Chiral symmetry and the nucleon-nucleon interaction
Machleidt, Ruprecht
2016-04-20
We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of the chiral EFT approach to the NN interaction.
Chiral symmetry and the nucleon-nucleon interaction
Machleidt, Ruprecht
2016-04-20
We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD) via chiral effective field theory (EFT). During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (NN) interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the NN potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. Lastly, the final result allows for a full assessment of the validity of themore » chiral EFT approach to the NN interaction.« less
Wiringa, R.B.
1996-12-31
Nucleon-nucleon interactions are at the heart of nuclear physics, bridging the gap between QCD and the effective interactions appropriate for the shell model. We discuss the current status of {ital NN} data sets, partial-wave analyses, and some of the issues that go into the construction of potential models. Our remarks are illustrated by reference to the Argonne {ital v}{sub 18} potential, one of a number of new potentials that fit elastic nucleon-nucleon data up to 350 MeV with a {Chi}{sup 2} per datum near 1. We also discuss the related issues of three-nucleon potentials, two-nucleon charge and current operators, and relativistic effects. We give some examples of calculations that can be made using these realistic descriptions of {ital NN} interactions. We conclude with some remarks on how our empirical knowledge of {ital NN} interactions may help constrain models at the quark level, and hence models of nucleon structure.
Infinite-Cutoff Renormalization of the Chiral Nucleon-Nucleon Interaction up to N3LO
NASA Astrophysics Data System (ADS)
Zeoli, Ch.; Machleidt, R.; Entem, D. R.
2013-12-01
Naively, the "best" method of renormalization is the one where a momentum cutoff is taken to infinity while maintaining stable results due to a cutoff-dependent adjustment of counterterms. We have applied this renormalization method in the non-perturbative calculation of phase-shifts for nucleon-nucleon ( NN) scattering using chiral NN potentials up to next-to-next-to-next-to-leading order (N3LO). For lower partial waves, we find that there is either no convergence with increasing order or, if convergence occurs, the results do not always converge to the empirical values. For higher partial waves, we always observe convergence to the empirical phase shifts (except for the 3G5 state). Furthermore, no matter what the order is, one can use only one or no counterterm per partial wave, creating a rather erratic scheme of power counting that does not allow for a systematic order-by-order improvement of the predictions. The conclusion is that infinite-cutoff renormalization is inappropriate for chiral NN interactions, which should not come as a surprise, since the chiral effective field theory (chiral EFT), these interactions are based upon, is designed for momenta below the chiral-symmetry breaking scale of about 1 GeV. Therefore, this value for the hard scale should also be perceived as the appropriate upper limit for the momentum cutoff.
Chiral symmetry and the A 1 contribution to the nucleon-nucleon interaction
NASA Astrophysics Data System (ADS)
Durso, J. W.; Brown, G. E.; Saarela, M.
1984-12-01
The contribution of A 1 exchange to the nucleon-nucleon potential is studied in a broken chiral symmetric model. The A 1 is treated as a finite-width resonance in the πρ s-wave. Connections between pseudoscalar and pseudovector pion-nucleon coupling in the underlying model lagrangian are studied in detail. It is found that large terms in the NN interaction arising from πρ exchange with pseudoscalar coupling are suppressed by interference with a 1 exchange. With pseudovector coupling there is a suppression of the A 1 exchange by the so-called "seagull" terms in πρ exchange which arise from gauge invariance. The suppression becomes an exact cancellation in the limit of infinite ρ and a 1 masses and exact chiral symmetry. We found that inclusion of the a 1 decay into the πρ state strongly modifies the a 1] exchange potential, suppressing the tensor part but leaving the spin-spin part almost unchanged.
The nucleon-nucleon interaction up to sixth order in the chiral expansion
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht; Nosyk, Yevgen
2016-09-01
We have calculated the nucleon-nucleon potential up to sixth order (N5LO) of chiral perturbation theory. Previous calculations extended only up to N3LO (fourth order) and typically showed a surplus of attraction, particularly, when the π- N LECs from π- N analysis were applied consistently. Furthermore, the contributions at N2LO and N3LO are both fairly sizeable, thus, raising concerns about the convergence of the chiral expansion. We show that the N4LO contribution is repulsive and, essentially, cancels the excessive attraction of N3LO. The N5LO contribution turns out to be considerably smaller than the N4LO one, hence establishing the desired trend of convergence. The predictions at N5LO are in excellent agreement with the empirical phase shifts of peripheral partial waves. Supported by the US Department of Energy under Grant No. DE-FG02-03ER41270.
NASA Astrophysics Data System (ADS)
Itaco, N.; Coraggio, L.; Covello, A.; Gargano, A.; Entem, D. R.; Kuo, T. T. S.; Machleidt, R.
2008-04-01
Recently a new low-momentum nucleon-nucleon potential (N3LOW) has been derived from chiral perturbation theory at next-to-next-to-next-to-Ieading order with a sharp low-momentum cutoff at 2.1 fm-1. In this work we compare its perturbative properties with those of a Vlow-k potential constructed from a realistic NN potential with high-momentum components. We have performed shell-model calculations for 18O using effective hamiltonians derived from both types of low-momentum potential. The results show that the N3LOW potential is suitable to be applied perturbatively in microscopic nuclear structure calculations yielding results quite close to those obtained from Vlow-k.
Nucleon-nucleon interaction: A typical/concise review
NASA Astrophysics Data System (ADS)
Naghdi, M.
2014-09-01
Nearly a recent century of work is divided to Nucleon-Nucleon ( NN) interaction issue. We review some overall perspectives of NN interaction with a brief discussion about deuteron, general structure and symmetries of NN Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN interaction models, as frameworks to build NN potentials, are reviewed concisely. We try to include and study almost all well-known potentials in a similar way, discuss more on various commonly used plain forms for two-nucleon interaction with an emphasis on the phenomenological and meson-exchange potentials as well as the constituent-quark potentials and new ones based on chiral effective field theory and working in coordinate-space mostly. The potentials are constructed in a way that fit NN scattering data, phase shifts, and are also compared in this way usually. An extra goal of this study is to start comparing various potentials forms in a unified manner. So, we also comment on the advantages and disadvantages of the models and potentials partly with reference to some relevant works and probable future studies.
Renormalization of the Brazilian chiral nucleon-nucleon potential
NASA Astrophysics Data System (ADS)
Da Rocha, Carlos A.; Timóteo, Varese S.
2013-03-01
In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.
Renormalization of the Brazilian chiral nucleon-nucleon potential
Da Rocha, Carlos A.; Timoteo, Varese S.
2013-03-25
In this work we present a renormalization of the Brazilian nucleon-nucleon (NN) potential using a subtractive method. We show that the exchange of correlated two pion is important for isovector channels, mainly in tensor and central potentials.
Nucleon-nucleon interaction and large Nc QCD
NASA Astrophysics Data System (ADS)
Banerjee, Manoj K.; Cohen, Thomas D.; Gelman, Boris A.
2002-03-01
The nature of the nonrelativistic nucleon-nucleon potential in the large-Nc limit is discussed. In particular, we address the consistency of the meson-exchange picture of nucleon interactions. It is shown that the nonrelativistic nucleon-nucleon potential extracted from the Feynmann graphs up to and including two-meson-exchange diagrams satisfies the spin-flavor counting rules of Kaplan and Savage and of Kaplan and Manohar, provided the nucleon momenta is of order N0c. The key to this is a cancellation of the retardation effect of the box graphs against the contributions of the crossed-box diagram. The consistency requires including Δ as an intermediate state.
Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
NASA Astrophysics Data System (ADS)
Entem, D. R.; Kaiser, N.; Machleidt, R.; Nosyk, Y.
2015-01-01
We present the two- and three-pion-exchange contributions to the nucleon-nucleon interaction which occur at next-to-next-to-next-to-next-to-leading order (N4LO , fifth order) of chiral effective field theory and calculate nucleon-nucleon scattering in peripheral partial waves with L ≥3 by using low-energy constants that were extracted from π N analysis at fourth order. While the net three-pion-exchange contribution is moderate, the two-pion exchanges turn out to be sizable and prevailingly repulsive, thus compensating the excessive attraction characteristic for next-to-next-to-leading order and N3LO . As a result, the N4LO predictions for the phase shifts of peripheral partial waves are in very good agreement with the data (with the only exception being the 1F3 wave). We also discuss the issue of the order-by-order convergence of the chiral expansion for the N N interaction.
Neutron Measurements and the Weak Nucleon-Nucleon Interaction
Snow, W. M.
2005-01-01
The weak interaction between nucleons remains one of the most poorly-understood sectors of the Standard Model. A quantitative description of this interaction is needed to understand weak interaction phenomena in atomic, nuclear, and hadronic systems. This paper summarizes briefly what is known about the weak nucleon-nucleon interaction, tries to place this phenomenon in the context of other studies of the weak and strong interactions, and outlines a set of measurements involving low energy neutrons which can lead to significant experimental progress. PMID:27308120
On the renormalization of nucleon-nucleon interaction by one rho-meson exchange
Oliveira, Luiz Paulo de
2014-11-11
The nature of the nucleon-nucleon interaction has always been a subject of intense discussion in the low-energy hadron physics literature. In the last decades, the research related to chiral perturbation theory developed by Gasser, Leutwyler and Weinberg have gained attention due to the advances in using chiral symmetry to describe nuclear interactions. In this work we discuss aspects of the renormalizability of the interaction between two nucleons by one ρ and one π mesons exchange. The results give us important hints on the required short-distance cancellations of the singular tensor potential due to pion exchange.
The nucleon-nucleon system in chiral effective theory
Phillips, Daniel R.
2011-10-24
I discuss the conditions under which the application of chiral perturbation theory to the NN potential gives reliable results for NN scattering phase shifts. {sub {chi}P}T also yields a convergent expansion for the deuteron charge operator. For cutoffs <1 GeV, this produces precise predictions for deuterium's quadrupole and charge form factors in the range Q{sup 2}<0.25 GeV{sup 2}.
Nucleon-nucleon interaction with one-pion exchange and instanton-induced interactions
NASA Astrophysics Data System (ADS)
Vanamali, C. S.; Kumar, K. B. Vijaya
2016-11-01
Singlet (S10) and triplet (S31) nucleon-nucleon potentials are obtained in the framework of the SU(2) nonrelativistic quark model using the resonating-group method in the Born-Oppenheimer approximation. The full Hamiltonian used in the investigation includes the kinetic energy, two-body confinement potential, one-gluon-exchange potential (OGEP), one-pion exchange potential (OPEP), and instanton induced interaction (III), which includes the effect of quark exchange between the nucleons. The contribution of the OGEP, III, and OPEP to the nucleon-nucleon adiabatic potential is discussed.
Nuclear matter properties with nucleon-nucleon forces up to fifth order in the chiral expansion
NASA Astrophysics Data System (ADS)
Hu, Jinniu; Zhang, Ying; Epelbaum, Evgeny; Meißner, Ulf-G.; Meng, Jie
2017-09-01
The properties of nuclear matter are studied using state-of-the-art nucleon-nucleon forces up to fifth order in chiral effective field theory. The equations of state of symmetric nuclear matter and pure neutron matter are calculated in the framework of the Brueckner-Hartree-Fock theory. We discuss in detail the convergence pattern of the chiral expansion and the regulator dependence of the calculated equations of state and provide an estimation of the truncation uncertainty. For all employed values of the regulator, the fifth-order chiral two-nucleon potential is found to generate nuclear saturation properties similar to the available phenomenological high precision potentials. We also extract the symmetry energy of nuclear matter, which is shown to be quite robust with respect to the chiral order and the value of the regulator.
Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces
NASA Astrophysics Data System (ADS)
Binder, S.; Calci, A.; Epelbaum, E.; Furnstahl, R. J.; Golak, J.; Hebeler, K.; Kamada, H.; Krebs, H.; Langhammer, J.; Liebig, S.; Maris, P.; Meißner, Ulf-G.; Minossi, D.; Nogga, A.; Potter, H.; Roth, R.; Skibiński, R.; Topolnicki, K.; Vary, J. P.; Witała, H.; Lenpic Collaboration
2016-04-01
We apply improved nucleon-nucleon potentials up to fifth order in chiral effective field theory, along with a new analysis of the theoretical truncation errors to study nucleon-deuteron (N d ) scattering and selected low-energy observables in 3H,4He , and 6Li. Calculations beyond second order differ from experiment well outside the range of quantified uncertainties, providing truly unambiguous evidence for missing three-nucleon forces within the employed framework. The sizes of the required three-nucleon-force contributions agree well with expectations based on Weinberg's power counting. We identify the energy range in elastic N d scattering best suited to study three-nucleon-force effects and estimate the achievable accuracy of theoretical predictions for various observables.
NASA Astrophysics Data System (ADS)
Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.
2016-11-01
We analyze the low-energy nucleon-nucleon (NN) interaction by confronting statistical versus systematic uncertainties. This is carried out with the help of model potentials fitted to the Granada-2013 database where a statistically meaningful partial wave analysis comprising a total of 6713 np and pp published scattering data below 350 MeV from 1950 till 2013 has been made. We extract threshold parameter uncertainties from the coupled-channel effective range expansion up to j≤slant 5. We find that for threshold parameters systematic uncertainties are generally at least an order of magnitude larger than statistical uncertainties. Similar results are found for np phase shifts and amplitude parameters.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in themore » T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.« less
Probing short-range nucleon-nucleon interactions with an electron-ion collider
NASA Astrophysics Data System (ADS)
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-01
We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.
Probing short-range nucleon-nucleon interactions with an electron-ion collider
Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju
2016-04-07
For this research, we derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of “pointlike” and “geometric” Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J/ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN ~12GeV^{2} of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such “knockout” exclusive reactions in light and heavy nuclei.
SU(3)-guided Realistic Nucleon-nucleon Interaction for Large-scale Calculations
NASA Astrophysics Data System (ADS)
Sargsyan, Grigor; Launey, Kristina; Baker, Robert; Dytrych, Tomas; Draayer, Jerry
2017-01-01
We examine nucleon-nucleon (NN) realistic interactions, such as JISP16 and N3LO, based on their SU(3) decomposition and identify components of the interactions that are sufficient to describe the structure of low-lying states in nuclei. We observe that many of the interaction components, when expressed as SU(3) tensors, become negligible. Paring the interaction down to its physically relevant terms improves the efficacy of large-scale calculations from first principles (ab initio). The work compares spectral properties for low-lying states in 12C calculated by means of the selected interaction to the results obtained when the full interaction is used and confirms the validity of the method. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefited from computing resources provided by Blue Waters and Louisiana State University's Center for Computation & Technology.
NASA Astrophysics Data System (ADS)
Dey, J.; Samanta, B. C.; Dey, M.
1980-09-01
A calculation is performed using lowest order Brueckner theory in momentum space, with explicit isobar configurations included through the coupled channel mathod. The effective interaction for the1 S 0-5 D 0 channel is extracted from this calculation. Two different transition potentials are used — one due to Green and Niskanen (1976), the other, due to Green and co-workers (1978). The nucleon-nucleon (NN) interaction used is the Reid soft core potential, compensated for the inclusion of the explicit isobar channel. The effective interaction shows marked momentum dependence in the intermediate range. The loss of attraction depends on the transition potential one chooses. The correlation function involving the nucleon-isobar intermediate state is anti-correlated to the NN part.
Navratil, P; Caurier, E
2003-10-14
The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.
Parity-violating two-pion exchange nucleon-nucleon interaction
Kaiser, N.
2007-10-15
We calculate in chiral perturbation theory the parity-violating two-pion exchange nucleon-nucleon potentials at leading one-loop order. At a distance of r=m{sub {pi}}{sup -1}{approx_equal}1.4 fm they amount to about {+-}16% of the parity-violating 1{pi} exchange potential. We evaluate also the parity-violating effects arising from 2{pi} exchange with excitation of virtual {delta}(1232) isobars. These come out to be relatively small in comparison with those from diagrams with only nucleon intermediate states. The reason for this behavior, which is opposite that of the parity-conserving case, is the blocking of the dominant isoscalar central channel by CP invariance. Furthermore, we calculate the T matrix related to the iteration of the parity-violating 1{pi} exchange with the parity-conserving one. The analytical results presented in this work can be easily implemented into calculations of parity-violating nuclear observables.
Fundamental nucleon-nucleon interaction: probing exotic nuclear structure using GEANIE at LANCE/WNR
Bernstein, L
2000-02-25
The initial goal of this project was to study the in-medium nucleon-nucleon interaction by testing the fundamental theory of nuclear structure, the shell model, for nuclei between {sup 8}Zr and {sup 100}Sn. The shell model predicts that nuclei with ''magic'' (2,8,20,28,40,50, and 82) numbers of protons or neutrons form closed shells in the same fashion as noble gas atoms [may49]. A ''doubly magic'' nucleus with a closed shell of both protons and neutrons has an extremely simple structure and is therefore ideal for studying the nucleon-nucleon interaction. The shell model predicts that doubly magic nuclei will be spherical and that they will have large first-excited-state energies ({approx} 1 to 3 MeV). Although the first four doubly-magic nuclei exhibit this behavior, the N = Z = 40 nucleus, {sup 80}Zr, has a very low first-excited-state energy (290 keV) and appears to be highly deformed. This breakdown is attributed to the small size of the shell gap at N = Z = 40. If this description is accurate, then the N = Z = 50 doubly magic nucleus, {sup 100}Sn, will exhibit ''normal'' closed-shell behavior. The unique insight provided by doubly-magic nuclei from {sup 80}Zr to {sup 100}Sn has made them the focus of tremendous interest in the nuclear structure community. However, doubly-magic nuclei heavier than {sup 56}Ni become increasingly difficult to form due to the coulomb repulsion between the protons which favors the formation of neutron-rich nuclei. The coulomb repulsion creates a ''proton drip-line'' beyond which the addition of any additional bound protons is energetically impossible. The drip line renders the traditional experimental technique used in their formation, the heavy-ion reaction, less than ideal as a method of forming doubly-magic nuclei beyond {sup 80}Zr. The result has been a lack of an new spectroscopic information on doubly magic nuclei in more than a decade [lis87]. Furthermore, uncertainties in reaction dynamics modeling made it difficult for the
NASA Astrophysics Data System (ADS)
Schindler, Matthias R.
2017-03-01
Violations of parity (P) and time reversal invariance (T) in few-nucleon systems provide interesting tests of our understanding of the Standard Model as well as sensitive probes of Beyond-the-Standard-Model physics. Because of the small size of the symmetry-violating effects, experimental constraints on symmetry-violating nucleon-nucleon interactions are currently weak, if they exist at all. We analyze both P-violating T-conserving and P-violating T-violating nucleon-nucleon interactions in terms of the large-N_c expansion of QCD to provide additional theoretical constraints. This analysis leads to a hierarchy of terms in symmetry-violating potentials, establishes relations between couplings, and helps to delineate the terms that should be most important in phenomenological applications.
Nuclear matter equation of state from a quark-model nucleon-nucleon interaction
NASA Astrophysics Data System (ADS)
Fukukawa, K.; Baldo, M.; Burgio, G. F.; Lo Monaco, L.; Schulze, H.-J.
2015-12-01
Starting from a realistic constituent quark model for the nucleon-nucleon interaction, we derive the equation of state (EOS) of nuclear matter within the Bethe-Brueckner-Goldstone approach up to the three-hole-line level, without the need to introduce three-nucleon forces. To estimate the uncertainty of the calculations both the gap and the continuous choices for the single-particle potential are considered and compared. The resultant EOS is compatible with the phenomenological analysis of the saturation point, the incompressibility, the symmetry energy at a low density, and its slope at saturation, together with the high-density pressure extracted from flow data on heavy-ion collisions. Although the symmetry energy is appreciably higher in the gap choice in the high-density region, the maximum neutron star masses derived from the continuous-choice EOS and the gap-choice EOS are similar and close to two solar masses, which is again compatible with recent observational data. A comparison with other microscopic equations of state is presented and discussed.
Two-Pion Exchange Nucleon-Nucleon Potential: Relativistic Chiral Expansion
R. Higa; M.R. Robilotta
2002-08-01
We present a relativistic procedure for the chiral expansion of the two-pion exchange component of the NN potential, which emphasizes the role of intermediate pi N subamplitudes. The relationship between power counting in pi N and NN processes is discussed and results are expressed directly in terms of observable subthreshold coefficients. Interactions are determined by one and two-loop diagrams, involving pions, nucleons and other degrees of freedom, frozen into empirical subthreshold coefficients. The full evaluation of these diagrams produces amplitudes containing many different loop integrals. Their simplification by means of relations among these integrals leads to a set of intermediate results. Subsequent truncation to order(q{sup 4}) yields the relativistic potential, which depends on four loop integrals, representing bubble, triangle, crossed box and box diagrams. The bubble and triangle integrals are the same as in pi N scattering and we have shown that they also determine the chiral structures of box and crossed box integrals. Relativistic threshold effects were found to begin to contribute at order(q{sup 5}) only and our results should coincide with those of the standard heavy baryon approach. Checking this explicitly, we found differences due to the Goldberger-Treiman discrepancy and terms of order(q{sup 3}), possibly associated with the iteration of the OPEP.
Experimental studies of nucleon-nucleon and pion-nucleus interactions at intermediate energies
Not Available
1990-10-01
This report summarizes the work on experimental research in intermediate energy nuclear and particle physics carried out by New Mexico State University in 1988--91. Most of these studies have involved investigations of neutron-proton and pion-nucleus interactions. The neutron-proton research is part of a program of studies of interactions between polarized nucleons that we have been involved with for more than ten years. Its purpose has been to help complete the determination of the full set of ten complex nucleon-nucleon amplitudes at energies up to 800 MeV, as well as to continue investigating the possibility of the existence of dibaryon resonances. The give complex isospin-one amplitudes have been fairly well determined, partly as a result of this work. Our work in this period has involved measurements and analysis of data on elastic scattering and total cross sections for polarized neutrons on polarized protons. The pion-nucleus research continues our studies of this interaction in regions where it has not been well explored. One set of experiments includes studies of pion elastic and double-charge-exchange scattering at energies between 300 and 550 MeV, where our data is unique. Another involves elastic and single-charge-exchange scattering of pions from polarized nuclear targets, a new field of research which will give the first extensive set of information on spin-dependent pion-nucleus amplitudes. Still another involves the first set of detailed studies of the kinematic correlations among particles emitted following pion absorption in nuclei.
Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including Δ resonances
Piarulli, M.; Girlanda, L.; Schiavilla, R.; ...
2015-02-26
In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q3 (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2 and Q4, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$more » and $np$ data in this range, we obtain a Χ2 /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL,RS)=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.« less
Bayesian truncation errors in chiral effective field theory: Nucleon-nucleon observables
NASA Astrophysics Data System (ADS)
Melendez, J. A.; Wesolowski, S.; Furnstahl, R. J.
2017-08-01
Chiral effective field theory (EFT) predictions are necessarily truncated at some order in the EFT expansion, which induces an error that must be quantified for robust statistical comparisons to experiment. In previous work, a Bayesian model for truncation errors of perturbative expansions was adapted to EFTs. The model yields posterior probability distribution functions (pdfs) for these errors based on expectations of naturalness encoded in Bayesian priors and the observed order-by-order convergence pattern of the EFT. A first application was made to chiral EFT for neutron-proton scattering using the semilocal potentials of Epelbaum, Krebs, and Meißner (EKM). Here we extend this application to consider a larger set of regulator parameters, energies, and observables as a general example of a statistical approach to truncation errors. The Bayesian approach allows for statistical validations of the assumptions and enables the calculation of posterior pdfs for the EFT breakdown scale. The statistical model is validated for EKM potentials whose convergence behavior is not distorted by regulator artifacts. For these cases, the posterior for the breakdown scale is consistent with EKM assumptions.
Medium-heavy nuclei from nucleon-nucleon interactions in lattice QCD
NASA Astrophysics Data System (ADS)
Inoue, Takashi; Aoki, Sinya; Charron, Bruno; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration
2015-01-01
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly magic nuclei such as 16O and 40Ca are investigated. We found that those nuclei are bound for the pseudoscalar meson mass MPS≃470 MeV. The mass number dependence of the binding energies, single-particle spectra, and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.
Proton radii of {sup 4,6,8}He isotopes from high-precision nucleon-nucleon interactions
Caurier, E.; Navratil, P.
2006-02-15
Recently, precision laser spectroscopy on {sup 6}He atoms determined accurately the isotope shift between {sup 4}He and {sup 6}He and, consequently, the charge radius of {sup 6}He. A similar experiment for {sup 8}He is under way. We have performed large-scale ab initio calculations for {sup 4,6,8}He isotopes using high-precision nucleon-nucleon (NN) interactions within the no-core shell model (NCSM) approach. With the CD-Bonn 2000 NN potential we found point-proton root-mean-square (rms) radii of {sup 4}He and {sup 6}He 1.45(1) fm and 1.89(4), respectively, in agreement with experiment and predict the {sup 8}He point-proton rms radius to be 1.88(6) fm. At the same time, our calculations show that the recently developed nonlocal INOY NN potential gives binding energies closer to experiment, but underestimates the charge radii.
Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca; White, Larz
2010-11-01
The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.
Relativistic O(q{sup 4}) two-pion exchange nucleon-nucleon potential: parametrized version
R. Higa; M. R. Robilotta; C. A. da Rocha
2005-01-01
The chiral two-pion exchange nucleon-nucleon interaction has nowadays a rather firm conceptual basis, but depends on low-energy constants, which may be extracted from fits to data. In order to facilitate this kind of application, we present here a parametrized version of our relativistic expansion of this component of the force to O(q{sup 4}), performed recently.
Nucleon-nucleon theory and phenomenology
Signell, P.
1981-03-01
This project involves five inter-related subprojects: (1) derivation of the intermediate range nucleon-nucleon interaction using a new method that utilizes much shorter and simpler analytic continuation through the unphysical region that lies between the ..pi..N and ..pi pi.. physical regions of the N anti N ..-->.. ..pi pi.. amplitude (with significantly improved accuracy for the nucleon-nucleon interaction); (2) construction of a short range phenomenological potential that, with the theoretical part mentioned above, gives a precise fit to the nucleon-nucleon data and is parameterized for easy use in nucleon calculations; (3) phase shift analyses of the world data below 400 MeV, especially the large amount of very precise data below 20 MeV and the new data near 55 MeV that have never been analyzed properly; (4) the introduction of a K-matrix formulation of the Optimal Polynomial Expansion in order to accelerate convergence of the partial wave series at LAMPF energies; and (5) setting up of a cooperatively evaluated permanent nucleon-nucleon data bank in the 0-1200 MeV range that can be used by all nucleon-nucleon reseachers.
McNaughton, M.W.; Gulmez, E.; Whitten, C.A.
1997-10-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This work completes the determination of the nucleon-nucleon (NN) scattering amplitudes from 485 to 800 MeV. The data set is completed by the publication of two papers. These new data have a precision better than 1% and an absolute accuracy about 1%, which is generally an order of magnitude better than previous data. The NN data set is now complete and consistent. The set of spin-dependent NN-scattering amplitudes is now well determined up to 800 MeV.
Short-range interactions in an effective field theory approach for nucleon-nucleon scattering
Scaldeferri, K.A.; Phillips, D.R.; Kao, C.; Cohen, T.D.
1997-08-01
We investigate in detail the effect of making the range of the {open_quotes}contact{close_quotes} interaction used in effective field theory (EFT) calculations of NN scattering finite. This is done in both an effective field theory with explicit pions, and one where the pions have been integrated out. In both cases we calculate NN scattering in the {sup 1}S{sub 0} channel using potentials which are second order in the EFT expansion. The contact interactions present in the EFT Lagrangian are made finite by use of a square-well regulator. We find that there is an optimal radius for this regulator, at which second-order corrections to the EFT are identically zero; for radii near optimal these second-order corrections are small. The cutoff EFT{close_quote}s which result from this procedure appear to be valid for momenta up to about 100{endash}150MeV/c. We also find that the radius of the square well cannot be reduced to zero if the theory is to reproduce both the experimental scattering length and effective range. Indeed, we show that, if the NN potential is the sum of a one-pion-exchange piece and a short-range interaction, then the short-range piece must extend out beyond 1.05 fm, regardless of its particular form. {copyright} {ital 1997} {ital The American Physical Society}
Piarulli, M.; Girlanda, L.; Schiavilla, R.; Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2015-02-26
In this study, we construct a coordinate-space chiral potential, including Δ-isobar intermediate states in its two-pion-exchange component up to order Q^{3} (Q denotes generically the low momentum scale). The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q^{2} and Q^{4}, respectively) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constant multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pp and 2982 np data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0–300 MeV. For the total 5291 $pp$ and $np$ data in this range, we obtain a Χ^{2} /datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, R_{L} and R_{S} respectively, ranging from (R_{L},R_{S})=(1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
NASA Astrophysics Data System (ADS)
Gelman, Boris A.
predictions of the effective theory at next-to-leading order in the combined large Nc and heavy quark expansion are obtained. In the second part of the dissertation, the framework of large Nc QCD is used to study the nature of the meson-exchange picture of the nucleon-nucleon interaction. The contracted SU(4) light-quark spin-flavor symmetry of large Nc QCD had previously been used to derive the large Nc scaling of the spin-isospin terms in the nucleon-nucleon potential. It is shown here that these spin-flavor counting rules are those of the potential due to a one-meson exchange. It is further shown that these counting rules are consistent at the level of two-meson exchange diagrams. The key point is a cancellation between the retardation effect of the box diagrams against the crossed-box diagrams. Intermediate Delta states play an essential role for consistency. This result supports the view that the meson-exchange picture emerges from QCD. In addition, at least in the large Nc limit, the leading contribution to the nucleon-nucleon potential comes from the one-meson exchange diagrams.
Nucleon-nucleon scattering in the 1S0 partial wave in the modified Weinberg approach
NASA Astrophysics Data System (ADS)
Gasparyan, A. M.; Epelbaum, E.; Gegelia, J.; Krebs, H.
2016-03-01
Nucleon-nucleon scattering in the 1S0 partial wave is considered in chiral effective field theory within the recently suggested renormalizable formulation based on the Kadyshevsky equation. Contact interactions are taken into account beyond the leading-order approximation. The subleading contact terms are included non-perturbatively by means of subtractive renormalization. The dependence of the phase shifts on the choice of the renormalization condition is discussed. Perturbative inclusion of the subleading contact interaction is found to be justified only very close to threshold. The low-energy theorems are reproduced significantly better compared with the leading order results.
Singh, BirBikram; Sahu, B. B.; Patra, S. K.
2011-06-15
Nucleus-nucleus potentials are determined in the framework of the double-folding model for a new microscopic nucleon-nucleon (NN) interaction relativistic mean field-3-Yukawa (R3Y) derived from the popular relativistic mean-field theory Lagrangian, and the results are compared for the use of Michigan-3-Yukawa (M3Y) effective NN interactions. The double-folding potentials so obtained are further taken up in the context of the preformed cluster model (PCM) of Gupta and collaborators and the barrier penetration model to study respectively the ground-state (g.s.) {alpha}-decay and low-energy fusion reactions. In this paper, using PCM, we deduce empirically the {alpha} preformation probability P{sub 0}{sup {alpha}(emp)} from experimental data on a few g.s. {alpha} decays in the trans-lead region. For fusion reactions, two projectile-target systems {sup 12}C+{sup 208}Pb and {sup 16}O+{sup 208}Pb are selected for calculating the barrier energies as well positions, fusion cross sections ({sigma}{sub fus}), and fusion barrier distribution [D(E{sub c.m.})]. The barrier energies and positions change for the R3Y NN interactions in comparison with those of the M3Y NN interactions. We find that in the {alpha}-decay studies the values of P{sub 0}{sup {alpha}(emp)}(R3Y) are similar to those of P{sub 0}{sup {alpha}(emp)}(M3Y). Further, both NN interactions give similar {sigma}{sub fus} values using the Wong formula specifically when the R3Y NN interaction calculated {sigma}{sub fus} values are reduced by 1.5 times, and the results are in agreement with the experimental data for both the systems, especially for the higher energies. Results for D(E{sub c.m.}) are also quite similar for both choices of NN interaction.
Central Nucleon-Nucleon Potential
NASA Astrophysics Data System (ADS)
Robilotta, M. R.
2001-12-01
The outer region of the NN interactions is dominated by the one pion exchange potential (OPEP), followed by the two-pion exchange potential (TPEP). Chiral calculations of the TPEP have been performed using either heavy baryon1 (HB) or relativistic2 perturbation theories. We compare the predictions from these two approaches for the dominant central interaction and show that they fail to agree by 25% ...
NASA Astrophysics Data System (ADS)
Shurpin, J.; Kuo, T. T. S.; Strottman, D.
1983-10-01
The sd-shell effective-interaction matrix elements are derived from the Paris and Reid potentials using a microscopic folded-diagram effective-interaction theory. A comparison of these matrix elements is carried out by calculating spectra and energy centroids for nuclei of mass 18 to 24. The folded diagrams were included by both solving for the energy-dependent effective interaction self-consistently and by including the folded diagrams explicitly. In the latter case the folded diagrams were grouped either according to the number of folds or as prescribed by the Lee and Suzuki iteration technique; the Lee-Suzuki method was found to converge better and yield the more reliable results. Special attention was given to the proper treatment of one-body connected diagrams in the calculation of the two-body effective interaction. We first calculate the (energy-dependent) G-matrix appropriate for the sd-shell for both potentials using a momentum-space matrix-inversion method which treats the Pauli exclusion operator essentially exactly. This G-matrix interaction is then used to calculate the irreducible and non- folded diagrams contained in the Q̂- box. The effective-interaction matrix elements are obtained by evaluating a Q̂- box folded diagram series. We considered four approximations for the basic Q̂- box. These were (C1) the inclusion of diagrams up to 2nd order in G, (C2) 2nd order plus hole-hole phonons, (C3) 2nd order plus (bare TDA) particle-hole phonons, and (C4) 2nd order plus both hole-hole and particle-hole phonons. The contribution of the folded diagrams was found to be quite large, typically about 30%, and to weaken the interaction. Also, due to the greater energy dependence of higher-order diagrams, the effect of folded diagrams was much greater in higher orders. That is, the contribution from higher-order diagrams for most cases was greatly reduced by the folded diagrams. The convergence of the folded-diagram series deteriorates with the inclusion of
Fine structure in α decay of even-even nuclei using a finite-range nucleon-nucleon interaction
NASA Astrophysics Data System (ADS)
Adel, A.; Alharbi, T.
2015-07-01
A systematic study on α -decay fine structure is presented for even-even nuclei in the range 78 ≤Z ≤102 . The penetration probability is obtained from the WKB approximation in combination with the Bohr-Sommerfeld quantization condition. The potential barrier is numerically constructed in the well-established double-folding model for both Coulomb and nuclear potentials. A realistic M3Y interaction, based on the G -matrix elements of the Paris N N potential, has been used in the folding calculation. The local approximation for the nondiagonal one-body density matrix in the calculation of the exchange potential was included by using the harmonic oscillator representation of the nondiagonal density matrix of the α particle. The computed partial half-lives and branching ratios are compared with the recent experimental data and they are in good agreement.
Cluster decay half-lives of trans-lead nuclei based on a finite-range nucleon-nucleon interaction
NASA Astrophysics Data System (ADS)
Adel, A.; Alharbi, T.
2017-02-01
Nuclear cluster radioactivity is investigated using microscopic potentials in the framework of the Wentzel-Kramers-Brillouin approximation of quantum tunneling by considering the Bohr-Sommerfeld quantization condition. The microscopic cluster-daughter potential is numerically constructed in the well-established double-folding model. A realistic M3Y-Paris NN interaction with the finite-range exchange part as well as the ordinary zero-range exchange NN force is considered in the present work. The influence of nuclear deformations on the cluster decay half-lives is investigated. Based on the available experimental data, the cluster preformation factors are extracted from the calculated and the measured half lives of cluster radioactivity. Some useful predictions of cluster emission half-lives are made for emissions of known clusters from possible candidates, which may guide future experiments.
Extraction of In-Medium Nucleon-Nucleon Amplitude From Experiment
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1998-01-01
The in-medium nucleon-nucleon amplitudes are extracted from the available proton-nucleus total reaction cross sections data. The retrieval of the information from the experiment makes the estimate of reaction cross sections very reliable. Simple expressions are given for the in-medium nucleon-nucleon amplitudes for any system of colliding nuclei as a function of energy. Excellent agreement with experimental observations is demonstrated in the ion-nucleus interactions.
Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD
Konstantinos Orginos; Martin Savage; Paulo Bedaque; Silas Beane
2006-07-01
We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1 S0 channel and 3 S1 - 3 D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions
Calculation of relativistic nucleon-nucleon potentials in three dimensions
NASA Astrophysics Data System (ADS)
Hadizadeh, M. R.; Radin, M.
2017-02-01
In this paper, we have applied a three-dimensional approach for the calculation of the relativistic nucleon-nucleon potential. The quadratic operator relation between the non-relativistic and the relativistic nucleon-nucleon interactions is formulated as a function of relative two-nucleon momentum vectors, which leads to a three-dimensional integral equation. The integral equation is solved by the iteration method, and the matrix elements of the relativistic potential are calculated from non-relativistic ones. The spin-independent Malfliet-Tjon potential is employed in the numerical calculations, and the numerical tests indicate that the two-nucleon observables calculated by the relativistic potential are preserved with high accuracy.
Cravo, E.; Deltuva, A.; Crespo, R.; Moro, A. M.
2010-03-15
A comparison between full few-body Faddeev/Alt-Grassberger-Sandhas (Faddeev/AGS) and continuum-discretized coupled-channels calculations is made for the resonant and nonresonant breakup of {sup 11}Be on proton target at 63.7 MeV/u incident energy. A simplified two-body model is used for {sup 11}Be which involves an inert {sup 10}Be(0{sup +}) core and a valence neutron. The sensitivity of the calculated observables to the nucleon-nucleon potential dynamical input is analyzed. We show that with the present NN and N-core dynamics the results remain a puzzle for the few-body problem of scattering from light exotic halo nuclei.
Ab initio no-core properties of 7Li and 7Be with the JISP16 and chiral NNLOopt interactions
NASA Astrophysics Data System (ADS)
Heng, Taihua; Vary, James P.; Maris, Pieter
2017-01-01
We investigate the properties of 7Li with the JISP16 and chiral NNLOopt at next-to-next-to-leading order (NNLO) nucleon-nucleon interactions and 7Be with the JISP16 interaction in the ab initio no-core full configuration approach. We calculate selected observables that include energy spectra, point proton root-mean-square radii, electromagnetic moments, and transitions. We compare our results with experimental results, where available, as well as with results obtained using nucleon-nucleon plus three-nucleon interactions. We obtain reasonable agreement between theory and experiment for low-lying states that are dominated by p -shell configurations.
NASA Astrophysics Data System (ADS)
Korover, I.; Muangma, N.; Hen, O.; Shneor, R.; Sulkosky, V.; Kelleher, A.; Gilad, S.; Higinbotham, D. W.; Piasetzky, E.; Watson, J. W.; Wood, S. A.; Aguilera, P.; Ahmed, Z.; Albataineh, H.; Allada, K.; Anderson, B.; Anez, D.; Aniol, K.; Annand, J.; Armstrong, W.; Arrington, J.; Averett, T.; Badman, T.; Baghdasaryan, H.; Bai, X.; Beck, A.; Beck, S.; Bellini, V.; Benmokhtar, F.; Bertozzi, W.; Bittner, J.; Boeglin, W.; Camsonne, A.; Chen, C.; Chen, J.-P.; Chirapatpimol, K.; Cisbani, E.; Dalton, M. M.; Daniel, A.; Day, D.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Defurne, M.; Flay, D.; Fomin, N.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gaskell, D.; Gilman, R.; Glamazdin, O.; Gu, C.; Gueye, P.; Hamilton, D.; Hanretty, C.; Hansen, J.-O.; Hashemi Shabestari, M.; Holmstrom, T.; Huang, M.; Iqbal, S.; Jin, G.; Kalantarians, N.; Kang, H.; Khandaker, M.; LeRose, J.; Leckey, J.; Lindgren, R.; Long, E.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Marti Jimenez-Arguello, A.; Meekins, D.; Meziani, Z.; Michaels, R.; Mihovilovic, M.; Monaghan, P.; Munoz Camacho, C.; Norum, B.; Nuruzzaman, Pan, K.; Phillips, S.; Pomerantz, I.; Posik, M.; Punjabi, V.; Qian, X.; Qiang, Y.; Qiu, X.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Ron, G.; Rondon-Aramayo, O.; Saha, A.; Schulte, E.; Selvy, L.; Shahinyan, A.; Sirca, S.; Sjoegren, J.; Slifer, K.; Solvignon, P.; Sparveris, N.; Subedi, R.; Tireman, W.; Wang, D.; Weinstein, L. B.; Wojtsekhowski, B.; Yan, W.; Yaron, I.; Ye, Z.; Zhan, X.; Zhang, J.; Zhang, Y.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Zielinski, R.; Jefferson Lab Hall A Collaboration
2014-07-01
We studied simultaneously the He4(e ,e'p), He4(e ,e'pp), and He4(e ,e'pn) reactions at Q2=2(GeV/c)2 and xB>1, for an (e ,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A =2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ˜500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in He4 and discussed in the context of probing the elusive repulsive component of the NN force.
Korover, I; Muangma, N; Hen, O; Shneor, R; Sulkosky, V; Kelleher, A; Gilad, S; Higinbotham, D W; Piasetzky, E; Watson, J W; Wood, S A; Aguilera, P; Ahmed, Z; Albataineh, H; Allada, K; Anderson, B; Anez, D; Aniol, K; Annand, J; Armstrong, W; Arrington, J; Averett, T; Badman, T; Baghdasaryan, H; Bai, X; Beck, A; Beck, S; Bellini, V; Benmokhtar, F; Bertozzi, W; Bittner, J; Boeglin, W; Camsonne, A; Chen, C; Chen, J-P; Chirapatpimol, K; Cisbani, E; Dalton, M M; Daniel, A; Day, D; de Jager, C W; De Leo, R; Deconinck, W; Defurne, M; Flay, D; Fomin, N; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gaskell, D; Gilman, R; Glamazdin, O; Gu, C; Gueye, P; Hamilton, D; Hanretty, C; Hansen, J-O; Hashemi Shabestari, M; Holmstrom, T; Huang, M; Iqbal, S; Jin, G; Kalantarians, N; Kang, H; Khandaker, M; LeRose, J; Leckey, J; Lindgren, R; Long, E; Mammei, J; Margaziotis, D J; Markowitz, P; Marti Jimenez-Arguello, A; Meekins, D; Meziani, Z; Michaels, R; Mihovilovic, M; Monaghan, P; Munoz Camacho, C; Norum, B; Nuruzzaman; Pan, K; Phillips, S; Pomerantz, I; Posik, M; Punjabi, V; Qian, X; Qiang, Y; Qiu, X; Rakhman, A; Reimer, P E; Riordan, S; Ron, G; Rondon-Aramayo, O; Saha, A; Schulte, E; Selvy, L; Shahinyan, A; Sirca, S; Sjoegren, J; Slifer, K; Solvignon, P; Sparveris, N; Subedi, R; Tireman, W; Wang, D; Weinstein, L B; Wojtsekhowski, B; Yan, W; Yaron, I; Ye, Z; Zhan, X; Zhang, J; Zhang, Y; Zhao, B; Zhao, Z; Zheng, X; Zhu, P; Zielinski, R
2014-07-11
We studied simultaneously the (4)He(e,e'p), (4)He(e,e'pp), and (4)He(e,e'pn) reactions at Q(2)=2(GeV/c)(2) and x(B)>1, for an (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (NN) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in (4)He and discussed in the context of probing the elusive repulsive component of the NN force.
Korover, Igor; Muangma, Navaphon; Hen, Or; ...
2014-07-01
We studied simultaneously the 4He(e,e'p), 4He(e,e'pp), and 4He(e,e'pn) reactions at Q2=2 [GeV/c]2 and xB >1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail ofmore » the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in 4He.« less
Korover, Igor; Muangma, Navaphon; Hen, Or; Shneor, Ran; Sulkosky, Vincent; Kelleher, Aidan; Gilad, Shalev; Higinbotham, Douglas; Piasetzky, Eliazer; Wood, Stephen; Rakhman, Abdurahim; Aguilera, Paula; Ahmed, Zafar; Albataineh, Hisham; Allada, Kalyan; Anderson, Bryon; Anez, David; Aniol, Konrad; Annand, John; Armstrong, Whitney; Arrington, John; Averett, Todd; Badman, Toby; Baghdasaryan, Hovhannes; Bai, Xinzhan; Beck, Arie; Beck, Sharon; Bellini, Vincenzo; Benmokhtar, Fatiha; Bertozzi, William; Bittner, James; Boeglin, Werner; Camsonne, Alexandre; Chen, Chunhua; Chen, Jian -Ping; Chirapatpimol, Khem; Cisbani, Evaristo; Dalton, Mark; Daniel, Aji; Day, Donal; De, Cornelis; de Jager, C. W.; De, Raffaele; Leo, R. De; Deconinck, Wouter; Defurne, Maxime; Flay, David; Fomin, Nadia; Friend, Megan; Frullani, Salvatore; Fuchey, Eric; Garibaldi, Franco; Gaskell, David; Gilman, Ronald; Glamazdin, Oleksandr; Gu, Chao; Gueye, Paul; Hamilton, David; Hanretty, Charles; Hansen, Jens-Ole; Shabestari, Mitra Hashemi; Holmstrom, Timothy; Huang, Min; Iqbal, Sophia; Jin, Ge; Kalantarians, Narbe; Kang, Hoyoung; Khandaker, Mahbubul; LeRose, John; Leckey, John; Lindgren, Richard; Long, Elena; Mammei, Juliette; Margaziotis, Demetrius; Markowitz, Pete; Meekins, David; Meziani, Zein -Eddine; Michaels, Robert; Mihovilovic, Miha; Monaghan, Peter; Munoz, Carlos; Camacho, C. Munoz; Norum, Blaine; Nuruzzaman, nfn; Pan, Kai; Phillips, Sarah; Pomerantz, Ishay; Posik, Matthew; Punjabi, Vina; Qian, Xin; Qiang, Yi; Qiu, Xiyu; Reimer, Paul; Riordan, Seamus; Ron, Guy; Rondon-Aramayo, Oscar; Saha, Arunava; Schulte, Elaine; Selvy, Lawrence; Shahinyan, Albert; Sirca, Simon; Sjoegren, Johan; Slifer, Karl; Solvignon-Slifer, Patricia; Sparveris, Nikolaos; Subedi, Ramesh; Tireman, William; Wang, Diancheng; Weinstein, Lawrence; Wojtsekhowski, Bogdan; Yan, Wenbiao; Yaron, Israel; Ye, Zhihong; Zhan, X.; Zhang, J.; Zhang, Yawei; Zhao, Bo; Zhao, Zhiwen; Zheng, Xiaochao; Zhu, Pengjia; Zielinski, Ryan; Watson, John
2014-07-01
We studied simultaneously the ^{4}He(e,e'p), ^{4}He(e,e'pp), and ^{4}He(e,e'pn) reactions at Q^{2}=2 [GeV/c]^{2} and x_{B} >1, for a (e,e'p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A=2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum in a region where the nucleon-nucleon force is expected to change from predominantly tensor to repulsive. Neutron-proton pairs dominate the high-momentum tail of the nucleon momentum distributions, but their abundance is reduced as the nucleon momentum increases beyond ~500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum in the range we studied. Our data are compared with ab-initio calculations of two-nucleon momentum distributions in ^{4}He.
Double Polarized Neutron-Proton Scattering and Meson-Exchange Nucleon-Nucleon Potential Models
Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Raichle, B.W.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Walston, J.R.; Tornow, W.; Wilburn, W.S.; Penttilae, S.I.; Hoffmann, G.W.
1999-10-01
We report on polarized beam{endash}polarized target measurements of the spin-dependent neutron-proton total cross-section differences in longitudinal and transverse geometries ({Delta}{sigma}{sub L} and {Delta}{sigma}{sub T} , respectively) between E{sub n}=5 and 20thinspthinspMeV. Single-parameter phase-shift analyses were performed to extract the phase-shift mixing parameter {var_epsilon}{sub 1} , which characterizes the strength of the nucleon-nucleon tensor interaction at low energies. Consistent with the trend of previous determinations at E{sub n}=25 and 50thinspthinspMeV, our values for {var_epsilon}{sub 1} imply a stronger tensor force than predicted by meson-exchange nucleon-nucleon potential models and nucleon-nucleon phase-shift analyses. {copyright} {ital 1999} {ital The American Physical Society}
Nucleon-Nucleon Total Cross Section
NASA Technical Reports Server (NTRS)
Norbury, John W.
2008-01-01
The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.
Time-reversal-invariance-violating nucleon-nucleon potential in the 1 /Nc expansion
NASA Astrophysics Data System (ADS)
Samart, Daris; Schat, Carlos; Schindler, Matthias R.; Phillips, Daniel R.
2016-08-01
We apply the large-Nc expansion to the time-reversal-invariance-violating (TV) nucleon-nucleon potential. The operator structures contributing to next-to-next-to-leading order in the large-Nc counting are constructed. For the TV and parity-violating case we find a single operator structure at leading order. The TV but parity-conserving potential contains two leading-order terms, which, however, are suppressed by 1 /Nc compared to the parity-violating potential. Comparison with phenomenological potentials, including the chiral effective field theory potential in the TV parity-violating case, leads to large-Nc scaling relations for TV meson-nucleon and nucleon-nucleon couplings.
Neutrino-pair bremsstrahlung from nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Li, Yi; Liou, M. K.; Schreiber, W. M.; Gibson, B. F.
2015-07-01
Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering N N ν ν ¯ (n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ ) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated N N ν ν ¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an one-pion-exchange (OPE) model. Purpose: We investigate the free N N ν ν ¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Method: We employ a realistic one-boson-exchange (ROBE) model for N N scattering and combine those strong scattering amplitudes with the well-known nucleon weak interaction vertices to construct weak bremsstrahlung amplitudes. Using the resulting N N ν ν ¯ amplitudes we investigate the relative importance of the vector (ΓVμ) , axial vector (ΓAμ) , and tensor (ΓTμ) terms. The ROBE model bremsstrahlung amplitudes are also used as a two-nucleon dynamical model with which we calculate the cross sections d/σ d ω for n n ν ν ¯ ,p p ν ν ¯ , and n p ν ν ¯ . Results: The three free N N ν ν ¯ cross sections d/σ d ω are of similar order of magnitude. Each increases with increasing neutrino-pair energy ω . For the neutrino-pair energy of ω =1 MeV our n n ν ν ¯ results are in quantitative agreement with those previously reported by Timmermans et al. [Phys. Rev. C 65, 064007 (2002), 10.1103/PhysRevC.65.064007], who used the leading-order term of the soft-neutrino-pair bremsstrahlung amplitude to calculate the cross sections. Differences between the n n ν ν ¯ and p p ν ν ¯ cross section are not discernible over the nucleon-nucleon incident energy region considered, due to the
Chiral 2N and 3N interactions and quantum Monte Carlo applications
NASA Astrophysics Data System (ADS)
Gezerlis, Alexandros
2016-07-01
Chiral Effective Field Theory (EFT) two- and three-nucleon forces are now widely employed. Since they were originally formulated in momentum space, these interactions were non-local, making them inaccessible to Quantum Monte Carlo (QMC) methods. We have recently derived a local version of chiral EFT nucleon-nucleon and three-nucleon interactions, which we also used in QMC calculations for neutron matter and light nuclei. In this contribution I go over the basics of local chiral EFT and then summarize recent results.
Peripheral NN scattering from subtractive renormalization of chiral interactions
NASA Astrophysics Data System (ADS)
Batista, E. F.; Szpigel, S.; Timóteo, V. S.
2014-11-01
We apply five subtractions in the Lippman-Schwinger (LS) equation in order to perform a non-perturbative renormalization of chiral N3LO nucleon-nucleon interactions. Here we compute the phase shifts for the uncoupled peripheral waves at renormalization scales between 0.1 fm-1 and 1 fm-1. In this range, the results are scale invariant and provide an overall good agreement with the Nijmegen partial wave analysis up to at least Elab = 150 MeV, with a cutoff at Λ = 30 fm-1.
Peripheral NN scattering from subtractive renormalization of chiral interactions
Batista, E. F.; Szpigel, S.; Timóteo, V. S.
2014-11-11
We apply five subtractions in the Lippman-Schwinger (LS) equation in order to perform a non-perturbative renormalization of chiral N3LO nucleon-nucleon interactions. Here we compute the phase shifts for the uncoupled peripheral waves at renormalization scales between 0.1 fm{sup −1} and 1 fm{sup −1}. In this range, the results are scale invariant and provide an overall good agreement with the Nijmegen partial wave analysis up to at least E{sub lab} = 150 MeV, with a cutoff at Λ = 30 fm{sup −1}.
Two-pion exchange nucleon-nucleon potential Model independent features
NASA Astrophysics Data System (ADS)
Robilotta, Manoel R.; da Rocha, Carlos A.
1997-02-01
A chiral pion-nucleon amplitude supplemented by the HJS subthreshold coefficients is used to calculate the the long range part of the two-pion exchange nucleon-nucleon potential. In our expressions the HJS coefficients factor out, allowing a clear identification of the origin of the various contributions. A discussion of the configuration space behaviour of the loop integrals that determine the potential is presented, with emphasis on cancellations associated with chiral symmetry. The profile function for the scalar-isoscalar component of the potential is produced and shown to disagree with those of several semi-phenomenological potentials.
Quantum Monte Carlo calculations with chiral effective field theory interactions.
Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A
2013-07-19
We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.
Nucleon-nucleon scattering at small angles, measured at ANKE-COSY
NASA Astrophysics Data System (ADS)
Bagdasarian, Z.
2016-03-01
The most accepted approach to describe nucleon-nucleon (NN) interaction is the partial wave analysis (PWA), which translates various experimental observables to the common language of the partial waves. The reliable analysis relies not only on the quality experimental data, but also on the measurements of scattering observables over preferably the full angular range. Small angle scattering has been measured for six beam energies between 0.8 and 2.4 GeV using polarized proton beam incident on both proton and deuteron unpolarized targets at COSY-ANKE. This proceeding will report on the published and preliminary results for both pp and pn scattering from this and other recent experiments at ANKE. This study aims to provide the valuable observables to the SAID group in order to improve the phenomenological understanding of the nucleon-nucleon interaction.
Lee, T.S.H.; Kuo, T.T.S.; Tzeng, Y.
1995-08-01
The effect of the A three-nucleon force on the shell-model effective interaction is investigated by evaluating the A particle-nucleon hole core polarization diagrams G{sub pp{Delta}h} within the folded-diagram formulation. The calculation has been performed using the NN {yields} N{Delta} transition G-matrix generated from a coupled-channel {pi}NN model which is constrained by the NN data up to 1 GeV and is based on a {Delta}-subtracted Paris potential. Satisfactory convergence of the calculation is reached by including the {Delta} excitations up to 20 oscillator shells. The {Delta}-hole core-polarization diagrams G{sub pp{Delta}h} are found to be very small for the sd-shell valence nucleons. A paper describing our results is being prepared for publication.
The nucleon-nucleon potential in the chromodielectric soliton model
Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.
1993-12-31
The short- and medium-range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar {sigma} field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function {kappa}({sigma}). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the Generator Coordinate Method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme.
Nuclear effects on neutrino emissivities from nucleon-nucleon bremsstrahlung
NASA Astrophysics Data System (ADS)
Stoica, S.; Paun, V. P.; Negoita, A. G.
2004-06-01
The rates of neutrino pair emission by nucleon-nucleon (NN) bremsstrahlung are calculated with the inclusion of the full contribution from a nuclear one pion exchange potential (OPEP). We compute the contributions from the neutron-neutron (nn), proton-proton (pp), and neutron-proton (np) processes for physical conditions encountered in supernovae and neutron stars, both in the degenerate (D) and nondegenerate (ND) limits. We find a significant reduction of these rates, especially for the nn and pp processes, in comparison with the case when the whole nuclear contribution was replaced by constants, representing the high-momentum limits of the expressions of the nuclear potential. Furthermore, we also perform the calculations by including contributions due to the ρ meson exchange between nucleons, in the OPEP. This may be relevant for processes produced in the inner core of neutron stars, where the density may exceed several times the standard nuclear density, and the short-range part of the NN interaction should be taken into account. These corrections lead to an additional suppression of the neutrino emission rates between (8 and 36)%, depending on the process [nn (pp) or np] and physical conditions (temperature and degeneracy of the nucleons).
Total nucleon-nucleon cross sections in large Nc QCD
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Gelman, Boris A.
2012-02-01
We use contracted spin-flavor symmetry which emerges in the large Nc limit of QCD to obtain relations between proton-proton and proton-neutron total cross sections for both polarized and unpolarized scattering. The formalism used is valid in the semiclassical regime in which the relative momentum of the incident nucleons is much larger than the inverse size of the nucleon, provided that certain technical assumptions are met. The relations should be phenomenologically useful provided that Nc=3 is sufficiently large so that the large Nc results have at least semiquantitative predictive power. The relations are model independent in the sense that they depend on properties of large Nc QCD only and not on any particular model-dependent details of the nucleon-nucleon interaction. We compare these model-independent results to the experimental data. We find the relation for spin-unpolarized scattering works well empirically. For the case of polarized scattering, the data are consistent with the relations, but the cross sections are too small to make sharp predictions.
Soft two-pion-exchange nucleon-nucleon potentials
Rijken, Th.A. )
1991-06-01
Two-pion-exchange nucleon-nucleon potentials are derived for the pseudo-vector pion-nucleon interaction, assuming strong dynamical pair-suppression. At the pion-nucleon vertices the authors include Gaussian form factors, which are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitude. The Fourier transformations are performed using a factorization technique for the energy denominators. This leads to analytic expressions for the TPE-potentials containing at most one-dimensional integrals. The TPE-potentials are calculated up to orders {line integral}{sup 4} and (m/M){line integral}{sup 4}. The terms of order {line integral}{sup 4} come from the adiabatic contributions of the parallel and crossed three-dimensional momentum-space TPE-diagrams, and from the non-adiabatic contributions of the OPE-iteration. The (m/M)-corrections are due to the 1/M-terms in the non-adiabatic expansion of the nucleon energies in the intermediate states, and the 1/M-terms in the pion-nucleon vertices. The latter are typical for the PV-coupling and would be absent for the PS-coupling. The Gaussian form factors lead to soft TPE-potentials. These potentials can readily be exploited in NN-calculations in combination with, e.g., the Nijmegen soft-core OBE-model, and in nuclear (matter) calculations.
Neutrino-pair bremsstrahlung from nucleon-nucleon scattering
Li, Yi; Liou, M. K.; Schreiber, W. M.; ...
2015-07-22
Background: Neutrino-pair bremsstrahlung processes from nucleon-nucleon scattering ΝΝνν¯ (nnvv¯, ppvv¯, and npvv¯) have recently attracted attention in studies of neutrino emission in neutron stars, because of the implications for the neutron star cooling. The calculated ΝΝνν¯ emissivities within the neutron star environment are relatively insensitive to the two-nucleon dynamical model used in the calculations, but differ significantly from those obtained using an OPE model. Purpose: To investigate the free ΝΝνν¯ cross sections using a realistic nucleon-nucleon scattering amplitude, comparing the relative sizes of the cross sections for the three processes nnvv¯, ppvv¯, and npvv¯.
Nucleon-nucleon symmetry potential term and giant dipole resonance {gamma}-ray emission
Giuliani, G.; Papa, M.
2006-03-15
A study of the dependence of the giant dipole resonance {gamma}-ray yield from different functional forms of the symmetry term for the nucleon-nucleon interaction potential has been performed through the semiclassical molecular dynamics approach CoMD-II. We studied central and midperipheral reactions in the charge/mass asymmetric system {sup 40}Ca+{sup 48}Ca at 45 MeV/nucleon. The calculations show that the balance between the dynamical and the statistical emission is very sensitive to the 'stiffness' of the symmetry term. This sensitivity could be highlighted by measuring the degree of coherence and the anisotropy ratio related to the dynamically emitted radiation.
Accurate nuclear radii and binding energies from a chiral interaction
Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; ...
2015-05-01
With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLOsat, yield accurate binding energies and radii of nuclei up to 40Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective Jπ=3- states in 16O and 40Ca are described accurately, while spectra for selected p- and sd-shellmore » nuclei are in reasonable agreement with experiment.« less
Accurate nuclear radii and binding energies from a chiral interaction
Ekstrom, Jan A.; Jansen, G. R.; Wendt, Kyle A.; Hagen, Gaute; Papenbrock, Thomas F.; Carlsson, Boris; Forssen, Christian; Hjorth-Jensen, M.; Navratil, Petr; Nazarewicz, Witold
2015-05-01
With the goal of developing predictive ab initio capability for light and medium-mass nuclei, two-nucleon and three-nucleon forces from chiral effective field theory are optimized simultaneously to low-energy nucleon-nucleon scattering data, as well as binding energies and radii of few-nucleon systems and selected isotopes of carbon and oxygen. Coupled-cluster calculations based on this interaction, named NNLO_{sat}, yield accurate binding energies and radii of nuclei up to ^{40}Ca, and are consistent with the empirical saturation point of symmetric nuclear matter. In addition, the low-lying collective J^{π}=3^{-} states in ^{16}O and ^{40}Ca are described accurately, while spectra for selected p- and sd-shell nuclei are in reasonable agreement with experiment.
A quark transport theory to describe nucleon-nucleon collisions
NASA Astrophysics Data System (ADS)
Kalmbach, U.; Vetter, T.; Biró, T. S.; Mosel, U.
1993-11-01
On the basis of the Friedberg-Lee model we formulate a semiclassical transport theory to describe the phase-space evolution of nucleon-nucleon collisions on the quark level. The time evolution is given by a Vlasov equation for the quark phase-space distribution and a Klein-Gordon equation for the mean-field describing the nucleon as a soliton bag. The Vlasov equation is solved numerically using an extended test-particle method. We test the confinement mechanism and mean-field effects in (1 + 1)-dimensional simulations.
Parameterizations of Pion Energy Spectrum in Nucleon-Nucleon Collisions
NASA Technical Reports Server (NTRS)
Cucinotta, Franics A.; Wilson, John W.; Norbury, John W.
1998-01-01
The effects of pion (PI) production are expected to play an important role in radiation exposures in the upper atmosphere or on the Martian surface. Nuclear databases for describing pion production are developed for radiation transport codes to support these studies. We analyze the secondary energy spectrum of pions produced in nucleon-nucleon (NN) collisions in the relativistic one-pion exchange model. Parametric formulas of the isospin cross sections for one-pion production channels are discussed and are used to renormalize the model spectrum. Energy spectra for the deuteron related channels (NN yields dPi) are also described.
Four-nucleon force in chiral effective field theory
Evgeny Epelbaum
2005-10-25
We derive the leading contribution to the four--nucleon force within the framework of chiral effective field theory. It is governed by the exchange of pions and the lowest--order nucleon--nucleon contact interaction and includes effects due to the nonlinear pion--nucleon couplings and the pion self interactions constrained by the chiral symmetry of QCD. The resulting 4NF does not contain any unknown parameters and can be tested in future few--and many--nucleon studies.
A transport theory of relativistic nucleon-nucleon collisions with confinement
NASA Astrophysics Data System (ADS)
Vetter, T.; Biró, T. S.; Mosel, U.
1995-02-01
A transport theory is developed on the quark level to describe nucleon-nucleon collisions. We treat the strong interaction effectively by the Friedberg-Lee model both in its original and in its modified confining version. First we study the stability of the static three-dimensional semiclassical configuration, then we present results of the time evolution given by a Vlasov equation for the quarks coupled to a Klein-Gordon equation for the mean field. We find at higher energies that the nucleons are almost transparent, whereas at lower energies we observe a substantial interaction. At very low energies we see a fusion of our bags, which is due to the purely attractive nature of the mean field and hence is an artifact of our model. We test the confinement mechanism and find that at higher energies the nucleons are restored shortly after the collision.
Nucleon-nucleon scattering observables in large- Nc QCD
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Gelman, Boris A.
2002-08-01
Nucleon-nucleon scattering observables are considered in the context of the large Nc limit of QCD for initial states with moderately high momenta ( p∼ Nc). The scattering is studied in the framework of the time-dependent mean-field approximation. We focus on the dependence of those observables on the spin and isospin of the initial state which may be computed using time-dependent mean-field theory. We show that, up to corrections, all such observables must be invariant under simultaneous spin and isospin flips (i.e., rotations through π/2 in both spin and isospin) acting on either particle. All observables of this class obtained from spin unpolarized measurements must be isospin independent up to 1/ Nc corrections. Moreover, it can be shown that the leading correction is of relative order 1/ Nc2 rather than 1/ Nc.
Pion Total Cross Section in Nucleon - Nucleon Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.
2009-01-01
Total cross section parameterizations for neutral and charged pion production in nucleon - nucleon collisions are compared to experimental data over the projectile momentum range from threshold to 300 GeV. Both proton - proton and proton - neutron reactions are considered. Overall excellent agreement between parameterizations and experiment is found, except for notable disagreements near threshold. In addition, the hypothesis that the neutral pion production cross section can be obtained from the average charged pion cross section is checked. The theoretical formulas presented in the paper obey this hypothesis for projectile momenta below 500 GeV. The results presented provide a test of engineering tools used to calculate the pion component of space radiation.
Phase Transition in the SRG Flow of Nuclear Interactions
NASA Astrophysics Data System (ADS)
Timóteo, V. S.; Ruiz Arriola, E.; Szpigel, S.
2017-03-01
We use a chiral interaction at N3LO in the {}^1S_0 channel of the nucleon-nucleon interaction in order to investigate the on-shell transition along the similarity renormalization group flow towards the infrared limit. We find a crossover at a scale that depends on the number of grid points used to discretise the momentum space.
Impact of nucleon-nucleon bremsstrahlung rates beyond one-pion exchange
NASA Astrophysics Data System (ADS)
Bartl, A.; Bollig, R.; Janka, H.-T.; Schwenk, A.
2016-10-01
Neutrino-pair production and annihilation through nucleon-nucleon bremsstrahlung is included in current supernova simulations by rates that are based on the one-pion-exchange approximation. Here we explore the consequences of bremsstrahlung rates based on modern nuclear interactions for proto-neutron star cooling and the corresponding neutrino emission. We find that despite a reduction of the bremsstrahlung emission by a factor of 2-5 in the neutrinospheric region, models with the improved treatment exhibit only ≲5 % changes of the neutrino luminosities and an increase of ≲0.7 MeV of the average energies of the radiated neutrino spectra, with the largest effects for the antineutrinos of all flavors and at late times. Overall, the proto-neutron star cooling evolution is slowed down modestly by ≲0.5 - 1 s .
Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions
Carlsson, Boris; Forssen, Christian; Fahlin Strömberg, D.; ...
2016-02-24
Chiral effective field theory ( ΧEFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, EFT is able to provide well-founded estimates of statistical and systematic uncertainties | although this unique advantage has not yet been fully exploited. We ll this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous t to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methodsmore » that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain e cient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to EFT and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling showing that statistical errors are in general small compared to systematic ones. In conclusion, we find that a simultaneous t to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector; in particlar when varying the cutoff in the chiral potentials. The methodology and results presented in this Paper open a new frontier for uncertainty quantification in ab initio nuclear theory.« less
Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions
NASA Astrophysics Data System (ADS)
Carlsson, B. D.; Ekström, A.; Forssén, C.; Strömberg, D. Fahlin; Jansen, G. R.; Lilja, O.; Lindby, M.; Mattsson, B. A.; Wendt, K. A.
2016-01-01
Chiral effective field theory (χ EFT ) provides a systematic approach to describe low-energy nuclear forces. Moreover, χ EFT is able to provide well-founded estimates of statistical and systematic uncertainties—although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of χ EFT . Finally, we study the effect on other observables by demonstrating forward-error-propagation methods that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to χ EFT , and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling, showing that statistical errors are, in general, small compared to systematic ones. In conclusion, we find that a simultaneous fit to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in χ EFT . Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector, in particular when varying the cutoff in the chiral potentials. The methodology and results presented in this paper open a new frontier for uncertainty quantification in ab initio nuclear theory.
The Method of Unitary Clothing Transformations in the Theory of Nucleon-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Dubovyk, I.; Shebeko, O.
2010-12-01
The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with 1/2 spin ( N and {bar{N}}) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N- N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation with its large amount of virtual processes. We have derived the Lippmann-Schwinger type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space {mathcal{H}} of hadronic states.
The method of unitary clothing transformations in the theory of nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Dubovyk, I.; Shebeko, A.
2010-04-01
The clothing procedure, put forward in quantum field theory (QFT) by Greenberg and Schweber, is applied for the description of nucleon-nucleon (N -N) scattering. We consider pseudoscalar (π and η), vector (ρ and ω) and scalar (δ and σ) meson fields interacting with 1/2 spin (N and N) fermion ones via the Yukawa-type couplings to introduce trial interactions between “bare” particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. In this work, we are focused upon the Hermitian and energy-independent operators for the clothed nucleons, being built up in the second order in the coupling constants. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. In order to evaluate the T matrix of the N-N scattering we have used an equivalence theorem that enables us to operate in the clothed particle representation (CPR) instead of the bare particle representation (BPR) with its huge amount of virtual processes. We have derived the Lippmann-Schwinger(LS)-type equation for the CPR elements of the T-matrix for a given collision energy in the two-nucleon sector of the Hilbert space H of hadronic states and elaborated a code for its numerical solution in momentum space.
NASA Astrophysics Data System (ADS)
Armendariz, Raul L.
Measuring energy produced in relativistic heavy-ion collisions is a way to investigate if a model of quark participants, or nucleon participants better describes the internal dynamics of the collision. The energy produced is proportional to the energy density in the interaction region; changes in fluctuations of energy production could be a signature for a phase transition between ordinary hadronic matter to a liberated quark-gluon plasma phase, QGP, thought to have existed one millionth of a second after the Big Bang creation of the Universe and before protons and neutrons had formed. Three experimental nuclear physics data-analyses were conducted using the sum energy of all particles produced in the direction transverse to the beam, ET, when nuclei collide in a 2.4 mile long circular atom smasher. The nuclei are accelerated in opposite directions at 99.995% the speed of light, and center-of-mass energies available for new particle production of sNN = 62.4 GeV, and 200 GeV per colliding nucleon pair were studied. The ET was recorded by the lead-scintillator electromagnetic calorimeter detectors of the Pioneering High Energy Interactions Experiment (PHENIX), at the Relativistic heavy Ion Collider (RHIC), of Brookhaven National Laboratory (BNL). The collision systems studied were 200 GeV protons with protons ( p + p), deuterons with Au ions (d+Au), and 62.4 GeV and 200 GeV gold ions with gold ions (Au+Au). The first analysis, mean ET in collision centrality, explores whether a model of nucleon participants, or quark participants, better describes energy production with collision impact. The second analysis, ET fluctuations in collision centrality, looks for non-random fluctuations in ET distributions when the density of colliding partons becomes high. The third analysis, ET fluctuations in geometric acceptance, examines fluctuations as a function of detector fiducial volume in a search for correlated energy distribution in space (correlations ), known to occur in
Regularization and the potential of effective field theory in nucleon-nucleon scattering
Phillips, D.R.
1998-04-01
This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m{sub {pi}}{sup 2}/M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic.
Quark models of dibaryon resonances in nucleon-nucleon scattering
Ping, J. L.; Huang, H. X.; Pang, H. R.; Wang Fan; Wong, C. W.
2009-02-15
We look for {delta}{delta} and N{delta} resonances by calculating NN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNS waves, in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below 0.53 fm. Both quark models give an IJ{sup P}=03{sup +}{delta}{delta} resonance. At b=0.52 fm, the value favored by the baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the {sup 3}D{sub 3}{sup NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pn{yields}d{pi}{pi} production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound {sup 5}S{sub 2}{sup {delta}}{sup {delta}} state that can give rise to a {sup 1}D{sub 2}{sup NN} resonance. None of the quark models used have bound N{delta}P states that might generate odd-parity resonances.
A Simple Method for Nucleon-Nucleon Cross Sections in a Nucleus
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.
1999-01-01
A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo, and other calculations. The method relies on extraction of these values from experiments and has been tested and found to give excellent results.
Exploratory study of nucleon-nucleon scattering lengths in lattice QCD
Fukugita, M.; Kuramashi, Y.; Mino, H.; Okawa, M.; Ukawa, A. National Laboratory for High Energy Physics , Tsukuba, Ibaraki 305 Faculty of Engineering, Yamanashi University, Kofu 404 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305 )
1994-10-17
An exploratory study is made of the nucleon-nucleon [ital s]-wave scattering lengths in quenched lattice QCD with the Wilson quark action. The [pi]-[ital N] and [pi]-[pi] scattering lengths are also calculated for comparison. The calculations are made with heavy quarks corresponding to [ital m][sub [pi
NASA Astrophysics Data System (ADS)
Corradi, Lorenzo
2015-10-01
Excitation functions of one- and two-neutron transfer channels have been measured for the 96Zr+40Ca and 116Sn+60Ni systems at bombarding energies ranging from the Coulomb barrier to ˜25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.
Modern Chiral Forces Applied to the Nucleon-Deuteron Radiative Capture
NASA Astrophysics Data System (ADS)
Skibiński, Roman; Golak, Jacek; Topolnicki, Kacper; Witała, Henryk; Epelbaum, Evgeny; Kamada, Hiroyuki; Krebs, Hermann; Meißner, Ulf-G.; Nogga, Andreas
2017-03-01
The chiral nucleon-nucleon interaction with semi-local regularization up to the fifth order of chiral expansion is applied to the nucleon-deuteron radiative capture process. Our theoretical approach is based on the formalism of Faddeev equations and the Siegert theorem is exploited to construct the electromagnetic current operator. The very weak dependence of the differential cross section on values of the regularization parameter is observed. This suggests that the improved chiral two-body interaction is a promising starting point to study electromagnetic processes at low energies.
Dirac-Brueckner-Hartree-Fock versus chiral effective field theory
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca; Chen, B.; Coraggio, L.; Itaco, N.; Machleidt, R.
2012-11-01
We compare nuclear and neutron matter predictions based on two different ab initio approaches to nuclear forces and the nuclear many-body problem. The first consists of a realistic meson-theoretic nucleon-nucleon potential together with the relativistic counterpart of the Brueckner-Hartree-Fock theory of nuclear matter. The second is based on chiral effective field theory, with density-dependent interactions derived from leading-order chiral three-nucleon forces. We find the results to be very close and conclude that both approaches contain important features governing the physics of nuclear and neutron matter.
Critical enhancement of the in-medium nucleon-nucleon cross section at low temperatures
Alm, T.; Roepke, G. ); Schmidt, M. )
1994-07-01
The in-medium nucleon-nucleon cross section is calculated starting from the thermodynamic [ital T] matrix at finite temperatures. The corresponding Bethe-Salpeter equation is solved using a separable representation of the Paris nucleon-nucleon potential. The energy-dependent in-medium [ital N]-[ital N] cross section at a given density shows a strong temperature dependence. Especially at low temperatures and low total momenta, the in-medium cross section is strongly modified by in-medium effects. In particular, with decreasing temperature an enhancement near the Fermi energy is observed. This enhancement can be discussed as a precursor of the superfluid phase transition in nuclear matter.
Nuclear effects on axions emission rates from nucleon-nucleon bremsstrahlung
NASA Astrophysics Data System (ADS)
Pastrav, B.; Scafes, A. C.
2010-11-01
The rates of axion emissions by nucleon-nucleon bremsstrahlung from neutron stars obtained with the inclusion of the full angular momentum contribution from a nuclear one-pion-exchange potential (OPEP), are studied in different conditions of temperature and degeneracy in both, non degenerate (ND) and degenerate (D) regimes. The comparison with the previous results obtained in literature, where only the high momentum limit of the OPEP expressions are used, is done and the differences discussed.
NN potentials from IR chiral EFT
NASA Astrophysics Data System (ADS)
Higa, R.
Chiral perturbation theory is nowadays a well-established approach to incorporate the chiral constraints from QCD. Nevertheless, for systems involving one baryon, the power counting which dictates the chiral order of observables is not as simple and consensual as in the purely mesonic case. The heavy baryon approach, which relies on a non-relativistic expansion around the limit of infinitely heavy baryon, recovers the usual power counting but destroys some analytic properties of the scattering amplitude. Some years ago, Becher and Leutwyler proposed a Lorentz-invariant formulation of chiral perturbation theory that maintains the required analytic properties, but at the expense of a less intuitive power counting. Aware of the shortcomings of the heavy baryon formalism, the S\\~ao Paulo group derived the two-pion exchange component of the nucleon-nucleon potential in line with the works of Becher and Leutwyler. A striking result was that the long distance properties of the potential is determined by the specific low energy region of the pion-nucleon scattering amplitude where the heavy baryon expansion fails. In this talk I will discuss the origin of such failure and how it reflects in the asymptotics of the nucleon-nucleon interaction. Some results for phase shifts and deuteron properties will be shown, followed by a comparison with the heavy baryon predictions.
Relativistic Treatments of the Nucleon-Nucleon System
NASA Astrophysics Data System (ADS)
Beachey, David Joseph
The relativistically minimalist Breit equation is used to study the two-nucleon system. Generally, the equation is noncovariant and its realm of applicability is limited. It is not a field-theoretical equation but, at low energy, it was thought to be a promising candidate to explore the scheme of repulsive vector and attractive scalar interactions as the dominant ingredient of the two -nucleon interaction. In the ^1S_0 singlet case, the equation does indeed seem viable. Dynamically sound interactions and a reasonable fit of the scattering data arise. In a specific application, the discrepancy between the ^1S_0 isovector scattering lengths of the p-p and n -n interactions is explored. This novel charge -symmetry-breaking (CSB) mechanism enlarges the discrepancy between the two lengths, implying a still larger correction is required by other documented (CSB) mechanisms. An all-encompassing model of the ^3S _1-^3D_1 state is, on the other hand, not achieved. Models which best fit the experimental deuteron and elastic scattering data, are unphysical. The vector coupling is driven strongly negative and a dominant interference mechanism arises involving the entirely phenomenological short range OPEP. It was hoped that this parametrized short range OPEP would remain benign while the scalar/vector interference scheme took a lead role. Instead the constraint of avoiding Klein paradox difficulties defeats this picture and achieves the short-range repulsion in the N-N force by ramping up the phenomenological OPEP. It is finally argued that the Breit framework almost certainly does not lend itself to an adequate description of the N-N system. It does, however, point to novel relativistic elements which may ultimately resolve celebrated outstanding problems such as the a_ {t}-r_{m} discrepancy. The triplet scattering length a_ {t} and deuteron matter-radius r _{m} are tightly correlated and resistant to simultaneous fitting in conventional models. The p-wave amplitudes of the
Hard probes of short-range nucleon-nucleon correlations
J. Arrington, D. W. Higinbotham, G. Rosner, M. Sargsian
2012-10-01
The strong interaction of nucleons at short distances leads to a high-momentum component to the nuclear wave function, associated with short-range correlations between nucleons. These short-range, high-momentum structures in nuclei are one of the least well understood aspects of nuclear matter, relating to strength outside of the typical mean-field approaches to calculating the structure of nuclei. While it is difficult to study these short-range components, significant progress has been made over the last decade in determining how to cleanly isolate short-range correlations in nuclei. We have moved from asking if such structures exist, to mapping out their strength in nuclei and studying their microscopic structure. A combination of several different measurements, made possible by high-luminosity and high-energy accelerators, coupled with an improved understanding of the reaction mechanism issues involved in studying these structures, has led to significant progress, and provided significant new information on the nature of these small, highly-excited structures in nuclei. We review the general issues related to short-range correlations, survey recent experiments aimed at probing these short-range structures, and lay out future possibilities to further these studies.
Parity violation asymmetry in nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Avishai, Y.; Grangé, P.
1989-01-01
We evaluate the helicity dependence of the differential and total cross section for the scattering of longitudinally polarized neutrons on unpolarized neutrons at E = 45 MeV following a SIN experiment and at E = 230 MeV in anticipation of an experiment at TRIUMF. (Both experiments study proton-proton scattering of course, namely overlinep+ p→ p+ p). Calculations are based on the Desplanques, Donoghue and Holstein (DDH) theory for the weak NN interaction and on the Paris potential for the strong NN force. The results can be expressed as a linear combination in the (DDH) weak parameters hρ0, hρ2 and hω0, corresponding to exchanges of isoscalar ρ-, isotensor ρ-, and isoscalar ω- mesons, respectively. For the asymmetry in the total cross section we have found, using DDH suggested "best values", Az (45 MeV) = -2.62 × 10 -7 and Az (230 MeV) = 0.07 × 10 -7. The small value of Az at 230 MeV is due to a sign change in the differential asymmetry. As for the asymmetry in the differential cross section we notice that even at the lower energy E = 45 MeV, the asymmetry in the differential cross section deviates from isotropy, since J > 0 weak amplitudes cannot be neglected.
Partial-wave analysis of nucleon-nucleon elastic scattering data
NASA Astrophysics Data System (ADS)
Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.
2016-12-01
Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Results are discussed in terms of both partial-wave and direct reconstruction amplitudes.
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Kaur, Mandeep; Kaur, Varinderjit
2017-08-01
The role of different parts of the nucleon-nucleon (NN) interaction potential on the production of light- and intermediate-mass fragments in different mass asymmetric reactions 120Sn+120Sn (η =0 ), 82Kr+158Gd (η =0.3 ), 56Fe+184W (η =0.5 ), and 35Cl+205Tl (η =0.7 ) (with Atotal=240 units) within different rapidity domains has been investigated using the isospin-dependent quantum molecular-dynamics model. The results indicate that the multiplicity of different fragments changes with the gradual addition of different parts of the NN interaction potential. The comparison between calculations and experimental data for the 120Sn+120Sn reaction reveals that both momentum dependent interactions (MDIs) and symmetry potential are indispensable to explain the charge distribution. The MDI plays a dominant role while the symmetry potential has minor influence on the fragment production, but both together lead to an increase in the multiplicity of light- and intermediate-mass fragments and hence show their significance in the fragment production at intermediate energies.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
NASA Astrophysics Data System (ADS)
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Extra dimensions, SN1987a, and nucleon-nucleon scattering data
Christoph Hanhart; Daniel R. Phillips; Sanjay Reddy; Martin J. Savage
2001-02-01
One of the strongest constraints on the existence of large, compact, ''gravity-only'' dimensions comes from SN1987a. If the rate of energy loss into these putative extra dimensions is too high, then the neutrino pulse from the supernova will differ from that actually seen. The dominant mechanism for the production of Kaluza-Klein gravitons and dilatons in the supernova is via gravistrahlung and dilastrahlung from the nucleon-nucleon system. In this paper we compute the rates for these processes in a model-independent way using low-energy theorems which relate the emissivities to the measured nucleon-nucleon cross section. This is possible because for soft gravitons and dilatons the leading contribution to the energy-loss rate is from graphs in which the gravitational radiation is produced from external nucleon legs. Previous calculations neglected these mechanisms. We re-evaluate the bounds on toroidally-compactified ''gravity-only'' dimensions (GODs), and find that consistency with the observed SN1987a neutrino signal requires that if there are two such dimensions then their radius must be less than 1 micron.
NASA Astrophysics Data System (ADS)
Shebeko, A.
2013-12-01
The clothing procedure, put forward in quantum field theory by Greenberg and Schweber, is applied for the description of nucleon-nucleon ( N- N) scattering below the pion production threshold and deuteron properties. We consider pseudoscalar ( π and η), vector ( ρ and ω) and scalar ( δ and σ) meson fields interacting with N and ones via the Yukawa-type couplings to introduce trial interactions between "bare" particles. The subsequent unitary clothing transformations (UCTs) are found to express the total Hamiltonian through new interaction operators that refer to particles with physical (observable) properties, the so-called clothed particles. The corresponding analytic expressions in momentum space are compared with the separate meson contributions to the one-boson-exchange potentials in the meson theory of nuclear forces. We will also show a worked example where the UCTs method is used in the framework of a gauge-independent field-theoretical treatment of electromagnetic interactions of deuterons (bound systems).
Gluonic Lorentz violation and chiral perturbation theory
NASA Astrophysics Data System (ADS)
Noordmans, J. P.
2017-04-01
By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.
Advances in Nucleon-Nucleon Scattering Experiments and Their Theoretical Consequences
Bekteshi, Sadik; Kabashi, Skender; Kamishi, Burim
2007-04-23
An overview of critical analysis of the experimental data obtained from nucleon-nucleon scattering is given and investigated in this work. Comparison of the experimental data with results of recent partial wave analysis of Nijmegen group, VPI/GWU and Saclay is given. Potentials of Nijmegen, Bonn and Argonne group are discussed. Experimental data which lead to the break of charge symmetry, to the break of the charge independence and to the determination of the off-shell tensor force, are particularly emphasized. Disagreements which exist between theoretical calculations related to the contribution of particular mechanism in different reactions are pointed out. In this relation, still open problems to be solved and measurement that should be undertaken in the future are identified, as well.
Lectures from the workshop on nucleon-nucleon bremsstrahlung, January 25--26, 1990
Gibson, B.F.; Schillaci, M.E.; Wender, S.A.
1990-07-01
The Nucleon-Nucleon Bremsstrahlung Workshop was convened at LAMPF on 25--26 January 1990 in order to review the theoretical and experimental aspects of that reaction with focus on a possible new initiative to measure neutron-proton bremsstrahlung using the intermediate-energy, white-spectrum neutron source at the LAMPF/WNR facility. Over the course of this intense day-and-a-half workshop, experts in the field established the historical perspective for both theory and experiment, presented result of recent calculations, and examined new approaches to the difficult neutron-proton bremsstrahlung experiment. Theoretical and experimental working groups generated recommendations for action and actually converged upon a plan for an experimental program, not just a single measurement.
A chiral effective lagrangian for nuclei
NASA Astrophysics Data System (ADS)
Furnstahl, R. J.; Serot, Brian D.; Tang, Hua-Bin
1997-02-01
An effective hadronic lagrangian consistent with the symmetries of quantum chromodynamics and intended for applications to finite-density systems is constructed. The degrees of freedom are (valence) nucleons, pions and the low-lying non-Goldstone bosons, which account for the intermediate-range nucleon-nucleon interactions and conveniently describe the nonvanishing expectation values of nucleon bilinears. Chiral symmetry is realized nonlinearly, with a light scalar meson included as a chiral singlet to describe the mid-range nucleon-nucleon attraction. The low-energy electromagnetic structure of the nucleon is described within the theory using vector-meson dominance, so that external form factors are not needed. The effective lagrangian is expanded in powers of the fields and their derivatives, with the terms organized using Georgi's "naive dimensional analysis". Results are presented for finite nuclei and nuclear matter at one-baryon-loop order, using the single-nucleon structure determined within the model. Parameters obtained from fits to nuclear properties show that naive dimensional analysis is a useful principle and that a truncation of the effective lagrangian at the first few powers of the fields and their derivatives is justified.
Quantum Monte Carlo calculations of neutron matter with chiral three-body forces
Tews, I.; Gandolfi, Stefano; Gezerlis, A.; Schwenk, A.
2016-02-02
Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N^{2}LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for the energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.
Quantum Monte Carlo calculations of neutron matter with chiral three-body forces
NASA Astrophysics Data System (ADS)
Tews, I.; Gandolfi, S.; Gezerlis, A.; Schwenk, A.
2016-02-01
Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N2LO ). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for the energies and radii of neutron drops. In particular, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.
Chirality of light and its interaction with chiral matter
NASA Astrophysics Data System (ADS)
Tang, Yiqiao
This thesis conducts a systematic study on the chirality of light and its interaction with chiral matter. In the theory section, we introduce a measure of local density of chirality, applying to arbitrary electromagnetic fields. This optical chirality suggests the existence of superchiral modes, which are more selective than circularly polarized light (CPL) in preferentially exciting single enantiomers in certain regions of space. Experimentally, we demonstrate an 11-fold enhancement over CPL in discriminating chiral fluorophores of single handedness in a precisely sculpted superchiral field. This result agrees to within 15% with theoretical predictions. Any chiral configuration of point charges is beyond the scope of our theory on optical chirality. To address chiroptical excitations at nanoscale, we develop a model of twisted dipolar oscillators. We design a simple tunable chiral nanostructure and observe localized chiroptical "hot spots" with dramatically enhanced circular differential scattering. Our work on superchiral light and 3D chiral metamaterials establishes optical chirality as a fundamental and tunable property of light, with implications ranging from plasmonic sensors, absolute asymmetric synthesis to new strategies for fabricating three-dimensional chiral metamaterials. This thesis is organized as such: Chapter 1 provides a background on previous studies of chiroptical phenomena, and recent efforts in preparing chiral metamaterials. Chapter 2 derives theory on optical chirality, superchiral modes and coupled-dipolar oscillators at nanoscale. Chapter 3 introduces material, apparatus, and pitfalls in chiroptical experiments. Chapter 4 is an overview of the experimental procedure and results on generating and observing superchiral enhancement. Chapter 5 describes the experiments on using spectroscopic polarization microscopy to study chiral 3D chiral metamaterials. Finally in Chapter 6, I discuss quantization of optical chirality and perspectives on
The one-pion-exchange potential in the three-body model of nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Garcilazo, Humberto
1981-02-01
We derive the one-pion-exchange potential in the three-body model of nucleon-nucleon scattering in which the nucleon is treated as a bound state of a pion and a nucleon, and show that it has the same form as the usual Yukawa OPEP derived from field theory, except that its range is energy dependent and it becomes complex above the pion-production threshold.
The isospin dependent nucleon-nucleon inelastic cross section in the nuclear medium
NASA Astrophysics Data System (ADS)
Li, Qingfeng; Li, Zhuxia
2017-10-01
The calculation of the energy-, density-, and isospin-dependent Δ production cross sections in nucleon-nucleon (NN) scattering σNN→ NΔ * has been performed within the framework of the relativistic BUU approach. The NΔ cross sections are calculated in Born approximation taking into account the effective mass splitting of the nucleons and Δs in asymmetric matter. Due to the different mass splitting for neutron, proton and differently charged Δs, it is shown that, similar to the NN elastic ones, the reductions of NΔ inelastic cross sections in isospin-asymmetric nuclear medium are different from each other for all the individual channels and the effect is largest and of opposite sign for the Δ++ and Δ- states. This approach is also compared to calculations without effective mass splitting and with splitting derived from Dirac-Brueckerner (DB) calculations. The isospin dependence of the NΔ cross sections is expected to influence the production of π+ and π- mesons as well as their yield ratio, and thus affect the use of the latter quantity as a probe of the stiffness of the symmetry energy at supranormal densities.
On triplet low-energy parameters of nucleon-nucleon scattering
Babenko, V. A.; Petrov, N. M.
2006-09-15
Triplet low-energy parameters of neutron-proton scattering, including high-order shape parameters, are calculated on the basis of approximating the effective-range function k cot {delta}{sub t} by polynomials and rational functions with the aid of the latest experimental data on phase shifts from the SAID nucleon-nucleon database. With the resulting values of the low-energy parameters, a good description of phase shifts over a broad energy interval is obtained by using the effective-range expansion featuring a small number of terms. The properties of the deuteron that were calculated on the basis of the values found for the triplet low-energy parameters of scattering agree very well with experimental values. The triplet low-energy parameters and the properties of the deuteron that were obtained here by using present-day data from the SAID database differ markedly from the analogous results obtained for data of the Nijmegen group. Possible reasons behind this discrepancy are discussed. Highly precise new approximate formulas for determining the shape parameter v{sub 2} are proposed and are shown to be efficient in calculations. The effective-range expansion for the D wave is considered, and preliminary results of calculations of low-energy scattering parameters for this case are obtained.
Chiral electroweak gauge interactions
NASA Astrophysics Data System (ADS)
Rajpoot, Subhash
1990-10-01
The hypercharge U(1)Y of the standard electroweak model is split into chiral hypercharges U(1)L×U(1)R. Under the new gauge symmetry SU(2)L×U(1)L×U(1)R, quarks and leptons are left-handed doublets transforming only under SU(2)L×U(1)L and right-handed singlets transforming only under U(1)R. Consistent with the measurements of the mass of the standard massive neutral boson Z0 at the SLAC and CERN colliders and the neutral-current couplings involving neutrino beams and electron beams, the additional massive neutral gauge boson can be as light as a few hundred GeV. The model utilizes the generalized see saw mechanism of Gell-Mann, Ramond, and Slansky to give masses to all the fermions of the theory.
Relativistic O ( q4 ) two-pion exchange nucleon-nucleon potential: Configuration space
NASA Astrophysics Data System (ADS)
Higa, R.; Robilotta, M. R.; da Rocha, C. A.
2004-03-01
We have recently performed a relativistic O ( q4 ) chiral expansion of the two-pion exchange NN potential, and here we explore its configuration space content. Interactions are determined by three families of diagrams, two of which involve just gA and fπ , whereas the third one depends on empirical coefficients fixed by subthreshold πN data. In this sense, the calculation has no adjusted parameters and gives rise to predictions, which are tested against phenomenological potentials. The dynamical structure of the eight leading nonrelativistic components of the interaction is investigated and, in most cases, found to be clearly dominated by a well defined class of diagrams. In particular, the central isovector and spin-orbit, spin-spin, and tensor isoscalar terms are almost completely fixed by just gA and fπ . The convergence of the chiral series in powers of the ratio (pion mass/nucleon mass) is studied as a function of the internucleon distance and, for r>1 fm , found to be adequate for most components of the potential. An important exception is the dominant central isoscalar term, where the convergence is evident only for r>2.5 fm . Finally, we compare the spatial behavior of the functions that enter the relativistic and heavy baryon formulations of the interaction and find that, in the region of physical interest, they differ by about 5% .
Renormalizing chiral nuclear forces: Triplet channels
NASA Astrophysics Data System (ADS)
Long, Bingwei; Yang, C.-J.
2012-03-01
We discuss the subleading contact interactions, or counterterms, of the triplet channels of nucleon-nucleon scattering in the framework of chiral effective field theory, with S and P waves as the examples. The triplet channels are special in that they allow the singular attraction of one-pion exchange to modify Weinberg's original power-counting (WPC) scheme. With renormalization group invariance as the constraint, our power counting for the triplet channels can be summarized as a modified version of naive dimensional analysis in which, when compared with WPC, all of the counterterms in a given partial wave (leading or subleading) are enhanced by the same amount. More specifically, this means that WPC needs no modification in 3S1-3D1 and 3P1, whereas a two-order enhancement is necessary in both 3P0 and 3P2-3F2.
Renormalizing Chiral Nuclear Forces: Triplet Channels
Bingwei Long, Chieh-Jen Yang
2012-03-01
We discuss the subleading contact interactions, or counterterms, of the triplet channels of nucleon-nucleon scattering in the framework of chiral effective field theory, with S and P waves as the examples. The triplet channels are special in that it allows the singular attraction of one-pion exchange to modify Weinberg's original power counting (WPC) scheme. With renormalization group invariance as the constraint, our power counting for the triplet channels can be summarized as a modified version of naive dimensional analysis that, when compared with WPC, the subleading counterterms are enhanced as much as the leading one. More specifically, this means that WPC needs no modification in {sup 3}S{sub 1}-{sup 3}D{sub 1} and {sup 3}P{sub 1} whereas a two-order enhancement is necessary in both {sup 3}P{sub 0} and {sup 3}P{sub 2} - {sup 3}F{sub 2}.
Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola
2012-02-01
We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.
Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks
ERIC Educational Resources Information Center
Millevolte, Anthony
2010-01-01
The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…
Nuclear Stability and Nucleon-Nucleon Interactions in Introductory and General Chemistry Textbooks
ERIC Educational Resources Information Center
Millevolte, Anthony
2010-01-01
The nucleus is a highly dense and highly charged substructure of atoms. In the nuclei of all atoms beyond hydrogen, multiple protons are in close proximity to each other in spite of strong electrostatic repulsions between them. The attractive internucleon strong force is described and its origin explained by using a simple quark model for the…
Baryon-Baryon Interaction in a Chiral-Quark Mean - Model
NASA Astrophysics Data System (ADS)
Pineda, Fernando Javier
The nontopological soliton solution of a chirally invariant Lagrangian which incorporates the linear (sigma) -model BB84,KR84 is used as a model for Baryons. The nucleon-nucleon interaction is modeled by the interaction of two such solitons. The soliton-soliton interaction is calculated adiabatically by extremizing the energy of the two-soliton system subject to the constraint that the inter-soliton separation is fixed. The fields and wavefunctions are expanded in a two-center harmonic oscillator basis thus permitting essentially arbitrary tri-axial deformations. The hedgehog form is imposed on the spin-isospin wavefunction of the solitons. The isospin (or spin) of the two solitons may be quantized along different directions thus introducing a dependence in the energy on the relative orientation of the quantization axes. This permits the extraction of a low energy effective NN potential by an approximate method. An OBE calculation between identical undeformed solitons shows that the pion form factor is quite soft. It also suggests that the mass ((TURN)550 MeV) of the (sigma) -meson, responsible for intermediate range attraction in the central potential of phenomenological meson-exchange models, is a consequence of the coupling of a heavier (sigma) -meson with lighter pions. The Euler-Lagrange equations for the six-quark system are solved approximately using a variational method. The solutions exhibit a dynamical boundary which divides the NN interaction into two domains, an exterior domain where the solitons maintain their identity and the six-quark system is appropriately described as two distinct solitons, and an interior domain where the system is more appropriately described as a single highly deformed soliton. The boundary occurs sharply for critical inter-soliton separations in the range 0.8 - 0.1 fm. The even parity interior solution and the critical separation are shown to be consistent with the energy independence of the F-matrix at low energy in the
Chirally-sensitive electron-molecule interactions
NASA Astrophysics Data System (ADS)
Dreiling, J. M.; Gay, T. J.
2015-09-01
All molecular forms of life have chemically-specific handedness. However, the origin of these asymmetries is not understood. A possible explanation was suggested by Vester and Ulbricht immediately following the discovery of parity violation in 1957: chiral beta radiation in cosmic rays may have preferentially destroyed one enantiomeric form of various biological precursors. In the experiments reported here, we observed chiral specificity in two electron- molecule interactions: quasi-elastic scattering and dissociative electron attachment. Using low- energy longitudinally spin-polarized (chiral) electrons as substitutes for beta rays, we found that chiral bromocamphor molecules exhibited both a transmission and dissociative electron attachment rate that depended on their handedness for a given direction of incident electron spin. Consequently, these results, especially those with dissociative electron attachment, connect the universal chiral asymmetry of the weak force with a molecular breakup process, thereby demonstrating the viability of the Vester-Ulbricht hypothesis.
Chirally symmetric strong and electroweak interactions
NASA Astrophysics Data System (ADS)
Rajpoot, Subhash
1988-07-01
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3) L×SU(3) R×SU(2) L×SU(2) R×U(1) B- L where quantum chromodynamics originates in the chiral colour group SU(3) L×SU(3) R and the electroweak interaction originates in the ambidextrous electroweak interaction group SU L×SU(2) R×U(1) B- L. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2) L×SU(2) R. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3) C×U(1) em and give masses to all the quarks and leptons of the theory. All fermion masses are “see-saw” masses.
Study of Z boson production in PbPb collisions at nucleon-nucleon centre of mass energy = 2.76 TeV
Chatrchyan, S.; et al.,
2011-05-01
A search for Z bosons in the mu^+mu^- decay channel has been performed in PbPb collisions at a nucleon-nucleon centre of mass energy = 2.76 TeV with the CMS detector at the LHC, in a 7.2 inverse microbarn data sample. The number of opposite-sign muon pairs observed in the 60--120 GeV/c^2 invariant mass range is 39, corresponding to a yield per unit of rapidity (y) and per minimum bias event of (33.8 +/- 5.5 (stat) +/- 4.4 (syst)) 10^{-8}, in the |y|<2.0 range. Rapidity, transverse momentum, and centrality dependencies are also measured. The results agree with next-to-leading order QCD calculations, scaled by the number of incoherent nucleon-nucleon collisions.
Long-range interactions between chiral molecules
Salam, A.
2015-01-22
Results of molecular quantum electrodynamics calculations of discriminatory interactions between two chiral molecules undergoing resonance energy transfer, van der Waals dispersion, and optical binding are presented. A characteristic feature of the theory is that the radiation field is quantized with signals consequently propagating between centres at the speed of light. In order to correctly describe optically active chromophores, it is necessary to include magnetic as well as electric dipole coupling terms in the time-dependent perturbation theory computations. Recent work investigating the effect of an absorptive and dispersive chiral medium on the rate of migration of energy will also be discussed.
Chirality modifies the interaction between knots
NASA Astrophysics Data System (ADS)
Najafi, Saeed; Tubiana, Luca; Podgornik, Rudolf; Potestio, Raffaello
2016-06-01
In this study we consider an idealization of a typical optical tweezers experiment involving a semiflexible double-knotted polymer, with steric hindrance and persistence length matching those of dsDNA in high salt concentration, under strong stretching. Using exhaustive molecular-dynamics simulations we show that not only does a double-knotted dsDNA filament under tension possess a free-energy minimum when the two knots are intertwined, but also that the depth of this minimum depends on the relative chirality of the two knots. We rationalize this dependence of the effective interaction on the chirality in terms of a competition between chain entropy and bending energy.
Probing Chiral Interactions in Light Nuclei
Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P
2004-01-08
Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.
Rijken, T.A.; Stoks, V.G.J. )
1992-07-01
Two-pion-exchange (TPE) nucleon-nucleon potentials are derived for one or two {Delta} isobars in the intermediate states. Strong dynamical pair suppression is assumed. At the {ital NN}{pi} and the {ital N}{Delta}{pi} vertices Gaussian form factors are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitudes. The Fourier transformations are performed using factorization techniques for the energy denominators, taking into account the mass difference between the nucleon and the {Delta} isobar. Analytic expressions for the TPE potentials are obtained, which contain at most one-dimensional integrals. The TPE potentials are first calculated up to orders ({ital f}{sub {ital N}{ital N}{pi}} f{sub {ital N}{Delta}{pi}}){sup 2} and {ital f}{sub {ital N}{Delta}{pi}}{sup 4}. These come from the adiabatic contributions of all planar and crossed three-dimensional momentum-space TPE diagrams. We also give the contributions of the OPE iteration, which can be subtracted or not, depending on whether one performs a coupled-channel calculation for, e.g., the {ital NN}, {ital N}{Delta} system, or a single {ital NN}-channel calculation. Next, we calculate the ({ital m}{sub {pi}}/{ital M}) corrections. These are due to the 1/{ital M} terms in the pion-nucleon vertices, and the 1/{ital M} terms in the nonadiabatic expansion of the nucleon energies in the intermediate states.
Toy model of the repulsive core of the nucleon-nucleon potential
Kamuntavicius, G. P.; Masalaite, A.; Mickevicius, S.
2007-09-15
We study the simplest quark model assuming that the sea of gluons and quark-antiquark pairs can be treated as a part of a static force and proceeding to calculate the hadronic states by solving the Schroedinger equation for a static confining interaction. We refer to this model, starting from a system of six interacting constituent quarks, and examine how the picture of two structureless nucleons can change when the effects caused by the substructure of the nucleons are taken into account.
Neutrino-pair bremsstrahlung from nucleon-α versus nucleon-nucleon scattering
NASA Astrophysics Data System (ADS)
Sharma, Rishi; Bacca, Sonia; Schwenk, A.
2015-04-01
We study the impact of the nucleon-α P -wave resonances on neutrino-pair bremsstrahlung. Because of the noncentral spin-orbit interaction, these resonances lead to an enhanced contribution to the nucleon spin structure factor for temperatures T ≲4 MeV. If the α -particle fraction is significant and the temperature is in this range, this contribution is competitive with neutron-neutron bremsstrahlung. This may be relevant for neutrino production in core-collapse supernovae or other dense astrophysical environments. Similar enhancements are expected for resonant noncentral nucleon-nucleus interactions.
Pion-nucleon scattering and pion production in nucleon-nucleon and nucleus-nucleus collisions
Dover, C.B.
1982-01-01
Lecture notes are presented on the following: (1) basic aspects of ..pi..N interactions (properties of pions and nucleons, SU(3) and SU(6) classification phenomenology of ..pi..N scattering ((3.3) resonance; phase shift analysis, and bag model approach to ..pi..N); (2) pion production and absorption in the two nucleon system (NN ..-->.. NN..pi.. (isobar model) and ..pi..d reversible NN (existence of dibaryon resonances)); (3) pion absorption in complex nuclei (multiparticle aspects and cascade calculations); and (4) pion production with nuclear targets including (a) nucleon-nucleus, (b) nucleus-nucleus (Fermi-averaged 2-body vs thermodynamic models), and (c) ..pi pi.. interoferometry.
Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces
NASA Astrophysics Data System (ADS)
Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi
2017-05-01
We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.
Chiral Sensitivity in Electron-Molecule Interactions
NASA Astrophysics Data System (ADS)
Dreiling, Joan
2015-09-01
All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.
An accurate nucleon-nucleon potential with charge-independence breaking
Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R.
1995-08-01
We constructed a new NN potential, designated Argonne v{sub 18}, with explicit charge-independence breaking. It supersedes our older v{sub 14} model, which was our standard nonrelativistic NN potential for most of the last decade. The main part of the new potential is charge-independent, like the old v{sub 14} model, with 14 components, each consisting of a radial function v{sub p}(r{sub 12}) multiplied by an operator: 1, {sigma}{sub 1}{center_dot}{sigma}{sub 2}, S{sub 12}, L{center_dot}S, L{sup 2}, L{sup 2}{sigma}{sub 1}{center_dot}{sigma}{sub 2}, and (L{center_dot}S){sup 2}, and each of these times {tau}{sub l}{center_dot}{tau}{sub 2}. Three charge-dependent and one charge-asymmetric operators are added along with a complete electromagnetic interaction, resulting in a model that fits pp, np, and nn data simultaneously. The charge-dependent operators are obtained by multiplying the spin operators 1, {sigma}{sub 1}{center_dot}{sigma}{sub 2}, and S{sub 12} by the isotensor T{sub 12} = 3{tau}{sub 1z}{tau}{sub 2z} - {tau}{sub 1}{center_dot}{tau}{sub 2}, which differentiates between np and pp or nn T = 1 states. A major source of charge dependence in NN interactions is the mass difference of the charged and neutral pions, which is carefully treated in the new model. The charge-asymmetric operator is {tau}{sub 1z}+{tau}{sub 2z} which splits pp and nn states; it is constrained by the difference between nn and pp scattering lengths. The electromagnetic interaction includes Coulomb, Darwin-Foldy, vacuum polarization, and magnetic moment terms. The potential was fit directly to the Nijmegen pp and np scattering database as well as the nn scattering length and deuteron binding energy. With {approximately}40 adjustable parameters it gives an excellent {chi}{sup 2}/degree of freedom of 1.09 for 4301 pp and np data in the range 0-350 MeV. A consistent set of two-body charge and current operators has also been derived to evaluate the deuteron electromagnetic form factors.
Real-space imaginary-time propagators for non-local nucleon-nucleon potentials
NASA Astrophysics Data System (ADS)
Lynn, J. E.; Schmidt, K. E.
2012-07-01
Nuclear structure quantum Monte Carlo methods such as Green's function or auxiliary field diffusion Monte Carlo have used phenomenological local real-space potentials containing as few derivatives as possible, such as the Argonne-Urbana family of interactions, to make sampling simple and efficient. Basis set methods such as no-core shell model and coupled-cluster techniques typically use softer non-local potentials because of their more rapid convergence with basis set size. These non-local potentials are usually defined in momentum space and are often based on effective field theory. Comparisons of the results of the two types of methods can be difficult when different potentials are used. We show methods for evaluating the real-space imaginary-time propagators needed to perform quantum Monte Carlo calculations using such non-local potentials. We explore the universality of the large imaginary time propagators for different potentials and discuss how non-local potentials can be used in quantum Monte Carlo calculations.
NASA Astrophysics Data System (ADS)
Kaptari, L. P.; Kämpfer, B.
2005-02-01
Vector meson ( V = ω,φ) production in near-threshold elementary nucleon-nucleon collisions pp↦ppV, pn↦pnV and pn↦dV is studied within an effective meson-nucleon theory. It is shown that a set of effective parameters can be established to describe fairly well the available experimental data of angular distributions and the energy dependence of the total cross-sections without explicit implementation of the Okubo-Zweig-Iizuka rule violation. Isospin effects are considered in detail and compared with experimental data whenever available.
Light nuclei from chiral EFT interactions
NASA Astrophysics Data System (ADS)
Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.
2008-12-01
Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.
Quantum Monte Carlo calculations of neutron matter with chiral three-body forces
Tews, I.; Gandolfi, Stefano; Gezerlis, A.; ...
2016-02-02
Chiral effective field theory (EFT) enables a systematic description of low-energy hadronic interactions with controlled theoretical uncertainties. For strongly interacting systems, quantum Monte Carlo (QMC) methods provide some of the most accurate solutions, but they require as input local potentials. We have recently constructed local chiral nucleon-nucleon (NN) interactions up to next-to-next-to-leading order (N2LO). Chiral EFT naturally predicts consistent many-body forces. In this paper, we consider the leading chiral three-nucleon (3N) interactions in local form. These are included in auxiliary field diffusion Monte Carlo (AFDMC) simulations. We present results for the equation of state of neutron matter and for themore » energies and radii of neutron drops. Specifically, we study the regulator dependence at the Hartree-Fock level and in AFDMC and find that present local regulators lead to less repulsion from 3N forces compared to the usual nonlocal regulators.« less
Low-energy chiral two-pion exchange potential with statistical uncertainties
NASA Astrophysics Data System (ADS)
Pérez, R. Navarro; Amaro, J. E.; Arriola, E. Ruiz
2015-05-01
We present a new phenomenological nucleon-nucleon (N N ) chiral potential fitted to 925 p p and 1743 n p scattering data selected from the Granada-2013 N N database up to a laboratory energy of 125 MeV with 20 short-distance parameters and three chiral constants c1,c3, and c4 with χ2/ν =1.02 . Special attention is given to testing the normality of the residuals which allows for a sound propagation of statistical errors from the experimental data to the potential parameters, phase shifts, scattering amplitudes, and counterterms. This fit allows for a new determination of the chiral constants c1,c3, and c4 compatible with previous determinations from N N data. This new interaction is found to be softer than other high-quality potentials by undertaking a Weinberg eigenvalue analysis. We further explore the interplay between the error analysis and the assumed form of the short-distance interaction. The present work shows that it is possible to fit N N scattering with a two-pion exchange (TPE) chiral potential fulfilling all necessary statistical requirements up to 125 MeV and shows unequivocal nonvanishing D -wave short-distance pieces.
Solvent-driven chiral-interaction reversion for organogel formation.
Qing, Guangyan; Shan, Xingxing; Chen, Wenrui; Lv, Ziyu; Xiong, Peng; Sun, Taolei
2014-02-17
For chiral gels and related applications, one of the critical issues is how to modulate the stereoselective interaction between the gel and the chiral guest precisely, as well as how to translate this information into the macroscopic properties of materials. Herein, we report that this process can also be modulated by nonchiral solvents, which can induce a chiral-interaction reversion for organogel formation. This process could be observed through the clear difference in gelation speed and the morphology of the resulting self-assembly. This chiral effect was successfully applied in the selective separation of quinine enantiomers and imparts "smart" merits to the gel materials.
Emergence of Chirality from Isotropic Interactions of Three Length Scales.
Mkhonta, S K; Elder, K R; Huang, Zhi-Feng
2016-05-20
Chirality is known to play a pivotal role in determining material properties and functionalities. However, it remains a great challenge to understand and control the emergence of chirality and the related enantioselective process particularly when the building components of the system are achiral. Here we explore the generic mechanisms driving the formation of two-dimensional chiral structures in systems characterized by isotropic interactions and three competing length scales. We demonstrate that starting from isotropic and rotationally invariant interactions, a variety of chiral ordered patterns and superlattices with anisotropic but achiral units can self-assemble. The mechanisms for selecting specific states are related to the length-scale coupling and the selection of resonant density wave vectors. Sample phase diagrams and chiral elastic properties are identified. These findings provide a viable route for predicting chiral phases and selecting the desired handedness.
NASA Astrophysics Data System (ADS)
Cao, X. G.; Cai, X. Z.; Ma, Y. G.; Fang, D. Q.; Zhang, G. Q.; Guo, W.; Chen, J. G.; Wang, J. S.
2012-10-01
Proton-neutron, neutron-neutron, and proton-proton momentum-correlation functions (Cpn,Cnn, and Cpp) are systematically investigated for 15C and other C-isotope-induced collisions at different entrance channel conditions within the framework of the isospin-dependent quantum-molecular-dynamics model complemented by the correlation after burner (crab) computation code. 15C is a prime exotic nucleus candidate due to the weakly bound valence neutron coupling with closed-neutron-shell nucleus 14C. To study density dependence of the correlation function by removing the isospin effect, the initialized 15C projectiles are sampled from two kinds of density distribution from the relativistic mean-field (RMF) model in which the valence neutron of 15C is populated in both 1d5/2 and 2s1/2 states, respectively. The results show that the density distributions of the valence neutron significantly influence the nucleon-nucleon momentum-correlation function at large impact parameters and high incident energies. The extended density distribution of the valence neutron largely weakens the strength of the correlation function. The size of the emission source is extracted by fitting the correlation function by using the Gaussian source method. The emission source size as well as the size of the final-state phase space are larger for projectile samplings from more extended density distributions of the valence neutron, which corresponds to the 2s1/2 state in the RMF model. Therefore, the nucleon-nucleon momentum-correlation function can be considered as a potentially valuable tool to diagnose exotic nuclear structures, such as the skin and halo.
Interaction of localized surface plasmons with chiral molecules
NASA Astrophysics Data System (ADS)
Davis, T. J.; Gómez, D. E.
2014-12-01
We analyze theoretically the interaction between chiral molecules and localized surface plasmons in subwavelength metallic structures of arbitrary shape. The chiral molecule is modeled using Condon's classical description of the molecular dipole moment that depends on the magnetic field [E. U. Condon, Rev. Mod. Phys. 9, 432 (1937), 10.1103/RevModPhys.9.432]. This model is included in an eigenmode theory of coupled plasmonic systems. In the limit of dipole-dipole interactions, the theory predicts there is no change in the resonance frequency of the surface plasmon in the presence of a chiral molecule and there is no change in the amplitude of the resonance in the presence of a uniform distribution of chiral molecules. This implies that to observe the effects of the chirality of molecules it may be necessary to form localized surface plasmons with more complex charge distributions. We also examine the absorption of light of the combined system of the metal structure and chiral molecule. The theory predicts that the chirality-dependent absorption in the metal structure averages to zero for a uniform distribution of molecules, with the observed absorption occurring entirely within the molecule due to excitation by the incident light and the fields from the surface plasmon. Apart from the expected circular dichroism, the theory also predicts a chirality-dependent absorption arising from a metal nanostructure illuminated with linearly polarized light and an absorption arising from those chiral properties of the molecule usually associated with optical activity.
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Neutron star structure with chiral interactions
NASA Astrophysics Data System (ADS)
Logoteta, Domenico; Bombaci, Ignazio
2017-06-01
We use two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit ∆ isobar contributions to calculate the energy per particle of symmetric nuclear matter and pure neutron matter employing the microscopic Brueckner-Hartree-Fock approach. In particular, we present nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with ∆ isobar intermediate states (N3LO∆) recently developed by Piarulli et al. [1]. We compute the β-equilibrium equation of state and determine the neutron star mass-radius and mass-central density sequences. We find that the adopted interactions are able to provide satisfactory properties of nuclear matter at saturation density as well as to fulfill the limit of two-solar mass for the maximum mass configuration as required by recent observations.
Lapidus, K. O.
2010-06-15
The inclusive production of electron-positron pairs in proton-proton and deuteron-proton collisions at a beam kinetic energy of 1.25 GeV per nucleon was studied with the HADES (High Acceptance Dielectron Spectrometer) detector. The main objective of the deuteron-proton experiment was to investigate pair production in quasifree neutron-proton collisions. In the invariant-mass region M > 140 MeV/c{sup 2}, the invariant-mass spectrum determined in this channel shows a significant enhancement of the pair yield in relation to that in the case of proton-proton collisions.
NASA Astrophysics Data System (ADS)
Takeda, Hiroyuki
2003-03-01
Spin rotation parameters of proton elastic scattering from 58Ni have been measured at Ep=200, 300 and 400 MeV. By combining them with the previously measured cross sections and analyzing powers at the same energies, the series of measurements has become the "complete" experiment. Cross sections and analyzing powers of proton elastic scattering from 58Ni at 250 MeV, those of 120Sn at Ep=200, 250, 300 and 400 MeV and spin rotation parameters of 120Sn at Ep=300 MeV have been also newly measured. The experiment has been performed at Research Center for Nuclear Phyiscs, Osaka University. In order to explain the 58Ni data, it has been necessary to use realistic density distributions deduced from the nuclear charge distribution and to modify coupling constants and masses of σ and ω mesons. For 120Sn, we have assumed the same modification and used the proton distribution deduced from the charge distribution, we have searched the neutron density distribution which has reproduced 120Sn data at 300 MeV. The deduced neutron distribution has an increase at the nuclear center, which seems to be due to wave functions of neutrons in the 3s1/2 orbit. It also explains the 120Sn data at other energies than 300 MeV. Effects of ρ meson modifications on neutron densities are also mentioned.
Plasmonic enhancement of chiral light-matter interactions
NASA Astrophysics Data System (ADS)
Alizadeh, Mohammadhossein
Plasmonic nanostructures provide unique opportunities to improve the detection limits of chiroptical spectroscopies by enhancing chiral light-matter interactions. The most significant of such interaction occur in ultraviolet (UV) range of the electromagnetic spectrum that remains challenging to access by conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. We demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facilitate a plasmonic enhancement of optical chirality in the UV part of the spectrum is of great interest in chiral bio-sensing. Next we focus on the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves, which have recently drawn considerable attention. We investigate these novel physical properties of electromagnetic fields in the context of chiral surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse Spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules.
Chiral potential renormalized in harmonic-oscillator space
NASA Astrophysics Data System (ADS)
Yang, C.-J.
2016-12-01
We renormalize the chiral effective field theory potential in harmonic-oscillator (HO) model space. The low energy constants (LECs) are utilized to absorb not just the ultraviolet part of the physics due to the cutoff, but also the infrared part due to the truncation of model space. We use the inverse J -matrix method to reproduce the nucleon-nucleon scattering phase shifts in the given model space. We demonstrate that by including the NLO correction, the nucleon-nucleon scattering in the continuum could be well reproduced in the truncated HO trap space up to laboratory energy Tlab=100 MeV with number of HO basis nmax as small as 10. A perturbative power counting starts at subleading order is adopted in this work, and how to extract the perturbative contribution is demonstrated. This work serves as the input to perform ab initio calculations.
Tailoring the chiral magnetic interaction between two individual atoms
Khajetoorians, A. A.; Steinbrecher, M.; Ternes, M.; Bouhassoune, M.; dos Santos Dias, M.; Lounis, S.; Wiebe, J.; Wiesendanger, R.
2016-01-01
Chiral magnets are a promising route towards dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii–Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron-mediated Dzyaloshinskii–Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunnelling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets. PMID:26902332
Electron-deuteron scattering based on the Chiral Effective Field Theory
NASA Astrophysics Data System (ADS)
Rozpȩdzik, Dagmara
2014-06-01
Based on the Chiral Effective Field Theory (ChEFT) dynamical picture of the two-pion exchange (TPE) contributions to the nuclear current operator which appear at higher order chiral expansions were considered. Their role in the electron-deuteron scattering reactions was studied and chiral predictions were compared with those obtained in the conventional framework. Results for cross section and various polarization observables are presented. The bound and scattering states were calculated with five different chiral nucleon-nucleon (NN) potentials which leads to the so-called theoretical uncertainty bands for the predicted results.
Jansen, G. R.; Engel, Jonathan; Hagen, Gaute; Navratil, Petr; Signoracci, Angelo J.
2014-10-03
We derive and compute effective valence-space shell-model interactions from ab initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular, our computed 2^{+} states are consistent with N=14,16 shell closures in ^{22,24}O, and a weaker N=14 shell closure in ^{20}C. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.
NASA Astrophysics Data System (ADS)
Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Li, Zhuxia; Su, Jun; Zhang, Hongfei
2016-08-01
We considered three different nucleon-nucleon (NN) elastic differential cross sections: the Cugnon et al. parameterized differential cross section [Nucl. Instrum. Methods Phys. Res., Sect. B 111, 215 (1996), 10.1016/0168-583X(95)01384-9], the differential cross section derived from the collision term of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation proposed by Mao et al. [Z. Phys. A 347, 173 (1994), 10.1007/BF01292373], and the isotropic differential cross section within the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. By doing so, we investigated the influence of the differential elastic NN cross section on various observables (e.g., nuclear stopping, both the rapidity and transverse-velocity dependence of the directed and elliptic flows) in Au+Au collisions at beam energies 150, 250, 400, and 800 MeV /nucleon . By comparing calculations with those three differential cross sections, we found that the nuclear stopping power and the directed and elliptic flows are affected to some extent by the differential cross sections, and the impact of differential cross section on those observables becomes more visible as the beam energy increases. The effect on the elliptic flow difference v2n-v2H and ratio v2n/v2H of neutrons versus hydrogen isotopes (Z =1 ), which have been used as sensitive observables for probing nuclear symmetry energy at high densities, is weak.
Chatrchyan, Serguei; et al.
2011-08-01
Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.
Self-consistent Models of Strong Interaction with Chiral Symmetry
DOE R&D Accomplishments Database
Nambu, Y.; Pascual, P.
1963-04-01
Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)
NASA Astrophysics Data System (ADS)
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Chiral electrostatic interaction and cholesteric liquid crystals of DNA
NASA Astrophysics Data System (ADS)
Kornyshev, A. A.; Leikin, S.; Malinin, S. V.
2002-01-01
Explicit expressions for electrostatic interaction between stiff DNA duplexes of finite length are obtained. These expressions allow for the helical symmetry of charge distribution on DNA molecules and reveal chiral and non-chiral interaction terms. Asymptotic expressions at small twist angles are applied to evaluate the cholesteric pitch and the twist elastic constant and their dependence on the length of DNA fragments. These estimates suggest an explanation for the large value of the cholesteric pitch and its nonmonotonic variation with the density of the liquid crystal. An analysis of biaxial correlations rationalizes the driving force of the transition from the cholesteric to hexagonal phase upon dehydration.
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Viviani, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Marcucci, L. E.; Schiavilla, R.
2014-06-18
Weak interactions between quarks induce a parity-violating (PV) component in the nucleon-nucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (${\\chi }$EFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the $\\vec{p}$-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the ^{3}He( $\\vec{n}$,p)^{3}H charge-exchange reaction. Methods: The ${\\chi }$EFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A=2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from ${\\chi }$EFT. In the case of the A=3-4 systems, systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h$1\\atop{π}$ and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The ${\\chi }$EFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
NASA Astrophysics Data System (ADS)
Kievsky, A.; Viviani, M.; Gattobigio, M.; Girlanda, L.
2017-02-01
In chiral effective field theory the leading order (LO) nucleon-nucleon potential includes two contact terms, in the two spin channels S =0 ,1 , and the one-pion-exchange potential. When the pion degrees of freedom are integrated out, as in the pionless effective field theory, the LO potential includes two contact terms only. In the three-nucleon system, the pionless theory includes a three-nucleon contact term interaction at LO whereas the chiral effective theory does not. Accordingly arbitrary differences could be observed in the LO description of three- and four-nucleon binding energies. We analyze the two theories at LO and conclude that a three-nucleon contact term is necessary at this order in both theories. In turn this implies that subleading three-nucleon contact terms should be promoted to lower orders. Furthermore, this analysis shows that one single low-energy constant might be sufficient to explain the large values of the singlet and triplet scattering lengths.
Interaction of chiral rafts in self-assembled colloidal membranes
NASA Astrophysics Data System (ADS)
Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.
2016-03-01
Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.
Reducible chiral four-body interactions in nuclear matter
NASA Astrophysics Data System (ADS)
Kaiser, N.; Milkus, R.
2016-01-01
The method of unitary transformations generates five classes of leading-order reducible chiral four-nucleon interactions which involve pion exchanges and a spin-spin contact term. Their first-order contributions to the energy per particle of isospin-symmetric nuclear matter and pure neutron matter are evaluated in detail. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can be reduced to easily manageable one- or two-parameter integrals. One finds substantial compensations among the different contributions arising from 2-ring and 1-ring diagrams. Altogether, the net attraction generated by the chiral four-nucleon interaction does not exceed values of -1.3 MeV for densities ρ < 2ρ0.
Covariant nonlocal chiral quark models with separable interactions
Dumm, D. Gomez; Grunfeld, A. G.; Scoccola, N. N.
2006-09-01
We present a comparative analysis of chiral quark models which include nonlocal covariant four-fermion couplings. We consider two alternative ways of introducing the nonlocality, as well as various shapes for the momentum-dependent form factors governing the effective interactions. In all cases we study the behavior of model parameters and analyze numerical results for constituent quark masses and quark propagator poles. Advantages of these covariant nonlocal schemes over instantaneous nonlocal schemes and the standard NJL model are pointed out.
Local chiral potentials with Δ-intermediate states and the structure of light nuclei
NASA Astrophysics Data System (ADS)
Piarulli, Maria
2017-01-01
We present a fully local nucleon-nucleon potential in chiral effective field theory (χEFT) retaining pions, nucleons and Δ-isobars as explicit degrees of freedom, and use it in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The calculation of the potential is carried out by including one- and two-pion-exchange contributions up to next-to-next-to-leading order (N2LO) and contact interactions up to next-to-next-to-next-to-leading order (N3LO). The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0-125 MeV or 0-200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS respectively, ranging from (RL ,RS) =(1 . 2 , 0 . 8) fm down to (0 . 8 , 0 . 6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Local chiral potentials with Δ -intermediate states and the structure of light nuclei
NASA Astrophysics Data System (ADS)
Piarulli, M.; Girlanda, L.; Schiavilla, R.; Kievsky, A.; Lovato, A.; Marcucci, L. E.; Pieper, Steven C.; Viviani, M.; Wiringa, R. B.
2016-11-01
We present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], 10.1103/PhysRevC.91.024003, and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states of 3H, 3He, 4He, 6He, and 6Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with Δ isobars in the intermediate states up to order Q3 (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q4. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0-125 MeV or 0-200 MeV, and to the deuteron binding energy and n n singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, RL and RS, respectively, ranging from (RL,RS) =(1.2 ,0.8 ) fm down to (0.8 ,0.6 ) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Quantum Networks with Chiral-Light-Matter Interaction in Waveguides.
Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S
2016-12-09
We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F∼0.998 achievable in state-of-the-art quantum dot systems.
Quantum Networks with Chiral-Light-Matter Interaction in Waveguides
NASA Astrophysics Data System (ADS)
Mahmoodian, Sahand; Lodahl, Peter; Sørensen, Anders S.
2016-12-01
We propose a scalable architecture for a quantum network based on a simple on-chip photonic circuit that performs loss-tolerant two-qubit measurements. The circuit consists of two quantum emitters positioned in the arms of an on-chip Mach-Zehnder interferometer composed of waveguides with chiral-light-matter interfaces. The efficient chiral-light-matter interaction allows the emitters to perform high-fidelity intranode two-qubit parity measurements within a single chip and to emit photons to generate internode entanglement, without any need for reconfiguration. We show that, by connecting multiple circuits of this kind into a quantum network, it is possible to perform universal quantum computation with heralded two-qubit gate fidelities F ˜0.998 achievable in state-of-the-art quantum dot systems.
Revisting the Density Matrix Expansion with Regulated Chiral Interactions
NASA Astrophysics Data System (ADS)
Dyhdalo, Alexander; Furnstahl, Richard; Bogner, Scott; Schunck, Nicolas; Navarro Perez, Rodrigo
2016-09-01
The density matrix expansion provides a general way to map microscopic interactions to a local functional. Previous density matrix expansion formulations added unregulated chiral long-range potentials to a Skyrme-type functional, which accounted for the short-range contributions. We implement the expansion with new coordinate space regulators using the regulator cutoff as a tool to adiabatically turn on finite-range pion interactions. We discuss `smoking guns' for correct inclusion of 3-body forces, which are implemented in a normal-ordering prescription, and compare to ab initio calculations.
Finite nuclei in relativistic models with a light chiral scalar meson
Serot, B.D.; Furnstahl, R.J.
1993-10-01
Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
The Soliton-Soliton Interaction in the Chiral Dilaton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente
2013-10-01
We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
Han, Heekyung; Wardlaw, David M.; Frolov, Alexei M.
2014-05-28
We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation for a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energies, and the decoherence in determining: the distinguishability as measured by a population difference between the initially pure and mixed states, and the decoherence process; the chiral stability as measured by the purity decay; and the stationary state of the system at times long relative to the time scales of the system dynamics and of the environmental effects.
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R.J. ); Serot, B.D. )
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.
Saturation with chiral interactions and consequences for finite nuclei
NASA Astrophysics Data System (ADS)
Simonis, J.; Stroberg, S. R.; Hebeler, K.; Holt, J. D.; Schwenk, A.
2017-07-01
We explore the impact of nuclear matter saturation on the properties and systematics of finite nuclei across the nuclear chart. By using the ab initio in-medium similarity renormalization group (IM-SRG), we study ground-state energies and charge radii of closed-shell nuclei from 4He to 78Ni based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties. We first investigate in detail the convergence properties of these Hamiltonians with respect to model-space truncations for both two- and three-body interactions. We find one particular interaction that reproduces well the ground-state energies of all closed-shell nuclei studied. As expected from their saturation points relative to this interaction, the other Hamiltonians underbind nuclei but lead to a remarkably similar systematics of ground-state energies. Extending our calculations to complete isotopic chains in the s d and p f shells with the valence-space IM-SRG, the same interaction reproduces not only experimental ground states but two-neutron-separation energies and first-excited 2+ states. We also extend the valence-space IM-SRG to calculate radii. Since this particular interaction saturates at too high density, charge radii are still too small compared with experiment. Except for this underprediction, the radius systematics is, however, well reproduced. Our results highlight the renewed importance of nuclear matter as a theoretical benchmark for the development of next-generation chiral interactions.
Chiral interactions of histidine in a hydrated vermiculite clay.
Fraser, Donald G; Greenwell, H Christopher; Skipper, Neal T; Smalley, Martin V; Wilkinson, Michael A; Demé, Bruno; Heenan, R K
2011-01-21
Recent work shows a correlation between chiral asymmetry in non-terrestrial amino acids extracted from the Murchison meteorite and the presence of hydrous mineral phases in the meteorite [D. P. Glavin and J. P. Dworkin, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 5487-5492]. This highlights the need for sensitive experimental tests of the interactions of amino acids with clay minerals together with high level computational work. We present here the results of in situ neutron scattering experiments designed to follow amino acid adsorption on an exchanged, 1-dimensionally ordered n-propyl ammonium vermiculite clay. The vermiculite gel has a (001) d-spacing of order 5 nm at the temperature and concentration of the experiments and the d-spacing responds sensitively to changes in concentration, temperature and electronic environment. The data show that isothermal addition of D-histidine or L-histidine solutions of the same concentration leads to an anti-osmotic swelling, and shifts in the d-spacing that are different for each enantiomer. This chiral specificity, measured in situ, in real time in the neutron beam, is of interest for the question of whether clays could have played an important role in the origin of biohomochirality.
NASA Astrophysics Data System (ADS)
Fedorov, V. V.; Kuznetsov, I. A.; Voronin, V. V.
2013-08-01
New approach to measure both neutron electric dipole moment (EDM) and short-range pseudomagnetic nucleon-nucleon interaction using neutron optics of a crystal without center of symmetry is presented. This approach allows getting best direct constraint on the parameters of short range pseudomagnetic interaction of a free neutron with matter for the range of interaction distances λ<10-7 m.
Ab initio shell model with a chiral-symmetry-based three-nucleon force for the p-shell nuclei
Navratil, P; Hayes, A C; Vary, J P; Ormand, W E
2003-10-14
The ab initio no-core shell model (NCSM) is extended to include a realistic three-body interaction in calculations for p-shell nuclei. They present results of first applications using the Argonne V8' nucleon-nucleon (NN) potential and the Tucson-Melbourne TM'(99) three-nucleon interaction (TNI). In addition to increase of binding energy, they observe a trend toward level-ordering and level-spacing improvement in comparison to experiment. With the TNI they obtain a correct ground-state spin for {sup 10}B contrary to calculations with NN potentials only. They also investigate neutrino-{sup 12}C exclusive cross sections and muon capture on {sup 12}C. They show that realistic nucleon-nucleon interactions underpredict the experimental cross sections by a factor of two or more. By including the TNI a much better agreement with experiment is achieved along with an encouraging trend.
Skyrmion oscillations in magnetic nanorods with chiral interactions
NASA Astrophysics Data System (ADS)
Charilaou, M.; Löffler, J. F.
2017-01-01
We report that in cylindrical nanorods with chiral interactions spin textures corresponding to spatial skyrmion oscillations can be stabilized depending on the initial state, as revealed by micromagnetic calculations. The skyrmion oscillation, or skyrmion-chain state, occurs when the diameter of the rod is larger than the helical pitch length of the material, and the number of skyrmions on the chain is proportional to the length of the nanorod. The topological charge is localized, breaking translational symmetry, but in the presence of a uniaxial anisotropy, or upon the application of an external field, the localization disappears and a single skyrmion line is formed. These findings provide a deeper understanding of the interplay between geometry and topology, and show how spatial confinement specifically in curved solids can stabilize skyrmionic spin textures.
Elastic interactions between topological defects in chiral nematic shells
NASA Astrophysics Data System (ADS)
Darmon, Alexandre; Dauchot, Olivier; Lopez-Leon, Teresa; Benzaquen, Michael
2016-12-01
We present a self-consistent and robust theoretical model to investigate elastic interactions between topological defects in liquid crystal shells. Accounting for the nonconcentric nature of the shell in a simple manner, we are able to successfully and accurately explain and predict the positions of the defects, most relevant in the context of colloidal self-assembly. We calibrate and test our model on existing experimental data and extend it to all observed defects configurations in chiral nematic shells. We perform experiments to check further and confirm the validity of the present model. Moreover, we are able to obtain quantitative estimates of the energies of +1 or +3 /2 disclination lines in cholesterics, whose intricate nature was only reported recently [A. Darmon, et al. Proc. Natl. Acad. Sci. USA 113, 9469 (2016), 10.1073/pnas.1525059113].
Recent developments in neutrino-nucleus interactions in 1 GeV energy region
Sobczyk, Jan T.
2015-07-15
Neutrino interactions in 1 GeV energy region are discussed. A role of nucleon-nucleon correlations in understanding recent quasi-elastic cross section measurements on nuclear target is explained. An importance of a correct treatment of two-body current contribution to the neutrino inclusive cross section is addressed.
Piarulli, M.; Girlanda, L.; Schiavilla, R.; Kievsky, A.; Lovato, A.; Marcucci, L. E.; Pieper, Steven C.; Viviani, M.; Wiringa, R. B.
2016-11-01
We present fully local versions of the minimally non-local nucleon-nucleon potentials constructed in a previous paper [M.\\ Piarulli {\\it et al.}, Phys.\\ Rev.\\ C {\\bf 91}, 024003 (2015)], and use them in hypersperical-harmonics and quantum Monte Carlo calculations of ground and excited states of $^3$H/$^3$He, $^4$He, and $^6$He/$^6$Li nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with $\\Delta$-isobars in the intermediate states up to order $Q^3$ ($Q$ denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order $Q^4$. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0--125 MeV or 0--200 MeV, and to the deuteron binding energy and $nn$ singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, $R_{\\rm L}$ and $R_{\\rm S}$ respectively, ranging from $(R_{\\rm L},R_{\\rm S})=(1.2,0.8)$ fm down to $(0.8,0.6)$ fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.
Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory
NASA Astrophysics Data System (ADS)
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-11-01
We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.
Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light
Wu, Tong; Wang, Rongyao; Zhang, Xiangdong
2015-01-01
Whether or not chiral interaction exists between the optical orbital angular momentum (OAM) and a chiral molecule remains unanswered. So far, such an interaction has not been observed experimentally. Here we present a T-matrix method to study the interaction between optical OAM and the chiral molecule in a cluster of nanoparticles. We find that strong interaction between the chiral molecule and OAM can be induced by the excitation of plasmon resonances. An experimental scheme to observe such an interaction has been proposed. Furthermore, we have found that the signal of the OAM dichroism can be either positive or negative, depending on the spatial positions of nanocomposites in the cross-sections of OAM beams. The cancellation between positive and negative signals in the spatial average can explain why the interaction has not been observed in former experiments. PMID:26656892
NN-πNN equations and the chiral bag model
NASA Astrophysics Data System (ADS)
Afnan, I. R.; Blankleider, B.
1985-12-01
The NN-πNN equations that describe, in a unified framework, pion production in nucleon-nucleon scattering, and pion-deuteron and nucleon-nucleon elastic scattering, have been extended to include the N(939) and Δ(1232) on an equal footing. This extension, motivated by the quark models of hadrons, has the bare N and Δ as three quark states with the same spacial wave function, but different spin isospin states. The final equations, referred to as the BB-πBB equations, are consistent with the chiral bag models to the extent that the πNN, πNΔ, and πΔΔ coupling constants and form factors are related, and can be taken from bag models. The resultant equations satisfy two- and three-body unitarity, and are derived by exposing the lowest unitarity cuts in the n-body Green's function. These equations retain important contributions missing from the NN-πNN equations. For pion production and N-N scattering they include the contribution of backward pions in the NN-->NΔ transition potential, which may overcome the problem of small pp-->πd cross section as predicted by the NN-πNN equations. For π-d elastic scattering they include an additional NΔ-->NΔ tensor force that can influence the tensor polarization.
Vedhanarayanan, Balaraman; Nair, Vishnu S; Nair, Vijayakumar C; Ajayaghosh, Ayyappanpillai
2016-08-22
In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4) m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously.
Spontaneous chiral resolution directed by symmetry restriction and π-π interaction
NASA Astrophysics Data System (ADS)
Yu, Jin-Tao; Shi, Yan-Yan; Sun, Junliang; Lin, Jianhua; Huang, Zhi-Tang; Zheng, Qi-Yu
2013-10-01
In order to understand and rationally construct homochiral self-assembled structures from racemic molecules, two novel crystalline metal-organic frameworks with chiral cavities were developed. The homochirality of the layers in both MOFs was achieved by forming strong coordinate bonds between the C3-symmetric cyclotriveratrylene and Zn4O(CO2)6 cluster. By changing weak π-π interactions between organic building blocks, the achiral assembly of ZnCTV-1 was successfully transformed into a chiral assembly in ZnCTV-2. This study demonstrated a possible route for designing the synthesis of chiral MOF through weak interactions.
Spontaneous chiral resolution directed by symmetry restriction and π-π interaction
Yu, Jin-Tao; Shi, Yan-Yan; Sun, Junliang; Lin, Jianhua; Huang, Zhi-Tang; Zheng, Qi-Yu
2013-01-01
In order to understand and rationally construct homochiral self-assembled structures from racemic molecules, two novel crystalline metal-organic frameworks with chiral cavities were developed. The homochirality of the layers in both MOFs was achieved by forming strong coordinate bonds between the C3-symmetric cyclotriveratrylene and Zn4O(CO2)6 cluster. By changing weak π-π interactions between organic building blocks, the achiral assembly of ZnCTV-1 was successfully transformed into a chiral assembly in ZnCTV-2. This study demonstrated a possible route for designing the synthesis of chiral MOF through weak interactions. PMID:24126555
Chatrchyan, Serguei; et al.
2011-07-01
First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.
A short revisit to Kuo-Brown effective interactions
NASA Astrophysics Data System (ADS)
Wang, XiaoBao; Dong, GuoXiang
2015-10-01
This paper is a short revisit to Kuo-Brown effective interaction derived from the Hamada-Johnston nucleon-nucleon potential, done by Gerry Brown and Tom Kuo. This effective interaction, derived in year 1966, is the first attempt to describe nuclear structure properties from the free nucleon-nucleon potential. Nowadays much progress has been achieved for the effective interactions in shell model. We would compare the effective interactions obtained in the 1966 paper with up-to-date shell-model interactions in sd-shell and pf-shell model space. Recent knowledge of effective interactions on nuclear structure, can also be traced in the Kuo- Brown effective interaction, i.e., the universal roles of central and tensor forces, which reminds us that such discovery should be noticed much earlier.
The Kuo-Brown effective interaction: From 18O to the Sn isotopes
NASA Astrophysics Data System (ADS)
Engeland, Torgeir; Hjorth-Jensen, Morten; Kartamyshev, Maxim; Osnes, Eivind
2014-08-01
After briefly reviewing the pioneering work on effective interactions by Gerry Brown and his group, and the developments which followed, we apply present-day effective interactions to large-scale shell-model calculations on the entire range of Sn isotopes from 102Sn to 132Sn. We have made explorative calculations starting from three different nucleon-nucleon potentials (Argonne V18, CD-Bonn, and N3LO) and evaluated the higher-order contributions to the effective interaction from both G-matrix and Vlowk interactions. Further, we have checked the convergence of intermediate-state excitations up to 10ħω harmonic oscillator energy. Final extensive calculations were made of binding energies, excitation energies and B(E2) transition rates using an effective interaction based on a G-matrix evaluated from the chiral N3LO potential and including intermediate excitations up to 10ħω harmonic oscillator energy. The energy spectra are well reproduced throughout the region while overbinding of the ground states emerges as valence nucleons are added. The B(E2) rates agree well for the heavy isotopes, while they seem too low for the lighter ones.
Uncertainty analysis of 208Pb neutron skin predictions with chiral interactions
Sammarruca, Francesca
2015-09-14
Here, we report predictions for the neutron skin in 208Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.
Uncertainty analysis of ^{208}Pb neutron skin predictions with chiral interactions
Sammarruca, Francesca
2015-09-14
Here, we report predictions for the neutron skin in ^{208}Pb using chiral two- and three-body interactions at increasing orders of chiral effective field theory and varying resolution scales. Closely related quantities, such as the slope of the symmetry energy, are also discussed. As a result, the sensitivity of the skin to just pure neutron matter pressure when going from order 2 to order 4 of chiral effective theory is singled out in a set of calculations that employ an empirical equation of state for symmetric nuclear matter.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
NASA Astrophysics Data System (ADS)
Adam, J.; Tater, M.; Truhlík, E.; Epelbaum, E.; Machleidt, R.; Ricci, P.
2012-03-01
The doublet capture rate Λ1 / 2 of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon (NN) potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant dˆR (cD), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton β-decay and the binding energies of the three-nucleon systems. The calculated values of Λ1 / 2 show a rather large spread for the used values of the dˆR. Precise measurement of Λ1 / 2 in the future will not only help to constrain the value of dˆR, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the constant dˆR will allow for consistent calculations of other two-nucleon weak processes, such as proton-proton fusion and solar neutrino scattering on deuterons, which are important for astrophysics.
Nematicons deflection through interaction with disclination lines in chiral nematic liquid crystals
Laudyn, Urszula A.; Karpierz, Miroslaw A.
2013-11-25
In this work, we study experimentally the interaction of spatial optical soliton in chiral nematic liquid crystals with disclination line created in a wedge shaped cell. We show that in most cases the self-confined beam preserves this interaction. We demonstrate that this interaction can be employed for efficient bending of the soliton trajectory, as a result of reflection and refraction.
Spin-isospin dependent effective interaction in nuclei
NASA Astrophysics Data System (ADS)
Cha, D.; Speth, J.
1984-08-01
The spin and isospin dependent part of the nuclear effective interaction is studied using the experimentally known Gamow-Teller states in 48Ca, 90Zr and 208Pb. About half of the strength of the residual interaction in the nucleon-nucleon channel can be expounded by the correlated π + ϱ exchange potential. Also, the corresponding interaction in the delta-nucleon channel is investigated and a reasonable agreement with the observed qunchiing of the Gamow-Teller strength is obtained.
NASA Astrophysics Data System (ADS)
Fan, Zhiyuan
In this dissertation, chiral nanomaterials with new plasmonic properties have been investigated. Electromagnetic interactions between well-defined building blocks in nanomaterials are modeled using classical and quantum mechanical theories. We predict several new mechanisms of plasmonic circular dichroism (CD) signals in chiral nanomaterials. The predicted CD mechanisms include plasmon-plasmon interactions of nanoparticle assemblies, plasmon-exciton interactions of molecule-nanoparticle conjugates, multipole plasmon mixing in chiral metal nanocrystals and electrodynamic effect of long range plasmon-exciton interactions. It is efficient and accurate to simulate light-matter interactions with analytic solutions. However, only a limited number of geometries can be solved analytically. Many numerical tools based on finite element methods, discrete dipole approximation or finite-difference time-domain methods are available currently. These methods are capable of simulating nanostructures with arbitrary shapes. Numerical simulations using such software have shown agreements with analytical results of our models. Hence, this study may offer a new approach to design of complex nanostructures for sensing of chiral molecules. This dissertation also reviews several experimental papers that have demonstrated successful fabrications of chiral nanostructures and nano-assemblies with new plasmonic CD signals. Our theories strongly motivated the field and have been used in many experimental studies for interpretation and understanding of observations.
Chen, J; Cai, W P; Qin, M H; Dong, S; Lu, X B; Gao, X S; Liu, J-M
2017-08-07
In this work, we study the magnetic orders of a classical spin model with anisotropic exchanges and Dzyaloshinskii-Moriya interactions in order to understand the uniaxial stress effect in chiral magnets such as MnSi. Variational zero temperature calculations demonstrate that various helical orders can be developed depending on the interaction anisotropy magnitude, consistent with experimental observations at low temperatures. Furthermore, the uniaxial stress induced creation and annihilation of skyrmions can be also qualitatively reproduced in our Monte Carlo simulations. Our work suggests that the interaction anisotropy tuned by applied uniaxial stress may play an essential role in modulating the magnetic orders in strained chiral magnets.
Three-dimensional chiral skyrmions with attractive interparticle interactions
NASA Astrophysics Data System (ADS)
Leonov, A. O.; Monchesky, T. L.; Loudon, J. C.; Bogdanov, A. N.
2016-09-01
We introduce a new class of isolated three-dimensional skyrmion that can occur within the cone phase of chiral magnetic materials. These novel solitonic states consist of an axisymmetric core separated from the host phase by an asymmetric shell. These skyrmions attract one another. We derive regular solutions for isolated skyrmions arising in the cone phase of cubic helimagnets and investigate their bound states.
Applying the density matrix expansion with coordinate-space chiral interactions
NASA Astrophysics Data System (ADS)
Dyhdalo, A.; Bogner, S. K.; Furnstahl, R. J.
2017-05-01
We apply the density matrix expansion (DME) at Hartree-Fock level with long-range chiral effective field theory interactions defined in coordinate space up to next-to-next-to-leading order. We consider chiral potentials both with and without explicit Δ isobars. The challenging algebra associated with applying the DME to three-nucleon forces is tamed using a new organization scheme, which will also facilitate generalizations. We include local regulators on the interactions to mitigate the effects of singular potentials on the DME couplings and simplify the optimization of generalized Skyrme-like functionals.
Çağlar, Tolga; Berker, A Nihat
2017-04-01
The chiral clock spin-glass model with q=5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d=3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature, antiferromagnetic bond concentration p, random chirality strength, and right-chirality concentration c. The system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase, and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devil's staircases, where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase, bordered by fragments of regular and temperature-inverted devil's staircases, are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.
NASA Astrophysics Data System (ADS)
Ćaǧlar, Tolga; Berker, A. Nihat
2017-04-01
The chiral clock spin-glass model with q =5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d =3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature, antiferromagnetic bond concentration p , random chirality strength, and right-chirality concentration c . The system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase, and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devil's staircases, where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase, bordered by fragments of regular and temperature-inverted devil's staircases, are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.
Four nucleon systems: a zoom to the open problems in nuclear interaction
Lazauskas, R.
2005-05-06
Faddeev-Yakubovski equations in configuration space are used to solve four nucleon problem for bound and scattering states. Different realistic interaction models are tested, elucidating open problems in the description of nuclear interaction. On one hand, by example of nonlocal Doleschall potential, we reveal possibility of reducing three-nucleon force. On the other hand we disclose discrepancies in describing n+3H resonance, which seems to be hardly related with off-shell structure of nucleon-nucleon interaction.
Applications of modern chiral interactions in nuclear matter and nuclei
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca
2016-09-01
Experimental investigations are in progress, and more are planned for the near future, to set reliable constraints on the isospin asymmetric part of the nuclear equation of state. The latter plays a fundamental role in a broad spectrum of systems and phenomena, including the skins of neutron-rich nuclei and the location of the neutron drip lines. From the theoretical standpoint, microscopic calculations with statistically meaningful uncertainties are essential to guide experiments. We will discuss recent calculations of the nuclear and neutron matter equations of state at different orders of the chiral expansion. We will present applications and discuss the significance of those predictions as a foundation for future studies of convergence of the chiral perturbation series. Anticipating future experiments which may provide reliable information on the weak charge density in nuclei, we discuss the possibility of constraining the size of three-neutron forces in neutron matter. Supported by the U.S. Department of Energy under Grant No. DE-FG02-03ER41270.
U(1) chiral symmetry in a one-dimensional interacting electron system with spin
NASA Astrophysics Data System (ADS)
Lee, Taejin
2016-11-01
We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.
Intrinsic asymmetry in chiral domain walls due to the Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Kim, Dae-Yun; Kim, Duck-Ho; Choe, Sug-Bong
2016-05-01
We present an analytical description of the energy density of chiral magnetic domain walls (DWs) that considers variations in DW width. Surprisingly, under the application of a longitudinal in-plane magnetic field, the DW width varies abnormally, resulting in an asymmetric variation of the DW energy density. Such asymmetry is attributable to the nonlinear contribution to the effective magnetic field from the Dzyaloshinskii-Moriya interaction. The formation of such asymmetric DWs is confirmed by a micromagnetic simulation. The present prediction proposes a possible origin of the experimental asymmetry related to chiral damping.
Properties of 4He and 6Li with improved chiral EFT interactions
NASA Astrophysics Data System (ADS)
Maris, P.; Binder, S.; Calci, A.; Epelbaum, E.; Furnstahl, R. J.; Golak, J.; Hebeler, K.; Kamada, H.; Krebs, H.; Langhammer, J.; Liebig, S.; Meißner, U.-G.; Minossi, D.; Nogga, A.; Potter, H.; Roth, R.; Skibiński, R.; Topolnicki, K.; Vary, J. P.; Witala, H.
2016-03-01
We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li.
Microscopic approach for the n - d effective interaction
Tomio, L. ); Frederico, T. ); Delfino, A. )
1990-03-01
A three-boson model is applied to the nucleon-deuteron ({ital n}-{ital d}) system to construct an effective energy-dependent two-body potential in configuration space. The three-nucleon observables at low energy are well reproduced with just one free parameter (related with the range of the nucleon-nucleon interaction). We show that the present results give support to a previous phenomenological {ital n}-{ital d} potential.
Nucleon-nucleon scattering at medium energies
NASA Astrophysics Data System (ADS)
Afnan, I. R.
1984-03-01
A model of the N-N potential, at medium energies, in the frame work of the BB-πBB equations, is presented. The derivation is based on the Cloudy Bag Model Hamiltonian. Recent N-N calculations are reviewed in the frame work of the model. Theoretical methods for the analysis of dibaryon resonances are compared.
NASA Astrophysics Data System (ADS)
Metag, Volker
2014-09-01
Chiral symmetry is a fundamental symmetry of Quantum Chromodynamics (QCD) in the limit of vanishing quark masses. In the hadronic sector chiral symmetry is broken; otherwise chiral partners - hadronic states with the same spin but opposite parity - should be degenerate in mass which is not observed in nature. It has been suggested that chiral symmetry might at least be partially restored in a strongly interacting environment. As a consequence, properties of hadrons, encoded in their mass and width, may be modified when embedded in a nucleus. These ideas have motivated widespread theoretical and experimental activities. As an example, recent experimental results on the in-medium properties of the η' meson are presented.
VCD spectroscopy as a novel probe for chirality transfer in molecular interactions.
Sadlej, Joanna; Dobrowolski, Jan Cz; Rode, Joanna E
2010-05-01
Most of the research in contemporary physical chemistry is devoted to the development of methods that extend our understanding, interpretation, and capacity to predict structural properties and dynamic behavior of molecules. The optical and magnetic spectroscopies, as well as diffraction techniques, are the principal methods for studying properties of molecules, biomolecules, and biopolymers of which the vast majority are chiral. On the other hand, information on molecular configuration can be obtained mainly from optical spectroscopies because other well-established spectroscopic techniques used for structural investigations, such as crystallographic, ESR, and NMR methods, do not allow for registration of signals from an individual conformer owing to intrinsic slow response to structural changes. This is the reason why the optical spectroscopy methods, based on natural chiroptical phenomena, have become so important and their renaissance in the last decade is noticed. Vibrational circular dichroism (VCD) spectroscopy is one such chiroptical technique that sheds new light on many important phenomena studied intensively. We provide an overview of recent theoretical predictions and innovative VCD observations of chirality transfer (called by other authors "induced chirality") from a chiral molecule to an achiral one as a result of hydrogen bond interactions between them. In this tutorial review we search for answers as to whether we can obtain further information about intermolecular interactions using the VCD technique. In our opinion this technique has opened new horizons for both understanding and monitoring intermolecular interactions and it could be used as a relatively new and powerful physicochemical method.
Residue Specific and Chirality Dependent Interactions between Carbon Nanotubes and Flagellin.
Macwan, Isaac G; Zhao, Zihe; Sobh, Omar T; Mukerji, Ishita; Dharmadhikari, Bhushan; Patra, Prabir K
2016-01-01
Flagellum is a lash-like cellular appendage found in many single-celled living organisms. The flagellin protofilaments contain 11-helix dual turn structure in a single flagellum. Each flagellin consists of four sub-domains - two inner domains (D0, D1) and two outer domains (D2, D3). While inner domains predominantly consist of α-helices, the outer domains are primarily beta sheets with D3. In flagellum, the outermost sub-domain is the only one that is exposed to the native environment. This study focuses on the interactions of the residues of D3 of an R-type flagellin with 5nm long chiral (5,15) and arm-chair (12,12) single-walled carbon nanotubes (SWNT) using molecular dynamics simulation. It presents the interactive forces between the SWNT and the residues of D3 from the perspectives of size and chirality of the SWNT. It is found that the metallic (arm-chair) SWNT interacts the most with glycine and threonine residues through van der Waals and hydrophobic interactions, whereas the semiconducting (chiral) SWNT interacts largely with the area of protein devoid of glycine by van der Waals, hydrophobic interactions, and hydrogen bonding. This indicates a crucial role that glycine plays in distinguishing metallic from semiconducting SWNTs.
RozpePdzik, D.; Golak, J.; Skibinski, R.; Witala, H.; Koelling, S.; Epelbaum, E.; Krebs, H.
2011-06-15
The recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator that appear at next-to-leading order (NLO) of the chiral expansion are used to describe electromagnetic processes. We study their role in the photodisintegration of {sup 2}H and {sup 3}He and compare our predictions with the experimental data. The bound and scattering states are calculated using five different parametrizations of the chiral next-to-next-to-leading order (N{sup 2}LO) nucleon-nucleon (NN) potential, which allows us to estimate the theoretical uncertainty at a given order in the chiral expansion. For some observables the results are very close to the predictions based on the AV18 NN potential and the current operator (partly) consistent with this force. In most cases, the addition of long-range TPE currents improved the description of the experimental data.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
NASA Astrophysics Data System (ADS)
Lynn, J. E.; Tews, I.; Carlson, J.; Gandolfi, S.; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.
2016-02-01
We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3 N ) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N2LO ). The two undetermined 3 N low-energy couplings are fit to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P -wave phase shifts. Furthermore, we investigate different choices of local 3 N -operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A =3 ,4 ,5 systems and of neutron matter, in contrast to commonly used phenomenological 3 N interactions.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter.
Lynn, J E; Tews, I; Carlson, J; Gandolfi, S; Gezerlis, A; Schmidt, K E; Schwenk, A
2016-02-12
We present quantum Monte Carlo calculations of light nuclei, neutron-α scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral effective field theory up to next-to-next-to-leading order (N(2)LO). The two undetermined 3N low-energy couplings are fit to the (4)He binding energy and, for the first time, to the spin-orbit splitting in the neutron-α P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N(2)LO are able to simultaneously reproduce the properties of A=3,4,5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.
NASA Astrophysics Data System (ADS)
Li, Xiao; Tse, Wang-Kong
2017-02-01
We develop a theory for the optical conductivity of doped ABC-stacked multilayer graphene including the effects of electron-electron interactions. Applying the quantum kinetic formalism, we formulate a set of pseudospin Bloch equations that govern the dynamics of the nonequilibrium density matrix driven by an external ac electric field under the influence of Coulomb interactions. These equations reveal a dynamical mechanism that couples the Drude and interband responses arising from the chirality of pseudospin textures in multilayer graphene systems. We demonstrate that this results in an interaction-induced enhancement of the Drude weight and plasmon frequency strongly dependent on the pseudospin winding number. Using bilayer graphene as an example, we also study the influence of higher-energy bands and find that they contribute considerable renormalization effects not captured by a low-energy two-band description. We argue that this enhancement of Drude weight and plasmon frequency occurs generally in materials characterized by electronic chirality.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; Gandolfi, Stefano; Gezerlis, A.; Schmidt, K. E.; Schwenk, A.
2016-02-09
Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N^{2}LO). The two undetermined 3N low-energy couplings are fi t to the ^{4}He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N^{2}LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrast to commonly used phenomenological 3N interactions.
Chiral Three-Nucleon Interactions in Light Nuclei, Neutron-α Scattering, and Neutron Matter
Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...
2016-02-09
Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter, in contrastmore » to commonly used phenomenological 3N interactions.« less
Chirality-induced spin polarization places symmetry constraints on biomolecular interactions
Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K.; Martin, Jan M. L.; Sitbon, Einat; Waldeck, David H.; Naaman, Ron
2017-01-01
Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm). PMID:28228525
Chirality-induced spin polarization places symmetry constraints on biomolecular interactions.
Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K; Martin, Jan M L; Sitbon, Einat; Waldeck, David H; Naaman, Ron
2017-03-07
Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm).
Zhou, Xiaoqin; Jin, Qingxian; Zhang, Li; Shen, Zhaocun; Jiang, Long; Liu, Minghua
2016-09-01
Controlled hierarchical self-assembly of synthetic molecules into chiral nanoarchitectures to mimic those biological chiral structures is of great importance. Here, a low-molecular-weight organogelator containing a benzimidazole moiety conjugated with an amphiphilic l-glutamic amide has been designed and its self-assembly into various hierarchical chiral nanostructures is investigated. Upon gel formation in organic solvents, 1D chiral nanostructure such as nanofiber and nanotube are obtained depending on the solvents. In the presence of transition and rare earth metal ions, hierarchical chiral nanostructures are formed. Specifically, the addition of TbCl3 , EuCl3 , and AgNO3 leads to nanofiber structures, while the addition of Cu(NO3 )2 , Tb(NO3 )3 , or Eu(NO3 )3 provides the microflower structures and microtubular flower structures, respectively. While Eu(III) and Tb(III)-containing microtubular flowers keep the chirality, the Cu(II)-coordinated microflowers lose chirality. More interestingly, the nanofibers formed by the gelator coordinated with Eu(III) or Tb(III) ions show not only the supramolecular chirality but also the circularly polarized luminescence.
Effects of second neighbor interactions on skyrmion lattices in chiral magnets.
Oliveira, E A S; Silva, R L; Silva, R C; Pereira, A R
2017-05-24
In this paper we investigate the influences of the second neighbor interactions on a skyrmion lattice in two-dimensional chiral magnets. Such a system contains the exchange and the Dzyaloshinskii-Moriya for the spin interactions and therefore, we analyse three situations: firstly, the second neighbor interaction is present only in the exchange coupling; secondly, it is present only in the Dzyaloshinskii-Moriya coupling. Finally, the second neighbor interactions are present in both exchange and Dzyaloshinskii-Moriya couplings. We show that such effects cause important modifications to the helical and skyrmion phases when an external magnetic field is applied.
Theory of a 3+1D fractional chiral metal: Interacting variant of the Weyl semimetal
NASA Astrophysics Data System (ADS)
Meng, Tobias; Grushin, Adolfo G.; Shtengel, Kirill; Bardarson, Jens H.
2016-10-01
Formulating consistent theories describing strongly correlated metallic topological phases is an outstanding problem in condensed-matter physics. In this work, we derive a theory defining a fractionalized analog of the Weyl semimetal state: the fractional chiral metal. Our approach is to construct a 4+1D quantum Hall insulator by stacking 3+1D Weyl semimetals in a magnetic field. In a strong enough field, the low-energy physics is determined by the lowest Landau level of each Weyl semimetal, which is highly degenerate and chiral, motivating us to use a coupled-wire approach. The one-dimensional dispersion of the lowest Landau level allows us to model the system as a set of degenerate 1+1D quantum wires that can be bosonized in the presence of electron-electron interactions and coupled such that a gapped phase is obtained whose response to an electromagnetic field is given in terms of a Chern-Simons field theory. At the boundary of this phase, we obtain the field theory of a 3+1D gapless fractional chiral state, which we show is consistent with a previous theory for the surface of a 4+1D Chern-Simons theory. The boundary's response to an external electromagnetic field is determined by a chiral anomaly with a fractionalized coefficient. We suggest that such an anomalous response can be taken as a working definition of a fractionalized strongly correlated analog of the Weyl semimetal state.
An investigation of ab initio shell-model interactions derived by no-core shell model
NASA Astrophysics Data System (ADS)
Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing
2016-09-01
The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.
Statistical uncertainties of a chiral interaction at next-to-next-to leading order
Ekström, A.; Carlsson, B. D.; Wendt, K. A.; ...
2015-02-05
In this paper, we have quantified the statistical uncertainties of the low-energy coupling-constants (LECs) of an optimized nucleon–nucleon interaction from chiral effective field theory at next-to-next-to-leading order. Finally, in addition, we have propagated the impact of the uncertainties of the LECs to two-nucleon scattering phase shifts, effective range parameters, and deuteron observables.
Quantum Monte Carlo with Chiral Interactions: New Results and Future Directions
NASA Astrophysics Data System (ADS)
Lynn, Joel
2016-09-01
Quantum Monte Carlo methods, including the Green's function Monte Carlo (GFMC) method and the auxiliary-field diffusion Monte Carlo (AFDMC) method, are arguably the most accurate many-body methods in nuclear physics. Chiral effective field theory (EFT) presents a systematic way to derive nuclear interactions from an EFT whose organizing principle is the same symmetry as low-energy quantum chromodynamics. The combination of these two is a novel and exciting development. In this talk, I present our recent work on GFMC calculations of light nuclei and AFDMC calculations of neutron matter using local two- and three-nucleon interactions derived from chiral EFT up to next-to-next-to-leading order (N2LO). I discuss the choice of observables we make to fit the two undetermined low-energy constants which enter in the three-nucleon sector at N2LO: the 4He binding energy and n- α elastic scattering P-wave phase shifts. I show that chiral two- and three-nucleon interactions have sufficient freedom to simultaneously fit properties of light nuclei, n- α scattering P-wave phase shifts, and provide a reasonable description of neutron matter. Finally I discuss some exciting applications of this framework which have recently been completed and some future projects. ERC Grant No. 307986 STRONGINT.
The chiral S = -1 meson-baryon interaction with new constraints on the NLO contributions
NASA Astrophysics Data System (ADS)
Ramos, A.; Feijoo, A.; Magas, V. K.
2016-10-01
We present a study of the S = - 1 meson-baryon interaction, employing a chiral SU(3) Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. The parameters of the model have been fitted to a large set of experimental scattering data in different two-body channels, to threshold branching ratios, and to the precise SIDDHARTA value of the energy shift and width of kaonic hidrogen. In contrast to other groups, we have taken into consideration the K- p →K+Ξ- ,K0Ξ0 reaction data, since we found in a previous work to be especially sensitive to the NLO parameters of the chiral Lagrangian. In the present work we also include the Born terms, which usually have very little effect, and find them to be non-negligible in the K- p → KΞ channels, correspondingly causing significant modifications to the NLO parameters. We furthermore show that the importance of the Born terms becomes more visible in the isospin projected amplitudes of the K- p → KΞ reactions. The measurement of processes that filter single isospin components, like the KL0 p →K+Ξ0 reaction that could be measured at the proposed secondary KL0 beam at Jlab, would put valuable constraints on the chiral models describing the meson-baryon interaction in the S = - 1 sector.
Chiral superfluidity with p-wave symmetry from an interacting s-wave atomic Fermi gas.
Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W Vincent
2014-09-30
Chiral p-wave superfluids are fascinating topological quantum states of matter that have been found in the liquid (3)He-A phase and arguably in the electronic Sr2RuO4 superconductor. They are fundamentally related to the fractional 5/2 quantum Hall state, which supports fractional exotic excitations. Past studies show that they require spin-triplet pairing of fermions by p-wave interaction. Here we report that a p-wave chiral superfluid state can arise from spin-singlet pairing for an s-wave interacting atomic Fermi gas in an optical lattice. This p-wave state is conceptually distinct from all previous conventional p-wave states as it is for the centre-of-mass motion, instead of the relative motion. It leads to spontaneous generation of angular momentum, finite Chern numbers and topologically protected chiral fermionic zero modes bounded to domain walls, all occuring at a higher critical temperature in relative scales. Signature quantities are predicted for the cold atom experimental condition.
Large-U limit of a Hubbard model in a magnetic field: Chiral spin interactions and paramagnetism
NASA Astrophysics Data System (ADS)
Sen, Diptiman; Chitra, R.
1995-01-01
We consider the large-U limit of the one-band Hubbard model at half-filling on a nonbipartite two-dimensional lattice. An external magnetic field can induce a three-spin chiral interaction at order 1/U2. We discuss situations in which, at low temperatures, the chiral term may have a larger effect than the Pauli coupling of electron spins to a magnetic field. We present a model that explicitly demonstrates this. The ground state is a singlet with a gap; hence the spin susceptibility is zero while the chiral susceptibility is finite and paramagnetic.
Růžička, Martin; Koval, Dušan; Vávra, Jan; Reyes-Gutiérrez, Paul E; Teplý, Filip; Kašička, Václav
2016-10-07
Noncovalent molecular interactions between helquats, a new class of dicationic helical extended diquats, and several chiral acidic aromatic drugs and catalysts have been investigated using partial-filling affinity capillary electrophoresis (PF-ACE). Helquats dissolved at 1mM concentration in the aqueous background electrolyte (40mM Tris, 20mM acetic acid, pH 8.1) were introduced as ligand zones of variable length (0-130mm) into the hydroxypropylcellulose coated fused silica capillary whereas 0.1mM solutions of negatively charged chiral drugs or catalysts (warfarin, ibuprofen, mandelic acid, etodolac, binaphthyl phosphate and 11 other acidic aromatic compounds) were applied as a short analyte zone at the injection capillary end. After application of electric field, analyte and ligand migrated against each other and in case of their interactions, migration time of the analyte was increasing with increasing length of the ligand zone. From the tested compounds, only isomers of those exhibiting helical chirality and/or possessing conjugated aromatic systems were enantioselectively separated through their differential interactions with helquats. Some compounds with conjugated aromatic groups interacted with helquats moderately strongly but non-enantiospecifically. Small compounds with single benzene ring exhibited no or very weak non-enantiospecific interactions. PF-ACE method allowed to determine binding constants of the analyte-helquat complexes from the changes of migration times of the analytes. Binding constants of the weakest complexes of the analytes with helquats were less than 50L/mol, whereas binding constants of the strongest complexes were in the range 1 000-1 400L/mol.
Capacitance-modulated transistor detects odorant binding protein chiral interactions
Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa
2015-01-01
Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754
Chirally selective, intramolecular interaction observed in an aminoacyl adenylate anhydride
NASA Technical Reports Server (NTRS)
Lacey, J. C., Jr.; Hall, L. M.; Mullins, D. W., Jr.; Watkins, C. L.
1985-01-01
The interaction between amino acids and nucleotide bases is studied. The proton NMR spectrum of N-acetylphenylalanyl-AMP-anhydride is analyzed H8 and H2 signals, two upfield signals of equal size, and five phenylalanine ring proton signals are observed in the spectrum; the upfield movement of the proton and the racemization of the N-acetyl L-phenylalanine material are examined. The differences in the position of the signals due to the diastereoisomers are investigated. The separation of the D and L amino acyl adenylates using HPLC is described. H-1 NMR spectra of the isomers are examined in order to determine which isomer displays the strongest interaction between the phenyl ring and the adenine ring. The spectra reveal that the L isomer shows the highest upfield change of both H8 and H2 signals. It is noted that the phenyl ring lies over C2 of the adenine ring with the phenyl meta and para protons extended past the adenine ring and the phenyl ortho protons.
Capacitance-modulated transistor detects odorant binding protein chiral interactions
NASA Astrophysics Data System (ADS)
Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa
2015-01-01
Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Stereoselectivity of chiral drug transport: a focus on enantiomer-transporter interaction.
Zhou, Quan; Yu, Lu-Shan; Zeng, Su
2014-08-01
Drug transporters and drug metabolism enzymes govern drug absorption, distribution, metabolism and elimination. Many literature works presenting important aspects related to stereochemistry of drug metabolism are available. However, there is very little literature on stereoselectivity of chiral drug transport and enantiomer-transporter interaction. In recent years, the experimental research within this field showed good momentum. Herein, an up-to-date review on this topic was presented. Breast Cancer Resistance Protein (BCRP), Multidrug Resistance Proteins (MRP), P-glycoprotein (P-gp), Organic Anion Transporters (OATs), Organic Anion Transporting Polypeptides (OATPs), Organic Cation Transporters (OCTs), Peptide Transport Proteins (PepTs), Human Proton-Coupled Folate Transporter (PCFT) and Multidrug and Toxic Extrusion Proteins (MATEs), have been reported to exhibit either positive or negative enantio-selective substrate recognition. The approaches utilized to study chirality in enantiomer-transporter interaction include inhibition experiments of specific transporters in cell models (e.g. Caco-2 cells), transport study using drug resistance cell lines or transgenic cell lines expressing transporters in wild type or variant, the use of transporter knockout mice, pharmacokinetics association of single nucleotide polymorphism in transporters, pharmacokinetic interaction study of racemate in the presence of specific transporter inhibitor or inducer, molecule cellular membrane affinity chromatography and pharmacophore modeling. Enantiomer-enantiomer interactions exist in chiral transport. The strength and/or enantiomeric preference of stereoselectivity may be species or tissue-specific, concentration-dependent and transporter family member-dependent. Modulation of specific drug transporter by pure enantiomers might exhibit opposite stereoselectivity. Further studies with integrated approaches will open up new horizons in stereochemistry of pharmacokinetics.
Role of light scalar resonances in strongly interacting chiral effective Lagrangians
NASA Astrophysics Data System (ADS)
Abdel-Rehim, Abdou M.
We studied the role of a putative nonet of light scalar mesons in the isospin violating decay eta → 3pi. The framework is a non-linear chiral effective Lagrangian. The contributions from the scalars is found to enhance the result for the decay width by 15% at leading order. Due to cancellations among different scalar contributions, their effect is less than expected. A preliminary discussion of the related process eta' → 3pi is given. We apply the K-matrix unitarization method to the case of strongly coupled Higgs sector of the electro-weak theory. The complex pole position of the scattering amplitude of the Goldstone bosons are evaluated for the whole range of bare Higgs masses. We compare the unitarized amplitude obtained from the K-matrix to the Breit-Wigner shape for narrow resonances. We apply the same technique to study the effect of final state interactions in the gluon fusion process. Finally, the K-matrix unitarization is used to study the properties of the scalar resonances sigma(550) and f 0(980) in the framework of non-linear chiral Lagrangian. The physical mass and width of these resonances are determined from the pole position of the I = 0, J = 0 partial wave of the pipi scattering amplitude. It is found that, to a great extent, the results are very similar to those obtained in the framework of linear chiral Lagrangian unitarized by the K-matrix method or the nonlinear chiral Lagrangian approximately unitarized by a modified Breit-Wigner resonance shape. A discussion of the effect of sigma(550) and f0(980) in the I = 1, J = 1 and I = 2, J = 0 partial waves, where the rho(770) vector resonance dominates, is given.
Threshold pion production in proton-proton collisions at NNLO in chiral EFT
NASA Astrophysics Data System (ADS)
Baru, V.; Epelbaum, E.; Filin, A. A.; Hanhart, C.; Krebs, H.; Myhrer, F.
2016-05-01
The reaction NN → NN π offers a good testing ground for chiral effective field theory at intermediate energies. It challenges our understanding of the first inelastic channel in nucleon-nucleon scattering and of the charge symmetry breaking pattern in hadronic reactions. In our previous studies, we presented a complete calculation of the pion production operator for s -wave pions up-to-and-including next-to-next-to-leading order (NNLO) in the formulation of chiral effective field theory, which includes pions, nucleons and Δ(1232) degrees of freedom. In this paper we calculate the near-threshold cross section for the pp → d π+ reaction by performing the convolution of the obtained operators with nuclear wave functions based on modern phenomenological and chiral potentials. The available chiral NN wave functions are constructed with a cutoff comparable with the momentum transfer scale inherent in pion production reactions. Hence, a significant portion of the dynamical intermediate-range physics is thereby cut off by them. On the other hand, the NNLO amplitudes evaluated with phenomenological wave functions appear to be largely independent of the NN model used and give corrections to the dominant leading-order contributions as expected from dimensional analysis. The result gives support to the counting scheme used to classify the pion production operators, which is a precondition for a reliable investigation of the chirally suppressed neutral pion production. The explicit inclusion of the Δ(1232) is found to be important but smaller than expected due to cancellations.
Chiral ground-state currents of interacting photons in a synthetic magnetic field
NASA Astrophysics Data System (ADS)
Roushan, P.; Neill, C.; Megrant, A.; Chen, Y.; Babbush, R.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J.; O’Malley, P. J. J.; Neeley, M.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Kapit, E.; Neven, H.; Martinis, J.
2016-10-01
The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions through the creation of photon vacancies, or `holes’, which circulate in the opposite direction. The combination of these key elements results in chiral ground-state currents. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons.
Constraints on Neutron Star Radii Based on Chiral Effective Field Theory Interactions
Hebeler, K.; Lattimer, J. M.; Pethick, C. J.; Schwenk, A.
2010-10-15
We show that microscopic calculations based on chiral effective field theory interactions constrain the properties of neutron-rich matter below nuclear densities to a much higher degree than is reflected in commonly used equations of state. Combined with observed neutron star masses, our results lead to a radius R=9.7-13.9 km for a 1.4M{sub {center_dot}} star, where the theoretical range is due, in about equal amounts, to uncertainties in many-body forces and to the extrapolation to high densities.
Chiral phase from three-spin interactions in an optical lattice
D'Cruz, Christian; Pachos, Jiannis K.
2005-10-15
A spin-1/2 chain model that includes three-spin interactions can effectively describe the dynamics of two species of bosons trapped in an optical lattice with a triangular-ladder configuration. A perturbative theoretical approach and numerical study of its ground state is performed that reveals a rich variety of phases and criticalities. We identify phases with periodicity one, two, or three, as well as critical points that belong in the same universality class as the Ising or the three-state Potts model. We establish a range of parameters, corresponding to a large degeneracy present between phases with period 2 and 3, that nests a gapless incommensurate chiral phase.
2016-01-01
Circular dichroism (CD) induced at exciton transitions by chiral ligands attached to single component and core/shell colloidal quantum dots (QDs) was used to study the interactions between QDs and their capping ligands. Analysis of the CD line shapes of CdSe and CdS QDs capped with l-cysteine reveals that all of the features in the complex spectra can be assigned to the different excitonic transitions. It is shown that each transition is accompanied by a derivative line shape in the CD response, indicating that the chiral ligand can split the exciton level into two new sublevels, with opposite angular momentum, even in the absence of an external magnetic field. The role of electrons and holes in this effect could be separated by experiments on various types of core/shell QDs, and it was concluded that the induced CD is likely related to interactions of the highest occupied molecular orbitals of the ligands with the holes. Hence, CD was useful for the analysis of hole level–ligand interactions in quantum semiconductor heterostructures, with promising outlook toward better general understanding the properties of the surface of such systems. PMID:27960517
Neutrino interactions in neutron matter
NASA Astrophysics Data System (ADS)
Cipollone, Andrea
2012-12-01
Neutrino flow is the dominant mechanism of energy transfer in the latest stages of supernovae explosions and in compact stars. The Standard Model of particle physics and accelerator data, provide a satisfactory description of neutrino physics in vacuum up to TeV scale. Nevertheless modeling the dynamics of neutrino interaction in the nuclear environment involves severe difficulties. This thesis in mainly aimed at obtaining the weak response of infinite matter, using both the Correlated Basis Function theory and Landau Theory of Fermi liquid to take into account properly nucleon-nucleon hard core potential and long range correlation (quasi-particle, collective modes, ecc.)
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim; Semikoz, Victor B.
2015-03-01
We show that the Standard Model electroweak interaction of ultrarelativistic electrons with nucleons (the e N interaction) in a neutron star (NS) permeated by a seed large-scale helical magnetic field provides its growth up to ≳1 015 G during a time comparable with the ages of young magnetars ˜1 04 yr . The magnetic field instability originates from the parity violation in the e N interaction entering the generalized Dirac equation for right and left massless electrons in an external uniform magnetic field. We calculate the average electric current given by the solution of the modified Dirac equation containing an extra current for right and left electrons (positrons), which turns out to be directed along the magnetic field. Such a current includes both a changing chiral imbalance of electrons and the e N potential given by a constant neutron density in a NS. Then we derive the system of the kinetic equations for the chiral imbalance and the magnetic helicity which accounts for the e N interaction. By solving this system, we show that a sizable chiral imbalance arising in a neutron protostar due to the Urca process eL-+p →N +νeL diminishes very rapidly because of a huge chirality-flip rate. Thus the e N term prevails over the chiral effect, providing a huge growth of the magnetic helicity and the helical magnetic field.
Meta-Optical Chirality and Emergent Eigen-polarization Modes via Plasmon Interactions.
Moocarme, Matthew; Proscia, Nicholas V; Vuong, Luat T
2017-02-08
The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.
Meta-Optical Chirality and Emergent Eigen-polarization Modes via Plasmon Interactions
NASA Astrophysics Data System (ADS)
Moocarme, Matthew; Proscia, Nicholas V.; Vuong, Luat T.
2017-02-01
The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.
Meta-Optical Chirality and Emergent Eigen-polarization Modes via Plasmon Interactions
Moocarme, Matthew; Proscia, Nicholas V.; Vuong, Luat T.
2017-01-01
The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces. PMID:28176792
Nuclear matter properties from local chiral interactions with Δ isobar intermediate states
NASA Astrophysics Data System (ADS)
Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro
2016-12-01
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N 3 LO Δ ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N 3 LO Δ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.
Two- and Three-Nucleon Chiral Interactions in Quantum Monte Carlo Calculations for Nuclear Physics
NASA Astrophysics Data System (ADS)
Lynn, Joel; Carlson, Joseph; Gandolfi, Stefano; Gezerlis, Alexandros; Schmidt, Kevin; Schwenk, Achim; Tews, Ingo
2015-10-01
I present our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local two- and three-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N2LO). GFMC provides important benchmarking capabilities for other methods which rely on techniques to soften the nuclear interaction and also allows for nonperturbative studies of the convergence of the chiral EFT expansion. I discuss the choice of observables we make to fit the two low-energy constants which enter in the three-nucleon sector at N2LO: the 4He binding energy and n- α elastic scattering P-wave phase shifts. I then show some results for light nuclei. I also show our results for the energy per neutron in pure neutron matter using the auxiliary-field diffusion Monte Carlo method and discuss regulator choices. Finally I discuss some exciting future projects which are now possible. The NUCLEI SciDAC program and the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Kreienborg, Nora M; Pollok, Corina H; Merten, Christian
2016-08-22
The observation of the active species is the goal of most spectroscopic investigations on enantioselective organocatalysts in solution. Although NMR spectroscopy is widely applied, it has low sensitivity for conformational changes or the chiral nature of the interactions. In the present work, we exemplify the use of vibrational circular dichroism (VCD) spectroscopy for the characterization of a chiral thiourea model compound in nonpolar and polar solvents, as well as for a detailed analysis of its interaction with a model reactant. We discuss solvent-induced conformational changes of the thiourea, and provide evidence for an unexpected binding topology between the thiourea and an acetate anion. The results clearly showcase the possibilities offered by using VCD spectroscopy in the characterization of chiral organocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Induction of axial chirality in divanillin by interaction with bovine serum albumin
Venturini, Diego; de Souza, Aguinaldo Robinson; Caracelli, Ignez; Morgon, Nelson Henrique; da Silva-Filho, Luiz Carlos
2017-01-01
Vanillin is a plant secondary metabolite and has numerous beneficial health applications. Divanillin is the homodimer of vanillin and used as a taste enhancer compound and also a promissory anticancer drug. Here, divanillin was synthesized and studied in the context of its interaction with bovine serum albumin (BSA). We found that divanillin acquires axial chirality when complexed with BSA. This chiroptical property was demonstrated by a strong induced circular dichroism (ICD) signal. In agreement with this finding, the association constant between BSA and divanillin (3.3 x 105 mol-1L) was higher compared to its precursor vanillin (7.3 x 104 mol-1L). The ICD signal was used for evaluation of the association constant, demonstration of the reversibility of the interaction and determination of the binding site, revealing that divanillin has preference for Sudlow’s site I in BSA. This property was confirmed by displacement of the fluorescent markers warfarin (site I) and dansyl-L-proline (site II). Molecular docking simulation confirmed the higher affinity of divanillin to site I. The highest scored conformation obtained by docking (dihedral angle 242°) was used for calculation of the circular dichroism spectrum of divanillin using Time-Dependent Density Functional Theory (TDDFT). The theoretical spectrum showed good similarity with the experimental ICD. In summary, we have demonstrated that by interacting with the chiral cavities in BSA, divanillin became a atropos biphenyl, i.e., the free rotation around the single bound that links the aromatic rings was impeded. This phenomenon can be explained considering the interactions of divanillin with amino acid residues in the binding site of the protein. This chiroptical property can be very useful for studying the effects of divanillin in biological systems. Considering the potential pharmacological application of divanillin, these findings will be helpful for researchers interested in the pharmacological properties of
NASA Astrophysics Data System (ADS)
Trojanowski, Karol; Pająk, Grzegorz; Longa, Lech; Wydro, Thomas
2012-07-01
We present an exhaustive account of phases and phase transitions that can be stabilized in the recently introduced generalized Lebwohl-Lasher model with quadrupolar and octupolar microscopic interactions [L. Longa, G. Pająk, and T. Wydro, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.79.040701 79, 040701(R) (2009)]. A complete mean-field analysis of the model, along with Monte Carlo simulations allows us to identify four distinct classes of the phase diagrams with a number of multicritical points where, in addition to the standard uniaxial and biaxial nematic phases, the other nematic like phases are stabilized. These involve, among the others, tetrahedratic (T), nematic tetrahedratic (NT), and chiral nematic tetrahedratic (NT*) phases of global Td, D2d, and D2 symmetry, respectively. Molecular order parameters and correlation functions in these phases are determined. We conclude with generalizations of the model that give a simple molecular interpretation of macroscopic regions with opposite optical activity (ambidextrous chirality), observed, e.g., in bent-core systems. An estimate of the helical pitch in the NT* phase is also given.
A = 10 nuclei and 12C with SRG evolved chiral three-nucleon interactions
NASA Astrophysics Data System (ADS)
Maris, Pieter; Vary, James; Calci, Angelo; Langhammer, Joachim; Binder, Sven; Roth, Robert
2014-09-01
We investigate selected static and transition properties of A = 10 nuclei and 12C using ab initio No-Core Shell Model (NCSM) methods with chiral two- and SRG-evolved three-nucleon interactions. We examine the dependences of observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged low-lying excitation spectra for 12C. We compare results of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking purposes in 12C. The agreement of some observables with experiment is improved significantly by the inclusion of 3N interactions, e.g., the B(M1) from the first (Jπ , T) = (1+ , 1) state to the ground state of 12C. However, in some cases the agreement deteriorates, e.g., for the excitation energy of the first (1+ , 0) state, leaving room for improved next-generation chiral Hamiltonians. On the other hand, the excitation energies of 10C, 10B, and 10Be are not as well converged as those of 12C. In particular the lowest two (1+ , 0) states of 10B are sensitive to both the basis truncation parameters and the 3N interaction. We investigate selected static and transition properties of A = 10 nuclei and 12C using ab initio No-Core Shell Model (NCSM) methods with chiral two- and SRG-evolved three-nucleon interactions. We examine the dependences of observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged low-lying excitation spectra for 12C. We compare results of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking purposes in 12C. The agreement of some observables with experiment is improved significantly by the inclusion of 3N interactions, e.g., the B(M1) from the first (Jπ , T) = (1+ , 1) state to the ground state of 12C. However, in some cases the agreement deteriorates, e.g., for the excitation energy of the first (1+ , 0) state, leaving room for improved next-generation chiral Hamiltonians. On the other hand, the excitation
Viet, Dao Xuan; Kawamura, Hikaru
2010-08-27
We study the issue of the spin-chirality decoupling or coupling in the ordering of the Heisenberg spin glass by performing large-scale Monte Carlo simulations on a one-dimensional Heisenberg spin-glass model with a long-range power-law interaction up to large system sizes. We find that the spin-chirality decoupling occurs for an intermediate range of the power-law exponent. Implications to the corresponding d-dimensional short-range model are discussed.
Effective Interactions from No Core Shell Model
Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Navratil, P.; Vary, J. P.
2008-11-11
We construct the many-body effective Hamiltonian for pf-shell by carrying out 2({Dirac_h}/2{pi}){omega}. NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2({Dirac_h}/2{pi}){omega} NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes.
Searches for chirality-flipping interactions via cyclotron-radiation spectroscopy
NASA Astrophysics Data System (ADS)
Garcia, A.; Fertl, M.; Guigue, M.; Kammel, P.; Leredde, A.; Mueller, P.; Robertson, R. G. H.; Rybka, G.; Savard, G.; Swanson, H. E.; Vandevender, B. A.; Young, A.
2016-09-01
The measurement of the beta spectrum from 6He allows for sensitive searches of tensor (chirality flipping) interactions. A source that delivers about 1010 6He atoms per second in a stable fashion exists at the University of Washington. The recent demonstration by the Project 8 collaboration that detection of cyclotron radiation yields excellent energy resolution for electrons of < 32 keV emitted from a gaseous source invites application of the technique to higher-energy betas. Calculations and considerations showing the applicability of the technique for the 6He case will be presented. We acknoledge support from DOE under Grants DE-FG02-97ER41020 and DE-FG02-97ER41042 and NSF under Grant 1307426.
NASA Astrophysics Data System (ADS)
Lim, Yeunhwan; Holt, Jeremy W.
2017-06-01
We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.
Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi
2016-03-03
Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions.
NASA Astrophysics Data System (ADS)
Navratil, Petr; Langhammer, Joachim; Hupin, Guillaume; Quaglioni, Sofia; Calci, Angelo; Roth, Robert; Soma, Vittorio; Cipollone, Andrea; Barbieri, Carlo; Duguet, T.
2014-09-01
The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. The description of nuclei starting from the constituent nucleons and the realistic interactions among them has been a long-standing goal in nuclear physics. In recent years, a significant progress has been made in developing ab initio many-body approaches capable of describing both bound and scattering states in light and medium mass nuclei based on input from QCD employing Hamiltonians constructed within chiral effective field theory. We will present calculations of proton-10C scattering and resonances of the exotic nuclei 11N and 9He within the no-core shell model with continuum. Also, we will discuss calculations of binding and separation energies of neutron rich isotopes of Ar, K, Ca, Sc and Ti within the self-consistent Gorkov-Green's function approach. Support from the NSERC Grant No. 401945-2011 is acknowledged. This work was prepared in part by the LLNL under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Dharmavaram, Sanjay; Xie, Fangming; Bruinsma, Robijn; Klug, William; Rudnick, Joseph
Most icosahedral viruses are classified by their T-number which identifies their capsid in terms of the number of capsomers and their relative arrangement. Certain T-numbers (T = 7 for instance) are inherently chiral (with no reflection planes) while others (e.g. T = 1) are achiral. We present a Landau-Brazovskii (LB) theory for weak crystallization in which a scalar order parameter that measures density of capsid proteins successfully predicts the various observed T-numbers and their respective chiralities. We find that chiral capsids gain stability by spontaneously breaking symmetry from an unstable chiral state. The inherently achiral LB-free energy does not preferentially select a particular chiral state from its mirror reflection. Based on the physical observation that proteins are inherently chiral molecules with directional interactions, we propose a new chiral term to the LB energy as a possible selection mechanism for chirality.
Hellriegel, Christine; Skogsberg, Urban; Albert, Klaus; Lämmerhofer, Michael; Maier, Norbert M; Lindner, Wolfgang
2004-03-31
The surface chemistry of a chiral stationary phase (CSP) with a (tert-butyl carbamoyl) quinine selector immobilized on thiol-modified silica has been characterized by (1)H HR/MAS NMR and (29)Si CP/MAS NMR spectroscopy. The mostly well-resolved (1)H signals could be assigned to stem from the surface-bound selector and the latter suggested a bi- and trifunctional silane linkage. Suspended-state NMR spectroscopy thus proved a well-characterized surface chemistry as proposed. To study chiral recognition phenomena in the presence of the CSP, (1)H HR/MAS 2D transfer NOESY investigations in methanol-d(4) have been undertaken with various solutes including N-3,5-dinitrobenzoyl derivatives of leucine (DNB-Leu) and N-acetyl phenylalanine (Ac-Phe). Both (R)- and (S)-enantiomers of DNB-Leu and Ac-Phe interacted with the tBuCQN-CSP as indicated by negative cross-peaks in the trNOESY spectra, while the 2D NOESY of the dissolved solutes in absence of the chiral stationary phase showed positive cross-peaks. The intensities of the trNOE cross-peaks were much stronger for the (S)-enantiomers. This stereoselectivity paralleled the experimental chromatographic behavior, where the (S)-enantiomers revealed stronger binding and retention on the tBuCQN-CSP as well. Hence, we were able to correlate the retention behavior to the trNOE NMR spectroscopic data in a qualitative manner.
NASA Astrophysics Data System (ADS)
Salam, A.
2006-01-01
The change in the mutual energy of interaction between a pair of chiral molecules coupled via the exchange of a single virtual photon and in the presence of an electromagnetic field is calculated using nonrelativistic quantum electrodynamics. The particular viewpoint adopted is one that has an intuitive physical appeal and resembles a classical treatment. It involves the coupling of electric and magnetic dipole moments induced at each center by the incident radiation field to the resonant dipole-dipole interaction tensor. The energy shift is evaluated for fixed as well as random orientations of the molecular pair with respect to the direction of propagation of the field. A complete polarization analysis is carried out for the former situation by examining the effect of incident radiation that is linearly or circularly polarized and traveling in a direction that is parallel or perpendicular to the intermolecular distance vector. After tumble averaging, all polarization dependence of the energy shift vanishes. In both cases the interaction energy is directly proportional to the irradiance of the applied field, and is discriminatory, changing sign when one optically active species is replaced by its enantiomer. The asymptotic behavior of the energy shift at the limits of large and small separations is also studied.
Lopes, Paula; Kataky, Ritu
2012-03-06
The investigation of chiral interactions of drugs with plasma proteins is of fundamental importance for drug efficacy and toxicity studies. In this paper, we demonstrate a simple liquid-liquid interface procedure for investigating chiral interactions. Chiral discrimination of the enantiomers of a basic drug, propranolol, was achieved at a micro liquid-liquid interface, using α(1)-acid-glycoprotein (AGP) as a chiral acute phase plasma protein. When the protein is added to an aqueous phase containing the enantiomers of propranalol hydrochloride, the binding of (S)- and (R)-propranolol hydrochloride to the protein results in a decrease in the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) current responses corresponding to the decrease in transfer of propranolol at an aqueous-1,2-dichloroethane interface. This decrease is a consequence of the complexation of the drug and the protein. The complex drug-protein does not transfer across the interface nor changes the transfer potential of the uncomplexed form of propranolol enantiomers. The bound concentration of propranolol enantiomers in the presence of AGP was found to be greater for (S)-propranolol than (R)-propranolol for solutions containing constant concentrations of AGP (50 μM). Scatchard analysis yielded association constants of 2.7 and 1.3 × 10(5) M(-1) for (S)- and (R)-propranolol, respectively.
Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Waltenberger, W; Wulz, C-E; Dvornikov, O; Makarenko, V; Zykunov, V; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; De Wolf, E A; Janssen, X; Lauwers, J; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Luetic, J; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Vannerom, D; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Cornelis, T; Dobur, D; Fagot, A; Garcia, G; Gul, M; Khvastunov, I; Poyraz, D; Salva, S; Schöfbeck, R; Sharma, A; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Bakhshiansohi, H; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; De Visscher, S; Delaere, C; Delcourt, M; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Krintiras, G; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Ban, Y; Chen, G; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; González Hernández, C F; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Sculac, T; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Mesic, B; Micanovic, S; Sudic, L; Susa, T; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Tsiakkouri, D; Finger, M; Finger, M; Carrera Jarrin, E; Abdelalim, A A; Mohammed, Y; Salama, E; Kadastik, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Järvinen, T; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Kucher, I; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Albert, A; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hamer, M; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Flügge, G; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Müller, T; Nehrkorn, A; Nowack, A; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Arndt, T; Asawatangtrakuldee, C; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Eren, E; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Keaveney, J; Kleinwort, C; Korol, I; Krücker, D; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Garutti, E; Gonzalez, D; Haller, J; Hoffmann, M; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Pantaleo, F; Peiffer, T; Perieanu, A; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baur, S; Baus, C; Berger, J; Butz, E; Caspart, R; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Freund, B; Friese, R; Giffels, M; Gilbert, A; Goldenzweig, P; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kudella, S; Lobelle Pardo, P; Mildner, H; Mozer, M U; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Shvetsov, I; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Makovec, A; Molnar, J; Szillasi, Z; Bartók, M; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Kumari, P; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Dugad, S; Kole, G; Mahakud, B; Mitra, S; Mohanty, G B; Parida, B; Sur, N; Sutar, B; Banerjee, S; Bhowmik, S; Dewanjee, R K; Ganguly, S; Guchait, M; Jain, Sa; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Sarkar, T; Wickramage, N; Chauhan, S; Dube, S; Hegde, V; Kapoor, A; Kothekar, K; Pandey, S; Rane, A; Sharma, S; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Manzoni, R A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Fienga, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Zanetti, M; Zotto, P; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; Del Re, D; Diemoz, M; Gelli, S; Longo, E; Margaroli, F; Marzocchi, B; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Cenna, F; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Monteno, M; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Shchelina, K; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Casarsa, M; Cossutti, F; Della Ricca, G; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Lee, A; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Lee, H; Oh, S B; Radburn-Smith, B C; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Hwang, C; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Magaña Villalba, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Oropeza Barrera, C; Vazquez Valencia, F; Carpinteyro, S; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Saddique, A; Shah, M A; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Calpas, B; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Bylinkin, A; Markin, O; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Blinov, V; Skovpen, Y; Shtol, D; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Dordevic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Barrio Luna, M; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; González Fernández, J R; Palencia Cortezon, E; Sanchez Cruz, S; Suárez Andrés, I; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Roeck, A; Di Marco, E; Dobson, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gulhan, D; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kieseler, J; Kirschenmann, H; Knünz, V; Kornmayer, A; Kortelainen, M J; Kousouris, K; Krammer, M; Lange, C; Lecoq, P; Lourenço, C; Lucchini, M T; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Merlin, J A; Mersi, S; Meschi, E; Milenovic, P; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Tosi, M; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Verweij, M; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Zucchetta, A; Candelise, V; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Psallidas, A; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Hos, I; Kangal, E E; Kara, O; Kayis Topaksu, A; Kiminsu, U; Oglakci, M; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Turkcapar, S; Zorbakir, I S; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Di Maria, R; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; James, T; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Summers, S; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Wright, J; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Cooper, S I; Henderson, C; Rumerio, P; West, C; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Garabedian, A; Hakala, J; Heintz, U; Hogan, J M; Jesus, O; Kwok, K H M; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Bravo, C; Cousins, R; Dasgupta, A; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Mccoll, N; Saltzberg, D; Schnaible, C; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Ghiasi Shirazi, S M A; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Si, W; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; Derdzinski, M; Holzner, A; Klein, D; Krutelyov, V; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Amin, N; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Franco Sevilla, M; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mullin, S D; Ovcharova, A; Qu, H; Richman, J; Stuart, D; Suarez, I; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Lawhorn, J M; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Weinberg, M; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chaves, J; Chu, J; Dittmer, S; Mcdermott, K; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Tan, S M; Tao, Z; Thom, J; Tucker, J; Wittich, P; Zientek, M; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Magini, N; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Wu, Y; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Yohay, R; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Jung, K; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wang, H; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Boren, S; Bowen, J; Bruner, C; Castle, J; Forthomme, L; Kenny, R P; Khalil, S; Kropivnitskaya, A; Majumder, D; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Tapia Takaki, J D; Wang, Q; Ivanov, A; Kaadze, K; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Ricci-Tam, F; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Abercrombie, D; Allen, B; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Maier, B; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Chatterjee, R M; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Kravchenko, I; Malta Rodrigues, A; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Charaf, O; Hahn, K A; Kubik, A; Kumar, A; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Winer, B L; Wulsin, H W; Cooperstein, S; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Lange, D; Luo, J; Marlow, D; Mc Donald, J; Medvedeva, T; Mei, K; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Svyatkovskiy, A; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Miller, D H; Neumeister, N; Schulte, J F; Shi, X; Sun, J; Wang, F; Xie, W; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Agapitos, A; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Delannoy, A G; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Juska, E; Kamon, T; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; De Guio, F; Dragoiu, C; Dudero, P R; Faulkner, J; Gurpinar, E; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Peltola, T; Undleeb, S; Volobouev, I; Wang, Z; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Sturdy, J; Belknap, D A; Buchanan, J; Caillol, C; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Smith, N; Smith, W H; Taylor, D; Woods, N
2017-03-24
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
Khachatryan, Vardan; et al.
2016-10-02
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta)<2.4, and a third particle measured in the hadron forward calorimeters (4.4< abs(eta)<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Zykunov, V.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Sharma, A.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Lobelle Pardo, P.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Markin, O.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Bruner, C.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kubik, A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mc Donald, J.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2017-03-01
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p -Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η | <2.4 , and a third particle measured in the hadron forward calorimeters (4.4 <|η | <5 ). The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p -Pb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.
Wen, Yue Z; Yuan, Yu L; Chen, Hui; Wang, He L; Liu, Hui J; Kang, Xiao D; Fu, Liu S
2010-04-01
Metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] is a chiral acetanilide herbicide. We investigated its enantioselective interactions, and that of its (S)-isomer, with Penicillium expansum alkaline lipase and phosphatase. UV differential spectroscopy and fluorescence spectrophotometry studies were conducted in phosphate buffered solution at pH 7. Chiral differences in the UV absorption and fluorescence spectra of lipase and phosphatase with metolachlor and its (S)-isomer were detected. The results showed that the interactions of metolachlor and its (S)-isomer with lipase and phosphatase occur statically through complex formation, and enantioselectivity was clearly observed. In addition, both UV absorption and fluorescence spectrophotometry showed that the (S)-isomer interacted more strongly with lipase and phosphatase than metolachlor.
Vector meson-baryon interaction to study dynamical generation of resonances
Khemchandani, K. P.; Hosaka, A.; Kaneko, H.; Nagahiro, H.
2011-10-21
With the motivation to find dynamical generation of resonances, we study vector-meson baryon interaction by taking s-,t-,u-channel diagrams and a contact interaction into account. A comparison of the different contributions obtained from these diagrams is done in the SU(2) limit, which shows that these diagrams could be equally important. We find it worthwhile to pay attention to the structure of the total interaction between the two non-zero spin particles which possess similar masses and find spin dependent interaction similar to the nucleon-nucleon case.
ENANTIOMER-SPECIFIC EFFECTS OF CHIRAL POLLUTANTS
Enantiomers, the mirror image isomers of chiral pollutants, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. Considerable research has shown, for example, that chiral pesticides are degraded selectively by micr...
Chiral Inorganic Nanostructures.
Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A
2017-06-28
The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and
Molecular model for chirality phenomena.
Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G
2016-10-21
Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.
Renormalizing chiral nuclear forces: A case study of 3P0
NASA Astrophysics Data System (ADS)
Long, Bingwei; Yang, C.-J.
2011-11-01
We discuss in this Brief Report the subleading contact interactions, or counterterms, in the 3P0 channel of nucleon-nucleon scattering up to O(Q3), where, already at leading order, Weinberg's original power counting (WPC) scheme fails to fulfill renormalization group invariance due to the singular attraction of one-pion exchange. Treating the subleading interactions as perturbations and using renormalization group invariance as the criterion, we investigate whether WPC, although missing the leading order, could prescribe correct subleading counterterms. We find that the answer is negative and, instead, that the structure of counterterms agrees with a modified version of naive dimensional analysis. Using 3P0 as an example, we also study the cutoffs where the subleading potential can be iterated together with the leading one.
Catalysis of dynamical chiral symmetry breaking by chiral chemical potential
NASA Astrophysics Data System (ADS)
Braguta, V. V.; Kotov, A. Yu.
2016-05-01
In this paper, we study the properties of media with chiral imbalance parametrized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus, the chiral chemical potential plays the role of the catalyst of dynamical chiral symmetry breaking. Physically, this effect results from the appearance of the Fermi surface and additional fermion states on this surface, which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Jauffred, Liselotte; Munk Vejborg, Rebecca; Korolev, Kirill S; Brown, Stanley; Oddershede, Lene B
2017-07-01
From microbial biofilms to human migrations, spatial competition is central to the evolutionary history of many species. The boundary between expanding populations is the focal point of competition for space and resources and is of particular interest in ecology. For all Escherichia coli strains studied here, these boundaries move in a counterclockwise direction even when the competing strains have the same fitness. We find that chiral growth of bacterial colonies is strongly suppressed by the expression of extracellular features such as adhesive structures and pili. Experiments with other microbial species show that chiral growth is found in other bacteria and exclude cell wall biosynthesis and anisotropic shape as the primary causes of chirality. Instead, intimate contact with the substratum is necessary for chirality. Our results demonstrate that through a handful of surface molecules cells can fundamentally reorganize their migration patterns, which might affect intra- and interspecific competitions through colony morphology or other mechanisms.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
Haidenbauer, Johann
2011-10-24
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Strangeness S = -3 and -4 baryon-baryon interactions in chiral EFT
NASA Astrophysics Data System (ADS)
Haidenbauer, Johann
2011-10-01
I report on recent progress in the description of baryon-baryon systems within chiral effective field theory. In particular, I discuss results for the strangeness S = -3 to -4 baryon-baryon systems, obtained to leading order.
Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.
Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak
2015-09-01
Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.
NASA Astrophysics Data System (ADS)
Beesley, Thomas E.
Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.
Strong superchiral field in hot spots and its interaction with chiral molecules
NASA Astrophysics Data System (ADS)
Liu, Yineng
We have found that strong superchiral fields created by surface plasmon resonance exist in hot spots of nonchiral plasmonic structure, which showed a chiral density greater than that of circularly polarized light by hundreds of times. We have demonstrated a direct correlation between the chirality of the local field and the circular dichroism (CD) response at the plasmon resonance bands induced by chiral molecules in the hot spots. Our results reveal that the wavelength-dependent superchiral fields in the hot spots can play a crucial role in the determination of the plasmonic CD effect. This finding is in contrast to the currently accepted physical model in which the electromagnetic field intensity in hot spots is a key factor to determine the peak intensity of the plasmonic CD spectrum. Some related experimental phenomena have been explained by using our theoretical analysis. The work was supported by the China National Natural Science Foundation (Grant No. 11504306).
Chiral symmetry and chiral-symmetry breaking
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Neutron star structure from a quark-model baryon-baryon interaction
NASA Astrophysics Data System (ADS)
Fukukawa, K.; Baldo, M.; Burgio, G. F.; Schulze, H.-J.
2016-05-01
We derive the equation of state (EOS) of nuclear matter from are alistic constituent quark model for the nucleon-nucleon interaction. We use the Brueckner-Bethe-Goldstone approach with the inclusion of the three hole-line contribution. We find that the resulting EOS reproduces correctly the saturation point, moreover the symmetry energy at low density, its slope, and the incompressibility turn out to be compatible with phenomenology. We calculate the mass-radius relation for neutron stars, and find maximum values close to two solar masses, in agreement with recent observational data.
Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking
NASA Astrophysics Data System (ADS)
Gersten, A.; Thomas, A. W.; Weyrauch, M.
1990-04-01
We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
NASA Astrophysics Data System (ADS)
Chernodub, M. N.; Gongyo, Shinya
2017-01-01
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation ("cold vacuum cannot rotate"). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
NASA Astrophysics Data System (ADS)
Fabbri, Luca
2014-02-01
We will consider the most general least-order derivative action for the torsional completion of gravitational backgrounds filled with left-handed and right-handed semi-spinorial fields, accounting for all parity-even as well as parity-odd contributions; we will proceed by performing the customary analysis, decomposing torsion and substituting it in terms of the semi-spinorial density currents, in order to obtain the effective action with the torsionally-induced self-interacting potentials among the chiral fermionic fields: we shall see that the resulting effective non-linear potentials will turn eventually out to be parity conserving after all.
Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya
2015-10-15
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
NASA Astrophysics Data System (ADS)
Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken
2015-10-01
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
NASA Astrophysics Data System (ADS)
Alvioli, M.; Ciofi degli Atti, C.; Morita, H.
2016-10-01
Background: The two-nucleon momentum distributions of nucleons N1 and N2 in a nucleus A , nAN1N2(krel,Kc .m .) , is a relevant quantity that determines the probability of finding two nucleons with relative momentum krel and center-of-mass (c.m.) momentum Kc .m .; at high values of the relative momentum and, at the same time, low values of the c.m. momentum, nAN1N2(krel,Kc .m .) provides information on the short-range structure of nuclei. Purpose: Our purpose is to calculate the momentum distributions of proton-neutron and proton-proton pairs in 3He, 4He, 12C, 16O, and 40Ca, in correspondence to various values of krel and Kc .m .. Methods: The momentum distributions for A >4 nuclei are calculated as a function of the relative, krel, and center-of-mass, Kc.m., momenta and relative angle Θ , within a linked cluster many-body expansion approach, based upon realistic local two-nucleon interaction of the Argonne family and variational wave functions featuring central, tensor, and spin-isospin correlations. Results: Independently of the mass number A , at values of the relative momentum krel≳1.5 -2 fm-1 the momentum distributions exhibit the property of factorization, nAN1N2(krel,Kc .m .) ≃nrelN1N2(krel) nc.m . N1N2(Kc .m .) ; in particular, for p n back-to-back pairs one has nAp n(krel,Kc .m .=0 ) ≃CAp nnD(krel) nc.m . p n(Kc .m .=0 ) , where nD is the deuteron momentum distribution, nc.m . p n(Kc .m .=0 ) the c.m. motion momentum distribution of the pair, and CAp n the p n nuclear contact measuring the number of back-to-back p n pairs with deuteron-like momenta (kp≃-kn,Kc .m .=0 ). Conclusions: The values of the p n nuclear contact are extracted from the general properties of the two-nucleon momentum distributions corresponding to Kc .m .=0 . The Kc .m .-integrated p n momentum distributions exhibit the property nAp n(krel) ≃CAp nnD(krel) but only at very high values of krel, ≳3.5 -4 fm-1. The theoretical ratio of the p p /p n momentum distributions of 4He
NASA Astrophysics Data System (ADS)
Stalcup, A. M.
2010-07-01
The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.
Dohet-Eraly, J.; Baye, D.
2011-07-15
An effective nucleon-nucleon interaction adapted to cluster-model calculations of collisions is derived from the realistic Argonne potential AV18 with the unitary correlation operator method. The unitary correlation is determined from the {alpha}+{alpha} elastic phase shifts calculated in a cluster approach by the generator coordinate method coupled with the microscopic R-matrix method. With this interaction, the elastic phase shifts for the {alpha}+n, {alpha}+p, and {alpha}+{sup 3}He collisions are calculated within the same model. Without further adjustment, a good agreement with experimental data is obtained with a small model space.
Impact of Dynamical Chiral Symmetry Breaking on Meson Structure and Interactions
NASA Astrophysics Data System (ADS)
Roberts, H. L. L.; Chang, L.; Roberts, C. D.
We provide a glimpse of recent progress in meson physics made via QCD's Dyson-Schwinger equations with: a perspective on confinement and dynamical chiral symmetry breaking (DCSB); a précis on the physics of in-hadron condensates; results for the masses of the π, σ, ρ, a1 mesons and their first-radial excitations; and an illustration of the impact of DCSB on the pion form factor.
Li, Zhen; Niu, Meiju; Chang, Guoliang; Zhao, Changqiu
2015-12-01
Two new couples of chiral manganese (IV) complexes with Schiff-base ligands, Λ-[Mn(R-L(1))2]·2(CH3OH) (Λ-1) and Δ-[Mn(S-L(1))2]·2(CH3OH) (Δ-1), Λ-[Mn(R-L(2))2]·(H2O)2 (Λ-2) and Δ-[Mn(S-L(2))2]·(H2O)2 (Δ-2), {H2L(1)=(R/S)-(±)-1-[(1-hydroxymethyl-propylimino)-methyl]-naphthalen-2-ol, H2L(2)=(R/S)-(±)-1-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-naphthalen-2-ol} have been synthesized, and fully characterized by elemental analyses, UV-Vis spectrum, circular dichroism spectrum, FT-IR spectrum, mass spectrum, and single crystal X-ray diffraction (SXRD). The interaction of the four chiral Mn (IV) complexes with CT-DNA and BSA were also investigated by various spectroscopic techniques (UV-visible, fluorescence spectroscopic). The results show that the Δ-complexes exhibit more efficient CT-DNA interaction with respect to the Λ-complexes. All the complexes could quench the intrinsic fluorescence of BSA by a static quenching process. In addition, the vitro cytotoxicity of these complexes toward four kinds of cancerous cell lines (A549, HeLa, HL-60, and Caco-2) was assayed by the MTT method, which exhibited to be selectively active against certain cell lines.
Yuasa, Junpei; Ohno, Tomoko; Miyata, Kohei; Tsumatori, Hiroyuki; Hasegawa, Yasuchika; Kawai, Tsuyoshi
2011-06-29
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.
NASA Astrophysics Data System (ADS)
Nawa, S.; Tamagaki, R.; Tatsumi, T.; Yoro, S.
1990-12-01
Static interaction between two spherical chiral bags is studied in a numerical way. In order to get the solutions of the confined quark states and the outside chiral-field which should satisfy the boundary conditions at both bag surfaces in the chiral bag model, the finite element method is utilized as numerical procedure. We extract the static interaction by calculating the energy change as the two bags approach from large separation to contact distance. Results obtained for three typical configurations indicate that such an approach is workable: We can see that the asymptotic behavior gives the OPEP-tail, and some nonperturbative effects are noticeable in the intermediate region. Although the deviation of the interaction energy from the OPEP value is not so remarkable beyond the pion Compton wavelength due to the cancellation between the energy change of the quark system and that of the chiral field, there arises a significant deviation of the quark wave function and the chiral field from those of the hedgehog solution in the single-baryon case. The procedure in numerical calculations adopted in this paper is explained in detail.
Recent results from the Saclay nucleon-nucleon program
NASA Astrophysics Data System (ADS)
Lac, C. D.; Ball, J.; Bystricky, J.; Derégel, J.; Lehar, F.; de Lesquen, A.; van Rossum, L.; Fontaine, J. M.; Perrot, F.; Bach, J.; Gaillard, G.; Hess, R.; Sormani, Ph.; Binz, R.; Peschina, R.; Rössle, E.; Schmitt, H.; Ghazikhanian, V.; Whitten, C. A.
1989-05-01
For n-p scattering we present the existing data for ΔσL, ΔσT and Aookk(np) quantities. For pp elastic scattering we present a direct reconstruction of the isospin I=1 scattering amplitudes in the energy region from 0.84 to 2.7 GeV. The results of this reconstruction suggest a structure in several amplitudes near 2.1 GeV. The existence of this structure was tested in a dedicated experiment.
About Hydrotechnical Laboratory, Professor Smorodinsky, and Nucleon-Nucleon Scattering
NASA Astrophysics Data System (ADS)
Ryndin, R. M.
2013-06-01
Yakov Abramovich Smorodinsky... memory brings me back to those far-off days when we first met in March 1952. We saw each other for the first time at the Hydrotechnical Laboratory (GTL) of the Academy of Sciences of the USSR,
Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A.; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A.
2017-01-01
Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging. PMID:28275728
Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A
2017-03-01
Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging.
Effective pairing interactions with isospin density dependence
Margueron, J.; Sagawa, H.; Hagino, K.
2008-05-15
We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic calcium, nickel, tin, and lead isotopes and N=20,28,50, and 82 isotones using density-dependent pairing interactions recently derived from a microscopic nucleon-nucleon interaction. These interactions have an isovector component so that the pairing gaps in symmetric and neutron matter are reproduced. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two-neutron separation energy, and odd-even mass staggering of these isotopes. This result suggests that by introducing the isovector term in the pairing interaction, one can construct a global effective pairing interaction that is applicable to nuclei in a wide range of the nuclear chart. It is also shown with the local density approximation that the pairing field deduced from the pairing gaps in infinite matter reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB method.
Gerbaux, Pascal; De Winter, Julien; Cornil, David; Ravicini, Katia; Pesesse, Gaëlle; Cornil, Jérôme; Flammang, Robert
2008-01-01
Chiral recognition of enantiomers by host compounds is one of the most challenging topics in modern host-guest chemistry. Amongst the well-established methods, mass spectrometry (MS) is increasingly used nowadays, due to its low detection limit, short analysis time, and suitability for analyzing mixtures and for studying chiral effects in the gas phase. The development of electrospray-ionization (ESI) techniques provides an invaluable tool to study, in the gas phase, diastereoisomeric complex ions prepared from enantiomer ions and a chiral selector. This paper reports on an ESIMS and ESIMSMS study of the molecular mechanisms that intervene in the chiral-recognition phenomena observed between amino acids and a chiral crown ether. The modified crown ether, namely (+)-([18]crown-6)-2,3,11,12-tetracarboxylic acid, is used as the chiral selector when covalently bound on a stationary phase in liquid chromatography. This study was stimulated by the fact that, except with threonine and proline, consistent elution orders were observed, which indicates that the D enantiomers interact more strongly with the chiral selector than the L enantiomers. For proline, the lack of a primary amino group is likely to be responsible for the nonresolution of the two forms, whereas the second stereogenic center on threonine could explain the reversed elution order. In light of those observations, we performed mass spectrometry experiments to understand more deeply the enantiomeric recognition phenomena, both in solution by the enantiomer-labeled guest method and in the gas phase by gas-phase ligand-exchange ion/molecule reactions. The results have been further supported by quantum chemical calculations. One of the most interesting features of this work is the identification of a nonspecific interaction between proline and the crown ether upon ESIMS analysis.
NASA Astrophysics Data System (ADS)
Sandratskii, L. M.
2017-07-01
The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general
Symbolic computation of the Hartree-Fock energy from a chiral EFT three-nucleon interaction at N 2LO
NASA Astrophysics Data System (ADS)
Gebremariam, B.; Bogner, S. K.; Duguet, T.
2010-06-01
We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N 2LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions. Program summaryProgram title: SymbHFNNN Catalogue identifier: AEGC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 96 666 No. of bytes in distributed program, including test data, etc.: 378 083 Distribution format: tar.gz Programming language: Mathematica 7.1 Computer: Any computer running Mathematica 6.0 and later versions Operating system: Windows Xp, Linux/Unix RAM: 256 Mb Classification: 5, 17.16, 17.22 Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N 2LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue. Solution method: The HF energy from the chiral EFT three-nucleon interaction at N 2LO is cast into a form suitable for an automatic simplification of
Superenantioselective chiral surface explosions.
Gellman, Andrew J; Huang, Ye; Feng, Xu; Pushkarev, Vladimir V; Holsclaw, Brian; Mhatre, Bharat S
2013-12-26
Chiral inorganic materials predated life on Earth, and their enantiospecific surface chemistry may have played a role in the origins of biomolecular homochirality. However, enantiospecific differences in the interaction energies of chiral molecules with chiral surfaces are small and typically lead to modest enantioselectivities in adsorption, catalysis, and chemistry on chiral surfaces. To yield high enantioselectivities, small energy differences must be amplified by reaction mechanisms such as autocatalytic surface explosions which have nonlinear kinetics. Herein, we report the first observations of superenantiospecificity resulting from an autocatalytic surface explosion reaction of a chiral molecule on a naturally chiral surface. R,R- and S,S-tartaric acid decompose via a vacancy-mediated surface explosion mechanism on Cu single crystal surfaces. When coupled with surface chirality, this leads to decomposition rates that exhibit extraordinarily high enantiospecificity. On the enantiomorphs of naturally chiral Cu(643)(R&S), Cu(17,5,1)(R&S), Cu(531)(R&S) and Cu(651)(R&S) single crystal surfaces, R,R- and S,S-tartaric acid exhibit enantiospecific decomposition rates that differ by as much as 2 orders of magnitude, despite the fact that the effective rates constants for decomposition differ by less than a factor of 2.
NASA Astrophysics Data System (ADS)
Matityahu, Shlomi; Utsumi, Yasuhiro; Aharony, Amnon; Entin-Wohlman, Ora; Balseiro, Carlos A.
2016-02-01
Recent experiments have demonstrated the efficacy of chiral helically shaped molecules in polarizing the scattered electron spin, an effect termed chiral-induced spin selectivity. Here we solve a simple tight-binding model for electron transport through a single helical molecule, with spin-orbit interactions on the bonds along the helix. Quantum interference is introduced via additional electron hopping between neighboring sites in the direction of the helix axis. When the helix is connected to two one-dimensional single-mode leads, time-reversal symmetry prevents spin polarization of the outgoing electrons. One possible way to retrieve such a polarization is to allow leakage of electrons from the helix to the environment, via additional outgoing leads. Technically, the leakage generates complex site self-energies, which break unitarity. As a result, the electron waves in the helix become evanescent, with different decay lengths for different spin polarizations, yielding a net spin polarization of the outgoing electrons, which increases with the length of the helix (as observed experimentally). A maximal polarization can be measured at a finite angle away from the helix axis.
NASA Astrophysics Data System (ADS)
Dai, Ling-Yun; Haidenbauer, Johann; Meißner, Ulf-G.
2017-07-01
Results for the antinucleon-nucleon (\\overline{N}N) interaction obtained at next-to-next-to-next-to-leading order in chiral effective field theory (EFT) are reported. A new local regularization scheme is used for the pion-exchange contributions that has been recently suggested and applied in a pertinent study of the N N force within chiral EFT. Furthermore, an alternative strategy for estimating the uncertainty is utilized that no longer depends on a variation of the cutoffs. The low-energy constants associated with the arising contact terms are fixed by a fit to the phase shifts and inelasticities provided by a phase-shift analysis of \\overline{p}p scattering data. An excellent description of the \\overline{N}N amplitudes is achieved at the highest order considered. Moreover, because of the quantitative reproduction of partial waves up to J = 3, there is also a nice agreement on the level of \\overline{p}p observables. Specifically, total and integrated elastic and charge-exchange cross sections agree well with the results from the partial-wave analysis up to laboratory energies of 300 MeV, while differential cross sections and analyzing powers are described quantitatively up to 200-250 MeV. The low-energy structure of the \\overline{N}N amplitudes is also considered and compared to data from antiprotonic hydrogen.
NASA Astrophysics Data System (ADS)
Stohner, J.; Quack, M.
2009-06-01
Are findings in high-energy physics of any importance in molecular spectroscopy ? The answer is clearly `yes'. Energies of enantiomers were considered as exactly equal in an achiral environment, e.g. the gas phase. Today, however, it is well known that this is not valid. The violation of mirror-image symmetry (suggested theoretically and confirmed experimentally in 1956/57) was established in the field of nuclear, high-energy, and atomic physics since then, and it is also the cause for a non-zero energy difference between enantiomers. We expect today that the violation of mirror-image symmetry (parity violation) influences chemistry of chiral molecules as well as their spectroscopy. Progress has been made in the quantitative theoretical prediction of possible spectroscopic signatures of molecular parity violation. The experimental confirmation of parity violation in chiral molecules is, however, still open. Theoretical studies are helpful for the planning and important for a detailed analysis of rovibrational and tunneling spectra of chiral molecules. We report results on frequency shifts in rotational, vibrational and tunneling spectra of some selected chiral molecules which are studied in our group. If time permits, we shall also discuss critically some recent claims of experimental observations of molecular parity violation in condensed phase systems. T. D. Lee, C. N. Yang, Phys. Rev., 104, 254 (1956) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev., 105, 1413 (1957) M. Quack, Angew. Chem. Intl. Ed., 28, 571 (1989) Angew. Chem. Intl. Ed., 41, 4618 (2002) M. Quack, J. Stohner, Chimia, 59, 530 (2005) M. Quack, J. Stohner, M. Willeke, Ann Rev. Phys. Chem. 59, 741 (2008) M. Quack, J. Stohner, Phys. Rev. Lett., 84, 3807 (2000) M. Quack, J. Stohner, J. Chem. Phys., 119, 11228 (2003) J. Stohner, Int. J. Mass Spectrometry 233, 385 (2004) M. Gottselig, M. Quack, J. Stohner, M. Willeke, Int. J. Mass Spectrometry 233, 373 (2004) R. Berger, G
Kohno, M.
2010-01-15
Hyperon-nucleons interactions constructed by two frameworks, the Kyoto-Niigata SU{sub 6} quark model and the chiral effective field theory, are compared by investigating equivalent interactions in a low-momentum space and, in addition, by calculating hyperon single-particle potentials in the lowest-order Brueckner theory in symmetric nuclear matter. Two descriptions are shown to give similar matrix elements in most channels after renormalizing high momentum components. Although the range of the {Lambda}N interaction is different in two potentials, the {Lambda} single-particle potential in nuclear matter is very similar. The {Sigma}-nucleus and XI-nucleus potentials are also found to be similar. These predictions are to be confronted with forthcoming experimental data.
Excited state interactions between the chiral Au38L24 cluster and covalently attached porphyrin.
Varnholt, Birte; Letrun, Romain; Bergkamp, Jesse J; Fu, Yongchun; Yushchenko, Oleksandr; Decurtins, Silvio; Vauthey, Eric; Liu, Shi-Xia; Bürgi, Thomas
2015-06-14
A protected S-acetylthio porphyrin was synthesized and attached to the Au38(2-phenylethanethiolate)24 cluster in a ligand exchange reaction. Chiral high performance liquid chromatography of the functionalized cluster yielded enantiomeric pairs of clusters probably differing in the binding site of the porphyrin. As proven by circular dichroism, the chirality was maintained. Exciton coupling between the cluster and the chromophore is observed. Zinc can be incorporated into the porphyrin attached to the cluster, as evidenced by absorption and fluorescence spectroscopy, however, the reaction is slow. Quenching of the chromophore fluorescence is observed, which can be explained by energy transfer from the porphyrin to the cluster. Transient absorption spectra of Au38(2-phenylethanethiolate)24 and the functionalized cluster probe the bleach of the gold cluster due to ground state absorption and the characteristic excited state absorption signals. Zinc incorporation does not have a pronounced effect on the photophysical behaviour. Decay times are typical for the molecular behaviour of small monolayer protected gold clusters.
NASA Astrophysics Data System (ADS)
Petitjean, Michel
2002-08-01
An index evaluating the amount of chirality of a mixture of colored random variables is defined. Properties are established. Extreme chiral mixtures are characterized and examples are given. Connections between chirality, Wasserstein distances, and least squares Procrustes methods are pointed out.
Zhao, Jianchao; Wu, Haixia; Wang, Dongqiang; Wu, Haibo; Cheng, Lingping; Jin, Yu; Ke, Yanxiong; Liang, Xinmiao
2015-09-17
To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S, 2S)-2-aminocyclohexyl phenylcarbamate. Both quinine and quinidine-based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion-exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, respectively, which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids.
NASA Astrophysics Data System (ADS)
Haze, Masahiro; Yoshida, Yasuo; Hasegawa, Yukio
2017-02-01
We report on the experimental verification of the rotational sense of homogeneous and antiferromagnetic spin spiral structures observed on mono- and double-layer Mn thin films formed on a W(110) substrate using spin-polarized scanning tunneling microscopy. By controlling the orientation of the tip magnetization with external magnetic fields, we determined the rotational sense of the cycloidal and transverse conical spin spiral structures of the Mn/W systems and found that both exhibit a unique chirality and the same polarity for the interfacial Dzyaloshinskii-Moriya interaction (iDMI). By comparing our results with those reported for other noncollinear magnetic states formed on the same substrate, we conclude that the polarity of the iDMI, which defines the rotational sense, is predominantly determined by the substrate rather than the overlayers.
The generalized hedgehog and the projected chiral soliton model
NASA Astrophysics Data System (ADS)
Fiolhais, M.; Goeke, K.; Grümmer, F.; Urbano, J. N.
1988-05-01
The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cos η¦u↓> - sin η¦d↑> . Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form ( η = 45°). In a quantized approach, however, the generalized hedgehog baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form occur (η ≅ 20°), if the relevant degrees of freedom of the wave functions are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant. However, due to the generalization of the hedgehog, the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass mσ shows that the gA is always about 40% too large compared to experiment. The concepts and results of the projections are compared with the semiclassical collective quantization method. It is demonstrated that noticeable deviations occur for the delta-nucleon splitting, the isovector squared charge radius and the axial vector coupling constant.
Effect of chirality in gamma-PNA: PNA interaction, another piece in the picture
Manicardi, Alex; Corradini, Roberto
2014-01-01
ABSTRACT Modification of the PNA backbone can be used to broaden their utility by introducing new functional groups. In particular, gamma-modified PNA have been found to be quite effective in a number of applications, and exhibit particularly high DNA binding affinity. The introduction of one side chain imply that the achiral backbone of PNA becomes chiral, and binding properties depend on the stereochemistry. A new paper on gamma-modified PNA by Ly and co-workers complete the existing knowledge by displaying that in binding to complementary PNA stereochemical orthogonality can be demonstrated. This opens the way to the exploitation of stereochemical features in diagnostic assays and in nanofabrication. PMID:26744081
Chirality-related interactions and a mirror symmetry violation in handed nano structures
Gabuda, S. P.; Kozlova, S. G.
2014-07-28
Hindering of inversion transitions and a violation of mirror symmetry of the right- and left-handed configurations of diazabizyclooctane (dabco, N{sub 2}C{sub 6}H{sub 12}) enantiomers has been studied with low-temperature adiabatic calorimetry. The dabco molecules were sandwiched in a high-porous layered structure of a metal organic framework (MOF) compound. We show from the data of low-temperature adiabatic calorimetry and {sup 1}H NMR spin relaxation method that hindering of inversion transitions of dabco molecules cannot be associated with the influence of the intracrystalline self-consistent molecular field as a continuously monitoring environment within the quantum Zeno effect. In addition, lack of another manifestation of this effect associated with the collisional suppression of the inversion transitions in MOF samples impregnated by helium has been shown. These results lead to the conclusion that chiral polarization is related to the fundamental effect of parity nonconservation.
Isospin Dependent Pairing Interactions and BCS-BEC crossover
Sagawa, H.; Margueron, J.; Hagino, K.
2008-11-11
We propose new types of density dependent contact pairing interaction which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on the realistic nucleon-nucleon interaction. The BCS-BEC crossover of neutrons pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. It is shown that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic Calcium, Nickel, Tin and Lead isotopes and N = 20, 28, 50 and 82 isotones using these density-dependent pairing interactions. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two neutrons separation energy, and odd-even mass staggering of these isotopes. Especially the interaction IS+IV Bare without the medium polarization effect gives satisfactory results for all the isotopes.
Lv, Wei; Zhu, Peihua; Bian, Yongzhong; Ma, Changqin; Zhang, Xiaomei; Jiang, Jianzhuang
2010-07-19
With the view to creating novel sandwich-type phthalocyaninato rare earth complexes toward new applications in material science and catalysis, d- and l-enantiomers of a series of optically active homoleptic bis(phthalocyaninato) rare earth double-deckers with four chiral menthol moieties at the peripheral positions of the phthalocyanine ligand, M(Pc*)(2) [Pc* = 2(3),9(10),16(17),23(24)-tetrakis(2-isopropyl-5-methylcyclohexoxyl)phthalocyanine; M = Eu, Y, Lu] (1-3), have been designed and prepared by treating (d)- or (l)-4-(2-isopropyl-5-methylcyclohexoxyl)-1,2-dicyanobenzene with the corresponding M(acac)(3).nH(2)O (acac = acetylacetonate) in the presence of the organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in refluxing n-pentanol. For the purpose of comparative study, heteroleptic bis(phthalocyaninato) europium analogues (d)- and (l)-Eu(Pc)(Pc*) (4) as well as the unsubstituted homoleptic bis(phthalocyaninato) europium counterpart Eu(Pc)(2) (5) were also prepared. The novel synthesized bis(phthalocyaninato) rare earth double-deckers have been characterized by a wide range of spectroscopic methods including MS, (1)H NMR, IR, and electronic absorption spectroscopic measurements in addition to elemental analysis. In contrast to the CD silent monomeric metal-free 2(3),9(10),16(17),23(24)-tetrakis(2-isopropyl-5-methylcyclohexoxyl)phthalocyanine, observation of the CD signal in the N absorption region of 4 reveals the significant effect of intramolecular pi-pi interaction on intensifying the asymmetrical perturbation of the chiral menthol units onto the phthalocyanine chromophore, which results in successful chiral information transfer from menthol moieties to the phthalocyanine chromophore at a molecular level in the heteroleptic double-decker compound 4 despite the lack of CD signal in the Soret and Q absorption regions of the phthalocyanine ligand. This is further supported by the optical activity of homoleptic bis(phthalocyaninato) rare earth double-deckers M
Jeon, Eun Hee; Yang, Sena; Kang, Sung Ho; Kim, Sehun; Lee, Hangil
2015-07-21
We report about the mechanistic studies of the reaction between a newly synthesized (S)-2-((R)-3H-dinaphtho[2,1-c:1',2'-e]azepin-4(5H)-yl)-2-phenylethanol based on the binaphthyl skeleton and (E)-2-methyl-5-phenylpent-2-enoic acid for the asymmetric hydrogenation of α,β-unsaturated acids with heterogeneous palladium catalysts. The specific interactions between the chiral ligand and reactant were investigated in solution with palladium nanoparticles, as well as under ultrahigh vacuum (UHV) conditions on the palladium metal surface in the absence of hydrogen. The reactions were explored using nuclear magnetic resonance (NMR) spectroscopy, scanning tunneling microscopy (STM), and high-resolution photoemission spectroscopy (HRPES) combined with density functional theory (DFT) calculations. A NMR study identified the interaction between both molecules with palladium nanoparticles in solution. In addition, STM and HRPES studies revealed the spatial distribution and configuration of both compounds on the palladium metal surface under UHV conditions. The theoretical results support the experimental results with respect to the interaction energy value. It was found that the reaction between the ligand and reactant occurs with hydrogen bonding on palladium surface, simultaneously. The present study provides mechanistic details of the asymmetric hydrogenation reaction, which bears a correlation between the ligand, reactant, and catalyst during the reaction.
No-core shell-model calculations in light nuclei with three-nucleon forces
NASA Astrophysics Data System (ADS)
Barrett, B. R.; Navrátil, P.; Nogga, A.; Ormand, W. E.; Vary, J. P.
2004-12-01
The ab initio No-Core Shell Model (NCSM) has recently been expanded to include nucleon-nucleon (NN) and three-nucleon (3N) interactions at the three-body cluster level. Here it is used to predict binding energies and spectra of p-shell nuclei based on realistic NN and 3N interactions. First results show that NN plus 3N interactions based on chiral perturbation theory lead to a realistic description of 6Li.
Sundaram, Rajashabala; Scheiner, Steve; Roy, Ajit K; Kar, Tapas
2015-02-07
The pristine BNNTs contain both Lewis acid (boron) and Lewis base (nitrogen) centers at their surface. Interactions of ammonia and borane molecules, representatives of Lewis base and acid as adsorbates respectively, with matching sites at the surface of BNNTs, have been explored in the present DFT study. Adsorption energies suggest stronger chemisorption (about 15-20 kcal mol(-1)) of borane than ammonia (about 5-10 kcal mol(-1)) in both armchair (4,4) and zigzag (8,0) variants of the tube. NH3 favors (8,0) over the (4,4) tube, whereas BH3 exhibits the opposite preference, indicating some chirality dependence on acid-base interactions. A new feature of bonding is found in BH3/AlH3-BNNTs (at the edge site) complexes, where one hydrogen of the guest molecule is involved in three-center two-electron bonding, in addition to dative covalent bond (N: → B). This interaction causes a reversal of electron flow from borane/alane to BNNT, making the tube an electron acceptor, suggesting tailoring of electronic properties could be possible by varying strength of incoming Lewis acids. On the contrary, BNNTs always behave as electron acceptor in ammonia complexes. IR, XPS and NMR spectra show some characteristic features of complexes and can help experimentalists to identify not only structures of such complexes but also the location of the guest molecules and design second functionalizations. Interaction with several other neutral BF3, BCl3, BH2CH3 and ionic CH3(+) acids as well as amino group (CH3NH2 and NH2COOH) were also studied. The strongest interaction (>100 kcal mol(-1)) is found in BNNT-CH3(+) complexes and H-bonds are the only source of stability of NH2COOH-BNNT complexes.
Ben-Moshe, Assaf; Wolf, Sharon Grayer; Bar Sadan, Maya; Houben, Lothar; Fan, Zhiyuan; Govorov, Alexander O; Markovich, Gil
2014-07-08
A large number of inorganic materials form crystals with chiral symmetry groups. Enantioselectively synthesizing nanostructures of such materials should lead to interesting optical activity effects. Here we report the synthesis of colloidal tellurium and selenium nanostructures using thiolated chiral biomolecules. The synthesis conditions are tuned to obtain tellurium nanostructures with chiral shapes and large optical activity. These nanostructures exhibit visible optical and chiroptical responses that shift with size and are successfully simulated by an electromagnetic model. The model shows that they behave as chiral optical resonators. The chiral tellurium nanostructures are transformed into chiral gold and silver telluride nanostructures with very large chiroptical activity, demonstrating a simple colloidal chemistry path to chiral plasmonic and semiconductor metamaterials. These materials are natural candidates for studies related to interactions of chiral (bio)molecules with chiral inorganic surfaces, with relevance to asymmetric catalysis, chiral crystallization and the evolution of homochirality in biomolecules.
Interaction of chiral herbicides with soil microorganisms, algae and vascular plants.
Asad, Muhammad Asad Ullah; Lavoie, Michel; Song, Hao; Jin, Yujian; Fu, Zhengwei; Qian, Haifeng
2017-02-15
Chiral herbicides are often used in agriculture as racemic mixtures, although studies have shown that the fate and toxicity of herbicide enantiomers to target and non-target plants can be enantioselective and that herbicide toxicity can be mediated by only one enantiomer. If one enantiomer is active against the target plant, the use of enantiomer-rich herbicide mixtures instead of racemic herbicides could decrease the amount of herbicide applied to a crop and the cost of herbicide application, as well as unintended toxic herbicide effects in the environment. Such a change in the management of herbicide applications requires in-depth knowledge and a critical analysis of the fate and effects of herbicide enantiomers in the environment. This review article first synthesizes the current state of knowledge on soil and plant biodegradation of herbicide enantiomers. Second, we discuss our understanding of the biochemical toxicity mechanisms associated with both enantiomers in target and non-target plants gained from state-of-the-art genomic, proteomic and metabolomic tools. Third, we present the emerging view on the "side effects" of herbicides in the root microbiome and their repercussions on target or non-target plant metabolism. Although our review of the literature indicates that the toxicity of herbicide enantiomers is highly variable depending on plant species and herbicides, we found general trends in the enantioselective toxic effects of different herbicides in vascular plants and algae. The present study will be helpful for pesticide risk assessments as well as for the management of applying enriched-enantiomer herbicides.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Roncaratti, L. F. Leal, L. A.; Silva, G. M. de; Pirani, F.; Aquilanti, V.; Gargano, R.
2014-10-07
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Parity-violating interactions and currents in the deuteron
NASA Astrophysics Data System (ADS)
Schiavilla, R.; Carlson, J.; Paris, M.
2003-04-01
We investigate parity-violating asymmetries in np radiative capture at thermal neutron energies and in deuteron electro-disintegration in quasi-elastic kinematics, using the DDH model for the parity-violating nucleon-nucleon interaction. We find dramatic cancellations between the asymmetries induced by the parity-violating interaction and those arising from the associated parity-violating pion-exchange currents. In the np capture, the model-dependence of the result is nevertheless quite small, because of constraints arising through the Siegert evaluation of the relevant E1 matrix elements. In quasi-elastic electron scattering these processes are found to be insignificant compared to the asymmetry produced by γ-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects of weak-interaction physics associated with parity violation in the np system.
Parity-Violating Interactions and Dark Currents in the Deuteron
R. Schiavilla; J. Carlson; M. Paris
2002-12-01
We investigate parity-violating asymmetries in np radiative capture at thermal neutron energies and in deuteron electro-disintegration in quasi-elastic kinematics, using the DDH model for the parity-violating nucleon-nucleon interaction. We find dramatic cancellations between the asymmetries induced by the parity-violating interactions and those arising from the associated parity-violating pion-exchange currents. In the np capture, the model-dependence of the result is nevertheless quite small, because of constraints arising through the Siegert evaluation of the relevant E{sub 1} matrix elements. In quasi-elastic electron scattering these processes are found to be insignificant compared to the asymmetry produced by gamma-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects of weak-interaction physics associated with parity violation in the np system.
Quark structure of chiral solitons
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
FATE AND EFFECTS OF THE ENANTIOMERS OF CHIRAL ENVIRONMENTAL POLLUTANTS
Enantiomers, the mirror image isomers of chiral compounds, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. This holds true for pesticides, about 25% of which are chiral molecules, and other chiral environmental...
Balashov, Sergei P; Imasheva, Eleonora S; Lanyi, Janos K
2006-09-12
In xanthorhodopsin, a retinal protein-carotenoid complex of Salinibacter ruber, the carotenoid salinixanthin functions as a light-harvesting antenna in supplying additional excitation energy for retinal isomerization and proton transport. Another retinal protein, archaerhodopsin, has been shown to contain a carotenoid, bacterioruberin, but without an antenna function. We report here that the binding site confers a chiral geometry on salinixanthin in xanthorhodopsin and confirm that the same is true for bacterioruberin in archaerhodopsin. Cell membranes containing these rhodopsins exhibit CD spectra with sharp positive bands in the visible region where the carotenoids absorb, and in the case of xanthorhodopsin a negative band at 536 nm, as well as bands in the UV region. The carotenoid in ethanol has very weak optical activity in the visible region of the spectrum. Denaturation of the opsin upon deprotonation of the Schiff base at pH 12.5 eliminates the induced CD bands in both proteins. In one of these proteins, but not in the other, the carotenoid binding site depends entirely on the retinal. Hydrolysis of the retinal Schiff base of xanthorhodopsin with hydroxylamine eliminates the induced CD bands of salinixanthin. In contrast, hydrolysis of the Schiff base in archaerhodopsin does not abolish the CD bands of bacterioruberin. Thus, consistent with its antenna function, the carotenoid binding site interacts closely with the retinal only in xanthorhodopsin, and this interaction is the major source of the CD bands. In this protein, protonation of the counterion with a decrease in pH from 8 to 5 causes significant changes in the CD spectrum. The observed spectral features suggest that binding of salinixanthin in xanthorhodopsin involves the cyclohexenone ring of the carotenoid and its conformational heterogeneity is restricted.
Chirality dependence of nanoscale ferromagnetic NOT gates
NASA Astrophysics Data System (ADS)
Lewis, E. R.; Petit, D.; O'Brien, L.; Zeng, H. T.; Read, D. E.; Cowburn, R. P.
2011-03-01
The behavior of a transverse domain wall (DW) interacting with a ferromagnetic NOT gate is studied with specific emphasis on the role of the DW chirality (sense of rotation of magnetization crossing the DW). We examine both the effect of the incoming DW chirality on the operation of the NOT gate and the effect of the gate on the DW chirality. We find that the chirality of the incoming DW does not affect the range of fields over which the NOT gate operates correctly. The effect of the NOT gate on the DW chirality depends on the chirality of the incoming DW: when the DW is incident on the NOT gate with the wide side of the DW on the inside of the V-shape formed by the gate, the chirality is conserved, but when the DW is incident on the gate with its wide side on the outside of the V-shape, the chirality may reverse.
Enantioselective Recognition by Chiral Supramolecular Gels.
Zhang, Li; Jin, Qingxian; Liu, Minghua
2016-10-06
Chiral supramolecular gels, in which small organic molecules self-assemble into chiral nanostructures and entangle each other to immobilize solvents through various noncovalent interactions, can work as a matrix for enantioselective recognition on chiral analytes. Through gelation and the formation of well-defined nanostructures, the chiral sense of the component molecules can be accumulated or amplified, and thus, the enantioselective recognition ability can be enhanced. Furthermore, a chiral microenvironment formed in the gel networks could provide additional stereochemical recognition geometry and attribute to efficient recognition. In this focus review, enantioselective recognition on chiral analytes through chiral supramolecular gels, with either amplified signals or the gel-sol phase transition, is discussed. This review is expected to provide useful insights into the design and fabrication of supramolecular gel systems with chiral features and high enantioselectivity.
Green's function calculations of light nuclei
NASA Astrophysics Data System (ADS)
Sun, ZhongHao; Wu, Qiang; Xu, FuRong
2016-09-01
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
Gamma-Deuteron Compton Scattering in Effective Field Theory
Jiunn-Wei Chen; Harald W. Griesshammer; Martin J. Savage; Roxanne P. Springer
1998-12-01
The differential cross section for {gamma}-deuteron Compton scattering is computed to next-to-leading order (NLO) in an effective field theory that describes nucleon-nucleon interactions below the pion production threshold. Contributions at NLO include the nucleon isoscalar electric polarizability from its 1/m{sub {pi}} behavior in the chiral limit. The parameter free prediction of the {gamma}-deuteron differential cross section at NLO is in good agreement with data.
Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A
2016-02-23
Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
Perez, N. Martinez, E.; Torres, L.
2014-03-03
We study the effect of the Dzyaloshinskii-Moriya interaction (DMI) on current-induced magnetic switching of a perpendicularly magnetized heavy-metal/ferromagnet/oxide trilayer both experimentally and through micromagnetic simulations. We report the generation of stable helical magnetization stripes for a sufficiently large DMI strength in the switching region, giving rise to intermediate states in the magnetization and confirming the essential role of the DMI on switching processes. We compare the simulation and experimental results to a macrospin model, showing the need for a micromagnetic approach. The influence of the temperature on the switching is also discussed.
NASA Astrophysics Data System (ADS)
Perez, N.; Martinez, E.; Torres, L.; Woo, S.-H.; Emori, S.; Beach, G. S. D.
2014-03-01
We study the effect of the Dzyaloshinskii-Moriya interaction (DMI) on current-induced magnetic switching of a perpendicularly magnetized heavy-metal/ferromagnet/oxide trilayer both experimentally and through micromagnetic simulations. We report the generation of stable helical magnetization stripes for a sufficiently large DMI strength in the switching region, giving rise to intermediate states in the magnetization and confirming the essential role of the DMI on switching processes. We compare the simulation and experimental results to a macrospin model, showing the need for a micromagnetic approach. The influence of the temperature on the switching is also discussed.
Hentschel, Mario; Schäferling, Martin; Duan, Xiaoyang; Giessen, Harald; Liu, Na
2017-01-01
We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes. PMID:28560336
Hentschel, Mario; Schäferling, Martin; Duan, Xiaoyang; Giessen, Harald; Liu, Na
2017-05-01
We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes.
Floss, H.G.
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Testa, B; Reist, M; Carrupt, P A
2000-07-01
The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.
Chiral Spin Liquid on a Kagome Antiferromagnet Induced by the Dzyaloshinskii-Moriya Interaction
NASA Astrophysics Data System (ADS)
Messio, Laura; Bieri, Samuel; Lhuillier, Claire; Bernu, Bernard
2017-06-01
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with a non-negligible Dzyaloshinskii-Moriya interaction (DMI). A well-established phase transition to the q =0 long-range order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in the inelastic neutron scattering experiment by Han et al. [Nature (London) 492, 406 (2012), 10.1038/nature11659]. It is a time-reversal symmetry breaking Z2 spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
Quaglioni, S; Navratil, P
2007-03-09
The total photo-absorption cross section of {sup 4}He is evaluated microscopically using two- (NN) and three-nucleon (NNN) interactions based upon chiral effective field theory ({chi}EFT). The calculation is performed using the Lorentz integral transform method along with the ab initio no-core shell model approach. An important feature of the present study is the consistency of the NN and NNN interactions and also, through the Siegert theorem, of the two- and three-body current operators. This is due to the application of the {chi}EFT framework. The inclusion of the NNN interaction produces a suppression of the peak height and enhancement of the tail of the cross section. We compare to calculations obtained using other interactions and to representative experiments. The rather confused experimental situation in the giant resonance region prevents discrimination among different interaction models.
NASA Astrophysics Data System (ADS)
Moreau-Luchaire, C.; Moutaﬁs, C.; Reyren, N.; Sampaio, J.; Vaz, C. A. F.; van Horne, N.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; Wohlhüter, P.; George, J.-M.; Weigand, M.; Raabe, J.; Cros, V.; Fert, A.
2016-05-01
Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m-2 in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.
Xiong, Jia-Bin; Xie, Wen-Zhao; Sun, Jian-Ping; Wang, Jin-Hua; Zhu, Zhi-Hua; Feng, Hai-Tao; Guo, Dong; Zhang, Hui; Zheng, Yan-Song
2016-05-06
A neutral chiral receptor based on TPE cyclohexylbisurea was synthesized and could discriminate the enantiomers of many different kinds of chiral reagents, including chiral acidic compounds, basic compounds, amino acids, and even neutral alcohols. The (1)H NMR spectra disclosed that the ability of chiral recognition could be ascribed to the multiple hydrogen bonds and CH-π interactions between the TPE urea receptor and the enantiomer of the chiral guest, which led to the selective aggregation of the receptor with one of the two enantiomers. This result exhibited a great potential in enantiomer discernment and high-throughput analysis of enantiomer composition of these chiral analytes by one chiral AIE molecule.
NASA Astrophysics Data System (ADS)
Kojo, Toru; Hidaka, Yoshimasa; Fukushima, Kenji; McLerran, Larry D.; Pisarski, Robert D.
2012-02-01
We elaborate how to construct interweaving chiral spirals in (2+1) dimensions, defined as a superposition of chiral spirals oriented in different directions. We divide a two-dimensional Fermi sea into distinct wedges, characterized by the opening angle 2 Θ and depth Q≃p, where p is the Fermi momentum. In each wedge, the energy is lowered by forming a single chiral spiral. The optimal values for Θ and Q are chosen by balancing this gain in energy versus the cost of deforming the Fermi surface (which dominates at large Θ) and patch-patch interactions (dominant at small Θ). Using a non-local four-Fermi interaction model, we estimate the gain and cost in energy by expanding in terms of 1/N (where N is the number of colors), Λ/Q, and Θ. Due to a form factor in our non-local model, at small 1/N the mass gap (chiral condensate) is large, and the interaction among quarks and the condensate local in momentum space. Consequently, interactions between different patches are localized near their boundaries, and it is simple to embed many chiral spirals. We identify the dominant and subdominant terms at high density and categorize formulate an expansion in terms of Λ/Q or Θ. The kinetic term in the transverse directions is subdominant, so that techniques from (1+1)-dimensional systems can be utilized. To leading order in 1/N and Λ/Q, the total gain in energy is ˜pΛQCD2 with Θ˜(. Since Θ decreases with increasing p, there should be phase transitions associated with the change in the wedge number. We also argue the effects of subdominant terms at lower density where the large- N approximation is more reliable.
Liu, Huijun
2010-01-01
The content and spectral characteristics of cytochrome P450 (Cyt P450) and cytochrome b(5) (Cyt b(5)) extracted from shoots of etiolated maize and rice seedlings were studied by using ultraviolet (UV) difference spectrophotometry. The results showed that fenclorim, rac-metolachlor and S-metolachlor may induce the same P450 isoenzyme with lambda(max) at 453 nm, while naphthalic anhydride (NA) induced another one with lambda(max) at 447 nm. The microsomal Cyt P450 and Cyt b(5) content of maize seedlings was higher than that of rice, and the Cyt b(5) content was higher than that of Cyt P450. Maize and rice microsomal Cyt P450 and Cyt b(5) were induced at different levels by the four chemicals, with the order as follows: NA > fenclorim > rac-metolachlor > S-metolachlor with p < 0.05. When induced by NA, fenclorim, rac-metolachlor and S-metolachlor, the maize Cyt P450 content was, respectively, 5.63-, 3.30-, 3.02- and 2.48-fold that of the control, the rice Cyt P450 content was 8.54-, 2.20-, 1.91- and 1.33-fold that of the control, the maize Cyt b(5) content was 9.89-, 5.49-, 4.69- and 3.40-fold that of the control, and the rice Cyt b(5) content was 7.76-, 4.56-, 2.60- and 1.82-fold that of the control. An enantio-difference existed when rac- and S-metolachlor combined with plant Cyt P450. The interaction of microsomal Cyt P450 with S-metolachlor is higher than that with rac-metolachlor, which may be one of the reasons why S-metolachlor is superior at killing weeds compared with rac-metolachlor. These results will help to develop an understanding of the tolerance for and selectivity of rac- and S-metolachlor.
NASA Astrophysics Data System (ADS)
Ormand, W. E.; Brown, B. A.; Hjorth-Jensen, M.
2017-08-01
We present calculations for the c coefficients of the isobaric mass multiplet equation for nuclei from A =42 to A =54 based on input from three realistic nucleon-nucleon interactions. We demonstrate that there is a clear dependence on the short-range charge-symmetry-breaking (CSB) part of the strong interaction and that there is significant disagreement in the CSB part between the commonly used CD-Bonn, chiral effective field theory at next-to-next-to-next-to-leading-order, and Argonne V18 nucleon-nucleon interactions. In addition, we show that all three interactions give a CSB contribution to the c coefficient that is too large when compared to experiment.
Ng, Chew Hee; Chan, Cheang Wei; Lai, Jing Wei; Ooi, Ing Hong; Chong, Kok Vei; Maah, Mohd Jamil; Seng, Hoi Ling
2016-07-01
Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...
2017-03-24
Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. We performed the measurement with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). We also observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, and found that they were of similar magnitude in p-Pbmore » and PbPb collisions at the same multiplicities. Our results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.« less
Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.
Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M
2017-05-31
Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.
Chiral Potts spin glass in d=2 and 3 dimensions.
Çağlar, Tolga; Berker, A Nihat
2016-09-01
The chiral spin-glass Potts system with q=3 states is studied in d=2 and 3 spatial dimensions by renormalization-group theory and the global phase diagrams are calculated in temperature, chirality concentration p, and chirality-breaking concentration c, with determination of phase chaos and phase-boundary chaos. In d=3, the system has ferromagnetic, left-chiral, right-chiral, chiral spin-glass, and disordered phases. The phase boundaries to the ferromagnetic, left- and right-chiral phases show, differently, an unusual, fibrous patchwork (microreentrances) of all four (ferromagnetic, left-chiral, right-chiral, chiral spin-glass) ordered phases, especially in the multicritical region. The chaotic behavior of the interactions, under scale change, are determined in the chiral spin-glass phase and on the boundary between the chiral spin-glass and disordered phases, showing Lyapunov exponents in magnitudes reversed from the usual ferromagnetic-antiferromagnetic spin-glass systems. At low temperatures, the boundaries of the left- and right-chiral phases become thresholded in p and c. In d=2, the chiral spin-glass Potts system does not have a spin-glass phase, consistently with the lower-critical dimension of ferromagnetic-antiferromagnetic spin glasses. The left- and right-chirally ordered phases show reentrance in chirality concentration p.
NASA Astrophysics Data System (ADS)
Mekki-Berrada, Ali
Bringing closer phospholipids each other on a bilayer of liposome, causes their rotation around their fatty acids axis, generating a force which brings closer the two sheets of the bilayer. In this theoretical study I show that for getting the greater cohesion of the liposome, by these forces, the serine in the hydrophilic head must have a L chirality. In the case where the hydrophilic head is absent amino acids with L chirality could contribute to this cohesion by taking the place of L-serine. Some coenzymes having a configuration similar to ethanolamine may also contribute. This is the case of pyridoxamine, thiamine and tetrahydrofolic acid. The grouping of amino acids of L chirality and pyridoxamine on the wall could initialize the prebiotic metabolism of these L amino acids only. This would explain the origin of the homo-chirality of amino acids in living world. Furthermore I show that in the hydrophilic head, the esterification of glycerol-phosphate by two fatty acids go through the positioning of dihydroxyacetone-phosphate and L-glyceraldehyde-3-phosphate, but not of D-glyceraldehyde-3-phosphate, prior their hydrogenation to glycerol-3- phosphate. The accumulation of D-glyceraldehyde-3-phosphate in the cytoplasm displace the thermodynamic equilibria towards the synthesis of D-dATP from D-glyceraldehyde-3-phosphate, acetaldehyde and prebiotic adenine, a reaction which does not require a coenzyme in the biotic metabolism. D-dATP and thiamine, more prebiotic metabolism of L-amino acids on the wall, would initialize D-pentoses phosphate and D-nucleotides pathways from the reaction of D-glyceraldehyde-3-phosphate + dihydroxyacetone-phosphate + prebiotic nucleic bases. The exhaustion of the prebiotic glyceraldehyde (racemic) and the nascent biotic metabolism dominated by D-glyceraldehyde-3-phosphate, would explain the origin of homo-chirality of sugars in living world. References: http://en.wikiversity.org/wiki/Prebiotic_chirality
1984-10-01
TITLE (mid Subttlo) -JS. TYPE OF REPORT & PERIOD COVERED CHIRAL POLYMERS /~O~~ R E~NNE 7. AUTHOR(e) 11. CONTRACT OR GRANT NUNSIER(e) J. K. Stille...acrylamide monomer containing a chiral 1,3-dioxane unit as well as both racemic and ( R )-6.-methyl ene-vi-methyl -7-butyrol actone were synthesi zed...or ( R )-propylene oxide (10)6. The key step in this synthesis is the palladium catalyzed carbonylation of 4-bromopent-4-en-2-ol. Thus, either racemic or
METHODS DEVELOPMENT FOR THE ANALYSIS OF CHIRAL PESTICIDES
Chiral compounds exist as a pair of nonsuperimposable mirror images called enantiomers. Enantiomers have identical physical-chemical properties, but their interactions with other chiral molecules, toxicity, biodegradation, and fate are often different. Many pharmaceutical com...
Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters.
Wang, Yizhan; Li, Haolong; Wu, Che; Yang, Yang; Shi, Lei; Wu, Lixin
2013-04-22
Managing the blues: Chiral heteropoly blues of achiral polyoxometalate clusters were created through an intermolecular interaction with a chiral organic compound. Controllable chiroptical switching of the cluster complexes was possible through reversible photochromism of the polyoxometalates (see picture).
METHODS DEVELOPMENT FOR THE ANALYSIS OF CHIRAL PESTICIDES
Chiral compounds exist as a pair of nonsuperimposable mirror images called enantiomers. Enantiomers have identical physical-chemical properties, but their interactions with other chiral molecules, toxicity, biodegradation, and fate are often different. Many pharmaceutical com...
Chiral perturbation theory with nucleons
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
NASA Astrophysics Data System (ADS)
Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Neugroschl, Daniel; Genack, Azriel Z.
2010-04-01
We have fabricated a variety of chiral fiber sensors by twisting one or more standard or custom optical fibers with noncircular or nonconcentric core as they pass though a miniature oven. The resulting structures are as stable as the glass material and can be produced with helical pitch ranging from microns to hundreds of microns. The polarization selectivity of the chiral gratings is determined by the geometry of the fiber cross section. Single helix structures are polarization insensitive, while double helix gratings interact only with a single optical polarization component. Both single and double helix gratings may function as a fiber long period grating, coupling core and cladding modes or as a diffraction grating scattering light from the fiber core out of the fiber. The resulting dips in the transmission spectrum are sensitive to fiber elongation, twist and temperature, and (in the case of the long period gratings) to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing temperature, elongation, twist and liquid levels will be discussed. Gratings made of radiation sensitive glass can be used to measure the cumulative radiation dose, while gratings made of radiation-hardened glass are suitable for stable sensing of the environment in nuclear power plants. Excellent temperature stability up to 900°C is found in pure silica chiral diffraction grating sensors.
NASA Astrophysics Data System (ADS)
Caprio, Mark A.; Maris, Pieter; Vary, James P.
2014-03-01
The emergence of rotational bands has recently been observed in no-core configuration interaction (NCCI) calculations for p-shell nuclei, as evidenced by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations, using realistic nucleon-nucleon interactions, and within finite, computationally-accessible configuration spaces. This talk will focus on results for rotation in both the even-mass and odd-mass Be isotopes (7 <= A <= 12). Supported by US DOE (DE-FG02-95ER-40934, DESC0008485 SciDAC/NUCLEI, DE-FG02-87ER40371), US NSF (0904782), and Research Corporation for Science Advancement (Cottrell Scholar Award). Computational resources provided by NERSC (US DOE DE-AC02-05CH11231).
Ab initio calculations in the symplectic no-core configuration interaction framework
NASA Astrophysics Data System (ADS)
McCoy, Anna; Caprio, Mark; Dytrych, Tomas
2016-09-01
A major challenge in quantitatively predicting nuclear structure directly from realistic nucleon-nucleon interactions, i.e., ab initio, arises due to an explosion in the dimension of the traditional Slater determinant basis as the number of nucleons and included shells increases. The need for including highly excited configurations arises, in large part, because the kinetic energy induces strong coupling across shells. However, the kinetic energy conserves symplectic symmetry. By combining this symplectic symmetry with the no-core configuration interaction (NCCI) framework, we reduce the size of basis necessary to obtain accurate results for p-shell nuclei. Supported by the US DOE under Grants DE-AC05-06OR23100 and DE-FG02-95ER-40934, and the Czech Science Foundation under Grant No. 16-16772S.
Chirality and the angular momentum of light.
Cameron, Robert P; Götte, Jörg B; Barnett, Stephen M; Yao, Alison M
2017-02-28
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions.This article is part of the themed issue 'Optical orbital angular momentum'.
Chirality and the angular momentum of light
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.
2017-02-01
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.
Chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1987-02-01
Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
Chiral discrimination in optical binding
NASA Astrophysics Data System (ADS)
Forbes, Kayn A.; Andrews, David L.
2015-05-01
The laser-induced intermolecular force that exists between two or more particles in the presence of an electromagnetic field is commonly termed "optical binding." Distinct from the single-particle forces that are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation of the coupling between optically induced dipole moments in neutral particles. In other, more widely known areas of optics, there are many examples of chiral discrimination—signifying the different response a chiral material has to the handedness of an optical input. In the present analysis, extending previous work on chiral discrimination in optical binding, a mechanism is identified using a quantum electrodynamical approach. It is shown that the optical binding force between a pair of chiral molecules can be significantly discriminatory in nature, depending upon both the handedness of the interacting particles and the polarization of the incident light, and it is typically several orders of magnitude larger than previously reported.
Cosmic chirality both true and false.
Barron, Laurence D
2012-12-01
The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life.
Chiral selection on inorganic crystalline surfaces
NASA Technical Reports Server (NTRS)
Hazen, Robert M.; Sholl, David S.
2003-01-01
From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.
Chiral selection on inorganic crystalline surfaces
NASA Technical Reports Server (NTRS)
Hazen, Robert M.; Sholl, David S.
2003-01-01
From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.
Chiral nanoparticles in singular light fields
Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2017-01-01
The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre–Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams. PMID:28378842
Completely Chiral Optical Force for Enantioseparation
NASA Astrophysics Data System (ADS)
Rukhlenko, Ivan D.; Tepliakov, Nikita V.; Baimuratov, Anvar S.; Andronaki, Semen A.; Gun’Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.
2016-11-01
Fast and reliable separation of enantiomers of chiral nanoparticles requires elimination of all the forces that are independent of the nanoparticle handedness and creation of a sufficiently strong force that either pushes different enantiomers in opposite directions or delays the diffusion of one of them with respect to the other. Here we show how to construct such a completely chiral optical force using two counterpropagating circularly polarized plane waves of opposite helicities. We then explore capabilities of the related enantioseparation method by analytically solving the problem of the force-induced diffusion of chiral nanoparticles in a confined region, and reveal that it results in exponential spatial dependencies of the quantities measuring the purity of chiral substances. The proposed concept of a completely chiral optical force can potentially advance enantioseparation and enantiopurification techniques for all kinds of chiral nanoparticles that strongly interact with light.
Chiral nanoparticles in singular light fields
NASA Astrophysics Data System (ADS)
Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2017-04-01
The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.
Completely Chiral Optical Force for Enantioseparation
Rukhlenko, Ivan D.; Tepliakov, Nikita V.; Baimuratov, Anvar S.; Andronaki, Semen A.; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.
2016-01-01
Fast and reliable separation of enantiomers of chiral nanoparticles requires elimination of all the forces that are independent of the nanoparticle handedness and creation of a sufficiently strong force that either pushes different enantiomers in opposite directions or delays the diffusion of one of them with respect to the other. Here we show how to construct such a completely chiral optical force using two counterpropagating circularly polarized plane waves of opposite helicities. We then explore capabilities of the related enantioseparation method by analytically solving the problem of the force-induced diffusion of chiral nanoparticles in a confined region, and reveal that it results in exponential spatial dependencies of the quantities measuring the purity of chiral substances. The proposed concept of a completely chiral optical force can potentially advance enantioseparation and enantiopurification techniques for all kinds of chiral nanoparticles that strongly interact with light. PMID:27827437
Neutron production in the interaction of 2-GeV protons with nuclei
Yurevich, V. I.; Yakovlev, R. M.; Lyapin, V. G.
2011-02-15
The double-differential cross sections for neutron production in the interactions of 2-GeV protons with Be, Al, Cu, Cd, and Pb nuclei were measured by the time-of-flight method in the region of angles larger than 30 Degree-Sign . The respective experimental data are analyzed within the phenomenological model of four moving sources, including those associated with neutron emission in primary nucleon-nucleon collisions, the decay of a hot source (fireball), the multifragmentation process, and the deexcitation of nuclear fragments via neutron evaporation. Temperature-parameter values are universal for all sources and are virtually independent of the target nucleus and of the projectile energy in the region above 0.5 GeV. It is found that, for all of the above reactions, the relative contribution to the mean neutron multiplicity from the decay of a hot source and multifragmentation is about 41%.
Garcia, Gustavo A; Dossmann, Héloïse; Nahon, Laurent; Daly, Steven; Powis, Ivan
2017-03-03
Electron-ion coincidence imaging is used to study chiral asymmetry in the angular distribution of electrons emitted from randomly-oriented enantiomers of two molecules, methyloxirane and trifluoromethyloxirane, upon ionization by circularly polarized VUV synchrotron radiation. Vibrationally-resolved photoelectron circular dichroism (PECD) measurements of the outermost orbital ionization reveal unanticipated large fluctuations in the magnitude of the forward-backward electron scattering asymmetry, including even a complete reversal of direction. Identification and assignment of the vibrational excitations is supported by Franck-Condon simulations of the photoelectron spectra. A previously proposed quasi-diatomic model for PECD is developed and extended to treat polyatomic systems. The parametric dependence of the electronic dipole matrix elements on nuclear geometry is evaluated in the adiabatic approximation. It provokes vibrational level dependent shifts in amplitude and phase, to which the chiral photoelectron angular distributions are especially sensitive. It is shown that single quantum excitation of those vibrational modes, which experience only a relatively small displacement of the ion equilibrium geometry along the normal coordinate and which are then only weakly excited in the Franck-Condon limit, can be accompanied by big shifts in scattering phase; hence the observed big fluctuations in PECD asymmetry for such modes.
PROBING THE ENANTIOSELECTIVITY OF CHIRAL PESTICIDES
Up to 25% of all pesticides are chiral; that is, they exist as two mirror image isomers called enantiomers. It is known that enantiomers usually differ in their biological properties through their differential interaction with enzymes or other naturally occurring chiral molecule...
NASA Astrophysics Data System (ADS)
Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela
2012-10-01
The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.
Monte-Carlo approach to particle-field interactions and the kinetics of the chiral phase transition
NASA Astrophysics Data System (ADS)
Greiner, Carsten; Wesp, Christian; van Hees, Hendrik; Meistrenko, Alex
2015-08-01
The kinetics of the chiral phase transition is studied within a linear quark-meson-σ model, using a Monte-Carlo approach to semiclassical particle-field dynamics. The meson fields are described on the mean-field level and quarks and antiquarks as ensembles of test particles. Collisions between quarks and antiquarks as well as the annihilation to σ mesons and the decay of σ mesons is treated, using the corresponding transition-matrix elements from the underlying quantum field theory, obeying strictly the rule of detailed balance and energy-momentum conservation. The approach allows to study fluctuations without making ad hoc assumptions concerning the statistical nature of the random process as necessary in Langevin-Fokker-Planck frameworks.
Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.
Zhang, Ying; Ye, Jing; Liu, Min
2017-01-01
Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs
Fang Dongliang; Faessler, Amand; Rodin, Vadim; Simkovic, Fedor
2011-03-15
In this paper a microscopic approach to calculation of the nuclear matrix element M{sup 0{nu}} for neutrinoless double-{beta} decay with an account for nuclear deformation is presented in length and applied for {sup 76}Ge, {sup 150}Nd, and {sup 160}Gd. The proton-neutron quasiparticle random-phase approximation with a realistic residual interaction (the Brueckner G matrix derived from the charge-depending Bonn nucleon-nucleon potential) is used as the underlying nuclear structure model. The effects of the short-range correlations and the quenching of the axial vector coupling constant g{sub A} are analyzed. The results suggest that neutrinoless double-{beta} decay of {sup 150}Nd, to be measured soon by the SNO+ Collaboration, may provide one of the best probes of the Majorana neutrino mass. This confirms our preliminary conclusion in Fang et al. [Phys. Rev. C 82, 051301(R) (2010)].
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
of singular potentials and power counting / M.P. Valderrrama. The challenge of calculating Baryon-Baryon scattering from lattice QCD / S.R. Beane. Precise absolute np scattering cross section and the charged [Pie symbol] NN coupling constant / S. E. Vigdor. Probing hadronic parity violation using few nucleon systems / S.A. Page. Extracting the neutron-neutron scattering length from neutron-deuteron breakup / C.R. Howell. Extraction of [equationl] from [Pie symbol]-d --> [equation] / A. Grudestig. The three- and four-body system with large scattering length / L. Platter. 3N and 4N systems and the Ay puzzle / T. Clegg. Recent progress in nuclear lattice simulations with effective field theory / D. Lee. Few-body studies at KVI / J.G. Messchendorp. Results of three nucleon experiments from RIKEN / K. Sekiguchi. A new opportunity to measure the total photoabsorption cross section of helium / P. T. Debevec. Three-body photodisintegration of 3He with double polarizations / X. Zong. Large two-pion exchange contributions to the pp --> pp[Pie symbol]0 reaction / F. Myhrer. Towards a systematic theory of nuclear forces / E. Epelbaum. Ab initio calculations of eletromagnetic reactions in light nuclei / W. Leidemann. Electron scattering from a polarized deuterium target at BLAST / R. Fatemi. Neutron-neutron scattering length from the reaction [equation] / V. Lensky. Renormalization group analysis of nuclear current operators / S.X. Nakamura. Recent results and future plans at MAX-LAB / K.G. Fissum. Nucleon polarizabilities from deutron compton scattering, and its lessons for chiral power counting / H. W. Grie hammer. Compton scattering on HE-3 / D. Choudhury -- pt. D. Hadron structure and Meson-Baryon interactions. Summary of the working group on Hadron structure and Meson-Baryon interactions / G. Feldman and T.R. Hemmert. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice discretization errors in chiral effective field theories / B.C. Tiburzi. SU(3)-breaking
Plum, Eric; Zheludev, Nikolay I.
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
NASA Astrophysics Data System (ADS)
Rajagopal, Krishna; Sadofyev, Andrey V.
2015-10-01
We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and
Understanding complex chiral plasmonics.
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-11-07
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.
Two-pion exchange NN potential from Lorentz-invariant $\\chi$EFT
Higa, Renato; Robilotta, Manoel; da Rocha, Carlos A
2006-10-12
We outline the progress made in the past five years by the Sao Paulo group in the development of a two-pion exchange nucleon-nucleon potential within a Lorentz-invariant framework of (baryon) chiral perturbation theory.
Rahaman, Anisur
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.
Microwave chirality discrimination in enantiomeric liquids
NASA Astrophysics Data System (ADS)
Hollander, E.; Kamenetskii, E. O.; Shavit, R.
2017-07-01
Chirality discrimination is of fundamental interest in biology, chemistry, and metamaterial studies. In optics, near-field plasmon-resonance spectroscopy with superchiral probing fields is effectively applicable for analyses of large biomolecules with chiral properties. We show possibility for microwave near-field chirality discrimination analysis based on magnon-resonance spectroscopy. Newly developed capabilities in microwave sensing using magnetoelectric (ME) probing fields originated from multiresonance magnetic-dipolar-mode oscillations in quasi-2D yttrium-iron-garnet disks provide potential for unprecedented measurements of chemical and biological objects. We report on microwave near-field chirality discrimination for aqueous D- and L-glucose solutions. The shown ME-field sensing is addressed to deepen our understanding of microwave-biosystem interactions. It can also be important for an analysis and design of microwave chiral metamaterials.
Expanding proteomics into the analysis of chiral drugs.
Sui, Jianjun; Zhang, Jianhua; Ching, Chi Bun; Chen, Wei Ning
2009-06-01
The chiralities of chiral drugs have been investigated extensively with the purpose of enlightening the role of chirality in drug action. Proteomics, though in its infancy, has recently emerged as the foremost technology in drug development research, possessing the advantage of providing more useful information about an organism than genomics, as it directly addresses the level of genome products and their interactions. In this review, we will discuss the background of chiral drug investigation from which contemporary drug chirality research has emerged, the techniques involved in proteomics technology, the application of proteomics in this exciting area, and the perspectives in future applications of this field.
NASA Astrophysics Data System (ADS)
Laerdahl, Jon K.; Schwerdtfeger, Peter
1999-12-01
The parity-odd perturbation operator for the inelastic electron-nucleon scattering by weak neutral currents (exchange of virtual Z0 bosons) has been implemented into a fully relativistic four-component Dirac-Hartree-Fock scheme. Dirac-Hartree-Fock electronic structure calculations on H2O2, H2S2, H2Se2, H2Te2, and H2Po2 provides a demonstration of the higher than Z5 scaling of the parity-violating energy shift (Z is the nuclear charge) in chiral molecules. To our knowledge, the calculations for H2Te2 and H2Po2 are the first for molecules containing heavy elements from period 5 or 6 of the Periodic Table, and the parity-violating energy shifts are some of the highest reported in any ab initio study. It has been shown that special care is needed in the basis set expansion of the wave function because of the coupling between the large and small components of the Dirac wave function through the γ5 matrix. Estimates of the remaining errors in the calculations have been given. A comparison with the calculated parity-violating energy shift of H2TeO have confirmed the importance of the single-center theorem, which states that the parity-violating energy shift is suppressed in molecules containing only a single heavy atomic center. Due to the close correspondence between parity-violating energy shifts and observable parity-odd properties, our results have important consequences for the current search for an experimental confirmation of parity-odd effects in molecular physics: (i) The experiments should be performed on molecules containing heavy (period 5 or 6) elements. (ii) Molecules with more than one heavy atomic center will be extremely favorable due to the single-center theorem.
Flow methods in chiral analysis.
Trojanowicz, Marek; Kaniewska, Marzena
2013-11-01
The methods used for the separation and analytical determination of individual isomers are based on interactions with substances exhibiting optical activity. The currently used methods for the analysis of optically active compounds are primarily high-performance separation methods, such as gas and liquid chromatography using chiral stationary phases or chiral selectors in the mobile phase, and highly efficient electromigration techniques, such as capillary electrophoresis using chiral selectors. Chemical sensors and biosensors may also be designed for the analysis of optically active compounds. As enantiomers of the same compound are characterised by almost identical physico-chemical properties, their differentiation/separation in one-step unit operation in steady-state or dynamic flow systems requires the use of highly effective chiral selectors. Examples of such determinations are reviewed in this paper, based on 105 references. The greatest successes for isomer determination involve immunochemical interactions, enantioselectivity of the enzymatic biocatalytic processes, and interactions with ion-channel receptors or molecularly imprinted polymers. Conducting such processes under dynamic flow conditions may significantly enhance the differences in the kinetics of such processes, leading to greater differences in the signals recorded for enantiomers. Such determinations in flow conditions are effectively performed using surface-plasmon resonance and piezoelectric detections, as well as using common spectroscopic and electrochemical detections.
Chiral gravitational waves from chiral fermions
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Sabancilar, Eray
2017-07-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
NASA Astrophysics Data System (ADS)
Takatsuka, Kazuo
2017-02-01
The Longuet-Higgins (Berry) phase arising from nonadiabatic dynamics and the Aharonov-Bohm phase associated with the dynamics of a charged particle in the electromagnetic vector potential are well known to be individually a manifestation of a class of the so-called geometrical phase. We herein discuss another similarity between the force working on a charged particle moving in a magnetic field, the Lorentz force, and a force working on nuclei while passing across a region where they have a strong quantum mechanical kinematic (nonadiabatic) coupling with electrons in a molecule. This kinematic force is indeed akin to the Lorentz force in that its magnitude is proportional to the velocity of the relevant nuclei and works in the direction perpendicular to its translational motion. Therefore this Lorentz-like nonadiabatic force is realized only in space of more or equal to three dimensions, thereby highlighting a truly multi-dimensional effect of nonadiabatic interaction. We investigate its physical significance qualitatively in the context of breaking of molecular spatial symmetry, which is not seen otherwise without this force. This particular symmetry breaking is demonstrated in application to a coplanar collision between a planar molecule and an atom sharing the same plane. We show that the atom is guided by this force to the direction out from the plane, resulting in a configuration that distinguishes one side of the mirror plane from the other. This can serve as a trigger for the dynamics towards molecular chirality.
Chirality detection of enantiomers using twisted optical metamaterials
Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea
2017-01-01
Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825
Cooperative expression of atomic chirality in inorganic nanostructures.
Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min
2017-02-02
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Chirality detection of enantiomers using twisted optical metamaterials
NASA Astrophysics Data System (ADS)
Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea
2017-01-01
Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies.
Cooperative expression of atomic chirality in inorganic nanostructures
Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min
2017-01-01
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957
Cooperative expression of atomic chirality in inorganic nanostructures
NASA Astrophysics Data System (ADS)
Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O.; Ouyang, Min
2017-02-01
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Chirality and the angular momentum of light
Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.
2017-01-01
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light–matter interactions. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069764
Introduction to chiral symmetry
Koch, V.
1996-01-08
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.
No-Core Shell Model Calculations in Light Nuclei with Three-Nucleon Forces
Barrett, B R; Vary, J P; Nogga, A; Navratil, P; Ormand, W E
2004-01-08
The ab initio No-Core Shell Model (NCSM) has recently been expanded to include nucleon-nucleon (NN) and three-nucleon (3N) interactions at the three-body cluster level. Here it is used to predict binding energies and spectra of p-shell nuclei based on realistic NN and 3N interactions. It is shown that 3N force (3NF) properties can be studied in these nuclear systems. First results show that interactions based on chiral perturbation theory lead to a realistic description of {sup 6}Li.
Francium Spectroscopy for Weak Interaction Studies
NASA Astrophysics Data System (ADS)
Orozco, Luis
2014-05-01
Francium, a radioactive element, is the heaviest alkali. Its atomic and nuclear structure makes it an ideal laboratory to study the weak interaction. Laser trapping and cooling in-line with the superconducting LINAC accelerator at Stony Brook opened the precision study of its atomic structure. I will present our proposal and progress towards weak interaction measurements at TRIUMF, the National Canadian Accelerator in Vancouver. These include the commissioning run of the Francium Trapping Facility, hyperfine anomaly measurements on a chain of Fr isotopes, the nuclear anapole moment through parity non-conserving transitions in the ground state hyperfine manifold. These measurements should shed light on the nucleon-nucleon weak interaction. This work is done by the FrPNC collaboration: S. Aubin College of William and Mary, J. A. Behr TRIUMF, R. Collister U. Manitoba, E. Gomez UASLP, G. Gwinner U. Manitoba, M. R. Pearson TRIUMF, L. A. Orozco UMD, M. Tandecki TRIUMF, J. Zhang UMD Supported by NSF and DOE from the USA; TRIUMF, NRC and NSERC from Canada; and CONACYT from Mexico
NASA Astrophysics Data System (ADS)
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-01
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Ariga, Katsuhiko; Richards, Gary J.; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P.
2010-01-01
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized. PMID:22163577
Intelligent chiral sensing based on supramolecular and interfacial concepts.
Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P
2010-01-01
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
NASA Astrophysics Data System (ADS)
Shahabadi, Nahid; Hadidi, Saba
2014-03-01
This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.
Shahabadi, Nahid; Hadidi, Saba
2014-03-25
This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r=4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal. Copyright © 2013 Elsevier B.V. All rights reserved.
Chiral pollutants exist as 2 species, -- enantiomers - that have identical physical and chemical properties except when they interact with enzymes or other chiral molecules; then they usually react selectively. This enantioselectivity results in different rates of microbial trans...
Chiral pollutants exist as 2 species, -- enantiomers - that have identical physical and chemical properties except when they interact with enzymes or other chiral molecules; then they usually react selectively. This enantioselectivity results in different rates of microbial trans...
Castro, Miguel; Cruz, Julián; López-Sandoval, Horacio; Barba-Behrens, Norah
2005-08-14
The ephedrine derivative, (H2ceph), yields [Cu(Hceph)2], showing a CH...Cu(II) agostic interaction; while in the analogous compound [Cu(Hcpse)2], with pseudoephedrine (H2cpse), that interaction is absent, despite the fact that these two diasteromers differ only in the orientation of the methyl and phenyl groups: erythro in H2ceph and threo in H2cpse. The X-ray crystal structure of [Cu(Hceph)2], indicates a Cu...HC length of 2.454 A and the theoretical study reveals the formation of a Cu...HC bond since the associated electronic density shows both a bond critical point and a bond ring critical point.
Optical properties and circular dichroism of chiral metal nanoparticles
NASA Astrophysics Data System (ADS)
Fan, Zhiyuan; Govorov, Alexander; OU Team
2013-03-01
In nature, biological systems are built up by homochiral building blocks, such as a sugar and protein. Circular dichroism (CD) is an effective tool of resolving molecular conformations. It utilizes circularly polarized light to detect differential absorption of chiral materials. In medicine, it will help us to develop new drugs and therapies, if we understand the connection between the physical or chemical properties of drug molecules and their conformations. With the rapid development of nanotechnologies, chiral nanomaterials attract lots of attention nowadays. CD signals of chiral molecules can be enhanced or shifted to the visible band in the presence of plasmonic nanocrystals. Here we present a plasmonic CD mechanism from a single chiral metal nanocrystal. The mechanism is essentially different from the dipolar plasmon-plasmon interaction in a chiral NP assembly, which mimics the CD mechanism of chiral molecules. Chiral metal nanocrystals are expected to have promising applications in biosensing. Recently a few experimental papers reported successful realizations of chiral nanocrystals in a macroscopic ensemble in solution. Particularly the paper described silver nanoparticles grown on chiral template molecules and demonstrating characteristic CD signals at a plasmonic wavelength. The plasmonic CD signals in Ref. can come from a dipolar plasmon-molecule interaction or from a chiral shape of nanocrystals. This work was supported by the NSF (project: CBET- 0933782) and by the Volkswagen Foundation.
Efimov physics around the neutron-rich 60Ca isotope.
Hagen, G; Hagen, P; Hammer, H-W; Platter, L
2013-09-27
We calculate the neutron-60Ca S-wave scattering phase shifts using state of the art coupled-cluster theory combined with modern ab initio interactions derived from chiral effective theory. Effects of three-nucleon forces are included schematically as density dependent nucleon-nucleon interactions. This information is combined with halo effective field theory in order to investigate the 60Ca-neutron-neutron system. We predict correlations between different three-body observables and the two-neutron separation energy of 62Ca. This provides evidence of Efimov physics along the calcium isotope chain. Experimental key observables that facilitate a test of our findings are discussed.
Chiral ionic liquids for enantioseparation of pharmaceutical products by capillary electrophoresis.
Tran, Chieu D; Mejac, Irena
2008-09-19
A chiral ionic liquid (IL), S-[3-(chloro-2-hydroxypropyl)trimethylammonium] [bis((trifluoromethyl)sulfonyl)amide] (S-[CHTA](+)[Tf(2)N](-)), which can be easily and readily synthesized in a one-step process from commercially available reagents, can be successfully used both as co-electrolyte and as a chiral selector for CE. A variety of pharmaceutical products including atenolol, propranolol, warfarin, indoprofen, ketoprofen, ibuprofen and flurbiprofen, can be successfully and baseline separated with the use of this IL as electrolyte. Interestingly, while S-[CHTA](+)[Tf(2)N](-) can also serve as a chiral selector, enantioseparation cannot be successfully achieved with S-[CHTA](+)[Tf(2)N](-) as the only chiral selector. In the case of ibuprofen, a second chiral selector, namely a chiral anion (sodium cholate), is needed for the chiral separation. For furbiprofen, in addition to S-[CHTA](+)[Tf(2)N](-) and sodium cholate, a third and neutral chiral selector, 1-S-octyl-beta-d-thioglucopyranoside (OTG), is also needed. Due to the fact that the chirality of this chiral IL resides on the cation (i.e., -[CHTA](+)), and that needed additional chiral selector(s) are either chiral anion (i.e., cholate) or chiral neutral compound (OTG), the results obtained seem to suggest that additional chiral selector(s) are needed to provide the three-point interactions needed for chiral separations.
Chirality in microswimmer motion: From circle swimmers to active turbulence
NASA Astrophysics Data System (ADS)
Löwen, Hartmut
2016-11-01
In this minireview, recent progress in our understanding of the basic physical principles of microswimmers which perform a motion characterized by chirality is summarized. We discuss both the chiral motion of a single circle swimmer and the occurrence of bacterial turbulence where swirls of different chirality are formed spontaneously in an interacting ensemble of linear microswimmers. Some recent highlights in this context as obtained by theory, simulation and experiment are summarized and briefly discussed.
Understanding complex chiral plasmonics
NASA Astrophysics Data System (ADS)
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-10-01
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant
Supersymmetric chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1989-03-01
We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
Drag suppression in anomalous chiral media
Sadofyev, Andrey V.; Yin, Yi
2016-06-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of a super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.
Drag suppression in anomalous chiral media
Sadofyev, Andrey V.; Yin, Yi
2016-06-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of amore » super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.« less
Drag suppression in anomalous chiral media
Sadofyev, Andrey V.; Yin, Yi
2016-06-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for super fluidity, that the "anomalous component" which gives rise to the anomalous transport will not contribute to the drag experienced by an impurity. We argue on a very general basis that those systems with a strong magnetic field would exhibit an interesting transport phenomenon$-$the motion of the heavy impurity is frictionless, in analogy to the case of a super fluid. Finally, we demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion gases and strongly interacting chiral liquids.
Controlling and imaging chiral spin textures
NASA Astrophysics Data System (ADS)
Chen, Gong
Chirality in magnetic materials is fundamentally interesting and holds potential for logic and memory applications. Using spin-polarized low-energy electron microscopy at National Center for Electron Microscopy, we recently observed chiral domain walls in thin films. We developed ways to tailor the Dzyaloshinskii-Moriya interaction, which drives the chirality, by interface engineering and by forming ternary superlattices. We find that spin-textures can be switched between left-handed, right-handed, cycloidal, helical and mixed domain wall structures by controlling uniaxial strain in magnetic films. We also demonstrate an experimental approach to stabilize skyrmions in magnetic multilayers without external magnetic field. These results exemplify the rich physics of chirality associated with interfaces of magnetic materials
NASA Astrophysics Data System (ADS)
Sur, Shouvik; Lee, Sung-Sik
2014-07-01
A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.
Ivanov, Ivan T; Tsokeva, Zhivka
2009-08-01
We report on the thermal behavior of freshly prepared binary drug/polymer physical mixtures that contained ibuprofen, ketoprofen, or naproxen as a drug, and polyvinylpyrrolidone (PVP), hydroxyethylcellulose (HEC), or methylcellulose (MC) as excipient. At 6-10 degrees C/min heating rates the DSC detected a sharp, single endotherm that corresponds to the melting of drug. On heating physical mixtures of PVP and racemic ibuprofen or ketoprofen at lower heating rates, another endotherm was registered in front of the original one. To observe the additional endotherm, specific minimal values of the heating rate and of PVP weight fraction were needed; for ibuprofen and ketoprofen they were 1.5 and 2.0 degrees C/min, and 5 and 15% (w/w), respectively. At greater PVP weight fractions the top temperatures, T(mp), of both peaks were reduced almost linearly indicating strong solid-state interfacial reaction between the drug particles and PVP matrix. The additional endotherm was abolished at greater heating rates (2 degrees C/min for ibuprofen, 3 degrees C/min for ketoprofen), by replacing the racemate with respective S+-enantiomer and by replacing PVP with HEC and MC. Hence, the possible inclusion of enantioselective component within the PVP/drug interaction, responsible for the amorphization of physical mixture over storage, is assumed.
Tabani, Hadi; Mahyari, Mojtaba; Sahragard, Ali; Fakhari, Ali Reza; Shaabani, Ahmad
2015-01-01
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD.
Chiral rotational spectroscopy
NASA Astrophysics Data System (ADS)
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Emerging chirality in nanoscience.
Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu
2013-04-07
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
Chiral fluctuations in achiral systems
NASA Astrophysics Data System (ADS)
Harris, Robert A.
2001-12-01
"Chiral fluctuations" are defined, and their relation to "dynamic chirality" is discussed. Simple experiments to measure chiral fluctuations are proposed. The unique aspects of these measurements for systems such as atomic clusters and gases are outlined.
Analyzing chiral condensate dependence on temperature and density
NASA Astrophysics Data System (ADS)
Rockcliffe, Keighley
2016-09-01
Determining the thermodynamic properties of the chiral condensate, the order parameter for chiral symmetry restoration, gives insight into whether there are phase transitions in dense astrophysical objects, such as young neutron stars. The chiral condensate is the scalar density of quarks in the ground state, and its presence violates chiral symmetry. Chiral effective field theory is used to study the behavior of the scalar quark condensate with changing temperature and density of neutron matter. Two-body and three-body chiral nuclear forces were employed to find the free energy and its dependence on the pion mass at lower temperatures. With increasing temperature (up to 100 MeV), the chiral condensate is strongly reduced, indicating a fast approach to chiral symmetry restoration. Chiral restoration seems to be hindered, however, at higher densities (around 0.2 fm-3). The role of the different perturbative contributions and their change with temperature and density was extracted. Although the dominant contribution is the noninteracting term in the perturbation series expansion, nuclear interactions are important particularly at high densities where they delay chiral symmetry restoration.
NASA Astrophysics Data System (ADS)
Chupp, Timothy
1999-10-01
A major experimental effort is underway to measure the parity violating asymmetry in gamma emission on the capture of polarized cold neutrons on parahydrogen. The experiment will take place at LANSCE at the Los Alamos National Laboratory. A large area pulsed spallation source neutron beam will be polarized by a ^3He spin filter. Spin transport and a novel RF spin flipper provide control of the neutron spin incident on a parahydrogen target. An array of gamma detectors surrounding the target will detect the neutron capture rate in ``current mode.'' Vacuum photodiodes, insensitive to magnetic fields will be used. Development of every aspect of the experimental set up is proceeding, and several test runs have successfully demonstrated sub-system concepts. Experiment design includes consideration of a host of false systematic effects. The expected sensitivity should provide a 10% measurement of the asymmetry assuming the best DDH values for the weak nucleon-pion coupling constants.
Effects of pion-fold-pion diagrams in the energy-independent nucleon-nucleon potential
NASA Astrophysics Data System (ADS)
de Guzman, G.; Kuo, T. T. S.; Holinde, K.; Machleidt, R.; Faessler, A.; Müther, H.
1985-10-01
Based on a T-matrix equivalence theory, an energy-independent or locally energy-dependent nucléon-nucléon potential VNN derived from meson exchanges is studied. The potential, given as a series expansion of folded diagrams, is independent of the asymptotic energy of the scattering nucleons. It is, however, locally energy dependent in the sense that its matrix elements < a| VNN| b> depend on the energies associated with its bra and ket states a and b. Our formulation makes use of right-hand-side on-shell T-matrix equivalence of the field-theoretical and potential descriptions when limited to the space of neutrons and protons only. This preserves not only scattering (e.g. phase shifts, projections of wave functions) but also bound-state properties. The matrix elements of V were calculated for two potential models, one based on one-pion exchange (OPEP) and the other on one-boson exchange (OBEP) using {π, ρ, σ, ω, δ, η }. Three types of phase-shift calculations have been carried out to study the viability of constructing an energy-independent potential using the folded-diagram expansion: (A) NN phase shifts for an energy-dependent OPEP and OBEP. For the OBEP we used parameters adjusted to fit experimental data. (B) The same phase shifts for the energy-independent case for both OPEP and OBEP. (C) Repetition of (B) with effects of the two-pion folded diagrams included. Our results show two important points: (i) folded diagrams are of essential importance, and (ii) the first-order folded diagrams contain the dominant effect and the neglect of terms with more than two folds can be regarded as a good approximation. The effects of folded diagrams are large especially for low partial waves and high energies. For high partial waves ( J greater than 2) the folded terms are negligible, and the phase shifts given by (A), (B) and (C) practically coincide.
Low-energy theorems for nucleon-nucleon scattering at unphysical pion masses
NASA Astrophysics Data System (ADS)
Baru, V.; Epelbaum, E.; Filin, A. A.; Gegelia, J.
2015-07-01
The longest-range part of the nuclear force from the one-pion exchange governs the energy dependence of the scattering amplitude in the near-threshold region and imposes correlations between the coefficients in the effective range expansion. These correlations may be regarded as low-energy theorems and are known to hold to a high accuracy in the neutron-proton 3S1 partial wave. We generalize the low-energy theorems to the case of unphysical pion masses and provide results for the correlations between the coefficients in the effective range expansion in this partial wave for pion masses up to Mπ˜400 MeV . We discuss the implications of our findings for the available and upcoming lattice-quantum-chromodynamics simulations of two-nucleon observables.
ERIC Educational Resources Information Center
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
Reconstructing the Nucleon-Nucleon Potential by a New Coupled-Channel Inversion Method
Pupasov, Andrey; Samsonov, Boris F.; Sparenberg, Jean-Marc; Baye, Daniel
2011-04-15
A second-order supersymmetric transformation is presented, for the two-channel Schroedinger equation with equal thresholds. It adds a Breit-Wigner term to the mixing parameter, without modifying the eigenphase shifts, and modifies the potential matrix analytically. The iteration of a few such transformations allows a precise fit of realistic mixing parameters in terms of a Pade expansion of both the scattering matrix and the effective-range function. The method is applied to build an exactly solvable potential for the neutron-proton {sup 3}S{sub 1}-{sup 3}D{sub 1} case.
ERIC Educational Resources Information Center
Banerjee, S. N.; Chakraborty, S. N.
1980-01-01
Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
Hadronic Interactions from Lattice QCD
Konstantinos Orginos
2006-03-19
In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.
NASA Technical Reports Server (NTRS)
Jaggard, Dwight L.; Engheta, Nader; Pelet, Philippe; Liu, John C.; Kowarz, Marek W.; Kim, Yunjin
1989-01-01
The electromagnetic properties of a structure that is both chiral and periodic are investigated using coupled-mode equations. The periodicity is described by a sinusoidal perturbation of the permittivity, permeability, and chiral admittance. The coupled-mode equations are derived from physical considerations and used to examine bandgap structure and reflected and transmitted fields. Chirality is observed predominantly in transmission, whereas periodicity is present in both reflection and transmission.
Planar plasmonic chiral nanostructures
NASA Astrophysics Data System (ADS)
Zu, Shuai; Bao, Yanjun; Fang, Zheyu
2016-02-01
A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response.A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. Electronic supplementary information (ESI) available
Characterizing optical chirality
Bliokh, Konstantin Y.; Nori, Franco
2011-02-15
We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.
Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Manipulating the Lorentz force via the chirality of nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Maoyan; Li, Hailong; Dong, Yuliang; Zhang, Xiaochuan; Du, Ming; Wang, Rui; Xu, Tong; Wu, Jian
2016-12-01
We demonstrate that a single plane wave pulls a chiral nanoparticle toward the light source. The nanoparticle exhibits optical gain in a particular wavelength region. The equivalence of the generalized and alternative expressions of the Lorentz force density relating to bound charges for chiral media is numerically validated. By considering the two-dimensional electromagnetic problem of incident plane waves normally impinged on active chiral cylinders, it is shown that the gradient force is mainly contributed by the bound electric and magnetic current densities of the cross-polarized waves. We also investigate how the medium parameters and impedance mismatch can be used to manipulate the pulling or pushing Lorentz forces between two chiral cylinders. This finding may provide a recipe to understand the light interaction with multiple chiral nanoparticles of arbitrary shapes (in general) with the aid of the numerical approach. It could be a promising avenue in controlling the optical micromanipulation for chiral nanoparticles with mirroring asymmetry.
Emergence of collective dynamical chirality for achiral active particles.
Jiang, Huijun; Ding, Huai; Pu, Mingfeng; Hou, Zhonghuai
2017-01-25
Emergence of collective dynamical chirality (CDC) at mesoscopic scales plays a key role in many formation processes of chiral structures in nature, which may also provide possible routines for people to fabricate complex chiral architectures. So far, most of the reported CDCs have been found in systems of active objects with individual structure chirality or/and dynamical chirality, and whether CDC can arise from simple and achiral units is still an attractive mystery. Here, we report a spontaneous formation of CDC in a system of both dynamically and structurally achiral particles motivated by active motion of cells adhered onto a substrate. Active motion, confinement and hydrodynamic interaction are found to be the three key factors. Detailed analysis shows that the system can support abundant collective dynamical behaviors, including rotating droplets, rotating bubbles, CDC oscillations, arrays of collective rotations, and interesting transitions such as chirality transition, structure transition and state reentrance.
Short-range nuclear forces in singlet channels
Bingwei Long, Chiehjen Yang
2012-08-01
Continuing our effort to build a consistent power counting for chiral nuclear effective field theory, we discuss the subleading contact interactions, or counterterms, in the singlet channels of nucleon-nucleon scattering, with renormalization group invariance as the constraint. We argue that the rather large cutoff error of the leading amplitude requires O(Q) of the low-energy approximation to be non-vanishing, contrary to Weinberg's original power counting. This, together with the ultraviolet divergences of two pion exchanges in distorted-wave expansion, leads to enhancement of the 1S0 counterterms and results in a pionless theory-like power counting for the singlet channels.
Chiral plasmons without magnetic field
Song, Justin C. W.; Rudner, Mark S.
2016-01-01
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090
Chiral plasmons without magnetic field
NASA Astrophysics Data System (ADS)
Song, Justin C. W.
2016-04-01
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.
Chiral vortical effect for bosons
NASA Astrophysics Data System (ADS)
Avkhadiev, Artur; Sadofyev, Andrey V.
2017-08-01
The thermal contribution to the chiral vortical effect is believed to be related to the axial anomaly in external gravitational fields. We use the universality of the spin-gravity interaction to extend this idea to a wider set of phenomena. We consider the Kubo formula at weak coupling for the spin current of a vector field and derive a novel anomalous effect caused by the medium rotation: the chiral vortical effect for bosons. The effect consists in a spin current of vector bosons along the angular velocity of the medium. We argue that it has the same anomalous nature as in the fermionic case and show that this effect provides a mechanism for helicity transfer, from flow helicity to magnetic helicity.
Deracemization of bilirubin as the marker of the chirality of micellar aggregates.
Sorrenti, Alessandro; Altieri, Barbara; Ceccacci, Francesca; Di Profio, Pietro; Germani, Raimondo; Giansanti, Luisa; Savelli, Gianfranco; Mancini, Giovanna
2012-01-01
The deracemization of bilirubin in micellar aggregates of structurally correlated chiral surfactants was studied by circular dichroism experiments and exploited as the marker of the expression of chirality of the aggregates. The obtained results suggest that the hydrophobic interactions control the transfer of chirality from the monomers to the aggregates, and that different regions of the same aggregate might feature opposite enantiorecognition capabilities.
Family of Hermitian low-momentum nucleon interactions with phase shift equivalence
NASA Astrophysics Data System (ADS)
Holt, Jason D.; Kuo, T. T.; Brown, G. E.
2004-03-01
Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum nucleon-nucleon ( NN ) interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions of Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Λ . Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
NASA Astrophysics Data System (ADS)
Rogachevskii, Igor; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Kleeorin, Nathan; Brandenburg, Axel; Schober, Jennifer
2017-09-01
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma (chiral magnetic effect). We present a self-consistent treatment of the chiral MHD equations, which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Chiral nanophotonics and quantum optics (Conference Presentation)
NASA Astrophysics Data System (ADS)
Rauschenbeutel, Arno
2016-09-01
In contrast to paraxial light fields, the intrinsic angular momentum of transversally confined light fields is position-dependent and can be oriented perpendicular to the propagation direction. The interaction of emitters with such light fields leads to new and surprising effects. For example, the intrinsic mirror symmetry of dipolar emission can be broken. This allowed us to realize chiral interfaces between plasmonic nanoparticles or atoms and a nanophotonic waveguide in which the emission direction into the waveguide is controlled by the polarization of the emitted light. Moreover, we employed this chiral interaction to demonstrate nonreciprocal transmission of waveguided light.
Chiral magnetic superconductivity
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri E.
2017-03-01
Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this "Chiral Magnetic Superconductivity" (CMS) is thus analogous to conventional superconductivity. However the underlying physics is entirely different - the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent) quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 - 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.
Tensor interaction contributions to single-particle energies
Brown, B. A.; Duguet, T.; Otsuka, T.; Abe, D.; Suzuki, T.
2006-12-15
We calculate the contribution of the nucleon-nucleon tensor interaction to single-particle energies with finite-range G-matrix potentials and with zero-range Skyrme potentials. The Skx Skyrme parameters including the zero-range tensor terms with strengths calibrated to the finite-range results are refitted to nuclear properties. The fit allows the zero-range proton-neutron tensor interaction as calibrated to the finite-range potential results which gives the observed change in the single-particle gap {epsilon}(h{sub 11/2})-{epsilon}(g{sub 7/2}) going from {sup 114}Sn to {sup 132}Sn. However, the experimental l dependence of the spin-orbit splittings in {sup 132}Sn and {sup 208}Pb is not well described when the tensor is added, owing to a change in the radial dependence of the total spin-orbit potential. The gap shift and a good fit to the l dependence can be recovered when the like-particle tensor interaction is opposite in sign to that required for the G matrix.
Chirality Recognition in Camphor - 1,2-PROPANEDIOL Complexes
NASA Astrophysics Data System (ADS)
Perez, Cristobal; Fatima, Mariyam; Krin, Anna; Schnell, Melanie
2017-06-01
The molecular interactions in complexes involving chiral molecules are of particular interest, because the interactions change in a subtle way upon replacing one of the partners by its mirror image. This is based on the fact that chiral molecules are sensitive probes for other chiral objects and chiral interactions. In this particular case, we will concentrate on molecule-molecule interactions and investigate them with broadband rotational spectroscopy. When two chiral molecules form complexes, the homochiral and heterochiral forms have different structures (and thus rotational constants and spectra) and different energies. They are diastereomers, which can easily be differentiated, for example via molecular spectroscopy. This is often exploited in chemical synthesis for identifying and separating enantiomers. The phenomena involving chirality recognition are relevant in the biosphere, in organic synthesis and in polymer design. We use chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy to study the structures and the underlying interactions of camphor-1,2-propanediol complexes. This system is also interesting because the complex formation can be expected to be ruled by an interplay between hydrogen bonding to the polar carbonyl group in camphor and dispersion interactions. The spectra are extremely rich because of the high number of conformers for 1,2-propanediol. We started out with racemic mixtures of both camphor and 1,2-propanediol. Using enantiopure samples of different handedness of the two partners nicely simplifies the spectra and guides the assignment. In the talk, we will report on the latest results for this chiral complex.
Molecular-level Design of Heterogeneous Chiral Catalysts
Gellman, Andrew John; Sholl, David S.; Tysoe, Wilfred T.; Zaera, Francisco
2013-04-28
Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111
Chiral discrimination in platinum anticancer drugs.
Benedetti, Michele; Malina, Jaroslav; Kasparkova, Jana; Brabec, Viktor; Natile, Giovanni
2002-01-01
In this article we review the biological activity of analogs of the antitumor drug cisplatin that contain chiral amine ligands. Interaction with DNA and formation of cross-links with adjacent purine bases are considered to be the crucial steps in the antitumor activity of this class of complexes. Because double-helical DNA has a chiral structure, interaction with enantiomeric complexes of platinum should lead to diastereomeric adducts. It has been demonstrated that DNA cross-links of platinum complexes with enantiomeric amine ligands not only can exhibit different conformational features but also can be processed differently by the cellular machinery as a consequence of these conformational differences. These results expand the general knowledge of how the stereochemistry of the platinum-DNA adduct can influence the cell response and contribute to understanding the processes that are crucial for antitumor activity. The steric requirements of the chiral ligands, in terms of configuration and flexibility, are also elucidated. PMID:12426131
Dimer crystallization of chiral proteoids.
Wang, Po-Yuan; Mason, Thomas G
2017-03-08
Proteins can self-assemble into a variety of exquisitely organized structures through hierarchical reaction pathways. To examine how different core shapes of proteins and entropy combine to influence self-assembly, we create systems of lithographically fabricated proteomimetic colloids, or 'proteoids', and explore how Brownian monolayers of mobile proteoids, which have hard interactions, self-assemble as they are slowly crowded. Remarkably, chiral C-shaped proteoids having circular heads on only one side form enantiopure lock-and-key chiral dimers; these dimers have corrugated, shape-complementary perimeters, so they, in turn, form lock-and-key arrangements into chiral dimer crystals. Time-lapse video microscopy reveals the expulsion of monomers from the growing dimer crystals through tautomerization translocation reactions which expedite the crystallization kinetics. By lithographically mutating proteoids, we also tune the types and structures of the resulting dimer crystals. Thus, rational design of sub-particle features in hard-core colloidal shapes can be used to sterically select desired self-assembly pathways without introducing any site-specific attractions, thereby generating a striking degree of hierarchical self-ordering, reminiscent of protein crystallization.
Magnetic fields and chiral asymmetry in the early hot universe
NASA Astrophysics Data System (ADS)
Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri
2016-10-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
Influence of Chirality in Ordered Block Copolymer Phases
NASA Astrophysics Data System (ADS)
Prasad, Ishan; Grason, Gregory
2015-03-01
Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.
Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J
2016-02-24
Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate.
Applications of chiral symmetry
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Isovector response function of hot nuclear matter with Skyrme interactions
Braghin, F.L.; Vautherin, D.; Abada, A.
1995-11-01
We investigate the role of the effective nucleon-nucleon interaction in the description of giant dipole resonances in hot nuclei. For this purpose we calculate the response function of hot nuclear matter to a small isovector external perturbation using various effective Skyrme interactions. We find that for Skyrme forces with an effective mass close to unity an undamped zero sound mode occurs at zero temperature. This mode gives rise in finite nuclei (calculated via the Steinwedel-Jenssen model) to a resonance whose energy agrees with the observed value. We find that zero sound disappears at a temperature of a few MeV, leaving only a broad peak in the dipole strength. For Skyrme forces with a small value of the effective mass (0.4), there is no zero sound at zero temperature but only a weak peak located too high in energy. The strength distribution in this case is nearly independent of temperature and shows small collective effects. The relevance of these results for the saturation of photon multiplicities observed in recent experiments is pointed out.
Experimental Studies of Nuclear Interactions in Few-Nucleon Systems
NASA Astrophysics Data System (ADS)
Stephan, E.; Kistryn, St.; Kalantar-Nayestanaki, N.; Kozela, A.
2017-03-01
Systems of three nucleons (3N) can be treated as a testing ground for modern approaches to describe nuclear interactions. At intermediate energies, observables for 3N systems are sensitive to subtle effects of the dynamics beyond the pairwise nucleon-nucleon force, so-called 3N-force (3NF). For years the search for 3NF has been motivating precise measurements of observables of elastic nucleon-deuteron scattering and for the deuteron breakup reaction. Breakup of a deuteron in collision with a proton leads to the final state of three free nucleons, with variety of possible kinematic configurations, revealing locally enhanced sensitivity to particular aspects of the interaction dynamics, like 3NF, Coulomb force between protons, or relativistic effects. This feature makes the breakup reaction a very versatile tool for validation of the theoretical description. Reactions involving four nucleons pose immense challenges with regard to exact theoretical calculations for such systems. Nonetheless, they attract attention due to expected enhanced sensitivity to certain aspects of the nuclear dynamics, manifesting themselves in various channels and configurations. The most important results of recent experimental studies of 3N and 4N systems at intermediate energies are discussed. A brief survey of the ongoing projects is given.
Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals
NASA Astrophysics Data System (ADS)
Jiang, Jinghua; Yang, Deng-Ke
2017-01-01
Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.
Polar Superhelices in Ferroelectric Chiral Nanosprings
Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jian-Shan; Wang, Jie; Kitamura, Takayuki
2016-01-01
Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses. PMID:27713540
Polar Superhelices in Ferroelectric Chiral Nanosprings
NASA Astrophysics Data System (ADS)
Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jian-Shan; Wang, Jie; Kitamura, Takayuki
2016-10-01
Topological objects of nontrivial spin or dipolar field textures, such as skyrmions, merons, and vortices, interacting with applied external fields in ferroic materials are of great scientific interest as an intriguing playground of unique physical phenomena and novel technological paradigms. The quest for new topological configurations of such swirling field textures has primarily been done for magnets with Dzyaloshinskii-Moriya interactions, while the absence of such intrinsic chiral interactions among electric dipoles left ferroelectrics aside in this quest. Here, we demonstrate that a helical polarization coiled into another helix, namely a polar superhelix, can be extrinsically stabilized in ferroelectric nanosprings. The interplay between dipolar interactions confined in the chiral geometry and the complex strain field of mixed bending and twisting induces the superhelical configuration of electric polarization. The geometrical structure of the polar superhelix gives rise to electric chiralities at two different length scales and the coexistence of three order parameters, i.e., polarization, toroidization, and hypertoroidization, both of which can be manipulated by homogeneous electric and/or mechanical fields. Our work therefore provides a new geometrical configuration of swirling dipolar fields, which offers the possibility of multiple order-parameters, and electromechanically controllable dipolar chiralities and associated electro-optical responses.
Chirality and biaxiality in cholesteric liquid crystals.
Dhakal, Subas; Selinger, Jonathan V
2011-02-01
We investigate the statistical mechanics of chirality and biaxiality in liquid crystals through a variety of theoretical approaches, including Monte Carlo simulations, lattice mean-field theory, and Landau theory. All of these calculations show that there is an important interaction between cholesteric twist and biaxial order: The twist acts as a field on the biaxial order, and conversely, the biaxial order increases the twist, that is, reduces the pitch. We model the behavior of chiral biaxial liquid crystals as a function of temperature and discuss how the predictions can be tested in experiments.
Ismail, M.; Seif, W. M.
2010-03-15
A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, {sup 48}Ca, and deformed, {sup 244}Pu, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.
NASA Astrophysics Data System (ADS)
Ismail, M.; Seif, W. M.
2010-03-01
A simple straightforward method has been presented to predict the dependence of barrier distributions at arbitrary orientations on different deformations. The proposed interpretation is developed independently of the complicated numerical calculations. It is related to the change of half-density radius of the deformed nucleus, in the direction of the separation vector. The microscopic calculations of Coulomb barrier are carried out by using a realistic density dependent nucleon-nucleon (NN) interaction, BDM3Y, for the interaction between spherical, Ca48, and deformed, Pu244, nuclei, as an example. To do so, the double-folding model for the interaction of spherical-deformed nuclei is put in a suitable computational form for the calculation of the potential at several separation distances and orientation angles using the density dependent NN force without consuming computational time. We found that the orientation distributions of the Coulomb barrier parameters show similar patterns to those of the interacting deformed nucleus radius. It is found that the orientation distribution of the Coulomb barrier radius follows the same variation of the deformed nucleus radius while the barrier height distribution follows it inversely. This correlation (anticorrelation) allows a simple evaluation of the orientation barrier distribution which would be very helpful to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. This also allows us to estimate the compact and elongated configurations of the interacting nuclei which lead to hot and cold fusion, respectively.
Kim, Kyoung-Whan; Lee, Hyun-Woo
2016-01-01
The analysis of the magnetic domain wall motion in a nanostructured magnetic system with strong spin-orbit coupling shows that the energy dissipation can be chiral when the inversion symmetry is broken. PMID:26906956
Kharzeev, Dmitri E.; Yee, Ho-Ung
2011-04-15
We consider a relativistic plasma containing charged chiral fermions in an external magnetic field, e.g. a chirally symmetric quark-gluon plasma created in relativistic heavy ion collisions. We show that triangle anomalies imply the existence of a new type of collective gapless excitation in this system that stems from the coupling between the density waves of the electric and chiral charges; we call it ''the chiral magnetic wave'' (CMW). The CMW exists even in a neutral plasma, i.e. in the absence of the axial and vector chemical potentials. We demonstrate the existence of CMW and study its properties using three different approaches: i) relativistic magnetohydrodynamics; ii) dimensional reduction to (1+1) Sine-Gordon model, appropriate in a strong magnetic field; and iii) holographic QCD (Sakai-Sugimoto model), appropriate at strong coupling. We also briefly discuss the phenomenological implications of the CMW for heavy ion collisions.
Relativistic Chiral Kinetic Theory
NASA Astrophysics Data System (ADS)
Stephanov, Mikhail
2016-12-01
This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi:10.1103/PhysRevLett.113.182302; J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: 10.1103/PhysRevLett.115.021601; M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: 10.1103/PhysRevLett.116.122302].
Chiral Hypervalent, Pentacoordinated Phosphoranes.
Krasowska, Dorota; Chrzanowski, Jacek; Kiełbasiński, Piotr; Drabowicz, Józef
2016-11-21
This review presents synthetic procedures applied to the preparation of chiral (mainly optically active) pentacoordinated, hypervalent mono and bicyclic phosphoranes. The mechanisms of their stereoisomerization and their selected interconversions are also presented.
NASA Astrophysics Data System (ADS)
Wang, Jian-Bo; Reetz, Manfred T.
2015-12-01
Racemic or enantiomerically pure alcohols can be converted with high yield into enantiopure chiral amines in a one-pot redox-neutral cascade process by the clever combination of an alcohol dehydrogenase and an appropriate amine dehydrogenase.
Chirality and protein biosynthesis.
Banik, Sindrila Dutta; Nandi, Nilashis
2013-01-01
Chirality is present at all levels of structural hierarchy of protein and plays a significant role in protein biosynthesis. The macromolecules involved in protein biosynthesis such as aminoacyl tRNA synthetase and ribosome have chiral subunits. Despite the omnipresence of chirality in the biosynthetic pathway, its origin, role in current pathway, and importance is far from understood. In this review we first present an introduction to biochirality and its relevance to protein biosynthesis. Major propositions about the prebiotic origin of biomolecules are presented with particular reference to proteins and nucleic acids. The problem of the origin of homochirality is unresolved at present. The chiral discrimination by enzymes involved in protein synthesis is essential for keeping the life process going. However, questions remained pertaining to the mechanism of chiral discrimination and concomitant retention of biochirality. We discuss the experimental evidence which shows that it is virtually impossible to incorporate D-amino acids in protein structures in present biosynthetic pathways via any of the two major steps of protein synthesis, namely aminoacylation and peptide bond formation reactions. Molecular level explanations of the stringent chiral specificity in each step are extended based on computational analysis. A detailed account of the current state of understanding of the mechanism of chiral discrimination during aminoacylation in the active site of aminoacyl tRNA synthetase and peptide bond formation in ribosomal peptidyl transferase center is presented. Finally, it is pointed out that the understanding of the mechanism of retention of enantiopurity has implications in developing novel enzyme mimetic systems and biocatalysts and might be useful in chiral drug design.
Bonner, W.A.
1996-07-01
The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)
Electrodynamics of chiral matter
NASA Astrophysics Data System (ADS)
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Planar Chiral, Ferrocene-Stabilized Silicon Cations.
Schmidt, Ruth K; Klare, Hendrik F T; Fröhlich, Roland; Oestreich, Martin
2016-04-04
The preparation of a series of planar chiral, ferrocenyl-substituted hydrosilanes as precursors of ferrocene-stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and (29)Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron-deficient silicon atom and adjacent C(sp(3))-H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels-Alder reactions, but no enantioinduction was seen.
Chiral charge erasure via thermal fluctuations of magnetic helicity
Long, Andrew J.; Sabancilar, Eray
2016-05-11
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ{sub 5}), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ{sub 5} parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ{sup 3}T{sup 2} for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T{sup 3}/(α{sup 5}μ{sub 5}{sup 4}) until it reaches an equilibrium value H∼μ{sub 5}T{sup 2}/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ{sub 5}
The significance of chirality in drug design and development.
Brooks, W H; Guida, W C; Daniel, K G
2011-01-01
Proteins are often enantioselective towards their binding partners. When designing small molecules to interact with these targets, one should consider stereoselectivity. As considerations for exploring structure space evolve, chirality is increasingly important. Binding affinity for a chiral drug can differ for diastereomers and between enantiomers. For the virtual screening and computational design stage of drug development, this problem can be compounded by incomplete stereochemical information in structure libraries leading to a "coin toss" as to whether or not the "ideal" chiral structure is present. Creating every stereoisomer for each chiral compound in a structure library leads to an exponential increase in the number of structures resulting in potentially unmanageable file sizes and screening times. Therefore, only key chiral structures, enantiomeric pairs based on relative stereochemistry need be included, and lead to a compromise between exploration of chemical space and maintaining manageable libraries. In clinical environments, enantiomers of chiral drugs can have reduced, no, or even deleterious effects. This underscores the need to avoid mixtures of compounds and focus on chiral synthesis. Governmental regulations emphasizing the need to monitor chirality in drug development have increased. The United States Food and Drug Administration issued guidelines and policies in 1992 concerning the development of chiral compounds. These guidelines require that absolute stereochemistry be known for compounds with chiral centers and that this information should be established early in drug development in order that the analysis can be considered valid. From exploration of structure space to governmental regulations it is clear that the question of chirality in drug design is of vital importance.
Chiral charge erasure via thermal fluctuations of magnetic helicity
NASA Astrophysics Data System (ADS)
Long, Andrew J.; Sabancilar, Eray
2016-05-01
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.
Chiral Recognition Mechanisms in Enantiomers Separations: A General View
NASA Astrophysics Data System (ADS)
Berthod, Alain
In 1858, Louis Pasteur, the first to accomplish the separation of two enantiomers wrote: “Most natural organic products, the essential products of life, are asymmetric and possess such asymmetry that they are not superimposable on their image. This establishes perhaps the only well-marked line of demarcation that can at present be drawn between the chemistry of dead matter and the chemistry of living matter.” Enantiomers have exactly the same properties in isotropic conditions. They behave differently only in anisotropic conditions. Chiral-chiral interactions are needed for enantiomeric separations. The fundamental mechanisms for chiral separations are listed along with the commercially available chiral selectors. Two chemometric examples are commented: one on quantitative structure enantioselectivity relationship and the second one on linear solvation energy relationships. It is shown that the solvents used in the mobile phase may play the most critical role in the chiral mechanism.
Gas Phase Chiral Separations By Ion Mobility Spectrometry
Dwivedi, Prabha; Wu, Ching; Hill, Herbert H.
2013-01-01
This manuscript introduces the concept of Chiral Ion Mobility Spectrometry (CIMS) and presents examples demonstrating the gas phase separation of enantiomers of a wide range of racemates including pharmaceuticals, amino acids and carbohydrates. CIMS is similar to traditional ion mobility spectrometry (IMS), where gas phase ions, when subjected to a potential gradient are separated at atmospheric pressure due to differences in their shapes and sizes. In addition to size and shape, CIMS separates ions based on their stereospecific interaction with a chiral gas. In order to achieve chiral discrimination by CIMS, an asymmetric environment was provided by doping the drift gas with a volatile chiral reagent. In this study S-(+)-2-butanol was used as a chiral modifier to demonstrate enantiomeric separations of atenolol, serine, methionine, threonine, methyl-α-glucopyranoside, glucose, penicillamine, valinol, phenylalanine, and tryptophan from their respective racemic mixtures. PMID:17165808
Chiral separation by a terminal chirality triggered P-helical quinoline oligoamide foldamer.
Noguchi, Hiroki; Takafuji, Makoto; Maurizot, Victor; Huc, Ivan; Ihara, Hirotaka
2016-03-11
A P-helical quinoline oligoamide foldamer was grafted on silica and applied as an HPLC stationary phase for chiral separation. The P-handedness of the quinoline oligoamide foldamer was induced by a (1S)-camphanyl group, which was introduced at the N-terminus of a tetrameric quinoline oligoamide foldamer (Cmp-Q4). To immobilize the foldamer on porous silica particles, a trimethoxysilyl group was introduced at the opposing end of the foldamer. Elemental analysis indicated that the amount of foldamer on the silica surface was 0.57μmol/m(2). Circular dichroism and vibrational CD spectra of Cmp-Q4 and Cmp-Q4-immobilized silica (Sil-Q4-Cmp) suggested that the helical structure of Cmp-Q4 was altered on the silica surface whilst retaining a chiral structure. The chiral recognition ability of Sil-Q4-Cmp was evaluated with various aromatic enantiomers. Sil-Q4-Cmp showed enantio-selectivity for axially chiral molecules (e.g., αTrigger's base=1.26 and αBinaphthol=1.07). Sil-Q4-Cmp showed remarkable recognition of helical octameric quinoline oligoamides with isobutoxy and triethylene glycol side chains (α=10.35 and 14.98, respectively). In contrast, an (1S)-camphanyl group-immobilized porous silica showed no chiral recognition for any enantiomers tested in this study. To elucidate the chiral separation mechanism of Sil-Q4-Cmp, thermodynamic parameters were calculated using van't Hoff plots. HPLC results and thermodynamic parameters suggested that the chiral recognition of Sil-Q4-Cmp is based on the helical structure of Cmp-Q4 and other thermally dependent interactions such as hydrophobic effects associated with aromatic stacking. This work represents the first known application of aromatic foldamers in chiral separation.
Chirality: a blueprint for the future.
Burke, D; Henderson, D J
2002-04-01
The chirality that is inherent in the enzyme systems of living organisms results in an abundance of enantiopure organic molecules in the living world. In addition to the optical properties first noticed by Pasteur, stereospecific interactions at recognition sites result in differences in both biological and toxicological effects. This fact underlies the continuing growth in chiral chemistry, rooted as it is in fundamental biochemistry. The pharmaceutical industry has undergone a strategic shift and embraced the wide spectrum of asymmetrical synthetic methods now available. The use of these processes in developmental synthesis and large-scale manufacturing has provided new challenges in drug discovery, motivated by a desire to improve industrial efficacy and decrease the time from the conception of a new drug to the market. The economic impact of the industrial production of chiral drugs is now huge--more than 50% of the 500 top-selling drugs were single-enantiomers in 1997. Sales have continued to increase by more than 20% for the past 6 yr and worldwide annual sales of enantiomeric drugs exceeded US$100 billion for the first time in the year 2000, chiral drugs representing close to one-third of all sales worldwide. While some 'chiral switches' may be of less apparent benefit, or indeed detrimental in some cases, encouragement by the regulatory agencies and the ability to extend the life cycle of a drug coming off patent promotes the trend. However, it may turn out to be the ability to provide chiral templates, and thereby attack the key targets of selectivity and specificity, that will lead to the greatest benefits. Research into new chemical entities that can interact specifically with enzyme families may potentially lead to new therapies for complex disease processes. As Richards has stated, the approach is designed to create a made to measure product, rather than one off the peg.
Chiral Polychlorinated Biphenyl Transport, Metabolism and Distribution - A Review
Lehmler, Hans-Joachim; Harrad, Stuart J.; Hühnerfuss, Heinrich; Kania-Korwel, Izabela; Lee, Cindy M.; Lu, Zhe; Wong, Charles S.
2009-01-01
Chirality can be exploited to gain insight into enantioselective fate processes that may otherwise remain undetected because only biological, but not physical and chemical transport and transformation processes in an achiral environment will change enantiomer compositions. This review provides an in-depth overview of the application of chirality to the study of chiral polychlorinated biphenyls (PCBs), an important group of legacy pollutants. Like other chiral compounds, individual PCB enantiomers may interact enantioselectively (or enantiospecifically) with chiral macromolecules, such as cytochrome P-450 enzymes or ryanodine receptors, leading to differences in their toxicological effects and the enantioselective formation of chiral biotransformation products. Species and congener-specific enantiomer enrichment has been demonstrated in environmental compartments, wildlife and mammals, including humans, typically due to a complex combination of biotransformation processes and uptake via the diet by passive diffusion. Changes in the enantiomer composition of chiral PCBs in the environment have been used to understand complex aerobic and anaerobic microbial transformation pathways, to delineate and quantify PCB sources and transport in the environment, to gain insight into the biotransformation of PCBs in aquatic food webs, and to investigate the enantioselective disposition of PCBs and their methylsulfonyl PCBs metabolites in rodents. Overall, changes in chiral signatures are powerful, but currently underutilized tools for studies of environmental and biological processes of PCBs. PMID:20384371
Nonlinear realization of chiral symmetry on the lattice
NASA Astrophysics Data System (ADS)
Chandrasekharan, Shailesh; Pepe, Michele; Steffen, Frank Daniel; Wiese, Uwe-Jens
2003-12-01
We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.
Orme, C A; Noy, A; McBride, M T; DeYoreo, J J
2000-10-01
In biomineralized tissue, Nature often uses a single crystal system to form tools with widely varied form and functionality. To accomplish this, organisms have developed methods to deterministically modify and control crystal habit, commonly creating shapes with lower symmetry than is possessed by the pure crystal. In this paper we use atomic force microscopy to investigate the effect of chiral amino acids on calcite growth. We show that the atomic steps and resultant macroscopic shape exhibit a lower symmetry that reflects the chirality of the amino acid. We use this result to constrain the possible stereospecific binding sites. We argue that the change in morphology is not due to the incorporation of the amino acid, but rather that it acts like a surfactant changing the energetics of the interface. These results suggest that the conventional paradigm for understanding the geometrical and chemical aspects of biomineralization in terms of stereochemical recognition should be expanded to capture the energetic controls that determine the mechanisms of mineral modification by biomolecules.
Chiral nihility effects on energy flow in chiral materials.
Qiu, Cheng-Wei; Burokur, Nawaz; Zouhd, Saïd; Li, Le-Wei
2008-01-01
The propagation of electromagnetic plane waves in an isotropic chiral medium is characterized, and a special interest is shown in chiral nihility and the effects of chirality on energy transmission. In particular, the wave impedance is matched to that of free space. Moreover, the refractive index n is also matched in impedance to that of free space when an appropriate value of the chirality is chosen. A "chiral nihility" medium is explored in which both the permittivity and the permeability tend to zero. Some specific case studies of chiral nihility are presented, and Brewster angles are found to cover an extremely wide range. The E-field distributions in these different cases where the chiral slab is placed in free space are analyzed by using the appropriate constitutive relations. It is shown from numerical calculations that one can obtain some critical characteristics of the effects of chirality on energy transmission and reflection, such as transparency and power tunneling.
Enantioselective synthesis of chiral sulfinates using chiral diamines.
Nakamura, Shuichi; Tateyama, Motoaki; Sugimoto, Hideki; Nakagawa, Masaya; Watanabe, Yoshihiko; Shibata, Norio; Toru, Takeshi
2005-02-01
The reaction of p-toluenesulfinyl chloride with alcohols in the presence of chiral diamines was examined. Chiral sulfinates were obtained in good yields with enantioselectivity up to 76% ee. Copyright 2005 Wiley-Liss, Inc.
Chiral magnetism at oxide interfaces
NASA Astrophysics Data System (ADS)
Randeria, Mohit
2014-03-01
There are tantalizing hints of magnetism at the n-type LaAlO3/SrTiO3 interface, but the experimental evidence remains controversial in view of some of the differences between different samples and probes. I will argue that if magnetism exists at interfaces, symmetry arguments imply chiral interactions that lead to a spiral ground state in zero external field and skyrmion crystals for H ≠ 0 . I will next present a microscopic model that provides a possible mechanism for the formation of local moments. I will show that the coupling of these moments to itinerant electrons leads to ferromagnetic double exchange together with Dzyaloshinskii-Moriya (DM) interactions and an easy-plane ``compass'' anisotropy, which arise from Rashba spin-orbit coupling (SOC) due to the lack of inversion symmetry at the interface. The compass term, often ignored in the literature on chiral magnetism, is shown to play a crucial role in determining the magnetic ground state. I will compare our results with existing torque magnetometry data on LAO/STO and try to reconcile it with scanning SQUID magnetometry. Finally, I will present the phase diagram in a field and show that easy-plane anisotropy stabilizes an unexpectedly large skyrmion crystal phase and describe its properties. (Work done in collaboration with Sumilan Banerjee, Onur Erten, Daniel Kestner and James Rowland). Supported by DOE-BES DE-SC0005035, NSF-DMR-1006532 and NSF MRSEC DMR-0820414.
Zhu, Xuefeng; Duan, Pengfei; Zhang, Li; Liu, Minghua
2011-03-14
A series of amphiphilic L-glutamic acid derivatives with various saturated alkyl chains has been designed and their co-assembly with 4,4'-bipyridine in aqueous media has been investigated. While the individual amphiphiles formed hydrogels with water and self-assembled into fine fiber networks, the addition of 4,4'-bipyridine caused significant changes in the co-assembled nanostructures such that twisted chiral ribbons were formed. In these supramolecular systems, either fine structural changes or adjustment of the stoichiometric ratio of the two components had crucial effects on the formation of the chiral twists. Based on detailed investigations by SEM and XRD analyses, FTIR, CD, and UV/Vis spectroscopies, and molecular simulation, it is considered that a delicate synergistic balance between π-π stacking, hydrophobic, and chiral interactions is responsible for the formation of the chiral twists. An interesting sandwich structure, in which an excess of 4,4'-bipyridine is inserted into the space of primary cages constructed from the amphiphile and 4,4'-bipyridine, is proposed. Remarkably, the handedness of these chiral twists is related not only to the chiral center of the glutamic unit, but also the chain length of the alkyl tails. This work provides a deeper understanding of the formation mechanism of chiral twists, and exemplifies a feasible shortcut to the rational design of chiral structures from basic molecular structures to supramolecular systems.
Belardini, Alessandro; Centini, Marco; Leahu, Grigore; Hooper, David C.; Li Voti, Roberto; Fazio, Eugenio; Haus, Joseph W.; Sarangan, Andrew; Valev, Ventsislav K.; Sibilia, Concita
2016-01-01
Extrinsic or pseudo-chiral (meta)surfaces have an achiral structure, yet they can give rise to circular dichroism when the experiment itself becomes chiral. Although these surfaces are known to yield differences in reflected and transmitted circularly polarized light, the exact mechanism of the interaction has never been directly demonstrated. Here we present a comprehensive linear and nonlinear optical investigation of a metasurface composed of tilted gold nanowires. In the linear regime, we directly demonstrate the selective absorption of circularly polarised light depending on the orientation of the metasurface. In the nonlinear regime, we demonstrate for the first time how second harmonic generation circular dichroism in such extrinsic/pseudo-chiral materials can be understood in terms of effective nonlinear susceptibility tensor elements that switch sign depending on the orientation of the metasurface. By providing fundamental understanding of the chiroptical interactions in achiral metasurfaces, our work opens up new perspectives for the optimisation of their properties. PMID:27553888
Superconductivity in a chiral nanotube
NASA Astrophysics Data System (ADS)
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-02-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Chiral anomalies and differential geometry
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Superconductivity in a chiral nanotube
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-01-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity—unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures. PMID:28205518
Superconductivity in a chiral nanotube.
Qin, F; Shi, W; Ideue, T; Yoshida, M; Zak, A; Tenne, R; Kikitsu, T; Inoue, D; Hashizume, D; Iwasa, Y
2017-02-16
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity-unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism
NASA Astrophysics Data System (ADS)
Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas
2015-05-01
The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis.
Chiral recognition and selection during the self-assembly process of protein-mimic macroanions
Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin; Li, Tao; Haso, Fadi; Hu, Lang; Zhang, Baofang; Basca, John; Wei, Yongge; Gao, Yanqing; Hou, Yu; Li, Yang-Guang; Hill, Craig L.; Wang, En-Bo; Liu, Tianbo
2015-03-01
The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis of the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.
Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism
Dolamic, Igor; Varnholt, Birte; Bürgi, Thomas
2015-01-01
The transfer of chirality from one set of molecules to another is fundamental for applications in chiral technology and has likely played a crucial role for establishing homochirality on earth. Here we show that an intrinsically chiral gold cluster can transfer its handedness to an achiral molecule adsorbed on its surface. Solutions of chiral Au38(2-PET)24 (2-PET=2-phenylethylthiolate) cluster enantiomers show strong vibrational circular dichroism (VCD) signals in vibrations of the achiral adsorbate. Density functional theory (DFT) calculations reveal that 2-PET molecules adopt a chiral conformation. Chirality transfer from the cluster to the achiral adsorbate is responsible for the preference of one of the two mirror images. Intermolecular interactions between the adsorbed molecules on the crowded cluster surface seem to play a dominant role for the phenomena. Such chirality transfer from metals to adsorbates likely plays an important role in heterogeneous enantioselective catalysis. PMID:25960309
Wang, Yizhan; Shi, Lei; Yang, Yang; Li, Bao; Wu, Lixin
2014-09-21
To explore the principle of chiral induction in inorganic clusters, chiral organic cations with two stereocenters, R- and S-BPEA, are used to encapsulate a series of polyoxometalates (POMs) bearing different structures and transition absorption bands in aqueous solution, constructing a series of chiral supramolecular complexes. Due to the induction of chiral organic cations, POMs possessing both chiral and achiral structures show an induced circular dichroism (ICD) effect. ICD signals in the absorption bands corresponding to ligand to metal charge transfer (LMCT) transitions, d-d transitions and intervalence charge transfer (IVCT) transitions are observed for different complexes. Moreover, the ICD of the POMs exhibits a direct correlation with the degree of POM distortion and the distance between the chiral center and the POM surface. The encapsulation of POMs with chiral organic cations via electrostatic interactions provides a facile and effective method for constructing optically pure POM-based materials.
Anoop Krishnan, N. M. Ghosh, Debraj
2014-02-14
The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15°, and zero for zigzag (0°) and armchair (30°) configurations.