation behavior of FLU enantiomers in mariculture pond water samples. The results showed that the degradation of FLU enantiomers under natural, sterile, or dark conditions was not enantioselective. Chirality 28:649-655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Consequences of transition from liquid chromatography to supercritical fluid chromatography on the overall performance of a chiral zwitterionic ion-exchanger.

    PubMed

    Wolrab, Denise; Frühauf, Peter; Gerner, Christopher; Kohout, Michal; Lindner, Wolfgang

    2017-09-29

    Major differences in the chromatographic performance of a zwitterion ion-exchange type (ZWIX) chiral stationary phase (CSP) in supercritical fluid chromatography (SFC) and high-performance liquid chromatography (HPLC) have been observed. To explain these differences, transition from HPLC to SFC conditions has been performed. The amount of a protic organic modifier in supercritical carbon dioxide (scCO 2 ) was stepwise increased and the effect of this change studied using acidic, basic and ampholytic analytes. At the same time, the effect of various basic additives to the mobile phase and transient acidic buffer species, formed by the reaction of scCO 2 with the organic modifier and additives, was assessed. Evidence is provided that a transient acid together with the intrinsic counter-ions present in the ZWIX selector structure drive the elution of analytes even when no buffer is employed. We show that the tested analytes can be enantioseparated under both SFC and HPLC conditions; the best conditions for the resolution of ampholytes are in the so-called enhanced-fluidity mobile phase region. As a consequence, subcritical fluid and enhanced-fluidity mobile phase regions seem to be chromatographic modes with a high potential for operating ZWIX CSPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic-aqueous conditions.

    PubMed

    Materazzo, Sabrina; Carradori, Simone; Ferretti, Rosella; Gallinella, Bruno; Secci, Daniela; Cirilli, Roberto

    2014-01-31

    Four commercially available immobilized amylose-derived CSPs (Chiralpak IA-3, Chiralpak ID-3, Chiralpak IE-3 and Chiralpak IF-3) were used in the HPLC analysis of the chiral sulfoxides albendazole (ABZ-SO) and fenbendazole (FBZ-SO) and their in vivo sulfide precursor (ABZ and FBZ) and sulfone metabolite (ABZ-SO2 and FBZ-SO2) under organic-aqueous mode. U-shape retention maps, established by varying the water content in the acetonitrile- and ethanol-water mobile phases, were indicative of two retention mechanisms operating on the same CSP. The dual retention behavior of polysaccharide-based CSPs was exploited to design greener enantioselective and chemoselective separations in a short time frame. The enantiomers of ABZ-SO and FBZ-SO were baseline resolved with water-rich mobile phases (with the main component usually being 50-65% water in acetonitrile) on the IF-3 CSP and ethanol-water 100:5 mixture on the IA-3 and IE-3 CSPs. A simultaneous separation of ABZ (or FBZ), enantiomers of the corresponding sulfoxide and sulfone was achieved on the IA-3 using ethanol-water 100:60 (acetonitrile-water 100:100 for FBZ) as a mobile phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Development and Validation of a Reversed-Phase Chiral HPLC Method to Determine the Chiral Purity of Bulk Batches of (S)-Enantiomer in Afoxolaner.

    PubMed

    Padivitage, Nilusha; Kumar, Satish; Rustum, Abu

    2017-01-01

    Afoxolaner is a new antiparasitic molecule from the isoxazoline family that acts on insect acarine g-aminobutyric acid and glutamate receptors. Afoxolaner is a racemic mixture, which has a chiral center at the isoxazoline ring. A reversed-phase chiral HPLC method has been developed to determine the chiral purity of bulk batches of (S)-enantiomer in afoxolaner for the first time. This method can also be used to verify that afoxolaner is a racemic mixture, which was demonstrated by specific rotation. ChromSword, an artificial intelligence method development tool, was used for initial method development. The column selected for the final method was CHIRALPAK AD-RH (150 × 4.6 mm, 5 μm particle size), maintained at 45°C, and isocratic elution using water-isopropanol-acetonitrile (40 + 50 + 10, v/v/v) as the mobile phase with a detection wavelength of 312 nm. The run time for the method was 11 min. The resolution and selectivity factors of the two enantiomers were 2.3 and 1.24, respectively. LOQ and LOD of the method were 1.6 and 0.8 μg/mL, respectively. This method was appropriately validated according to International Conference on Harmonization guidelines for its intended use.

  19. Validated chiral high performance liquid chromatography separation method and simulation studies of dipeptides on amylose chiral column.

    PubMed

    Ali, Imran; Sahoo, Dibya Ranjan; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Asnin, Leonid; Larsson, Bernt

    2015-08-07

    Chiral resolution of dl-alanine-dl-tyrosine and dl-leucine-dl-phenylalanine dipeptides was achieved on AmyCoat-RP column. The mobile phase used for dl-alanine-dl-tyrosine was acetonitrile-ammonium acetate (10mM, pH 6.0) [50:50, v/v]. It was acetonitrile-methanol-ammonium acetate (10mM; pH adjusted to 4.5 with glacial acetic acid) [50:20:30, v/v] for dl-leucine-dl-phenylalanine. The flow rate of the mobile phases was 0.8mL/min with UV detection at 275nm. The values of retention factors for ll-, dd-, dl- and ld-stereomers of dl-alanine-dl-tyrosine were 1.71, 2.86, 5.43 and 9.42, respectively. The values of separation and resolution factors were 1.67, 1.90 and 1.73 and 2.88, 6.43 and 7.90, respectively. Similarly, these values for dl-leucine-dl-phenylalanine stereomers were 1.50, 2.88, 3.50 and 4.07 (retention factors), 1.92, 1.22 and 1.62 (separation factors) and 2.67, 1.55 and 2.30 (resolution factors). The limits of detections and quantitation were ranged from 2.03 to 6.40 and 6.79 to 21.30μg/mL, respectively. The modeling studies were in agreement with the elution orders. The mechanism of chiral recognition was established by modeling and chromatographic studies. It was observed that hydrogen bondings and π-π interactions are the major forces for chiral separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of additives on eremomycin sorbent selectivity in separation of salbutamol enantiomers using supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Pokrovskiy, O. I.; Kayda, A. S.; Usovich, O. I.; Parenago, O. O.; Lunin, V. V.

    2017-11-01

    A regime is found in which chiral stationary phase based on macrocyclic glycopeptide eremomycin allows separation of salbutamol sulfate enantiomers in supercritical fluid chromatography. Enantioseparation occurs only when two dynamic modifiers are used simultaneously: isopropylamin + trifluoroacetic acid or isopropylamin + ammonium acetate. Amine molar concentration in mobile phase has to be higher than acid molar concentration, otherwise enantiomers coelute. We suppose that with amine excess a mechanism of enantiorecognition is realized which involves ionic sorbent-sorbate interactions. Such mechanism is well-known for glycopeptide chiral selectors in liquid chromatography, but for supercritical fluid chromatography it is reported for the first time.

  1. Use of vancomycin silica stationary phase in packed capillary electrochromatography: III. enantiomeric separation of basic compounds with the polar organic mobile phase.

    PubMed

    Fanali, Salvatore; Catarcini, Paolo; Quaglia, Maria Giovanna

    2002-02-01

    The separation of basic compounds into their enantiomers was achieved using capillary electrochromatography in 50 or 75 microm inner diameter (ID) fused-silica capillaries packed with silica a stationary phase derivatized with vancomycin and mobile phases composed of mixtures of polar organic solvents containing 13 mM ammonium acetate. Enantiomer resolution, electroosmotic flow, and the number of theoretical plates were strongly influenced by the type and concentration of the organic solvent. Mobile phases composed of 13 mM ammonium acetate dissolved in mixtures of acetonitrile/methanol, ethanol, n-propanol, or isopropanol were tested and the highest enantioresolutions were achieved using the first mobile phase, allowing the separation of almost all investigated enantiomers (9 from 11 basic compounds). The use of capillaries with different ID (50 and 75 microm ID) packed with the same chiral stationary phase revealed that a higher number of theoretical plates and higher enantioresolution was achieved with the tube with lowest ID.

  2. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    PubMed

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evidence for trivial Berry phase and absence of chiral anomaly in semimetal NbP

    NASA Astrophysics Data System (ADS)

    Sudesh; Kumar, Pawan; Neha, Prakriti; Das, Tanmoy; Patnaik, Satyabrata

    2017-04-01

    The discovery of Weyl semimetals (WSM) has brought forth the condensed matter realization of Weyl fermions, which were previously theorized as low energy excitations in high energy particle physics. Recently, transition metal mono-pnictides are under intense investigation for understanding properties of inversion-symmetry broken Weyl semimetals. Non-trivial Berry phase and chirality are important markers for characterizing topological aspects of Weyl semimetals. Most recently, theoretical calculations predict strong influence of the position of Weyl nodes with respect to Fermi surface and weak disorder that can drive WSMs into chirally symmetric Dirac semimetals. Using magneto-transport measurements in single crystals of WSM NbP, we observe an exceptionally large magnetoresistance at low temperature, which is non-saturating and linear at high fields. The origin of linear transverse magnetoresistance is assigned to charge carrier mobility fluctuations. Negative longitudinal magnetoresistance is not seen, suggesting lack of well-defined chiral anomaly in NbP. Unambiguous Shubnikov-de Haas oscillations are observed at low temperatures that are correlated to a trivial Berry phase corresponding to Fermi surface extrema at 30.5 Tesla. Our results are important towards identifying topological characteristics of Weyl semimetals and their experimental manifestations in the presence of weak disorder.

  4. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids

    PubMed Central

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2014-01-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L−1 phosphate buffer at pH 2.68 containing 20 mmol L−1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L−1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n-hexane-methyl tert.-butyl ether-0.1 molL−1 phosphate buffer solution at pH 2.67 containing 0.1 mol L−1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L−1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects. PMID:25983356

  5. Application and comparison of high-speed countercurrent chromatography and high performance liquid chromatography in preparative enantioseparation of α-substitution mandelic acids.

    PubMed

    Tong, Shengqiang; Zhang, Hu; Shen, Mangmang; Ito, Yoichiro; Yan, Jizhong

    2015-04-01

    Preparative enantioseparations of α-cyclopentylmandelic acid and α-methylmandelic acid by high-speed countercurrent chromatography (HSCCC) and high performance liquid chromatography (HPLC) were compared using hydroxypropy-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) as the chiral mobile phase additives. In preparative HPLC the enantioseparation was achieved on the ODS C 18 reverse phase column with the mobile phase composed of a mixture of acetonitrile and 0.10 mol L -1 phosphate buffer at pH 2.68 containing 20 mmol L -1 HP-β-CD for α-cyclopentylmandelic acid and 20 mmol L -1 SBE-β-CD for α-methylmandelic acid. The maximum sample size for α-cyclopentylmandelic acid and α-methylmandelic acid was only about 10 mg and 5 mg, respectively. In preparative HSCCC the enantioseparations of these two racemates were performed with the two-phase solvent system composed of n -hexane-methyl tert. -butyl ether-0.1 molL -1 phosphate buffer solution at pH 2.67 containing 0.1 mol L -1 HP-β-CD for α-cyclopentylmandelic acid (8.5:1.5:10, v/v/v) and 0.1 mol L -1 SBE-β-CD for α-methylmandelic acid (3:7:10, v/v/v). Under the optimum separation conditions, total 250 mg of racemic α-cyclopentylmandelic acid could be completely enantioseparated by HSCCC with HP-β-CD as a chiral mobile phase additive in a single run, yielding 105-110 mg of enantiomers with 95-98% purity and 85-90% recovery. But, no complete enantioseparation of α-methylmandelic acid was achieved by preparative HSCCC with either of the chiral selectors due to their limited enantioselectivity. In this paper preparative enantioseparation by HSCCC and HPLC was compared from various aspects.

  6. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    NASA Astrophysics Data System (ADS)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.

    2017-12-01

    We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.

  7. Use of vancomycin silica stationary phase in packed capillary electrochromatography. II. Enantiomer separation of venlafaxine and O-desmethylvenlafaxine in human plasma.

    PubMed

    Fanali, S; Rudaz, S; Veuthey, J L; Desiderio, C

    2001-06-01

    A capillary electrochromatography method, using vancomycin chiral stationary phase packed capillary, was optimized for the simultaneous chiral separation of the antidepressant drug venlafaxine and its main active metabolite O-desmethylvenlafaxine. Simultaneous baseline enantiomeric separation of the two compounds was obtained using a mobile phase composed of 100 mM ammonium acetate buffer pH 6/water/acetonitrile (5:5:90, v/v). The electrokinetic injection for sample introduction provided a limit of quantitation for both the compounds of 0.05 microg/ml racemate concentration suitable for the analysis of venlafaxine and metabolite in biological samples. The acetonitrile mobile phase concentration was found to modulate the analytes elution times, the enantiomeric resolution and the efficiency of the separation. The column was tested for repeatability and linearity showing RSD values (%) in the range of 0.13-0.24, 2.47-3.66 and 1.35-2.50 for migration time, sample/internal standard peak area ratio and enantiomeric resolution, respectively and correlation coefficients higher than 0.9990. The method was applied to the analysis of clinical samples of patients under depression therapy showing a stereoselective metabolism for venlafaxine.

  8. Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds.

    PubMed

    Desiderio, C; Aturki, Z; Fanali, S

    2001-02-01

    Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.

  9. Effect of the ionic strength of a mobile phase on the chromatographic retention and thermodynamic characteristics of the adsorption of enantiomers of α-phenylcarboxylic acids on a chiral adsorbent with grafted antibiotic eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.

    2017-01-01

    The effect the ionic strength of an aqueous ethanol mobile phase containing buffer salt has the on retention and thermodynamics of adsorption of optical isomers of some α-phenylcarboxylic acids on chiral adsorbent Nautilus-E with grafted antibiotic eremomycin is investigated. It is shown that ion exchange processes participate in the adsorption of enantiomers of α-phenylcarboxylic acids. It is established that electrostatic interactions contribute to the retention of enantiomers of α-phenylcarboxylic acids and affect selectivity only slightly. The dependences of retention characteristics, selectivity, and thermodynamic parameters on the concentration of the buffer salt in the eluent are determined. A statistical analysis of enthalpy-entropy compensation is performed, and the compensation effect is shown to be true. It is found that the points corresponding to the investigated adsorbates are distributed over the compensation dependence according to the spatial structural characteristics of molecules.

  10. Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.

    PubMed

    Qiu, Jing; Dai, Shouhui; Zheng, Chuangmu; Yang, Shuming; Chai, Tingting; Bie, Mei

    2011-07-01

    This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  11. Chiral separation and enantioselective degradation of vinclozolin in soils.

    PubMed

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  12. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    PubMed

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.

  13. Effect of Secondary Equilibria on the Adsorption of Ibuprofen Enantiomers on a Chiral Stationary Phase with a Grafted Antibiotic Eremomycin

    NASA Astrophysics Data System (ADS)

    Reshetova, E. N.; Asnin, L. D.; Kachmarsky, K.

    2018-02-01

    The chromatographic separation of ibuprofen enantiomers on a Nautilus-E chiral stationary phase with a grafted eremomycin antibiotic at high column loading is accompanied by distortion of the shape of chromatographic peaks. A model is proposed to explain this phenomenon. A number of factors are considered in the model: the ionization of ibuprofen in the mobile phase, the pH change in the mass transfer zone caused by ionization, and competitive adsorption involving buffer components. Simulations performed using this model within the theory of nonequilibrium chromatography allow the shape of chromatograms for large amounts of S- and R-ibuprofen samples to be predicted. The adsorption mechanism is found to be mainly ion-exchange. The contribution from the molecular adsorption of ibuprofen to the total retention is shown to be several percent.

  14. EFFECTS OF TEMPERATURE AND SOLVENT COMPOSITION ON THE CHIRALCEL OJ SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES

    EPA Science Inventory

    The separation of the enantiomers of twelve organophosphorus pesticides (OPs) was investigated on the CHIRALCEL?OJ column to determine whether the mobile phase composition, flow rate and column temperature could be optimized to yield at least partial separation of the enantiomers...

  15. Chiral separation of isoxanthohumol and 8-prenylnaringenin in beer, hop pellets, and hops by HPLC with chiral columns.

    PubMed

    Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji

    2018-05-16

    Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.

  16. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography.

    PubMed

    Geryk, Radim; Kalíková, Květa; Schmid, Martin G; Tesařová, Eva

    2016-08-17

    The enantioseparation of basic compounds represent a challenging task in modern SFC. Therefore this work is focused on development and optimization of fast SFC methods suitable for enantioseparation of 27 biologically active basic compounds of various structures. The influences of the co-solvent type as well as different mobile phase additives on retention, enantioselectivity and enantioresolution were investigated. Obtained results confirmed that the mobile phase additives, especially bases (or the mixture of base and acid), improve peak shape and enhance enantioresolution. The best results were achieved with isopropylamine or the mixture of isopropylamine and trifluoroacetic acid as additives. In addition, the effect of temperature and back pressure were evaluated to optimize the enantioseparation process. The immobilized amylose-based chiral stationary phase, i.e. tris(3,5-dimethylphenylcarbamate) derivative of amylose proved to be useful tool for the enantioseparation of a broad spectrum of chiral bases. The chromatographic conditions that yielded baseline enantioseparations of all tested compounds were discovered. The presented work can serve as a guide for simplifying the method development for enantioseparation of basic racemates in SFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    PubMed

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of serum thyroxine enantiomers in patients by liquid chromatography with a chiral mobile phase.

    PubMed

    Wang, Rong; Jia, Zheng-Ping; Hu, Xiao-Li; Xu, Li-Ting; Li, Yong-Min; Chen, Li-Ren

    2003-03-05

    A chromatographic method for the separation and determination of D- and L-thyroxine enantiomers (D-, and L-T4) in human serum with a chiral ligand ion-exchange system using a chiral mobile phase additive and a silica column was established. An aqueous eluent containing L-proline (L-pro) sufficiently complexed copper II ions and triethylamine (TEA) was used. It was monitored with a UV detector. The separation was completed in 12 min. The method has acceptable sensitivity, precision and accuracy for analysis. The limit of detection and the limit of quantitation for both D- and L-T4 were 0.1 microg/ml and 0.8 microg/ml, respectively. Calibration curves were linear within 1-100 microg/ml; the mean correlation coefficients were r(D-T4)=0.9986 for D-T4 and r(L-T4)=0.9978 for L-T4. T4 enantiomers were separated on baseline under the optimum condition. L-T4 eluted before D-T4. The concentration of D-T4 and L-T4 in 45 thyroid patients serum (hyperthyroid, hypothyroid, thyroidectomy, goitre or thyroiditis) using HPLC was determined, those results showed that D,L-T4 concentration varied in different thyroid patient. Attention should be paid to this result in treating thyroid disease in the clinic. Copyright 2002 Elsevier Science B.V.

  19. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE PAGES

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...

    2017-12-15

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  20. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  1. Adsorption behavior of the (+/-)-Tröger's base enantiomers in the phase system of a silica-based packing coated with amylose tri(3,5-dimethyl carbamate) and 2-propanol and molecular modeling interpretation.

    PubMed

    Mihlbachler, Kathleen; De Jesús, Marco A; Kaczmarski, Krzysztof; Sepaniak, Michael J; Seidel-Morgenstern, Andreas; Guiochon, Georges

    2006-04-28

    The binary adsorption isotherms of the enantiomers of Tröger's base in the phase system made of Chiral Technologies ChiralPak AD [a silica-based packing coated with amylose tri(3,5-dimethyl carbamate)] as the chiral stationary phase (CSP) and 2-propanol as the mobile phase were measured by the perturbation method. The more retained enantiomer exhibits a S-shaped adsorption isotherm with a clear inflection point, the concentration of the less retained enantiomer having practically no competitive influence on this isotherm: In the entire range of concentrations studied, dq2/dC1 approximately 0. By contrast, the less retained enantiomer has a Langmuir adsorption isotherm when pure. At constant mobile phase concentrations, however, its equilibrium concentration in the adsorbed phase increases with increasing concentration of the more retained enantiomer and dq1/dC2 > 0. This cooperative adsorption behavior, opposed to the classical competitive behavior, is exceedingly rare but was clearly demonstrated in this case. Two adsorption isotherm equations that account for these physical observations were derived. They are based on the formation of an adsorbed multi-layer, as suggested by the isotherm data. The excellent agreement between the experimental overloaded elution profiles of binary mixtures and the profiles calculated with the equilibrium-dispersive model validates this binary isotherm model. The adsorption energies calculated by molecular mechanics (MM) and by molecular dynamics (MD) indicate that the chiral recognition arising from the different interactions between the functional groups of the CSP and the molecules of the Tröger's base enantiomers are mainly driven by their Van der Waals interactions. The MD data suggest that the interactions of the (-)-Tröger's base with the CSP are more favored by 8+/-(5) kJ/mol than those of (+)-Tröger's base. This difference seems to be a contributing factor to the increased retention of the - enantiomer on this chromatographic system. The modeling of the data also indicates that both enantiomers can form high stoichiometry complexes while binding onto the stationary phase, in agreement with the results of the equilibrium isotherm studies.

  2. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    PubMed

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions.

    PubMed

    Droux, S; Roy, M; Félix, G

    2014-10-01

    We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Strategy for large-scale isolation of enantiomers in drug discovery.

    PubMed

    Leek, Hanna; Thunberg, Linda; Jonson, Anna C; Öhlén, Kristina; Klarqvist, Magnus

    2017-01-01

    A strategy for large-scale chiral resolution is illustrated by the isolation of pure enantiomer from a 5kg batch. Results from supercritical fluid chromatography will be presented and compared with normal phase liquid chromatography. Solubility of the compound in the supercritical mobile phase was shown to be the limiting factor. To circumvent this, extraction injection was used but shown not to be efficient for this compound. Finally, a method for chiral resolution by crystallization was developed and applied to give diastereomeric salt with an enantiomeric excess of 99% at a 91% yield. Direct access to a diverse separation tool box will be shown to be essential for solving separation problems in the most cost and time efficient way. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A direct HPLC method for the resolution and quantitation of the R-(-)- and S-(+)-enantiomers of vigabatrin (gamma-vinyl-GABA) in pharmaceutical dosage forms using teicoplanin aglycone chiral stationary phase.

    PubMed

    Al-Majed, Abdulrahman A

    2009-08-15

    A direct chiral high-performance liquid chromatography (HPLC) method was developed and validated for the resolution and quantification of antiepileptic drug enantiomers, R-(-)- and S-(+)-vigabatrin (gamma-vinyl-gamma-aminobutyric acid) in pharmaceutical products. The separation was optimized on a macrocyclic glycopeptide antibiotic chiral stationary phase (CSP) based on teicoplanin aglycone, chirobiotic (TAG), using a mobile phase system containing ethanol-water (80:20, v/v), at a flow rate of 0.4ml/min and UV detection set at 210nm. The stability of vigabatrin enantiomers under different degrees of temperature was also studied. The enantiomers of vigabatrin were separated from each other. The calibration curves were linear over a range of 100-1600microg/ml (r=0.999) for both enantiomers. The overall recoveries of R-(-)- and S-(+)-vigabatrin enantiomers from pharmaceutical products were in the range of 98.3-99.8% with %RSD ranged from 0.48 to 0.52%. The limit of quantification (LOQ) and limit of detection (LOD) for each enantiomer were 100 and 25microg/ml, respectively. No interferences were found from commonly co-formulated excipients.

  6. Direct enantioseparation of nitrogen-heterocyclic pesticides on cellulose-based chiral column by high-performance liquid chromatography.

    PubMed

    Chai, Tingting; Yang, Wenwen; Qiu, Jing; Hou, Shicong

    2015-01-01

    The enantiomeric separation of eight pesticides including bitertanol (), diclobutrazol (), fenbuconazole (), triticonazole (), imazalil (), triapenthenol (), ancymidol (), and carfentrazone-ethyl () was achieved, using normal-phase high-performance liquid chromatography on two cellulosed-based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol (), triticonazole (), imazalil () with the (+)-enantiomer eluted first and fenbuconazole () with the (-)-enantiomer eluted first on Lux Cellulose-2 and Lux Cellulose-3. (+)-Enantiomers of diclobutrazol () and triapenthenol () were first eluted on Lux Cellulose-2. (-)-Carfentrazone-ethyl () were eluted first on Lux Cellulose-2 and Lux Cellulose-3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)-Ancymidol was first eluted on Lux Cellulose-2 while on Lux Cellulose-3 (-)-ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. © 2014 Wiley Periodicals, Inc.

  7. Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry.

    PubMed

    Dong, Fengshou; Cheng, Li; Liu, Xingang; Xu, Jun; Li, Jing; Li, Yuanbo; Kong, Zhiqiang; Jian, Qiu; Zheng, Yongquan

    2012-02-29

    A sensitive and enantioselective method was developed and validated for the determination of myclobutanil enantiomers by chiral liquid chromatography coupled with tandem mass spectrometry. The separation and determination were performed using reversed-phase chromatography on a Chiralcel OD-RH column, with ACN-water (70/30, v/v) as the mobile phase under isocratic conditions at 0.5 mL/min flow rate. The matrix effect, linearity, precision, accuracy, and stability were evaluated. The proposed method then was successfully applied to the study of enantioselective degradation of rac-myclobutanil in cucumber and soil under different application modes. The results showed that the preferential degradation of (+)-myclobutanil resulted in an enrichment of the (-)-myclobutanil residue in plant and soil. Moreover, in cucumber, the stereoselective intensity of myclobutanil under root douche treatment was stronger than that under foliar spraying treatment, whereas in soil, the intensity was exactly opposite. The probable reasons underlying these enantioselective effects were also discussed. This study highlighted the importance of examining the fate of both enantiomers in the greenhouse system for the correct use of chiral pesticides.

  8. Direct chiral determination of free amino acid enantiomers by two-dimensional liquid chromatography: application to control transformations in E-beam irradiated foodstuffs.

    PubMed

    Guillén-Casla, Vanesa; León-González, María Eugenia; Pérez-Arribas, Luis Vicente; Polo-Díez, Luis María

    2010-05-01

    Changes in free amino acids content and its potential racemization in ready-to-eat foods treated with E-beam irradiation between 1 and 8 kGy for sanitation purposes were studied. A simple heart cut two-dimensional high performance liquid chromatographic method (LC-LC) for the simultaneous enantiomeric determination of three pairs of amino acids used as markers (tyrosine, phenylalanine, and tryptophan) is presented. The proposed method involves the use of two chromatographs in an LC-LC achiral-chiral coupling. Amino acids and their decomposition products were firstly separated in a primary column (C(18)) using a mixture of ammonium acetate buffer (20 mM, pH 6) (94%) and methanol (6%) as the mobile phase. Then, a portion of each peak was transferred by heart cutting through a switching valve to a teicoplanin-chiral column. Methanol (90%)/water (10%) was used as the mobile phase. Ultraviolet detection was at 260 nm. Detection limits were between 0.16 and 3 mg L(-1) for each enantiomer. Recoveries were in the range 79-98%. The LC-LC method combined with the proposed sample extraction procedure is suitable for complex samples; it involves an online cleanup, and it prevents degradation of protein, racemization of L-enantiomers, and degradation of tryptophan. Under these conditions, D-amino acids were not found in any of the analyzed samples at detection levels of the proposed method.

  9. Stability Indicating HPLC Method for the Determination of Chiral Purity of R-(-)-5-[2-aminopropyl]-2-methoxybenzene Sulfonamide.

    PubMed

    Kasawar, G B; Farooqui, M N

    2009-09-01

    A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 mug/ml, respectively for 20 mul injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide].

  10. Stability Indicating HPLC Method for the Determination of Chiral Purity of R-(-)-5-[2-aminopropyl]-2-methoxybenzene Sulfonamide

    PubMed Central

    Kasawar, G. B.; Farooqui, M. N.

    2009-01-01

    A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 μg/ml, respectively for 20 μl injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide]. PMID:20502572

  11. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    NASA Astrophysics Data System (ADS)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  12. Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin.

    PubMed

    Xu, Chao; Wang, Jiajia; Liu, Weiping; Daniel Sheng, G; Tu, Yunjie; Ma, Yun

    2008-01-01

    Chiral pollutants are receiving growing environmental concern due to differential biological activities of their enantiomers. In the present study, enantiomeric separation of the pyrethroid insecticide lambda-cyhalothrin (LCT) was investigated by high-performance liquid chromatography (HPLC) using the columns of Chiralpak AD (amylase tris[3,5-dimethyl-phenyl carbamate]), Chiralpak AS (amylase tris[(S)-1-phenyl carbamate]), Chiralcel OD (cellulose tris[3,5-dimethylphenyl carbamate]), and Chiralcel OJ (cellulose tris[4-methyl benzoate]) with different chiral stationary phases. The differential toxicities of the enantiomers in aquatic systems were evaluated using the acute zebrafish (Danio rerio) toxicity test and the zebrafish embryo test. The enantiomers of LCT were separated completely on all the columns tested and detected by circular dichroism at 236 nm. Better separations were achieved at lower temperatures (e.g., 20 degrees C) and lower levels of polar modifiers (162 times more toxic than its antipode to zebrafish in the acute test. The embryo test indicated that the exposure to LCT enantioselectively induced crooked body, yolk sac edema, and pericardial edema and that the (-)-enantiomer was 7.2 times stronger than the (+)-enantiomer in 96-h mortality. The malformations were induced by the racemate and its (-)-enantiomer at lower concentrations tested (e.g., 50 microg L(-1)), whereas the (+)-enantiomer induced malformations at relatively higher concentrations (>/=100 microg L(-1)). These results suggest that the toxicological effects of chiral pesticides must be evaluated using their individual enantiomers.

  13. Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography.

    PubMed

    Frenkel, Johannes; Wess, Carsten; Vyverman, Wim; Pohnert, Georg

    2014-03-01

    The proline derived diketopiperazine has been identified in plants, insects and fungi with unknown function and was recently also reported as the first pheromone from a diatom. Nevertheless the stereochemistry and enantiomeric excess of this natural product remained inaccessible using direct analytical methods. Here we introduce a chiral separation of this metabolite using supercritical fluid chromatography/mass spectrometry. Several chromatographic methods for chiral analysis of the diketopiperazine from the diatom Seminavis robusta and synthetic enantiomers have been evaluated but neither gas chromatography nor high performance liquid chromatography on different chiral cyclodextrin phases were successful in separating the enantiomers. In contrast, supercritical fluid chromatography achieved baseline separation within four minutes of run time using amylose tris(3,5-dimethylphenylcarbamate) as stationary phase and 2-propanol/CO2 as mobile phase. This very rapid chromatographic method in combination with ESI mass spectrometry allowed the direct analysis of the cyclic dipeptide out of the complex sea water matrix after SPE enrichment. The method could be used to determine the enantiomeric excess of freshly released pheromone and to follow the rapid degradation observed in diatom cultures. Initially only trace amounts of c(d-Pro-d-Pro) were found besides the dominant c(l-Pro-l-Pro) in the medium. However the enantiomeric excess decreased upon pheromone degradation within few hours indicating that a preferential conversion and thus inactivation of the l-proline derived natural product takes place. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries.

    PubMed

    Bhushan, Ravi; Nagar, Hariom

    2015-03-01

    Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    PubMed

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi

    2005-01-01

    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  16. Advances in silver ion chromatography for the analysis of fatty acids and triacylglycerols-2001 to 2011.

    PubMed

    Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2012-01-01

    An effort is made to critically present the achievements in silver ion chromatography during the last decade. Novelties in columns, mobile-phase compositions and detectors are described. Recent applications of silver ion chromatography in the analysis of fatty acids and triacylglycerols are presented while stressing novel analytical strategies or new objects. The tendencies in the application of the method in complementary ways with reversed-phase chromatography, chiral chromatography and, especially, mass detection are outlined.

  17. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.

    PubMed

    Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza

    2017-10-01

    An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.

  19. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Molecular Mobility of an Amorphous Chiral Pharmaceutical Compound: Impact of Chirality and Chemical Purity.

    PubMed

    Viel, Quentin; Delbreilh, Laurent; Coquerel, Gérard; Petit, Samuel; Dargent, Eric

    2017-08-17

    A dielectric relaxation spectroscopy (DRS) study was performed to investigate the molecular mobility of amorphous chiral diprophylline (DPL). For this purpose, both racemic DPL and a single enantiomer of DPL were considered. After fast cooling from the melt at very low temperature (-140 °C), progressive heating below and above the glass transition (T g ≈ 37 °C) induces two secondary relaxations (γ- and δ-) and primary relaxations (α-) for both enantiomeric compositions. After chemical purification of our samples by means of cooling recrystallization, no γ-process could be detected by DRS. Hence, it was highlighted that the molecular mobility in the glassy state is influenced by the presence of theophylline (TPH), the main impurity in DPL samples. We also proved that the dynamic behavior of a single enantiomer and the racemic mixture of the same purified compound are quasi-identical. This study demonstrates that the relative stability and the molecular mobility of chiral amorphous drugs are strongly sensitive to chemical purity.

  1. Phase behavior of thermotropic chiral liquid crystal with wide blue phase

    NASA Astrophysics Data System (ADS)

    Jessy, P. J.; Radha, S.; Nainesh, Patel

    2018-04-01

    We modified the phase transitions of a thermotropic chiral nematic liquid crystal system with various concentrations of chiral component and investigated their phase behavior and optical properties. The study shows that coupling between chirality and nematicity of liquid crystals lead to changes in phase morphology with extended temperature window of blue phase including human body temperatures and enhanced thermochromism performance. The temperature dependent refractive index analysis in the visible spectral region reveals that the optical modulation due to pitch variation of helical pattern results in the creation of new mesophases and more pronounced chirality in mixtures leading to blue phase which can be controlled by the chiral concentration. The appearance of extended blue phases with primary colors will pave way for the development of new photonic devices.

  2. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  3. Quantitative analysis of three chiral pesticide enantiomers by high-performance column liquid chromatography.

    PubMed

    Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang

    2008-01-01

    Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.

  4. Effects of Fluctuations on Inhomogeneous Chiral Transitions

    NASA Astrophysics Data System (ADS)

    Lee, Tong-Gyu; Yoshiike, Ryo; Tatsumi, Toshitaka

    We discuss the features of the order-parameter fluctuations in the normal phase near the phase boundary and their effects on the phase transition from the normal to the inhomogeneous phase with spatially modulated order parameter. Focusing on the chiral symmetry breaking, i.e., inhomogeneous chiral transition, we consider the fluctuation of the chiral pair consisting of quark-antiquark or quark-hole pair within the two-flavor Nambu-Jona-Lasinio model in the chiral limit. We clarify the roles of quantum and thermal fluctuations and also argue that anomalies for thermodynamic quantities in the inhomogeneous chiral transition should lead to phenomenological implications.

  5. Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study.

    PubMed

    Gavioli, Elena; Maier, Norbert M; Minguillón, Cristina; Lindner, Wolfgang

    2004-10-01

    A countercurrent chromatography protocol for support-free preparative enantiomer separation of the herbicidal agent 2-(2,4-dichlorphenoxy)propionic acid (dichlorprop) was developed utilizing a purposefully designed, highly enantioselective chiral stationary-phase additive (CSPA) derived from bis-1,4-(dihydroquinidinyl)phthalazine. Guided by liquid-liquid extraction experiments, a solvent system consisting of 10 mM CSPA in methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a suitable stationary/mobile-phase combination. This solvent system provided an ideal compromise among stationary-phase retention, enantioselectivity, and well-balanced analyte distribution behavior. Using a commercial centrifugal partition chromatography instrument, complete enantiomer separations of up to 366 mg of racemic dichlorprop could be achieved, corresponding to a sample load being equivalent to the molar amount of CSPA employed. Comparison of the preparative performance characteristics of the CPC protocol with that of a HPLC separation using a silica-supported bis-1,4-(dihydroquinidinyl)phthalazine chiral stationary phase CSP revealed comparable loading capacities for both techniques but a significantly lower solvent consumption for CPC. With respect to productivity, HPLC was found to be superior, mainly due to inherent flow rate restrictions of the CPC instrument. Given that further progress in instrumental design and engineering of dedicated, highly enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based HPLC for preparative-scale enantiomer separation.

  6. A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography.

    PubMed

    Kang, Jingwu; Wistuba, Dorothee; Schurig, Volker

    2002-04-01

    A method for the preparation of a silica monolithic capillary electrochromatography (CEC) column for the separation of enantiomers has been developed. The porous silica monolith was fabricated inside a fused-silica capillary column by using the sol-gel process. After gelation for 24 h, hydrothermal treatment at 100 degrees C for 24 h was performed to prevent the sol-gel matrix from cracking. The prepared monolith was then coated with Chirasil-beta-Dex which represents a chiral polymer prepared by grafting permethyl-beta-cyclodextrin to polymethylsiloxane with an octamethylene spacer. Immobilization of Chirasil-beta-Dex was performed by heat treatment at 120 degrees C for 48 h to give a nonextractable coating. The column performance was evaluated by using racemic hexobarbital as a model compound. The efficiency of 9.2 x 10(4) theoretical plates/m for the first eluted enantiomer of hexobarbital was obtained at an optimal flow rate of the mobile phase. The effect of mobile phase composition on enantiomeric separation of hexobarbital was also investigated. The column proved to be stable for more than one hundreds of runs during a two-months period. The enantiomers of several neutral and negatively charged chiral compounds were baseline separated on this column.

  7. Enhancing and reducing chirality by opposite circularly-polarized light irradiation on crystalline chiral domains consisting of nonchiral photoresponsive W-shaped liquid crystal molecules.

    PubMed

    Choi, Suk-Won; Takezoe, Hideo

    2016-09-28

    We found possible chirality enhancement and reduction in chiral domains formed by photoresponsive W-shaped molecules by irradiation with circularly polarized light (CPL). The W-shaped molecules exhibit a unique smectic phase with spontaneously segregated chiral domains, although the molecules are nonchiral. The chirality control was generated in the crystalline phase, which shows chiral segregation as in the upper smectic phase, and the result appeared to be as follows: for a certain chiral domain, right-CPL stimuli enhanced the chirality, while left-CPL stimuli reduced the chirality, and vice versa for another chiral domain. Interestingly, no domain-size change could be observed after CPL irradiation, suggesting some changes in the causes of chirality. In this way, the present system can recognize the handedness of the applied chiral stimuli. In other words, the present material can be used as a sensitive chiral-stimuli-recognizing material and should find invaluable applications, including in chiroptical switches, sensors, and memories as well as in chiral recognition.

  8. Thin Layer Chromatographic Resolution of Some β-adrenolytics and a β2-Agonist Using Bovine Serum Albumin as Chiral Additive in Stationary Phase.

    PubMed

    Malik, Poonam; Bhushan, Ravi

    2018-01-01

    Direct enantiomeric resolution of commonly used five racemic β-adrenolytics, namely, bisoprolol, atenolol, propranolol, salbutamol and carvedilol has been achieved by thin layer chromatography using bovine serum albumin (BSA) as chiral additive in stationary phase. Successful resolution of the enantiomers of all racemic β-adrenolytics was achieved by use of different composition of simple organic solvents having no buffer or inorganic ions. The effect of variation in pH, temperature, amount of BSA as the additive, and composition of mobile phase on resolution was systematically studied. Spots were visualized in iodine vapors. Native enantiomers for each of the five analytes were isolated and identified and their elution order was determined. The limit of detection was found to be 0.7, 1.2, 0.84, 1.6 and 0.9 μg (per spot) for each enantiomer of bisoprolol, atenolol, propranolol, salbutamol and carvedilol, respectively. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Enantioseparation and determination of the chiral fungicide furametpyr enantiomers in rice, soil, and water by high-performance liquid chromatography.

    PubMed

    Dong, Fengshou; Chen, Xiu; Xu, Jun; Liu, Xingang; Chen, Zenglong; Li, Yuanbo; Zhang, Hongjun; Zheng, Yongquan

    2013-12-01

    The chiral fungicide furametpyr is widely used in the rice field to control rice sheath blight; however, furametpyr enantiomers are treated as just one compound in traditional achiral analysis, which gives only partial information. An effective chiral analytical method was developed for the resolution and determination of the fungicide furametpyr enantiomers in rice, soil, and water samples. Furametpyr enantiomers were excellently separated and determined on a Chiralpak AD-H column with n-hexane/ethanol (90:10, v/v) as mobile phase at a flow rate of 0.8 mL min(-1) with UV detection at 220 nm. The resolution was up to 8.85. The first eluted enantiomer was (+)-furametpyr and the second eluted one was (-)-furametpyr. The effects of mobile-phase composition and column temperature on the enantioseparation were evaluated. The method was validated for linearity, repeatability, accuracy, limit of detection (LOD), and limit of quantification LOQ. LOD was 2.0 µg kg(-1) in water, 0.02 mg kg(-1) in soil, and 0.07 mg kg(-1) in rice with an LOQ of 6.7 µg kg(-1) in water, 0.07 mg kg(-1) in soil, and 0.23 mg kg(-1) in rice. The average recoveries of the pesticide in all matrices ranged from 73.1 to 101.8% for all fortification levels. The precision values associated with the analytical method, expressed as relative standard deviation (RSD) values, were below 14.0% in all matrices. The methodology was successfully applied for the enantioselective analysis of furametpyr enantiomers in real samples. © 2013 Wiley Periodicals, Inc.

  10. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  11. Studies on Pidotimod Enantiomers With Chiralpak-IA: Crystal Structure, Thermodynamic Parameters and Molecular Docking.

    PubMed

    Dou, Xiaorui; Su, Xin; Wang, Yue; Chen, Yadong; Shen, Weiyang

    2015-11-01

    Pidotimod, a synthetic dipeptide, has two chiral centers with biological and immunological activity. Its enantiomers were characterized by x-ray crystallographic analysis. A chiral stationary phase (CSP) Chiralpak-IA based on amylose derivatized with tris-(3, 5-dimethylphenyl carbamate) was used to separate pidotimod enantiomers. The mobile phase was prepared in a ratio of 35:65:0.2 of methyl-tert-butyl-ether and acetonitrile trifluoroaceticacid. In addition, thermodynamics and molecular docking methods were used to explain the enantioseparation mechanism by Chiralpak-IA. Thermodynamic studies were carried out from 10 to 45 °C. In general, both retention and enantioselectivity decreased as the temperature increased. Thermodynamic parameters indicate that the interaction force between the pidotimod enantiomer (4S, 2'R) and IA CSP is stronger and their complex model is more stable. According to GOLD molecular docking simulation, Van der Waals force is the leading cause of pidotimod enantiomers separation by IA CSP. © 2015 Wiley Periodicals, Inc.

  12. Development of a multi-residue enantiomeric analysis method for 9 pesticides in soil and water by chiral liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Yuanbo; Dong, Fengshou; Liu, Xingang; Xu, Jun; Chen, Xiu; Han, Yongtao; Liang, Xuyang; Zheng, Yongquan

    2013-04-15

    A novel and sensitive chiral liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous measuring individual enantiomers of 9 pesticides including herbicides, insecticides, and fungicides in soil and water. The separation and determination were performed using reversed-phase chromatography on an amylose chiral stationary phase, a Chiralpak AD-RH column, under gradient elution using a mixture of ACN-2mM ammonium acetate in water as the mobile phase at 0.45 mL/min flow rate. The effects of three cellulose-based columns and three amylose-based columns on the separation were also investigated. The QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the extraction and clean-up of the soil and water samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were undertaken. Under optimal conditions, the mean recoveries for all enantiomers from the soil and water samples were ranged from 77.8% to 106.2% with the relative standard deviations (RSD) less than 14.2%. Good linearity (at least R(2) ≥ 0.9986) was obtained for all studied analytes in the soil and water matrix calibration curves over the range from 2.0 to 125 μg/L. The limits of detection (LOD) for all enantiomers in the soil and water were less than 1.8 μg/kg or μg/L, whereas the limit of quantification (LOQ) did not exceed 5.0 μg/kg or μg/L. The results of the method validation confirm that this proposed method is convenient and reliable for the enantioselective determination of the enantiomers of 9 chiral pesticides in soil and water. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    PubMed

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparative enantioseparation of loxoprofen precursor by recycling countercurrent chromatography with hydroxypropyl-β-cyclodextrin as a chiral selector.

    PubMed

    Zhang, Hui; Qiu, Xujun; Lv, Liqiong; Sun, Wenyu; Wang, Chaoyue; Yan, Jizhong; Tong, Shengqiang

    2018-04-17

    Recycling countercurrent chromatography was successfully applied to the resolution of 2-(4-bromomethylphenyl)propionic acid, a key synthetic intermediate for synthesis of nonsteroidal anti-inflammatory drug loxoprofen, using hydroxypropyl-β-cyclodextrin as chiral selector. The two-phase solvent system composed of n-hexane/n-butyl acetate/0.1 mol/L citrate buffer solution with pH 2.4 (8:2:10, v/v/v) was selected. Influence factors for the enantioseparation were optimized, including type of substituted β-cyclodextrin, concentration of hydroxypropyl-β-cyclodextrin, separation temperature, and pH of aqueous phase. Under optimized separation conditions, 50 mg of 2-(4-bromomethylphenyl)propionic acid was enantioseparated using preparative recycling countercurrent chromatography. Technical details for recycling elution mode were discussed. The purities of both the S and R enantiomers were over 99.0% as determined by high-performance liquid chromatography. The enantiomeric excess of the S and R enantiomers reached 98.0%. The recovery of the enantiomers from eluted fractions was 40.8-65.6%, yielding 16.4 mg of the S enantiomer and 10.2 mg of the R enantiomer. At the same time, we attempted to enantioseparate the anti-inflammatory drug loxoprofen by countercurrent chromatography and high-performance liquid chromatography using a chiral mobile phase additive. However, no successful enantioseparation was achieved so far. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel stereoselective high-performance liquid chromatographic method for simultaneous determination of guaifenesin and ketorolac enantiomers in human plasma.

    PubMed

    Maher, Hadir M; Al-Taweel, Shorog M; Alshehri, Mona M; Alzoman, Nourah Z

    2014-10-01

    A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide-based chiral stationary phase, amylose-2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean-up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05-20 µg/mL for the four enantiomers S (+) GUA, R (-) GUA, R (+) KET, and S (-) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high-performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. © 2014 Wiley Periodicals, Inc.

  16. Development of Chiral LC-MS Methods for small Molecules and Their Applications in the Analysis of Enantiomeric Composition and Pharmacokinetic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Meera Jay

    The purpose of this research was to develop sensitive LC-MS methods for enantiomeric separation and detection, and then apply these methods for determination of enantiomeric composition and for the study of pharmacokinetic and pharmacodynamic properties of a chiral nutraceutical. Our first study, evaluated the use of reverse phase and polar organic mode for chiral LC-API/MS method development. Reverse phase methods containing high water were found to decrease ionization efficiency in electrospray, while polar organic methods offered good compatibility and low limits of detection with ESI. The use of lower flow rates dramatically increased the sensitivity by an order of magnitude.more » Additionally, for rapid chiral screening, the coupled Chirobiotic column afforded great applicability for LC-MS method development. Our second study, continued with chiral LC-MS method development in this case for the normal phase mode. Ethoxynonafluorobutane, a fluorocarbon with low flammability and no flashpoint, was used as a substitute solvent for hexane/heptane mobile phases for LC-APCI/MS. Comparable chromatographic resolutions and selectivities were found using ENFB substituted mobile phase systems, although, peak efficiencies were significantly diminished. Limits of detection were either comparable or better for ENFB-MS over heptane-PDA detection. The miscibility of ENFB with a variety of commonly used organic modifiers provided for flexibility in method development. For APCI, lower flow rates did not increase sensitivity as significantly as was previously found for ESI-MS detection. The chiral analysis of native amino acids was evaluated using both APCI and ESI sources. For free amino acids and small peptides, APCI was found to have better sensitivities over ESI at high flow rates. For larger peptides, however, sensitivity was greatly improved with the use of electrospray. Additionally, sensitivity was enhanced with the use of non-volatile additives, This optimized method was then used to simultaneously separate all 19 native amino acids enantiomerically in less than 20 minutes, making it suitable for complex biological analysis. The previously developed amino acid method was then used to enantiomerically separate theanine, a free amino acid found in tea leaves. Native theanine was found to have lower limits of detection and better sensitivity over derivatized theanine samples. The native theanine method was then used to determine the enantiomeric composition of six commercially available L-theanine products. Five out of the six samples were found to be a racemic mixture of both D- and L-theanine. Concern over the efficacy of these theanine products led to our final study evaluating the pharmacokinetics and pharmacodynamics of theanine in rats using LC-ESI/MS. Rats were administered D-, L, and QL-theanine both orally and intra-peritoneally. Oral administration data demonstrated that intestinal absorption of L-theanine was greater than that of D-theanine, while i.p. data showed equal plasma uptake of both isomers. This suggested a possible competitive binding effect with respect to gut absorption. Additionally, it was found that regardless of administration method, the presence of the other enantiomer always decreased overall theanine plasma concentration. This indicated that D- and L- theanine exhibit competitive binding with respect to urinary reabsorption as well. The large quantities of D-theanine detected in the urine suggested that D-themine was eliminated with minimal metabolism, while L-theanine was preferentially reabsorbed and metabolized to ethylamine. Clearly, the metabolic fate of racemic theanine and its individual enantiomers was quite different, placing into doubt the utility of the commercial theanine products.« less

  17. FAST TRACK COMMUNICATION: Ferroelectricity in low-symmetry biaxial nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    2010-09-01

    Order parameters and phenomenological theory for both high- and low-symmetry biaxial nematic phases are presented and it is predicted that the chiral low-symmetry biaxial phase must be ferroelectric. This conclusion is based on general symmetry arguments and on the results of the Landau-de Gennes theory. The microscopic mechanism of the ferroelectric ordering in this chiral biaxial phase is illustrated using a simple molecular model based on dispersion interactions between biaxial molecules of low symmetry. Similar to the chiral smectic C* phase, the ferroelectricity in the chiral biaxial nematic phase is improper, i.e., polarization is not a primary order parameter and is not determined by dipolar interactions. Ferroelectric ordering in biaxial nematics may be found, in principle, in materials composed of chiral analogues of the tetrapod molecules which are known to exhibit biaxial phases.

  18. Theory of magnetoelastic resonance in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Tereshchenko, A. A.; Ovchinnikov, A. S.; Proskurin, Igor; Sinitsyn, E. V.; Kishine, Jun-ichiro

    2018-05-01

    We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave chirality.

  19. High-performance liquid chromatography study of the enantiomer separation of chrysanthemic acid and its analogous compounds on a terguride-based stationary phase.

    PubMed

    Dondi, M; Flieger, M; Olsovska, J; Polcaro, C M; Sinibaldi, M

    1999-10-29

    The direct enantioseparation of chrysanthemic acid [2,2-dimethyl-3-(2-methylpropenyl)-cyclopropanecarboxylic acid] and its halogen-substituted analogues was systematically studied by HPLC using a terguride-based chiral stationary phase in combination with a UV diode array and chiroptical detectors. Isomers with (1R) configuration always eluted before those with (IS) configuration. The elution sequence of cis- and trans-isomers was strongly affected by mobile phase pH, whereas the enantioselectivity remained the same. Conditions for the separation of all the enantiomers were also examined. This method was used for monitor the hydrolytic degradation products of Cyfluthrin (Baythroid) in soil under laboratory conditions.

  20. High performance liquid chromatography enantioseparation of the novel designed mexiletine derivatives and its analogs.

    PubMed

    Zheng, Chengzhen; Zhang, Datong; Wu, Qi; Lin, Xianfu

    2011-02-01

    A series of novel designed mexiletine derivatives and its analogs were prepared, the structures were confirmed by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), and Electrospray Ionization-Mass Spectrometry (ESI-MS), and the enantioseparations were performed on polysaccharide-based chiral stationary phase (CSP), Chiralcel OD-H, and Chiralcel OJ-H, under normal-phase mode. The effects of the concentration of isopropanol in the mobile phase were studied, seven of the eight enantiomers got baseline separation on Chiralcel OD-H, and five of the eight enantiomers got successfully separation on Chiralcel OJ-H. The effects of structural features were also discussed. Copyright © 2010 Wiley-Liss, Inc.

  1. Use of chiral derivatization for the determination of dichlorprop in tea samples by ultra performance LC with fluorescence detection.

    PubMed

    Inoue, Koichi; Prayoonhan, Nuntawat; Tsutsui, Haruhito; Sakamoto, Tasuku; Nishimura, Maiko; Toyo'oka, Toshimasa

    2013-04-01

    Dichlorprop is available for agricultural use as a chiral pesticide. In this study, the stereoselective determination of dichlorprop enantiomers in tea samples such as green, black, jasmine, and oolong was developed by ultra performance LC with fluorescence spectrometry after covalent chiral derivatization. The separation was achieved on an Acquity BEH C18 column with the mobile phase consisting of 0.1% formic acid in acetonitrile/water at a flow rate of 0.4 mL/min. In the covalent chiral derivatization using (S)-(+)-4-(N,N-dimethylaminosulfonyl)-7-(3-aminopyrrolidin-1-yl)-2,1,3-benzoxadiazole, the peak resolution between the S and R-dichlorprop enantiomers was 2.6. LODs and LOQs values were 10 and 50 ng/mL standard solution. The linearity of the calibration curves yielded the coefficients (r(2) > 0.99, ranging from 0.05 to 5 μg/mL) of determination of each of the dichlorprop enantiomers. SPE extraction was used for the sample preparation of dichlorprop in various tea samples. Recoveries were in the range of 82.4-97.6% with associated precision values (within-day: 82.4-95.8%, n = 6, and between-day: 83.7-97.6% for 3 days) for repeatability and reproducibility. Based on this result, our method has been proven to be highly efficient and suitable for the routine assay of dichlorprop enantiomers in various tea samples. We propose that the ultra performance LC assay after covalent chiral derivatization would be the renewed tools in the era of chiral stationary platform for chiral pesticide residues in foods. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chiral zero energy modes in two-dimensional disordered Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Yu, Yan; Wu, Hai-Bin; Zhang, Yan-Yang; Liu, Jian-Jun; Li, Shu-Shen

    2018-04-01

    The vacancy-induced chiral zero energy modes (CZEMs) of chiral-unitary-class (AIII) and chiral-symplectic-class (CII) two-dimensional (2 D ) disordered Dirac semimetals realized on a square bipartite lattice are investigated numerically by using the Kubo-Greenwood formula with the kernel polynomial method. The results show that, for both systems, the CZEMs exhibit the critical delocalization. The CZEM conductivity remains a robust constant (i.e., σ CZEM≈1.05 e2/h ), which is insensitive to the sample sizes, the vacancy concentrations, and the numbers of moments of Chebyshev polynomials, i.e., the dephasing strength. For both kinds of chiral systems, the CZEM conductivities are almost identical. However, they are not equal to that of graphene (i.e., 4 e2/π h ), which belongs to the chiral orthogonal class (BDI) semimetal on a 2 D hexagonal bipartite lattice. In addition, for the case that the vacancy concentrations are different in the two sublattices, the CZEM conductivity vanishes, and thus both systems exhibit localization at the Dirac point. Moreover, a band gap and a mobility gap open around zero energy. The widths of the energy gaps and mobility gaps are increasing with larger vacancy concentration difference. The width of the mobility gap is greater than that of the band gap, and a δ -function-like peak of density of states emerges at the Dirac point within the band gap, implying the existence of numerous localized states.

  3. Simultaneous and enantioselective determination of cis-epoxiconazole and indoxacarb residues in various teas, tea infusion and soil samples by chiral high performance liquid chromatography coupled with tandem quadrupole-time-of-flight mass spectrometry.

    PubMed

    Zhang, Xinzhong; Luo, Fengjian; Lou, Zhengyun; Lu, Meiling; Chen, Zongmao

    2014-09-12

    A novel and sensitive method for simultaneous enantiomeric analysis of two pesticides-cis-epoxiconazole and indoxacarb-in various teas, black tea infusion, and soil samples has been developed. The samples were initially subjected to acetonitrile extraction followed by cleanup using lab-made florisil/graphitized carbon black mixed solid phase extraction (SPE) column (for the different teas and soil samples) and a BondElut C18-SPE column (for the black tea infusion samples). Separation of the analytes was performed on a chiral stationary phase using high performance liquid chromatography (HPLC) under a reversed-phase isocratic elution mode followed by tandem quadrupole time-of-flight mass spectrometry (Q-TOF/MS) detection. The mobile phase components, mobile phase ratios, flow rates, column temperatures, and MS parameters were all optimized to reach high sensitivity and selectivity, good peak shape, and satisfactory resolution. The performance of the method was evaluated based on the sensitivity, linearity, accuracy, precision, and matrix effects. Under optimal conditions, for the various teas (green tea, black tea, and puer tea), fresh tea leaf, soil and black tea infusion samples spiked at low, medium, and high levels, the mean recoveries for the four enantiomers ranged from 61.0% to 129.7% with most relative standard deviations (RSDs) being 17.1% or below. Good linearity can be achieved with regression coefficients (R) of 0.9915 or above for all target enantiomers, and matrix-matched calibration concentration ranging from 5.0 to 1000μg/L. The limits of detection (LODs) for all four target enantiomers were 1.4μg/kg or below in the different teas and soil samples and 0.05μg/kg or below in the black tea infusion, whereas the limits of quantification (LOQs) for those did not exceed 5.0μg/kg and 0.2μg/L, respectively. The proposed method is convenient and reliable and has been applied to real tea samples screening. It has also been extended for studies on the degradation kinetics and environmental behaviors in the field trials, providing additional information for reliable risk assessment of these chiral pesticides. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules - Hierarchical Chirality Amplification and Physical Properties.

    PubMed

    Le, Khoa V; Takezoe, Hideo; Araoka, Fumito

    2017-07-01

    Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.

    PubMed

    Sato, Hisako; Yamagishi, Akihiko

    2009-11-20

    The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.

  6. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2009-01-01

    The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959

  7. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical chains from self-assembly. The handedness of the twisted lamella can be determined by using rotation experiment of polarized light microscopy (PLM). Similar to the self-assembly of BCPs*, the examined results suggest the homochiral evolution in the crystallized chiral polylactides. The results presented in this Account demonstrate the notable progress in the spectral and morphological determination for the examination of molecular, conformational, and hierarchical chirality in self-assembled twisted superstructures of chiral polymers and helical phases of block copolymers and suggest the attainability of homochiral evolution in the self-assembly of chiral homopolymers and BCPs*. The suggested methodologies for the understanding of the mechanisms of the chirality transfer at different length scales provide the approaches to give Supporting Information for disclosing the mysteries of the homochiral evolution from molecular level.

  8. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    NASA Astrophysics Data System (ADS)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  10. Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids

    NASA Astrophysics Data System (ADS)

    Nyström, Gustav; Arcari, Mario; Mezzenga, Raffaele

    2018-04-01

    Chirality is ubiquitous in nature and plays crucial roles in biology, medicine, physics and materials science. Understanding and controlling chirality is therefore an important research challenge with broad implications. Unlike other chiral colloids, such as nanocellulose or filamentous viruses, amyloid fibrils form nematic phases but appear to miss their twisted form, the cholesteric or chiral nematic phases, despite a well-defined chirality at the single fibril level. Here we report the discovery of cholesteric phases in amyloids, using β-lactoglobulin fibrils shortened by shear stresses. The physical behaviour of these new cholesteric materials exhibits unprecedented structural complexity, with confinement-driven ordering transitions between at least three types of nematic and cholesteric tactoids. We use energy functional theory to rationalize these results and observe a chirality inversion from the left-handed amyloids to right-handed cholesteric droplets. These findings deepen our understanding of cholesteric phases, advancing their use in soft nanotechnology, nanomaterial templating and self-assembly.

  11. Helicity-Selective Phase-Matching and Quasi-Phase matching of Circularly Polarized High-Order Harmonics: Towards Chiral Attosecond Pulses

    DTIC Science & Technology

    2016-05-23

    Invited Article Helicity-selective phase-matching and quasi -phase matching of circularly polarized high-order harmonics: towards chiral attosecond...chromatic lasers was recently predicted theoretically and demonstrated experimentally . In that work, phase matching was analyzed by assuming that the...Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization

  12. Trimeprazine is enantioselectively degraded by an activated sludge in ready biodegradability test conditions.

    PubMed

    Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Perez-Baeza, Mireia; Sagrado, Salvador; Medina-Hernández, María José

    2018-05-09

    A great number of available pharmaceuticals are chiral compounds. Although they are usually manufactured as racemic mixtures, they can be enantioselectively biodegraded as a result of microbial processes. In this paper, a biodegradability assay in similar conditions to those recommended in OECD tests of enantiomers of trimeprazine (a phenothiazine employed as a racemate) is carried out. Experiments were performed in batch mode using a minimal salts medium inoculated with an activated sludge (collected from a Valencian Waste Water Treatment Plant, WWTP) and supplemented with the racemate. The concentration of the enantiomers of trimeprazine were monitored by means of a chiral HPLC method using a cellulose-based chiral stationary phase and 0.5 M NaClO 4 /acetonitrile (60:40, v/v) mobile phases. Experiments were performed at three concentration levels of the racemate. In parallel, the optical density at 600 nm (OD600) was measured to control the biomass growth and to connect it with enantioselectivity. The calculated enantiomeric fractions (EF) offer the first evidence of enantioselective biodegradation of trimeprazine. A simplified Monod equation was used as a curve fitting approach for concentration (S), biodegradation (BD), and for the first time, EF experimental data in order to expand the usefulness of the results. Precision studies on S (repeatability conditions) and, for the first time, EF (intermediate precision conditions) were also performed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a uniquemore » opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.« less

  14. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    NASA Astrophysics Data System (ADS)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer brushes, or the most effective molecular release kinetics for drug delivery applications, for example.

  15. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  16. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    PubMed

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override the chirality effects.

  17. Coupling mesodomain positional ordering to intra-domain orientational ordering in block copolymer assembly

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory

    Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.

  18. Degenerate and chiral states in the extended Heisenberg model on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Gómez Albarracín, F. A.; Pujol, P.

    2018-03-01

    We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.

  19. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons.

    PubMed

    Cardano, Filippo; D'Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-06-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems.

  20. Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons

    PubMed Central

    Cardano, Filippo; D’Errico, Alessio; Dauphin, Alexandre; Maffei, Maria; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo; Lewenstein, Maciej; Massignan, Pietro

    2017-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, an observable that rapidly approaches a value proportional to the Zak phase during the free evolution of the system. Then we measure the Zak phase in a photonic quantum walk of twisted photons, by observing the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general and readily applicable to all present one-dimensional platforms simulating static or Floquet chiral systems. PMID:28569741

  1. Crystallization and Microphase Separation in Chiral Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ho, Rong-Ming

    2012-02-01

    Block copolymers composed of chiral entities, denoted as chiral block copolymers (BCP*s), were designed to fabricate helical architectures from self-assembly. A helical phase (denoted H*) was discovered in the self-assembly of poly(styrene)-b-poly(L-lactide) (PS-PLLA) BCPs*. To examine the phase behavior of the PS-PLLA, self-assembled superstructures resulting from the competition between crystallization and microphase separation of the PS-PLLA in solution were examined. A kinetically controlled process by changing non-solvent addition rate was utilized to control the BCP* self-assembly. Single-crystal lozenge lamellae were obtained by the slow self-assembly (i.e., slow non-solvent addition rate) of PS-PLLA whereas amorphous helical ribbon superstructures were obtained from the fast self-assembly (i.e., fast non-solvent addition rate). As a result, the formation of helical architectures from the self-assembly of the PS-PLLA reflects the impact of chirality on microphase separation, but the chiral effect might be overwhelmed by crystallization. Consequently, various crystalline PS-PLLA nanostructures in bulk were obtained by controlling the crystallization temperature of PLLA (Tc,PLLA) at which crystalline helices and crystalline cylinders occur while Tc,PLLA=x Tg,PS, respectively. Anisotropic arrangement of the PLLA crystallites grown within the microdomains was identified. The formation of this exclusive crystalline growth is attributed to the spatial confinement effect for crystallization. While Tc,PLLA=x Tg,PS, the preferential growth may modulate the curvature of microdomains by shifting the molecular chains to access the fast path for crystalline growth due to the increase in chain mobility. As a result, a spring-like behavior of the helical nanostructure can be driven by crystallization so as to dictate the transformation of helices and to result in crystalline cylinders.

  2. Modulated nematic structures induced by chirality and steric polarization

    NASA Astrophysics Data System (ADS)

    Longa, Lech; PajÄ k, Grzegorz

    2016-04-01

    What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core and dimeric materials? Here, using the Landau-de Gennes theory of nematics, extended to account for molecular steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials, two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal (NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases. Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.

  3. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    NASA Astrophysics Data System (ADS)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  4. Chiral phase structure of three flavor QCD at vanishing baryon number density

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-04-12

    In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less

  5. Parallel achiral-chiral determination of oxybutynin, N-desethyl oxybutynin and their enantiomers in human plasma by LC-MS/MS to support a bioequivalence trial.

    PubMed

    Sharma, Primal; Patel, Daxesh P; Sanyal, Mallika; Guttikar, Swati; Shrivastav, Pranav S

    2014-01-01

    A parallel achiral and chiral determination of oxybutynin, its pharmacologically active metabolite N-desethyl oxybutynin and their enantiomers in human plasma is described using LC-MS/MS. Both the methods were developed and validated using deuterated analogues as internal standards. Achiral analysis of racemic oxybutynin and N-desethyl oxybutynin was carried out on Phenomenex Gemini C18 (150mm×4.6mm, 5μm) column under isocratic conditions using acetonitrile-5.0mM ammonium acetate, pH 4.0 (90:10, v/v) as the mobile phase. Separation of (S)- and (R)-enantiomers of the analytes was performed on Phenomenex Lux Amylose-2 (150mm×4.6mm, 3μm) chiral column using a mixture of solvent A [acetonitrile:10mM ammonium bicarbonate, 80:20 (v/v)] and solvent B [2-propanol:methanol, 50:50 (v/v)] in 20:80 (v/v) ratio as the mobile phase. Plasma samples were prepared by liquid-liquid extraction with ethyl acetate-diethyl ether-n-hexane solvent mixture. A linear range was established from 0.025 to 10.0ng/mL and 0.25 to 100ng/mL for the enantiomers of oxybutynin and N-desethyl oxybutynin respectively. The extraction recovery varied from 96.0 to 105.1%, while the IS-normalized matrix factors ranged from 0.96 to 1.07 for all the enantiomers. The validated method was applied for a pilot bioequivalence study with 5mg oxybutynin tablet formulation in 8 healthy subjects. The pharmacokinetic profiles showed that the plasma concentration of (R)-oxybutynin was lower than that of (S)-oxybutynin, while a reverse trend was observed for the enantiomers of N-desethyl oxybutynin. The reproducibility in the measurement of study data was demonstrated by reanalysis of 20 incurred samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Anomalous electronic states in Pb1-xSnxTe induced by hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Kushwaha, Satya; Gibson, Quinn; Cava, R. J.; Ong, N. P.

    Dirac/Weyl semimetals have attracted strong interest. In Dirac semimetals Cd3As2, Na3Bi, the Dirac nodes split into Weyl states in a magnetic field, which leads to novel phenomena, such as ultrahigh mobility (107 cm2 V-1 s-1) in Cd3As2, and the chiral anomaly in Na3Bi. The chiral anomaly appears as a negative longitudinal magnetoresistance. A new path to realize Weyl states is via the closing of the bulk gap in a system with broken inversion symmetry. As the gap is tuned, a Weyl semimetalic state is predicted to appear between two insulating phases. We performed the hydrostatic pressure measurement for Pb1-xSnxTe and observed that the gap of the system closes under pressure and the system shows insulator to metal phase transition. Interestingly, in the metalic phase, we observed giant negative magnetoresistance as well as anomalous hall effect which onsets only in the quantum limit. We discuss the implication of these phenomena and their relation with the Berry curvature. Supported by MURI grant (ARO W911NF-12-1-0461), Army Research Office (ARO W911NF-11-1-0379), Gordon and Betty Moore Foundation (EPiQS Initiative GBMF4539).

  7. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface.

    PubMed

    Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V

    2010-05-17

    The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.

  8. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  9. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2018-03-21

    Here, we outline a novel chiral kinetic theory framework for systematic computations of the Chiral Magnetic Effect (CME) in ultrarelativistic heavy-ion collisions. The real part of the fermion determinant in the QCD effective action is expressed as a supersymmetric world-line action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. Berry’s phase is obtained in a consistent non-relativistic adiabatic limit. The chiral anomaly, in contrast, arises from the phase of the fermion determinant; its topological properties are therefore distinct from those of the Berry phase.more » We show that the imaginary contribution to the fermion determinant too can be expressed as a point particle world-line path integral and derive the corresponding anomalous axial vector current. Our results can be used to derive a covariant relativistic chiral kinetic theory including the effects of topological fluctuations that has overlap with classical-statistical simulations of the CME at early times and anomalous hydrodynamics at late times.« less

  10. Chiral liquid phase of simple quantum magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei

    2017-11-07

    We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less

  11. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    PubMed

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    PubMed

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance. Copyright © 2015. Published by Elsevier B.V.

  13. Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn

    2018-04-01

    Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).

  14. Nonadiabatic Josephson current pumping by chiral microwave irradiation

    NASA Astrophysics Data System (ADS)

    Venitucci, B.; Feinberg, D.; Mélin, R.; Douçot, B.

    2018-05-01

    Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase lapse between the microwave components acting on the two sides of the junction. General symmetry arguments and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper pair dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a "chiral" Josephson transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh nonequilibrium Green's functions. The chiral current is nonadiabatic: it is extremal and changes sign close to resonant chiral transitions between the Andreev bound states.

  15. Spin-orbit beams for optical chirality measurement

    NASA Astrophysics Data System (ADS)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  16. Radical chiral Floquet phases in a periodically driven Kitaev model and beyond

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Fidkowski, Lukasz; Vishwanath, Ashvin; Potter, Andrew C.

    2017-12-01

    We theoretically discover a family of nonequilibrium fractional topological phases in which time-periodic driving of a 2D system produces excitations with fractional statistics, and produces chiral quantum channels that propagate a quantized fractional number of qubits along the sample edge during each driving period. These phases share some common features with fractional quantum Hall states, but are sharply distinct dynamical phenomena. Unlike the integer-valued invariant characterizing the equilibrium quantum Hall conductance, these phases are characterized by a dynamical topological invariant that is a square root of a rational number, inspiring the label: radical chiral Floquet phases. We construct solvable models of driven and interacting spin systems with these properties, and identify an unusual bulk-boundary correspondence between the chiral edge dynamics and bulk "anyon time-crystal" order characterized by dynamical transmutation of electric-charge into magnetic-flux excitations in the bulk.

  17. Nature of the chiral restoration transition in QCD

    NASA Astrophysics Data System (ADS)

    Brown, Gerald E.; Grandchamp, Loı̈c.; Lee, Chang-Hwan; Rho, Mannque

    2004-03-01

    As the chirally restored phase ends with T coming down to Tc, a phase resembling a mixed phase is realized, during which the hadrons (which are massless at Tc in the chiral limit) get their masses back out of their kinetic energy. The gluon condensation energy is fed into the system to keep the temperature (nearly) constant. Lattice results for the gluon condensation are matched by a Nambu-Jona-Lasinio calculation. The latter shows that below Tc the chiral symmetry is barely broken, so that with an ˜6% drop in the scalar coupling G it is restored at Tc. Nearly half of the glue, which we call epoxy, is not melted at Tc.

  18. Chiral Spin Order in Kondo-Heisenberg Systems

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-01

    We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.

  19. Declining availability of outdoor skating in Canada

    NASA Astrophysics Data System (ADS)

    Brammer, Jeremy R.; Samson, Jason; Humphries, Murray M.

    2015-01-01

    We find a mixed chirality $d$-wave superconducting state in the coexistence region between antiferromagnetism and interaction-driven superconductivity in lightly doped honeycomb materials. This state has a topological chiral $d+id$-wave symmetry in one Dirac valley but $d-id$-wave symmetry in the other valley and hosts two counter-propagating edge states, protected in the absence of intervalley scattering. A first-order topological phase transition, with no bulk gap closing, separates the chiral $d$-wave state at small magnetic moments from the mixed chirality $d$-wave phase.

  20. Molecular recognition in chiral smectic liquid crystals: the effect of core-core interactions and chirality transfer on polar order.

    PubMed

    Lemieux, Robert P

    2007-12-01

    This critical review focuses on the induction of polar order in smectic liquid crystal phases by dopants with axially chiral cores, and should be of interest to all practitioners of supramolecular chemistry. The variations in polarization power of these dopants with the core structure of the liquid crystal hosts is a manifestation of molecular recognition that reflects the nanosegregation of aromatic cores from paraffinic side-chains in smectic phases, and the collective effect of core-core interactions that enable the propagation of chiral perturbations.

  1. How tetraquarks can generate a second chiral phase transition

    DOE PAGES

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-09-09

    We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature,more » T, and quark chemical potential, μ, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Ding, H. -T.; Hegde, P.

    In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less

  3. Numerical evidence of liquid crystalline mesophases of a lollipop shaped model in two dimensions

    NASA Astrophysics Data System (ADS)

    Pérez-Lemus, G. R.; Armas-Pérez, J. C.; Chapela, G. A.; Quintana-H., J.

    2017-12-01

    Small alterations in the molecular details may produce noticeable changes in the symmetry of the resulting phase behavior. It is possible to produce morphologies having different n-fold symmetries by manipulating molecular features such as chirality, polarity or anisotropy. In this paper, a two dimensional hard molecular model is introduced to study the formation of liquid crystalline phases in low dimensionality. The model is similar to that reported by Julio C. Armas-Pérez and Jacqueline Quintana-H., Phys. Rev. E 83, 051709 (2011). The main difference is the lack of chirality in the model proposed, although they share some characteristics like the geometrical polarity. Our model is called a lollipop model, because its shape is constructed by a rounded section attached to the end of a stick. Contrary to what happens in three dimensions where chiral nematogens produce interesting and complex phases such as blue phases, the lack of molecular chirality of our model generates a richer phase diagram compared to the chiral system. We show numerical and some geometrical evidences that the lack of laterality of the non chiral model seems to provide more routes of molecular self-assembly, producing triatic, a random cluster and possibly a tetratic phase behavior which were not presented in the previous work. We support our conclusions using results obtained from isobaric and isochoric Monte Carlo simulations. Properties as the n-fold order parameters such as the nematic, tetratic and triatic as well as their correlation functions were used to characterize the phases. We also provide the Fourier transform of equilibrium configurations to analyze the n-fold symmetry characteristic of each phase.

  4. Chiral Spin Order in Kondo-Heisenberg systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvelik, A. M.; Yevtushenko, O. M.

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  5. Chiral Spin Order in Kondo-Heisenberg systems

    DOE PAGES

    Tsvelik, A. M.; Yevtushenko, O. M.

    2017-12-15

    We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less

  6. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.

  7. Catalysis of partial chiral symmetry restoration by Δ matter

    NASA Astrophysics Data System (ADS)

    Takeda, Yusuke; Kim, Youngman; Harada, Masayasu

    2018-06-01

    We study the phase structure of dense hadronic matter including Δ (1232 ) as well as N (939 ) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in symmetric matter, Δ enters into matter in the density region of about one to four times normal nuclear matter density, ρB˜1 -4 ρ0 . The onset density of Δ matter depends on the chiral invariant mass of Δ ,mΔ 0 : As mΔ 0 increases, the onset density becomes bigger. The stable Δ -nucleon matter is realized for ρB≳1.5 ρ0 , i.e., the phase transition from nuclear matter to Δ -nucleon matter is of first order for small mΔ 0, and it is of second order for large mΔ 0. We find that, associated with the phase transition, the chiral condensate changes very rapidly; i.e., the chiral symmetry restoration is accelerated by Δ matter. As a result of the accelerations, there appear N*(1535 ) and Δ (1700 ) , which are the chiral partners to N (939 ) and Δ (1232 ) , in high-density matter, signaling the partial chiral symmetry restoration. Furthermore, we find that complete chiral symmetry restoration itself is delayed by Δ matter. We also calculate the effective masses, pressure, and symmetry energy to study how the transition to Δ matter affects such physical quantities. We observe that the physical quantities change drastically at the transition density.

  8. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    NASA Astrophysics Data System (ADS)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  9. Supercritical fluid chromatography versus high performance liquid chromatography for enantiomeric and diastereoisomeric separations on coated polysaccharides-based stationary phases: Application to dihydropyridone derivatives.

    PubMed

    Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle

    2018-05-11

    For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Simultaneous enantioselective determination of six pesticides in aqueous environmental samples by chiral liquid chromatography with tandem mass spectrometry.

    PubMed

    Zhao, Pengfei; Lei, Shuo; Xing, Mingming; Xiong, Shihang; Guo, Xingjie

    2018-03-01

    A robust and sensitive method was developed for the enantiomeric analysis of six chiral pesticides (including metalaxyl, epoxiconazole, myclobutanil, hexaconazole, napropamide, and isocarbophos) in aquatic environmental samples. The optimized chromatographic conditions for the quantification of all the 12 enantiomers were performed with Chiralcel OD-RH column using mobile phase consisting of 0.1% aqueous formic acid and acetonitrile operated under reversed-phase conditions and then analyzed using liquid chromatography with tandem mass spectrometry. Twelve enantiomers were detected in multiple reaction monitoring mode. Solid-phase extraction and dispersive liquid-liquid microextraction were employed in this study. Response surface methodology was applied to assist in the dispersive liquid-liquid microextraction optimization. Under the optimum conditions, recoveries of pesticides enantiomers varied from 83.0 to 103.2% at two spiked levels with relative standard deviation less than 11.5%. The concentration factors were up to 1000 times. Method detection and quantification limits varied from 0.11 to 0.48 ng/L and from 0.46 to 1.49 ng/L, respectively. Finally, this method was used to determination of the enantiomers composition of the six pesticides in environmental aqueous matrices, which will help better understand the behavior of individual enantiomer and make accurate risk assessment to ecosystems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chirality-Controlled Growth of Single-Wall Carbon Nanotubes Using Vapor Phase Epitaxy: Mechanistic Understanding and Scalable Production

    DTIC Science & Technology

    2016-09-15

    controlled synthesis of single-wall carbon nanotubes. Firstly, we have successfully demonstrated a vapor-phase-epitaxy-analogous general strategy for...preselected chirality. Moreover, we carried out systematic investigations of the chirality-dependent growth kinetics and termination mechanism for the... generally believed that the diameters of the nanotubes are determined by the size of the catalytic metal particles. Unfortunately, attempts to control

  12. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    NASA Astrophysics Data System (ADS)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  13. High performance liquid chromatography with photo diode array for separation and analysis of naproxen and esomeprazole in presence of their chiral impurities: Enantiomeric purity determination in tablets.

    PubMed

    Ragab, Marwa A A; El-Kimary, Eman I

    2017-05-12

    A stereoselective high performance liquid chromatographic method with diode array detection (HPLC-DAD) was introduced for S-naproxen and esomeprazole determination in tablets. The separation was achieved on a Kromasil Cellucoat chiral column using a mobile phase consisting of hexane: isopropanol: trifluoroacetic acid (TFA) (90:9.9:0.1 v/v/v). The proposed system was found to be suitable for the enantioseparation of naproxen and omeprazole biologically active isomers. After optimization of the chromatographic conditions, resolution values of 3.84 and 2.17 could be obtained for naproxen and omeprazole isomers, respectively. The method was fully validated for the determination of S-isomers of each drug in their dosage form. Also, the enentiomeric purity was determined in commercial tablet containing S-naproxen and esomeprazole. The enantiomeric purity was calculated for each drug and the chiral impurities (R-isomers) could be determined at 1% level. The method was validated and good results with respect to linearity, precision, accuracy, selectivity and robustness were obtained. The limits of detection (LOD) and quantification (LOQ) were 2.00, 6.50 and 0.10, 0.35μgmL -1 for S-naproxen and esomeprazole, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    NASA Astrophysics Data System (ADS)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  15. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    NASA Astrophysics Data System (ADS)

    Reinhardt, H.; Vastag, P.

    2016-11-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature β-1 is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold R2×S1(β ) . The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as a function of the temperature. From their inflection points the pseudocritical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 170 and 198 MeV, respectively, for the chiral and deconfinement transition.

  16. A validated chiral liquid chromatographic method for the enantiomeric separation of safinamide mesilate, a new anti-Parkinson drug.

    PubMed

    Zhang, Kai; Xue, Na; Shi, Xiaowei; Liu, Weina; Meng, Jing; Du, Yumin

    2011-04-28

    A enantioselective reversed-phase high performance liquid chromatographic method was developed for the enantiomeric resolution of safinamide mesilate, 2(S)-[4-(3-fluorobenzyloxy)benzylamino] propionamide methanesulfonate, a neuroprotectant with antiparkinsonian and anticonvulsant activity for the treatment of Parkinson disease. The enantiomers of safinamide mesilate were baseline resolved on a Chiralcel OD-RH (150mm×4.6mm, 5μm) column using a mobile phase system containing 300mM sodium di-hydrogen phosphate buffer (pH 3.0):methanol:acetonitrile (65:25:10, v/v/v). The resolution between the enantiomers was not less than 3.0. The pH value of buffer solution in the mobile phase has played a key role in enhancing chromatographic efficiency and resolution between the enantiomers. The developed method was validated and proved to be robust. The limit of detection and limit of quantification of (R)-enantiomer were found to be 15 and 50ng/mL, respectively, for 20μL injection volume. The percentage recovery of (R)-enantiomer was ranged from 94.2 to 103.7 in bulk drug samples of safinamide mesilate. The sample solution and mobile phase were found to be stable at least for 48h. The final optimized method was successfully applied to separate (R)-enantiomer from safinamide mesilate and was proven to be reproducible and accurate for the quantitative determination of (R)-enantiomer in bulk drugs. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. SU(3) sextet model with Wilson fermions

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Pica, Claudio

    2018-03-01

    We present our final results for the SU(3) sextet model with the non-improved Wilson fermion discretization. We find evidence for several phases of the lattice model, including a bulk phase with broken chiral symmetry. We study the transition between the bulk and weak coupling phase which corresponds to a significant change in the qualitative behavior of spectral and scale setting observables. In particular the t0 and w0 observables seem to diverge in the chiral limit in the weak coupling phase. We then focus on the study of spectral observables in the chiral limit in the weak coupling phase at infinite volume. We consider the masses and decay constants for the pseudoscalar and vector mesons, the mass of the axial vector meson and the spin-1/2 baryon as a function of the quark mass, while controlling finite volume effects. We then test our data against both the IR conformal and the chirally broken hypotheses. Preprint: CP3-Origins-2017-49 DNRF90

  18. Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework.

    PubMed

    Hill, Joshua A; Christensen, Kirsten E; Goodwin, Andrew L

    2017-09-15

    Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt_{4}]Ag_{3}(CN)_{4}. We demonstrate the transition to involve spontaneous resolution of chiral [NEt_{4}]^{+} conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO_{2}, we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q=[0,0,q_{z}]^{*}. The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.

  19. Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework

    NASA Astrophysics Data System (ADS)

    Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.

    2017-09-01

    Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.

  20. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  1. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    PubMed

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  2. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  3. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    DOE PAGES

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; ...

    2016-05-23

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching.more » Here, we find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. Lastly, this feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.« less

  4. Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances.

    PubMed

    Nageswara Rao, Ramisetti; Shinde, Dhananjay D; Kumar Talluri, Murali V N

    2008-04-01

    Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.

  5. Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Yao, Miao; Wu, Shuang-jie; Yao, Dan-Shu; Hu, Jian-She; He, Xiao-zhi; Tian, Mei

    2017-12-01

    Four multi-arm liquid crystals (LCs) based on chenodeoxycholic acid, termed as 2G-PD, 2G-IB, 2G-BD and 5G-GC, respectively, have been synthesised by convergent method, which nematic LC, 6-(4-((4-ethoxybenzoyl)oxy)phenoxy)-6-oxohexanoic acid, was used as side arm, and chenodeoxycholic acid (CDCA) was used as the first core, 1,2-propanediol (PD), isosorbide (IB), 4,4‧-biphenyldiol (BD) and glucose (GC) were used as the second core, respectively. The first generation product, CDCA2EA, displayed cholesteric phase. The second generation products 2G-BD and 5G-GC displayed cholesteric phase, while 2G-PD and 2G-IB exhibited nematic phase. The multi-arm LC, 2G-IB, did not display cholesteric phase although the two cores were all chiral ones. The result indicated that chirality of the second core sometimes made the multi-arm LCs display nematic phase when cholesteric CDCA-derivative were introduced into the second core. Some attention should be paid on molecular conformation besides the introduction of chiral cores for multi-chiral-core LCs to obtain cholesteric phase.

  6. Normal and polar-organic-phase high-performance liquid chromatographic enantioresolution of omeprazole, rabeprazole, lansoprazole and pantoprazole using monochloro-methylated cellulose-based chiral stationary phase and determination of dexrabeprazole.

    PubMed

    Dixit, Shuchi; Dubey, Rituraj; Bhushan, Ravi

    2014-01-01

    Enantioresolution of four anti-ulcer drugs (chiral sulfoxides), namely, omeprazole, rabeprazole, lansoprazole and pantoprazole, was carried out by high-performance liquid chromatography using a polysaccharide-based chiral stationary phase consisting of monochloromethylated cellulose (Lux cellulose-2) under normal and polar-organic-phase conditions with ultraviolet detection at 285 nm. The method was validated for linearity, accuracy, precision, robustness and limit of detection. The optimized enantioresolution method was compared for both the elution modes. The optimized method was further utilized to check the enantiomeric purity of dexrabeprazole. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Lattice modes of the chirally pure and racemic phases of tyrosine crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyanchikov, M. A.; Gorelik, V. S., E-mail: gorelik@sci.lebedev.ru; Gorshunov, B. P.

    High-Q librational modes have been found to be present in the infrared absorption and Raman spectra of chirally pure L-tyrosine. Such modes can serve as terahertz radiation detectors and generators in chirally pure biostructures.

  8. Notes on phase transitions and the role of spin fluctuations

    NASA Astrophysics Data System (ADS)

    Stishov, S. M.

    2016-09-01

    The physical properties of two chiral systems with localized and delocalized magnetic moments, {\\text{Cu}}2{\\text{OSeO}}3 and MnSi, are reviewed. It is concluded that the longitudinal fluctuations of magnetic moments have no strong effect on the qualitative picture of phase transitions and the magnetic phase diagrams of chiral systems.

  9. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid

    NASA Astrophysics Data System (ADS)

    Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D.

    2014-08-01

    New liquid crystalline (LC) materials were prepared by derivatization of lactic acid. First compound possesses the lactic acid unit as the only chiral center and the second group of LC materials contains two chiral centers. Mesomorphic properties of both the newly synthesized LC materials were studied and the presence of the SmA*-SmC* or exhibit the twist grain boundary (TGB) phases, namely TGBA and TGBC, in a wide range of temperatures down to the room temperature was established. The potential of high-performance liquid chromatography (HPLC) applying chiral stationary phases to separate enantiomers or diastereoisomers of the synthesized LC compounds was evaluated. Two different brands of commercial chiral sorbents, Lux Amylose-2 and Chiralpak AD-3, both based on modified silica with derivatized polysaccharide, were employed in the development of separation procedures. The optimized chiral HPLC method provided a baseline separation of the individual enantiomers for the LC material containing one chiral center. In the case of the more complex compound with two asymmetric carbon atoms, where four isomers exist, partial separation was reached only using the current chiral HPLC.

  10. Application and comparison of high performance liquid chromatography and high speed counter-current chromatography in enantioseparation of (±)-2-phenylpropionic acid.

    PubMed

    Tong, Shengqiang; Zheng, Ye; Yan, Jizhong

    2013-03-15

    High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Analytical and semi-preparative enantioresolution of (RS)-ketorolac from pharmaceutical formulation and in human plasma by HPLC.

    PubMed

    Lal, Manohar; Bhushan, Ravi

    2016-10-01

    An efficient, simple, validated, analytical and semi-preparative HPLC method has been developed for direct enantioresolution of (RS)-Ketorolac (Ket) using monochloro-methylated derivatives of cellulose and amylose, i.e. cellulose (tris-3-chloro-4-methylphenylcarbamate) and amylose (tris-5-chloro-2-methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)-Ket under normal and reversed-phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n-BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose-based CSP using EtOH, while using 2-PrOH (15%) and amylose-based CSP obtained the highest retention. Under reversed-phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)-Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Phase structure of NJL model with weak renormalization group

    NASA Astrophysics Data System (ADS)

    Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi

    2018-06-01

    We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.

  13. Approaches for enantioselective resolution of pharmaceuticals by miniaturised separation techniques with new chiral phases based on nanoparticles and monolithis.

    PubMed

    Sierra, Isabel; Marina, Maria Luisa; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Silva, Mariana

    2016-10-01

    This article discusses new developments in the preparation of nanoparticles and monoliths with emphasis upon their application as the stationary and pseudo-stationary phases for miniaturised liquid phase separation techniques, which have occurred in the last 10 years (from 2006 to the actuality). References included in this review represent current trends and state of the art in the application of these materials to the analysis, by EKC, CEC and miniaturised chromatography, of chiral compounds with environmental interest such as pharmaceuticals. Due to their extraordinary properties, columns prepared with these new chiral stationary or pseudo-stationary phases, based on materials such as gold nanoparticles, metal-organic frameworks, ordered mesoporous silicas, carbonaceous materials, polymeric-based and silica-based monoliths or molecularly imprinted materials, can usually show some improvements in the separation selectivity, column efficiency and chemical stability in comparison with conventional chiral columns available commercially. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Asymmetric Fluorination of α-Branched Cyclohexanones Enabled by a Combination of Chiral Anion Phase-Transfer Catalysis and Enamine Catalysis using Protected Amino Acids

    PubMed Central

    2015-01-01

    We report a study involving the successful merger of two separate chiral catalytic cycles: a chiral anion phase-transfer catalysis cycle to activate Selectfluor and an enamine activation cycle, using a protected amino acid as organocatalyst. We have demonstrated the viability of this approach with the direct asymmetric fluorination of α-substituted cyclohexanones to generate quaternary fluorine-containing stereocenters. With these two chiral catalytic cycles operating together in a matched sense, high enantioselectivites can be achieved, and we envisage that this dual catalysis method has the potential to be more broadly applicable, given the breadth of enamine catalysis. It also represents a rare example of chiral enamine catalysis operating successfully on α-branched ketones, substrates commonly inert to this activation mode. PMID:24684209

  15. Enantioselective determination of 3-n-butylphthalide (NBP) in human plasma by liquid chromatography on a teicoplanin-based chiral column coupled with tandem mass spectrometry.

    PubMed

    Diao, Xingxing; Ma, Zhiyu; Lei, Peng; Zhong, Dafang; Zhang, Yifan; Chen, Xiaoyan

    2013-11-15

    A novel and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to determine the exposure of 3-n-butylphthalide (NBP) enantiomers in human plasma. The NBP enantiomers were extracted from human plasma using methyl tert-butyl ether. The baseline separation of R-(+)-NBP and S-(-)-NBP was achieved within 11.0min using a teicoplanin-based Astec Chirobiotic T column (250mm×4.6mm i.d., 5μm) under isocratic conditions at a flow rate of 0.6mL/min. The selection of the chiral stationary phase and the effect of the mobile phase composition on the resolution of the enantiomers were discussed. The selectivity, linearity, precision, accuracy, matrix effect, recovery, and stability were evaluated under optimized conditions. The LC-MS/MS method using 200μL of human plasma was linear over the concentration range of 5.00-400ng/mL for each enantiomer. The lower limit of quantification (LLOQ) for both enantiomers was 5.00ng/mL. The intra- and inter-assay precision values of the replicated quality control samples were within 8.0% for each enantiomer. The mean accuracy values for the quality control samples were within ±6.1% of the nominal values for R-(+)-NBP and S-(-)-NBP. No chiral inversion was observed during sample storage, preparation, and analysis. The method proved suitable for enantioselective pharmacokinetic studies of NBP after an oral administration of a therapeutic dose of racemic NBP. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Direct HPLC separation of beta-aminoester enantiomers on totally synthetic chiral stationary phases.

    PubMed

    Gasparrini, F; D'Acquarica, I; Villani, C; Cimarelli, C; Palmieri, G

    1997-01-01

    The direct separation of beta-aminoester enantiomers by HPLC on synthetic chiral stationary phases based on a pi-acidic derivative of trans 1,2-diaminocyclohexane as selector is described. The application of different columns containing the stationary phase with opposite configurations and in the racemic form to the determination of enantiomeric excess in chemically impure samples is demonstrated.

  17. Experimental design methodologies in the optimization of chiral CE or CEC separations: an overview.

    PubMed

    Dejaegher, Bieke; Mangelings, Debby; Vander Heyden, Yvan

    2013-01-01

    In this chapter, an overview of experimental designs to develop chiral capillary electrophoresis (CE) and capillary electrochromatographic (CEC) methods is presented. Method development is generally divided into technique selection, method optimization, and method validation. In the method optimization part, often two phases can be distinguished, i.e., a screening and an optimization phase. In method validation, the method is evaluated on its fit for purpose. A validation item, also applying experimental designs, is robustness testing. In the screening phase and in robustness testing, screening designs are applied. During the optimization phase, response surface designs are used. The different design types and their application steps are discussed in this chapter and illustrated by examples of chiral CE and CEC methods.

  18. Chiral organosilica particles and their use as inducers of conformational deracemization of liquid crystal phases

    NASA Astrophysics Data System (ADS)

    Cohen, Orit; Ferris, Andrew J.; Adkins, Raymond; Lemieux, Robert P.; Avnir, David; Gelman, Dmitri; Rosenblatt, Charles

    2018-03-01

    Chiral organosilica particles of size ∼200 nm were synthesized from an enantio-pure multi-armed chiral D-maltose organosilane precursor in the absence of co-condensation with an achiral monomer. Two distinct experiments were performed to demonstrate the particles' ability to induce conformational deracemization of a host liquid crystal. The first involves an electric field-induced tilt of the liquid crystal director in the deracemized smectic-A phase. The other involves domain wall curvature separating left- and right-handed liquid crystal helical pitch domains imposed by the cells' substrates. The results demonstrate unequivocally that enantio-pure organosilica nanoparticles can be synthesized and can induce chirality in a host.

  19. Field dependence of nonreciprocal magnons in chiral MnSi

    NASA Astrophysics Data System (ADS)

    Weber, T.; Waizner, J.; Tucker, G. S.; Georgii, R.; Kugler, M.; Bauer, A.; Pfleiderer, C.; Garst, M.; Böni, P.

    2018-06-01

    Spin waves in chiral magnetic materials are strongly influenced by the Dzyaloshinskii-Moriya interaction, resulting in intriguing phenomena like nonreciprocal magnon propagation and magnetochiral dichroism. Here, we study the nonreciprocal magnon spectrum of the archetypical chiral magnet MnSi and its evolution as a function of magnetic field covering the field-polarized and conical helix phase. Using inelastic neutron scattering, the magnon energies and their spectral weights are determined quantitatively after deconvolution with the instrumental resolution. In the field-polarized phase the imaginary part of the dynamical susceptibility χ''(ɛ ,q ) is shown to be asymmetric with respect to wave vectors q longitudinal to the applied magnetic field H , which is a hallmark of chiral magnetism. In the helimagnetic phase, χ''(ɛ ,q ) becomes increasingly symmetric with decreasing H due to the formation of helimagnon bands and the activation of additional spin-flip and non-spin-flip scattering channels. The neutron spectra are in excellent quantitative agreement with the low-energy theory of cubic chiral magnets with a single fitting parameter being the damping rate of spin waves.

  20. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  1. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  2. Quantum phase transition of chiral Majorana fermions in the presence of disorder

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Wang, Jing; Sun, Xiao-Qi; Vaezi, Abolhassan; Zhang, Shou-Cheng

    2018-03-01

    We study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s -wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov-de Gennes Chern number N =0 to N =1 (p +i p chiral topological superconductor) and then to N =2 , in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e2/2 h conductance half plateau induced by the N =1 chiral topological superconductor recently observed in the experiment. In particular, we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.

  3. Quantum phase transition of chiral Majorana fermions in the presence of disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Biao; Wang, Jing; Sun, Xiao -Qi

    Here, we study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s-wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov–de Gennes Chern number N=0 to N=1(p+ip chiral topological superconductor) and then to N=2, in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e 2/2h conductance half plateau induced by the N=1 chiral topological superconductor recently observed in the experiment. In particular,more » we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.« less

  4. Quantum phase transition of chiral Majorana fermions in the presence of disorder

    DOE PAGES

    Lian, Biao; Wang, Jing; Sun, Xiao -Qi; ...

    2018-03-09

    Here, we study the quantum phase transitions of a disordered two-dimensional quantum anomalous Hall insulator with s-wave superconducting proximity, which are governed by the percolation theory of chiral Majorana fermions. Based on symmetry arguments and a renormalization-group analysis, we show there are generically two phase transitions from Bogoliubov–de Gennes Chern number N=0 to N=1(p+ip chiral topological superconductor) and then to N=2, in agreement with the conclusion from the band theory without disorders. Further, we discuss the critical scaling behavior of the e 2/2h conductance half plateau induced by the N=1 chiral topological superconductor recently observed in the experiment. In particular,more » we compare the critical behavior of the half plateau induced by the topological superconductor with that predicted recently by alternative explanations of the half plateau and show that they can be distinguished in experiments.« less

  5. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    PubMed

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  6. The application of chiral ultra-high-performance liquid chromatography tandem mass spectrometry to the separation of the zoxamide enantiomers and the study of enantioselective degradation process in agricultural plants.

    PubMed

    Pan, Xinglu; Dong, Fengshou; Chen, Zenglong; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Zheng, Yongquan

    2017-11-24

    In this study, an effective and sensitive chiral analytical method was developed to detect zoxamide enantiomers in vegetables, fruits and environmental matrices using ultra-high-performance liquid chromatography-tandem mass spectrometry. Optimal separation conditions were achieved with Lux Amylose-2 chiral column using acetonitrile/water (70:30v/v) as mobile phase with a flow rate and column temperature of 0.5mL/min and 25°C. The absolute configuration, optical rotation and elution order were confirmed for the first time. The average recoveries in all matrices at four spiking levels (0.5, 5, 50, 250μg/kg) ranged from 89.7 to 117.4%, with relative standard deviations being less than 10.9% for two enantiomers. The enantioselective dissipation of zoxamide in tomato showed that (-)-R-zoxamide was preferentially degraded leading to an enrichment of (+)-S-isomer, with half-lives of 3.80 d and 5.17 d, respectively. Inversely, (+)-S-zoxamide degraded faster than (-)-R-zoxamide in pepper (1.95day and 2.28day, respectively) and grape (2.03day and 2.87day). No significant enantioselectivity was observed in cucumber. The results of this study could help facilitate more accurate risk assessments of zoxamide in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characteristics of chiral anomaly in view of various applications

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  8. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues

    NASA Astrophysics Data System (ADS)

    Gray, Derek G.

    2017-12-01

    Cellulose nanocrystals (CNCs) are polydisperse rod-shaped particles of crystalline cellulose I, typically prepared by sulfuric acid hydrolysis of natural cellulose fibres to give aqueous colloidal suspensions stabilized by sulfate half-ester groups. Sufficiently dilute suspensions are isotropic fluids, but as the concentration of CNC in water is increased, a critical concentration is reached where a spontaneously ordered phase is observed. The (equilibrium) phase separation of the ordered chiral nematic phase is in competition with a tendency of the CNC suspension to form a gel. Qualitatively, factors that reduce the stability of the CNC suspension favour the onset of gelation. The chiral nematic structure is preserved, at least partially, when the suspension dries. Solid chiral nematic films of cellulose are of interest for their optical and templating properties, but the preparation of the films requires improvement. The processes that govern the formation of solid chiral nematic films from CNC suspensions include phase separation, gelation and also the effects of shear on CNC orientation during evaporation. Some insight into these processes is provided by polarized light microscopy, which indicates that the relaxation of shear-induced orientation to give a chiral nematic structure may occur via an intermediate twist-bend state. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  9. Interactions between pyrazole derived enantiomers and Chiralcel OJ: Prediction of enantiomer absolute configurations and elution order by molecular dynamics simulations.

    PubMed

    Hu, Guixiang; Huang, Meilan; Luo, Chengcai; Wang, Qi; Zou, Jian-Wei

    2016-05-01

    The separation of enantiomers and confirmation of their absolute configurations is significant in the development of chiral drugs. The interactions between the enantiomers of chiral pyrazole derivative and polysaccharide-based chiral stationary phase cellulose tris(4-methylbenzoate) (Chiralcel OJ) in seven solvents and under different temperature were studied using molecular dynamics simulations. The results show that solvent effect has remarkable influence on the interactions. Structure analysis discloses that the different interactions between two isomers and chiral stationary phase are dependent on the nature of solvents, which may invert the elution order. The computational method in the present study can be used to predict the elution order and the absolute configurations of enantiomers in HPLC separations and therefore would be valuable in development of chiral drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    NASA Astrophysics Data System (ADS)

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-03-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.

  11. Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-06-01

    An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Theory of the magnetic skyrmion glass

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Nagaosa, Naoto

    2018-01-01

    Skyrmions and skyrmion crystal (SkX) discovered in chiral magnets show unique physical properties due to their nontrivial topology such as the stability against the annihilation and the motion driven by the ultralow current density, which can be advantageous for the device applications such as magnetic memories. Especially, the chiral dynamics, i.e., the velocity perpendicular to the force acting on a skyrmion, is a key to avoid the impurity potential and enhances its mobility. However, the collective pinning of SkX occurs by the disorder, which is crucial for its low energy properties. Here we study theoretically the low energy dynamics of SkX in the presence of disorder effects in terms of replica field theory, and reveal nonreciprocal collective modes and their electromagnetic responses along the direction of the external magnetic field. The physical quantities such as the relaxation rate of μ SR /NMR and the pinning frequency show a dramatic change associated with the topological phase transition from the helical state to SkX. These results provide a firm basis to explore the glassy state of SkX.

  13. R(-)-4-(3-Isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole, a fluorescent chiral tagging reagent: sensitive resolution of chiral amines and amino acids by reversed-phase liquid chromatography.

    PubMed

    Toyo'oka, T; Jin, D; Tomoi, N; Oe, T; Hiranuma, H

    2001-02-01

    The usefulness of R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole [R(-)-DBD-PyNCS], a fluorescent chiral tagging reagent, for the determination of racemic amines and amino acids, was studied. The reagent reacted with beta-blockers selected as representative secondary amines to produce corresponding fluorescent diastereomers (excitation at 460 nm and emission at 550 nm). The yields of the derivatization reaction were dependent on the stereostructure arround the NH group in beta-blockers. The resulting diastereomers were completely separated with single chromatographic run using linear gradient elutions by reversed-phase chromatography. R(-)-DBD-PyNCS was also applied to the determination of DL-amino acid, considered to be one of the primary amines, in human urine and foodstuffs. DL-amino acids tested equally reacted with the reagent, and the thiocarbamoyl derivatives were separated with an ODS column. The epimerization during the derivatization reaction was negligible judging from the resolution of opposite diastereomers on the chromatogram. The occurence of D-amino acids (D-Ala, D-Ser, D-Asp and/or D-Glu) was identified in the samples tested. The structures and the purities were elucidated with on-line HPLC-MS. The chiral reagent possessing an isothiocyanate group (-NCS) in the structure seems to be applicable to continuous sequential analysis of peptides containing D-amino acids. The thiocarbamoyl derivatives obtained from the reaction with DL-amino acids were converted to thiohydantoins via thiazolinones in acidic medium. The thiohydantoins produced from acidic, basic, neutral, hydroxyl and aromatic amino acids were completely separated with isocratic elutions using acidic mobile phase containing 0.1% TFA. The separations were sufficient for the identification of DL-amino acid in peptide sequences. Although the epimerization during the conversion reaction to thiohydantoins was not avoidable, the descrimination of D- and L-configuration was demonstrated with some commercially available peptides such as beta-lipotropin and [D-Ala2]-deltorphin II. The Edman degaradation method using R(-)-DBD-PyNCS was also adopted to autoanlaysis by gas-phase sequencer. The separation and the detection (UV 254 nm) conditions of the derivatives were used without any change from those for the Edman degradation method using PITC as the tagging reagent. The three DL-amino acid residues (Tyr, Ala and Gly) in [L-Ala2]-leucine-enkephalin and [D-Ala2]-leucine-enkephalin were perfectly identidied with the autoanalysis.

  14. Characterizing the interaction between enantiomers of eight psychoactive drugs and highly sulfated-β-cyclodextrin by counter-current capillary electrophoresis.

    PubMed

    Asensi-Bernardi, Lucía; Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Sagrado, Salvador; Medina-Hernández, María José

    2014-01-01

    The estimation of apparent binding constants and limit mobilities of the complexes of the enantiomers that characterize the interaction of enantiomers with chiral selectors, in this case highly sulfated β-cyclodextrin, was approached using a simple and economic electrophoretic modality, the complete filling technique (CFT) in counter-current mode. The enantiomers of eight psychoactive drugs, four antihistamines (dimethindene, promethazine, orphenadrine and terfenadine) and four antidepressants (bupropion, fluoxetine, nomifensine and viloxazine) were separated for the first time for this cyclodextrin (CD). Estimations of thermodynamic and electrophoretic enantioselectivies were also performed. Results indicate that, in general, thermodynamic enantioselectivity is the main component explaining the high resolution found, but also one case suggests that electrophoretic enantioselectivity itself is enough to obtain a satisfactory resolution. CFT results advantageous compared with conventional capillary electrophoresis (CE) and partial filling technique (PFT) for the study of the interaction between drugs and chiral selectors. It combines the use of a simple fitting model (as in CE), when the enantiomers do not exit the chiral selector plug during the separation (i.e. mobility of electroosmotic flow larger than mobility of CD), and drastic reduction of the consumption (and cost; ~99.7%) of the CD reagent (as in PFT) compared with the conventional CE. Copyright © 2013 John Wiley & Sons, Ltd.

  15. An analytical model for enantioseparation process in capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  16. Chiral ionic liquids in chromatographic and electrophoretic separations.

    PubMed

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Enantioselective determination of (R)-zopiclone and (S)-zopiclone (eszopiclone) in human hair by micropulverized extraction and chiral liquid chromatography/high resolution mass spectrometry.

    PubMed

    Miyaguchi, Hajime; Kuwayama, Kenji

    2017-10-13

    Zopiclone and its (S)-enantiomer (eszopiclone) are commonly prescribed for insomnia. Despite the high demand for enantioselective differentiation, the chiral analysis of zopiclone in hair has not been reported. In this study, a method for the enantioselective quantification of zopiclone in human hair was developed. The extraction medium and duration were optimized using real eszopiclone-positive hair samples. Specifically, micropulverized extraction with 3.0M ammonium phosphate buffer (pH 8.4) involving salting-out assisted liquid-liquid extraction with acetonitrile was utilized to minimize the degradation of zopiclone and for rapid and facile operation. On the other hand, recovery of the conventional solid-liquid extraction involved overnight soaking in 3.0M ammonium phosphate buffer (pH 8.4) was only 0.58±0.12% of the maximum recovery achieved by the present method due to the decomposition in the phosphate buffer. An excellent chiral separation (Rs=5.0) was achieved using a chiral stationary phase comprising cellulose tris(3,5-dichlorophenylcarbamate) and a volatile mobile phase of 10mM ammonium carbonate (pH 8.0)-acetonitrile (25:75, v/v). Detection was carried out using liquid chromatography/high resolution mass spectrometry (LC/HRMS) with electrospray ionization. A Q Exactive mass spectrometer equipped with a quadrupole-Orbitrap analyzer was used for detection. The concentration of 0.50pg/mg was defined as the lowest limit of quantification using 5mg of hair sample. Using the developed approach, the concentration of eszopiclone in hair after a single 2-mg dose was found to be 441pg/mg, which was higher than all the reported values regarding a single administration of zopiclone. After daily administration of racemic zopiclone (3.75mg/day), the concentrations of (R)-enantiomer and (S)-enantiomer in the black hair were 5.30-8.31ng/mg and 7.96-12.8ng/mg, respectively, and the concentration of the (S)-enantiomer was always higher than that of the (R)-enantiomer due to the enantioselective difference in the pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Enantiomeric separation of volatile organics by gas chromatography for the in situ analysis of extraterrestrial materials: kinetics and thermodynamics investigation of various chiral stationary phases.

    PubMed

    Freissinet, C; Buch, A; Szopa, C; Sternberg, R

    2013-09-06

    The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-β-PM, with a CSP composed of dissolved permethylated β-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Critical Behavior and Macroscopic Phase Diagram of the Monoaxial Chiral Helimagnet Cr 1/3NbS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Eleanor M.; Das, Raja; Li, Ling

    2017-07-26

    Cr 1/3NbS 2 is a unique example of a hexagonal chiral helimagnet with high crystalline anisotropy, and has generated growing interest for a possible magnetic field control of the incommensurate spin spiral. Here, we construct a comprehensive phase diagram based on detailed magnetization measurements of a high quality single crystal of Cr 1/3NbS 2 over three magnetic field regions. An analysis of the critical properties in the forced ferromagnetic region yields 3D Heisenberg exponents β = 0.3460 ± 0.040, γ = 1.344 ± 0.002, and T C = 130.78 K ± 0.044, which are consistent with the localized nature themore » of Cr 3+ moments and suggest short-range ferromagnetic interactions. We exploit the temperature and magnetic field dependence of magnetic entropy change (ΔS M) to accurately map the nonlinear crossover to the chiral soliton lattice regime from the chiral helimagnetic phase. Our observations in the low field region are consistent with the existence of chiral ordering in a temperature range above the Curie temperature, T C < T < T*, where a first-order transition has been previously predicted. An analysis of the universal behavior of ΔS M(T,H) experimentally demonstrates for the first time the first-order nature of the onset of chiral ordering.« less

  20. Electric-field-induced assembly and propulsion of chiral colloidal clusters.

    PubMed

    Ma, Fuduo; Wang, Sijia; Wu, David T; Wu, Ning

    2015-05-19

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport.

  1. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  2. π Berry phase and Zeeman splitting of Weyl semimetal TaP

    DOE PAGES

    Hu, J.; Liu, J. Y.; Graf, D.; ...

    2016-01-04

    Here, the recent breakthrough in the discovery of Weyl fermions in monopnictide semimetals provides opportunities to explore the exotic properties of relativistic fermions in condensed matter. The chiral anomaly-induced negative magnetoresistance and π Berry phase are two fundamental transport properties associated with the topological characteristics of Weyl semimetals. Since monopnictide semimetals are multiple-band systems, resolving clear Berry phase for each Fermi pocket remains a challenge. Here we report the determination of Berry phases of multiple Fermi pockets of Weyl semimetal TaP through high field quantum transport measurements. We show our TaP single crystal has the signatures of a Weyl state,more » including light effective quasiparticle masses, ultrahigh carrier mobility, as well as negative longitudinal magnetoresistance. Furthermore, we have generalized the Lifshitz-Kosevich formula for multiple-band Shubnikov-de Haas (SdH) oscillations and extracted the Berry phases of π for multiple Fermi pockets in TaP through the direct fits of the modified LK formula to the SdH oscillations. In high fields, we also probed signatures of Zeeman splitting, from which the Landé g-factor is extracted.« less

  3. Analysis of metalaxyl racemate using high performance liquid chromatography coupled with four kinds of detectors.

    PubMed

    Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang

    2016-10-07

    Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chiral phases of fundamental and adjoint quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natale, A. A.; Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  5. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  6. Imaging chiral symmetry breaking from Kekule bond order in graphene

    DOE PAGES

    Gutiérrez, Christopher; Kim, Cheol -Joo; Brown, Lola; ...

    2016-05-23

    Chirality—or ‘handedness’—is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that thismore » interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. Furthermore, the Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.« less

  7. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    NASA Astrophysics Data System (ADS)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  8. Two Synthetic Methods for Preparation of Chiral Stationary Phases Using Crystalline Degradation Products of Vancomycin: Column Performance for Enantioseparation of Acidic and Basic Drugs.

    PubMed

    Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba

    2017-07-01

    Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.

  9. QCD In Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Wilczek, Frank

    Introduction Symmetry and the Phenomena of QCD Apparent and Actual Symmetries Asymptotic Freedom Confinement Chiral Symmetry Breaking Chiral Anomalies and Instantons High Temperature QCD: Asymptotic Properties Significance of High Temperature QCD Numerical Indications for Quasi-Free Behavior Ideas About Quark-Gluon Plasma Screening Versus Confinement Models of Chiral Symmetry Breaking More Refined Numerical Experiments High-Temperature QCD: Phase Transitions Yoga of Phase Transitions and Order Parameters Application to Glue Theories Application to Chiral Transitions Close Up on Two Flavors A Genuine Critical Point! (?) High-Density QCD: Methods Hopes, Doubts, and Fruition Another Renormalization Group Pairing Theory Taming the Magnetic Singularity High-Density QCD: Color-Flavor Locking and Quark-Hadron Continuity Gauge Symmetry (Non)Breaking Symmetry Accounting Elementary Excitations A Modified Photon Quark-Hadron Continuity Remembrance of Things Past More Quarks Fewer Quarks and Reality

  10. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications.

    PubMed

    Castles, F; Day, F V; Morris, S M; Ko, D-H; Gardiner, D J; Qasim, M M; Nosheen, S; Hands, P J W; Choi, S S; Friend, R H; Coles, H J

    2012-05-13

    A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

  11. Laser spectroscopy and dynamics of crystal lattices of chirally pure and racemic phases of amino acids

    NASA Astrophysics Data System (ADS)

    Belyanchikov, M. A.; Gorelik, V. S.; Gorshunov, B. P.; Pyatyshev, A. Yu.

    2017-03-01

    Strong sharp lines due to the librational modes characterized by a pseudoscalar symmetry type have been found in the low-frequency Raman spectra of the lattices of glycine and tyrosine amino acids. The intensities of these lines exceed those for Raman scattering in the region of intramolecular vibrations. The spectra of chirally pure and racemic phases of amino acids differ significantly. The results obtained can be used to observe stimulated Raman scattering from the librational modes of crystalline amino acids and monitor the chiral purity of bioactive preparations containing amino acids.

  12. Origin of chiral interactions in cellulose supra-molecular microfibrils.

    PubMed

    Khandelwal, Mudrika; Windle, Alan

    2014-06-15

    The formation of a chiral-nematic phase from cellulose nanowhiskers has been frequently reported in the literature. The most popular theory used to explain the chiral interactions is that of twisted morphology of cellulose nanowhiskers. Two possible origins of twist have been suggested: the intrinsic chirality of cellulose chains and result of interaction of chiral surfaces. High resolution SEM and AFM have been used to locate twists in cellulose microfibrils and nanowhiskers. The origin of the twisted morphology in cellulose microfibrils has been studied with reference to the protein aggregation theory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    PubMed Central

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-01-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature. PMID:26988392

  14. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine.

    PubMed

    de Oliveira, Anderson Rodrigo Moraes; Cesarino, Evandro José; Bonato, Pierina Sueli

    2005-04-25

    A simple and rapid solid-phase microextraction method was developed for the enantioselective analysis of ibuprofen in urine. The sampling was made with a polydimethylsiloxane-divinylbenzene coated fiber immersed in the liquid sample. After desorptioning from the fiber, ibuprofen enantiomers were analyzed by HPLC using a Chiralpak AD-RH column and UV detection. The mobile phase was made of methanol-pH 3.0 phosphoric acid solution (75:25, v/v), at a flow rate of 0.45 mL/min. The mean recoveries of SPME were 19.8 and 19.1% for (-)-R-ibuprofen and (+)-(S)-ibuprofen, respectively. The method was linear at the range of 0.25-25 microg/mL. Within-day and between-day assay precision and accuracy were below 15% for both ibuprofen enantiomers at concentrations of 0.75, 7.5 and 20 microg/mL. The method was tested with urine quality control samples and human urine fractions after administration of 200 mg rac-ibuprofen.

  15. Electric-field–induced assembly and propulsion of chiral colloidal clusters

    PubMed Central

    Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning

    2015-01-01

    Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383

  16. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  17. Flavor symmetry breaking in lattice QCD with a mixed action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Oliver; Golterman, Maarten; Shamir, Yigal

    2011-03-01

    We study the phase structure of mixed-action QCD with two Wilson sea quarks and any number of chiral valence quarks (and ghosts), starting from the chiral Lagrangian. A priori the effective theory allows for a rich phase structure, including a phase with a condensate made of sea and valence quarks. In such a phase, mass eigenstates would become admixtures of sea and valence fields, and pure-sea correlation functions would depend on the parameters of the valence sector, in contradiction with the actual setup of mixed-action simulations. Using that the spectrum of the chiral Dirac operator has a gap for nonzeromore » quark mass we prove that spontaneous symmetry breaking of the flavor symmetries can only occur within the sea sector. This rules out a mixed condensate and implies restrictions on the low-energy constants of the effective theory.« less

  18. Proper time regularization and the QCD chiral phase transition

    PubMed Central

    Cui, Zhu-Fang; Zhang, Jin-Li; Zong, Hong-Shi

    2017-01-01

    We study the QCD chiral phase transition at finite temperature and finite quark chemical potential within the two flavor Nambu–Jona-Lasinio (NJL) model, where a generalization of the proper-time regularization scheme is motivated and implemented. We find that in the chiral limit the whole transition line in the phase diagram is of second order, whereas for finite quark masses a crossover is observed. Moreover, if we take into account the influence of quark condensate to the coupling strength (which also provides a possible way of how the effective coupling varies with temperature and quark chemical potential), it is found that a CEP may appear. These findings differ substantially from other NJL results which use alternative regularization schemes, some explanation and discussion are given at the end. This indicates that the regularization scheme can have a dramatic impact on the study of the QCD phase transition within the NJL model. PMID:28401889

  19. Fractional Quantum Hall Effect in Infinite-Layer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naud, J. D.; Pryadko, Leonid P.; Sondhi, S. L.

    2000-12-18

    Stacked two dimensional electron systems in transverse magnetic fields exhibit three dimensional fractional quantum Hall phases. We analyze the simplest such phases and find novel bulk properties, e.g., irrational braiding. These phases host ''one and a half'' dimensional surface phases in which motion in one direction is chiral. We offer a general analysis of conduction in the latter by combining sum rule and renormalization group arguments, and find that when interlayer tunneling is marginal or irrelevant they are chiral semimetals that conduct only at T>0 or with disorder.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimmelikhuijzen, C.J.P.; Jacob, E.; Graff, D.

    Using a radioimmunoassay for the carboxyl-terminal sequence Arg-Asn-NH{sub 2}, the authors have purified a peptide from acetic acid extracts of the sea anemone Anthopleura elegantissima. By classical amino acid analyses, mass spectrometry, and {sup 1}H NMR spectroscopy, the structure of this peptide was determined as 3-phenyllactyl-Leu-Arg-Asn-NH{sub 2}. By using reversed-phase HPLC and a chiral mobile phase, it was shown that the 3-phenyllactyl group had the L configuration. Immunocytochemical staining with antiserum against Arg-Asn-NH{sub 2} showed that L-3-phenyllactyl-Leu-Arg-Asn-NH{sub 2} (Antho-RNamide) was localized in neutrons of sea anemones. The L-3-phenyllactyl group has not been found earlier in neuropeptides of vertebrates or highermore » invertebrates. They propose that this residue renders Antho-RNamide resistant to nonspecific aminopeptidases, thereby increasing the stability of the peptide after neuronal release.« less

  1. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  2. Chiral dynamics in the low-temperature phase of QCD

    NASA Astrophysics Data System (ADS)

    Brandt, Bastian B.; Francis, Anthony; Meyer, Harvey B.; Robaina, Daniel

    2014-09-01

    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,m=0) in the temperature vs quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. An exact sum rule is derived for the thermal modification of the spectral function associated with the axial charge density; the (dominant) pion pole contribution obeys the sum rule. We determine the two parameters of the pion dispersion relation using lattice QCD simulations and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the maximum entropy method, yielding consistent results. Finally, we test the predictions of the chiral expansion around the point (T=0,m=0) for the temperature dependence of static observables.

  3. Optical resolution of rotenoids

    USGS Publications Warehouse

    Abidi, S.L.

    1987-01-01

    Optical resolution of selected rotenoids containing 1-3 asymmetric centers in dihydrobenzopyranofuroben-zopyranone and dihydrobisbenzopyranopyranone series has been achieved on two chiral high-performance liquid chromatographic (hplc) stationary phases. In most cases, the absolute stereochemistry at the cis-B/C ring junction of the rotenoidal antipodes can be related to their elution order. Generally, the 6aα,12aα-enantiomers were more strongly retained by the chiral substrate than their corresponding optical antipodes. The elution-configuration relationship provides potential utility for predicting the absolute configuration of related rotenoidal compounds. Chiral phase hplc on amino-acid-bonded-silica yielded results explicable in terms of Pirkle's bonding schemes for chiral recognition. Resolution data for 12a-hydroxy-, 12a-methoxy-, and 12-hydroxyiminorotenoids further corroborate the mechanistic rationale, and demonstrate that nonpolar π-π interactions appeared to be important for enantiomeric separation on helic poly-triphenylmethylacryl-ate-silica (CPOT). In the latter system, steric effects and conformational factors in association with the modification of E-ring structures might play significant roles in the chiral separation process in view of the reversal to the elution order observed for all methoxylated rotenoids and elliptone derivatives including the parent deguelin. The unique separability (α = 1.44) of 12a-hydroxyelliptone on CPOT was suggestive of structural effects of the 5-side chain on the resolution of the rotenoids having a five-membered-E-ring. The results obtained with two different types of chiral phases are complementary and useful for optical resolution of a wide variety of natural and synthetic rotenoidal compounds.

  4. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  5. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.

    PubMed

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  6. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    PubMed Central

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  7. Phase structure of the Polyakov-quark-meson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.

    2007-10-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N{sub f}-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect ofmore » the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.« less

  8. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  9. Effect of anisotropic MoS2 nanoparticles on the blue phase range of a chiral liquid crystal.

    PubMed

    Lavrič, Marta; Cordoyiannis, George; Kralj, Samo; Tzitzios, Vassilios; Nounesis, George; Kutnjak, Zdravko

    2013-08-01

    Liquid-crystalline blue phases are attracting significant interest due to their potential for applications related to tunable photonic crystals and fast optical displays. In this work a brief theoretical model is presented accounting for the impact of anisotropic nanoparticles on the blue phase stability region. This model is tested by means of high-resolution calorimetric and optical measurements of the effect of anisotropic, surface-functionalized MoS2 nanoparticles on the blue phase range of a chiral liquid crystal. The addition of these nanoparticles effectively increases the temperature range of blue phases and especially the cubic structure of blue phase I.

  10. Observation of the Chiral and Achiral Hexatic Phases of Self-assembled Micellar polymers

    PubMed Central

    Pal, Antara; Kamal, Md. Arif; Raghunathan, V. A.

    2016-01-01

    We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N)  N + 6  two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each “polymer” bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered. PMID:27577927

  11. Asymmetric synthesis using chiral-encoded metal

    NASA Astrophysics Data System (ADS)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  12. The Chiral Separation Effect in quenched finite-density QCD

    NASA Astrophysics Data System (ADS)

    Puhr, Matthias; Buividovich, Pavel

    2018-03-01

    We present results of a study of the Chiral Separation Effect (CSE) in quenched finite-density QCD. Using a recently developed numerical method we calculate the conserved axial current for exactly chiral overlap fermions at finite density for the first time. We compute the anomalous transport coeffcient for the CSE in the confining and deconfining phase and investigate possible deviations from the universal value. In both phases we find that non-perturbative corrections to the CSE are absent and we reproduce the universal value for the transport coeffcient within small statistical errors. Our results suggest that the CSE can be used to determine the renormalisation factor of the axial current.

  13. Magnetoelectric control of spin-chiral ferroelectric domains in a triangular lattice antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kimura, Kenta; Nakamura, Hiroyuki; Ohgushi, Kenya; Kimura, Tsuyoshi

    2008-10-01

    We have grown single crystals of a triangular lattice antiferromagnet (TLA), CuCrO2 , and investigated the correlation between magnetic and dielectric properties. Two magnetic phase transitions are observed at TN2≈24.2K and TN1≈23.6K . It was found that ferroelectric polarization along the triangular lattice plane develops at TN1 , suggesting that the system undergoes a transition into an out-of-plane 120° spin-chiral phase at TN1 . The TLA provides an opportunity for unique magnetoelectric control of spin-chiral ferroelectric domain structures by means of electric and/or magnetic fields.

  14. Validated Densitometric TLC-Method for the Simultaneous Analysis of (R)- and (S)-Citalopram and its Related Substances Using Macrocyclic Antibiotic as a Chiral Selector: Application to the Determination of Enantiomeric Purity of Escitalopram

    PubMed Central

    Soliman, Suzan Mahmoud

    2012-01-01

    A novel economic procedure for the simultaneous stereospecific separation and analysis of (R)- and (S)-citalopram and its related substances or impurities has been developed and validated. Chromatography was performed on silica gel 60 F254 plates with acetonitrile: methanol: water (15:2.5:2.5: v/v/v) as a mobile phase containing 1.5 mM norvancomycin or 2.5 mM vancomycin as a selector at ambient temperature. (R)- and (S)-citalopram enantiomers in presence of its related substances; citalopram citadiol and citalopram N-oxide were well separated with significant Rf values of 0.33 ± 0.02, 0.85 ± 0.02, 0.45 ± 0.02 and 0.22 ± 0.02, respectively. The spots were detected with either iodine vapor, or by use of a UV lamp followed by densitometric measurement at 239 nm. All variables affecting the resolution, such as concentration of chiral selectors, mobile phase system at different temperatures and pH-values were investigated and the conditions were optimized. Calibration plots for analysis of (R)- and (S)-enantiomers were linear in the range of 0.2-16.8 μg/10 μl (R≥0.9994, n=6) with acceptable precision (%RSD<2.0) and accuracy (99.70 ± 0.85% and 99.51 ± 0.61% for (S)-citalopram and escitalopram, respectively). The limit of detection and quantification were 0.08 μg/10 μl and 0.25 μg/10 μl, respectively, for (R)- and (S)-citalopram. The proposed method is simple, selective, and robust and can be applied for quantitative determination of enantiomeric purity of (R)- and (S)-citalopram (escitalopram) as well as the related impurities in drug substances and pharmaceutical preparations. The method can be useful to investigate adulteration of pure isomer with the cheep racemic form. PMID:23675256

  15. Microwave Three-Wave Mixing Experiments for Chirality Determination: Current Status

    NASA Astrophysics Data System (ADS)

    Perez, Cristobal; Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Krin, Anna; Schnell, Melanie

    2015-06-01

    Microwave three-wave mixing experiments have been shown to provide a novel and sensitive way to generate and measure enantiomer-specific molecular signatures. The handedness of the sample can be obtained from the phase of the molecular free induction decay whereas the enantiomeric excess can be determined by the amplitude of the chiral signal. After the introduction of this technique by Patterson et al. remarkable improvements have been realized and experimental strategies for both absolute phase determination and enantiomeric excess have been presented. This technique has been also successfully implemented at higher microwave frequencies. Here we present the current status of this technique as well future directions and perspectives. This will be illustrated through our systematic study of chiral terpenes as well as preliminary results in molecular clusters. Patterson, D.; Schnell, M.; Doyle, J. M. Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy. Nature 2013, 497, 475-477. Patterson, D.; Doyle, J. M. Sensitive Chiral Analysis via Microwave Three-Wave Mixing. Phys. Rev. Lett. 2013, 111, 023008. Shubert, V. A.; Schmitz, D.; Patterson, D.; Doyle, J. M.; Schnell, M. Identifying Enantiomers in Mixtures of Chiral Molecules with Broadband Microwave Spectroscopy. Angew. Chem. Int. Ed. 2014, 53, 1152-1155. Lobsiger, S.; Perez, C.; Evangelisti, L.; Lehmann, K. K.; Pate, B. H. Molecular Structure and Chirality Detection by Fourier Transform Microwave Spectroscopy. J. Phys. Chem. Lett. 2014, 6, 196-200.

  16. Metallocorroles as inherently chiral chromophores: resolution and electronic circular dichroism spectroscopy of a tungsten biscorrole.

    PubMed

    Schies, Christine; Alemayehu, Abraham B; Vazquez-Lima, Hugo; Thomas, Kolle E; Bruhn, Torsten; Bringmann, Gerhard; Ghosh, Abhik

    2017-06-01

    An inherently chiral metallocorrole has been resolved for the first time by means of HPLC on a chiral stationary phase. For the compound in question, a homoleptic tungsten biscorrole, the absolute configurations of the enantiomers were assigned using online HPLC-ECD measurements in conjunction with time-dependent CAM-B3LYP calculations, which provided accurate simulations of the ECD spectra.

  17. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation

    PubMed Central

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-01-01

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. PMID:23891368

  18. Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films

    NASA Astrophysics Data System (ADS)

    Ahmed, Adam S.; Rowland, James; Esser, Bryan D.; Dunsiger, Sarah R.; McComb, David W.; Randeria, Mohit; Kawakami, Roland K.

    2018-04-01

    We report experimental and theoretical evidence for the formation of chiral bobbers—an interfacial topological spin texture—in FeGe films grown by molecular beam epitaxy. After establishing the presence of skyrmions in FeGe/Si(111) thin-film samples through Lorentz transmission electron microscopy and the topological Hall effect, we perform magnetization measurements that reveal an inverse relationship between the film thickness and the slope of the susceptibility (d χ /d H ). We present evidence for the evolution as a function of film thickness L from a skyrmion phase for L LD/2 , where LD˜70 nm is the FeGe pitch length. We show using micromagnetic simulations that chiral bobbers, earlier predicted to be metastable, are in fact the stable ground state in the presence of an additional interfacial Rashba Dzyaloshinskii-Moriya interaction.

  19. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitamura, H.; Watanuki, R.; Kaneko, Koji

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  20. Spin-Chirality-Driven Ferroelectricity on a Perfect Triangular Lattice Antiferromagnet

    DOE PAGES

    Mitamura, H.; Watanuki, R.; Kaneko, Koji; ...

    2014-10-01

    Magnetic field (B) variation of the electrical polarization P c ( ∥c) of the perfect triangular lattice antiferromagnet RbFe(MoO 4) 2 is examined up to the saturation point of the magnetization for B⊥c. P c is observed only in phases for which chirality is predicted in the in-plane magnetic structures. No strong anomaly is observed in P c at the field at which the spin modulation along the c axis, and hence the spin helicity, exhibits a discontinuity to the commensurate state. These results indicate that the ferroelectricity in this compound originates predominantly from the spin chirality, the explanation ofmore » which would require a new mechanism for magnetoferroelectricity. Lastly, the obtained field-temperature phase diagrams of ferroelectricity well agree with those theoretically predicted for the spin chirality of a Heisenberg spin triangular lattice antiferromagnet.« less

  1. Enantioselective recognition at mesoporous chiral metal surfaces.

    PubMed

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  2. Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; Wu, Qi h.; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh

    2002-09-01

    A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry-Perot resonators, but the handed resonator is transparent to RCP light.

  3. Enantioselective ultra high performance liquid and supercritical fluid chromatography: The race to the shortest chromatogram.

    PubMed

    Ciogli, Alessia; Ismail, Omar H; Mazzoccanti, Giulia; Villani, Claudio; Gasparrini, Francesco

    2018-03-01

    The ever-increasing need for enantiomerically pure chiral compounds has greatly expanded the number of enantioselective separation methods available for the precise and accurate measurements of the enantiomeric purity. The introduction of chiral stationary phases for liquid chromatography in the last decades has revolutionized the routine methods to determine enantiomeric purity of chiral drugs, agrochemicals, fragrances, and in general of organic and organometallic compounds. In recent years, additional efforts have been placed on faster, enantioselective analytical methods capable to fulfill the high throughput requirements of modern screening procedures. Efforts in this field, capitalizing on improved chromatographic particle technology and dedicated instrumentation, have led to highly efficient separations that are routinely completed on the seconds time scale. An overview of the recent achievements in the field of ultra-high-resolution chromatography on column packed with chiral stationary phases, both based on sub-2 μm fully porous and sub-3 μm superficially porous particles, will be given, with an emphasis on very recent studies on ultrafast chiral separations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy

    PubMed Central

    Perera, Angelo S.; Thomas, Javix; Poopari, Mohammad R.; Xu, Yunjie

    2016-01-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the molecular dynamics snapshot approach are discussed and the successes of the seemingly random “ad hoc explicit solvation” reported before are also explained. To further test and improve the “clusters-in-a-liquid” model in practice, future work in terms of conformer specific gas phase spectroscopy of sequential solvation of a chiral solute, matrix isolation VCD measurements of small chiral hydration clusters, and more sophisticated models for the bulk solvent effects would be highly valuable. PMID:26942177

  5. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    NASA Astrophysics Data System (ADS)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  6. Novel topological effects in dense QCD in a magnetic field

    NASA Astrophysics Data System (ADS)

    Ferrer, E. J.; de la Incera, V.

    2018-06-01

    We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.

  7. Broadband and chiral binary dielectric meta-holograms.

    PubMed

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-05-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics.

  8. Broadband and chiral binary dielectric meta-holograms

    PubMed Central

    Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico

    2016-01-01

    Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices’ compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518

  9. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    NASA Astrophysics Data System (ADS)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  10. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  11. Multicomponent order parameter superconductivity of Sr2RuO4 revealed by topological junctions

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Ishiguro, R.; Nakamura, T.; Yakabe, M.; Yonezawa, S.; Takayanagi, H.; Maeno, Y.

    2017-06-01

    Single crystals of the Sr2RuO4 -Ru eutectic system are known to exhibit enhanced superconductivity at 3 K in addition to the bulk superconductivity of Sr2RuO4 at 1.5 K. The 1.5 K phase is believed to be a spin-triplet, chiral p -wave state with a multicomponent order parameter, giving rise to chiral domain structure. In contrast, the 3 K phase is attributable to enhanced superconductivity of Sr2RuO4 in the strained interface region between Ru inclusion of a few to tens of micrometers in size and the surrounding Sr2RuO4 . We investigate the dynamic behavior of a topological junction, where a superconductor is surrounded by another superconductor. Specifically, we fabricated Nb/Ru/Sr2RuO4 topological superconducting junctions, in which the difference in phase winding between the s -wave superconductivity in Ru microislands induced from Nb and the superconductivity of Sr2RuO4 mainly governs the junction behavior. Comparative results of the asymmetry, hysteresis, and noise in junctions with different sizes, shapes, and configurations of Ru inclusions are explained by the chiral domain-wall motion in these topological junctions. Furthermore, a striking difference between the 1.5 and 3 K phases is clearly revealed: the large noise in the 1.5 K phase sharply disappears in the 3 K phase. These results confirm the multicomponent order-parameter superconductivity of the bulk Sr2RuO4 , consistent with the chiral p -wave state, and the proposed nonchiral single-component superconductivity of the 3 K phase.

  12. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  13. Self-assembled cyclodextrin-modified gold nanoparticles on silica beads as stationary phase for chiral liquid chromatography and hydrophilic interaction chromatography.

    PubMed

    Li, Yuanyuan; Wei, Manman; Chen, Tong; Zhu, Nan; Ma, Yulong

    2016-11-01

    A facile strategy based on self-assembly of Au nanoparticles (AuNPs) (60±10nm in size) on the surfaces of amino-functionalized porous silica spheres under mild conditions was proposed. The resulting material possessed a core-shell structure in which AuNPs were the shell and silica spheres were the core. Then, thiolated-β-cyclodextrin (SH-β-CD) was covalently attached onto the AuNPs as chiral selector for the enantioseparation. The resultant packing material was evaluated by high-performance liquid chromatography (HPLC). The separations of nine pairs of enantiomers were achieved by using the new chiral stationary phase (CSP) in the reversed-phase liquid chromatography (RPLC) mode, respectively. The results showed the new CSP have more sufficient interaction with the analytes due to the existence of AuNPs on silica surfaces, resulting in faster mass transfer rate, compared with β-CD modified silica column. The result shed light on potential usage of chemical modified NPs as chiral selector for enantioseparation based on HPLC. In addition, the new phase was also used in hydrophilic interaction liquid chromatography (HILIC) to separate polar compounds and highly hydrophilic compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Self-organized chiral colloidal crystals of Brownian square crosses.

    PubMed

    Zhao, Kun; Mason, Thomas G

    2014-04-16

    We study aqueous Brownian dispersions of microscale, hard, monodisperse platelets, shaped as achiral square crosses, in two dimensions (2D). When slowly concentrated while experiencing thermal excitations, the crosses self-organize into fluctuating 2D colloidal crystals. As the particle area fraction φA is raised, an achiral rhombic crystal phase forms at φA ≈ 0.52. Above φA ≈ 0.56, the rhombic crystal gives way to a square crystal phase that exhibits long-range chiral symmetry breaking (CSB) via a crystal-crystal phase transition; the observed chirality in a particular square crystallite has either a positive or a negative enantiomeric sense. By contrast to triangles and rhombs, which exhibit weak CSB as a result of total entropy maximization, square crosses display robust long-range CSB that is primarily dictated by how they tile space at high densities. We measure the thermal distribution of orientation angles γ of the crosses' arms relative to the diagonal bisector of the local square crystal lattice as a function of φA, and the average measured γ (φA) agrees with a re-scaled model involving efficient packing of rotated cross shapes. Our findings imply that a variety of hard achiral shapes can be designed to form equilibrium chiral phases by considering their tiling at high densities.

  15. Chirality-sensitive microwave spectroscopy - application to terpene molecules

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    Most molecules of biochemical relevance are chiral. Even though the physical properties of two enantiomers are nearly identical, they might exhibit completely different biochemical effects, such as different odor in the case of carvone. In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging and very important tasks of analytical chemistry. We recently experimentally demonstrated a new method of differentiating enantiomeric pairs of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and is a three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the product of the transition dipole moments. Furthermore, because the signal amplitude is proportional to the ee, this technique allows not only for determining which enantiomer is in excess, but also by how much. A unique advantage of our technique is that it can also be applied to mixtures of chiral molecules, even when the molecules are very similar. In my lecture, I will introduce the technique and give an update on the recent developments.

  16. New high-performance liquid chromatography method for the determination of (R)-warfarin and (S)-warfarin using chiral separation on a glycopeptide-based stationary phase.

    PubMed

    Malakova, Jana; Pavek, Petr; Svecova, Lucie; Jokesova, Iveta; Zivny, Pavel; Palicka, Vladimir

    2009-10-01

    Warfarin is a well-known anticoagulant agent that occurs in two enantiomers, (R)-(+)-warfarin and (S)-(-)-warfarin. A new liquid chromatography method for the determination of both enantiomers was developed, validated and applied in in vitro studies with the aim of evaluating the accumulation of (R)-warfarin and (S)-warfarin in the hepatoma HepG2 cell line. OptiMEM cell cultivation medium samples and cellular lysates were purified using Waters Oasis MAX extraction cartridges. The chiral separation of warfarin and the internal standard p-chlorowarfarin enantiomers was performed on an Astec Chirobiotic V2 column at a flow rate of 1.2mL/min. The mobile phase was composed of 31% acetonitrile, 5% of methanol and 64% of ammonium acetate buffer (10mmol/L, pH 4.1). The enantiomers were quantified using a fluorescence detector (lambda(excit)=320nm, lambda(emiss)=415nm). The limit of detection was found to be 0.121micromol/L of (S)-warfarin and 0.109micromol/L of (R)-warfarin. The range of applicability and linearity was estimated from 0.25 to 100micromol/L. The precision ranged from 1.3% to 12.2% of the relative standard deviation, and the accuracy reached acceptable values from 95.5% to 108.4%. The new bioanalytical method confirmed the same accumulation of (R)-warfarin and (S)-warfarin in the hepatoma HepG2 cell line.

  17. Molecular chirality and domain shapes in lipid monolayers on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Krüger, Peter; Lösche, Mathias

    2000-11-01

    The shapes of domain boundaries in the mesoscopic phase separation of phospholipids in aqueous surface monolayers are analyzed with particular attention to the influence of molecular chirality. We have calculated equilibrium shapes of such boundaries, and show that the concept of spontaneous curvature-derived from an effective pair potential between the chiral molecules-yields an adequate description of the contribution of chirality to the total energy of the system. For enantiomeric dipalmitoylphosphatidylcholine in pure monolayers, and in mixtures with impurities that adsorb preferentially at the (one-dimensional) boundary line between the isotropic and anisotropic fluid phases, such as cyanobiphenyl (5CB), a total energy term that includes line tension, electrostatic dipole-dipole interaction, and spontaneous curvature is sufficient to describe the shapes of well-separated domain boundaries in full detail. As soon as interdomain distances fall below the domain sizes upon compression of a monolayer, fluctuations take over in determining its detailed structural morphology. Using Minkowski measures for the well-studied dimyristoyl phosphatidic acid (DMPA)/cholesterol system, we show that calculations accounting for line tension, electrostatic repulsion, and molecular chirality yield boundary shapes that are of the same topology as the experimentally observed structures. At a fixed molecular area in the phase coexistence region, the DMPA/cholesterol system undergoes an exponential decay of the line tension λ with decreasing subphase temperature T.

  18. Self-assembly and electrostriction of arrays and chains of hopfion particles in chiral liquid crystals

    PubMed Central

    Ackerman, Paul J.; van de Lagemaat, Jao; Smalyukh, Ivan I.

    2015-01-01

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields. PMID:25607778

  19. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fengcheng; Martin, Ivar

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  20. Nematic and chiral superconductivity induced by odd-parity fluctuations

    DOE PAGES

    Wu, Fengcheng; Martin, Ivar

    2017-10-09

    Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less

  1. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    NASA Astrophysics Data System (ADS)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  2. Chirality in adsorption on solid surfaces.

    PubMed

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral chromatography, and enantioselective catalysis.

  3. Statistical physics of modulated phases in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shamid, Shaikh M.

    Nematic liquid crystals are the state of the matter in which there is no positional order like crystals but it has orientational order of the constituent molecules. In the conventional nematics, the long axes of the rod-like molecules tend to align up or down uniformly along a director n. If the constituent molecules are chiral, they tend to form a modulated structure in one of the space dimensions. They are called the chiral nematics. If the chirality is strong enough we get the modulated structures in all three dimensions called the chiral blue phase. On the other hand, if the molecules are achiral, but an additional polar dipole is attached to the molecules, they also tend to form a modulated structure. In these types of materials we observe an important physical effect called flexoelectric effect, in which the polar order is linearly coupled to the director gradients. This dissertation work presents analytical and simulation studies of that modulated structures using the flexoelectric mechanism. Classic work by R. B. Meyer and further studies by I. Dozov predicted two possible structures, known as twist-bend and splay-bend. One of these predictions, the twist-bend phase, has recently been identified in experiments on bent-shaped liquid crystals. In this recently discovered twist-bend nematic phase the modulation is along one of the space dimensions. If this flexoelectric coupling is strong enough, in addition to twist-bend and splay-bend, here we predict the formation of polar analog of chiral blue phases (in both 2D and 3D) made of achiral polar liquid crystal materials by using Elastic continuum theory-based numerical calculations and computer simulations. This dissertation work also presents the coarse-grained theory of twist-bend phase. This theory predicts normal modes of fluctuation in both sides of nematic to twist-bend transition, which then compared with light scattering experiments. Macroscopic elastic and electric properties of twist-bend nematics can be realized using this coarse-grained description.

  4. Chiral Drug Analysis in Forensic Chemistry: An Overview.

    PubMed

    Ribeiro, Cláudia; Santos, Cristiana; Gonçalves, Valter; Ramos, Ana; Afonso, Carlos; Tiritan, Maria Elizabeth

    2018-01-28

    Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.

  5. Finite density two color chiral perturbation theory revisited

    NASA Astrophysics Data System (ADS)

    Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo

    2018-06-01

    We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.

  6. Enantiodifferentiation of whisky and cognac lactones using gas chromatography with different cyclodextrin chiral stationary phases.

    PubMed

    Schmarr, Hans-Georg; Mathes, Maximilian; Wall, Kristina; Metzner, Frank; Fraefel, Marius

    2017-09-22

    The chiral lactone 5-butyl-4-methyloxolan-2-one or 5-butyl-4-methyldihydro-2(3H)-furanone, often named whisky lactone, is found in oak wood, then contributing to the appreciated flavor of beverages stored in such wooden barrels. Its next higher homologue is named cognac lactone (5-pentyl-4-methyloxolan-2-one or 5-pentyl-4-methyldihydro-2(3H)-furanone), however is much less known, probably due to its minor concentration level. In order to study the direct enantioseparation of both lactones by gas chromatography on chiral stationary phases, individual enantiomers, particularly for cognac lactone were made available. This was achieved by baker's yeast reduction of synthesized ethyl 3-methyl-4-oxononanoate or, after hydrolysis, of the corresponding 4-ketoacid, that gave access to individual enantiomers of cognac lactone. Good enantioseparation was achieved for both whisky and cognac lactone with high values for the chiral resolution with 6-O-tert. butyl dimethylsilyl-2,3-dialkylated or 6-O-tert. butyl dimethylsilyl-2,3-diacylated cyclodextrin derivatives as chiral selectors. The influence of the nature and position of derivatization of the cyclodextrin moiety revealed a strong impact on the chiral recognition mechanism, as the investigated alkylated derivatives heptakis-(2,6-di-O-iso-pentyl-3-O-allyl)-β-cyclodextrin and octakis-(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin did not provide any or only minor chiral selectivity for the two lactones. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation.

    PubMed

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-08-30

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3,5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Extended skyrmion lattice scattering and long-time memory in the chiral magnet Fe1 -xCoxSi

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Kakurai, K.; Qian, F.; Lelièvre-Berna, E.; Dewhurst, C. D.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-09-01

    Small angle neutron scattering measurements on a bulk single crystal of the doped chiral magnet Fe1 -xCoxSi with x =0.3 reveal a pronounced effect of the magnetic history and cooling rates on the magnetic phase diagram. The extracted phase diagrams are qualitatively different for zero and field cooling and reveal a metastable skyrmion lattice phase outside the A phase for the latter case. These thermodynamically metastable skyrmion lattice correlations coexist with the conical phase and can be enhanced by increasing the cooling rate. They appear in a wide region of the phase diagram at temperatures below the A phase but also at fields considerably smaller or higher than the fields required to stabilize the A phase.

  9. Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2).

    PubMed

    Wang, Shengxiang; Kang, Lei; Werner, Douglas H

    2018-01-09

    Compared with natural materials, chiral metamaterials have been demonstrated with orders of magnitude stronger chiroptical response, which provides the basis for applications such as ultracompact polarization components and plasmonic-enhanced biosensing. Terahertz chiral metamaterials that allow dynamic polarization control of terahertz waves are of great practical interest, but remain extremely rare. Here, we show that hybrid metamaterials integrated with vanadium dioxide (VO 2 ) exhibiting phase transition can enable dynamically tunable chiroptical responses at terahertz frequencies. In particular, a circular dichroism of ~40° and a maximum polarization rotation of ~200°/λ are observed around 0.7 THz. Furthermore, our study also reveals that the chiroptical response from the proposed metamaterials is strongly dependent on the phase transition of VO 2 , leading to actively controllable polarization states of the transmitted terahertz waves. This work paves the way for the development of terahertz metadevices capable of enabling active polarization manipulation.

  10. Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng

    2018-03-01

    The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.

  11. Magnetic relaxation phenomena in the chiral magnet Fe1 -xCoxSi : An ac susceptibility study

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Lefering, A. J. E.; Kakurai, K.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2016-10-01

    We present a systematic study of the ac susceptibility of the chiral magnet Fe1 -xCoxSi with x =0.30 covering four orders of magnitude in frequencies from 0.1 Hz to 1 kHz, with particular emphasis to the pronounced history dependence. Characteristic relaxation times ranging from a few milliseconds to tens of seconds are observed around the skyrmion lattice A phase, the helical-to-conical transition and in a region above TC. The distribution of relaxation frequencies around the A phase is broad, asymmetric, and originates from multiple coexisting relaxation processes. The pronounced dependence of the magnetic phase diagram on the magnetic history and cooling rates as well as the asymmetric frequency dependence and slow dynamics suggest more complicated physical phenomena in Fe0.7Co0.3Si than in other chiral magnets.

  12. Chiral topological insulator of magnons

    NASA Astrophysics Data System (ADS)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  13. Minimization of Poisson’s ratio in anti-tetra-chiral two-phase structure

    NASA Astrophysics Data System (ADS)

    Idczak, E.; Strek, T.

    2017-10-01

    One of the most important goal of modern material science is designing structures which exhibit appropriate properties. These properties can be obtained by optimization methods which often use numerical calculations e.g. finite element method (FEM). This paper shows the results of topological optimization which is used to obtain the greatest possible negative Poisson’s ratio of the two-phase composite. The shape is anti-tetra-chiral two-dimensional unit cell of the whole lattice structure which has negative Poisson’s ratio when it is built of one solid material. Two phase used in optimization are two solid materials with positive Poisson’s ratio and Young’s modulus. Distribution of reinforcement hard material inside soft matrix material in anti-tetra-chiral domain influenced mechanical properties of structure. The calculations shows that the resultant structure has negative Poisson’s ratio even eight times smaller than homogenous anti-tetra chiral structure made of classic one material. In the analysis FEM is connected with algorithm Method of Moving Asymptote (MMA). The results of materials’ properties parameters are described and calculated by means of shape interpolation scheme - Solid Isotropic Material with Penalization (SIMP) method.

  14. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal

    DOE PAGES

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya; ...

    2016-02-25

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less

  15. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer.

    PubMed

    Owerre, S A

    2016-06-15

    We investigate an ultra-thin film of topological insulator (TI) multilayer as a model for a three-dimensional (3D) Weyl semimetal. We introduce tunneling parameters t S, [Formula: see text], and t D, where the former two parameters couple layers of the same thin film at small and large momenta, and the latter parameter couples neighbouring thin film layers along the z-direction. The Chern number is computed in each topological phase of the system and we find that for [Formula: see text], the tunneling parameter [Formula: see text] changes from positive to negative as the system transits from Weyl semi-metallic phase to insulating phases. We further study the chiral magnetic effect (CME) of the system in the presence of a time dependent magnetic field. We compute the low-temperature dependence of the chiral magnetic conductivity and show that it captures three distinct phases of the system separated by plateaus. Furthermore, we propose and study a 3D lattice model of Porphyrin thin film, an organic material known to support topological Frenkel exciton edge states. We show that this model exhibits a 3D Weyl semi-metallic phase and also supports a 2D Weyl semi-metallic phase. We further show that this model recovers that of 3D Weyl semimetal in topological insulator thin film multilayer. Thus, paving the way for simulating a 3D Weyl semimetal in topological insulator thin film multilayer. We obtain the surface states (Fermi arcs) in the 3D model and the chiral edge states in the 2D model and analyze their topological properties.

  16. Relative quantification of enantiomers of chiral amines by high-throughput LC-ESI-MS/MS using isotopic variants of light and heavy L-pyroglutamic acids as the derivatization reagents.

    PubMed

    Mochizuki, Toshiki; Taniguchi, Sayuri; Tsutsui, Haruhito; Min, Jun Zhe; Inoue, Koichi; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2013-04-22

    L-Pyroglutamic acid (L-PGA) was evaluated as a chiral labeling reagent for the enantioseparation of chiral amines in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. Several amines and amino acid methyl esters were used as typical representatives of the chiral amines. Both enantiomers of the chiral amines were easily labeled with L-PGAS at room temperature for 60 min in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and 1-hydroxy-1H-benzotriazole as the activation reagents. The resulting diastereomers were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs=1.6-6.8). A highly sensitive detection at a low-fmol level (1-4 fmol) was also obtained from the multiple reaction monitoring (MRM) chromatograms. Therefore, a high-throughput determination was achieved by the present UPLC-ESI-MS/MS method. An isotope labeling strategy using light and heavy L-PGAs for the differential analysis of chiral amines in different sample groups was also proposed in this paper. As a model study, the differential analysis of the R and S ratio of 1-phenylethylamine (PEA) was performed according to the proposed procedure using light and heavy reagents, i.e., L-PGA and L-PGA-d5. The R/S ratio of PEA, spiked at the different concentrations in rat plasma, was almost similar to the theoretical values. Consequently, the proposed strategy using light and heavy chiral labeling reagents seems to be applicable for the differential analysis of chiral amine enantiomers in different sample groups, such as healthy persons and disease patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  18. Spin chirality and polarised neutron scattering

    NASA Astrophysics Data System (ADS)

    Plakhty, V. P.; Maleyev, S. V.; Kulda, J.; Visser, E. D.; Wosnitza, J.; Moskvin, E. V.; Brückel, Th.; Kremer, R. K.

    2001-03-01

    Possibilities of polarised neutrons in studies of chiral criticality are discussed. The critical exponents β C of the average chirality below TN, as well as φ C=β C+γ C and, therefore, γ C of the chiral susceptibility above TN are determined for a XY triangular lattice antiferromagnet (TLA) CsMnBr3: β C=0.44(2) , γ C=0.84(7) . The critical behaviour of the chirality that orders at TN with a relative precision of 5×10 -4 proves that the phase transition belongs to a new chiral universality class. For the TLA CsNiCl 3 ( S=1) we found in the XY region ( B=3 T) φ C=1.24(7) in agreement with the Monte-Carlo value φ C=1.22(6) for the chiral universality class. In the easy-axis region at B=1 T, φ C=0.54(4) , and the Haldane excitations are observed in the polarisation-dependent inelastic cross section above TN. The helimagnet holmium exhibits a different chiral criticality with φ C=1.56(5) , essentially higher than for TLAs.

  19. Low-Energy Collisions of Protonated Enantiopure Amino Acids with Chiral Target Gases

    NASA Astrophysics Data System (ADS)

    Kulyk, K.; Rebrov, O.; Ryding, M.; Thomas, R. D.; Uggerud, E.; Larsson, M.

    2017-12-01

    Here we report on the gas-phase interactions between protonated enantiopure amino acids ( l- and d-enantiomers of Met, Phe, and Trp) and chiral target gases [( R)- and ( S)-2-butanol, and ( S)-1-phenylethanol] in 0.1-10.0 eV low-energy collisions. Two major processes are seen to occur over this collision energy regime, collision-induced dissociation and ion-molecule complex formation. Both processes were found to be independent of the stereo-chemical composition of the interacting ions and targets. These data shed light on the currently debated mechanisms of gas-phase chiral selectivity by demonstrating the inapplicability of the three-point model to these interactions, at least under single collision conditions. [Figure not available: see fulltext.

  20. Non-Abelian S =1 chiral spin liquid on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Tu, Hong-Hao; Wu, Ying-Hai; He, Rong-Qiang; Liu, Xiong-Jun; Zhou, Yi; Ng, Tai-Kai

    2018-05-01

    We study S =1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+i py superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices S and T , we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the S O (3) 1 (or, equivalently, S U (2) 2 ) field-theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study, we observe a topological phase transition from the NACSL to the Z2 Abelian spin liquid.

  1. Self-assembly of gelator molecules in liquid crystals studied by ESR

    NASA Astrophysics Data System (ADS)

    Andreis, Mladen; Carić, Dejana; Vujičić, Nataša Šijaković; Jokić, Milan; Žinić, Mladen; Kveder, Marina

    2012-07-01

    Thermotropic liquid crystal trans-4-heptylcyclohexanecarboxylic acid (HCCA) doped with 4-oxo-2,2,6,6,-tetramethyl-1-piperidinyloxy spin probe (Tempone) is investigated by electron spin resonance (ESR) spectroscopy in the presence of chiral bisoxalamide gelator 1 during both cooling and heating cycles. In the temperature range 295-383 K, where HCCA displays isotropic, nematic, smectic B and crystalline phases, the impact of 1 self-organization was detected via (non) homogeneous partitioning of the spin probe in the environments varying in the polarity, an effect dependent on the gelator concentration. In particular, the evidence of the onset of the gelator network self-assembly in the nematic phase was detected by ESR at higher temperatures than the ones reported so far by other experimental techniques. Additionally, the spectral analysis points to the switching of the polarity in the vicinity of the spin probe when the transfer of chirality from 1 to HCCA upon cooling of the sample from isotropic to chiral nematic phase appears and when the event of LC gelation results in the achiral nematic phase during chiral gel fibers formation. When the gelation proceeds in the smectic phase, the melting of the gelator network is studied in the nematic phase during the heating cycle. Furthermore, the event of HCCA crystallization is shown to be strongly affected by the presence of 1 as well. The experimental evidence is provided that gelator network confines the HCCA into the domains within the bulk crystalline matrix where the local molecular dynamics are still not frozen. Therefore, we propose that non-homogeneous polarity profile of molecular organization/packing within LC gels could be determinable for the physical properties of various LC gel phases.

  2. Application of Carbon Nanotubes in Chiral and Achiral Separations of Pharmaceuticals, Biologics and Chemicals

    PubMed Central

    Hemasa, Ayman L.; Maher, William A.; Ghanem, Ashraf

    2017-01-01

    Carbon nanotubes (CNTs) possess unique mechanical, physical, electrical and absorbability properties coupled with their nanometer dimensional scale that renders them extremely valuable for applications in many fields including nanotechnology and chromatographic separation. The aim of this review is to provide an updated overview about the applications of CNTs in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Chiral single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) have been directly applied for the enantioseparation of pharmaceuticals and biologicals by using them as stationary or pseudostationary phases in chromatographic separation techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and gas chromatography (GC). Achiral MWCNTs have been used for achiral separations as efficient sorbent objects in solid-phase extraction techniques of biochemicals and drugs. Achiral SWCNTs have been applied in achiral separation of biological samples. Achiral SWCNTs and MWCNTs have been also successfully used to separate achiral mixtures of pharmaceuticals and chemicals. Collectively, functionalized CNTs have been indirectly applied in separation science by enhancing the enantioseparation of different chiral selectors whereas non-functionalized CNTs have shown efficient capabilities for chiral separations by using techniques such as encapsulation or immobilization in polymer monolithic columns. PMID:28718832

  3. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    NASA Astrophysics Data System (ADS)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  4. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators

    DOE PAGES

    Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...

    2017-10-30

    The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less

  5. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.

    PubMed

    Sanganyado, Edmond; Lu, Zhijiang; Fu, Qiuguo; Schlenk, Daniel; Gan, Jay

    2017-11-01

    More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characterization of chiral amino acids from different milk origins using ultra-performance liquid chromatography coupled to ion-mobility mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tian, He; Zheng, Nan; Li, Songli; Zhang, Yangdong; Zhao, Shengguo; Wen, Fang; Wang, Jiaqi

    2017-04-01

    Milk contains free amino acids (AAs) that play essential roles in maintaining the growth and health of infants, and D-AA isomers are increasingly being recognized as important signalling molecules. However, there are no studies of the different characteristics of chiral AA (C-AA) from different milk origins. Here, UPLC coupled to ion-mobility high-resolution MS (IM-HRMS) was employed to characterize 18 pairs of C-AAs in human, cow, yak, buffalo, goat, and camel milk. The results proved that milk origins can be differentiated based on the D- to L- AA ratio-based projection scores by principal component analysis. The present study gives a deeper understanding of the D- to L- AA ratio underlying the biological functions of different animal milks, and provide a new strategy for the study of AA metabolic pathways.

  7. Lattice QCD phase diagram in and away from the strong coupling limit.

    PubMed

    de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W

    2014-10-10

    We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.

  8. Ultra-fast switching blue phase liquid crystals diffraction grating stabilized by chiral monomer

    NASA Astrophysics Data System (ADS)

    Manda, Ramesh; Pagidi, Srinivas; Sarathi Bhattacharya, Surjya; Yoo, Hyesun; T, Arun Kumar; Lim, Young Jin; Lee, Seung Hee

    2018-05-01

    We have demonstrated an ultra-fast switching and efficient polymer stabilized blue phase liquid crystal (PS-BPLC) diffraction grating utilizing a chiral monomer. We have obtained a 0.5 ms response time by a novel polymer stabilization method which is three times faster than conventional PS-BPLC. In addition, the diffraction efficiency was improved 2% with a much wider phase range and the driving voltage to switch the device is reduced. The polarization properties of the diffracted beam are unaffected by this novel polymer stabilization. This device can be useful for future photonic applications.

  9. Ferroelectric Liquid Crystals: Synthesis and Thermal Behavior of Optically Active, Three-Ring Schiff Bases and Salicylaldimines.

    PubMed

    Veerabhadraswamy, Bhyranalyar N; Rao, Doddamane S Shankar; Yelamaggad, Channabasaveshwar V

    2018-04-16

    The chiral ferroelectric smectic C (SmC*) phase, characterized by a helical superstructure, has been well exploited in developing high-resolution microdisplays that have been effectively employed in the fabrication of a wide varieties of portable devices. Although, an overwhelming number of optically active (chiral) liquid crystals (LCs) exhibiting a SmC* phase have been designed and synthesized, the search for new systems continues so as to realize mesogens capable of meeting technical necessities and specifications for their end-use. In continuation of our research work in this direction, herein we report the design, synthesis, and thermal behavior of twenty new optically active, three-ring calamitic LCs belonging to four series. The first two series comprise five pairs of enantiomeric Schiff bases whereas the other two series are composed of five pairs of enantiomeric salicylaldimines. In each pair of optical isomers, the configuration of a chiral center in one stereoisomer is opposite to that of the analogous center in the other isomer as they are derived from (3 S)-3,7-dimethyloctyloxy and (3 R)-3,7-dimethyloctyloxy tails. To probe the structure-property correlations in each series, the length of the n-alkoxy tail situated at the other end of the mesogens has been varied from n-octyloxy to n-dodecyloxy. The measurement of optical activity of these chiral mesogens was carried out by recording their specific rotations. As expected, enantiomers rotate plane polarized light in the opposite direction but by the same magnitude. The thermal behavior of the compounds was established by using a combination of optical polarizing microscopy, differential scanning calorimetry, and powder X-ray diffraction. These complementary techniques demonstrate the existence of the expected, thermodynamically stable, chiral smectic C (SmC*) LC phase besides blue phase I/II (BPI or BPII) and chiral nematic (N*) phase. However, as noted in our previous analogous study, the vast majority of the Schiff bases show an additional metastable, unfamiliar smectic (SmX) phase just below the SmC* phase. Notably, the SmC* phase persists over the temperature range ≈80-115 °C. Two mesogens chosen each from Schiff bases and salicylaldimines were investigated for their electrical switching behavior. The study reveals the ferroelectric switching characteristics of the SmC* phase featuring the spontaneous polarization (P S ) in the range 69-96 nC cm -2 . The helical twist sense of the SmC* phase as well as the N* phase formed by a pair of enantiomeric Schiff bases and salicylaldimines has been established with the help of circular dichroism (CD) spectroscopic technique. As expected, the SmC* and the N* phase of a pair of enantiomers showed mirror image CD signals. Most importantly, the reversal of helical handedness from left to right and vice versa has been evidenced during the N* to SmC* phase transition, implying that the screw sense of the helical array of the N* phase and the SmC* phase of an enantiomer is opposite. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enantioselective quantitation of the ecstasy compound (R)- and (S)-N-ethyl-3,4-methylenedioxyamphetamine and its major metabolites in human plasma and urine.

    PubMed

    Buechler, Jochen; Schwab, Matthias; Mikus, Gerd; Fischer, Beate; Hermle, Leo; Marx, Claudia; Grön, Georg; Spitzer, Manfred; Kovar, Karl Artur

    2003-08-15

    An enantioselective HPLC method has been developed and validated for the stereospecific analysis of N-ethyl-3,4-methylenedioxyamphetamine (MDE) and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA). These compounds have been analyzed both from human plasma and urine after administration of 70 mg pure MDE-hydrochloride enantiomers to four subjects. The samples were prepared by hydrolysis of the o-glucuronate and sulfate conjugates using beta-glucuronidase/arylsulfatase and solid-phase extraction with a cation-exchange phase. A chiral stationary protein phase (chiral-CBH) was used for the stereoselective determination of MDE, HME and MDA in a single HPLC run using sodium dihydrogenphosphate, ethylendiaminetetraacetic acid disodium salt and isopropanol as the mobile phase (pH 6.44) and fluorimetric detection (lambda(ex) 286 nm, lambda(em) 322 nm). Moreover, a suitable internal standard (N-ethyl-3,4-methylenedioxybenzylamine) was synthesized and qualified for quantitation purposes. The method showed high recovery rates (>95%) and limits of quantitation for MDE and MDA of 5 ng/ml and for HME of 10 ng/ml. The RSDs for all working ranges of MDE, MDA and HME in plasma and urine, respectively, were less than 1.5%. After validation of the analytical methods in plasma and urine samples pharmacokinetic parameters were calculated. The plasma concentrations of (R)-MDE exceeded those of the S-enantiomer (ratio R:S of the area under the curve, 3.1) and the plasma half time of (R)-MDE was longer than that of (S)-MDE (7.9 vs. 4.0 h). In contrast, the stereochemical disposition of the MDE metabolites HME and MDA was reversed. Concentrations of the (S)-metabolites in plasma of volunteers were much higher than those of the (R)-enantiomers.

  11. The effect of high concentration additive on chiral separations in supercritical fluid chromatography.

    PubMed

    Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David

    2017-08-11

    Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Novel beta-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography.

    PubMed

    Tian, Yun; Zhong, Cheng; Fu, Enqin; Zeng, Zhaorui

    2009-02-06

    A novel enantioselective polymethacrylate-based monolithic column for capillary electrochromatography was prepared by ring-opening reaction of epoxy groups from poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith with a novel beta-cyclodextrin derivative bearing 4-dimethylamino-1,8-naphthalimide functionalities. Conditions for the ring-opening reaction with respect to different reaction parameters were thoroughly optimized to obtain high electroosmotic flow, separation efficiency and enantioselectivity for the analytes. The nonaqueous mobile phase composition regarding acetonitrile-methanol ratio and the concentration of electrolyte were examined to manipulate the hydrophobic inclusion and anion-exchange interaction between the analytes and chiral stationary phase. It was observed that in addition to beta-cyclodextrin cavity, the electrostatic interaction exhibited pronounced influence on the enantioseparation of acidic analytes. Acidic enantiomers (ibuprofen and naproxen) could be separated with separation factor (alpha) values up to 1.08 and a maximum separation efficiency of 86000 plates/m could be achieved.

  13. Self-Assembly and Electrostriction of Arrays and Chains of Hopfion Particles in Chiral Liquid Crystals

    DOE PAGES

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    2015-01-21

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  14. Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131

    2006-01-01

    We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less

  15. Engineering one-dimensional topological phases on p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Sahlberg, Isac; Westström, Alex; Pöyhönen, Kim; Ojanen, Teemu

    2017-05-01

    In this paper, we study how, with the aid of impurity engineering, two-dimensional p -wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports multiple topological phases and Majorana end states. We develop an approach which allows us to extract the topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the nontrivial phases may be a significant fraction of the gap of the underlying superconductor.

  16. Chiral phase transition from string theory.

    PubMed

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  17. Hydrodynamics of the Dirac spectrum

    DOE PAGES

    Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail

    2015-12-15

    We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. As a result, the relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.

  18. An In Situ Directing Group Strategy for Chiral Anion Phase-Transfer Fluorination of Allylic Alcohols

    PubMed Central

    2015-01-01

    An enantioselective fluorination of allylic alcohols under chiral anion phase-transfer conditions is reported. The in situ generation of a directing group proved crucial for achieving effective enantiocontrol. In the presence of such a directing group, a range of acyclic substrates underwent fluorination to afford highly enantioenriched α-fluoro homoallylic alcohols. Mechanistic studies suggest that this transformation proceeds through a concerted enantiodetermining transition state involving both C–F bond formation and C–H bond cleavage. PMID:25203796

  19. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  20. Floquet high Chern insulators in periodically driven chirally stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Si; Liu, Cheng-Cheng; Yao, Yugui

    2018-03-01

    Chirally stacked N-layer graphene is a semimetal with ±p N band-touching at two nonequivalent corners in its Brillioun zone. We predict that an off-resonant circularly polarized light (CPL) drives chirally stacked N-layer graphene into a Floquet Chern insulators (FCIs), aka quantum anomalous Hall insulators, with tunable high Chern number C F = ±N and large gaps. A topological phase transition between such a FCI and a valley Hall (VH) insulator with high valley Chern number C v = ±N induced by a voltage gate can be engineered by the parameters of the CPL and voltage gate. We propose a topological domain wall between the FCI and VH phases, along which perfectly valley-polarized N-channel edge states propagate unidirectionally without backscattering.

  1. Magnetic Properties of Heavy Fermion Compound Ce5Si4 with Chiral Structure

    NASA Astrophysics Data System (ADS)

    Sato, Yoshiki J.; Shimizu, Yusei; Nakamura, Ai; Homma, Yoshiya; Li, Dexin; Maurya, Arvind; Honda, Fuminori; Aoki, Dai

    2018-07-01

    The low-temperature magnetic properties of Ce5Si4 with a chiral structure have been studied by electrical resistivity, heat capacity, and magnetization measurements using single-crystalline samples. It is found that Ce5Si4 is an antiferromagnet with moderately correlated electronic states. The resistivity decreases strongly under magnetic fields, indicating scaling behavior based on the Coqblin-Schrieffer model. The obtained characteristic energy scale of the Kondo effect is clearly anisotropic for the magnetic field H ∥ a-axis and H ∥ c-axis in the tetragonal structure, possibly related to the anisotropic antiferromagnetic phase. Furthermore, in the antiferromagnetic phase, a shoulderlike crossover anomaly is observed in C/T. A possible scenario is that non-ordered Ce atoms exist even below TN in this chiral system.

  2. Critical behavior of a chiral superfluid in a bipartite square lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig

    2018-01-01

    We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.

  3. Enantioseparation of Imazalil and Monitoring of Its Enantioselective Degradation in Apples and Soils Using Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Li, Runan; Dong, Fengshou; Xu, Jun; Liu, Xingang; Wu, Xiaohu; Pan, Xinglu; Tao, Yan; Chen, Zenglong; Zheng, Yongquan

    2017-04-26

    Imazalil is a widely used systemic chiral fungicide that is still being employed as a racemic mixture without distinguishing the difference between enantiomers, which often leads to its inaccurate risk assessment. In this study, a robust and highly sensitive chiral separation method was developed for imazalil enantiomers by ultrahigh-performance liquid chromatography-tandem mass spectrometry and was further applied to study the degradation dynamics of imazalil enantiomers in apples and field soils at three sites in China. The baseline enantioseparation for imazalil was achieved within 3.5 min on a Lux Cellulose-2 (CCMPC) column with acetonitrile (ACN)/water (65:35, v/v) with a mobile phase at 0.5 mL/min flow rate and a column temperature of 20 °C. The limit of quantitation (LOQ) for each enantiomer was <0.60 μg/kg, with a baseline resolution of approximately 1.75. The research showed that (S)-(+)-imazalil degraded more rapidly than (R)-(-)-imazalil in Gala apples, whereas (R)-(-)-imazalil preferentially degraded in Golden Delicious apples. No significant enantioselectivity was observed in OBIR-2T-47 apples and field soils from the three sites. Results of this study provide useful references for risk assessment and the rational use of imazalil in further agricultural produce practice.

  4. Multiple scales and phases in discrete chains with application to folded proteins

    NASA Astrophysics Data System (ADS)

    Sinelnikova, A.; Niemi, A. J.; Nilsson, Johan; Ulybyshev, M.

    2018-05-01

    Chiral heteropolymers such as large globular proteins can simultaneously support multiple length scales. The interplay between the different scales brings about conformational diversity, determines the phase properties of the polymer chain, and governs the structure of the energy landscape. Most importantly, multiple scales produce complex dynamics that enable proteins to sustain live matter. However, at the moment there is incomplete understanding of how to identify and distinguish the various scales that determine the structure and dynamics of a complex protein. Here we address this impending problem. We develop a methodology with the potential to systematically identify different length scales, in the general case of a linear polymer chain. For this we introduce and analyze the properties of an order parameter that can both reveal the presence of different length scales and can also probe the phase structure. We first develop our concepts in the case of chiral homopolymers. We introduce a variant of Kadanoff's block-spin transformation to coarse grain piecewise linear chains, such as the C α backbone of a protein. We derive analytically, and then verify numerically, a number of properties that the order parameter can display, in the case of a chiral polymer chain. In particular, we propose that in the case of a chiral heteropolymer the order parameter can reveal traits of several different phases, contingent on the length scale at which it is scrutinized. We confirm that this is the case with crystallographic protein structures in the Protein Data Bank. Thus our results suggest relations between the scales, the phases, and the complexity of folding pathways.

  5. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  6. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    PubMed

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  7. Design of experiment assisted concurrent enantioseparation of bupropion and hydroxybupropion by high-performance thin-layer chromatography.

    PubMed

    Bhatt, Nejal M; Chavada, Vijay D; Sanyal, Mallika; Shrivastav, Pranav S

    2017-02-01

    A simple and efficient high-performance thin-layer chromatographic method was developed for chiral separation of rac-bupropion (BUP) and its active metabolite rac-hydroxybupropion (HBUP). Design of experiment (DoE)-based optimization was adopted instead of a conventional trial-and-error approach. The Box-Behnken design surface response model was used and the operating variables were optimized based on 17 trials design. The optimized method involved impregnation of chiral reagent, L(+)-tartaric acid, in the stationary phase with simultaneous addition in the mobile phase, which consisted of acetonitrile : methanol : dichloromethane : 0.50% L-tartaric acid (6.75:1.0:1.0:0.25, v/v/v/v). Under the optimized conditions, the resolution factor between the enantiomers of BUP and HBUP was 6.30 and 9.26, respectively. The limit of detection and limit of quantitation for (R)-BUP, (S)-BUP, (R,R)-HBUP, and (S,S)-HBUP were 9.23 and 30.78 ng spot -1 , 10.32 and 34.40 ng spot -1 , 12.19 and 40.65 ng spot -1 , and 14.26 and 47.53 ng spot -1 , respectively. The interaction of L-tartaric acid with analytes and their retention behavior was thermodynamically investigated using van't Hoff's plots. The developed method was validated as per the International Conference on Harmonization guidelines. Finally, the method was successfully applied to resolve and quantify the enantiomeric content from marketed tablets as well as spiked plasma samples. © 2016 Wiley Periodicals, Inc.

  8. Enantioseparation of angiotensin II receptor type 1 blockers: evaluation of 6-substituted carbamoyl benzimidazoles on immobilized polysaccharide-based chiral stationary phases. Unusual temperature behavior.

    PubMed

    Su, Ran; Hou, Zhun; Sang, Lihong; Zhou, Zhi-Ming; Fang, Hao; Yang, Xinying

    2017-09-15

    Enantioseparation of thirteen 6-substituted carbamoyl benzimidazoles by high-performance liquid chromatography (HPLC) was investigated using two immobilized polysaccharide-based chiral stationary phases (CSPs), Chiralpak IC and Chiralpak IA, in normal-phase mode. Most of the examined compounds were completely resolved. The effects of a polar alcohol modifier, analyte structure, and column temperature on the chiral recognition were investigated. Furthermore, the structure-retention relationship was evaluated, and thermodynamic parameters were calculated from plots of ln k' or ln α versus 1/T. The thermodynamic parameters indicated that the separations were enthalpy-driven. Moreover, nonlinear van't Hoff plots were obtained on Chiralpak IA. However, two unusual phenomena were observed: (1) an unusual increase in retention with increasing temperature with linear van't Hoff plots on Chiralpak IC and (2) an extremely high T iso value (i.e., several thousand degrees centigrade). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gapless edges of 2d topological orders and enriched monoidal categories

    NASA Astrophysics Data System (ADS)

    Kong, Liang; Zheng, Hao

    2018-02-01

    In this work, we give a mathematical description of a chiral gapless edge of a 2d topological order (without symmetry). We show that the observables on the 1+1D world sheet of such an edge consist of a family of topological edge excitations, boundary CFT's and walls between boundary CFT's. These observables can be described by a chiral algebra and an enriched monoidal category. This mathematical description automatically includes that of gapped edges as special cases. Therefore, it gives a unified framework to study both gapped and gapless edges. Moreover, the boundary-bulk duality also holds for gapless edges. More precisely, the unitary modular tensor category that describes the 2d bulk phase is exactly the Drinfeld center of the enriched monoidal category that describes the gapless/gapped edge. We propose a classification of all gapped and chiral gapless edges of a given bulk phase. In the end, we explain how modular-invariant bulk rational conformal field theories naturally emerge on certain gapless walls between two trivial phases.

  10. The docking of chiral analytes on proline-based chiral stationary phases: A molecular dynamics study of selectivity.

    PubMed

    Ashtari, M; Cann, N M

    2015-08-28

    Molecular dynamics simulations are employed to examine the selectivity of four proline-based chiral stationary phases in two solvent environments, a relatively apolar n-hexane/2-propanol solvent and a polar water/methanol solvent. The four chiral surfaces are based on a BOC-terminated diproline, a TMA-terminated diproline, a TMA-terminated triproline and a TMA-terminated hexaproline. This range of chiral selectors allows an analysis of the impact of oligomer length and terminal group on selectivity while the two solvent environments indicate the impact of solvent hydrogen bonding and polarity. The selector-analyte interactions are examined for six closely related analytes that each have an aromatic moiety, a hydrogen, and an alcohol group directly bonded to the stereocenter. The analytes differ in the nature of the aromatic group (phenyl or anthracyl), in the attachment point (to the central ring or a side ring in the anthracyl), and in the fourth group bonded to the carbon (CH3, CF3, or C2H5). For each of the 48 solvent+selector+analyte systems, selectivity factors are calculated and, when possible, compared to experiment. The docking mode for these proline-based selectors is analyzed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes.

    PubMed

    Albals, Dima; Heyden, Yvan Vander; Schmid, Martin G; Chankvetadze, Bezhan; Mangelings, Debby

    2016-03-20

    The screening part of an earlier defined chiral separation strategy in capillary electrochromatography (CEC) was used for the separation of ten cathinone- and amphetamine derivatives. They were analyzed using 4 polysaccharide-based chiral stationary phases (CSPs), containing cellulose tris(3,5-dimethylphenylcarbamate) (ODRH), amylose tris(3,5-dimethylphenylcarbamate) (ADH), amylose tris(5-chloro-2-methylphenylcarbamate) (LA2), and cellulose tris(4-chloro-3-methylphenylcarbamate) (LC4) as chiral selectors. After applying the screening to each compound, ADH and LC4 showed the highest success rate. In a second part of the study, a comparison between CEC and other analytical techniques used for chiral separations i.e., supercritical fluid chromatography (SFC), polar organic solvent chromatography (POSC), reversed-phase (RPLC) and normal-phase liquid chromatography (NPLC), was made. For this purpose, earlier defined screening approaches for each technique were applied to separate the 10 test substances. This allowed an overall comparison of the success rates of the screening steps of the 5 techniques for these compounds. The results showed that CEC had a similar enantioselectivity rate as NPLC and RPLC, producing the highest number of separations (9 out of 10 racemates). SFC resolved 7 compounds, while POSC gave only 2 separations. On the other hand, the baseline separation success rates for NPLC and RPLC was better than for CEC. For a second comparison, the same chiral stationary phases as in the CEC screening were also tested with all techniques at their specific screening conditions, which allowed a direct comparison of the performance of CEC versus the same CSPs in the other techniques. This comparison revealed that RPLC was able to separate all tested compounds, and also produced the highest number of baseline separations on the CSP that were used in the CEC screening step. CEC and NPLC showed the same success rate: nine out of ten substances were separated. When CEC and NPLC are combined, separation of the ten compounds can be achieved. SFC and POSC resolved eight and three compounds, respectively. POSC was the least attractive option as it expressed only limited enantioselectivity toward these compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. de Vries liquid crystals based on a chiral 5-phenylpyrimidine benzoate core with a tri- and tetra-carbosilane backbone

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Rodriguez-Lojo, D.; Agra-Kooijman, D. M.; Vij, J. K.; Panov, V. P.; Panov, A.; Fisch, M. R.; Kumar, Satyendra; Stevenson, P. J.

    2018-02-01

    New chiral de Vries smectic liquid-crystalline compounds are designed, synthesized, and investigated for perspective applications in defect-free bistable surface-stabilized ferroelectric liquid-crystal displays. In these compounds, a 5-phenyl-pyrimidine benzoate core is terminated on one side by a tri- or tetra-carbosilane group linked through an alkoxy group and an alkyl spacer and on the opposite side terminated by a chiral 2-octanol group. The stereogenic center contains either a methyl or perfluoromethyl functional group. These compounds exhibit Iso-Sm A*-Sm C*-Sm X -Cr phases under cooling from the isotropic state. Measurements of the temperature-dependent smectic layer spacing by x-ray diffraction experiments combined with the measured apparent optical tilt angle and the birefringence reveal that Sm A* phase in these compounds is of the de Vries type. In addition, the chiral compound with a tetra-carbosilane backbone, DR277, exhibits good de Vries properties with the Sm C* phase exhibited over a wide temperature range. By varying the carbosilane end group, the de Vries properties are enhanced, that is, the layer shrinkage of ˜1.9 % for the tri-carbosilane DR276 is reduced to ˜0.9 % for tetra-carbosilane DR277 at 10°C below Sm A* to Sm C* transition temperature, TAC. For DR277, the reduction factor R ≈0.22 for T =(TAC-10 )°C is reasonably low and the apparent optical tilt angle θapp=35.1°, hence this compound is a "good de Vries smectic" LC. Therefore, synthesis of the chiral mesogen with an even higher number of carbosilane groups may lead to a further reduction or even zero-layer shrinkage exhibited at TAC with Sm C* phase extending over a wide temperature range close to the room temperature for perspective suitability in device applications. Our results for 5-phenyl-pyrimidine benzoate core-based compounds support a recently drawn conclusion by Schubert et al. [J. Mater. Chem. C 4, 8483 (2016), 10.1039/C6TC03120J] from a different compound, namely that a carbosilane backbone in chiral mesogens strongly influences the de Vries properties.

  13. Biological plywood film formation from para-nematic liquid crystalline organization.

    PubMed

    Aguilar Gutierrez, Oscar F; Rey, Alejandro D

    2017-11-15

    In vitro non-equilibrium chiral phase ordering processes of biomacromolecular solutions offer a systematic and reproducible way of generating material architectures found in Nature, such as biological plywoods. Accelerated progress in biomimetic engineering of mesoscopic plywoods and other fibrous structures requires a fundamental understanding of processing and transport principles. In this work we focus on collagen I based materials and structures to find processing conditions that lead to defect-free collagen films displaying the helicoidal plywood architecture. Here we report experimentally-guided theory and simulations of the chiral phase ordering of collagen molecules through water solvent evaporation of pre-aligned dilute collagen solutions. We develop, implement and a posteriori validate an integrated liquid crystal chiral phase ordering-water transport model that captures the essential features of spatio-temporal chiral structure formation in shrinking film domains due to directed water loss. Three microstructural (texture) modes are identified depending on the particular value of the time-scale ratio defined by collagen rotational diffusion to water translational diffusion. The magnitude of the time scale ratio provides the conditions for the synchronization of the helical axis morphogenesis with the increase in the mesogen concentration due to water loss. Slower than critical water removal rates leads to internal multiaxial cellular patterns, reminiscent of the classical columnar-equiaxed metallurgical casting structures. Excessive water removal rates lead to destabilization of the chiral axis and multidomain defected films. The predictions of the integrated model are in qualitative agreement with experimental results and can potentially guide solution processing of other bio-related mesogenic solutions that seek to mimic the architecture of biological fibrous composites.

  14. Dynamics of inhomogeneous chiral condensates

    NASA Astrophysics Data System (ADS)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  15. Phase diagram and critical end point for strongly interacting quarks.

    PubMed

    Qin, Si-xue; Chang, Lei; Chen, Huan; Liu, Yu-xin; Roberts, Craig D

    2011-04-29

    We introduce a method based on chiral susceptibility, which enables one to draw a phase diagram in the chemical-potential-temperature plane for strongly interacting quarks whose interactions are described by any reasonable gap equation, even if the diagrammatic content of the quark-gluon vertex is unknown. We locate a critical end point at (μ(E),T(E))∼(1.0,0.9)T(c), where T(c) is the critical temperature for chiral-symmetry restoration at μ=0, and find that a domain of phase coexistence opens at the critical end point whose area increases as a confinement length scale grows.

  16. Chiral Molecules Revisited by Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie

    2014-06-01

    Chiral molecules have fascinated chemists for more than 150 years. While their physical properties are to a very good approximation identical, the two enantiomers of a chiral molecule can have completely different (bio)chemical activities. For example, the right-handed enantiomer of carvone smells of spearmint while the left-handed one smells of caraway. In addition, the active components of many drugs are of one specific handedness, such as in the case of ibuprofen. However, in nature as well as in pharmaceutical applications, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the molecular components, to determine which enantiomers are present, and to measure the enantiomeric excesses (ee) remains a challenging task for analytical chemistry, despite its importance for modern drug development. We present here a new method of differentiating enantiomers of chiral molecules in the gas phase based on broadband rotational spectroscopy. The phase of the acquired signal bares the signature of the enantiomer, as it depends upon the combined quantity, μ_a μ_b μ_c, which is of opposite sign between enantiomers. It thus also provides information on the absolute configuration of the particular enantiomer. Furthermore, the signal amplitude is proportional to the ee. A significant advantage of our technique is its inherent mixture compatibility due to the fingerprint-like character of rotational spectra. In this contribution, we will introduce the technique and present our latest results on chiral molecule spectroscopy and enantiomer differentiation. D. Patterson, M. Schnell, J.M. Doyle, Nature 497 (2013) 475-477 V.A. Shubert, D. Schmitz, D. Patterson, J.M. Doyle, M. Schnell, Angewandte Chemie International Edition 53 (2014) 1152-1155

  17. Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model

    NASA Astrophysics Data System (ADS)

    O'Brien, Edward; Fendley, Paul

    2018-05-01

    We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.

  18. Direct optical detection of Weyl fermion chirality in a topological semimetal

    NASA Astrophysics Data System (ADS)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Yuxuan; Xie, Weiwei; Palacios, Tomás; Lin, Hsin; Jia, Shuang; Lee, Patrick A.; Jarillo-Herrero, Pablo; Gedik, Nuh

    2017-09-01

    A Weyl semimetal is a novel topological phase of matter, in which Weyl fermions arise as pseudo-magnetic monopoles in its momentum space. The chirality of the Weyl fermions, given by the sign of the monopole charge, is central to the Weyl physics, since it directly serves as the sign of the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Here, we directly detect the chirality of the Weyl fermions by measuring the photocurrent in response to circularly polarized mid-infrared light. The resulting photocurrent is determined by both the chirality of Weyl fermions and that of the photons. Our results pave the way for realizing a wide range of theoretical proposals for studying and controlling the Weyl fermions and their associated quantum anomalies by optical and electrical means. More broadly, the two chiralities, analogous to the two valleys in two-dimensional materials, lead to a new degree of freedom in a three-dimensional crystal with potential novel pathways to store and carry information.

  19. Global phase diagram and quantum spin liquids in a spin- 1 2 triangular antiferromagnet

    DOE PAGES

    Gong, Shou-Shu; Zhu, Wei; Zhu, Jianxin; ...

    2017-08-09

    For this research, we study the spin-1/2 Heisenberg model on the triangular lattice with the nearest-neighbor J 1 > 0 , the next-nearest-neighobr J 2 > 0 Heisenberg interactions, and the additional scalar chiral interaction Jχ (more » $$\\vec{S}$$ i × $$\\vec{S}$$ j ) · $$\\vec{S}$$ k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J 2 (J 2 / J 1 ≤ 0.3 ) and Jχ (Jχ / J 1 ≤ 1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120°, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν = 1/2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J 1 - J 2 triangular model (0.08 ≲ J 2 / J 1 ≲ 0.15) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. Lastly, we discuss the implications of our results on the nature of the spin liquid phases.« less

  20. Chiral analysis of bambuterol, its intermediate and active drug in human plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study.

    PubMed

    Zhou, Ting; Liu, Shan; Zhao, Ting; Zeng, Jing; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-08-01

    A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed for simultaneous chiral analysis of an antiasthma drug bambuterol, its key intermediate monocarbamate bambuterol and its active drug terbutaline in human plasma. All samples were extracted with ethyl acetate and separated on an Astec Chirobiotic T column under isocratic elution with a mobile phase consisting of methanol and water with the addition of 20mm ammonium acetate and 0.005% (v/v) formic acid at 0.6mL/min. The analytes were detected by a Xevo TQ-S tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method has high sensitivity with the lower limit of quantifications of 25.00pg/mL for bambuterol enantiomers, and 50.00pg/mL for monocarbamate bambuterol and terbutaline enantiomers, respectively. The calibration curves for bambuterol enantiomers were linear in the range of 25.00-2500pg/mL, and for monocarbamate bambuterol and terbutaline enantiomers were linear in the range of 50.00-5000pg/mL. The intra- and inter-day precisions were <12.4%. All the analytes were separated in 18.0min. For the first time, the validated method was successfully applied to an enantioselective pharmacokinetic study of rac-bambuterol in 8 healthy volunteers. According to the results, this chiral LC-MS/MS assay provides a suitable and robust method for the enantioselectivity and interaction study of the prodrug bambuterol, the key intermediate monocarbamate bambuterol and its active drug terbutaline in human. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Chirally directed formation of nanometer-scale proline clusters.

    PubMed

    Myung, Sunnie; Fioroni, Marco; Julian, Ryan R; Koeniger, Stormy L; Baik, Mu-Hyun; Clemmer, David E

    2006-08-23

    Ion mobility measurements, combined with molecular mechanics simulations, are used to study enantiopure and racemic proline clusters formed by electrospray ionization. Broad distributions of cluster sizes and charge states are observed, ranging from clusters containing only a few proline units to clusters that contain more than 100 proline units (i.e., protonated clusters of the form [xPro + nH](n+) with x = 1 to >100 and n = 1-7). As the sizes of clusters increase, there is direct evidence for nanometer scale, chirally induced organization into specific structures. For n = 4 and 5, enantiopure clusters of approximately 50 to 100 prolines assemble into structures that are more elongated than the most compact structure that is observed from the racemic proline clusters. A molecular analogue, cis-4-hydroxy-proline, displays significantly different behavior, indicating that in addition to the rigidity of the side chain ring, intermolecular interactions are important in the formation of chirally directed clusters. This is the first case in which assemblies of chirally selective elongated structures are observed in this size range of amino acid clusters. Relationships between enantiopurity, cluster shape, and overall energetics are discussed.

  2. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography.

    PubMed

    Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik

    2016-02-01

    A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films.

    PubMed

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-04-22

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases.

  4. Oxygen-enabled control of Dzyaloshinskii-Moriya Interaction in ultra-thin magnetic films

    PubMed Central

    Belabbes, Abderrezak; Bihlmayer, Gustav; Blügel, Stefan; Manchon, Aurélien

    2016-01-01

    The search for chiral magnetic textures in systems lacking spatial inversion symmetry has attracted a massive amount of interest in the recent years with the real space observation of novel exotic magnetic phases such as skyrmions lattices, but also domain walls and spin spirals with a defined chirality. The electrical control of these textures offers thrilling perspectives in terms of fast and robust ultrahigh density data manipulation. A powerful ingredient commonly used to stabilize chiral magnetic states is the so-called Dzyaloshinskii-Moriya interaction (DMI) arising from spin-orbit coupling in inversion asymmetric magnets. Such a large antisymmetric exchange has been obtained at interfaces between heavy metals and transition metal ferromagnets, resulting in spin spirals and nanoskyrmion lattices. Here, using relativistic first-principles calculations, we demonstrate that the magnitude and sign of DMI can be entirely controlled by tuning the oxygen coverage of the magnetic film, therefore enabling the smart design of chiral magnetism in ultra-thin films. We anticipate that these results extend to other electronegative ions and suggest the possibility of electrical tuning of exotic magnetic phases. PMID:27103448

  5. Anomaly constraints on deconfinement and chiral phase transition

    NASA Astrophysics Data System (ADS)

    Shimizu, Hiroyuki; Yonekura, Kazuya

    2018-05-01

    We study the constraints on thermal phase transitions of SU (Nc) gauge theories by using the 't Hooft anomaly involving the center symmetry and chiral symmetry. We consider two cases of massless fermions: (i) adjoint fermions and (ii) Nf flavors of fundamental fermions with a nontrivial greatest common divisor, gcd (Nc,Nf)≠1 . For the first case (i), we show that the chiral symmetry restoration in terms of the standard Landau-Ginzburg effective action is impossible at a temperature lower than that of deconfinement. For the second case (ii), we introduce a modified version of the center symmetry, which we call center-flavor symmetry, and draw similar conclusions under a certain definition of confinement. Moreover, at zero temperature, our results give a partial explanation of the appearance of dual magnetic gauge groups in (supersymmetric) QCD when gcd (Nc,Nf)≠1 .

  6. Fractional Quantum Hall Effect in n = 0 Landau Band of Graphene with Chern Number Matrix

    NASA Astrophysics Data System (ADS)

    Kudo, Koji; Hatsugai, Yasuhiro

    2018-06-01

    Fully taking into account the honeycomb lattice structure, fractional quantum Hall states of graphene are considered by a pseudopotential projected into the n = 0 Landau band. By using chirality as an internal degree of freedom, the Chern number matrices are defined and evaluated numerically. Quantum phase transition induced by changing a range of the interaction is demonstrated that is associated with chirality ferromagnetism. The chirality-unpolarized ground state is consistent with the Halperin 331 state of the bilayer quantum Hall system.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya

    Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less

  8. Emergent phases of fractonic matter

    NASA Astrophysics Data System (ADS)

    Prem, Abhinav; Pretko, Michael; Nandkishore, Rahul M.

    2018-02-01

    Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their interactions, effectively mapping out the "standard model" of fractons. In the present work, however, we consider systems with a finite density of either fractons or their dipolar bound states, with a focus on the U (1 ) fracton models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of the "condensed matter" of fractons. We begin by considering a system with a finite density of fractons, which we show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in "quantum Hall" states of their emergent magnetic field. We study numerous aspects of these generalized quantum Hall systems, such as their edge theories and ground state degeneracies.

  9. Hemispheric Preference and Cyclic Variation of Solar Filament Chirality

    NASA Astrophysics Data System (ADS)

    Hazra, Soumitra; Mahajan, Sushant S.; Douglas, William; Martens, Petrus C.

    2017-08-01

    Although the hemispheric preference of magnetic topological features in the solar atmosphere is a well-established fact, strength and cyclic variation of the hemispheric rule is a debatable issue. In this work, we study the chirality of 3480 solar filaments from 2000 to 2016. We determine the chirality of filaments manually and compare with the results obtained from the Advanced Automated Filament Detection and Characterization Code (AAFDCC). We find that 83% of our manually determined filaments follow the hemispheric chirality rule, while 58% of automatically determined filamentsfollow the same. We also compare our result with an other manually compiled list by Pevtsov et al. (2003). We find that our list matches Pevtsovs manually compiled list with 90% accuracy. We also find that the hemispheric chirality rule does not vary from cycle to cycle. However, the strength of the hemispheric preference decreases at the end and beginning phase of the solar cycle.

  10. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  11. Graphene chiral liquid crystals and macroscopic assembled fibres

    PubMed Central

    Xu, Zhen; Gao, Chao

    2011-01-01

    Chirality and liquid crystals are both widely expressed in nature and biology. Helical assembly of mesophasic molecules and colloids may produce intriguing chiral liquid crystals. To date, chiral liquid crystals of 2D colloids have not been explored. As a typical 2D colloid, graphene is now receiving unprecedented attention. However, making macroscopic graphene fibres is hindered by the poor dispersibility of graphene and by the lack of an assembly method. Here we report that soluble, chemically oxidized graphene or graphene oxide sheets can form chiral liquid crystals in a twist-grain-boundary phase-like model with simultaneous lamellar ordering and long-range helical frustrations. Aqueous graphene oxide liquid crystals were continuously spun into metres of macroscopic graphene oxide fibres; subsequent chemical reduction gave the first macroscopic neat graphene fibres with high conductivity and good mechanical performance. The flexible, strong graphene fibres were knitted into designed patterns and into directionally conductive textiles. PMID:22146390

  12. Interband interference effects at the edge of a multiband chiral p -wave superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Long; Huang, Wen; Sigrist, Manfred; Yao, Dao-Xin

    2017-12-01

    Chiral superconductors support chiral edge modes and potentially spontaneous edge currents at their boundaries. Motivated by the putative multiband chiral p -wave superconductor Sr2RuO4 , we study the influence of the interference between different bands at the edges, which may appear in the presence of moderate edge disorder or in edge tunneling measurements. We show that interband interference can strongly modify the measurable quantities at the edges when the order parameter exhibits phase difference between the bands. This is illustrated by investigating the edge dispersion and the edge current distribution in the presence of interband mixing, as well as the conductance at a tunneling junction. The results are discussed in connection with the putative chiral p -wave superconductor Sr2RuO4 . In passing, we also discuss similar interference effects in multiband models with other pairing symmetries.

  13. Leading order relativistic chiral nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  14. Critical flavor number of the Thirring model in three dimensions

    NASA Astrophysics Data System (ADS)

    Wellegehausen, Björn H.; Schmidt, Daniel; Wipf, Andreas

    2017-11-01

    The Thirring model is a four-fermion theory with a current-current interaction and U (2 N ) chiral symmetry. It is closely related to three-dimensional QED and other models used to describe properties of graphene. In addition, it serves as a toy model to study chiral symmetry breaking. In the limit of flavor number N →1 /2 it is equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase transition. The model was already studied with different methods, including Dyson-Schwinger equations, functional renormalization group methods, and lattice simulations. Most studies agree that there is a phase transition from a symmetric phase to a spontaneously broken phase for a small number of fermion flavors, but no symmetry breaking for large N . But there is no consensus on the critical flavor number Ncr above which there is no phase transition anymore and on further details of the critical behavior. Values of N found in the literature vary between 2 and 7. All earlier lattice studies were performed with staggered fermions. Thus it is questionable if in the continuum limit the lattice model recovers the internal symmetries of the continuum model. We present new results from lattice Monte Carlo simulations of the Thirring model with SLAC fermions which exactly implement all internal symmetries of the continuum model even at finite lattice spacing. If we reformulate the model in an irreducible representation of the Clifford algebra, we find, in contradiction to earlier results, that the behavior for even and odd flavor numbers is very different: for even flavor numbers, chiral and parity symmetry are always unbroken; for odd flavor numbers, parity symmetry is spontaneously broken below the critical flavor number Nircr=9 , while chiral symmetry is still unbroken.

  15. Theoretical model for the discrete flexoelectric effect and a description for the sequence of intermediate smectic phases with increasing periodicity.

    PubMed

    Emelyanenko, A V; Osipov, M A

    2003-11-01

    A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.

  16. QCD with Chiral Imbalance: models vs. lattice

    NASA Astrophysics Data System (ADS)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2017-03-01

    In heavy ion collisions (HIC) at high energies there may appear new phases of matter which must be described by QCD. These phases may have different color and flavour symmetries associated with the constituents involved in collisions as well as various space-time symmetries of hadron matter. Properties of the QCD medium in such a matter can be approximately described, in particular, by a number of right-handed (RH) and left-handed (LH) light quarks. The chiral imbalance (ChI) is characterized by the difference between the numbers of RH and LH quarks and supposedly occurs in the fireball after HIC. Accordingly we have to introduce a quark chiral (axial) chemical potential which simulates a ChI emerging in such a phase. In this report we discuss the possibility of a phase with Local spatial Parity Breaking (LPB) in such an environment and outline conceivable signatures for the registration of LPB as well as the appearance of new states in the spectra of scalar, pseudoscalar and vector particles as a consequence of local ChI. The comparison of the results obtained in the effective QCD- motivated models with lattice data is also performed.

  17. Rashba sandwiches with topological superconducting phases

    NASA Astrophysics Data System (ADS)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena

    2018-05-01

    We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.

  18. Quantum phase transitions in the noncommutative Dirac oscillator

    NASA Astrophysics Data System (ADS)

    Panella, O.; Roy, P.

    2014-10-01

    We study the (2 + 1)-dimensional Dirac oscillator in a homogeneous magnetic field in the noncommutative plane. It is shown that the effect of noncommutativity is twofold: (i) momentum noncommuting coordinates simply shift the critical value (Bcr) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); (ii) noncommutativity in the space coordinates induces a new critical value of the magnetic field, Bcr*, where there is a second quantum phase transition (right-left): this critical point disappears in the commutative limit. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetization of the system. Possible applications to the physics of silicene and graphene are briefly discussed.

  19. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  20. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    PubMed

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chiral Symmetry Breaking and Complete Chiral Purity by Thermodynamic-Kinetic Feedback Near Equilibrium: Implications for the Origin of Biochirality

    NASA Astrophysics Data System (ADS)

    Viedma, Cristobal

    2007-05-01

    Chiral symmetry breaking occurs when a physical or chemical process spontaneously generates a large excess of one of the two enantiomers-left-handed (L) or right-handed (D)--with no preference as to which of the two enantiomers is produced. From the viewpoint of energy, these two enantiomers can exist with an equal probability, and inorganic processes that involve chiral products commonly yield a racemic mixture of both. The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking in chirality and has long intrigued the science community. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, some 140 years ago. Here, it is shown that two populations of chiral crystals of left and right hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking can be explained by the feedback between the thermodynamic control of dissolution and the kinetics of the growth process near equilibrium. This ``thermodynamic-kinetic feedback near equilibrium'' is established as a mechanism to achieve complete chiral purity in solid state from a previously solid racemic medium. The way in which this mechanism could operate in solutions of chiral biomolecules is described. Finally, based on this mechanism, experiments designed to search for chiral purity in a new way are proposed: chiral purity of amino acids or biopolymers is predicted in solid phase from a previously solid racemic medium. This process may have played a key role in the origin of biochirality.

  2. Nonlinear magnetic responses at the phase boundaries around helimagnetic and skyrmion lattice phases in MnSi: Evaluation of robustness of noncollinear spin texture

    NASA Astrophysics Data System (ADS)

    Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.

    2018-03-01

    The phase diagram of a cubic chiral magnet MnSi with multiple Dzyaloshinskii-Moriya (DM) vectors as a function of temperature T and dc magnetic field Hdc was investigated using intensity mapping of the odd-harmonic responses of ac magnetization (M1 ω and M3 ω), and the responses at phase boundaries were evaluated according to a prescription [J. Phys. Soc. Jpn. 84, 104707 (2015), 10.7566/JPSJ.84.104707]. By evaluating M3 ω/M1 ω appearing at phase boundaries, the robustness of noncollinear spin texture in both the helimagnetic (HM) and the skyrmion lattice (SkL) phases of MnSi was discussed. The robustness of vortices-type solitonic texture SkL in MnSi is smaller than those of both the single DM HM and chiral soliton lattice phases of a monoaxial chiral magnet Cr1 /3NbS2 , and furthermore the robustness of the multiple DM HM phase in MnSi is smaller than that of its SkL. Through magnetic diagnostics over the wide T -Hdc range, we found a new paramagnetic (PM) region with ac magnetic hysteresis, where spin fluctuations have been observed via electrical magnetochiral effect. The anomalies observed in the previous ultrasonic attenuation measurement correspond to the peak positions of out-of-phase M1 ω. The appearance of a new PM region occurs at a characteristic magnetic field, above which indeed the SkL phase appears. It has us suppose that the new PM region could be a phase with spin fluctuation like the skyrmion gas phase.

  3. Possible formation of high temperature superconductor at an early stage of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yu, Lang; Chernodub, Maxim; Huang, Mei

    2016-12-01

    We investigate the effect of the inverse magnetic catalysis (IMC) on charged ρ meson condensation at finite temperature in the framework of the Nambu-Jona-Lasinio model, where mesons are calculated to the leading order of 1 /Nc expansion. The IMC for chiral condensate has been considered using three different approaches: incorporating the chiral condensate from lattice data, using the running coupling constant, and introducing the chiral chemical potential, respectively. It is observed that with no IMC effect included, the critical magnetic field e Bc for charged ρ condensation increases monotonically with the temperature. However, including IMC substantially affects the polarized charged ρ condensation around the critical temperature Tc of the chiral phase transition: first, the critical magnetic field e Bc for the charged ρ condensation decreases with the temperature, reaches its minimum value around Tc, and then increases with the temperature. It is quite surprising that the charged ρ can condense above the critical temperature of chiral phase transition with a even smaller critical magnetic field comparing its vacuum value. The Nambu-Jona-Lasinio model calculation shows that in the temperature region of 1 - 1.5 Tc , the critical magnetic field for charged ρ condensation is rather small and in the region of e Bc˜0.15 - 0.3 GeV2 , which suggests that high temperature superconductor might be created through noncentral heavy ion collisions at LHC energies.

  4. Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism.

    PubMed

    Główka, Franciszek; Karaźniewicz, Marta

    2007-08-01

    A stereospecific CE method was elaborated for the quantification of ibuprofen enantiomers and their major phase I metabolites: 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen in plasma and urine. Optimal temperature and pH of BGE were established to obtain complete separation of eight ibuprofen chiral compounds and (+)-S indobufen, applied as an internal standard, during one analytical run. After isolation from biological matrices using SPE on an octadecyl stationary phase, the analytes were separated and resolved up to 10 min in a silica capillary filled with BGE, consisting of heptakis 2,3,6-tri-O-methyl-beta-CD in triethanolamine-phosphate buffer, pH 5.0. Complete enantioseparation of the all analytes confirmed specificity of the method. The calibration curves were linear in the range of 0.1-25.0 mg/L for IBP enantiomers and their chiral metabolites in 0.5 mL of plasma and 1.0-200.0 mg/L in 0.05 mL of urine. Following SPE procedure, recovery of the chiral analytes from the two media was in the ranges of 82-87%, 90-95% and 70-76% for ibuprofen, 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen enantiomers, respectively. The validated method was successfully applied in pharmacokinetic investigations of IBP enantiomers as well as free chiral metabolites in reference to the genetic polymorphism of CYP450 2C isoenzymes.

  5. DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS

    PubMed Central

    Mallik, Rangan; Hage, David S.

    2008-01-01

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436

  6. Loss of propiconazole and its four stereoisomers from the water phase of two soil-water slurries as measured by capillary electrophoresis.

    PubMed

    Garrison, Arthur W; Avants, Jimmy K; Miller, Rebecca D

    2011-08-01

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t(1/2) was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC), the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  7. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist

    PubMed Central

    Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A.; Bellini, Tommaso

    2010-01-01

    Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described. PMID:20876125

  8. Peculiarities of the crystal structure of modified banana-shaped mesogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharova, M. A.; Usol'tseva, N. V., E-mail: nadezhda_usoltseva@yahoo.com; Ungar, G.

    The structure and phase behavior of an achiral banana-shaped compound-bis-{l_brace}3,4,5-tri[4-(4-n-nonyloxybenzoyloxy)] benzoylamino{r_brace}-1,3-phenylene (I)-have been investigated. This compound exhibits an enantiotropic high-temperature chiral mesophase; upon cooling it successively passes to the crystalline (Cr) phases: Cr{alpha} (281.0-176.0 deg. C), Cr{beta} (175.0-72.0 deg. C), and Cr{gamma} (71.0-40.0 deg. C) (their temperature ranges of existence are indicated). The surface topology and results of linear measurements along the cross sections of certain portions of thin films of compound I in the Cr {gamma} phase clearly prove the effect of the preserved chirality of the previous liquid-crystal phase in the crystalline state.

  9. Color superconductivity from the chiral quark-meson model

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  10. Direct emission of chirality controllable femtosecond LG01 vortex beam

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.

    2018-05-01

    Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.

  11. Enantioselective determination of metoprolol and its metabolites in human urine high-performance liquid chromatography with fluorescence detection (HPLC-FLD) and tandem mass spectrometry (MS/MS).

    PubMed

    Baranowska, Irena; Adolf, Weronika; Magiera, Sylwia

    2015-11-01

    A sensitive, stereoselective assay using solid phase extraction and high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) was developed and validated for the analysis of enantiomers of metoprolol and its metabolites (α-hydroxymetoprolol, O-desmethylmetoprolol). Chiral separation was achieved using a CHIRALCEL OD-RH column, packed with cellulose tris-(3,5-dimethylphenyl-carbamate) stationary phase, employing a mobile phase composed by a mixture of 0.2% diethylamine in water and acetonitrile in gradient elution mode. Linear calibration curves were obtained over the range of 0.025-2.0μg/mL (R(2)>0.994) in urine for both enantiomers of metoprolol and its metabolites with quantitation limit of 0.025μg/mL. Intra and inter-day precision and accuracy were below 15% for both metoprolol and metabolites enantiomers. The recovery of enantiomer of metoprolol and its metabolite was greater than 68.0%, utilizing a SPE procedure. The method was tested with urine quality control samples and human urine fractions after administration of 50mg rac-metoprolol. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Heliconical smectic phases formed by achiral molecules

    DOE PAGES

    Abberley, Jordan P.; Killah, Ross; Walker, Rebecca; ...

    2018-01-15

    Chiral symmetry breaking in soft matter is a hot topic of current research. Recently, such a phenomenon was found in a fluidic phase showing orientational order of molecules - the nematic phase; although built of achiral molecules, the phase can exhibit structural chirality - average molecular direction follows a short-pitch helix. Here in this paper, we report a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which form twisted structures in nematic as well as in lamellar phases. The tight pitch heliconical nematic (N TB) phase and heliconical tilted smectic C (SmC TB) phasemore » are formed. The formation of a variety of helical structures is accompanied by a gradual freezing of molecular rotation. In the lowest temperature smectic phase, HexI, the twist is expressed through the formation of hierarchical structure: nanoscale helices and mesoscopic helical filaments. The short-pitch helical structure in the smectic phases is confirmed by resonant X-ray measurements.« less

  13. Heliconical smectic phases formed by achiral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abberley, Jordan P.; Killah, Ross; Walker, Rebecca

    Chiral symmetry breaking in soft matter is a hot topic of current research. Recently, such a phenomenon was found in a fluidic phase showing orientational order of molecules - the nematic phase; although built of achiral molecules, the phase can exhibit structural chirality - average molecular direction follows a short-pitch helix. Here in this paper, we report a series of achiral asymmetric dimers with an odd number of atoms in the spacer, which form twisted structures in nematic as well as in lamellar phases. The tight pitch heliconical nematic (N TB) phase and heliconical tilted smectic C (SmC TB) phasemore » are formed. The formation of a variety of helical structures is accompanied by a gradual freezing of molecular rotation. In the lowest temperature smectic phase, HexI, the twist is expressed through the formation of hierarchical structure: nanoscale helices and mesoscopic helical filaments. The short-pitch helical structure in the smectic phases is confirmed by resonant X-ray measurements.« less

  14. Identifying the chiral d-wave superconductivity by Josephson φ0-states.

    PubMed

    Liu, Jun-Feng; Xu, Yong; Wang, Jun

    2017-03-07

    We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ 0 -junction state where the current-phase relation is shifted by a phase φ 0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ 0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ 0 -states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ 0 - junction, which is useful in superconducting electronics and superconducting quantum computation.

  15. Identifying the chiral d-wave superconductivity by Josephson φ0-states

    PubMed Central

    Liu, Jun-Feng; Xu, Yong; Wang, Jun

    2017-01-01

    We propose the Josephson junctions linked by a normal metal between a d + id superconductor and another d + id superconductor, a d-wave superconductor, or a s-wave superconductor for identifying the chiral d + id superconductivity. The time-reversal breaking in the chiral d-wave superconducting state is shown to result in a Josephson φ0-junction state where the current-phase relation is shifted by a phase φ0 from the sinusoidal relation, other than 0 and π. The ground-state phase difference φ0 and the critical current can be used to definitely confirm and read the information about the d + id superconductivity. A smooth evolution from conventional 0-π transitions to tunable φ0-states can be observed by changing the relative magnitude of two types of d-wave components in the d + id pairing. On the other hand, the Josephson junction involving the d + id superconductor is also the simplest model to realize a φ0- junction, which is useful in superconducting electronics and superconducting quantum computation. PMID:28266582

  16. Instanton-dyon ensembles reproduce deconfinement and chiral restoration phase transitions

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2018-03-01

    Paradigm shift in gauge topology at finite temperatures, from the instantons to their constituents - instanton-dyons - has recently lead to studies of their ensembles and very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at suffciently high density explains the chiral symmetry breaking transition. Unlike instantons, these objects have electric and magnetic charges. Simulations of the instanton-dyon ensembles have demonstrated that their back reaction on the Polyakov line modifies its potential and generates the deconfinement phase transition. For the Nc = 2 gauge theory the transition is second order, for QCD-like theory with Nc = 2 and two light quark flavors Nf = 2 both transitions are weak crossovers at happening at about the same condition. Introduction of quark-flavor-dependent periodicity phases (imaginary chemical potentials) leads to drastic changes in both transitions. In particulaly, in the so called Z(Nc) - QCD model the deconfinement transforms to strong first order transition, while the chiral condensate does not disappear at all. The talk will also cover more detailed studies of correlations between the dyons, effective eta' mass and other screening masses.

  17. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  18. TGBA and TGBC phases in some chiral tolan derivatives

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T.; Bouchta, A.; Navailles, L.; Barois, P.; Isaert, N.; Twieg, R. J.; Maaroufi, A.; Destrade, C.

    1992-10-01

    Three chiral compounds (n=10, 11, 12) belonging to the optically active series : 3-fluoro-4-[(R) or (S)-1-methylheptyloxy]-4'-(4''-alkoxy-2'', 3''-difluorobenzoyloxy) tolans (nF{2}BTFO{1}M{7}) have been synthesized. The helical SA^{*} phase or TGBA phase is found in the decyloxy derivative. The most interesting compound is obtained with n=11. It displays, for the first time, two TGB phases (TGBA and TGBC phases). The nature of these helical smectic phases is confirmed by different studies : optical observation, DSC, contact method, mixtures, X-ray diffraction and helical pitch measurements. the electrooptical properties of the SC^{*} phase have also been studied. Trois produits (n=10, 11, 12) de la série chirale : 3-fluoro-4-[(R) ou (S)-1-methylheptyloxy]-4'-(4''-alcoxy-2'', 3''-difluorobenzoyloxy) tolanes (nF{2}BTFO{1}M{7}) ont été synthétisés. Les deux premiers produits présentent la phase SA^{*} hélicoïdale ou torse (TGBA). L'existence de la nouvelle phase TGBC, prédite par Renn et Lubensky, a été trouvée dans les deux derniers matériaux et prouvée par plusieurs études : observation microscopique, AED, méthode de contact, mélanges binaires, diffraction de rayons X et mesures du pas d'hélice. Le diagramme de phase réalisé entre ces trois matériaux est similaire à celui prédit par Renn. Les propriétés électrooptiques de la phase SC^{*} ferroélectrique ont aussi été étudiées.

  19. Enantiomeric separation of some demethylated analogues of clofibric acid by capillary zone electrophoresis and nano-liquid chromatography.

    PubMed

    Fantacuzzi, Marialuigia; Bettoni, Giancarlo; D'Orazio, Giovanni; Fanali, Salvatore

    2006-03-01

    The enantiomeric separation of some demethylated analogues of clofibric acid, namely 2-(6-chloro-benzothiazol-2-ylsulfanyl)-, 2-(6-methoxy-benzothiazol-2-ylsulfanyl)-, 2-(quinolin-2-yloxy)-, 2-(6-chloro-quinolin-2-yloxy)-, 2-(7-chloro-quinolin-4-yloxy)-propionic acid (compounds A-E, respectively), has been studied by CZE and nano-LC using for the first technique two beta-CD derivatives and vancomycin added to the BGE and vancomycin-modified silica particles for the second one, with the aim to find the optimum experimental conditions for the baseline resolution. The type and the concentration of the chiral selector added to the BGE, the buffer pH, the type of organic modifier and its concentration, the capillary temperature and the applied voltage played a very important role in the enantioresolution of the analysed compounds. The use of 6-monodeoxy-6-monoamino-beta-CD allowed to achieve baseline resolution of four of five clofibric acid derivatives in less than 10 min while heptakis-(2,3,6-tri-O-methyl)-beta-CD partially resolved the same compounds in their enantiomers. Employing vancomycin as the chiral selector in CZE, the counter-current partial filling method was chosen achieving baseline resolution of four analytes. All the studied compounds were enantioresolved employing a capillary column packed with vancomycin stationary phase by nano-LC, and the resolution was strongly influenced by the concentration of the organic modifier and by the pH of the mobile phase. The best results were achieved at pH 4.5 in presence of 60% of methanol (MeOH). However, longer analysis times were observed in the experiments carried out by nano-LC.

  20. Analysis of oxcarbazepine and the 10-hydroxycarbazepine enantiomers in plasma by LC-MS/MS: application in a pharmacokinetic study.

    PubMed

    de Jesus Antunes, Natalicia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Lanchote, Vera Lucia

    2013-12-01

    Oxcarbazepine is a second-generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic-clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10-hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)-(+)- and R-(-)-MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert-butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD-H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC-MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD and an AUC(0-12) S-(+)/R-(-) ratio of 5.44. © 2013 Wiley Periodicals, Inc.

  1. Quantitation of the enantiomers of tramadol and its three main metabolites in human whole blood using LC-MS/MS.

    PubMed

    Haage, Pernilla; Kronstrand, Robert; Carlsson, Björn; Kugelberg, Fredrik C; Josefsson, Martin

    2016-02-05

    The analgesic drug tramadol and its metabolites are chiral compounds, with the (+)- and (-)-enantiomers showing different pharmacological and toxicological effects. This novel enantioselective method, based on LC-MS/MS in reversed phase mode, enabled measurement of the parent compound and its three main metabolites O-desmethyltramadol, N-desmethyltramadol and N,O-didesmethyltramadol simultaneously. Whole blood samples of 0.5g were fortified with internal standards (tramadol-(13)C-D3 and O-desmethyl-cis-tramadol-D6) and extracted under basic conditions (pH 11) by liquid-liquid extraction. Chromatography was performed on a chiral alpha-1-acid glycoprotein (AGP) column preceded by an AGP guard column. The mobile phase consisted of 0.8% acetonitrile and 99.2% ammonium acetate (20mM, pH 7.2). A post-column infusion with 0.05% formic acid in acetonitrile was used to enhance sensitivity. Quantitation as well as enantiomeric ratio measurements were covered by quality controls. Validation parameters for all eight enantiomers included selectivity (high), matrix effects (no ion suppression/enhancement), calibration model (linear, weight 1/X(2), in the range of 0.25-250ng/g), limit of quantitation (0.125-0.50ng/g), repeatability (2-6%) and intermediate precision (2-7%), accuracy (83-114%), dilution integrity (98-115%), carry over (not exceeding 0.07%) and stability (stable in blood and extract). The method was applied to blood samples from a healthy volunteer administrated a single 100mg dose and to a case sample concerning an impaired driver, which confirmed its applicability in human pharmacokinetic studies as well as in toxicological and forensic investigations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multi-responsible chameleon molecule with chiral naphthyl and azobenzene moieties.

    PubMed

    Kim, Dae-Yoon; Lee, Sang-A; Park, Minwook; Choi, Yu-Jin; Kang, Shin-Woong; Jeong, Kwang-Un

    2015-04-21

    A photochromic chiral molecule with azobenzene mesogens and a (R)-configuration naphthyl moiety (abbreviated as NCA2M) was specifically designed and synthesized for the demonstration of chameleon-like color changes responding to multitudinous external stimuli, such as temperature, light and electric field. The basic phase transition behaviors of NCA2M were first studied by the combination of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Based on the structure-sensitive X-ray diffraction results obtained at different temperatures, it was comprehended that the NCA2M molecule exhibited the tilted version of highly ordered smectic crystal phase with 5.45 nm layer thickness. Chiral nematic (N*) liquid crystals (LC) with helical superstructures were formed by doping the NCA2M photochromic chiral molecule in an achiral nematic (N) LC medium. By controlling the helical pitch length of N*-LC with respect to temperature, light and electric field, the wavelength of selectively reflected light from the N* photonic crystal was finely tuned. The light-induced color change of N*-LC film was the most efficient method for covering the whole visible region from blue to green and to red, which allowed us to fabricate remote-controllable photo-responsive devices.

  3. Molecular engineering of colloidal liquid crystals using DNA origami

    NASA Astrophysics Data System (ADS)

    Siavashpouri, Mahsa; Wachauf, Christian; Zakhary, Mark; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir

    Understanding the microscopic origin of cholesteric phase remains a foundational, yet unresolved problem in the field of liquid crystals. Lack of experimental model system that allows for the systematic control of the microscopic chiral structure makes it difficult to investigate this problem for several years. Here, using DNA origami technology, we systematically vary the chirality of the colloidal particles with molecular precision and establish a quantitative relationship between the microscopic structure of particles and the macroscopic cholesteric pitch. Our study presents a new methodology for predicting bulk behavior of diverse phases based on the microscopic architectures of the constituent molecules.

  4. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn; State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190; Hou, Feng-Yao

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  5. Rapid chiral separation of atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid using supercritical fluid chromatography-tandem mass spectrometry - Application to wetland microcosms.

    PubMed

    Svan, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Jasper, Justin T; Sedlak, David L; Pettersson, Curt E

    2015-08-28

    A method for enantiomeric separation of the three β-blocking agents atenolol, metoprolol, propranolol and the zwitterionic metoprolol acid, a major metabolite of both metoprolol and in environmental matrices also atenolol, has been developed. By use of supercritical fluid chromatography and the polysaccharide-based Chiralpak(®) IB-3, all four compounds were simultaneously enantiomerically separated (Rs>1.5) within 8min. Detection was performed using tandem mass spectrometry, and to avoid isobaric interference between the co-eluting metoprolol and metoprolol acid, the achiral column Acquity(®) UPC(2) BEH 2-EP was attached ahead of to the chiral column. Carbon dioxide with 18% methanol containing 0.5% (v/v) of the additives trifluoroacetic acid and ammonia in a 2:1 molar ratio were used as mobile phase. A post column make-up flow (0.3mL/min) of methanol containing 0.1% (v/v) formic acid was used to enhance the positive electrospray ionization. Detection was carried out using a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode, using one transition per analyte and internal standard. The method was successfully applied for monitoring the enantiomeric fraction change over time in a laboratory scale wetland degradation study. It showed good precision, recovery, sensitivity and low effect of the sample matrix. Copyright © 2015. Published by Elsevier B.V.

  6. Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions

    NASA Astrophysics Data System (ADS)

    Plekhanov, Kirill; Roux, Guillaume; Le Hur, Karyn

    2017-01-01

    The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks, this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on (interacting) boson systems in s -wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.

  7. Ideal walking dynamics via a gauged NJL model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  8. Induced cholesteric systems based on some cyano derivatives as host phases

    NASA Astrophysics Data System (ADS)

    Shkolnikova, Natalya I.; Kutulya, Lidiya A.; Vashchenko, V. V.; Fedoryako, A. P.; Lapanik, V. I.; Posledovich, N. R.

    2002-12-01

    Macroscopical properties of some induced cholesteric compositions based on 4-pentyl-4'-cyano derivatives of biphenyl and phenylcyclohexane as host phases have been investigated. The series of N-arylidene derivatives of (S)-1-phenylethylamine with varied both rigid moiety of the N-arylidene fragment and terminal substituent was used as chiral dopants. The influence of the chiral dopant molecular structure as well as of physical properties of the host phases used on the helical twisting power, the temperature dependence of the induced helical pitch and the N* mesophase thermal stability has been characterized. It has been concluded that the distinctions in properties of the LC systems containing the OCH2 and COO linking groups are caused by their different conformational states.

  9. Ideal walking dynamics via a gauged NJL model

    DOE PAGES

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-07-25

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  10. Chiral topological phases from artificial neural networks

    NASA Astrophysics Data System (ADS)

    Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl

    2018-05-01

    Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.

  11. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles

    NASA Astrophysics Data System (ADS)

    Thérien-Aubin, Héloïse; Lukach, Ariella; Pitch, Natalie; Kumacheva, Eugenia

    2015-04-01

    We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase.We report the structural and optical properties of composite films formed from mixed suspensions of cellulose nanocrystals (CNCs) and fluorescent latex nanoparticles (NPs). We explored the effect of NP concentration, size, surface charge, glass transition temperature and film processing conditions on film structure and properties. The chiral nematic order, typical of CNC films, was preserved in films with up to 50 wt% of negatively-charged latex NPs. Composite films were characterized by macroscopically close-to-uniform fluorescence, birefringence, and circular dichroism properties. In contrast, addition of positively charged latex NPs led to gelation of CNC-latex suspensions and disruption of the chiral nematic order in the composite films. Large latex NPs disrupted the chiral nematic order to a larger extend than small NPs. Furthermore, the glass transition of latex NPs had a dramatic effect on the structure of CNC-latex films. Latex particles in the rubbery state were easily incorporated in the ordered CNC matrix and improved the structural integrity of its chiral nematic phase. Electronic supplementary information (ESI) available: Detailed latex synthesis. Additional characterization of the nanoparticles and films. See DOI: 10.1039/c5nr00660k

  12. Enantio-Relay Catalysis Constructs Chiral Biaryl Alcohols over Cascade Suzuki Cross-Coupling-Asymmetric Transfer Hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhang, Dacheng; Gao, Xiaoshuang; Cheng, Tanyu; Liu, Guohua

    2014-05-01

    The construction of chiral biaryl alcohols using enantio-relay catalysis is a particularly attractive synthetic method in organic synthesis. However, overcoming the intrinsic incompatibility of distinct organometallic complexes and the reaction conditions used are significant challenges in asymmetric catalysis. To overcome these barriers, we have taken advantage of an enantio-relay catalysis strategy and a combined dual-immobilization approach. We report the use of an imidazolium-based organopalladium-functionalized organic-inorganic hybrid silica and ethylene-coated chiral organoruthenium-functionalized magnetic nanoparticles to catalyze a cascade Suzuki cross-coupling-asymmetric transfer hydrogenation reaction to prepare chiral biaryl alcohols in a two-step, one-pot process. As expected, the site-isolated active species, salient imidazolium phase-transfer character and high ethylene-coated hydrophobicity can synergistically boost the catalytic performance. Furthermore, enantio-relay catalysis has the potential to efficiently prepare a variety of chiral biaryl alcohols. Our synthetic strategy is a general method that shows the potential of developing enantio-relay catalysis towards environmentally benign and sustainable organic synthesis.

  13. Chiral density wave versus pion condensation at finite density and zero temperature

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Kneschke, Patrick

    2018-04-01

    The quark-meson model is often used as a low-energy effective model for QCD to study the chiral transition at finite temperature T , baryon chemical potential μB , and isospin chemical potential μI . We determine the parameters of the model by matching the meson and quark masses, as well as the pion decay constant to their physical values using the on shell (OS) and modified minimal subtraction (MS ¯ ) schemes. In this paper, the existence of different phases at zero temperature is studied. In particular, we investigate the competition between an inhomogeneous chiral condensate and a homogeneous pion condensate. For the inhomogeneity, we use a chiral-density wave ansatz. For a sigma mass of 600 MeV, we find that an inhomogeneous chiral condensate exists only for pion masses below approximately 37 MeV. We also show that due to our parameter fixing, the onset of pion condensation takes place exactly at μIc=1/2 mπ in accordance with exact results.

  14. Topological responses from chiral anomaly in multi-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing

    2017-08-01

    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.

  15. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets

    DOE PAGES

    Chen, Gong; Kang, Sang Pyo; Ophus, Colin; ...

    2017-05-19

    Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to bemore » non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.« less

  16. On exact correlation functions of chiral ring operators in 2 d N=(2, 2) SCFTs via localization

    NASA Astrophysics Data System (ADS)

    Chen, Jin

    2018-03-01

    We study the extremal correlation functions of (twisted) chiral ring operators via superlocalization in N=(2, 2) superconformal field theories (SCFTs) with central charge c ≥ 3, especially for SCFTs with Calabi-Yau geometric phases. We extend the method in arXiv: 1602.05971 with mild modifications, so that it is applicable to disentangle operators mixing on S 2 in nilpotent (twisted) chiral rings of 2 d SCFTs. With the extended algorithm and technique of localization, we compute exactly the extremal correlators in 2 d N=(2, 2) (twisted) chiral rings as non-holomorphic functions of marginal parameters of the theories. Especially in the context of Calabi-Yau geometries, we give an explicit geometric interpretation to our algorithm as the Griffiths transversality with projection on the Hodge bundle over Calabi-Yau complex moduli. We also apply the method to compute extremal correlators in Kähler moduli, or say twisted chiral rings, of several interesting Calabi-Yau manifolds. In the case of complete intersections in toric varieties, we provide an alternative formalism for extremal correlators via localization onto Higgs branch. In addition, as a spinoff we find that, from the extremal correlators of the top element in twisted chiral rings, one can extract chiral correlators in A-twisted topological theories.

  17. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    PubMed

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  18. Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Goswami, Pallab; Tewari, Sumanta

    2017-07-01

    In the presence of parallel electric and magnetic fields, the violation of a separate number conservation laws for the three-dimensional left- and right-handed Weyl fermions is known as the chiral anomaly. The recent discovery of Weyl and Dirac semimetals has paved the way for experimentally testing the effects of chiral anomaly via magnetotransport measurements, since chiral anomaly can lead to negative longitudinal magnetoresistance (LMR) while the transverse magnetoresistance remains positive. More recently, a type-II Weyl semimetal (WSM) phase has been proposed, where the nodal points possess a finite density of states due to the touching between electron and hole pockets. It has been suggested that the main difference between the two types of WSMs (type I and type II) is that in the latter, chiral-anomaly-induced negative LMR (positive longitudinal magnetoconductance) is strongly anisotropic, vanishing when the applied magnetic field is perpendicular to the direction of tilt of Weyl fermion cones in a type-II WSM. We analyze chiral anomaly in a type-II WSM in a quasiclassical Boltzmann framework, and find that the chiral-anomaly-induced positive longitudinal magnetoconductivity is present along any arbitrary direction. Thus, our results are pertinent for uncovering transport signatures of type-II WSMs in different candidate materials.

  19. A 3-D open-framework material with intrinsic chiral topology used as a stationary phase in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Xin-Huan; Zhang, Ze-Jun; Zhang, Mei; Jia, Jia; Yuan, Li-Ming

    2013-04-01

    Compared with liquid chromatography and capillary electrophoresis, the diversity of gas chromatography chiral stationary phases is rather limited. Here, we report the fabrication of Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam = D-camphoric acid; bdc = 1,4-benzenedicarboxylate; tmdpy = 4,4'-trimethylenedipyridine)-coated open tubular columns for high-resolution gas chromatographic separation of compounds. The Co(D-Cam)1/2(bdc)1/2(tmdpy) compound possesses a 3-D framework containing enantiopure building blocks embedded in intrinsically chiral topological nets. In this study, two fused-silica open tubular columns with different inner diameters and lengths, including column A (30 m × 530 μm i.d.) and column B (2 m × 75 μm i.d.), were prepared by a dynamic coating method using Co-(D-Cam)1/2(bdc)1/2(tmdpy) as the stationary phase. The chromatographic properties of the two columns were investigated using n-dodecane as the test compound at 120 °C. The number of theoretical plates (plates/m) of the two metal-organic framework columns was 1,450 and 3,100, respectively. The separation properties were evaluated using racemates, isomers, alkanes, alcohols, and Grob's test mixture. The limit of detection and limit of quantification were found to be 0.125 and 0.417 ng for citronellal enantiomers, respectively. Repeatability (n = 6) showed lower than 0.25 % relative standard deviation (RSD) for retention times and lower than 2.2 % RSD for corrected peak areas. The experimental results showed that the stationary phase has excellent selectivity and also possesses good recognition ability toward these organic compounds, especially chiral compounds.

  20. Statistical uncertainties of a chiral interaction at next-to-next-to leading order

    DOE PAGES

    Ekström, A.; Carlsson, B. D.; Wendt, K. A.; ...

    2015-02-05

    In this paper, we have quantified the statistical uncertainties of the low-energy coupling-constants (LECs) of an optimized nucleon–nucleon interaction from chiral effective field theory at next-to-next-to-leading order. Finally, in addition, we have propagated the impact of the uncertainties of the LECs to two-nucleon scattering phase shifts, effective range parameters, and deuteron observables.

  1. Influence of chirality on the thermal and electric properties of the columnar mesophase exhibited by homomeric dipeptides

    NASA Astrophysics Data System (ADS)

    Parthasarathi, Srividhya; Shankar Rao, D. S.; Prabhu, Rashmi; Yelamaggad, C. V.; Krishna Prasad, S.

    2017-10-01

    We present the first investigation of the influence of chirality on the thermal and electric properties in a biologically important homomeric dipeptide that exhibits a hexagonal columnar liquid crystal mesophase. The peptide employed has two chiral centres, and thus the two possible enantiopures are the (R,R) and (S,S) forms having opposite chirality. The measurements reported the span of the binary phase space between these two enantiopures. Any point in the binary diagram is identified by the enantiomeric excess Xee (the excess content of the R,R enantiopure over its S,S counterpart). We observe that the magnitude of Xee plays a pivotal role in governing the properties as evidenced by X-ray diffraction (XRD), electric polarization (Ps), dielectric relaxation spectroscopy (DRS) measurements, and the isotropic-columnar transition temperature. For example, XRD shows that while other features pointing to a hexagonal columnar phase remain the same, additional short-range ordering, indicating correlated discs within the column, is present for the enantiopures (Xee = ±1) but not for the racemate (Xee = 0). Similarly, an electric-field driven switching whose profile suggests the phase structure to be antiferroelectric is seen over the entire binary space, but the magnitude is dependent on Xee; interestingly the polarization direction is axial, i.e., along the column axis. DRS studies display two dielectric modes over a limited temperature range and one mode (mode 2) connected with the antiferroelectric nature of the columnar structure covering the entire mesophase. The relaxation frequency and the thermal behaviour of mode 2 are strongly influenced by Xee. The most attractive effect of chirality is its influence on the polar order, a measure of which is the magnitude of the axial polarization. This result can be taken to be a direct evidence of the manifestation of molecular recognition and the delicate interplay between chiral perturbations and the magnitude of the polar order, a feature attractive from the viewpoint of devices based on, e.g., remnant polarization—a currently hot topic. To add further dimension to the work, the DRS measurements are also extended to elevated pressures.

  2. Quantum spin circulator in Y junctions of Heisenberg chains

    NASA Astrophysics Data System (ADS)

    Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.

    2018-06-01

    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.

  3. Enantioseparation of Mandelic Acid Enantiomers With Magnetic Nano-Sorbent Modified by a Chiral Selector.

    PubMed

    Tarhan, Tuba; Tural, Bilsen; Tural, Servet; Topal, Giray

    2015-11-01

    In this study, R(+)-α-methylbenzylamine-modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo-second-order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g(-1). The magnetic chiral sorbent has a greater affinity for (S)-(+)-mandelic acid compared to (R)-(-)-mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD-H column. © 2015 Wiley Periodicals, Inc.

  4. Long-range Coulomb interaction effects on the topological phase transitions between semimetals and insulators

    NASA Astrophysics Data System (ADS)

    Han, SangEun; Moon, Eun-Gook

    2018-06-01

    Topological states may be protected by a lattice symmetry in a class of topological semimetals. In three spatial dimensions, the Berry flux around gapless excitations in momentum space concretely defines a chirality, so a protecting symmetry may be referred to as a chiral symmetry. Prime examples include a Dirac semimetal (DSM) in a distorted spinel, BiZnSiO4, protected by a mirror symmetry, and a DSM in Na3Bi , protected by a rotational symmetry. In these states, topology and chiral symmetry are intrinsically tied. In this Rapid Communication, the characteristic interplay between a chiral symmetry order parameter and an instantaneous long-range Coulomb interaction is investigated with the standard renormalization group method. We show that a topological transition associated with chiral symmetry is stable under the presence of a Coulomb interaction and the electron velocity always becomes faster than the one of a chiral symmetry order parameter. Thus, the transition must not be relativistic, which implies that supersymmetry is intrinsically forbidden by the long-range Coulomb interaction. Asymptotically exact universal ratios of physical quantities such as the energy gap ratio are obtained, and connections with experiments and recent theoretical proposals are also discussed.

  5. Bragg-Berry mirrors: reflective broadband q-plates.

    PubMed

    Rafayelyan, Mushegh; Brasselet, Etienne

    2016-09-01

    We report on the experimental realization of flat mirrors enabling the broadband generation of optical vortices upon reflection. The effect is based on the geometric Berry phase associated with the circular Bragg reflection phenomenon from chiral uniaxial media. We show the reflective optical vortex generation from both diffractive and nondiffractive paraxial light beams using spatially patterned chiral liquid crystal films. The intrinsic spectrally broadband character of spin-orbit generation of optical phase singularities is demonstrated over the full visible domain. Our results do not rely on any birefringent retardation requirement and, consequently, foster the development of a novel generation of robust optical elements for spin-orbit photonic technologies.

  6. Chiral topological insulating phases from three-dimensional nodal loop semimetals

    NASA Astrophysics Data System (ADS)

    Li, Linhu; Yin, Chuanhao; Chen, Shu; Araujo, Miguel

    We begin with a minimal model of three-dimensional nodal loop semimetals, and study the effect of anticommuting gap terms. The resulting topological insulating phases are protected by a chiral symmetry, and can be characterized by a winding number defined along the nodal loop. We illustrate the geometric relation between the nodal loop and the gap terms, which has a correspondence to the nodal loop winding number. We further investigate a lattice model and study its edge states under open boundary condition. The edge states hold Dirac cones with the same number as the summation of the winding numbers of each nodal loop in the first Brillouin zone.

  7. A combination of directing groups and chiral anion phase-transfer catalysis for enantioselective fluorination of alkenes

    PubMed Central

    Wu, Jeffrey; Wang, Yi-Ming; Drljevic, Amela; Rauniyar, Vivek; Phipps, Robert J.; Toste, F. Dean

    2013-01-01

    We report a catalytic enantioselective electrophilic fluorination of alkenes to form tertiary and quaternary C(sp3)-F bonds and generate β-amino- and β-aryl-allylic fluorides. The reaction takes advantage of the ability of chiral phosphate anions to serve as solid–liquid phase transfer catalysts and hydrogen bond with directing groups on the substrate. A variety of heterocyclic, carbocyclic, and acyclic alkenes react with good to excellent yields and high enantioselectivities. Further, we demonstrate a one-pot, tandem dihalogenation–cyclization reaction, using the same catalytic system twice in series, with an analogous electrophilic brominating reagent in the second step. PMID:23922394

  8. Chiral phases of superfluid 3He in an anisotropic medium

    NASA Astrophysics Data System (ADS)

    Sauls, J. A.

    2013-12-01

    Recent advances in the fabrication and characterization of anisotropic silica aerogels with exceptional homogeneity provide new insight into the nature of unconventional pairing in disordered anisotropic media. I report theoretical analysis and predictions for the equilibrium phases of superfluid 3He infused into a low-density, homogeneous uniaxial aerogel. Ginzburg-Landau (GL) theory for a class of equal-spin-pairing (ESP) states in a medium with uniaxial anisotropy is developed and used to analyze recent experiments on uniaxially strained aerogels. For 3He in an axially “stretched” aerogel, GL theory predicts a transition from normal liquid into a chiral Anderson-Morel phase at Tc1 in which the chirality axis l̂ is aligned along the strain axis. This orbitally aligned state is protected from random fluctuations in the anisotropy direction, has a positive nuclear magnetic resonance (NMR) frequency shift, a sharp NMR resonance line, and is identified with the high-temperature ESP-1 phase of superfluid 3He in axially stretched aerogel. A second transition into a biaxial phase is predicted to onset at a slightly lower temperature Tc2

  9. Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems

    NASA Astrophysics Data System (ADS)

    Yin, Chuanhao; Jiang, Hui; Li, Linhu; Lü, Rong; Chen, Shu

    2018-05-01

    We unveil the geometrical meaning of winding number and utilize it to characterize the topological phases in one-dimensional chiral non-Hermitian systems. While chiral symmetry ensures the winding number of Hermitian systems are integers, it can take half integers for non-Hermitian systems. We give a geometrical interpretation of the half integers by demonstrating that the winding number ν of a non-Hermitian system is equal to half of the summation of two winding numbers ν1 and ν2 associated with two exceptional points, respectively. The winding numbers ν1 and ν2 represent the times of the real part of the Hamiltonian in momentum space encircling the exceptional points and can only take integers. We further find that the difference of ν1 and ν2 is related to the second winding number or energy vorticity. By applying our scheme to a non-Hermitian Su-Schrieffer-Heeger model and an extended version of it, we show that the topologically different phases can be well characterized by winding numbers. Furthermore, we demonstrate that the existence of left and right zero-mode edge states is closely related to the winding number ν1 and ν2.

  10. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less

  11. Poly-proline-based chiral stationary phases: a molecular dynamics study of triproline, tetraproline, pentaproline and hexaproline interfaces.

    PubMed

    Ashtari, M; Cann, N M

    2012-11-23

    Poly-proline chains and derivatives have been recently examined as the basis for new chiral stationary phases in high performance liquid chromatography. The selectivity of poly-proline has been measured for peptides with up to ten proline units. In this article, we employ molecular dynamics simulations to examine the interfacial structure and solvation of surface-bound poly-proline chiral selectors. Specifically, we study the interfacial structure of trimethylacetyl-terminated poly-proline chains with three-to-six prolines. The surface includes silanol groups and end-caps, to better capture the characteristics of the stationary phase, and the solvent is either a polar water/methanol or a relatively apolar n-hexane/2-propanol mixture. We begin with a comprehensive ab initio study of the conformers, their energies, and an assessment of conformer flexibility. Force fields have been developed for each poly-proline selector. Molecular dynamics simulations are employed to study the preferred backbone conformations and solvent hydrogen bonding for different poly-proline/solvent interfaces. For triproline, the effect of two different terminal groups, trimethylacetyl and t-butyl carbamate are compared. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A facile and efficient single-step approach for the fabrication of vancomycin functionalized polymer-based monolith as chiral stationary phase for nano-liquid chromatography.

    PubMed

    Xu, Dongsheng; Shao, Huikai; Luo, Rongying; Wang, Qiqin; Sánchez-López, Elena; Fanali, Salvatore; Marina, Maria Luisa; Jiang, Zhengjin

    2018-07-06

    A facile single-step preparation strategy for fabricating vancomycin functionalized organic polymer-based monolith within 100μm fused-silica capillary was developed. The synthetic chiral functional monomer, i.e 2-isocyanatoethyl methacrylate (ICNEML) derivative of vancomycin, was co-polymerized with the cross-linker ethylene dimethacrylate (EDMA) in the presence of methanol and dimethyl sulfoxide as the selected porogens. The co-polymerization conditions were systematically optimized in order to obtain satisfactory column performance. Adequate permeability, stability and column morphology were observed for the optimized poly(ICNEML-vancomycin-co-EDMA) monolith. A series of chiral drugs were evaluated on the monolith in either polar organic-phase or reversed-phase modes. After the optimization of separation conditions, baseline or partial enantioseparation were obtained for series of drugs including thalidomide, colchicine, carteolol, salbutamol, clenbuterol and several other β-blockers. The proposed single-step approach not only resulted in a vancomycin functionalized organic polymer-based monolith with acceptable performance, but also significantly simplified the preparation procedure by reducing time and labor. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.

    PubMed

    Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja

    2014-12-14

    Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.

  14. Chiral stability of an extemporaneously prepared clopidogrel bisulfate oral suspension.

    PubMed

    Tynes, Clay R; Livingston, Brad; Patel, Hetesh; Arnold, John J

    2014-01-01

    The purpose of this study was to evaluate the chiral stability of clopidogrel bisulfate in an extemporaneously compounded oral suspension for a period of 60 days. A 5 mg/mL oral suspension of clopidogrel bisulfate was prepared from commercially available Plavix tablets. The clopidogrel suspension was then evenly divided between two light-resistant prescription bottles and stored either under refrigeration (4°C) or at room temperature (25°C). Samples were drawn from the stored suspensions immediately after preparation and on days 7, 14, 28, and 60. Samples were subsequently analyzed at each time point by high-performance liquid chromatography using a reversed-phase column, with chemical stability defined as the retention of at least 90% of the initial intact clopidogrel concentration measured. To determine the chiral stability of the suspension, samples were also analyzed by high-performance liquid chromatography using a chiral column to investigate possible enantiomeric inversion. Chiral stability was defined as the retention of at least 90% of the initial concentration of the suspension as the S-enantiomer, the active moiety of Plavix. Regardless of storage conditions, the oral suspension of clopidogrel retained at least 98% of the active S-enantiomer for 60 days after preparation. Compared with the clopidogrel suspension stored in the refrigerator, more chiral inversion was noted in the clopidogrel suspension stored at room temperature. Our investigation of chiral stability indicates that a 5 mg/mL clopidogrel oral suspension stored under refrigeration and at room temperature maintains chiral stability as the active S-enantiomer.

  15. Enantioseparation of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidones on chiral stationary phases based on 3,5-dimethylanilides of N-(4-alkylamino-3,5-dinitro)benzoyl L-alpha-amino acids.

    PubMed

    Kontrec, Darko; Vinković, Vladimir; Sunjić, Vitomir; Schuiki, Birgit; Fabian, Walter M F; Kappe, C Oliver

    2003-06-01

    Three novel chiral packing materials for high-performance liquid chromatography were prepared by covalently binding of (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]propan-amide (7), (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonylamino]-4-methylpentanamide (8), and (2S)-N-(3,5-dimethylphenyl)-2-[(4-chloro-3,5-dinitrophenyl)carbonyl-amino]-2-phenylacetamide (9) to aminopropyl silica. The resulting chiral stationary phases (CSPs 1-3) proved effective for the resolution of racemic 4-aryl-3,4-dihydro-2(1H)-pyrimidone derivatives (TR 1-14). The mechanism of their enantioselection, supported by the elution order of (S)-TR 13 and (R)-TR 13 and molecular modeling of the complex of the slower running (S)-TR 13 with CSP 1 is discussed. Copyright 2003 Wiley-Liss, Inc.

  16. The thermodynamic parameters of sorption and enantioselectivity of the chiral smectic liquid crystal 2-methylbutyl ester of 4-(4-decyloxybenzylideneamino)-cinnamic acid

    NASA Astrophysics Data System (ADS)

    Onuchak, L. A.; Stepanova, R. F.; Akopova, O. B.; Glebova, O. V.; Chernova, O. M.

    2008-06-01

    The thermodynamic characteristics of sorption of n-alkanes, arenes, aldehydes, monoatomic alcohols, and optical isomers of camphene and butanediol-2,3 by a chiral smectic liquid crystal, 2-methylbutyl ester of 4-(4-decyloxybenzylideneamino)-cinnamic acid, from the gas phase were studied over the temperature range including the S*C and S*A mesophases and isotropic phase. The standard and excess thermodynamic functions of sorption were determined for 26 sorbates of the classes of substances specified. The S*C and S*A mesophases exhibited selectivity with respect to the separation of para and meta xylenes (α p/m = 1.06 1.07, 90 108°C) and pronounced enantioselectivity (αR/S = 1.05 1.09, 87 108°C). The helically twisted structure of the smectic liquid crystal was shown to play an important role in the mechanism of the chiral recognition of optical isomers of polar and low-polarity compounds under gas-liquid chromatography conditions.

  17. Defect topologies in chiral liquid crystals confined to mesoscopic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlotthauer, Sergej, E-mail: s.schlotthauer@mailbox.tu-berlin.de; Skutnik, Robert A.; Stieger, Tillmann

    2015-05-21

    We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system.more » If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.« less

  18. Substituent effects on the enantioselective retention of anti-HIV 5-aryl-delta 2-1,2,4-oxadiazolines on R,R-DACH-DNB chiral stationary phase.

    PubMed

    Altomare, C; Cellamare, S; Carotti, A; Barreca, M L; Chimirri, A; Monforte, A M; Gasparrini, F; Villani, C; Cirilli, M; Mazza, F

    1996-01-01

    A series of racemic 3-phenyl-4-(1-adamantyl)-5-X-phenyl- delta 2-1,2,4-oxadiazo lines (PAdOx) were directly resolved by HPLC using a Pirkle-type stationary phase containing N,N'-(3,5-dinitrobenzoyl)-1(R),2(R)-diaminocyclohexane as chiral selector. The more retained enantiomers have S configuration, as demonstrated by X-ray crystallography and circular dichroism measurements. The influence of aromatic ring substituents on enantioselective retention was quantitatively assessed by traditional linear free energy-related (LFER) equations and comparative molecular field analysis (CoMFA). In good agreement with previous findings, the results from this study indicate that the increase in retention (k') is favoured mainly by the phi-basicity and the hydrophilicity of solute, whereas enantioselectivity (alpha) can be satisfactorily modeled by electronic and bulk parameters or CoMFA descriptors. The LFER equations and CoMFA models gave helpful insights into chiral recognition mechanisms.

  19. Colossal thermomagnetic response in chiral d-wave superconductor URu2Si2

    NASA Astrophysics Data System (ADS)

    Matsuda, Yuji

    The heavy-fermion compound URu2Si2 exhibits unconventional superconductivity at Tc = 1.45 K deep inside the so-called hidden order phase. An intriguing aspect is that this system has been suggested to be a candidate of a chiral d-wave superconductor, and possible Weyl-type topological superconducting states have been discussed recently. Here we report on the observation of a highly unusual Nernst signal due to the superconducting fluctuations above Tc. The Nernst coefficient is anomalously enhanced (by a factor of ~106) as compared with the theoretically expected value of the Gaussian fluctuations. This colossal Nernst effect intimately reflects the highly unusual superconducting state of URu2Si2. The results invoke possible chiral or Berry-phase fluctuations associated with the broken time-reversal symmetry of the superconducting order parameter. In collaboration with T. Yamashita, Y. Shimoyama, H. Sumiyoshi (Kyoto), S. Fujimoto (Osaka), T. Shibauchi (Tokyo), Y. Haga (JAEA), T. D. Matsuda (TMU) , Y. Onuki (Ryukyus), A. Levchenko (Wisconsin-Madison).

  20. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  1. Three flavor Nambu-Jona-Lasinio model with Polyakov loop and competition with nuclear matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciminale, M.; Ippolito, N. D.; Nardulli, G.

    2008-03-01

    We study the phase diagram of the three flavor Polyakov-Nambu-Jona-Lasinio (PNJL) model and, in particular, the interplay between chiral symmetry restoration and deconfinement crossover. We compute chiral condensates, quark densities, and the Polyakov loop at several values of temperature and chemical potential. Moreover we investigate on the role of the Polyakov loop dynamics in the transition from nuclear matter to quark matter.

  2. A molecular view of the role of chirality in charge-driven polypeptide complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, K. Q.; Perry, S. L.; Leon, L.

    Polyelectrolyte molecules of opposite charge are known to form stable complexes in solution. Depending on the system conditions, such complexes can be solid or liquid. The latter are known as complex coacervates, and they appear as a second liquid phase in equilibrium with a polymer-dilute aqueous phase. This work considers the complexation between poly(glutamic acid) and poly(lysine), which is of particular interest because it enables examination of the role of chirality in ionic complexation, without changes to the overall chemical composition. Systematic atomic-level simulations are carried out for chains of poly(glutamic acid) and poly(lysine) with varying combinations of chirality alongmore » the backbone. Achiral chains form unstructured complexes. In contrast, homochiral chains lead to formation of stable beta-sheets between molecules of opposite charge, and experiments indicate that beta-sheet formation is correlated with the formation of solid precipitates. Changes in chirality along the peptide backbone are found to cause "kinks" in the beta-sheets. These are energetically unfavorable and result in irregular structures that are more difficult to pack together. Taken together, these results provide new insights that may be of use for the development of simple yet strong bioinspired materials consisting of beta-rich domains and amorphous regions.« less

  3. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    NASA Astrophysics Data System (ADS)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  4. Binary Phase Behavior of Saturated-Unsaturated Mixed-Acid Triacylglycerols-A Review.

    PubMed

    Zhang, Lu; Ueno, Satoru; Sato, Kiyotaka

    2018-06-01

    Most natural lipids contain a complex mixture of individual triacylglycerols (TAGs). An in-depth knowledge of the mixing behavior of TAGs is necessary for the rational design and engineering of food materials. The binary phase diagram of TAGs is a simplified model that can be explored to help foster an understanding of the phase behavior of complex fats and oils. This article reviews recent research on the binary phase behavior of saturated-unsaturated mixed-acid TAGs, with special emphasis on the stearicunsaturated and palmitic-unsaturated diacid TAGs. The occurrence of polymorphic forms and mutual solubility of TAG mixtures are strongly related to the glycerol conformation of the saturated-oleic diacid TAGs; it appears to be most influenced by the chain-length mismatch in saturated-elaidic diacid TAGs. In addition, the polymorphism of pure enantiomers and racemic mixture of chiral TAGs was also reviewed, while the effect of chirality on mixing behavior was discussed.

  5. Edge states and phase diagram for graphene under polarized light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi -Xiang; Li, Fuxiang

    2016-03-22

    In this paper, we investigate the topological phase transitions in graphene under the modulation of circularly polarized light, by analyzing the changes of edge states and its topological structures. A full phase diagram, with several different topological phases, is presented in the parameter space spanned by the driving frequency and light strength. We find that the high-Chern number behavior is very common in the driven system. While the one-photon resonance can create the chiral edge states in the π-gap, the two-photon resonance will induce the counter-propagating edge modes in the zero-energy gap. When the driving light strength is strong, themore » number and even the chirality of the edge states may change in the π-gap. The robustness of the edge states to disorder potential is also examined. We close by discussing the feasibility of experimental proposals.« less

  6. Thermodynamic models to elucidate the enantioseparation of drugs with two stereogenic centers by micellar electrokinetic chromatography.

    PubMed

    Guo, Xuming; Liu, Qiuxia; Hu, Shaoqiang; Guo, Wenbo; Yang, Zhuo; Zhang, Yonghua

    2017-08-25

    An equilibrium model depicting the simultaneous protonation of chiral drugs and partitioning of protonated ions and neutral molecules into chiral micelles in micellar electrokinetic chromatography (MEKC) has been introduced. It was used for the prediction and elucidation of complex changes in migration order patterns with experimental conditions in the enantioseparation of drugs with two stereogenic centers. Palonosetron hydrochloride (PALO), a weakly basic drug with two stereogenic centers, was selected as a model drug. Its four stereoisomers were separated by MEKC using sodium cholate (SC) as chiral selector and surfactant. Based on the equilibrium model, equations were derived for a calculation of the effective mobility and migration time of each stereoisomer at a certain pH. The migration times of four stereoisomers at different pHs were calculated and then the migration order patterns were constructed with derived equations. The results were in accord with the experiment. And the contribution of each mechanism to the separation and its influence on the migration order pattern was analyzed separately by introducing virtual isomers, i.e., hypothetical stereoisomers with only one parameter changed relative to a real PALO stereoisomer. A thermodynamic model for a judgment of the correlation of interactions between two stereogenic centers of stereoisomers and chiral selector was also proposed. According to this model, the interactions of two stereogenic centers of PALO stereoisomers in both neutral molecules and protonated ions with chiral selector are not independent, so the chiral recognition in each pair of enantiomers as well as the recognition for diastereomers is not simply the algebraic sum of the contributions of two stereogenic centers due to their correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Enantiomeric separation and quantification of R/S-amphetamine in urine by ultra-high performance supercritical fluid chromatography tandem mass spectrometry.

    PubMed

    Hegstad, S; Havnen, H; Helland, A; Spigset, O; Frost, J

    2018-03-01

    To distinguish between legal and illegal consumption of amphetamine reliable analytical methods for chiral separation of the R- and S-enantiomers of amphetamine in biological specimens are required. In this regard, supercritical fluid chromatography (SFC) has several potential advantages over liquid chromatography, including rapid separation of enantiomers due to low viscosity and high diffusivity of supercritical carbon dioxide, the main component in the SFC mobile phase. A method for enantiomeric separation and quantification of R- and S-amphetamine in urine was developed and validated using ultra-high performance supercritical fluid chromatography-tandem mass spectrometry (UHPSFC-MS/MS). Sample preparation prior to UHPSFC-MS/MS analysis was a semi-automatic solid phase extraction method. The UHPSFC-MS/MS method used a Chiralpak AD-3 column with a mobile phase consisting of CO 2 and 0.2% cyclohexylamine in 2-propanol. The injection volume was 2 μL and run-time was 6 min. MS/MS detection was performed with positive electrospray ionization and two multiple reaction monitoring transitions (m/z 136.1 > 119.0 and m/z 136.1 > 91.0). The calibration range was 50-10,000 ng/mL for each enantiomer. The between-assay relative standard deviations were in the range of 3.7-7.6%. Recovery was 92-93% and matrix effects ranged from 100 to 104% corrected with internal standard. After development and validation, the method has been successfully implemented in routine use at our laboratory for both separation and quantification of R/S-amphetamine, and has proved to be a reliable and useful tool for distinguishing intake of R- and S-amphetamine in authentic patient samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.

    PubMed

    Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo

    2009-09-28

    Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.

  9. Chirality measures of α-amino acids.

    PubMed

    Jamróz, Michał H; Rode, Joanna E; Ostrowski, Sławomir; Lipiński, Piotr F J; Dobrowolski, Jan Cz

    2012-06-25

    To measure molecular chirality, the molecule is treated as a finite set of points in the Euclidean R(3) space supplemented by k properties, p(1)((i)), p(2)((i)), ..., p(k)((i)) assigned to the ith atom, which constitute a point in the Property P(k) space. Chirality measures are described as the distance between a molecule and its mirror image minimized over all its arbitrary orientation-preserving isometries in the R(3) × P(k) Cartesian product space. Following this formalism, different chirality measures can be estimated by taking into consideration different sets of atomic properties. Here, for α-amino acid zwitterionic structures taken from the Cambridge Structural Database and for all 1684 neutral conformers of 19 biogenic α-amino acid molecules, except glycine and cystine, found at the B3LYP/6-31G** level, chirality measures have been calculated by a CHIMEA program written in this project. It is demonstrated that there is a significant correlation between the measures determined for the α-amino acid zwitterions in crystals and the neutral forms in the gas phase. Performance of the studied chirality measures with changes of the basis set and computation method was also checked. An exemplary quantitative structure–activity relationship (QSAR) application of the chirality measures was presented by an introductory model for the benchmark Cramer data set of steroidal ligands of the sex-hormone binding globulin.

  10. Predicting the switchable screw sense in fluorene-based polymers.

    PubMed

    Pietropaolo, Adriana; Wang, Yue; Nakano, Tamaki

    2015-02-23

    A chirality-switching free-energy landscape was reconstructed on a 43-mer of poly(9,9-dioctylfluoren-2,7-diyl) (PDOF). The simulations were conducted on amorphous silica surface as well as in the vacuum phase for a single chain or for a group of sixteen chains. The achiral-to-chiral transition occurs only on amorphous silica (activation free-energy 35 kcal mol(-1) ), where the enantiomeric (homochiral) basins are detected. This was supported by the experiments where effective chirality induction to PDOF using circularly polarized light (CPL) was attained only for a film deposited on a quartz glass and not for a solution or a suspension. These results indicate that interactions of PDOF with amorphous silica play a crucial role in chirality switching. Importance of chain assembling was also indicated. Theoretical ECD spectra of the enantiomeric basins containing a 51 helix reproduce the experimental spectra. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spontaneous chiral symmetry breaking in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.

    2014-07-01

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  12. Spontaneous chiral symmetry breaking in metamaterials.

    PubMed

    Liu, Mingkai; Powell, David A; Shadrivov, Ilya V; Lapine, Mikhail; Kivshar, Yuri S

    2014-07-18

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  13. Computational Prediction and Rationalization, and Experimental Validation of Handedness Induction in Helical Aromatic Oligoamide Foldamers.

    PubMed

    Liu, Zhiwei; Hu, Xiaobo; Abramyan, Ara M; Mészáros, Ádám; Csékei, Márton; Kotschy, András; Huc, Ivan; Pophristic, Vojislava

    2017-03-13

    Metadynamics simulations were used to describe the conformational energy landscapes of several helically folded aromatic quinoline carboxamide oligomers bearing a single chiral group at either the C or N terminus. The calculations allowed the prediction of whether a helix handedness bias occurs under the influence of the chiral group and gave insight into the interactions (sterics, electrostatics, hydrogen bonds) responsible for a particular helix sense preference. In the case of camphanyl-based and morpholine-based chiral groups, experimental data confirming the validity of the calculations were already available. New chiral groups with a proline residue were also investigated and were predicted to induce handedness. This prediction was verified experimentally through the synthesis of proline-containing monomers, their incorporation into an oligoamide sequence by solid phase synthesis and the investigation of handedness induction by NMR spectroscopy and circular dichroism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    NASA Astrophysics Data System (ADS)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; Kauppinen, E. I.

    2015-07-01

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3-4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ˜105 cm-3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  15. Enantiomer Identification in Chiral Mixtures with Broadband Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shubert, V. Alvin; Schmitz, David; Medcraft, Chris; Patterson, David; Doyle, John M.; Schnell, Melanie

    2014-06-01

    In nature and as products of chemical syntheses, chiral molecules often exist in mixtures with other chiral molecules. The analysis of these complex mixtures to identify the components, determine which enantiomers are present, and to measure the enantiomeric excesses (ee) is still one of the challenging but very important tasks of analytical chemistry. These analyses are required at every step of modern drug development, from candidate searches to production and regulation. We present here a new method of identifying individual enantiomers in mixtures of chiral molecules in the gas phase. It is based on broadband rotational spectroscopy and employs a sum or difference frequency generation three-wave mixing process that involves a closed cycle of three rotational transitions. The phase of the acquired signal bares the signature of the enantiomer (see figure), as it depends upon the combined quantity, μaμbμc, which is of opposite sign between members of an enantiomeric pair. Furthermore, because the signal amplitude is proportional to the ee, this technique allows for both determining which enantiomer is in excess and by how much. The high resolution of our technique allows us to perform molecule specific measurements of mixtures of chiral molecules with μaμbμc ≠ 0, even when the molecules are very similar (e.g. conformational isomers). We introduce the technique and present results on the analysis of mixtures of the terpenes, carvone, menthone, and carvomenthenol. D. Patterson, M. Schnell, J. M. Doyle, Nature. 497, 475-477, 2013 V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, M. Schnell, Ang. Chem. Int. Ed. 53, 1152-1155,2014

  16. Anomalous Transport Properties of Dense QCD in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    de la Incera, Vivian

    2017-06-01

    Despite recent advancements in the study and understanding of the phase diagram of strongly interacting matter, the region of high baryonic densities and low temperatures has remained difficult to reach in the lab. Things are expected to change with the planned HIC experiments at FAIR in Germany and NICA in Russia, which will open a window to the high-density-low-temperature segment of the QCD phase map, providing a unique opportunity to test the validity of model calculations that have predicted the formation of spatially inhomogeneous phases with broken chiral symmetry at intermediate-to-high densities. Such a density region is also especially relevant for the physics of neutron stars, as they have cores that can have several times the nuclear saturation density. On the other hand, strong magnetic fields, whose presence is fairly common in HIC and in neutron stars, can affect the properties of these exotic phases and lead to signatures potentially observable in these two settings. In this paper, I examine the anomalous transport properties produced by the spectral asymmetry of the lowest Landau level (LLL) in a QCD-inspired NJL model with a background magnetic field that exhibits chiral symmetry breaking at high density via the formation of a Dual Chiral Density Wave (DCDW) condensate. It turns out that in this model the electromagnetic interactions are described by the axion electrodynamics equations and there is a dissipationless Hall current.

  17. Anagostic interactions in chiral separation. Polymorphism in a [Co(II)(L)] complex: Crystallographic and theoretical studies

    NASA Astrophysics Data System (ADS)

    Awwadi, Firas F.; Hodali, Hamdallah A.

    2018-02-01

    Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.

  18. Proline-based chiral stationary phases: a molecular dynamics study of the interfacial structure.

    PubMed

    Ashtari, M; Cann, N M

    2011-09-16

    Proline chains have generated considerable interest as a possible basis for new selectors in chiral chromatography. In this article, we employ molecular dynamics simulations to examine the interfacial structure of two diproline chiral selectors, one with a terminal trimethylacetyl group and one with a terminal t-butyl carbamate group. The solvents consist of a relatively apolar n-hexane/2-propanol and a polar water/methanol mixture. We begin with electronic structure calculations for the two chiral selectors to assess the energetics of conformational changes, particularly along the backbone where the amide bonds can alternate between cis and trans conformations. Force fields have been developed for the two selectors, based on these ab initio calculations. Molecular dynamics simulations of the selective interfaces are performed to examine the preferred backbone conformations, as a function of end-group and solvent. The full chiral surface includes the diproline selectors, trimethylsilyl end-caps, and silanol groups. Connection is made with selectivity measurements on these interfaces, where significant differences are observed between these two very similar selectors. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The Role of Carbohydrates at the Origin of Homochirality in Biosystems

    NASA Astrophysics Data System (ADS)

    Toxvaerd, Søren

    2013-10-01

    Pasteur has demonstrated that the chiral components in a racemic mixture can separate in homochiral crystals. But with a strong chiral discrimination the chiral components in a concentrated mixture can also phase separate into homochiral fluid domains, and the isomerization kinetics can then perform a symmetry breaking into one thermodynamical stable homochiral system. Glyceraldehyde has a sufficient chiral discrimination to perform such a symmetry breaking. The requirement of a high concentration of the chiral reactant(s) in an aqueous solution in order to perform and maintain homochirality; the appearance of phosphorylation of almost all carbohydrates in the central machinery of life; the basic ideas that the biochemistry and the glycolysis and gluconeogenesis contain the trace of the biochemical evolution, all point in the direction of that homochirality was obtained just after- or at a phosphorylation of the very first products of the formose reaction, at high concentrations of the reactants in phosphate rich compartments in submarine hydrothermal vents. A racemic solution of D,L-glyceraldehyde-3-phosphate could be the template for obtaining homochiral D-glyceraldehyde-3-phosphate(aq) as well as L-amino acids.

  20. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  1. A Facile Method to Fabricate Double Gyroid as A Polymer Template for Nanohybrids

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Fang; Ho, Rong-Ming

    2015-03-01

    Here, we suggest a facile method to acquire double gyroid (DG) phase from the self-assembly of chiral block copolymers (BCPs*), polystyrene- b-poly(L-lactide) (PS-PLLA). A wide region for the formation of DG can be found in the phase diagram of the BCPs*, suggesting that helical phase (H*) from the self-assembly of BCPs* can serve as a stepping stone for the formation of the DG due to an easy path for order-order transition from two-dimensional to three-dimensional (network) structure. Moreover, the order-order transition from metastable H* to stable DG can be expedited by blending the PS-PLLA with compatible entity. Moreover, PS-PLLA blends are prepared by using styrene oligomer (S) to fine-tune the morphologies of the blends at which the molecular weight ratio of the S and compatible PS block (r) is less than 0.1. Owing to the use of the low-molecular-weight oligomer, the increase of BCP chain mobility in the blends significantly reduces the transformation time for the order-order transition from H* to DG. Consequently, nanoporous gyroid SiO2 can be fabricated using hydrolyzed PS-PLLA blends as a template for sol-gel reaction followed by removal of the PS matrix.

  2. Chiral liquid chromatography-mass spectrometry (LC-MS/MS) method development for the detection of salbutamol in urine samples.

    PubMed

    Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon

    2016-07-01

    A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High-efficiency chiral meta-lens.

    PubMed

    Groever, Benedikt; Rubin, Noah A; Mueller, J P Balthasar; Devlin, Robert C; Capasso, Federico

    2018-05-08

    We present here a compact metasurface lens element that enables simultaneous and spatially separated imaging of light of opposite circular polarization states. The design overcomes a limitation of previous chiral lenses reliant on the traditional geometric phase approach by allowing for independent focusing of both circular polarizations without a 50% efficiency trade-off. We demonstrate circular polarization-dependent imaging at visible wavelengths with polarization contrast greater than 20dB and efficiencies as high as 70%.

  4. Chromatographic enantioseparation by poly(biphenylylacetylene) derivatives with memory of both axial chirality and macromolecular helicity.

    PubMed

    Ishidate, Ryoma; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji; Maeda, Katsuhiro

    2017-03-01

    Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2- and 2'-positions and an alkoxycarbonyl group at the 4'-position of the biphenyl pendants (poly-Ac's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis-transoidal) poly-Ac's folded into a predominantly one-handed helical conformation accompanied by a preferred-handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main-chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly-Ac's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2- and 2'-positions of the biphenyl pendants (poly-MOM's). In the solid state, however, the helicity memory of the poly-Ac's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly-MOM when used as a chiral stationary phase for high-performance liquid chromatography. In particular, the poly-Ac-based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers. © 2017 Wiley Periodicals, Inc.

  5. Chiral symmetry restoration at finite temperature and chemical potential in the improved ladder approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, Y.; Yoshida, Y.

    1997-02-01

    The chiral symmetry of QCD is studied at finite temperature and chemical potential using the Schwinger-Dyson equation in the improved ladder approximation. We calculate three order parameters: the vacuum expectation value of the quark bilinear operator, the pion decay constant, and the quark mass gap. We have a second order phase transition at the temperature T{sub c}=169 MeV along the zero chemical potential line, and a first order phase transition at the chemical potential {mu}{sub c}=598 MeV along the zero temperature line. We also calculate the critical exponents of the three order parameters. {copyright} {ital 1997} {ital The American Physicalmore » Society}« less

  6. The quantization of the chiral Schwinger model based on the BFT - BFV formalism

    NASA Astrophysics Data System (ADS)

    Kim, Won T.; Kim, Yong-Wan; Park, Mu-In; Park, Young-Jai; Yoon, Sean J.

    1997-03-01

    We apply the newly improved Batalin - Fradkin - Tyutin (BFT) Hamiltonian method to the chiral Schwinger model in the case of the regularization ambiguity a>1. We show that one can systematically construct the first class constraints by the BFT Hamiltonian method, and also show that the well-known Dirac brackets of the original phase space variables are exactly the Poisson brackets of the corresponding modified fields in the extended phase space. Furthermore, we show that the first class Hamiltonian is simply obtained by replacing the original fields in the canonical Hamiltonian by these modified fields. Performing the momentum integrations, we obtain the corresponding first class Lagrangian in the configuration space.

  7. Determination of rabeprazole enantiomers in dog plasma by supercritical fluid chromatography tandem mass spectrometry and its application to a pharmacokinetic study.

    PubMed

    Su, Chong; Yang, Hong; Meng, Xiangjun; Fawcett, J Paul; Cao, Jianming; Yang, Yan; Gu, Jingkai

    2017-02-01

    Rabeprazole is a novel benzimidazole proton pump inhibitor used for the treatment of gastrointestinal disorders. It is a chiral molecule that gives rise to the possibility of stereoselective pharmacokinetics. To investigate this phenomenon, a rapid and sensitive chiral assay based on supercritical fluid chromatography tandem mass spectrometry was developed and applied to the determination of (R)-rabeprazole and (S)-rabeprazole in dog plasma. Sample preparation involved protein precipitation with acetonitrile after the addition of (R)-lansoprazole as internal standard. Baseline separation of enantiomers in 4.5 min was achieved on an Acquity UPC 2 system using an ACQUITY UPC 2 Trefoil CEL2 column maintained at 60°C and a mobile phase consisting of methanol/CO 2 (30:70, v/v) delivered at 2.5 mL/min. Detection was achieved by multiple reaction monitoring of the transitions at m/z 360.0→242.2 (rabeprazole) and 370.3→252.0 (internal standard) in the positive ion mode. The assay was linear in the range of 1-1000 ng/mL and free of matrix effects. Intra- and interday precisions were less than 10.0% with accuracy in the range of -2.6 to 3.1%. The method was successfully applied to a pharmacokinetic study of rabeprazole enantiomers after administration of a single oral dose of 10 mg racemate to beagle dogs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chiral separation of 3,4-methylenedioxymethamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling and its effects on oxidative stress status in rat liver.

    PubMed

    Lourenço, Tiago C; Bósio, Graziela C; Cassiano, Neila M; Cass, Quezia B; Moreau, Regina L M

    2013-01-25

    This work reports the multimiligram separation of 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers using batch chromatography with peak shaving recycling. The effect of both enantiomers compared to the racemic mixture was examined on the oxidative stress status of rat liver. The enantiomeric purification was performed using a based cyclodextrin chiral selector and methanol:ammonium acetate buffer (pH 6.0, 100mM) (30:70, v/v) as mobile phase. The average mass rate obtained was 40.0mg/day, providing 45.0mg of the (R)-(-)-MDMA (e.r. 99.0%) and 75.0mg (e.r. 96.0%) of (S)-(+)-MDMA. Racemic MDMA and both enantiomers were administered per orally to Wistar rats and oxidative stress status parameters, as liver total glutathione levels and malondialdehyde (MDA) production in liver were evaluated. There was a significant decrease in hepatic glutathione content in the racemic MDMA and the (R)-(-)-MDMA-treated rats when compared to the control and to (S)-(+)-MDMA. These results demonstrate that the R-enantiomer is the enantiomer that contributes to the depletion of hepatic glutathione induced by the racemic mixture. The high reactivity of the R-enantiomer of MDMA in the liver can also be observed in animals treated with (R)-(-)-MDMA. The production of malondialdehyde (MDA) by (R)-(-)-MDMA was significantly higher when compared to the other treated groups and control. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Enantiomeric Lignans and Neolignans from Phyllanthus glaucus: Enantioseparation and Their Absolute Configurations

    NASA Astrophysics Data System (ADS)

    Wu, Zhaodi; Lai, Yongji; Zhou, Lei; Wu, Ye; Zhu, Hucheng; Hu, Zhengxi; Yang, Jing; Zhang, Jinwen; Wang, Jianping; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2016-04-01

    Eight pairs of enantiomeric neolignans, norlignans, and sesquineolignans (1a/1b-8a/8b), together with five known neolignans (9a/9b and 10-12), have been isolated from 70% acetone extract of the whole plants of Phyllanthus glaucus Wall. (Euphorbiaceae). The racemic or partial racemic mixtures were successfully separated by chiral HPLC using different types of chiral columns with various mobile phases. Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configurations of 2a/2b were determined by computational analysis of their electronic circular dichroism (ECD) spectrum, and the absolute configurations of other isolates were ascertained by comparing their experimental ECD spectra and optical rotation values with those of structure-relevant compounds reported in literatures. Compounds 4a/4b featured unique sesquineolignan skeletons with a novel 7-4‧-epoxy-8‧-8‧‧/7‧-2‧‧ scaffold, consisting of an aryltetrahydronaphthalene and a dihydrobenzofuran moiety. The planar structures of compounds 2, 3, 7, and 8 were documented previously; however, their absolute configurations were established for the first time in this study. The antioxidant activities of 1a/1b-8a/8b were evaluated using DPPH free radical scavenging assay, and the results demonstrated that compounds 1b and 3b showed potent DPPH radical scavenging activities with IC50 values of 5.987 ± 1.212 and 9.641 ± 0.865 μg/mL, respectively.

  10. Unusual electro-optical behavior in a wide-temperature BPIII cell.

    PubMed

    Chen, Hui-Yu; Lu, Sheng-Feng; Hsieh, Yi-Chun

    2013-04-22

    A low driving voltage and fast response blue phase III (BPIII) liquid-crystal device with very low dielectric anisotropy is demonstrated. To stabilize BPIII in a wide temperature range (> 15°C), a chiral molecule with good solubility was chosen. By studying field-dependent polarization state of the transmitting light, it was found that the field-induced birefringence becomes saturated in the high field. However, the transmitting intensity exhibits a tendency to increase as the electric field increases. This indicates that the electro-optical behavior in BPIII device may be from the flexoelectric effect, which induces tilted optical axis and then induces birefringence. Because the phase transition from BPIII to chiral nematic phase does not happen, the device shows no hysteresis effect and no residual birefringence, exhibits fast response, and can be a candidate for fast photonic application.

  11. Microscopy of the interacting Harper-Hofstadter model in the few-body limit

    NASA Astrophysics Data System (ADS)

    Tai, M. Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Borgnia, Dan; Preiss, Philipp; Grusdt, Fabian; Kaufman, Adam; Greiner, Markus

    2017-04-01

    The interplay of magnetic fields and interacting particles can lead to exotic phases of matter exhibiting topological order and high degrees of spatial entanglement. While these phases were discovered in a solid-state setting, recent techniques have enabled the realization of gauge fields in systems of ultracold neutral atoms, offering a new experimental paradigm for studying these novel states of matter. This complementary platform holds promise for exploring exotic physics in fractional quantum Hall systems due to the microscopic manipulation and precision possible in cold atom systems. However, these experiments thus far have mostly explored the regime of weak interactions. Here, we show how strong interactions can modify the propagation of particles in a 2 × N , real-space ladder governed by the Harper-Hofstadter model. We observe inter-particle interactions affect the populating of chiral bands, giving rise to chiral dynamics whose multi-particle correlations indicate both bound and free-particle character. The novel form of interaction-induced chirality observed in these experiments demonstrates the essential ingredients for future investigations of highly entangled topological phases of many-body systems. We are supported by Grants from the National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, an Air Force Office of Scientific Research MURI program, an Army Research Office MURI program, and the NSF GRFP (MNR).

  12. Stereoselective synthesis of unsaturated α-amino acids.

    PubMed

    Fanelli, Roberto; Jeanne-Julien, Louis; René, Adeline; Martinez, Jean; Cavelier, Florine

    2015-06-01

    Stereoselective synthesis of unsaturated α-amino acids was performed by asymmetric alkylation. Two methods were investigated and their enantiomeric excess measured and compared. The first route consisted of an enantioselective approach induced by the Corey-Lygo catalyst under chiral phase transfer conditions while the second one involved the hydroxypinanone chiral auxiliary, both implicating Schiff bases as substrate. In all cases, the use of a prochiral Schiff base gave higher enantiomeric excess and yield in the final desired amino acid.

  13. Topological aspect and transport property in multi-band spin-triplet chiral p-wave superconductor Sr2RuO4

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2015-03-01

    Considering the superconductor Sr2RuO4, we analyze a three-band tight-binding model with one hole-like and two electron-like Fermi surfaces corresponding to the α, β and γ bands of Sr2RuO4 by means of a self-consistent Bogoliubov-de Gennes approach for ribbonshaped system to investigate topological properties and edge states. In the superconducting phase two types of gapless edge states can be identified, one of which displays an almost flat dispersion at zero energy, while the other, originating from the γ band, has a linear dispersion and constitutes a genuine chiral edge states. Not only a charge current appears at the edges but also a spin current due to the multi-band effect in the superconducting phase. In particular, the chiral edge state from the γ band is closely tied to topological properties, and the chiral p-wave superconducting states are characterized by an integer topological number, the so-called Chern number. We show that the γ band is close to a Lifshitz transition. Since the sign of the Chern number may be very sensitive to the surface condition, we consider the effect of the surface reconstruction observed in Sr2RuO4 on the topological property and show the possibility of the hole-like Fermi surface at the surface.

  14. Worldline construction of a covariant chiral kinetic theory

    DOE PAGES

    Mueller, Niklas; Venugopalan, Raju

    2017-07-27

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  15. Worldline construction of a covariant chiral kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Niklas; Venugopalan, Raju

    Here, we discuss a novel worldline framework for computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Starting from the fermion determinant in the QCD effective action, we show explicitly how its real part can be expressed as a supersymmetric worldline action of spinning, colored, Grassmannian particles in background fields. Restricting ourselves for simplicity to spinning particles, we demonstrate how their constrained Hamiltonian dynamics arises for both massless and massive particles. In a semiclassical limit, this gives rise to the covariant generalization of the Bargmann-Michel-Telegdi equation; the derivation of the corresponding Wong equations for colored particles is straightforward.more » In a previous paper [N. Mueller and R. Venugopalan, arXiv:1701.03331.], we outlined how Berry’s phase arises in a nonrelativistic adiabatic limit for massive particles. We extend the discussion here to systems with a finite chemical potential. We discuss a path integral formulation of the relative phase in the fermion determinant that places it on the same footing as the real part. We construct the corresponding anomalous worldline axial-vector current and show in detail how the chiral anomaly appears. Our work provides a systematic framework for a relativistic kinetic theory of chiral fermions in the fluctuating topological backgrounds that generate the CME in a deconfined quark-gluon plasma. Finally, we outline some further applications of this framework in many-body systems.« less

  16. Simultaneous enantioselective determination of phenylpyrazole insecticide flufiprole and its chiral metabolite in paddy field ecosystem by ultra-high performance liquid chromatography/tandem mass spectrometry.

    PubMed

    Li, Jing; Zhang, Yuting; Cheng, Youpu; Yuan, Shankui; Liu, Lei; Shao, Hui; Li, Hui; Li, Na; Zhao, Pengyue; Guo, Yongze

    2016-03-20

    A novel and sensitive ultra-high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous enantioselective determination of flufiprole and its hydrolysis metabolite in paddy field ecosystem. The separation and determination were performed using reversed-phase chromatography on a novel cellulose chiral stationary phase, a Lux Cellulose-4 (150 mm × 2.0 mm) column, under isocratic conditions at 0.25 mL/min flow rate. The effects of other four different polysaccharide-based chiral stationary phases (CSPs) on the separation and simultaneous enantioseparation of the two target compounds were also evaluated. The elution orders of the eluting enantiomers were identified by an optical rotation detector. Modified QuEChERS (acronym for Quick, Easy, Cheap, Effective, Rugged and Safe) method and solid-phase extraction (SPE) were used for the enrichment and cleanup of paddy water, rice straw, brown rice and paddy soil samples, respectively. Parameters including the matrix effect, linearity, precision, accuracy and stability were evaluated. Under the optimal conditions, the mean recoveries for all enantiomers from the above four sample matrix were ranged from 83.6% to 107%, with relative standard deviations (RSD) in the range of 1.0-5.8%. Coefficients of determination R(2)≥0.998 were achieved for each enantiomer in paddy water, rice straw, brown rice and paddy soil matrix calibration curves within the range of 5-500 μg/kg. The limits of quantification (LOQ) for all stereoisomers in the above four matrices were all below 2.0 μg/kg. The methodology was successfully applied for simultaneously enantioselective analysis of flufiprole enantiomers and their chiral metabolite in the real samples, indicating its efficacy in investigating the environmental stereochemistry of flufiprole in paddy field ecosystem. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanical and electro-optical properties of unconventional liquid crystal systems

    NASA Astrophysics Data System (ADS)

    Liao, Guangxun

    Four types of unconventional liquid crystal systems - amphotropic glycolipids; novel bent-core liquid crystals, bent-core liquid crystal and glycolipid mixtures, and colloidal crystal-liquid crystal systems - were studied and characterized by polarizing microscopy, electrical current, digital scanning calorimetry, and dielectric spectroscopy. Thermotropic properties of glycolipids show a number of unusual properties, most notably high (60-120) relative dielectric constants mainly proportional to the number of polar sugar heads. The relaxation of this dielectric mode is found to be governed by the hydrogen bonding between sugar heads. Studies on novel bent-core liquid crystals reveal a new optically isotropic ferroelectric phase, molecular chirality-induced polarity, and transitions between molecular chirality and polarity driven phases. Mixtures of several bent-core substances with nematic, polar SmA and SmC phases, and a simple amphiphilic sugar lipid with SmA mesophase found to obey the well known miscibility rules, i.e. the sugar lipid mixes best with the polar SmA bent-core material. In addition, the chiral sugar lipid was found to induce tilt to the non-tilted polar SmA phase, which represents a new direction among the chirality--polarity--tilt relations. The effects of the surface properties and electric fields were studied on various colloid particles--and liquid crystal systems. It is found that the surface properties (hydrophobicity, roughness, rubbing) of the substrates are important in determining the size and symmetry of colloidal crystals. The director field of the liquid crystal infiltrated in the colloid crystals can be rendered both random and uniform along one of the crystallographic axis. We present the first observations of DC electric-field-induced rotational and translational motion of finite particles in liquid crystals. The electrorotation is essentially identical to the well - known Quincke rotation, which in liquid crystals triggers an additional translational motion at higher fields. Analysis of the electro-rotation and translations provides new ways to probe local rheological properties of liquid crystals.

  18. Bidentate urea-based chiral selectors for enantioselective high performance liquid chromatography: synthesis and evaluation of "Crab-like" stationary phases.

    PubMed

    Kotoni, Dorina; Villani, Claudio; Bell, David S; Capitani, Donatella; Campiglia, Pietro; Gasparrini, Francesco

    2013-07-05

    A rational approach for the design and preparation of two new "Crab-like" totally synthetic, brush-type chiral stationary phases is presented. Enantiopure diamines, namely 1,2-diaminocyclohexane and 1,2-diphenyl-1,2-ethylene-diamine were treated with 3-(triethoxysilyl)propyl isocyanate, to yield reactive ureido selectors that were eventually attached to unmodified silica particles through a stable, bidentate tether, through a facile two-step one-pot procedure. A full chemical characterization of the new materials has been obtained through solid-state NMR (both (29)Si and (13)C CPMAS) spectroscopy. Columns packed with the two Crab-like chiral stationary phases allow for different mechanisms of separation: normal phase liquid chromatography, reversed phase liquid chromatography and polar organic mode and show a high stability at basic pH values. In particular, the Crab-like column containing the 1,2-diphenyl-1,2-ethylene-diamine selector proved a promising candidate for the resolution of a wide range of racemates (including benzodiazepines, N-derivatized amino acids, and free carboxylic acids) both in normal phase and polar organic mode. An Hmin of 9.57 at a μsf of 0.80mm/s (corresponding to 0.8mL/min) was obtained through van Deemter analysis, based on toluene, for the Crab-like column with the 1,2-diphenyl-1,2-ethylene-diamine selector (250mm×4.6mm I.D.), with a calculated reduced height equivalent to a theoretical plate (h) of only 1.91. Finally, comparative studies were performed with a polymeric commercially available P-CAP-DP column in order to evaluate enantioselectivity and resolution of the Crab-like columns. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Chiral lyotropic chromonic liquid crystals composed of disodium cromoglycate doped with water-soluble chiral additives.

    PubMed

    Shirai, Tatsuya; Shuai, Min; Nakamura, Keita; Yamaguchi, Akihiro; Naka, Yumiko; Sasaki, Takeo; Clark, Noel A; Le, Khoa V

    2018-02-28

    We investigated the pitches of cholesteric liquid crystals prepared by mixing disodium cromoglycate (DSCG) in water with 5 different water-soluble chiral additives. The measurements are based on the Grandjean-Cano wedge cell method. Overall, the twisting effect is weak, and the shortest pitch of 2.9 ± 0.2 μm is obtained using trans-4-hydroxy-l-proline, by which the cholesteric sample is iridescent at certain viewing angles. Freeze-fracture transmission electron microscopy (FFTEM) was also performed for the first time on both the nematic and cholesteric phases, revealing that stacked chromonic aggregates are very long, up to a few hundred nm, which explains why cholesteric chromonic liquid crystals hardly have pitches in the visible wavelength region.

  20. Chiral extrapolations of the ρ ( 770 ) meson in N f = 2 + 1 lattice QCD simulations

    DOE PAGES

    Hu, B.; Molina, R.; Döring, M.; ...

    2017-08-24

    Recentmore » $$N_f=2+1$$ lattice data for meson-meson scattering in $p$-wave and isospin $I=1$ are analyzed using a unitarized model inspired by Chiral Perturbation Theory in the inverse-amplitude formulation for two and three flavors. We perform chiral extrapolations that postdict phase shifts extracted from experiment quite well. Additionally, the low-energy constants are compared to the ones from a recent analysis of $$N_f=2$$ lattice QCD simulations to check for the consistency of the hadronic model used here. Some inconsistencies are detected in the fits to $$N_f=2+1$$ data, in contrast to the previous analysis of $$N_f=2$$ data.« less

  1. LFER and CoMFA studies on optical resolution of alpha-alkyl alpha-aryloxy acetic acid methyl esters on DACH-DNB chiral stationary phase.

    PubMed

    Carotti, A; Altomare, C; Cellamare, S; Monforte, A; Bettoni, G; Loiodice, F; Tangari, N; Tortorella, V

    1995-04-01

    The HPLC resolution of a series of racemic alpha-substituted alpha-aryloxy acetic acid methyl esters I on a pi-acid N,N'-(3,5-dinitrobenzoyl)-trans-1,2-diaminocyclohexane as chiral selector was modelled by linear free energy-related (LFER) equations and comparative molecular field analysis (CoMFA). Our results indicate that the retention process mainly depends on solute lipophilicity and steric properties, whereas enantioselectivity is primarily influenced by electrostatic and steric interactions. CoMFA provided additional information with respect to the LFER study, allowed the mixing of different subsets of I and led to a quantitative 3D model of steric and electrostatic factors responsible for chiral recognition.

  2. Unusual magnetoresistance in cubic B20 Fe 0.85Co 0.15Si chiral magnets

    DOE PAGES

    Huang, S. X.; Chen, Fei; Kang, Jian; ...

    2016-06-24

    The B20 chiral magnets with broken inversion symmetry and C 4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states.Wereport the unusual magnetoresistance (MR) of B20 chiral magnet Fe 0.85Co 0.15Si that directly reveals the broken C 4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. In conclusion, the unusual MR serves as a transport signature for the Skyrmionmore » phase.« less

  3. Enantiomeric-Enriched Ferrocenes: Synthesis, Chiral Resolution, and Mathematic Evaluation of CD-chiral Selector Energies with Ferrocene-Conjugates.

    PubMed

    Snegur, Lubov V; Borisov, Yurii A; Kuzmenko, Yuliya V; Davankov, Vadim A; Ilyin, Mikhail M; Ilyin, Mikhail M; Arhipov, Dmitry E; Korlyukov, Alexander A; Kiselev, Sergey S; Simenel, Alexander A

    2017-08-25

    Enantiomeric-enriched ferrocene-modified pyrazoles were synthesized via the reaction of the ferrocene alcohol, ( S )-FcCH(OH)CH₃ (Fc = ferrocenyl), with various pyrazoles in acidic conditions at room temperature within several minutes. X-ray structural data for racemic ( R , S )-1 N -(3,5-dimethyl pyrazolyl)ethyl ferrocene ( 1 ) and its ( S )-enantiomer ( S )- 1 were determined. A series of racemic pyrazolylalkyl ferrocenes was separated into enantiomers by analytical HPLC on β- and γ-cyclodextrins (CD) chiral stationary phases. The quantum chemical calculations of interaction energies of β-CD were carried out for both ( R )- and ( S )-enantiomers. A high correlation between experimental HPLC data and calculated interaction energies values was obtained.

  4. Enantioresolution of (RS)-baclofen by liquid chromatography: A review.

    PubMed

    Batra, Sonika; Bhushan, Ravi

    2017-01-01

    Baclofen is a commonly used racemic drug and has a simple chemical structure in terms of the presence of only one stereogenic center. Since the desirable pharmacological effect is in only one enantiomer, several possibilities exist for the other enantiomer for evaluation of the disposition of the racemic mixture of the drug. This calls for the development of enantioselective analytical methodology. This review summarizes and evaluates different methods of enantioseparation of (RS)-baclofen using both direct and indirect approaches, application of certain chiral reagents and chiral stationary phases (though very expensive). Methods of separation of diastereomers of (RS)-baclofen prepared with different chiral derivatizing reagents (under microwave irradiation at ease and in less time) on reversed-phase achiral columns or via a ligand exchange approach providing high-sensitivity detection by the relatively less expensive methods of TLC and HPLC are discussed. The methods may be helpful for determination of enantiomers in biological samples and in pharmaceutical formulations for control of enantiomeric purity and can be practiced both in analytical laboratories and industry for routine analysis and R&D activities. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Nanocellulose Fragmentation Mechanisms and Inversion of Chirality from the Single Particle to the Cholesteric Phase.

    PubMed

    Nyström, Gustav; Arcari, Mario; Adamcik, Jozef; Usov, Ivan; Mezzenga, Raffaele

    2018-05-22

    Understanding how nanostructure and nanomechanics influence physical material properties on the micro- and macroscale is an essential goal in soft condensed matter research. Mechanisms governing fragmentation and chirality inversion of filamentous colloids are of specific interest because of their critical role in load-bearing and self-organizing functionalities of soft nanomaterials. Here we provide a fundamental insight into the self-organization across several length scales of nanocellulose, an important biocolloid system with wide-ranging applications as structural, insulating, and functional material. Through a combined microscopic and statistical analysis of nanocellulose fibrils at the single particle level, we show how mechanically and chemically induced fragmentations proceed in this system. Moreover, by studying the bottom-up self-assembly of fragmented carboxylated cellulose nanofibrils into cholesteric liquid crystals, we show via direct microscopic observations that the chirality is inverted from right-handed at the nanofibril level to left-handed at the level of the liquid crystal phase. These results improve our fundamental understanding of nanocellulose and provide an important rationale for its application in colloidal systems, liquid crystals, and nanomaterials.

  6. Intrinsic Optical Activity and Environmental Perturbations: Solvation Effects in Chiral Building Blocks

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Vaccaro, Patrick

    2016-06-01

    The non-resonant interaction of electromagnetic radiation with an isotropic ensemble of chiral molecules, which causes the incident state of linear polarization to undergo a signed rotation, long has served as a metric for gauging the enantiomeric purity of asymmetric syntheses. While the underlying phenomenon of circular birefringence (CB) typically is probed in the condensed phase, recent advances in ultrasensitive circular-differential detection schemes, as exemplified by the techniques of Cavity Ring-Down Polarimetry (CRDP), have permitted the first quantitative analyses of such processes to be performed in rarefied media. Efforts to extend vapor-phase investigations of CB to new families of chiral substrates will be discussed, with particular emphasis directed towards the elucidation of intrinsic (e.g., solvent-free) properties and their mediation by environmental perturbations (e.g., solvation). Specific species targeted by this work will include the stereoselective building blocks phenylpropylene oxide and α-methylbenzyl amine, both of which exhibit pronounced solvent-dependent changes in measured optical activity. The nature of chiroptical response in different environments will be highlighted, with quantum-chemical calculations serving to unravel the structural and electronic provenance of observed behavior.

  7. Preparative enantioseparation of propafenone by counter-current chromatography using di-n-butyl L-tartrate combined with boric acid as the chiral selector.

    PubMed

    Tong, Shengqiang; Shen, Mangmang; Zheng, Ye; Chu, Chu; Li, Xing-Nuo; Yan, Jizhong

    2013-09-01

    This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter-current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di-n-butyl l-tartrate combined with boric acid as the chiral selector. The two-phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di-n-butyl l-tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high-speed CCC in a single run, yielding 40-42 mg of (R)- and (S)-propafenone enantiomers with an HPLC purity over 90-95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85-90%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enantioseparation of α-Hydroxyallylphosphonates and Phosphonoallylic Carbonate Derivatives on Chiral Stationary Phases Using Sequential UV, Polarimetric, and Refractive Index Detection.

    PubMed

    Hamper, Bruce C; Mannino, Michael P; Mueller, Melissa E; Harrison, Liam T; Spilling, Christopher D

    2016-09-01

    Chromatographic separation of the enantiomers of parent compounds dimethyl α-hydroxyallyl phosphonate and 1-(dimethoxyphosphoryl) allyl methyl carbonate was demonstrated by high-performance liquid chromatography (HPLC) using Chiralpak AS-H and ad-H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α-hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad, OD, IC-3, and Whelk-O 1 CSPs. In general, the α-hydroxyallyl phosphonates were resolved on the AS-H CSP, whereas the carbonate derivatives and were preferentially resolved on the ad-H CSP. The impact of aryl substitution on the resolution of analytes and was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates and on the AS-H CSP and carbonate on the ad-H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656-662, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Stereoselective determination of vigabatrin enantiomers in human plasma by high performance liquid chromatography using UV detection.

    PubMed

    Franco, Valentina; Mazzucchelli, Iolanda; Fattore, Cinzia; Marchiselli, Roberto; Gatti, Giuliana; Perucca, Emilio

    2007-07-01

    A rapid and simple high-performance liquid chromatographic method for the determination of the R-(-)- and S-(+)-enantiomers of the antiepileptic drug vigabatrin in human plasma is described. After adding the internal standard (1-aminomethyl-cycloheptyl-acetic acid), plasma samples (200 microL) are deproteinized with acetonitrile and the supernatant is derivatized with 2,4,6 trinitrobenzene sulfonic acid (TNBSA). Separation is achieved on a reversed-phase cellulose-based chiral column (Chiralcel-ODR, 250 mm x 4.6 mm i.d.) using 0.05 M potassium hexafluorophosphate (pH 4.5)/acetonitrile/ethanol (50:40:10 vol/vol/vol) as mobile phase at a flow-rate of 0.9 mL/min. Chromatographic selectivity is improved by concentrating the derivatives on High Performance Extraction Disk Cartridges prior to injection. Detection is at 340 nm. Calibration curves are linear (r(2)> or =0.999) over the range of 0.5-40 microg/mL for each enantiomer, with a limit of quantification of 0.5 microg/mL for both analytes. The assay is suitable for therapeutic drug monitoring and for single-dose pharmacokinetic studies in man.

  10. HPLC Separation of Sulforaphane Enantiomers in Broccoli and Its Sprouts by Transformation into Diastereoisomers Using Derivatization with (S)-Leucine.

    PubMed

    Okada, Makiko; Yamamoto, Atsushi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Kodama, Shuji

    2017-01-11

    Racemic sulforaphane, which was derivatized with (S)-leucine (l-leucine), was resolved by reversed phase HPLC with UV detection. The optimum mobile phase conditions were found to be 10 mM citric acid (pH 2.8) containing 22% methanol at 35 °C using detection at 254 nm. Sulforaphane enantiomers in florets and stems of five brands of broccoli and leaves and stems of three brands of broccoli sprouts were analyzed by the proposed HPLC method. Both sulforaphane enantiomers were detected in all of the samples. The S/R ratios of sulforaphane in broccoli samples were 1.5-2.6/97.4-98.5% for florets and 5.0-12.1/87.9-95.0% for stems. The S/R ratios in broccoli sprout samples were higher than those in broccoli samples and were found to be 8.3-19.7/80.3-91.7% for leaves and 37.0-41.8/58.2-63.0% for stems. (S)-Sulforaphane detected in the broccoli and its sprout samples was positively identified by separately using an HPLC with a chiral column (Chiralpak AD-RH) and mass spectrometry.

  11. Polarized neutron scattering studies of chiral criticality, and new universality classes of phase transitions

    NASA Astrophysics Data System (ADS)

    Plakhty, V. P.; Wosnitza, J.; Kulda, J.; Brückel, Th.; Schweika, W.; Visser, D.; Gavrilov, S. V.; Moskvin, E. V.; Kremer, R. K.; Banks, M. G.

    2006-11-01

    Using a novel polarised neutron scattering technique, the critical exponents for the spin chirality and chiral susceptibility are determined for the triangular lattice antiferromagnet (TLA) CsMnBr 3 in the ranges of reduced temperature τ>10 -3 and τ>7×10 -3, respectively. Their values, βC=0.44(2) and γC=0.85(3), together with the scaling relation α+2β+γ=2.13(9), including the critical exponent where α for the specific heat, prove that the spin-ordering transition belongs to the XY chiral universality class. In the case of helimagnet Ho, it is found that β-2β=0.14(4), where β is the staggered magnetisation exponent. The scaling relation α+2β+γ=2 could be fulfilled with a reasonable α=0.23(4), although for the chiral critical exponents βC=0.90(2) and γC=0.69(5) one needs α=-0.49(5) in contradiction with any experimental data. As the scaling relation always holds, we assume that the spin-ordering transition in Ho is of the first order. In the quantum antiferromagnet CsCuCl 3, a triangular spin order coexists with a long-period Dzyaloshinskii helix. The Dzyaloshinskii axial vector should remove the helix chiral degeneracy, which has not been observed in reality. The critical exponent β=0.22(2) is found to be in agreement with the XY chiral scenario for a TLA. Chiral scattering above TN is very weak, probably being masked by zero-point quantum fluctuations. A modulation of the crystal structure with the periodicity of the helix is observed, indicating strong coupling of the Dzyaloshinskii-Moriya interaction with the lattice.

  12. Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Kenji; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502; Skokov, Vladimir

    2011-10-01

    The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a cos3{mu}{sub I}/T dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by cos{mu}{sub I}/T and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential U. Furthermore, we find that by changing themore » four fermion coupling constant G{sub s}, the location of the critical end point of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.

    Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less

  14. Determination of molindone enantiomers in human plasma by high-performance liquid chromatography-tandem mass spectrometry using macrocyclic antibiotic chiral stationary phases.

    PubMed

    Jiang, Hongliang; Li, Yinghe; Pelzer, Mary; Cannon, Michelle J; Randlett, Christopher; Junga, Heiko; Jiang, Xiangyu; Ji, Qin C

    2008-05-30

    A sensitive and selective bioanalytical assay was developed and validated for the determination of enantiomeric molindone in human plasma using high-performance liquid chromatography-tandem mass spectrometry along with supported liquid extraction procedures. The chiral separation was evaluated and optimized on macrocyclic antibiotic type chiral stationary phases (CSPs) based on teicoplanin aglycone (Chirobiotic TAG) in polar organic, polar ionic, and reversed-phase mode chromatography, respectively. Complete baseline separation was achieved on a Chirobiotic TAG column under isocratic condition in reversed-phase chromatography. The method validation was conducted using a Chirobiotic TAG column (100 mm x 2.1 mm) over the curve range 0.100-100 ng/ml for each molindone enantiomer using 0.0500 ml of plasma sample. The flow rate was 0.8 ml/min and the total run time was 9 min. Supported liquid extraction in a 96-well plate format was used for sample preparation. Parameters including recovery, matrix effect, linearity, sensitivity, specificity, carryover, precision, accuracy, dilution integrity, and stability were evaluated. The intra- and inter-day precision and accuracy of the quality control samples at low, medium, and high concentration levels were RSD

  15. Development and validation of LC-HRMS and GC-NICI-MS methods for stereoselective determination of MDMA and its phase I and II metabolites in human urine

    PubMed Central

    Schwaninger, Andrea E.; Meyer, Markus R.; Huestis, Marilyn A.; Maurer, Hans H.

    2013-01-01

    3,4-Methylenedioxymethamphetamine (MDMA) is a racemic drug of abuse and its R- and S-enantiomers are known to differ in their dose-response curve. The S-enantiomer was shown to be eliminated at a higher rate than the R-enantiomer most likely explained by stereoselective metabolism that was observed in various in vitro experiments. The aim of this work was the development and validation of methods for evaluating the stereoselective elimination of phase I and particularly phase II metabolites of MDMA in human urine. Urine samples were divided into three different methods. Method A allowed stereoselective determination of the 4-hydroxy-3-methoxymethamphetamine (HMMA) glucuronides and only achiral determination of the intact sulfate conjugates of HMMA and 3,4-dihydroxymethamphetamine (DHMA) after C18 solid-phase extraction by liquid chromatography–high-resolution mass spectrometry with electrospray ionization. Method B allowed the determination of the enantiomer ratios of DHMA and HMMA sulfate conjugates after selective enzymatic cleavage and chiral analysis of the corresponding deconjugated metabolites after chiral derivatization with S-heptafluorobutyrylprolyl chloride using gas chromatography–mass spectrometry with negativeion chemical ionization. Method C allowed the chiral determination of MDMA and its unconjugated metabolites using method B without sulfate cleavage. The validation process including specificity, recovery, matrix effects, process efficiency, accuracy and precision, stabilities and limits of quantification and detection showed that all methods were selective, sensitive, accurate and precise for all tested analytes. PMID:21656610

  16. Self-assembly of hard helices: a rich and unconventional polymorphism.

    PubMed

    Kolli, Hima Bindu; Frezza, Elisa; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille; Hudson, Toby S; De Michele, Cristiano; Sciortino, Francesco

    2014-11-07

    Hard helices can be regarded as a paradigmatic elementary model for a number of natural and synthetic soft matter systems, all featuring the helix as their basic structural unit, from natural polynucleotides and polypeptides to synthetic helical polymers, and from bacterial flagella to colloidal helices. Here we present an extensive investigation of the phase diagram of hard helices using a variety of methods. Isobaric Monte Carlo numerical simulations are used to trace the phase diagram; on going from the low-density isotropic to the high-density compact phases a rich polymorphism is observed, exhibiting a special chiral screw-like nematic phase and a number of chiral and/or polar smectic phases. We present full characterization of the latter, showing that they have unconventional features, ascribable to the helical shape of the constituent particles. Equal area construction is used to locate the isotropic-to-nematic phase transition, and the results are compared with those stemming from an Onsager-like theory. Density functional theory is also used to study the nematic-to-screw-nematic phase transition; within the simplifying assumption of perfectly parallel helices, we compare different levels of approximation, that is second- and third-virial expansions and a Parsons-Lee correction.

  17. Optical isotropy and iridescence in a smectic 'blue phase'.

    PubMed

    Yamamoto, Jun; Nishiyama, Isa; Inoue, Miyoshi; Yokoyama, Hiroshi

    2005-09-22

    When liquid crystal molecules are chiral, the twisted structure competes with spatially uniform liquid crystalline orders, resulting in a variety of modulated liquid crystal phases, such as the cholesteric blue phase, twist grain boundary and smectic blue phases. Here we report a liquid crystal smectic blue phase (SmBP(iso)), formed from a two-component mixture containing a chiral monomer and a 'twin' containing two repeat units of the first molecule connected by a linear hydrocarbon spacer. The phase exhibits the simultaneous presence of finite local-order parameters of helices and smectic layers, without any discontinuity on a mesoscopic length scale. The anomalous softening of elasticity due to a strong reduction in entropy caused by mixing the monomer and the twin permits the seamless coexistence of these two competing liquid crystal orders. The new phase spontaneously exhibits an optically isotropic but uniformly iridescent colour and automatically acquires spherical symmetry, so that the associated photonic band gap maintains the same symmetry despite the local liquid crystalline order. We expect a range of unusual optical transmission properties based on this three-dimensional isotropic structure, and complete tunability due to the intrinsic softness and responsiveness of the liquid crystalline order against external fields.

  18. Manipulating Topological Edge Spins in One-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng

    2013-03-01

    We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.

  19. Interface and phase transition between Moore-Read and Halperin 331 fractional quantum Hall states: Realization of chiral Majorana fermion

    NASA Astrophysics Data System (ADS)

    Yang, Kun

    2017-12-01

    We consider an interface separating the Moore-Read state and Halperin 331 state in a half-filled Landau level, which can be realized in a double quantum well system with varying interwell tunneling and/or interaction strengths. In the presence of electron tunneling and strong Coulomb interactions across the interface, we find that all charge modes localize and the only propagating mode left is a chiral Majorana fermion mode. Methods to probe this neutral mode are proposed. A quantum phase transition between the Moore-Read and Halperin 331 states is described by a network of such Majorana fermion modes. In addition to a direct transition, they may also be separated by a phase in which the Majorana fermions are delocalized, realizing an incompressible state which exhibits quantum Hall charge transport and bulk heat conduction.

  20. Strong Broadband Terahertz Optical Activity through Control of the Blaschke Phase with Chiral Metasurfaces

    NASA Astrophysics Data System (ADS)

    Cole, Michael A.; Chen, Wen-chen; Liu, Mingkai; Kruk, Sergey S.; Padilla, Willie J.; Shadrivov, Ilya V.; Powell, David A.

    2017-07-01

    We demonstrate terahertz chiral metamaterials that achieve resonant transmission and strong optical activity. This response is realized in a metasurface coupled to its Babinet complement, with additional twist. Uniquely, the optical activity achieved in this type of metamaterial is weakly dispersive around the resonant transmission maxima, but it can be highly dispersive around the transmission minima. It has recently been shown that this unique optical activity response is closely related to zeros in the transmission spectra of circular polarizations through the Kramers-Kronig relations and strong resonant features in the optical activity spectrum corresponding to the Blaschke phase terms. Here we demonstrate how modifying the meta-atom geometry greatly affects the location and magnitude of these Blaschke phase terms. We study three different meta-atoms, which are variations on the simple cross structure. Their responses are measured using terahertz time-domain spectroscopy and analyzed via numerical simulations.

  1. Cascading gauge theory on dS4 and String Theory landscape

    NASA Astrophysics Data System (ADS)

    Buchel, Alex; Galante, Damián A.

    2014-06-01

    Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry provides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory. A local geometry of such vacua exhibit gravitational solutions with a D3 charge measured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such geometries, where anti-D3 branes are smeared at the tip. Such geometries represent holographic dual of cascading gauge theory in dS4 with or without chiral symmetry breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at the tip is always positive. Furthermore, this charge is zero in the phase with spontaneously broken chiral symmetry. We show that the effective potential of the chirally symmetric phase is lower than that in the symmetry broken phase, i.e., there is no spontaneous chiral symmetry breaking for cascading gauge theory in dS4. The positivity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared anti-D3 branes. First, turning on fluxes on Calabi-Yau compactifications of type IIB string theory produces highly warped geometry with stabilized complex structure (but not Kähler) moduli of the compactification [3]; Next, including non-perturbative effects (which are under control given the unbroken supersymmetry), one obtains anti-de Sitter (AdS4) vacua with all moduli fixed; Finally, one uses anti-D3 branes of type IIB string theory to uplift AdS4 to de Sitter (dS4) vacua. As the last step of the construction completely breaks supersymmetry, it is much less controlled. In fact, in [4-7] it was argued that putting anti-D3 branes at the tip of the Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked singularity. Whether or not the resulting singularity is physical is subject to debates. When M4=dS4 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is always positive, as long as ln H2Λ2/P2g0 ⩾-0.4. When M4=dS4 and the chiral symmetry is broken, the D3 brane charge at the tip of the conifold is always zero; we managed to construct geometries of this type for ln H2Λ2/P2g0⩾-0.03. Comparing effective potential of the gauge theory in broken Veffb and unbroken Veffs phases we establish that in all cases, when we can construct the phase with spontaneously broken chiral symmetry, Veffb>Veffs, when ln H2Λ2/P2g0⩾-0.03, i.e., spontaneous symmetry breaking does not happen for given values of the gauge theory parameters. To put these parameters in perspective, note that the (first-order) confinement/deconfinement and chiral symmetry breaking phase transition in cascading gauge theory plasma occurs at temperature T such that [16] ln Tdeconfinement,χSB2Λ2/P2g0=0.2571(2), and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs for compactification scale μ3≡ℓ3-1 such that [21] ln μ3,χSB2Λ2/P2g0=0.4309(8). When M4=R×S3 and the chiral symmetry is unbroken, the D3 brane charge at the tip of the conifold is negative when ln μ32Λ2/P2g0 μ, and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge in the ground state is in fact zero whenever μ3⩽μ. Furthermore, chirally symmetric states of cascading gauge theory on S3 develop symmetry breaking tachyonic instabilities at μ (below the first order chiral symmetry breaking scale μ) ln μ3,tachyon2Λ2/P2g0=0.3297(3) which is again above μ.Our results represented here, together with those reported in [10], point that the singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had it been otherwise, we should have been able to implement an infrared cutoff in the geometry with a D3 brane charge measured at the cutoff being negative. The role of the cutoff is played by the temperature (as discussed in [10]), by the compactification scale (when M4=R×S3), or by the Hubble scale (when M4=dS4). Interesting, we find that the D3 brane charge can become negative when the KT throat geometry is S3 deformed; however this occurs in the regime where this phase is unstable both via the first order phase transition and the tachyon condensation to S3 deformed KS throat geometry - the latter geometry has zero D3 brane charge at the tip. All this raises questions about construction of generic de Sitter vacua in String Theory [2].We stress, however, that our analysis does not definitely exclude local non-singular supergravity description of de Sitter vacua in String Theory. The issue stems from the anti-D3 brane “smearing approximation” used. Early discussion of the relevant smearing approximation appeared in [6,9]. There, the authors carefully analyzed non-supersymmetric deformations of KS geometry, invariant under the SU(2)×SU(2) global symmetry of the latter. They further identified a class of perturbations that is being sources by anti-D3 branes, placed at the tip of the conifold, and then computed the leading-order backreaction of those perturbations on KS geometry. Insistence on preserving the SU(2)×SU(2) global symmetry is a smearing approximation - from the brane perspective it implies that anti-D3 branes are uniformly distributed (uniformly smeared) over the transverse compact five-dimensional manifold. Our discussion here shares the same smearing approximation as in [6,9], but extends the analysis to the full (rather than leading-order) backreaction. Smearing approximation is a practical tool enabling the analysis of the complicated cascading geometries involved. However, it must be questioned: it is not clear that non-supersymmetric uniform distribution along T directions of anti-D3 branes is stable against ‘clumping’. While it is highly desirable to lift this approximation, it is very difficult to do this in practice: one is forced to analyze a coupled nonlinear system of partial differential equations, rather than ordinary differential equations. We feel that until fully localized anti-D3 brane analysis in cascading geometries are performed, the singularity question of local supergravity description of de Sitter vacua in String Theory will remain open.

  2. Photo-Acoustic Spectroscopy Reveals Extrinsic Optical Chirality in GaAs-Based Nanowires Partially Covered with Gold

    NASA Astrophysics Data System (ADS)

    Petronijevic, E.; Leahu, G.; Belardini, A.; Centini, M.; Li Voti, R.; Hakkarainen, T.; Koivusalo, E.; Rizzo Piton, M.; Suomalainen, S.; Guina, M.; Sibilia, C.

    2018-04-01

    We report on the extrinsic chirality behavior of GaAs-based NWs asymmetrically hybridized with Au. The samples are fabricated by a recently developed, lithography-free self-organized GaAs growth, with the addition of AlGaAs shell and GaAs supershell. The angled Au flux is then used to cover three-out-of-six sidewalls with a thin layer of Au. Oblique incidence and proper sample orientation can lead to circular dichroism. We characterize this chiral behavior at 532 {nm} and 980 {nm} by means of photo-acoustic spectroscopy, which directly measures the difference in absorption for the circularly polarized light of the opposite headedness. For the first time to our knowledge, circular dichroism is observed in both the amplitude and the phase of the photo-acoustic signal. We strongly believe that such samples can be used for chiral applications, spanning from circularly polarized light emission, to the enantioselectivity applications.

  3. Chiral Tricritical Point: A New Universality Class in Dirac Systems

    NASA Astrophysics Data System (ADS)

    Yin, Shuai; Jian, Shao-Kai; Yao, Hong

    2018-05-01

    Tricriticality, as a sister of criticality, is a fundamental and absorbing issue in condensed-matter physics. It has been verified that the bosonic Wilson-Fisher universality class can be changed by gapless fermionic modes at criticality. However, the counterpart phenomena at tricriticality have rarely been explored. In this Letter, we study a model in which a tricritical Ising model is coupled to massless Dirac fermions. We find that the massless Dirac fermions result in the emergence of a new tricritical point, which we refer to as the chiral tricritical point (CTP), at the phase boundary between the Dirac semimetal and the charge-density wave insulator. From functional renormalization group analysis of the effective action, we obtain the critical behaviors of the CTP, which are qualitatively distinct from both the tricritical Ising universality and the chiral Ising universality. We further extend the calculations of the chiral tricritical behaviors of Ising spins to the case of Heisenberg spins. The experimental relevance of the CTP in two-dimensional Dirac semimetals is also discussed.

  4. Chirality transfer technique between liquid crystal microdroplets using microfluidic systems

    NASA Astrophysics Data System (ADS)

    Guo, Jin-kun; Lee, Doyeon; Song, Jang-kun

    2018-02-01

    Cholesteric liquid crystal (LC) microdroplet is applied in many areas, such as tunable laser, biosensor, information display and security identification, due to its unique optical properties. The topological structure, defects, and photonic crystallinity in the cholesteric liquid crystal (LC) microdroplet can be controlled through the chirality. Here we report an interesting phenomenon that chirality information can be shared among dispersed LC microdroplets in surfactant aqueous solution, which is driven by the transferring of chiral dopant molecules. As a result, we developed an artificial molecule transfer technology which could in situ vary the material composition within the isolated dispersed microdroplets. The molecular transfer is switchable and the transfer speed is controllable by tuning the molecular solubility in continuous phase. Based on this technique, we manipulated, forward and backward, the topological evolution and the photonic crystal band-gap of the dispersed LC droplet. This technique is an easy and powerful experimental tool, and it may be applicable to other fields in optical application, biology, chemistry and material science.

  5. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    PubMed

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  6. Kinetics of the chiral phase transition in a linear σ model

    NASA Astrophysics Data System (ADS)

    Wesp, Christian; van Hees, Hendrik; Meistrenko, Alex; Greiner, Carsten

    2018-02-01

    We study the dynamics of the chiral phase transition in a linear quark-meson σ model using a novel approach based on semiclassical wave-particle duality. The quarks are treated as test particles in a Monte Carlo simulation of elastic collisions and the coupling to the σ meson, which is treated as a classical field, via a kinetic approach motivated by wave-particle duality. The exchange of energy and momentum between particles and fields is described in terms of appropriate Gaussian wave packets. It has been demonstrated that energy-momentum conservation and the principle of detailed balance are fulfilled, and that the dynamics leads to the correct equilibrium limit. First schematic studies of the dynamics of matter produced in heavy-ion collisions are presented.

  7. Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model

    NASA Astrophysics Data System (ADS)

    Diab, Abdel Magied Abdel Aal; Tawfik, Abdel Nasser

    2018-04-01

    The SU(4) Polyakov linear sigma model (PLSM) is extended towards characterizing the chiral condensates, σl, σs and σc of light, strange and charm quarks, respectively and the deconfinement order-parameters φ and φ at finite temperatures and densities (chemical potentials). The PLSM is considered to study the QCD equation of state in the presence of the chiral condensate of charm for different finite chemical potentials. The PLSM results are in a good agreement with the recent lattice QCD simulations. We conclude that, the charm condensate is likely not affected by the QCD phase-transition, where the corresponding critical temperature is greater than that of the light and strange quark condensates.

  8. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  9. Enantioselective Synthesis of Chiral α-Azido and α-Aryloxy Quaternary Stereogenic Centers via the Phase-Transfer-Catalyzed α-Alkylation of α-Bromomalonates, Followed by SN2 Substitution.

    PubMed

    Kim, Doyoung; Ha, Min Woo; Hong, Suckchang; Park, Cheonhyoung; Kim, Byungsoo; Yang, Jewon; Park, Hyeung-Geun

    2017-05-05

    A new efficient synthetic method for chiral α-azido-α-alkylmalonates and α-aryloxy-α-alkylmalonates was developed. The enantioselective α-alkylation of diphenylmethyl tert-butyl α-bromomalonate under phase-transfer catalytic conditions [(S,S)-3,4,5-trifluorophenyl-NAS bromide, 50% KOH, toluene, and -40 °C) provided the corresponding α-bromo-α-alkylmalonates in high chemical yields (≤98%) and high optical yields (≤99% ee). The resulting α-alkylated products were converted to α-azido-α-alkylmalonates (≤96%, ≤97% ee) and α-aryloxy-α-alkylmalonates (≤79%, ≤93% ee) by S N 2 substitution with sodium azide and aryloxides, respectively.

  10. Extracting the chiral anomaly from γπ→ππ

    NASA Astrophysics Data System (ADS)

    Hoferichter, Martin; Kubis, Bastian; Sakkas, Dimitrios

    2012-12-01

    We derive dispersive representations for the anomalous process γπ→ππ with the ππ P-wave phase shift as input. We investigate how in this framework the chiral anomaly can be extracted from a cross-section measurement using all data up to 1 GeV, and discuss the importance of a precise representation of the γπ→ππ amplitude for the hadronic light-by-light contribution to the anomalous magnetic moment of the muon.

  11. Electroclinic effect in a chiral carbosilane-terminated 5-phenylpyrimidine liquid crystal with 'de Vries-like' properties.

    PubMed

    Schubert, Christopher P J; Müller, Carsten; Wand, Michael D; Giesselmann, Frank; Lemieux, Robert P

    2015-08-14

    The chiral carbosilane-terminated liquid crystal 2-[(2S,3S)-2,3-difluorohexyloxy]-5-[4-(12,12,14,14,16,16-hexamethyl-12,14,16-trisilaheptadecyloxy)phenyl]pyrimidine () undergoes a smectic A*-smectic C* phase transition with a maximum layer contraction of only 0.2%. It exhibits an electroclinic effect (ECE) comparable to that reported for the 'de Vries-like' liquid crystal and shows no appreciable optical stripe defects due to horizontal chevron formation.

  12. Enantioselective separation and online affinity chromatographic characterization of R,R- and S,S-fenoterol.

    PubMed

    Beigi, Farideh; Bertucci, Carlo; Zhu, Weizhong; Chakir, Khalid; Wainer, Irving W; Xiao, Rui-Ping; Abernethy, Darrell R

    2006-11-01

    rac-Fenoterol is a beta2-adrenoceptor agonist (beta2-AR) used in the treatment of asthma. It has two chiral centers and is marketed as a racemic mixture of R,R'- and S,S'-fenoterol (R-F and S-F). Here we report the separation of the R-F and S-F enantiomers and the evaluation of their binding to and activation of the beta2-AR. R-F and S-F were separated from the enantiomeric mixture by chiral chromatography and absolute configuration determined by circular dichroism. Beta2-AR binding was evaluated using frontal affinity chromatography with a stationary phase containing immobilized membranes from HEK-293 cells that express human beta2-AR and standard membrane binding studies using the same membranes. The effect of R-F and S-F on cardiomyocyte contractility was also investigated using freshly isolated adult rat cardiomyocytes. Chiral chromatography of rac-fenoterol yielded separated peaks with an enantioselectivity factor of 1.21. The less retained peak was assigned the absolute configuration of S-F and the more retained peak R-F. Frontal chromatography using membrane-bound beta2-AR as the stationary phase and rac-3H-fenoterol as a marker ligand showed that addition of increasing concentrations of R-F to the mobile phase produced concentration-dependent decreases in rac-3H-fenoterol retention, while similar addition of S-F produced no change in rac-3H-fenoterol retention. The calculated dissociation constant of R-F was 472 nM and the number of available binding sites 176 pmol/column, which was consistent with the results from the membrane binding study 460 +/- 55 nM (R-F) and 109,000 +/- 10,400 nM (S-F). In the cardiomyocytes, R-F increased maximum contractile response from (265 +/- 11.6)% to (306 +/- 11.8)% of resting cell length (P < 0.05) and reduced EC50 from -7.0 +/- 0.270 to -7.1 +/- 0.2 log[M] (P < 0.05), while S-F had no significant effect. Previous studies have shown that rac-fenoterol acts as an apparent beta2-AR/G(s) selective agonist and fully restores diminished beta2-AR contractile response in cardiomyocytes from failing hearts of spontaneously hypertensive rats (SHR). Here we report the separation of the enantiomers of rac-fenoterol and that R-F is the active component of rac-fenoterol. Further evaluation of R-F will determine if it has enhanced selectivity and specificity for beta2-AR/G(s) activation and if it can be used in the treatment of congestive heart failure. Published 2006 Wiley-Liss, Inc.

  13. An Extended Model for the Evolution of Prebiotic Homochirality: A Bottom-Up Approach to the Origin of Life

    NASA Astrophysics Data System (ADS)

    Gleiser, Marcelo; Walker, Sara Imari

    2008-08-01

    A generalized autocatalytic model for chiral polymerization is investigated in detail. Apart from enantiomeric cross-inhibition, the model allows for the autogenic (non-catalytic) formation of left and right-handed monomers from a substrate with reaction rates ɛ L and ɛ R , respectively. The spatiotemporal evolution of the net chiral asymmetry is studied for models with several values of the maximum polymer length, N. For N = 2, we study the validity of the adiabatic approximation often cited in the literature. We show that the approximation obtains the correct equilibrium values of the net chirality, but fails to reproduce the short time behavior. We show also that the autogenic term in the full N = 2 model behaves as a control parameter in a chiral symmetry-breaking phase transition leading to full homochirality from racemic initial conditions. We study the dynamics of the N→ ∞ model with symmetric ( ɛ L = ɛ R ) autogenic formation, showing that it only achieves homochirality for ɛ > ɛ c , where ɛ c is an N-dependent critical value. For ɛ ≤ ɛ c we investigate the behavior of models with several values of N, showing that the net chiral asymmetry grows as tanh( N). We show that for a given symmetric autogenic reaction rate, the net chirality and the concentrations of chirally pure polymers increase with the maximum polymer length in the model. We briefly discuss the consequences of our results for the development of homochirality in prebiotic Earth and possible experimental verification of our findings.

  14. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance

    NASA Astrophysics Data System (ADS)

    dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.

    2016-08-01

    Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.

  15. Recent progress of task-specific ionic liquids in chiral resolution and extraction of biological samples and metal ions.

    PubMed

    Wu, Datong; Cai, Pengfei; Zhao, Xiaoyong; Kong, Yong; Pan, Yuanjiang

    2018-01-01

    Ionic liquids have been functionalized for modern applications. The functional ionic liquids are also called task-specific ionic liquids. Various task-specific ionic liquids with certain groups have been constructed and exploited widely in the field of separation. To take advantage of their properties in separation science, task-specific ionic liquids are generally used in techniques such as liquid-liquid extraction, solid-phase extraction, gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. This review mainly covers original research papers published in the last five years, and we will focus on task-specific ionic liquids as the chiral selectors in chiral resolution and as extractant or sensor for biological samples and metal ion purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  17. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  18. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    PubMed

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  20. Properties of the gold-sulphur interface: from self-assembled monolayers to clusters

    NASA Astrophysics Data System (ADS)

    Bürgi, Thomas

    2015-09-01

    The gold-sulphur interface of self-assembled monolayers (SAMs) was extensively studied some time ago. More recently tremendous progress has been made in the preparation and characterization of thiolate-protected gold clusters. In this feature article we address different properties of the two systems such as their structure, the mobility of the thiolates on the surface and other dynamical aspects, the chirality of the structures and characteristics related to it and their vibrational properties. SAMs and clusters are in the focus of different communities that typically use different experimental approaches to study the respective systems. However, it seems that the nature of the Au-S interfaces in the two cases is quite similar. Recent single crystal X-ray structures of thiolate-protected gold clusters reveal staple motifs characterized by gold ad-atoms sandwiched between two sulphur atoms. This finding contradicts older work on SAMs. However, newer studies on SAMs also reveal ad-atoms. Whether this finding can be generalized remains to be shown. In any case, more and more studies highlight the dynamic nature of the Au-S interface, both on flat surfaces and in clusters. At temperatures slightly above ambient thiolates migrate on the gold surface and on clusters. Evidence for desorption of thiolates at room temperature, at least under certain conditions, has been demonstrated for both systems. The adsorbed thiolate can lead to chirality at different lengths scales, which has been shown both on surfaces and for clusters. Chirality emerges from the organization of the thiolates as well as locally at the molecular level. Chirality can also be transferred from a chiral surface to an adsorbate, as evidenced by vibrational spectroscopy.

Top