Chiral solitons in the spectral quark model
NASA Astrophysics Data System (ADS)
Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan
2007-07-01
Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex-mass propagators weighted with a suitable spectral function. This technique is a method of regularizing the effective quark theory in a way preserving many desired features crucial in analysis of solitons. We review the model in the vacuum sector, stressing the feature of the absence of poles in the quark propagator. We also investigate in detail the analytic structure of meson two-point functions. We provide an appropriate prescription for constructing valence states in the spectral approach. The valence state in the baryonic soliton is identified with a saddle point of the Dirac eigenvalue treated as a function of the spectral mass. Because of this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This is a manifestation of the absence of poles in the quark propagator. Self-consistent mean-field hedgehog solutions are found numerically and some of their properties are determined and compared to previous chiral soliton models. Our analysis constitutes an involved example of a treatment of a relativistic complex-mass system.
Covariant nonlocal chiral quark models with separable interactions
Dumm, D. Gomez; Grunfeld, A. G.; Scoccola, N. N.
2006-09-01
We present a comparative analysis of chiral quark models which include nonlocal covariant four-fermion couplings. We consider two alternative ways of introducing the nonlocality, as well as various shapes for the momentum-dependent form factors governing the effective interactions. In all cases we study the behavior of model parameters and analyze numerical results for constituent quark masses and quark propagator poles. Advantages of these covariant nonlocal schemes over instantaneous nonlocal schemes and the standard NJL model are pointed out.
Nonperturbative partonic quasidistributions of the pion from chiral quark models
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Ruiz Arriola, Enrique
2017-10-01
We evaluate nonperturbatively the quark quasidistribution amplitude and the valence quark quasidistribution function of the pion in the framework of chiral quark models, namely the Nambu-Jona-Lasinio model and the Spectral Quark Model. We arrive at simple analytic expressions, where the nonperturbative dependence on the longitudinal momentum of the pion can be explicitly assessed. The model results for the quark quasidistribution amplitude of the pion compare favorably to the data obtained from the Euclidean lattice simulations. The quark distribution amplitude, arising in the limit of infinite longitudinal momentum of the pion, agrees, after suitable QCD evolution, to the recent data extracted from Euclidean lattices, as well as to the old data from transverse lattice simulations.
Isospin symmetry breaking in the chiral quark model
NASA Astrophysics Data System (ADS)
Song, Huiying; Zhang, Xinyu; Ma, Bo-Qiang
2010-12-01
We discuss the isospin symmetry breaking (ISB) of the valence- and sea-quark distributions between the proton and the neutron in the framework of the chiral quark model. We assume that isospin symmetry breaking is the result of mass differences between isospin multiplets and then analyze the effects of isospin symmetry breaking on the Gottfried sum rule and the NuTeV anomaly. We show that, although both flavor asymmetry in the nucleon sea and the ISB between the proton and the neutron can lead to the violation of the Gottfried sum rule, the main contribution is from the flavor asymmetry in the framework of the chiral quark model. We also find that the correction to the NuTeV anomaly is in an opposite direction, so the NuTeV anomaly cannot be removed by isospin symmetry breaking in the chiral quark model. It is remarkable that our results of ISB for both valence- and sea-quark distributions are consistent with the Martin-Roberts-Stirling-Thorne parametrization of quark distributions.
Quark matter under strong magnetic fields in chiral models
Rabhi, Aziz; Providencia, Constanca
2011-05-15
The chiral model is used to describe quark matter under strong magnetic fields and is compared to other models, the MIT bag model and the two-flavor Nambu-Jona-Lasinio model. The effect of vacuum corrections due to the magnetic field is discussed. It is shown that if the magnetic-field vacuum corrections are not taken into account explicitly, the parameters of the models should be fitted to low-density meson properties in the presence of the magnetic field.
Quark structure of chiral solitons
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Quark dynamics and spin structure in the chiral chromodielectric model
NASA Astrophysics Data System (ADS)
Barone, V.; Drago, A.; Fiolhais, M.
1994-11-01
The dynamical structure of the nucleon is studied in the chiral version of the chromodielectric model. The color-dielectric field and the meson clouds are described by hedgehog coherent states. Standard projection techniques are used to construct zero-linear-momentum eigenstates with the nucleon quantum numbers of angular momentum and isospin. Both the unpolarized and the polarized quark distribution functions are computed. Results are in good agreement with the data and a noticeable improvement with respect to the predictions of the non-chiral model is observed.
Structure of pentaquarks Pc+ in the chiral quark model
NASA Astrophysics Data System (ADS)
Yang, Gang; Ping, Jialun; Wang, Fan
2017-01-01
The recent experimental results of the LHCb Collaboration suggested the existence of pentaquark states with a charmonium. To understand the structure of the states, a dynamical calculation of 5-quark systems with quantum numbers I JP=1/2 (1/2 )±,1/2 (3/2 )±and1/2 (5/2 )±is performed in the framework of the chiral quark model with the help of the Gaussian expansion method. The results show that there are several negative parity resonance states while all of the positive parity states are the scattering states. The Pc(4380 ) state is suggested to be the pentaquark state of Σc*D ¯. Although the energy of ΣcD ¯* is very close to the mass of Pc(4450 ), the inconsistent parity prevents the assignment. The calculated distances between quarks confirm the molecular nature of the states.
Quark contribution to the proton spin in the chiral quark-meson model
Stern, J. ); Clement, G. )
1988-12-01
It has been argued that, to leading order in the 1/N/sub c/ expansion, very little of the spin of the proton is carried by the helicities of its constituent quarks, in accordance with the results of a recent EMC experiment. The authors investigate this question by a direct computation in the chiral quark-meson model, where the proton spin is generated by cranking a mean field hedgehog baryon. For not too small values of the quark-meson coupling constant, their results are consistent with the EMC data.
Non-leptonic decays in an extended chiral quark model
Eeg, J. O.
2012-10-23
We consider the color suppressed (nonfactorizable) amplitude for the decay mode B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}. We treat the b-quark in the heavy quark limit and the energetic light (u,d,s) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} is suppressed by a factor of order {Lambda}{sub QCD}/m{sub b} with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0} can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for B{sub d}{sup 0}{yields}{pi}{sup 0}{pi}{sup 0}.
QCD topological susceptibility from the nonlocal chiral quark model
NASA Astrophysics Data System (ADS)
Nam, Seung-Il; Kao, Chung-Wen
2017-06-01
We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.
The Chiral Quark Soliton Model for the Nucleon
NASA Astrophysics Data System (ADS)
Watabe, T.; Toki, H.
1992-03-01
We study the chiral invariant quark model lagrangians under the Hartree approximation for construction of a hedgehog solution with the baryon number B = 1. We take into account the Dirac sea contributions to the energy and various densities in terms of the heat-kernel method. With the parameters of the Nambu-Jona-Lasinio model lagrangian fixed by the meson properties, we do not find any B = 1 hedgehog solutions except for one case, even which is, however, unstable against small perturbation. We study then the Diakonov-Petrov model lagrangian, which is introduced by investigating the properties of the quark field in the instanton background in QCD. We find in this case stable hedgehog solutions under the heat-kernel regularization method in some parameter region. We study also the isoscalar-vector type (omega-meson type) correlations among quarks for the nucleon properties. The hedgehog energy, the baryon root mean square radius and the axial vector coupling constant g_{A} are calculated as a function of the omega-quark coupling strength.
Finite-temperature corrections in the dilated chiral quark model
Kim, Y.; Lee, Hyun Kyu |; Rho, M. |
1995-03-01
We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, f{sub {pi}}(T)/f{sub {pi}} = m{sub Q}(T)/m{sub Q} {approx_equal} m{sub {sigma}}(T)/m{sub {sigma}}while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ``see`` different hadron properties in the hadronization exit phase.
Proton spin problem and chiral constituent quark model
Rana, J. M. S.; Dahiya, H.; Gupta, M.
2008-10-13
Some of the non-relativistic quark model (NRQM) predictions of some spin and flavor parameters are in sharp conflict with the observations made from deep inelastic scattering experiments. Besides this there are other spin and flavor dependent quantities which could not be explained by NRQM. These contradictions are referred to as Proton spin problem. These issues get resolved, to some extent, in Chiral Constituent Quark Model (CQM) which incorporates the basic features of NRQM and chiral symmetry. The implications of the latest data pertaining to u-bar-d-bar asymmetry and the spin polarization functions on the contributions of singlet Goldstone Boson {eta}' within CQM with configuration mixing for explaining the proton spin problem have been investigated. It is found that the present data favors smaller values of the coupling of singlet Goldstone Boson as compared to the corresponding contributions from {pi}, K and {eta}' Goldstone bosons. It seems that a small non-zero value of the coupling of {eta}'({zeta}{ne}0)({zeta}{ne}0) is preferred over {zeta} = -0.10 phenomenologically.
SU(4) chiral quark model with configuration mixing
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2003-04-01
The chiral quark model with configuration mixing and broken SU(3)×U(1) symmetry is extended to include the contribution from cc¯ fluctuations by considering broken SU(4) instead of SU(3). The implications of such a model are studied for quark flavor and spin distribution functions corresponding to E866 and the NMC data. The predicted parameters regarding the charm spin distribution functions, for example, Δc, Δc/ΔΣ, Δc/c as well as the charm quark distribution functions, for example, c¯, 2c¯/(ū+d¯), 2c¯/(u+d) and (c+c¯)/∑(q+q¯) are in agreement with other similar calculations. Specifically, we find Δc=-0.009, Δc/ΔΣ=-0.02, c¯=0.03 and (c+c¯)/∑(q+q¯)=0.02 for the χQM parameters a=0.1, α=0.4, β=0.7, ζE866=-1-2β, ζNMC=-2-2β and γ=0.3; the latter appears due to the extension of SU(3) to SU(4).
NASA Astrophysics Data System (ADS)
Girdhar, Aarti; Dahiya, Harleen; Randhawa, Monika
2015-08-01
The magnetic moments of JP=3/2+ decuplet baryons have been calculated in the chiral constituent quark model (χ CQM ) with explicit results for the contribution coming from the valence quark polarizations, sea quark polarizations, and their orbital angular momentum. Since the JP=3/2+ decuplet baryons have short lifetimes, the experimental information about them is limited. The χ CQM has important implications for chiral symmetry breaking as well as SU(3) symmetry breaking since it works in the region between the QCD confinement scale and the chiral symmetry breaking scale. The predictions in the model not only give a satisfactory fit when compared with the experimental data but also show improvement over the other models. The effect of the confinement on quark masses has also been discussed in detail and the results of χ CQM are found to improve further with the inclusion of effective quark masses.
Six-quark structure of d*(2380 ) in a chiral constituent quark model
NASA Astrophysics Data System (ADS)
Lü, Qi-Fang; Huang, Fei; Dong, Yu-Bing; Shen, Peng-Nian; Zhang, Zong-Ye
2017-07-01
The structure of d*(2380 ) is restudied with the single cluster structure in the chiral SU(3) quark model which has successfully been employed to explain the N -N scattering data and the binding energy of deuteron. The binding behavior of such a six quark system is solved by using a variational method. The trial wave function is chosen to be a combination of a basic spherical symmetric component of [(0 s )6]orb in the orbital space with 0 ℏω excitation and an inner structural deformation component of [(0 s )5(1 s )]orb and [(0 s )4(0 p )2]orb in the orbital space with 2 ℏω excitation, both of which are in the spatial [6 ]orb symmetry. It is shown that the mass of the system is about 2356 MeV, which is qualitatively consistent with the result both from the two-cluster configuration calculation and from the data measured by the WASA Collaborations. When the meson exchange interactions are absent, the attraction is insufficient to form a stable state below the Δ Δ threshold. This result tells us that as long as the medium-range interaction due to the chiral symmetry consideration is properly introduced, the mass of the system will be reduced in a rather large extent. It also implies that the observed d* is a six-quark bound state with respect to the Δ Δ threshold, which again supports the conclusion that d* is a hexaquark dominant state.
Chiral phases of fundamental and adjoint quarks
Natale, A. A.
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Chiral phases of fundamental and adjoint quarks
NASA Astrophysics Data System (ADS)
Natale, A. A.
2016-01-01
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (nf ≈ 11 - 13) in agreement with lattice data.
Eta and kaon production in a chiral quark model
NASA Astrophysics Data System (ADS)
Golli, B.; Širca, S.
2016-09-01
We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into η N, K Λ and K Σ channels, as well η p, η n, K+ Λ, and K0 Σ+ photoproduction processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance near 1685 MeV in the η n channel.
From chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E. R.; Salcedo, L. L.; Megias, E.
2013-03-25
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
NASA Astrophysics Data System (ADS)
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
NASA Astrophysics Data System (ADS)
Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.
2017-02-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.
Octet magnetic moments and the Coleman-Glashow sum rule violation in the chiral quark model
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2002-09-01
Baryon octet magnetic moments when calculated within the chiral quark model, incorporating the orbital angular momentum as well as the quark sea contribution through the Cheng-Li mechanism, not only show improvement over the nonrelativistic quark model results but also give a nonzero value for the right-hand side of the Coleman-Glashow sum rule. When effects due to spin-spin forces between constituent quarks as well as ``mass adjustments'' due to confinement are added, it leads to an excellent fit for the case of p,Σ+, Ξo and violation of the Coleman-Glashow sum rule, whereas in almost all the other cases the results are within 5% of the data.
Contrera, G. A.; Dumm, D. Gomez; Scoccola, Norberto N.
2010-03-01
We study the finite temperature behavior of light scalar and pseudoscalar meson properties in the context of a three-flavor nonlocal chiral quark model. The model includes mixing with active strangeness degrees of freedom, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. We analyze the chiral restoration and deconfinement transitions, as well as the temperature dependence of meson masses, mixing angles and decay constants. The critical temperature is found to be T{sub c{approx_equal}}202 MeV, in better agreement with lattice results than the value recently obtained in the local SU(3) PNJL model. It is seen that above T{sub c} pseudoscalar meson masses get increased, becoming degenerate with the masses of their chiral partners. The temperatures at which this matching occurs depend on the strange quark composition of the corresponding mesons. The topological susceptibility shows a sharp decrease after the chiral transition, signalling the vanishing of the U(1){sub A} anomaly for large temperatures.
Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model
NASA Astrophysics Data System (ADS)
Akiyama, Satoru; Futami, Yasuhiko
2003-04-01
In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.
Isgur-Wise function within a modified heavy-light chiral quark model
Eeg, Jan O.; Kumericki, Kresimir
2010-04-01
We consider the Isgur-Wise function {xi}({omega}) within a new modified version of a heavy-light chiral quark model. While early versions of such models gave an absolute value of the slope that was too small, namely {xi}{sup '}(1){approx_equal}-0.4 to -0.3, we show how extended version(s) may lead to values around -1, in better agreement with recent measurements. This is obtained by introducing a new mass parameter in the heavy-quark propagator. We also shortly comment on the consequences for the decay modes B{yields}DD.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Biernat, Elmer P.; Pena, Maria Teresa; Ribiero, Jose' Emilio F.; Stadler, Alfred; Gross, Franz L.
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Born term for high-energy meson-hadron collisions from QCD and chiral quark model
NASA Astrophysics Data System (ADS)
Ochs, Wolfgang; Shimada, Tokuzo
1988-12-01
Various experimental observations reveal a sizeable hard component in the high-energy ``soft'' hadronic collisions. For primary meson beams we propose a QCD Born term which describes the dissociation of the primary meson into a quark-antiquark pair in the gluon field of the target. A pointlike effective pion-quark coupling is assumed as in the chiral quark model by Manohar and Georgi. We derive the total cross sections which for pion beams, for example, are given in terms of ƒ;-2π and some properties of the hadronic final states. In particular, we stress the importance of studying three-jet events in meson-nucleon scattering and discuss the seagull effect. On leave of absence from Meiji University, Izumi Campus, Eifuku 1-9-1, Suginami, Tokyo 168, Japan.
NASA Astrophysics Data System (ADS)
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.; Zhukovsky, V. C.
2017-05-01
In this paper we investigate the phase structure of a (1 +1 )-dimensional quark model with four-quark interaction and in the presence of baryon (μB), isospin (μI), and chiral isospin (μI 5) chemical potentials. Spatially inhomogeneous chiral density wave (for chiral condensate) and single wave (for charged pion condensate) approaches are used. It is established that in the large-Nc limit (Nc is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. Moreover, it is shown that inhomogeneous charged PC phase with nonzero baryon density is induced in the model by arbitrary small values of the chemical potential μI 5 (for a rather large region of μB and μI).
Generalized Ginzburg-Landau approach to inhomogeneous phases in nonlocal chiral quark models
NASA Astrophysics Data System (ADS)
Carlomagno, J. P.; Gómez Dumm, D.; Scoccola, N. N.
2015-05-01
We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg-Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.
Chiral Quark-Meson model of N and DELTA with vector mesons
Broniowski, W.; Banerjee, M.K.
1985-10-01
Vector mesons rho, A/sub 1/ and ..omega.. are introduced in the Chiral Quark-Meson Theory (CQMT) of N and ..delta... We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ..omega.. to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA).
Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model
NASA Astrophysics Data System (ADS)
Kotko, P.; Praszałowicz, M.
2009-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Convergence of the self-energy in a relativistic chiral quark model: excited nucleon and Δ sector
NASA Astrophysics Data System (ADS)
Tursunov, E. M.
2010-10-01
A convergence of the valence quark self-energies in the 1S, 2S, 1P1/2, 1P3/2 orbits induced by pion- and gluon-field configurations is shown in the frame of a relativistic chiral quark model. It is shown that in order to reach a convergence, one needs to include the contribution of the intermediate quark and anti-quark states with the total momentum up to j = 25/2. It is argued that a restriction to the lowest mode when estimating the self-energy is not a good approximation.
Baryon spectrum in large N{sub c} chiral soliton and in quark models
Kopeliovich, Vladimir B.; Shunderuk, Andrei M.
2006-05-01
Strangeness contents of baryons are calculated within the rigid rotator model for arbitrary number of colors N{sub c}. The problem of extrapolation to realistic value N{sub c}=3 is noted, based on explicit calculations and comparison of the rigid rotator and rigid oscillator variants of the model. Some features of exotic baryon spectra ({l_brace}10{r_brace}, {l_brace}27{r_brace}, and {l_brace}35{r_brace}-plets of baryons) obtained in the chiral soliton approach can be understood in terms of simplified quark (4qq) wave functions. The effective mass of strange antiquark in different SU(3) multiplets of pentaquarks should depend on the particular multiplet, to link the predictions of soliton and quark models. The estimate of the 6{sub F} and 3{sub F} diquarks mass difference can be made from comparison with chiral soliton model results for masses of exotic baryons from different SU(3) multiplets. The masses of baryons partners with different values of spin J are also estimated.
Tetraquarks with colour-blind forces in chiral quark models
NASA Astrophysics Data System (ADS)
Pepin, S.; Stancu, Fl.; Genovese, M.; Richard, J.-M.
1997-02-01
We discuss the stability of multiquark systems within the recent model of Glozman et al. where the chromomagnetic hyperfine interaction is replaced by pseudoscalar-meson exchange contributions. We find that such an interaction binds a heavy tetraquark systems QQqq (Q = c, b and q = u, d) by 0.2-0.4 GeV. This is at variance with results of previous models where ccqq is unstable.
Strange baryons in a chiral quark-meson model (II). broken SU(3)
NASA Astrophysics Data System (ADS)
McGovern, Judith A.; Birse, Michael C.
1990-01-01
The chiral-quark meson model is used to study baryon properties with realistic breaking of SU(3). The symmetry breaking is assumed to be strong, so that a random phase approximation (RPA) can be used. In this the strange baryons are described as excitations built on the hedgehog soliton and have an excitation energy of 315 MeV. Other properties of strange baryons are obtained by an approximate spin-isospin projection from the RPA wave function. The magnetic moments agree reasonably well with experiment, but the deviations from the experimental values suggest that the method is valid for the case of rather stronger symmetry breaking than is realistic. The dependence of the RPA energy on the magnitude of the symmetry breaking is examined, and found to be strongly nonlinear for realistic values. This supports the idea that a large πN sigma commutator need not imply a large strange-quark content in the proton. For reasonable values of the scalar meson masses the strange-quark condensate is found to be less than 5% of the total, at the mean-field level. We also estimate the contribution to the condensate from RPA correlations. Within a one-mode approximation we find these to be very small, ˜2%.
Octet and decuplet baryon magnetic moments in the chiral quark model
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Gupta, Manmohan
2003-06-01
Octet and decuplet baryon magnetic moments have been formulated within the chiral quark model (χ QM) with configuration mixing incorporating the sea quark polarizations and their orbital angular momentum through a generalization of the Cheng-Li mechanism. When the parameters of the χ QM without configuration mixing are fixed by incorporating the latest data pertaining to ū-d¯ asymmetry (E866) and the spin polarization functions, in the case of octet magnetic moments the results not only show improvement over the nonrelativistic quark model results but also give a nonzero value for the right hand side of the Coleman-Glashow sum rule, usually zero in most of the models. In the case of decuplet magnetic moments, we obtain a good overlap for Δ++, Ω-, and the transition magnetic moment ΔN for which data are available. In the case of the octet, the predictions of the χ QM with the generalized Cheng-Li mechanism show remarkable improvements in general when the effects of configuration mixing and “mass adjustments” due to confinement are included, specifically in the case of p, Σ+, Ξ0, and the ΣΛ transition magnetic moment and in the violation of the Coleman-Glashow sum rule an almost perfect agreement with data is obtained. When the above analysis is repeated with the earlier NMC data, a similar level of agreement is obtained; however, the results in the case of E866 look to be better. In this case, we incorporate in our analysis the gluon polarization Δg, found phenomenologically through the relation ΔΣ(Q2)=ΔΣ-[3αs(Q2)/2π]Δg(Q2); not only do we obtain an improvement in the quark spin distribution functions and magnetic moments, but also the value of Δg comes out in good agreement with certain recent measurements as well as theoretical estimates.
Spectrum of the excited N* and Δ* baryons in a relativistic chiral quark model
NASA Astrophysics Data System (ADS)
Tursunov, E. M.; Krewald, S.
2014-10-01
The spectrum of the SU(2) flavor baryons is studied in the frame of a relativistic chiral quark potential model based on the one-pion and one-gluon exchange mechanisms. It is argued that the N* and Δ* resonances strongly coupled to the πN channel are identified with the orbital configurations (1S1/2)2(nlj) with a single valence quark in the excited state (nlj). With the obtained selection rules based on the "chiral constraint," we show that it is possible to construct a schematic periodic table of baryon resonances, consistent with the experimental data and yielding no "missing resonances." A new original method for the treatment of the center of mass problem is suggested which is based on the separation of the three-quark Dirac Hamiltonian into the parts, corresponding to the Jacobi coordinates. The numerical estimations for the energy positions of the nucleon and delta baryons (up to and including F-wave N* and Δ* resonances), obtained within the field-theoretical framework by using time ordered perturbation theory, yield an overall good description of the experimental data at the level of the relativized constituent quark model of S. Capstick and W. Roberts without any fitting parameters. The only free parameter of the linear confinement potential was fitted previously by Th. Gutsche to reproduce the axial charge of the nucleon. The ground state Δ(1232) is well reproduced. However, nucleon ground state and most of the radially excited baryon resonances (including Roper) are overestimated. On the contrary, the first band of the orbitally excited baryon resonances with a negative parity are underestimated. At the same time, the second band of the orbitally excited Δ* states with the negative parity are mostly overestimated, while the N* states are close to the experimental boxes. The theoretical estimations of the energy levels for the positive parity baryon resonances with J =5/2, 7/2 are close to the experimental data. At higher energies, where the
Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model
NASA Astrophysics Data System (ADS)
Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.
2017-03-01
Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.
Meson properties in a nonlocal SU(3) chiral quark model at finite temperature
Contrera, G. A.; Gomez Dumm, D.; Scoccola, N. N.
2010-11-12
Finite temperature meson properties are studied in the context of a nonlocal SU(3) quark model which includes flavor mixing and the coupling of quarks to the Polyakov loop (PL). We analyze the behavior of scalar and pseudoscalar meson masses and mixing angles, as well as quark-meson couplings and pseudoscalar meson decay constants.
Baryon-Baryon Interaction in a Chiral-Quark Mean - Model
NASA Astrophysics Data System (ADS)
Pineda, Fernando Javier
The nontopological soliton solution of a chirally invariant Lagrangian which incorporates the linear (sigma) -model BB84,KR84 is used as a model for Baryons. The nucleon-nucleon interaction is modeled by the interaction of two such solitons. The soliton-soliton interaction is calculated adiabatically by extremizing the energy of the two-soliton system subject to the constraint that the inter-soliton separation is fixed. The fields and wavefunctions are expanded in a two-center harmonic oscillator basis thus permitting essentially arbitrary tri-axial deformations. The hedgehog form is imposed on the spin-isospin wavefunction of the solitons. The isospin (or spin) of the two solitons may be quantized along different directions thus introducing a dependence in the energy on the relative orientation of the quantization axes. This permits the extraction of a low energy effective NN potential by an approximate method. An OBE calculation between identical undeformed solitons shows that the pion form factor is quite soft. It also suggests that the mass ((TURN)550 MeV) of the (sigma) -meson, responsible for intermediate range attraction in the central potential of phenomenological meson-exchange models, is a consequence of the coupling of a heavier (sigma) -meson with lighter pions. The Euler-Lagrange equations for the six-quark system are solved approximately using a variational method. The solutions exhibit a dynamical boundary which divides the NN interaction into two domains, an exterior domain where the solitons maintain their identity and the six-quark system is appropriately described as two distinct solitons, and an interior domain where the system is more appropriately described as a single highly deformed soliton. The boundary occurs sharply for critical inter-soliton separations in the range 0.8 - 0.1 fm. The even parity interior solution and the critical separation are shown to be consistent with the energy independence of the F-matrix at low energy in the
Axial-vector form factors for the low lying octet baryons in the chiral quark constituent model
NASA Astrophysics Data System (ADS)
Dahiya, Harleen; Randhawa, Monika
2014-10-01
We have calculated the axial-vector form factors of the low-lying octet baryons (N, Σ, Ξ, and Λ) in the chiral constituent quark model. In particular, we have studied the implications of chiral symmetry breaking and SU(3) symmetry breaking for the singlet (gA0) and nonsinglet (gA3 and gA8) axial-vector coupling constants expressed as combinations of the spin polarizations at zero momentum transfer. The conventional dipole form of parametrization has been used to analyze the Q2 dependence of the axial-vector form factors [GA0(Q2), GA3(Q2), and GA8(Q2)]. The total strange singlet and nonsinglet contents [Gs0(Q2), Gs3(Q2), and Gs8(Q2)] of the nucleon determining the strange quark contribution to the nucleon spin (Δs) have also been discussed.
Spectral properties of a Dirac operator in the chiral quark soliton model
Arai, Asao; Hayashi, Kunimitsu; Sasaki, Itaru
2005-05-01
We consider a Dirac operator H acting in the Hilbert space L{sup 2}(R{sup 3};C{sup 4})xC{sup 2}, which describes a Hamiltonian of the chiral quark soliton model in nuclear physics. The mass term of H is a matrix-valued function formed out of a function F:R{sup 3}{yields}R, called a profile function, and a vector field n on R{sup 3}, which fixes pointwise a direction in the isospin space of the pion. We first show that, under suitable conditions, H may be regarded as a generator of a supersymmetry. In this case, the spectra of H are symmetric with respect to the origin of R. We then identify the essential spectrum of H under some condition for F. For a class of profile functions F, we derive an upper bound for the number of discrete eigenvalues of H. Under suitable conditions, we show the existence of a positive energy ground state or a negative energy ground state for a family of scaled deformations of H. A symmetry reduction of H is also discussed. Finally a unitary transformation of H is given, which may have a physical interpretation.
Decay width of the d*(2380)→NNπ process in a chiral constituent quark model
NASA Astrophysics Data System (ADS)
Dong, Yubing; Huang, Fei; Shen, Pengnian; Zhang, Zongye
2017-06-01
The width of three-body single-pion decay process d* → NNπ 0 , ± is calculated by using the d* wave function obtained from our chiral SU(3) constituent quark model calculation. The effect of the dynamical structure on the width of d* is taken into account in both the single ΔΔ channel and coupled ΔΔ + CC two-channel approximations. Our numerical result shows that in the coupled-channel approximation, namely, the hidden-color configuration being considered, the obtained partial decay width of d* → NNπ is about several hundred keV, while in the single ΔΔ channel it is just about 2 ∼ 3 MeV. We, therefore, conclude that the partial width in the single-pion decay process of d* is much smaller than the widths in its double-pion decay processes. Our prediction may provide a criterion for judging different interpretations of the d* structure, as different pictures for the d* may result quite different partial decay width.
NASA Astrophysics Data System (ADS)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P. G.
2017-03-01
The discovery of the D^*_{s0}(2317) and D_{s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q{\\bar{q}} and (Q{\\bar{q}})(q{\\bar{q}}) Fock components. In contrast to the c{\\bar{s}} sector, there is no experimental evidence of J^P=0^+,1^+ bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D_{s0}^*(2317) and D_{s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave {\\bar{B}}_s scalar and axial mesons and the {\\bar{B}}^{(*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels.
Quark mass correction to chiral separation effect and pseudoscalar condensate
NASA Astrophysics Data System (ADS)
Guo, Er-dong; Lin, Shu
2017-01-01
We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.
Strong decays of heavy-light mesons in a chiral quark model
NASA Astrophysics Data System (ADS)
Zhong, Xian-Hui; Zhao, Qiang
2008-07-01
We carry out a systematic study of the heavy-light meson strong decays in a chiral quark model. For the S-wave vectors [D*(2007), D*±(2010)], P-wave scalars [D0*(2400), B0*(5730)], and tensors [D2*(2460), Ds2*(2573)], we obtain results in good agreement with the experimental data. For the axial vectors D1(2420) and D1'(2430), a state mixing scheme between 1P11 and 1P13 is favored with a mixing angle ϕ≃-(55±5)°, which is consistent with previous theoretical predictions. The same mixing scheme also applies to Ds1(2460) and Ds1(2536) that accounts for the narrow width of the Ds1(2536) and its dominant decay into D*K. For B1(5725) and B1'(5732), such a mixing explains well the decay width of the former but leads to an even broader B1'(5732). Predictions for the strange-bottom axial vectors are also made. For the undetermined meson D*(2640), we find that they fit well in the radially excited state 2S13 according to its decay mode. The newly observed DsJ*(2860) strongly favors the D-wave excited state 1D33. For DsJ*(2632) and DsJ*(2690), we find they are difficult to fit in any Ds excitations in that mass region, if the experimental data are accurate. Theoretical predictions for decay modes of those unobserved states as multiplets of 2S and 1D waves are also presented, which should be useful for the further experimental search for those states.
Chiral symmetry and density waves in quark matter
Nakano, E.; Tatsumi, T.
2005-06-01
A density wave in quark matter is discussed at finite temperature, which occurs along with the chiral condensation, and is described by a dual standing wave in scalar and pseudoscalar condensates on the chiral circle. The mechanism is quite similar to that for the spin density wave suggested by Overhauser and entirely reflects many-body effects. It is found within a mean-field approximation for the Nambu-Jona-Lasinio model that the chiral-condensed phase with the density wave develops at a high-density region just outside the usual chiral-transition line in phase diagram. A magnetic property of the density wave is also elucidated.
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.
2016-12-01
In this article we study the restoration of chiral symmetry at a finite temperature for quark matter with a chiral chemical potential, {μ }5, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows the introduction of, in the simplest way possible, a Euclidean momentum, p E , dependent quark mass function which decays (neglecting logarithms) as 1/{p}{E}2 for large p E , in agreement with the asymptotic behaviour expected in quantum chromodynamics in the presence of a nonperturbative quark condensate. We focus on the critical temperature for chiral symmetry restoration in the chiral limit, T c, versus {μ }5, as well as on the order of the phase transition. We find that T c increases with {μ }5, and that the transition remains of the second order for the whole range of {μ }5 considered.
Goeke, K.; Grabis, J.; Ossmann, J.; Schweitzer, P.; Silva, A.; Urbano, D.
2007-05-15
The nucleon form factors of the energy-momentum tensor are studied in the large-N{sub c} limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice quantum chromodynamics results.
Mass of heavy-light mesons in a constituent quark picture with partially restored chiral symmetry
NASA Astrophysics Data System (ADS)
Park, Aaron; Gubler, Philipp; Harada, Masayasu; Lee, Su Houng; Nonaka, Chiho; Park, Woosung
2016-03-01
We probe effects of the partial chiral symmetry restoration to the mass of heavy-light mesons in a constituent quark model by changing the constituent quark mass of the light quark. Due to the competing effect between the quark mass and the linearly rising potential, whose contribution to the energy increases as the quark mass decreases, the heavy-light meson mass has a minimum value near the constituent quark mass typically used in the vacuum. Hence, the meson mass increases as one decreases the constituent quark mass consistent with recent QCD sum rule analyses, which show an increasing D meson mass as the chiral order parameter decreases.
QCD phase transition with chiral quarks and physical quark masses.
Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao
2014-08-22
We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.
Disoriented chiral condensate formation from tubes of hot quark plasma
Abada, A.; Birse, M.C.
1998-01-01
We investigate the time evolution of a system of quarks interacting with {sigma} and pion fields starting from an initial configuration consisting of a tube of hot quark plasma undergoing a boost-invariant longitudinal expansion. We work within the framework of the linear sigma model using classical transport equations for the quarks coupled to the mean-field equations for the meson fields. In certain cases we find strong amplifications of any initial pion fields. For large-radius tubes, starting from quark densities that are very close to critical, we find that a disoriented chiral condensate can form in the center of the tube. Eventually the collapse of the tube drives this state back to the true vacuum. This process converts the disoriented condensate, dominated by long-wavelength pion modes, into a coherent excitation of the pion field that includes significant components with transverse momenta of around 400 MeV. In contrast, for narrow tubes or larger initial temperatures, amplification occurs only via the pion-laser-like mechanism found previously for spherical systems. In addition, we find that explicit chiral symmetry breaking significantly suppresses the formation of disoriented condensates. {copyright} {ital 1997} {ital The American Physical Society}
Chiral extrapolations on the lattice with strange sea quarks
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien
2005-06-01
The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. Strange sea-quark pairs may induce significant differences in the pattern of chiral symmetry breaking in the chiral limits of two and three massless flavours, in relation with the violation of the Zweig rule in the scalar sector. This effect could affect chiral extrapolations of unquenched lattice simulations with three dynamical flavours, and it could be detected through the quark-mass dependence of hadron observables [S. Descotes-Genon, hep-ph/0410233].
Chiral corrections to the vector and axial couplings of quarks and baryons
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Holstein, Barry R.
2008-06-01
We calculate chiral corrections to the semileptonic vector and axial quark coupling constants using a manifestly Lorentz covariant chiral quark approach up to order O(p{sup 4}) in the two- and three-flavor pictures. These couplings are then used in the evaluation of the corresponding couplings which govern the semileptonic transitions between octet baryon states. In the calculation of baryon matrix elements we use a general ansatz for the spatial form of the quark wave function, without referring to a specific realization of hadronization and confinement of quarks in baryons. Matching the physical amplitudes calculated within our approach to the model-independent predictions of baryon chiral perturbation theory allows us to deduce a connection between our parameters and those of baryon chiral perturbation theory.
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Schweitzer, Peter; Strikman, Mark; Weiss, Christian
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
Ledwig, Tim; Silva, Antonio; Vanderhaeghen, Marc
2009-05-01
We examine the electromagnetic properties of the {delta}(1232) resonance within the self-consistent chiral quark-soliton model. In particular, we present the {delta} form factors of the vector-current G{sub E0}(Q{sup 2}), G{sub E2}(Q{sup 2}), and G{sub M1}(Q{sup 2}) for a momentum-transfer range of 0{<=}Q{sup 2}{<=}1 GeV{sup 2}. We apply the symmetry-conserving quantization of the soliton and take 1/N{sub c} rotational corrections into account. Values for the magnetic moments of all decuplet baryons as well as for the N-{delta} transition are given. Special attention is also given to the electric quadrupole moment of the {delta}.
Kohno, M.
2010-01-15
Hyperon-nucleons interactions constructed by two frameworks, the Kyoto-Niigata SU{sub 6} quark model and the chiral effective field theory, are compared by investigating equivalent interactions in a low-momentum space and, in addition, by calculating hyperon single-particle potentials in the lowest-order Brueckner theory in symmetric nuclear matter. Two descriptions are shown to give similar matrix elements in most channels after renormalizing high momentum components. Although the range of the {Lambda}N interaction is different in two potentials, the {Lambda} single-particle potential in nuclear matter is very similar. The {Sigma}-nucleus and XI-nucleus potentials are also found to be similar. These predictions are to be confronted with forthcoming experimental data.
Santopinto, E.; Bijker, R.
2008-10-13
We present a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, pair creation mechanism. As an application, we study the effect of quark-antiquark pairs on the spin of the proton.
Confinement, quark mass functions, and spontaneous chiral symmetry breaking in Minkowski space
Biernat, Elmar P.; Gross, Franz L.; Pena, Teresa; Stadler, Alfred
2014-01-01
We formulate the covariant equations for quark-antiquark bound states in Minkowski space in the framework of the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We show that these equations are charge conjugation invariant, and that in the chiral limit of vanishing bare quark mass, a massless pseudoscalar bound state is produced in a Nambu--Jona-Lasinio (NJL) mechanism, which is associated with the Goldstone boson of spontaneous chiral symmetry breaking. In this introductory paper we test the formalism by using a simplified kernel consisting of a momentum-space $\\delta$-function with a vector Lorentz structure, to which one adds a mixed scalar and vector confining interaction. The scalar part of the confining interaction is not chirally invariant by itself, but decouples from the equations in the chiral limit and therefore allows the NJL mechanism to work. With this model we calculate the quark mass function, and we compare our Minkowski-space results to LQCD data obtained in Euclidean space. In a companion paper we apply this formalism to a calculation of the pion form factor.
Chiral dynamics with (non)strange quarks
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Quark confinement in a constituent quark model
Langfeld, K.; Rho, M.
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Lattice measurement of BB_s with a chiral light quark action
NASA Astrophysics Data System (ADS)
Blossier, B.
2007-12-01
The computation on the lattice of the bag parameter BB_s associated to the B-B¯ mixing amplitude in the Standard Model is presented. The estimation has been made by combining the static limit of HQET and the Neuberger light quark action which preserves the chiral symmetry on the lattice. We find BBMS¯stat(m)=0.92(3).
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Chiral Lagrangian with Heavy Quark-Diquark Symmetry
Jie Hu; Thomas Mehen
2005-11-29
We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.
Ledwig, Tim; Silva, Antonio; Kim, Hyun-Chul
2010-08-01
We investigate the tensor form factors of the baryon octet within the framework of the chiral quark-soliton model, emphasizing those of the nucleon, taking linear 1/N{sub c} rotational as well as linear m{sub s} corrections into account, and applying the symmetry-conserving quantization. We explicitly calculate the tensor form factors H{sub T}{sup q}(Q{sup 2}) corresponding to the generalized parton distributions H{sub T}(x,{xi},t). The tensor form factors are obtained for the momentum transfer up to Q{sup 2{<=}}1 GeV{sup 2} and at a renormalization scale of 0.36 GeV{sup 2}. We find for the tensor charges {delta}u=1.08, {delta}d=-0.32, and {delta}s=-0.01 and discuss their physical consequences, comparing them with those from other models. Results for tensor charges for the baryon octet are also given.
Quark interchange model of baryon interactions
Maslow, J.N.
1983-01-01
The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.
Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry
Ohki, H.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Matsufuru, H.; Noaki, J.; Shintani, E.; Onogi, T.
2008-09-01
We calculate the nucleon sigma term in two-flavor lattice QCD utilizing the Feynman-Hellman theorem. Both sea and valence quarks are described by the overlap fermion formulation, which preserves exact chiral and flavor symmetries on the lattice. We analyze the lattice data for the nucleon mass using the analytical formulae derived from the baryon chiral perturbation theory. From the data at valence quark mass set different from sea quark mass, we may extract the sea quark contribution to the sigma term, which corresponds to the strange quark content. We find that the strange quark content is much smaller than the previous lattice calculations and phenomenological estimates.
Petreczky P.; Bazavov, A.
2011-10-11
We report preliminary results on the chiral and deconfinement aspects of the QCD transition at finite temperature using the Highly Improved Staggered Quark (HISQ) action on lattices with temporal extent of N{sub {tau}} = 6 and 8. The chiral aspects of the transition are studied in terms of quark condensates and the disconnected chiral susceptibility. We study the deconfinement transition in terms of the strange quark number susceptibility and the renormalized Polyakov loop. We made continuum estimates for some quantities and find reasonably good agreement between our results and the recent continuum extrapolated results obtained with the stout staggered quark action.
The Quark's Model and Confinement
ERIC Educational Resources Information Center
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
The Quark's Model and Confinement
ERIC Educational Resources Information Center
Novozhilov, Yuri V.
1977-01-01
Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)
Phase structure of the Polyakov-quark-meson model
NASA Astrophysics Data System (ADS)
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and Nf-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect of the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.
The NJL Model for Quark Fragmentation Functions
T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki
2009-10-01
A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.
Molecular model for chirality phenomena.
Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G
2016-10-21
Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.
Distinguishing standard model extensions using monotop chirality at the LHC
NASA Astrophysics Data System (ADS)
Allahverdi, Rouzbeh; Dalchenko, Mykhailo; Dutta, Bhaskar; Flórez, Andrés; Gao, Yu; Kamon, Teruki; Kolev, Nikolay; Mueller, Ryan; Segura, Manuel
2016-12-01
We present two minimal extensions of the standard model, each giving rise to baryogenesis. They include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM. Detailed simulation of signal and standard model background events is performed, showing that top quark chirality can be distinguished in hadronic and leptonic decays of the top quarks.
Multi-Dimensional Structure of Crystalline Chiral Condensates in Quark Matter
NASA Astrophysics Data System (ADS)
Lee, Tong-Gyu; Nishiyama, Kazuya; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We explore the multi-dimensional structure of inhomogeneous chiral condensates in quark matter. For a one-dimensional structure, the system becomes unstable at finite temperature due to the Nambu-Goldstone excitations. However, inhomogeneous chiral condensates with multi-dimensional modulations may be realized as a true long-range order at any temperature, as inferred from the Landau-Peierls theorem. We here present some possible strategies for searching the multi-dimensional structure of chiral crystals.
An S(3) symmetry of nonrelative quark models and a top- quark seesaw model
NASA Astrophysics Data System (ADS)
Collins, Hael Switzer
1999-12-01
This work explores problems in three areas of particle physics: electroweak symmetry breaking, the spectrum of the L = 1 baryons and the theory of large N baryons. The first chapter investigates the phenomenological consequences of the top quark seesaw mechanism for breaking electroweak symmetry. We first establish some criteria for a sound top quark seesaw model and then study two models that emerge from these requirements. Both models contain a heavy weak- inert fermion with the same hypercharge as the top quark but the second model contains an additional heavy weak- inert partner for the bottom quark. The low energy spectra of these theories have respectively one and two Higgs doublets. We then show that the current measurements of the rho-parameter require that the heavy fermion in the one doublet model have a mass of 5-7 TeV while in the two doublet model, the heavy partner of the bottom quark must have a mass of at least 10 TeV to agree with the measured decay width of the Z0. The second chapter presents a study of the L = 1 baryons in the quark model and the chiral quark model using an S3 symmetry, which corresponds to permuting the positions of the quarks within a baryon. Given a set of operators with known transformation properties under S3 and the spin-flavor group, the masses of the L = 1 baryons are determined in terms of a small number of unknown parameters. These parameters are fit to the observed mass spectrum for both the quark model and the chiral quark model. The latter model leads to a more satisfactory fit with the measured baryon masses. We also make predictions for the unobserved L = 1 baryons. The final chapter examines the large N limit of the generators of the completely symmetric N index representation of SU(m). In this limit, the group generators behave essentially like classical variables. We use this observation to derive an integral formula for the matrix elements of an arbitrary polynomial of the group generators between low-spin, s
Thomas Mehen; Brian C. Tiburzi
2006-07-17
We extend the chiral Lagrangian with heavy quark-diquark symmetry to quenched and partially quenched theories. These theories are used to derive formulae for the chiral extrapolation of masses and hyperfine splittings of doubly heavy baryons in lattice QCD simulations. A quark-diquark symmetry prediction for the hyperfine splittings of heavy mesons and doubly heavy baryons is rather insensitive to chiral corrections in both quenched and partially quenched QCD. Extrapolation formulae for the doubly heavy baryon electromagnetic transition moments are also determined for the partially quenched theory.
Generalized simplicial chiral models
NASA Astrophysics Data System (ADS)
Alimohammadi, Masoud
2000-02-01
Using the auxiliary field representation of the simplicial chiral models on a ( d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr (AA †) in the Lagrangian of these models by an arbitrary class function of AA †; V(AA †) . This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM 2) from ordinary YM 2. We call these models the "generalized simplicial chiral models". Using the results of the one-link integral over a U( N) matrix, the large- N saddle-point equations for eigenvalue density function ρ( z) in the weak ( β> βc) and strong ( β< βc) regions are computed. In d=2, where the model is in some sense related to the gYM 2 theory, the saddle-point equations are solved for ρ( z) in the two regions, and the explicit value of critical point βc is calculated for V(B)= Tr B n(B=AA †) . For V(B)= Tr B 2, Tr B 3, and Tr B4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σ_{χe}, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current J_{A} that is generated in response to an externally applied electric field eE: J_{A}=σ_{χe}(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σ_{χe}∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESE conductivity for the QGP is found to be σ_{χe} = (#)TT_{rf}Q_{e}Q_{A}/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.
Chiral electric separation effect in the quark-gluon plasma
Jiang, Yin; Liao, Jinfeng; Huang, Xu-Guang
2015-02-02
In this paper we introduce and compute a new transport coefficient for the quark-gluon plasma (QGP) at very high temperature. This new coefficient σχe, the CESE (Chiral Electric Separation Effect) conductivity, quantifies the amount of axial current JA that is generated in response to an externally applied electric field eE: JA=σχe(eE). Starting with a rather general argument in the kinetic theory framework, we show how a characteristic structure σχe∝μμ5 emerges, which also indicates the CESE as an anomalous transport effect occurring only in a parity-odd environment with nonzero axial charge density μ5 ≠ 0. Using the Hard-Thermal-Loop framework, the CESEmore » conductivity for the QGP is found to be σχe = (#)TTrfQeQA/g⁴ln(1/g) μμ5/T² to the leading-log accuracy with the numerical constant (#) depending on favor content, e.g., (#)=14.5163 for u, d light flavors.« less
Chiral bag model for the nucleon
NASA Astrophysics Data System (ADS)
Hosaka, Atsushi; Toki, Hiroshi
1996-12-01
We review the chiral bag model for the nucleon at low energy. The model is a hybrid model of quark and meson degrees of freedom, interpolating the two limits of the Skyrme model at R → 0 and the MIT bag model at R → ∞, where R is the bag radius. Baryon number one ( B = 1) solutions are obtained in the semiclassical method, where the nucleon is regarded as a slowly rotating hedgehog. We investigate static properties of the nucleon such as masses and magnetic moments as functions of R, first in the original chiral bag model and second in the models with vector mesons. We find a reasonably good description for the nucleon in both cases at an intermediate bag radius R ~ 0.6 fm. Results of the model calculations are then re-derived using a group theoretical method in the large- Nc limit.
NASA Astrophysics Data System (ADS)
Li, Hua; Luo, Xin-Lian; Jiang, Yu; Zong, Hong-Shi
2011-01-01
In this paper we apply the equation of state (EOS) of QCD at finite chemical potential and zero temperature proposed in H. S. Zong and W. M. Sun [Int. J. Mod. Phys. A 23, 3591 (2008)IMPAEF0217-751X10.1142/S0217751X08040457] to the study of properties of quark star. This EOS contains only one adjustable parameter mD which sets the scale of chiral symmetry breaking (in our calculation we have chosen two values of mD: mD=244MeV and mD=239MeV, which is fitted from the value of fπ and determined by e+e- annihilation experiment, respectively). From this EOS a model of quark star is established by applying the Tolman-Oppenheimer-Volkoff equation under two conditions: with the P(μ=0) term and without the P(μ=0) term. Our results show clearly that the P(μ=0) term is an important quantity in the study of quark star. A comparison between our model and other models of quark star is made. In particular, we have compared our results with the most recent observational data measured using Shapiro delay reported in P. B. Demorest [Nature (London)NATUAS0028-0836 467, 1081 (2010)10.1038/nature09466].
Chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1987-02-01
Two-dimensional classical chiral models of field theory are considered, the main attention being paid on geometrical aspects of such theories. A characteristic feature of these models is that the interaction is inserted not by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the manifold. These models are in many respects analogous to non-Abelian gauge theories and as became clear recently, they are also important for the superstring theory which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
Li Hua; Luo Xinlian; Zong Hongshi
2010-09-15
In this paper, incorporating the property of the vacuum negative pressure, namely, the bag constant, we present a new model of the equation of state (EOS) of quark matter at finite chemical potential and zero temperature. By comparing our EOS with Fraga et al.'s EOS and SQM1 model, one finds that our EOS is softer than Fraga et al.'s EOS and SQM1 model. The reason for this difference is analyzed. With these results we investigate the structure of a quark star. A comparison between our model of the quark star and other models is made. The obtained mass of the quark star is 1.3{approx}1.66M{sub {center_dot}}and the radius is 9.5{approx}14 Km. One can see that our star's compactness is smaller than that of the other two models.
QCD with Chiral Imbalance: models vs. lattice
NASA Astrophysics Data System (ADS)
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2017-03-01
In heavy ion collisions (HIC) at high energies there may appear new phases of matter which must be described by QCD. These phases may have different color and flavour symmetries associated with the constituents involved in collisions as well as various space-time symmetries of hadron matter. Properties of the QCD medium in such a matter can be approximately described, in particular, by a number of right-handed (RH) and left-handed (LH) light quarks. The chiral imbalance (ChI) is characterized by the difference between the numbers of RH and LH quarks and supposedly occurs in the fireball after HIC. Accordingly we have to introduce a quark chiral (axial) chemical potential which simulates a ChI emerging in such a phase. In this report we discuss the possibility of a phase with Local spatial Parity Breaking (LPB) in such an environment and outline conceivable signatures for the registration of LPB as well as the appearance of new states in the spectra of scalar, pseudoscalar and vector particles as a consequence of local ChI. The comparison of the results obtained in the effective QCD- motivated models with lattice data is also performed.
Chiral matrix model of the semi-QGP in QCD
NASA Astrophysics Data System (ADS)
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-01
Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-08
Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon plasma, was developed for the theory of SU(3) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2+1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of SU (3)_{L} × SU(3)_{R} × Z (3) _{A} , except for a term linear in the current quark mass, m_{qk} . In addition, at a nonzero temperature T it is necessary to add a new term, ~ m_{qk} T^{2} . The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η' . The temperature for the chiral crossover at T$χ$ = 155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β $-$ 1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the $χ$_{2n} . Especially sensitive tests are provided by $χ$_{4} $-$ $χ$_{2} and by $χ$_{6} , which changes in sign about T$χ$ . In conclusion, the behavior of the susceptibilities in the chiral matrix
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-08
Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon plasma, was developed for the theory of SU(3) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2+1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to bemore » symmetric under the flavor symmetry of SU (3)L × SU(3)R × Z (3) A , except for a term linear in the current quark mass, mqk . In addition, at a nonzero temperature T it is necessary to add a new term, ~ mqk T2 . The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η' . The temperature for the chiral crossover at T$χ$ = 155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β $-$ 1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the $χ$2n . Especially sensitive tests are provided by $χ$4 $-$ $χ$2 and by $χ$6 , which changes in sign about T$χ$ . In conclusion, the behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from T$χ$ , that the transition to
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-08
Previously, a matrix model of the region near the transition temperature, in the “semi”quark gluon plasma, was developed for the theory of SU(3) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2+1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of SU (3)_{L} × SU(3)_{R} × Z (3) _{A} , except for a term linear in the current quark mass, m_{qk} . In addition, at a nonzero temperature T it is necessary to add a new term, ~ m_{qk} T^{2} . The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η' . The temperature for the chiral crossover at T$χ$ = 155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β $-$ 1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the $χ$_{2n} . Especially sensitive tests are provided by $χ$_{4} $-$ $χ$_{2} and by $χ$_{6} , which changes in sign about T$χ$ . In conclusion, the behavior of the susceptibilities in the chiral matrix
Nucleon quark distributions in a covariant quark-diquark model
Ian Cloet; W. Bentz; Anthony Thomas
2005-04-01
Spin-dependent and spin-independent quark light-cone momentum distributions and structure functions are calculated for the nucleon. We utilize a modified Nambu-Jona-Lasinio model in which confinement is simulated by eliminating unphysical thresholds for nucleon decay into quarks. The nucleon bound state is obtained by solving the Faddeev equation in the quark-diquark approximation, where both scalar and axial-vector diquarks channels are included. We find excellent agreement between our model results and empirical data.
Baryons in the unquenched quark model
Bijker, R.; Díaz-Gómez, S.; Lopez-Ruiz, M. A.; Santopinto, E.
2016-07-07
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a {sup 3}P{sub 0} quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and β decays of octet baryons.
Semiclassical projection of hedgehog models with quarks
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Broniowski, Wojciech
1986-12-01
A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2)×SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, gA, gπNN, N-Δ mass splitting, properties of the N-Δ transition, etc., are calculated.
Semiclassical projection of hedgehog models with quarks
Cohen, T.D.; Broniowski, W.
1986-12-01
A simple semiclassical method is presented for calculating physical observables in states with good angular momentum and isospin for models whose mean-field solutions are hedgehogs. The method is applicable for theories which have both quark and meson degrees of freedom. The basic approach is to find slowly rotating solutions to the time-dependent mean-field equations. A nontrivial set of differential equations must be solved to find the quark configuration for these rotating hedgehogs. The parameters which specify the rotating solutions are treated as the collective degrees of freedom. They are requantized by imposing a set of commutation relations which ensures the correct algebra for the SU(2) x SU(2) group of angular momentum and isospin. Collective wave functions can then be found and with these wave functions all matrix elements can be calculated. The method is applied to a simple version of the chiral quark-meson model. A number of physical quantities such as magnetic moments, charge distributions, g/sub A/, g/sub ..pi..//sub N//sub N/, N-..delta.. mass splitting, properties of the N-..delta.. transition, etc., are calculated.
The role of strange sea quarks in chiral extrapolations on the lattice
NASA Astrophysics Data System (ADS)
Descotes-Genon, S.
2005-03-01
Since the strange quark has a light mass of order O(Λ_{{QCD}}), fluctuations of sea sbar{s} pairs may play a special role in the low-energy dynamics of QCD by inducing significantly different patterns of chiral symmetry breaking in the chiral limits N f = 2 ( m u = m d = 0, m s physical) and N f = 3 ( m u = m d = m s = 0). This effect of vacuum fluctuations of sbar{s} pairs is related to the violation of the Zweig rule in the scalar sector, described through the two O( p 4) low-energy constants L 4 and L 6 of the three-flavour strong chiral lagrangian. In the case of significant vacuum fluctuations, three-flavour chiral expansions might exhibit numerical competition between leading- and next-to-leading-order terms according to the chiral counting, and chiral extrapolations should be handled with special care. We investigate the impact of the fluctuations of sbar{s} pairs on chiral extrapolations in the case of lattice simulations with three dynamical flavours in the isospin limit. Information on the size of the vacuum fluctuations can be obtained from the dependence of the masses and decay constants of pions and kaons on the light quark masses. Even in the case of large fluctuations, corrections due to the finite size of spatial dimensions can be kept under control for large enough boxes (L˜ 2.5 fm).
Hadron-Hadron Interactions in the Constituent Quark Model: Results and Extensions
Eric S. Swanson
2001-01-01
Hadronic interactions are discussed within the context of the constituent quark model. The ''Quark Born Diagram'' methodology is outlined, extensive applications to meson-meson and meson-baryon interactions are discussed, and general features of these interactions are highlighted. The second half of this document deals with shortcomings of the quark model approach and methods to overcome them. These include relativistic kinematics, unitarity, nonlocal potentials, coupled channel effects, and the chiral nature of the pion.
Hydrodynamics with a chiral hadronic equation of state including quark degrees of freedom
Steinheimer, J.; Bleicher, M.; Petersen, H.; Dexheimer, V.; Schramm, S.; Stoecker, H.
2010-04-15
We investigate the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. To this aim a hybrid model with an intermediate hydrodynamic stage for the hot and dense phase of the system is employed for collisions of Pb+Pb/Au+Au at beam energies of E{sub lab}=2-160 A GeV, while initial and final interactions are performed by a microscopic transport approach (UrQMD). In the hydrodynamic stage an equation of state that incorporates a critical end point in line with lattice data is used. It follows from coupling the Polyakov loop (as an order parameter for deconfinement) to a chiral hadronic SU(3){sub f} model. In this configuration the equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained, by applying a hadron resonance gas equation of state, focusing on bulk observables deemed to be sensitive to the phase transition to a quark-gluon plasma.
Bonanno, Luca; Drago, Alessandro; Lavagno, Andrea
2007-12-14
We discuss two models in which a softening of the equation of state takes place due to the appearance of new degrees of freedom. The first is a hadronic model in which the softening is due to chiral symmetry restoration. In the second model the softening is associated with the formation of clusters of quarks in the mixed phase. We show that in the first case the bulk modulus is mainly dependent on the density, while in the mixed-phase model the bulk modulus strongly depends on the temperature and it is not vanishing due to the presence of two conserved charges, the baryon and the isospin one.
Strange quark matter and quark stars with the Dyson-Schwinger quark model
NASA Astrophysics Data System (ADS)
Chen, H.; Wei, J.-B.; Schulze, H.-J.
2016-09-01
We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11km. We obtain an energy release as large as 3.6 × 10^{53} erg from conversion of neutron stars into strange quark stars.
Chiral model for nucleon and delta
Birse, M.C.; Banerjee, M.K.
1985-01-01
We propose a model of the nucleon and delta based on the idea that strong QCD forces on length scales approx.0.2--1 fm result in hidden chiral SU(2) x SU(2) symmetry and that there is a separation of roles between these forces which are also responsible for binding quarks in hadrons and the forces which produce absolute confinement. This leads us to study a linear sigma model describing the interactions of quarks, sigma mesons, and pions. We have solved this model in the semiclassical (mean-field) approximation for the hedgehog baryon state. We refer to this solution as a chiral soliton. In the semiclassical approximation the hedgehog state is a linear combination of N and ..delta... We project this state onto states of good spin and isospin to calculate matrix elements of various operators in these states. Our results are in reasonable agreement with the observed properties of the nucleon. The mesonic contributions to g/sub A/ and sigma(..pi..N) are about two to three times too large, suggesting the need for quantum corrections.
Quark models of dibaryon resonances in nucleon-nucleon scattering
Ping, J. L.; Huang, H. X.; Pang, H. R.; Wang Fan; Wong, C. W.
2009-02-15
We look for {delta}{delta} and N{delta} resonances by calculating NN scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NNS waves, in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below 0.53 fm. Both quark models give an IJ{sup P}=03{sup +}{delta}{delta} resonance. At b=0.52 fm, the value favored by the baryon spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and 2360 MeV for the QDCSM. Accessible from the {sup 3}D{sub 3}{sup NN} channel, this resonance is a promising candidate for the known isoscalar ABC structure seen more clearly in the pn{yields}d{pi}{pi} production cross section at 2410 MeV in the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector, our quark models give a bound or almost bound {sup 5}S{sub 2}{sup {delta}}{sup {delta}} state that can give rise to a {sup 1}D{sub 2}{sup NN} resonance. None of the quark models used have bound N{delta}P states that might generate odd-parity resonances.
Chiral matrix model for the phase transition in QCD
NASA Astrophysics Data System (ADS)
Pisarski, Robert D.; Skokov, Vladimir
2016-12-01
We discuss how to model chiral symmetry restoration with an effective theory of deconfinement. The model includes fluctuations in the quarks to one loop order, while the mesons of the sigma model are treated in mean field approximation. We note that a new counterterm is required at T = 0, and a novel form of symmetry breaking at T ≠ 0. We discuss how to incorporate tetraquark states, representing JP =0+ scalar mesons, into a linear sigma model. We suggest that their effect upon the chiral phase transition is small.
Martynov, M. V. Smirnov, A. D.
2012-03-15
A gauge model featuring a chiral color symmetry of quarks was considered, and possible manifestations of this symmetry in proton-antiproton and proton-proton collisions at the Tevatron and LHC energies were studied. The cross section {sigma}{sub tt}-bar for the production of tt-bar quark pairs at the Tevatron and the forward-backward asymmetry A{sub FB}{sup pp}-bar in this process were calculated and analyzed with allowance for the contributions of the G Prime -boson predicted by the chiral color symmetry of quarks, the G Prime -boson massm{sub G Prime} and the mixing angle {theta}{sub G} being treated as free parameters of the model. Limits on m{sub G Prime} versus {theta}{sub G} were studied on the basis of data from the Tevatron on {sigma}{sub tt}-bar and A{sub FB}{sup pp}-bar, and the region compatible with these data within one standard deviation was found in the m{sub G Prime }-{theta}{sub G} plane. The region ofm{sub G Prime }-mass values that is appropriate for observing the G Prime -boson at LHC is discussed.
ERIC Educational Resources Information Center
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
ERIC Educational Resources Information Center
Young, Robert D.
1973-01-01
Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)
Quark stars with the density-dependent quark mass model
NASA Astrophysics Data System (ADS)
Wei, Wei; Zheng, Xiao-Ping
2012-09-01
The recent observation of the pulsar PSR J1614-2230 with a mass of 1.97±0.04M⊙ gives a strong constraint on the equation of state (EoS) of the dense matter in compact stars. In this work, we calculate the maximum mass of quark stars with the density-dependent quark mass model, and explore the parameter ranges for this model fully, by considering the constraints of absolute stability of strange quark matter and the mass of PSR J1614-2230. Without the color-superconductivity, the maximum mass of unpaired quark stars is more sensitive to the parameter C, and complies with the constraints within the range of 96MeVfm≲C≲130MeVfm. The largest mass can reach 2.25M⊙ at C≃96.54MeVfm and m≃145MeV. For the quark stars composed of the quark matter in color-flavor locked (CFL) phase, we can obtain quite large maximum masses at a sufficiently high gap value, but the value of m is very important in deciding the maximum mass of the CFL quark stars.
Rahaman, Anisur
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
Study of Chiral Confining Model with Vector Mesons
NASA Astrophysics Data System (ADS)
Ren, Ching-Yun
1991-02-01
This dissertation consists of two parts, the study of the chiral confining model and the investigation of vacuum instability. In the first part we present a chiral confining model in which a bag is formed dynamically. The major topics addressed are: construction of the model, mean-field solution, anomalously large rho nucleon tensor coupling, and a projection method including the quantum effects of mesons. Two features of QCD, namely, chiral invariance and vacuum condensates, are crucial ingredients of our chiral confining model. The interaction of the valence quarks with the quark condensate is described via the sigma field. It generates the quark dynamical mass. The interaction of the quarks with the gluon condensate is described in our model through the color dielectric function, epsilon. This interaction generates the bag within which quarks are absolutely confined. The introduction of the color dielectric function epsilon modifies the quark-meson interaction by multiplying a factor epsilon ^{-1/2}. Thus the quark part of the rho meson source current is structurally different from the isovector part of the electromagnetic current. Thus the chiral confining model provides a natural explanation why the tensor coupling of the rho meson, kappa_rho, is larger than the isovector part of the anomalous magnetic moment of the nucleon, kappa_upsilon . We have improved a simple method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state. We have included the contributions of quantum mesons. The symmetry of the hedgehog state under grand-reversal introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be (3/2)/< B|{bf J }^2| B> times the classical meson fields contributions, with | B> being the hedgehog state. In the second part we show that the perturbative vacuum of model
From gluon topology to chiral anomaly: Emergent phenomena in quark-gluon plasma
NASA Astrophysics Data System (ADS)
Liao, Jinfeng
2017-01-01
Heavy-ion collision experiments at RHIC and the LHC have found a new emergent phase of QCD, a strongly coupled quark-gluon plasma (sQGP) that is distinctively different from either the low temperature hadron phase or the very high temperature weakly coupled plasma phase. Highly nontrivial emergent phenomena occur in such sQGP and two examples will be discussed in this contribution: the magnetic component of sQGP that stems from topologically nontrivial configurations in the gluon sector; and the anomalous chiral transport that arises as macroscopic manifestation of microscopic chiral anomaly in the quark sector. For both examples, their important roles in explaining pertinent heavy-ion data will be emphasized.
Compact stars with a quark core within the Nambu-Jona-Lasinio (NJL) model
Lenzi, C. H.; Schneider, A. S.; Providencia, C.; Marinho, R. M. Jr.
2010-07-15
An ultraviolet cutoff dependent on the chemical potential as proposed by Casalbuoni et al. is used in the SU(3) Nambu-Jona-Lasinio model. The model is applied to the description of stellar quark matter and compact stars. It is shown that with a new cutoff parametrization it is possible to obtain stable hybrid stars with a quark core. A larger cutoff at finite densities leads to a partial chiral symmetry restoration of quark s at lower densities. A direct consequence is the onset of the s quark in stellar matter at lower densities and a softening of the equation of state.
The Unquenching of the Quark Model
Santopinto, Elena; Bijker, Roelof
2011-05-24
We present an unquenched quark model for baryons in which the effects of quark-antiquark pair creation (uu-bar, dd and ss-bar) are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. As an application we discuss the flavor content of octet baryons.
NASA Astrophysics Data System (ADS)
Gell-Mann, M.
In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…
Fukugita, M.; Ukawa, A.
1986-08-04
Finite-temperature behavior of quantum chromodynamics is investigated with the Langevin technique including the dynamical quark loops. The deconfining and chiral transitions occur at the same temperature. The strength of transition weakens initially as the quark mass decreases from infinity, but at small quark masses it strengthens again and shows the characteristic of a first-order transition. We estimate the inverse coupling constant at zero quark mass to be beta/sub c/ = 6/g/sub c//sup 2/approx. =4.9--5.0 for four flavors on an 8/sup 3/ x 4 lattice.
CHIRAL LIMIT AND LIGHT QUARK MASSES IN 2+1 FLAVOR DOMAIN WALL QCD.
SCHOLZ,E.; LIN, M.
2007-07-30
We present results for meson masses and decay constants measured on 24{sup 3} x 64 lattices using the domain wall fermion formulation with an extension of the fifth dimension of L{sub s} = 16 for N{sub f} 2 + 1 dynamical quark flavors. The lightest dynamical meson mass in our set-up is around 331MeV. while partially quenched mesons reach masses as low as 250MeV. The applicability of SU(3) x SU(3) and SU(2) x SU(2) (partially quenched) chiral perturbation theory will be compared and we quote values for the low-energy constants from both approaches. We will extract the average light quark and strange quark masses and use a non-perturbative renormalization technique (RI/MOM) to quote their physical values. The pion and kaon decay constants are determined at those values from our chiral fits and their ratio is used to obtain the CKM-matrix element |V{sub us}|. The results presented here include statistical errors only.
Chiral vortical and magnetic effects in the anomalous transport model
NASA Astrophysics Data System (ADS)
Sun, Yifeng; Ko, Che Ming
2017-03-01
We extend our recent study of chiral magnetic effect in relativistic heavy ion collisions based on an anomalous transport model by including also the chiral vortical effect. We find that although vorticities in the chirally restored quark matter, which result from the large angular momentum in noncentral collisions, can generate an axial charge dipole moment in the transverse plane of a heavy ion collision, it does not produce a difference in the eccentricities of negatively and positively charged particles. As a result, including the chiral vortical effect alone cannot lead to a splitting between the elliptic flows of negatively and positively charged particles. On the other hand, negatively and positively charged particles do develop a splitting in their elliptic flows if the effect due to a strong and long-lived magnetic field is also included. However, to have a positive slope in the dependence of the elliptic flow splitting on the charge asymmetry of the quark matter, as seen in experiments, requires the neglect of the effect of the Lorentz force. In this case, an elliptic flow splitting appears even at vanishing charge asymmetry.
Superconducting quark matter in the Chromodielectric Model
Linares, L.; Malheiro, M.; Fiolhais, M.; Taurines, A.R.
2004-12-02
In this work we study the strange quark matter in an extended version of the Chromodielectric Model (CDM) with a BCS quark pairing implemented, and analyze the superconducting color flavor locked (CFL) phase. We compare the equation of state and the stability of the strange quark matter from QCD in the CFL phase with the superconducting version of the CDM. In the CDM there is a confining potential which originates a dynamical bag constant in the sense that its value depends on the density. Our results indicate that the inclusion in the energy density of the pairing quark interaction allows for an absolutely stable quark matter state even for large potential energies, preventing the metastability of quark matter found in the CDM at high densities.
Quark description of nuclear matter
Berges, Jurgen
2001-07-01
We discuss the role of an adjoint chiral condensate for color superconducting quark matter. Its presence leads to color-flavor locking in two-flavor quark matter. Color is broken completely as well as chiral symmetry in the two-flavor theory with coexisting adjoint quark-antiquark and antitriplet quark-quark condensates. The qualitative properties of this phase match the properties of ordinary nuclear matter without strange baryons. This complements earlier proposals by Schaefer and Wilczek for a quark description of hadronic phases. We show for a class of models with effective four-fermion interactions that adjoint chiral and diquark condensates do not compete, in the sense that simultaneous condensation occurs for sufficiently strong interactions in the adjoint chiral channel.
NASA Astrophysics Data System (ADS)
Goeke, K.; Urbano, J. N.; Fiolhais, M.; Harvey, M.
1985-12-01
We prove that the hedgehog baryon arises as a variational solution of the linear σ-model, if this is restricted to the chiral circle and if the boson Fock-states are described by coherent states and the valence quarks by a product of three identical wave functions each consisting of an orbital s-state multiplied with the most general one-quark spin-flavour configuration in the ud-sector. The opposite is shown to be not true, i.e., the assumption of a hedgehog state in the linear σ-model does not lead to fields which obey the requirements of the chiral circle.
Single Spin Asymmetry in Strongly Correlated Quark Model
Musulmanbekov, G.
2007-06-13
The Single Transverse - Spin Asymmetry (SSA) is analysed in the framework of the Strongly Correlated Quark Model proposed by author, where the proton spin emerges from the orbital momenta of quark and qluon condensates circulating around the valence quarks. It is shown that dominating factors of appearance of SSA are the orbiting around the valence quarks sea quark and qluon condensates and spin dependent quark-quark cross sections.
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi
2016-01-22
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.
Strange-quark asymmetry in the proton in chiral effective theory
Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-29
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ-function contributions to the s¯ PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s–s¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the s and s¯ distributions, consistent with the chiral symmetry of QCD. Lastly, we discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.
Strange-quark asymmetry in the proton in chiral effective theory
Wang, X. G.; Ji, Chueng -Ryong; Melnitchouk, W.; ...
2016-11-29
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ-function contributions to the s¯ PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s–s¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we computemore » the leading nonanalytic behavior of the number and momentum integrals of the s and s¯ distributions, consistent with the chiral symmetry of QCD. Lastly, we discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.« less
Strange-quark asymmetry in the proton in chiral effective theory
NASA Astrophysics Data System (ADS)
Wang, X. G.; Ji, Chueng-Ryong; Melnitchouk, W.; Salamu, Y.; Thomas, A. W.; Wang, P.
2016-11-01
We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of δ -function contributions to the s ¯ PDF at x =0 , with a corresponding valencelike component of the s -quark PDF at larger x , which allows greater flexibility for the shape of s -s ¯. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the s and s ¯ distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis.
Hanhart, C; Peláez, J R; Ríos, G
2008-04-18
We use the one-loop chiral perturbation theory pipi-scattering amplitude and dispersion theory in the form of the inverse amplitude method to study the quark-mass dependence of the two lightest resonances of the strong interactions, the f(0)(600) (sigma) and the rho meson. As the main results, we find that the rhopipi coupling constant is almost quark mass independent and that the rho mass shows a smooth quark-mass dependence while that of the sigma shows a strong nonanalyticity. These findings are important for studies of the meson spectrum on the lattice.
Quark Model in the Quantum Mechanics Curriculum.
ERIC Educational Resources Information Center
Hussar, P. E.; And Others
1980-01-01
This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)
Quark Model in the Quantum Mechanics Curriculum.
ERIC Educational Resources Information Center
Hussar, P. E.; And Others
1980-01-01
This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)
The non-perturbative unquenched quark model
NASA Astrophysics Data System (ADS)
Entern, D. R.; Ortega, P. G.; Fernández, F.
2017-03-01
In recent years states in the quarkonium spectrum not expected in the naive quark model have appeared and created a lot of interest. In the theoretical side the study of the effect of meson-meson thresholds in the spectrum have been performed in different approximations. In a quark model framework, and in the spirit of the Cornell model, when a meson-meson threshold is included, the coupling to all the quark-antiquark states have to be considered. In practice only the closest states are included perturbatively. In this contribution we will present a framework in which we couple quark-antiquark states with meson-meson states non-perturbatively, taking into account effectively the coupling to all quark-antiquark states. The method will be applied to the study of the X(3872) and a comparison with the perturbative calculation will be performed.
Supersymmetric chiral models: Geometrical aspects
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1989-03-01
We consider classical supersymmetric chiral models of field theory and focus our attention on the geometrical aspects of such theories. A characteristic feature of such models is that the interaction is not introduced by adding the interaction Lagrangian to the free field Lagrangian, but has a purely geometrical origin and is related to the inner curvature of the target manifold. In many aspects these models are analogous to gauge theories and, as became clear recently, they are also important for superstring theory, which nowadays is the most probable candidate for a truly unified theory of all interactions including gravitation.
Baryon resonances without quarks: A chiral soliton perspective
Karliner, M.
1987-03-01
In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.
Minkowski space pion model inspired by lattice QCD running quark mass
NASA Astrophysics Data System (ADS)
Mello, Clayton S.; de Melo, J. P. B. C.; Frederico, T.
2017-03-01
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe-Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward-Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
Equation of state and transition temperatures in the quark-hadron hybrid model
NASA Astrophysics Data System (ADS)
Miyahara, Akihisa; Torigoe, Yuhei; Kouno, Hiroaki; Yahiro, Masanobu
2016-07-01
We analyze the equation of state of 2 +1 flavor lattice QCD at zero baryon density by constructing a simple quark-hadron hybrid model that has both quark and hadron components simultaneously. We calculate the hadron and quark contributions separately and parameterize those to match with lattice QCD data. Lattice data on the equation of state are decomposed into hadron and quark components by using the model. The transition temperature is defined by the temperature at which the hadron component is equal to the quark one in the equation of state. The transition temperature thus obtained is about 215 MeV; this is somewhat higher than the chiral and the deconfinement pseudocritical temperatures defined by the temperature at which the susceptibility or the absolute value of the derivative of the order parameter with respect to temperature becomes maximum.
NASA Astrophysics Data System (ADS)
Chatterjee, Bhaswar; Mishra, Hiranmaya; Mishra, Amruta
2015-02-01
We investigate chiral symmetry breaking and strong charge parity (C P ) violation effects on the phase diagram of strongly interacting matter in the presence of a constant magnetic field. The effects of a magnetic field and strong C P violating term on the phase structure at finite temperature and density are studied within a three flavor Nambu-Jona-Lasinio model including the Kobayashi-Maskawa-t'Hooft determinant term. This is investigated using an explicit variational ansatz for ground state with quark-antiquark pairs leading to condensates both in scalar and pseudoscalar channels. A magnetic field enhances the condensate in both the channels. Inverse magnetic catalysis for C P transition at finite chemical potential is seen for zero temperature and for small magnetic fields. The C P transition becomes first order at finite baryon chemical potential and could be relevant for generating C P -odd metastable domains in heavy ion collision experiments.
Top quark forward-backward asymmetry from the 3-3-1 model
NASA Astrophysics Data System (ADS)
Barreto, E. Ramirez; Coutinho, Y. A.; Sá Borges, J.
2011-03-01
The forward-backward asymmetry AFB in top quark pair production, measured at the Tevatron, is probably related to the contribution of new particles. The Tevatron result is more than a 2σ deviation from the standard model prediction and motivates the application of alternative models introducing new states. However, as the standard model predictions for the total cross section σtt and invariant mass distribution Mtt for this process are in good agreement with experiments, any alternative model must reproduce these predictions. These models can be placed into two categories: One introduces the s-channel exchange of new vector bosons with chiral couplings to the light quarks and to the top quark, and another relies on the t-channel exchange of particles with large flavor-violating couplings in the quark sector. In this work, we employ a model which introduces both s- and t-channel nonstandard contributions for the top quark pair production in proton-antiproton collisions. We use the minimal version of the SU(3)C⊗SU(3)L⊗U(1)X model (3-3-1 model) that predicts the existence of a new neutral gauge boson, called Z'. This gauge boson has both flavor-changing couplings to up and top quarks and chiral coupling to the light quarks and to the top quark. This very peculiar model coupling can correct the AFB for top quark pair production for two ranges of Z' mass while leading to a cross section and invariant mass distribution quite similar to the standard model ones. This result reinforces the role of the 3-3-1 model for any new physics effect.
Fate of pion condensation in quark matter: From the chiral limit to the physical pion mass
Abuki, H.; Anglani, R.; Pellicoro, M.; Ruggieri, M.; Gatto, R.
2009-02-01
We study aspects of the pion condensation in two-flavor neutral quark matter using the Nambu-Jona-Lasinio model of QCD at finite density. We investigate the role of electric charge neutrality, and explicit symmetry breaking via quark mass, both of which control the onset of the charged pion ({pi}{sup c}) condensation. We show that the equality between the electric chemical potential and the in-medium pion mass, {mu}{sub e}=M{sub {pi}{sup -}}, as a threshold, persists even for a composite pion system in the medium, provided the transition to the pion condensed phase is of the second order. Moreover, we find that the pion condensate in neutral quark matter is extremely fragile with respect to the symmetry breaking effect via a current quark mass m, and is ruled out for m larger than the order of 10 keV.
Chiral Supersymmetric Gepner Model Orientifolds
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Weigand, Timo
2004-02-01
We explicitly construct A-type orientifolds of supersymmetric Gepner models. In order to reduce the tadpole cancellation conditions to a treatable number we explicitly work out the generic form of the one-loop Klein bottle, annulus and Möbius strip amplitudes for simple current extensions of Gepner models. Equipped with these formulas, we discuss two examples in detail to provide evidence that in this setting certain features of the MSSM like unitary gauge groups with large enough rank, chirality and family replication can be achieved.
The Soliton-Soliton Interaction in the Chiral Dilaton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente
2013-10-01
We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.
Flavor asymmetry of sea quarks in the unquenched quark model
Santopinto, E.; Bijker, R.
2010-12-15
The flavor asymmetry of the nucleon sea is studied in the framework of the unquenched quark model in which the effects of quark-antiquark pairs (uu-bar, dd-bar, and ss-bar) are taken into account via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The inclusion of the qq-bar pairs leads to an excess of d-bar over u-bar, in agreement with the experimental data for the proton. In addition, the results for the flavor asymmetry of all ground-state octet and decuplet baryons are presented. The isospin symmetry leads to simple relations among the flavor asymmetries of octet and decuplet baryons. The flavor asymmetry of the {Sigma}{sup +} hyperon is predicted to be very similar to that of the proton and much larger than that for the {Xi}{sup 0} hyperon. A comparison with other approaches shows large differences in the predictions for the flavor asymmetries of the hyperons.
A search for inverse magnetic catalysis in thermal quark-meson models
NASA Astrophysics Data System (ADS)
Fraga, E. S.; Mintz, B. W.; Schaffner-Bielich, J.
2014-04-01
We explore the parameter space of the two-flavor thermal quark-meson model and its Polyakov loop-extended version under the influence of a constant external magnetic field B. We investigate the behavior of the pseudo critical temperature for chiral symmetry breaking taking into account the likely dependence of two parameters on the magnetic field: the Yukawa quark-meson coupling and the parameter T0 of the Polyakov loop potential. Under the constraints that magnetic catalysis is realized at zero temperature and the chiral transition at B=0 is a crossover, we find that the quark-meson model leads to thermal magnetic catalysis for the whole allowed parameter space, in contrast to the present picture stemming from lattice QCD.
Theoretical aspects of hybrid chiral bag models
NASA Astrophysics Data System (ADS)
Mulders, P. J.
1984-09-01
In hybrid chiral bag models (HCBM's) the quarks are the source for the pion field outside the bag. If we want to solve this model with a classical external soliton solution and quantized fermions, it is necessary to evaluate the vacuum expectation values (VEV's) of those operators that contain fermion fields and appear in the boundary conditions. When the external solution is the so-called hedgehog solution, π-->(r-->,t)=fπθ(r)r^, the relevant VEV is i16π<0 | d2s[ψ―,(τ-->.r^)γ5exp(iτ-->.r^γ5θ)ψ] | 0>=2θ16πη+C0(θ)R, where η is a cutoff parameter (η-->0). To obtain this result we have used a multiple-reflection expansion of the Green's function, while C0(θ) is evaluated numerically. We discuss the infinite contribution in the above VEV, and show that 4πC0(θ)R is precisely the derivative of the Casimir energy with respect to θ. We also discuss some solutions of the HCBM for bag radii varying from 0 to ∞.
Direct mass limits for chiral fourth-generation quarks in all mixing scenarios.
Flacco, Christian J; Whiteson, Daniel; Tait, Tim M P; Bar-Shalom, Shaouly
2010-09-10
Present limits on chiral fourth-generation quark masses mb' and mt' are broadly generalized and strengthened by combining both t' and b' decays and considering a full range of t' and b' flavor-mixing scenarios with the lighter generations (to 1-‖V44‖2≈10(-13)). Various characteristic mass-splitting choices are considered. With mt'>mb' we find that CDF Collaboration limits on the b' mass vary by no more than 10%-20% with any choice of flavor mixing, while for the t' mass, we typically find stronger bounds, in some cases up to mt'>430 GeV. For mb'>mt', we find mb'>380-430 GeV, depending on the flavor mixing and the size of the mt'-mb' mass splitting.
On-shell parameter fixing in the quark-meson model
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Andersen, Jens O.; Kneschke, Patrick
2017-02-01
The quark-meson model is often used as an effective low-energy model for QCD to study the chiral transition at finite temperature T and baryon chemical potential μB. The parameters in the quark-meson model can be found by expressing them in terms of the sigma mass mσ, the pion mass mπ, the constituent quark mass mq and the pion decay constant fπ. In practice, this matching is done at tree level, which is inconsistent once loop effects of the effective potential are taken into account. We show how to properly perform the matching in the quark-meson model by using the on-shell and the minimal subtraction renormalization schemes relating the physical masses and the pion decay constant to the running mass parameter and couplings. We map out the phase diagram in the μB- T plane and compare our results with other approximations.
Hadron loops in the quark model
Bijker, Roelof; Santopinto, Elena
2010-08-04
We present an unquenched quark model for baryons in which the effects of quark-antiquark pair creation (uu(bar sign), dd(bar sign) and ss(bar sign)) are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. It is shown that, while the inclusion of the qq(bar sign) pairs does not affect the baryon magnetic moments, it leads to a sizeable contribution of the orbital angular momentum to the spin of the proton.
Unitary theory of pion photoproduction in the chiral bag model
NASA Astrophysics Data System (ADS)
Araki, M.; Afnan, I. R.
1987-07-01
We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or Δ(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ππB and γπB intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.
An Unquenched Quark Model of Baryons
Bijker, Roelof; Santopinto, Elena
2007-10-26
We present the formalism for a new generation of unquenched quark models for baryons in which the effects of quark-antiquark pairs are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. The present approach is an extension of the fiux-tube breaking model of Geiger and Isgur in which now the contribution of quark-antiquark pairs can be studied for any inital baryon, for any fiavor of the qq-bar pair (not only ss-bar but also uu-bar and dd-bar) and for arbitrary hadron wave functions. The method is illustrated with an application to the spin of the proton and the flavor asymmetry of the nucleon sea.
A tumbling top-quark condensate model
Martin, S.P.
1992-07-01
We propose a renormalizable model with no fundamental scalars which breaks itself in the manner of a ``tumbling`` gauge theory down to the standard model with a top-quark condensate. Because of anomaly cancellation requirements, this model contains two color sextet fermions (quixes), which are vector-like with respect to the standard model gauge group. The model also has a large number of pseudo-Nambu-Goldstone bosons, some of which can be light. The top-quark condensate is responsible for breaking the electroweak gauge symmetry and gives the top quark a large mass. We discuss the qualitative features and instructive shortcomings of the model in its present form. We also show that this model can be naturally embedded into an aesthetically pleasing model in which the standard model fermion appear symmetrically.
Search for doubly-heavy dibaryons in a quark model
NASA Astrophysics Data System (ADS)
Vijande, J.; Valcarce, A.; Richard, J.-M.; Sorba, P.
2016-08-01
We study the stability of hexaquark systems containing two heavy quarks and four light quarks within a simple quark model. No bound or metastable state is found. The reason stems from a delicate interplay between chromoelectric and chromomagnetic effects. Our calculation also provides information about anticharmed pentaquarks that are seemingly unbound in simple quark models.
Baryon properties in the relativistic quark model
NASA Astrophysics Data System (ADS)
Ebert, D.; Faustov, R. N.; Galkin, V. O.
2017-09-01
Properties of heavy and strange baryons are investigated in the framework of the relativistic quark-diquark picture. It is based on the relativistic quark model of hadrons, which was previously successfully applied for the calculation of meson properties. It is assumed that two quarks in a baryon form a diquark and baryon is considered as the bound quark-diquark system. The relativistic effects and diquark internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of heavy and strange baryons. On this basis the Regge trajectories are constructed. The rates of semileptonic decays of heavy baryons are calculated. The obtained results agree well with available experimental data.
Heavy Baryons in a Quark Model
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
Random matrix model for chiral and color-flavor locking condensates
NASA Astrophysics Data System (ADS)
Sano, T.; Yamazaki, K.
2012-05-01
We study the phase diagram of a chiral random matrix model with three quark flavors at finite temperature and chemical potential, taking the chiral and diquark condensates as independent order parameters. Fixing the ratio of the coupling strengths in the quark-antiquark and quark-quark channels applying the Fierz transformation, we find that the color-flavor locked (CFL) phase is realized at large chemical potential, while the ordinary chirally broken phase appears in the region with small chemical potential. We investigate responses of the phases by changing small quark masses in the cases with three equal-mass flavors and with 2+1 flavors. In the case with three equal-mass flavors, we find that the finite masses make the CFL phase transition line move to the higher-density region. In the case with 2+1 flavors, we find the two-flavor color-superconducting phase at the medium-density region as a result of the finite asymmetry between the flavors, as well as the CFL phase at the higher-density region.
Cfl-Quark Star in the Density-Dependent Quark Mass Model
NASA Astrophysics Data System (ADS)
Oliveira, J. C. T.; Rodrigues, H.; Duarte, S. B.
2010-04-01
The static spherically symmetric quark star structure is calculated by using an equation of state which takes into account the superconducting Color-Flavor Locked (CFL) phase of the strange quark matter. Some fundamental aspects of QCD (asymptotic freedom and confinement) are considered by using the phenomenological density-dependent quark mass model. We discuss the influence of model parameters on the conventional mass-radius relationship of a quark star structure. Massive quark stars are found due to the stiffness of the equation of state at low densities.
Alexandru, Andrei; Horváth, Ivan
2016-01-22
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.
Relativistic constituent quark model with infrared confinement
Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.
2010-02-01
We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of {alpha} parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds present in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and the transition form factors of the {omega} and {eta} Dalitz decays.
Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Chu, Peng-Cheng; Li, Xiao-Hua; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang
2017-08-01
We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β -equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β -equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model.
Quark masses and mixing in a supersymmetric left-right model with singlet quark
NASA Astrophysics Data System (ADS)
Babu, K. S.; Roszkowski, L.
1989-04-01
Recently, del Aguila, Kane and Quirós (dAKQ) have proposed an ansatz for the structure of the quark mass matrices. They assume that the quark mass eigenstates coincide with the weak-interaction eigenstates in the absence of mixing of the down-type quarks with a new vector-like singlet quark. In this paper we present a supersymmetric model which provides a natural realization of this ansatz. The model, based on a left-right gauge group, does not require any horizontal symmetry and leads to quark mass matrices more restrictive than the dAKQ ansatz. The resulting phenomenology is also discussed. We obtain upper limits on the masses of the top quark and the singlet quark D: mtop < 46GeV whereas mD < 104GeV is favored, and therefore they both should be discovered at the Tevatron.
A Molecular Model for Chiral Symmetry Breaking
NASA Astrophysics Data System (ADS)
Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo
In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.
Random matrix model for chiral symmetry breaking
Jackson, A.D.; Verbaarschot, J.J.
1996-06-01
We formulate a random matrix model which mimics the chiral phase transition in QCD with two light flavors. Two critical exponents are calculated. We obtain the mean-field values {beta}=1/2 and {delta}=3. We also find that the chiral phase transition can be characterized by the dynamics of the smallest eigenvalue of the Dirac operator. This suggests an alternative order parameter which may be of relevance for lattice QCD simulations. {copyright} {ital 1996 The American Physical Society.}
Isospin Mixing of Quark Cluster Diybaryon Resonances in the Bag Model*
NASA Astrophysics Data System (ADS)
Ward, Thomas
2000-10-01
Calculations of isospin mixing of dibaryon resonaces composed of color magentic six quark states using the quark cluster bag model are shown to result in a low lying J=2 dibaryon at 1913 MeV. The 1913 MeV resonance can only transition into NN states and a low energy (29-35 MeV) isoscaler meson multiplet, the sigma mesons (J=0,1,2). The J=1 axial-vector meson may already have been discovered at the Rutherford ISIS Facility, detected as a neutrino time anomaly known as the KARMEN particle. The predicted J=0 meson has the long sought after properties of the sigma meson or Higgs particle required for the Chiral Symmetry Breaking partner of the pion and light mass hadron generation. The influence of this predicted isoscaler multiplet in QCD and QFD is interpreted using the effective low energy model of Chiral Perturbation Theory.
Properties of Doubly Heavy Baryons in the Relativistic Quark Model
Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.
2005-05-01
Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.
A chiral soliton bag model of nucleons
NASA Astrophysics Data System (ADS)
Seki, Ryoichi; Ohta, Shigemi
1984-11-01
As a possible phenomenological model of nucleons, a model Lagrangian is numerically solved in the semiclassical approximation using the hedgehog ansatz. Soliton solutions with winding numbers Z=0 and 1 are examined as functions of the pion decay constant. The Z=0 solution is similar to the cloudy bag model, but the Z=1 solution is quite different from the little (chiral) bag model.
Mean field theory of the linear sigma-model: chiral solitons
Kahana, S.; Ripka, G.
1983-01-01
The mean field theory of the chiral invariant sigma-model is outlined. bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
Mean field theory of the linear sigma-model: Chiral solitons
NASA Astrophysics Data System (ADS)
Kahana, S.; Ripka, G.
The mean field theory of the chiral invariant sigma-model is outlined. Bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
Mean field theory of the linear sigma-model: Chiral solitons
Kahana, S.; Ripka, G.
1984-02-20
The mean field theory of the chiral invariant sigma-model is outlined. Bound states (solitons) of valence quarks are obtained self-consistently using a hedgehog shape for the pion field. A schematic model for the coupled fermion-boson fields is presented. Renormalization is worked out for the fermion one-loop corrections and numerical results presented for the purely scalar-field case. The interpretation of the baryon number of the perturbed vacuum is considered.
Exotic hadrons in the constituent quark model.
Lipkin, H. J.; High Energy Physics; Weizmann Institute of Science; Tel Aviv Univ.
2007-01-01
Exotic hadrons are important because their existence or absence can provide important clues to understanding how QCD makes hadrons from quarks and gluons. The first experimentally confirmed exotic will be the first hadron containing both qq and {bar q}q pairs and the first hadron containing color sextet and color octet pairs. Theoretical models are not very useful because there is no accepted model for multiquark systems with color-space correlations. The constituent quark model is the only phenomenological model with predictive power that has given experimentally tested universal predictions for both mesons and baryons. This paper reviews its explanation for why there are no bound exotics and its guidance to the search for heavy-flavored exotic tetraquarks and pentaquarks. A possible supersymmetry between mesons and baryons leading to meson-baryon mass relations not easily obtained otherwise is discussed.
Phase diagram for the Nambu-Jona-Lasinio model with 't Hooft and eight-quark interactions
NASA Astrophysics Data System (ADS)
Hiller, B.; Moreira, J.; Osipov, A. A.; Blin, A. H.
2010-06-01
It is shown that the end point of the first-order transition line, which merges into a crossover regime in the phase diagram of the Nambu-Jona-Lasinio model, extended to include the six-quark ’t Hooft and eight-quark interaction Lagrangians, is pushed toward vanishing chemical potential and higher temperatures with increasing strength of the Okubo-Zweig-Iizuka-violating eight-quark interactions. We clarify the connection between the location of the end point in the phase diagram and the mechanism of chiral symmetry breaking at the quark level. We show how the 8q interactions affect the number of effective quark degrees of freedom. We are able to obtain the correct asymptotics for this number at large temperatures by using the Pauli-Villars regularization.
Exotic quarks in Twin Higgs models
Cheng, Hsin -Chia; Jung, Sunghoon; Salvioni, Ennio; ...
2016-03-14
The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of themore » model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.« less
Exotic quarks in Twin Higgs models
Cheng, Hsin -Chia; Jung, Sunghoon; Salvioni, Ennio; Tsai, Yuhsin
2016-03-14
The Twin Higgs model provides a natural theory for the electroweak symmetry breaking without the need of new particles carrying the standard model gauge charges below a few TeV. In the low energy theory, the only probe comes from the mixing of the Higgs fields in the standard model and twin sectors. However, an ultraviolet completion is required below ~ 10 TeV to remove residual logarithmic divergences. In non-supersymmetric completions, new exotic fermions charged under both the standard model and twin gauge symmetries have to be present to accompany the top quark, thus providing a high energy probe of the model. Some of them carry standard model color, and may therefore be copiously produced at current or future hadron colliders. Once produced, these exotic quarks can decay into a top together with twin sector particles. If the twin sector particles escape the detection, we have the irreducible stop-like signals. On the other hand, some twin sector particles may decay back into the standard model particles with long lifetimes, giving spectacular displaced vertex signals in combination with the prompt top quarks. This happens in the Fraternal Twin Higgs scenario with typical parameters, and sometimes is even necessary for cosmological reasons. We study the potential displaced vertex signals from the decays of the twin bottomonia, twin glueballs, and twin leptons in the Fraternal Twin Higgs scenario. As a result, depending on the details of the twin sector, the exotic quarks may be probed up to ~ 2.5 TeV at the LHC and beyond 10 TeV at a future 100 TeV collider, providing a strong test of this class of ultraviolet completions.
NASA Astrophysics Data System (ADS)
Schleif, M.; Wünsch, R.; Maissner, T.
We study translational and spin-isospin symmetry restoration for the two-flavor chiral quark-loop soliton. Instead of a static soliton at rest we consider a boosted and rotating hedgehog soliton. Corrected classical meson fields are obtained by minimizing a corrected energy functional which has been derived by semi-classical methods (variation after projection). We evaluate corrected meson fields in the region 300 MeV ≤ M≤ 600 MeV of constituent quark masses M and compare them with the uncorrected fields. We study the effect of the corrections on various expectation values of nuclear observables such as the root-mean square radius, the axial-vector coupling constant, magnetic moments and the delta-nucleon mass splitting.
Baryon Spectroscopy and the Constituent Quark Model
A.W. Thomas; R.D. Young
2005-07-26
We explore further the idea that the lattice QCD data for hadron properties in the region m[^2][_pi] > 0.2GeV^2 can be described by the constituent quark model. This leads to a natural explanation of the fact that nucleon excited states are generally stable for pion masses greater than their physical excitation energies. Finally, we apply these same ideas to the problem of how pentaquarks might behave in lattice QCD, with interesting conclusions.
Rare top quark decays in extended models
Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.
2006-09-25
Flavor changing neutral currents (FCNC) decays t {yields} H0 + c, t {yields} Z + c, and H0 {yields} t + c-bar are discussed in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions where FCNC decays may take place at tree-level and are only suppressed by the mixing between ordinary top and charm quarks, which is poorly constraint by current experimental values. The non-manifest case is also briefly discussed.
A model of radiatively induced quark and lepton mass model
NASA Astrophysics Data System (ADS)
Nomura, Takaaki
2017-07-01
We discuss a radiatively induced quark and lepton mass model in the rst and second generation introducing extra U(1) gauge symmetry, discrete Z 2 symmetry, vector-like fermions and exotic scalar elds. Then we analyze the allowed parameter regions which simultaneously satisfy the constraints of FCNCs for the quark sector and of LFVs including μ - e conversion, observed quark mass and mixing, and the lepton mass and mixing. In addition, the typical value for the (g - 2) μ in our model is presented. We also show extension of the model in which Majorana type neutrino masses are generated at the two loop level.
NN-πNN equations and the chiral bag model
NASA Astrophysics Data System (ADS)
Afnan, I. R.; Blankleider, B.
1985-12-01
The NN-πNN equations that describe, in a unified framework, pion production in nucleon-nucleon scattering, and pion-deuteron and nucleon-nucleon elastic scattering, have been extended to include the N(939) and Δ(1232) on an equal footing. This extension, motivated by the quark models of hadrons, has the bare N and Δ as three quark states with the same spacial wave function, but different spin isospin states. The final equations, referred to as the BB-πBB equations, are consistent with the chiral bag models to the extent that the πNN, πNΔ, and πΔΔ coupling constants and form factors are related, and can be taken from bag models. The resultant equations satisfy two- and three-body unitarity, and are derived by exposing the lowest unitarity cuts in the n-body Green's function. These equations retain important contributions missing from the NN-πNN equations. For pion production and N-N scattering they include the contribution of backward pions in the NN-->NΔ transition potential, which may overcome the problem of small pp-->πd cross section as predicted by the NN-πNN equations. For π-d elastic scattering they include an additional NΔ-->NΔ tensor force that can influence the tensor polarization.
Nuclear chirality, a model and the data
NASA Astrophysics Data System (ADS)
Starosta, K.; Koike, T.
2017-09-01
In the last decade, the manifestation of chirality in atomic nuclei has become the subject of numerous experimental and theoretical studies. The common feature of current model calculations is that the chiral geometry of angular momentum coupling is extracted from expectation values of orientation operators, rather than being a starting point in construction of a model. However, using the particle-hole coupling model for triaxial odd-odd nuclei it is possible to construct a basis which contains right-handed, left-handed and planar states of angular momentum coupling. If this basis is used, the chirality is an explicit rather than an extracted feature as in any other models with non-chiral bases. The time-reversal symmetry, which relates the basis states of opposite handedness, can be used to reduce the dimension of matrices for diagonalization of the model Hamiltonian, proving the effectiveness of this approach. Moreover, the final model eigenstate wave functions show a concentration of amplitudes among a relatively small number (˜1%) of components compared to the full model space. In that sense, the ‘chiral’ basis provides a useful tool to examine model predictions providing direct insight into the structure of doublet states. In this work, similarities and differences between the rotational behaviour of an axial and triaxial body provide a starting point for derivation of the basis optimal for valence nucleon coupling to an axial and a triaxial core. The derived ‘chiral’ basis is optimal for coupling of a valence particle and hole to the triaxial core. Model predictions are presented and discussed. A comprehensive review of current experimental data on observed chiral band candidates is also provided.
The ccbar Pentaquarks by a Quark Model
NASA Astrophysics Data System (ADS)
Takeuchi, Sachiko; Takizawa, Makoto
Recent LHCb experiments have shown us that there are two resonances in the J/ψp channel in the Λb decay, whose spin and parity are most probably (3/2- 5/2+). In this work, we investigate the I(JP) = 1/2(1/2 -), 1/2(3/2-), and 1/2(5/2-) uudcbar{c} pentaquark states by employing the quark cluster model. It is found that the color-octet isospin-1/2 spin-3/2 uud configuration gives an attraction to such five-quark systems. This configuration together with the color-octet cbar{c} pair gives structures around the Σ c(*)bar{D}(*) thresholds: one bound state, two resonances, and one large cusp are found in the uudcbar{c} negative parity channels. We argue that these resonances and cusp may correspond to, or combine to form, the negative parity pentaquark peak observed by LHCb.
Testing the Standard Model with Top Quarks
NASA Astrophysics Data System (ADS)
Varnes, Erich W.
2011-10-01
The top quark, by far the most massive known fermion, provides a unique laboratory in which to study phyiscs at the electroweak scale. I report on recent top quark measurements from the CDF and DØ experiments at the Fermilab Tevatron pbar p collider, including the first observation of single top quark production, measurement of the top quark mass, the tbar t production rate, and several searches for new physics in the properties of the top quark, and in its production and decay.
Quark nova model for fast radio bursts
NASA Astrophysics Data System (ADS)
Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid
2016-05-01
Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm-3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (˜ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.
Instanton-like solutions in chiral models
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
1981-10-01
General two-dimensional Euclidean chiral models of field theory are considered in detail. It is shown that in the case when the field takes its values in an arbitrary Kähler manifold the “duality equations” reduce to the Cauchy- Riemann equations on this manifold. For homogeneous manifolds the solutions of these equations do exist and are given by rational functions.
Quark-Gluon Plasma Model and Origin of Magic Numbers
Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.
2008-04-21
Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.
Orbital structure of quarks inside the nucleon in the light-cone diquark model
Lu Zhun; Schmidt, Ivan
2010-11-01
We study the orbital angular momentum structure of the quarks inside the proton. By employing the light-cone diquark model and the overlap representation formalism, we calculate the chiral-even generalized parton distribution functions H{sub q}(x,{xi},{Delta}{sup 2}), H-tilde{sub q}(x,{xi},{Delta}{sup 2}), and E{sub q}(x,{xi},{Delta}{sup 2}) at zero skewedness for q=u and d quarks. In our model, E{sub u} and E{sub d} have opposite sign with similar size. Those generalized parton distribution functions are applied to calculate the orbital angular momentum distributions, showing that L{sub u}(x) is positive, while L{sub d}(x) is consistent with zero compared with L{sub u}(x). We introduce the impact parameter dependence of the quark orbital angular momentum distribution. It describes the position space distribution of the quark orbital angular momentum at given x. We found that the impact parameter dependence of the quark orbital angular momentum distribution is axially symmetric in the light-cone diquark model.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
NASA Astrophysics Data System (ADS)
Sun, Yifeng; Ko, Che Ming; Li, Feng
2016-10-01
Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.
Chirally symmetric O(1/N{sub c}) corrections to the Nambu-Jona-Lasinio model
Dmitrasinovic, V.; Schulze, H.J.; Tegen, R.
1995-03-01
We develop an extended chirally symmetric self-consistent approximation scheme to the Nambu-Jona-Lasinio model, that corresponds to O(1/N{sub c}) corrections to the usual Hartree + random phase approximations. This scheme amounts to adding {open_quotes}meson cloud{close_quotes} contributions self-consistently to the quark self-energy and the meson polarization functions in a manner suggested by the weakly interacting nature of the quark and collective meson degrees of freedom of the NJL model in the large N{sub c} limit. We demonstrate explicitly that this scheme fulfills all the chiral symmetry theorems, namely the Goldstone theorem, the Goldberger-Treiman relation, and the conservation of the quark axial current. We explore the corrections to the quark self-energy and scalar condensate, as well as to the pion polarization function and the weak decay constant N{sub n}. The numerical evaluation of these corrections is presented and discussed. 23 refs., 14 figs., 2 tabs.
Personal recollections on chiral symmetry breaking
NASA Astrophysics Data System (ADS)
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
The generalized hedgehog and the projected chiral soliton model
NASA Astrophysics Data System (ADS)
Fiolhais, M.; Goeke, K.; Grümmer, F.; Urbano, J. N.
1988-05-01
The linear chiral soliton model with quark fields and elementary pion and sigma fields is solved in order to describe static properties of the nucleon and the delta resonance. To this end a Fock state of the system is constructed which consists of three valence quarks in a 1s orbit with a generalized hedgehog spin-flavour configuration cos η¦u↓> - sin η¦d↑> . Coherent states are used to provide a quantum description for the mesonic parts of the total wave function. The corresponding classical pion field also exhibits a generalized hedgehog structure. In a pure mean field approximation the variation of the total energy results in the ordinary hedgehog form ( η = 45°). In a quantized approach, however, the generalized hedgehog baryon is projected onto states with good spin and isospin and then noticeable deviations from the simple hedgehog form occur (η ≅ 20°), if the relevant degrees of freedom of the wave functions are varied after the projection. Various nucleon properties are calculated. These include proton and neutron charge radii, and the magnetic moment of the proton for which good agreement with experiment is obtained. The absolute value of the neutron magnetic moment comes out too large, similarly as the axial vector coupling constant and the pion-nucleon-nucleon coupling constant. However, due to the generalization of the hedgehog, the Goldberger-Treiman relation and a corresponding virial theorem are fulfilled. Variation of the quark-meson coupling parameter g and the sigma mass mσ shows that the gA is always about 40% too large compared to experiment. The concepts and results of the projections are compared with the semiclassical collective quantization method. It is demonstrated that noticeable deviations occur for the delta-nucleon splitting, the isovector squared charge radius and the axial vector coupling constant.
Chiral symmetry and pentaquarks
Dmitri Diakonov
2004-07-01
Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.
Constituent Quark Model Description of Charmonium Phenomenology
NASA Astrophysics Data System (ADS)
Segovia, J.; Entem, D. R.; Fernandez, F.; Hernandez, E.
2013-10-01
We review how quark models are able to describe the phenomenology of the charm meson sector. The spectroscopy and decays of charmonium and open charm mesons are described in a particular quark model and compared with the data and the results of other existing models in the literature. A quite reasonable global description of the heavy meson spectra is reached. A new assignment of the ψ(4415) resonance as a 3D state leaving aside the 4S state to the X(4360) is tested through the analysis of the resonance structure in e+e- exclusive reactions around the ψ(4415) energy region. We make tentative assignments of some of the XYZ mesons. To elucidate the structure of the 1+cs states, i.e., Ds1(2460) and Ds1(2536), we study the strong decay properties of the Ds1(2536) meson. We also perform a calculation of the branching fractions for the semileptonic decays of B and Bs mesons into final states containing orbitally excited charmed and charmed-strange mesons, which have become a very important source of information about the structure of heavy mesons. Analysis of the nonleptonic B-meson decays into D(*)DsJ are also included.
NASA Astrophysics Data System (ADS)
Thacker, H. B.; Xiong, Chi; Kamat, Ajinkya S.
2011-11-01
The Witten-Sakai-Sugimoto construction of holographic QCD in terms of D4 color branes and D8 flavor branes in type IIA string theory is used to investigate the role of topological charge in the chiral dynamics of quarks in QCD. The QCD theta term arises from a compactified five-dimensional Chern-Simons term on the D4 branes. This term couples the QCD topological charge to the Ramond-Ramond (RR) U(1) gauge field of type IIA string theory. For large Nc the contribution of instantons (D0 branes) is suppressed, and the nonzero topological susceptibility of pure-glue QCD is attributed to the presence of D6 branes, which constitute magnetic sources of the RR gauge field. The topological charge of QCD is required, by an anomaly inflow argument, to coincide in space-time with the intersection of the D6 branes and the D4 color branes. This clarifies the relation between D6 branes and the coherent, codimension-one topological charge membranes observed in QCD Monte Carlo calculations. Using open-string/closed-string duality, we interpret a quark loop (represented by a D4-D8 open-string loop) in terms of closed-string exchange between color and flavor branes. The role of the RR gauge field in quark-antiquark annihilation processes is discussed. RR exchange in the s-channel generates a 4-quark contact term which produces an η' mass insertion and provides an explanation for the observed spin-parity structure of the Okubo-Zweig-Iizuka rule. The (logDetU)2 form of the U(1) anomaly emerges naturally. RR exchange in the t-channel of the qq¯ scattering amplitude produces a Nambu-Jona-Lasinio interaction which may provide a mechanism for spontaneous breaking of SU(Nf)×SU(Nf).
Flavor content of the nucleon in an unquenched quark model
Bijker, R.; Santopinto, E.
2009-04-20
We discuss the flavor content of the nucleon in an unquenched quark model in which the effects of quark-antiquark pairs (uu-bar, dd-bar and ss-bar) are taken into account in an explicit form. It is shown that the inclusion of qq-bar pairs leads to an excess of d-bar over u-bar quarks in the proton and to a large contribution of orbital angular momentum to the spin of the proton.
Inverse magnetic catalysis and confinement within a contact interaction model for quarks
NASA Astrophysics Data System (ADS)
Ahmad, A.; Raya, A.
2016-06-01
We evaluate the impact of an external magnetic field on the chiral symmetry and confinement-deconfinement transition temperatures by using a vector-vector contact interaction model for quarks regularized so as to include an explicit confining scale in the corresponding gap equation. Exploring the evolution of the chiral condensate and the confining scale with temperature T and magnetic field strength eB (e represents the fundamental electric charge), we determine the pseudo-critical temperatures for the chiral ({T}cχ ) and deconfinement (T c c ) transitions from their inflection points, respectively. By construction, {T}cχ ={T}cc in the chiral limit. Within a mean-field approximation, we observe the magnetic catalysis phenomenon, characterized by a rising behavior of {T}cχ and T c c with growing eB. By considering a lattice-inspired running coupling which monotonically decreases with eB, inverse magnetic catalysis takes place in our model. We explore the role of the magnetic field in the traits of the confinement-deconfinement transition described by the model. Our findings are also in agreement with predictions derived from effective models of strong interactions.
Scaling violation and the magnetic equation of state in chiral models
NASA Astrophysics Data System (ADS)
Almási, Gábor András; Tarnowski, Wojciech; Friman, Bengt; Redlich, Krzysztof
2017-01-01
The scaling behavior of the order parameter at the chiral phase transition, the so-called magnetic equation of state, of strongly interacting matter is studied within effective models. We explore universal and nonuniversal structures near the critical point. These include the scaling functions, the leading corrections to scaling, and the corresponding size of the scaling window as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the quark-meson and the Polyakov loop extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the O (N ) linear sigma model in the N →∞ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the nonuniversal scaling parameters are studied within the PQM model.
Top Quark Properties in Little Higgs Models
Berger, C.F.; Perelstein, M.; Petriello, F.; /Wisconsin U., Madison
2005-12-08
Identifying the mechanism which breaks electroweak symmetry and generates fermion masses is one of the main physics goals for both the LHC and the ILC. Studies of the top quark have the potential to illuminate this issue; since it is the heaviest of the Standard Model (SM) fermions, the top is expected to couple strongly to the symmetry-breaking sector. Consequently, the structure of that sector can have significant, potentially observable effects on the properties of the top. for example, it is well known that the vector and axial t{bar t}Z form factors receive large corrections (of order 5-10%) in certain models of dynamical electroweak symmetry breaking [1]. At future colliders such as the LHC and the ILC, we will be able to pursue a program of precision top physics, similar to the program studying the Z at LEP and SLC. In this manuscript, they study the corrections to the top quark properties in ''Little Higgs'' models of electroweak symmetry breaking [2], and compare the expected deviations from the SM predictions with expected sensitivities of experiments at the LHC and the ILC. In the Little Higgs models, electroweak symmetry is driven by the radiative effects from the top sector, including the SM-like top and its heavy counterpart, a TeV-scale ''heavy top'' T. Probing this structure experimentally is quite difficult. While the LHC should be able to discover the T quark, its potential for studying its couplings is limited [3,4]. Direct production of the T will likely be beyond the kinematic reach of the ILC. However, we will show below that the corrections to the gauge couplings of the SM top, induced by its mixing with the T, will be observable at the ILC throughout the parameter range consistent with naturalness. Measuring these corrections will provide a unique window on the top sector of the Little Higgs. Many Little Higgs models have been proposed in the literature. We will consider two examples in this study, the ''Littlest Higgs'' model [5], and its
Pc(4380 ) in a constituent quark model
NASA Astrophysics Data System (ADS)
Park, Woosung; Park, Aaron; Cho, Sungtae; Lee, Su Houng
2017-03-01
The constituent quark model with color-spin hyperfine potential is used to investigate the property of a compact pentaquark configuration with Jp=3 /2- and isospin=1 /2 , which is the most likely quantum number of one of the recently observed exotic baryon states at LHCb. Starting from the characterization of the isospin, color, and spin states for the pentaquark configuration, we construct the total wave function composed of the spatial wave function, which we take to be symmetric and in S wave, and the four orthogonal isospin⊗color⊗spin states that satisfy the Pauli principle. We then use the variational method to find a compact stable configuration. While there are compact configurations where the hyperfine potential is more attractive than the sum of p and J /ψ hyperfine potentials, we find that the ground state is the isolated p and J /ψ state. Furthermore, the mass of the excited state lies far above the observed pentaquark state leading us to conclude that the observed states cannot be a compact configuration with Jp=3 /2- , generated by the conventional two-body quark interactions.
Chiral anomalies in the reduced model
NASA Astrophysics Data System (ADS)
Kikukawa, Yoshio; Suzuki, Hiroshi
2002-09-01
On the basis of an observation due to Kiskis, Narayanan and Neuberger, we show that there is a remnant of chiral anomalies in the reduced model when a Dirac operator which obeys the Ginsparg-Wilson relation is employed for the fermion sector. We consider fermions belonging to the fundamental representation of the gauge group U(N) or SU(N). For vector-like theories, we determine a general form of the axial anomaly or the topological charge within a framework of a U(1) embedding. For chiral gauge theories with the gauge group U(N), a remnant of gauge anomaly emerges as an obstruction to a smooth fermion integration measure. The pure gauge action of gauge-field configurations which cause these non-trivial phenomena always diverges in the 't Hooft N→∞ limit when d > 2.
Regge trajectories of excited baryons, quark-diquark models, and quark-hadron duality
NASA Astrophysics Data System (ADS)
Masjuan, Pere; Arriola, Enrique Ruiz
2017-09-01
The parton model relations in conjunction with quark-hadron duality in deep inelastic scattering suggests an asymptotic dominance of the quark-diquark type of baryonic excited states with a radial Regge uniformly distributed mass-squared spectrum, Mn2=μ2n +M02. We argue that this points to a linearly quark-diquark confining potential. We analyze the radial (n ) and angular-momentum (J ) Regge trajectories for all light-quark states with baryon number 1 listed in the 2016 edition of the Particle Data Tables. The parameters of the mass-squared trajectories are obtained by linear regression assuming Δ Mn2˜MnΓn weighted with the width Γn of the resonance, and the error analysis is carried out accordingly.
Chiral model for q-barq and qq-barqq mesons
Napsuciale, Mauro; Rodriguez, Simon
2004-11-01
We point out that the spectrum of pseudoscalar and scalar mesons exhibits a quasidegenerate chiral nonet in the energy region around 1.4 GeV whose scalar component has a slightly inverted spectrum. Based on the empirical linear rising of the mass of a hadron with the number of constituent quarks which yields a mass around 1.4 GeV for tetraquarks, we conjecture that this quasichiral nonet arises from the mixing of a chiral nonet composed of tetraquarks with conventional q-barq states. We explore this possibility in the framework of a chiral model assuming a tetraquark chiral nonet around 1.4 GeV with chiral symmetry realized directly. We stress that U{sub A}(1) transformations can distinguish q-barq from tetraquark states, although it cannot distinguish specific dynamics in the later case. We find that the measured spectrum is consistent with this picture. In general, pseudoscalar states arise as mainly q-barq states but scalar states turn out to be strong admixtures of q-barq and tetraquark states. We work out also the model predictions for the most relevant couplings and calculate explicitly the strong decays of the a{sub 0}(1450) and K{sub 0}*(1430) mesons.
LHCb pentaquarks in constituent quark models
NASA Astrophysics Data System (ADS)
Ortega, P. G.; Entem, D. R.; Fernández, F.
2017-01-01
The recently discovered Pc(4380) + and Pc(4450) + states at LHCb have masses close to the D bar Σc* and Dbar*Σc thresholds, respectively, which suggest that they may have significant meson-baryon molecular components. We analyze these states in the framework of a constituent quark model which has been applied to a wide range of hadronic observables, being the model parameters, therefore, completely constrained. The Pc(4380) + and Pc(4450) + are studied as molecular states composed by charmed baryons and open charm mesons. Several bound states with the proper binding energy are found in the D bar Σc* and Dbar*Σc channels. We discuss the possible assignments of these states from their decay widths. Moreover, two more states are predicted, associated with the D bar Σc and Dbar*Σc* thresholds.
The proton's spin: A quark model perspective
Close, F.E. Tennessee Univ., Knoxville, TN )
1989-01-01
Magnetic moments and g{sub A}/g{sub V} provide information on the correlations among quark spins and flavors in the proton. I compare this information with the deep inelastic polarized data from EMC which has been claimed to show that very little of the proton's spin is due to the quarks. The possibility that there is significant polarization of strange quarks within protons is discussed. 38 refs.
The Thomas–Fermi quark model: Non-relativistic aspects
Liu, Quan Wilcox, Walter
2014-02-15
The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate. Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.
Relativistic quark model for the Omega- electromagnetic form factors
G. Ramalho, K. Tsushima, Franz Gross
2009-08-01
We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.
The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice
NASA Astrophysics Data System (ADS)
Gerhold, Philipp; Jansen, Karl; Kallarackal, Jim
2012-04-01
The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non-perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self-coupling.
Analytical formulation of a discrete chiral elastic metamaterial model
NASA Astrophysics Data System (ADS)
Liu, X. N.; Huang, G. L.; Hu, G. K.
2012-04-01
By embedding appropriately designed chiral local resonators in a host elastic media, a chiral metamaterial with simultaneously negative effective density and bulk modulus can be achieved. In this work, an two dimentional (2D) ideal discrete model for the chiral elastic metamaterial is proposed. The discrete dynamic equation is derived and then homogenized to give the continuous description of the metamaterial. The homogenization procedure is validated by the agreement of the dispersion curve of the discrete and homogenized formulations. The form of homogenized governing equations of the metamaterial cannot be classified as a traditional Cauchy elastic theory. This result conforms the conscience that the Cauchy elasticity cannot reflect the chirality, which is usually captured by higher order theory such as the non-centrosymmetric micropolar elasticity. However when reduced to a (2D) problem, the existing chiral micropolar theory becomes non-chiral. Based on reinterpretation of isotropic tensors in a 2D case, we propose a continuum theory to model the chiral effect for 2D isotropic chiral solids. This 2D chiral micropolar theory constitutes a hopeful macroscopic framework for the theory development of chiral metamaterials.
Fukugita, M. ); Mino, H. ); Okawa, M. , Ibaraki 305 ); Ukawa, A. )
1990-10-15
A previous finite-size study for the chiral phase transition of two-flavor QCD is extended to a smaller quark mass of {ital m}{sub {ital q}}=0.0125 in lattice units. The characteristics of the system for lattice sizes (6{sup 3}--12{sup 3}){times}4 are found to be quite similar to those for {ital m}{sub {ital q}}=0.025. The increase of susceptibilities over this range of the spatial size is still too mild to discriminate among the order of the transition also at this small quark mass.
Ward identities and the analogous Goldberger-Treiman relation in a three-flavor Spectral Quark Model
NASA Astrophysics Data System (ADS)
Reis, E. A.; Mota, A. L.; Dias, E. W.
2016-04-01
This work presents the first results of an extension of the spectral quark model which includes different flavors. The spectral quark model is an approach based on a generalization of the Lehmann representation for the quark propagator. Gauge and chiral invariance are ensured with the help of gauge technique which provides particular solutions to the Ward-Takahashi identities. General conditions on the quark spectral function follow from natural physical requirements. In particular, the function is normalized, its positive momenta must vanish, while the physical observables depend on negative moments and the so-called log moments. As a consequence, the model is made finite. To allow the description of mesons constituted by different flavors of quarks we introduce different spectral functions and obtain vertex functions constructed from Ward-Takahashi identities that includes two different spectral (constituent) quark masses, allowing the physical description of strange mesons, for example. We obtain some observables based on the current approach and, in particular, the spectral version of the Kaon analogous Goldberger-Treiman relation.
a Semirelativistic Quark Model for Kaon Photoproduction
NASA Astrophysics Data System (ADS)
Kumar, Anita
A semirelativistic quark model which incorporates the Isgur-Karl model is developed. It describes both electromagnetic as well as strong interactions. The Hamiltonian explicitly entails the production of qq pairs and thus permits description of strong decays. In this formulation no adjustable parameters beyond those of the Isgur-Karl model are used. This model has been applied to kaon production from protons by real photons (gamma+pto K^++Lambda ^0, gamma+pto K^++Sigma ^0). The differential cross sections and polarizations for both the KLambda and KSigma channels are calculated. The relative contributions of the Born terms, the seagull term and the various s-, u- and t-channel resonances are discussed. It is seen that the seagull term and the s-channel resonances dominate the cross sections. The results are compared with calculations from phenomenological models and experimental data. A reasonable agreement with the experimental data is obtained in most cases, but the need for more data of a better quality is evident.
Nuclear matter in nontopological soliton models with quark-meson coupling
NASA Astrophysics Data System (ADS)
Barnea, Nir; Walhout, Timothy S.
2000-09-01
A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field σ. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark- σ coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results — the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matter, with particular interest in the transition to a quark plasma, showing that even the simplest version of the model provides a reasonable qualitative fit to both the empirical nuclear matter equation of state and single nucleon properties.
Chiral response in lattice models of Weyl materials
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2017-09-01
For a generic lattice Hamiltonian of the electron states in Weyl materials, we calculate analytically the chiral (or, equivalently, valley) charge and current densities in the first order in background electromagnetic and strain-induced pseudoelectromagnetic fields. We find that the chiral response induced by the pseudoelectromagnetic fields is not topologically protected. Although our calculations reproduce qualitatively the anomalous chiral Hall effect, the actual result for the conductivity depends on the definition of the chirality as well as on the parameters of the lattice model. In addition, while for the well-separated Fermi surfaces surrounding the individual Weyl nodes the current induced by the magnetic field coincides almost exactly with the current of the chiral separation effect in linearized models, there are clear deviations when the Fermi surfaces undergo the Lifshitz transition. In general, we find that all chiral response coefficients vanish at large chemical potential.
Modeling Quark Gluon Plasma Using CHIMERA
NASA Astrophysics Data System (ADS)
Abelev, Betty
2011-09-01
We attempt to model Quark Gluon Plasma (QGP) evolution from the initial Heavy Ion collision to the final hadronic gas state by combining the Glauber model initial state conditions with eccentricity fluctuations, pre-equilibrium flow, UVH2+1 viscous hydrodynamics with lattice QCD Equation of State (EoS), a modified Cooper-Frye freeze-out and the UrQMD hadronic cascade. We then evaluate the model parameters using a comprehensive analytical framework which together with the described model we call CHIMERA. Within our framework, the initial state parameters, such as the initial temperature (Tinit), presence or absence of initial flow, viscosity over entropy density (η/S) and different Equations of State (EoS), are varied and then compared simultaneously to several experimental data observables: HBT radii, particle spectra and particle flow. χ2/nds values from comparison to the experimental data for each set of initial parameters will then used to find the optimal description of the QGP with parameters that are difficult to obtain experimentally, but are crucial to understanding of the matter produced.
Heavy quark potential from deformed AdS5 models
NASA Astrophysics Data System (ADS)
Zhang, Zi-qiang; Hou, De-fu; Chen, Gang
2017-04-01
In this paper, we investigate the heavy quark potential in some holographic QCD models. The calculation relies on a modified renormalization scheme mentioned in a previous work of Albacete et al. After studying the heavy quark potential in Pirner-Galow model and Andreev-Zakharov model, we extend the discussion to a general deformed AdS5 case. It is shown that the obtained potential is negative definite for all quark-antiquark separations, differs from that using the usual renormalization scheme.
A radiative model of quark masses with binary tetrahedral symmetry
NASA Astrophysics Data System (ADS)
Natale, Alexander
2017-01-01
A radiative model of quark and lepton masses utilizing the binary tetrahedral (T‧) flavor symmetry, or horizontal symmetry, is proposed which produces the first two generation of quark masses through their interactions with vector-like quarks that carry charges under an additional U (1). By softly-breaking the T‧ to a residual Z4 through the vector-like quark masses, a CKM mixing angle close to the Cabibbo angle is produced. In order to generate the cobimaximal neutrino oscillation pattern (θ13 ≠ 0 ,θ23 = π / 4 ,δCP = ± π / 2) and protect the horizontal symmetry from arbitrary corrections in the lepton sector, there are automatically two stabilizing symmetries in the dark sector. Several benchmark cases where the correct relic density is achieved in a multi-component DM scenario, as well as the potential collider signatures of the vector-like quarks are discussed.
Chiral field theories as models for hadron substructure
Kahana, S.H.
1987-03-01
A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.
Chiral bag plus skyrmion hybrid model with vector mesons for nucleon
NASA Astrophysics Data System (ADS)
Takashita, H.; Yoro, S.; Toki, H.
1988-08-01
The chiral bag plus skyrmion hybrid model (CSH) is extended to include the vector mesons (ω and ϱ mesons) following the hidden local symmetry prescription for nucleon. The hedgehog ansatz is taken for π, ω and ϱ meson fields and the coupled differential equations for quarks and mesons are solved numerically. It is found that the magnitude of the rho-meson field drops suddenly at R ≈ 0.2 fm as the bag radius increases. The hedgehog masses and the axial coupling gA are calculated as a function of the bag radius. It is found that gA behaves non-monotonically with the bag radius.
Sinclair, D. K.; Kogut, J. B.; High Energy Physics; Univ. of Maryland
2010-06-30
QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent N{sub t} = 4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. {beta} = 6/g{sup 2} for each of these transitions increases significantly from N{sub t} = 4 and N{sub t} = 6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop.
Kogut, J. B.; Sinclair, D. K.
2010-06-01
QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent N{sub t}=4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. {beta}=6/g{sup 2} for each of these transitions increases significantly from N{sub t}=4 and N{sub t}=6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop.
Phase diagram of chirally imbalanced QCD matter
Chernodub, M. N.; Nedelin, A. S.
2011-05-15
We compute the QCD phase diagram in the plane of the chiral chemical potential and temperature using the linear sigma model coupled to quarks and to the Polyakov loop. The chiral chemical potential accounts for effects of imbalanced chirality due to QCD sphaleron transitions which may emerge in heavy-ion collisions. We found three effects caused by the chiral chemical potential: the imbalanced chirality (i) tightens the link between deconfinement and chiral phase transitions; (ii) lowers the common critical temperature; (iii) strengthens the order of the phase transition by converting the crossover into the strong first order phase transition passing via the second order end point. Since the fermionic determinant with the chiral chemical potential has no sign problem, the chirally imbalanced QCD matter can be studied in numerical lattice simulations.
Model for nuclear matter in terms of clusters of quarks
NASA Astrophysics Data System (ADS)
Koltun, D. S.; Tosa, S.
1986-05-01
A system of nonrelativistic fermions (quarks) carrying color, moving in one dimension, interacts through delta-function potentials. Properties of the ground state as a function of density can be found exactly, using a Bethe ansatz method, and approximately, using a variational method. The model shows interesting limiting behavior: at low density the ground state consists of a Fermi gas of clusters of quarks (nucleons); at high density, a Fermi gas of quarks. Present address: Department of Physics, Campus Box 390, University of Colorado, Boulder, CO 80309, USA.
Partial restoration of chiral symmetry inside hadrons
Iritani, Takumi; Cossu, Guido; Hashimoto, Shoji
2016-01-22
We investigate the spatial distribution of the chiral condensate around static color sources for both quark-antiquark and three-quark systems. In the QCD vacuum a tube-like structure of chromo fields appears between color sources, which leads to a linearly confining potential. We show that the magnitude of the condensate is reduced inside the flux-tube, which suggests that chiral symmetry is partially restored inside the hadrons. By using a static baryon source in a periodic box as a model of the nuclear matter, we estimate the restoration of chiral symmetry with finite baryon number density.
Quark Model Estimate of ω NN and ρ NN Coupling Constants.
NASA Astrophysics Data System (ADS)
Qian, L.; Banerjee, S.; Tandy, P. C.
1996-10-01
Approximate Bethe-Salpeter solutions for ρ and ω mesons are used to estimate the vector and tensor coupling constants for these mesons with the nucleon. The meson-quark amplitudes are coupled to the valence quarks of a mean field chiral quark-meson model of the nucleon. The meson description used here is based upon a finite range barqq interaction which in turn is constrained only by pion physics. The vector meson properties here are therefore predictions. In this respect, and others, the present results are compared to recent estimates(S.-F. Gao, L.S. Celenza, C.M. Shakin, W.-D. Sun and J. Szweda, Phys. Rev. C53), 1936 (1996). of vector meson coupling constants based upon the zero-range Nambu-Jona-Lasinio (NJL) model. In particular, we find a ratio f_ρ / g_ρ agreeing better with the empirical value than with the vector meson dominance value inherent in the NJL model. The absolute values of the vector coupling constants are found to be very similar to the empirical values; the magnitudes of the meson barqq substructure amplitudes are crucial to this result.
Chiral symmetry breaking and vacuum polarization in a bag
Yasui, S.
2006-12-01
We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir energy, by using the Debye expansion for the analytical calculation and the Strutinsky's smearing method for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained with subtraction of the logarithmic divergence term.
Pentaquark baryons in the SU(3) quark model
Oh, Yongseok; Kim, Hungchong
2004-11-01
We study the SU(3) group structure of pentaquark baryons which are made of four quarks and one antiquark. The pentaquark baryons form 1, 8, 10, 10-bar, 27, and 35 multiplets in the SU(3) quark model. First, the flavor wave functions of all the pentaquark baryons are constructed in the SU(3) quark model and then the flavor SU(3) symmetry relations for the interactions of the pentaquarks with three-quark baryons and pentaquark baryons are obtained. Constructing the general interactions in SU(3) could be important for understanding the pentaquark baryon properties from reaction mechanisms. We also discuss possible pentaquarks in 27-plet and 35-plet and their decay channels that can be used to identify them in future experiments. The mass sum rules for the pentaquark baryons are also presented.
Cristoforetti, M.; Hell, T.; Klein, B.; Weise, W.
2010-06-01
The Monte-Carlo method is applied to the Polyakov-loop extended Nambu-Jona-Lasinio model. This leads beyond the saddle-point approximation in a mean-field calculation and introduces fluctuations around the mean fields. We study the impact of fluctuations on the thermodynamics of the model, both in the case of pure gauge theory and including two quark flavors. In the two-flavor case, we calculate the second-order Taylor expansion coefficients of the thermodynamic grand canonical partition function with respect to the quark chemical potential and present a comparison with extrapolations from lattice QCD. We show that the introduction of fluctuations produces only small changes in the behavior of the order parameters for chiral symmetry restoration and the deconfinement transition. On the other hand, we find that fluctuations are necessary in order to reproduce lattice data for the flavor nondiagonal quark susceptibilities. Of particular importance are pion fields, the contribution of which is strictly zero in the saddle point approximation.
Kharzeev, Dmitri E.; Yee, Ho-Ung
2011-04-15
We consider a relativistic plasma containing charged chiral fermions in an external magnetic field, e.g. a chirally symmetric quark-gluon plasma created in relativistic heavy ion collisions. We show that triangle anomalies imply the existence of a new type of collective gapless excitation in this system that stems from the coupling between the density waves of the electric and chiral charges; we call it ''the chiral magnetic wave'' (CMW). The CMW exists even in a neutral plasma, i.e. in the absence of the axial and vector chemical potentials. We demonstrate the existence of CMW and study its properties using three different approaches: i) relativistic magnetohydrodynamics; ii) dimensional reduction to (1+1) Sine-Gordon model, appropriate in a strong magnetic field; and iii) holographic QCD (Sakai-Sugimoto model), appropriate at strong coupling. We also briefly discuss the phenomenological implications of the CMW for heavy ion collisions.
NASA Astrophysics Data System (ADS)
Cao, Shanshan; Luo, Tan; Qin, Guang-You; Wang, Xin-Nian
2016-07-01
A linearized Boltzmann transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both elastic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the D meson suppression and elliptic flow observed at the Larege Hadron Collider and the Relativistic Heavy-Ion Collider. The prediction for the Pb-Pb collisions at √{sN N}=5.02 TeV is provided.
Decays of heavy vector mesons in the quark confinement model
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Valit, Yu. M.
1995-12-01
We analyze the radiative and hadronic decays of vector heavy mesons within the relativistic quark model with confined light quarks. The only adjustable parameters in this approach are the values of constituent masses of heavy quarks ( M c and M b). We adjust them using the available experimental data from CLEO and ARGUS-collaborations for the D *→ Dγ and D *→ Dπ branching ratios. It is found that the value of M c varies approximately in the interval 1.3 GeV< M c<1.65 GeV. We give the predictions for the absolute values of decay widths and compare our results with those obtained in other approaches. Also we consider the heavy quark limit M Q→∞ with E=M H-MQ=const for the decay amplitudes.
Semi-relativistic quark-antiquark potential models
NASA Astrophysics Data System (ADS)
Basdevant, J. L.; Boukraa, S.
We study the qualitative and quantitative properties of the spectrum of a two-body hamiltonian with relativistic kinematics. We show that this kinematics leads in a natural way to the observed features of light flavour (u, d, s) spectroscopy. After having established the basic properties of the operator √ p2 + m2 + V(r) in the cases of linear or logarithmic potentials, we show that, to first approximation, all q1 q2 meson states can be reproduced with a very simple universal flavour-independent potential whose parameters are directly related to basic physical quantities : the Regge slopes of light flavours and the quasi-logarithmic coupling strength of heavy quarks. We can derive equivalent effective non-relativistic hamiltonians which justify the successes of NR approaches. The main difficulties encountered, in particular in incorporating spin effects, appear to be due to the fact that, in phenomenological potential models, chiral symmetry and the ensuing Goldstone nature of the pion cannot be implemented in a natural way. Hence, such an approach can take its full predictive power only if it is based on a deeper field-theoretic level. Devant le succès spectaculaire des modèles potentiels pour la spectroscopie des états formés de quarks lourds (cc, bb, etc.), il est tentant d'essayer d'étendre de tels modèles aux états comprenant des quarks légers, u, d et s. En particulier, la spectroscopie des états mésoniques « lourds » est phénoménologiquement dominée par l'existence d'un potentiel confinant universel, quasi logarithmique entre 0,1 fm et 1 fm, tandis que celle des états légers se décrit de façon simple par des trajectoires de Regge linéaires qui ont une pente universelle. 11 est donc légitime de se demander s'il s'agit là de deux secteurs disjoints du monde hadronique, ou bien s'il existe une certaine unité dans la spectroscopie mésonique au plan phénoménologique. Cependant, en présence de quarks légers, voire de masse nulle, les
Renormalization group flow equations for chiral nuclear models
NASA Astrophysics Data System (ADS)
Johnson, Andrew Sheriden
1997-10-01
The renormalization group (RG) is a tool for the qualitative and quantitative nonperturbative understanding of physical systems. There are many examples of physical systems that defy any perturbative approach, e.g. strongly correlated statistical systems and strongly coupled quantum field theories. The currently accepted theory of the strong interactions, Quantum Chromodynamics (QCD), is an example of the latter. Unlike the case of its gauge theory counterpart, Quantum Electrodynamics (QED), many consequences of QCD cannot be computed using perturbation theory. Instead, closed form perturbative solutions of QCD are possible only for a limited subset of phenomena such as high momentum-transfer scattering processes. These solutions afford little insight into the most ubiquitous and experimentally accessible consequences of QCD: the bound states of the theory, e.g. nucleons and nuclei. In this thesis we present a nonperturbative solution of the σ-model which was originally proposed in the late 50s as a phenomenological description of the dynamics of nucleons and mesons. In our version of the model the fermions are interpreted as quarks which interact via the sigma and pi mesons. The model exhibits an approximate SU(2) × SU(2) chiral symmetry which is understood as a low energy consequence of QCD. We use the Renormalization Group to study the behavior of the model as we evolve from a high to a low momentum scale and as chiral symmetry is both spontaneously and explicitly broken. The results show a marked improvement over the perturbative calculation and are consistent with experiment and other nonperturbative calculations such as chiral perturbation theory and lattice gauge theory. We next review the Renormalization Group idea first with a heuristic example drawing from the contrast between the hydrodynamic and the statistical continuum limit. For physical systems in which the microscopic behavior does not sufficiently decouple from the macroscopic behavior, the de
Quark mean field model with pion and gluon corrections
NASA Astrophysics Data System (ADS)
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2016-10-01
The properties of nuclear matter and finite nuclei are studied within the quark mean field (QMF) model by taking the effects of pions and gluons into account at the quark level. The nucleon is described as the combination of three constituent quarks confined by a harmonic oscillator potential. To satisfy the spirit of QCD theory, the contributions of pions and gluons on the nucleon structure are treated in second-order perturbation theory. In a nuclear many-body system, nucleons interact with each other by exchanging mesons between quarks. With different constituent quark mass, mq, we determine three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1, QMF-NK2, and QMF-NK3, by fitting the ground-state properties of several closed-shell nuclei. It is found that all of the three parameter sets can give a satisfactory description of properties of nuclear matter and finite nuclei, moreover they also predict a larger neutron star mass around 2.3 M⊙ without hyperon degrees of freedom.
Chiral magnetic effect in a lattice model
NASA Astrophysics Data System (ADS)
Feng, Bo; Hou, De-fu; Liu, Hui; Ren, Hai-cang; Wu, Ping-ping; Wu, Yan
2017-06-01
We study analytically the one-loop contribution to the chiral magnetic effect (CME) using lattice regularization with a Wilson fermion field. In the continuum limit, we find that the chiral magnetic current vanishes at nonzero temperature but emerges at zero temperature consistent with that found by Pauli-Villas regularization. For finite lattice size, however, the chiral magnetic current is nonvanishing at nonzero temperature. But the numerical value of the coefficient of CME current is very small compared with that extracted from the full QCD simulation for the same lattice parameters. The possibility of higher-order corrections from QCD dynamics is also assessed.
Euclidean bridge to the relativistic constituent quark model
NASA Astrophysics Data System (ADS)
Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.
2017-03-01
Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.
Transverse momentum dependent quark and gluon distributions of light nuclei
NASA Astrophysics Data System (ADS)
Nematollahi, H.; Yazdanpanah, M. M.
2017-07-01
We investigate the unpolarized transverse momentum dependent (TMD) structure of light nuclei in the modified chiral quark exchange model (QEM), for the first time. To this end, we calculate the TMD quark and gluon distributions inside the bound state nucleons of the light nuclei based on the modified chiral quark model (χ {{QM}}) in which the TMD bare quark distributions of the bounded nucleons are needed. In order to compute these bare distributions, we first obtain the bare quark momentum densities using the QEM and then calculate the TMD bare distributions applying a theoretical method in which the light-cone variables are used. Finally, considering the nucleon structure of helium, tritium and deuteron nuclei, we obtain their TMD quark and gluon densities at low Q 2 scale. It is shown that our results have appropriate properties that are expected for the TMD distribution functions.
NN tensor and LS potentials in a quark model with quark-antiquark excitations
NASA Astrophysics Data System (ADS)
Fujiwara, Y.; Hecht, K. T.
1986-08-01
A more detailed study is made of the NN interaction in a quark model in which the (qq¯) excitations inherent in the quark-gluon interaction are explicitly incorporated into the model space. A unified treatment for all types of exchange terms of the (3q)-(3q) to (3q)-(3q)(qq¯) coupling kernels is used to calculate the space parts of the full coupling kernels and their Wigner transforms in complete analytic form. The present investigation focuses on the noncentral parts of the NN interaction. The tensor force gains almost its full strength from coupling kernels of Nπ and Nρ type. If the Nπ contribution is adjusted to fit the experimental pion-nucleon coupling constant the predicted strength of the full tensor force is in reasonable agreement with that of conventional OBEP's over the range in which the tensor force can act. The LS force gains contributions from both the pure (3q)-(3q) and the coupling kernels, but the dominant contributions (about 60-65% of the triplet-odd LS potential in the 0.7-1.0 fm range), come from the coupling kernels and particularly from the Nω and Nρ components. The triplet-odd LS potential derived from the full quark-exchange kernel is in remarkably good agreement with the OBEP LS potential over the significant range. Both the tensor and LS potentials are approximated surprisingly well over their full range by the simple (qq¯) exchange terms of our model. The 3P RGM phase shifts are calculated to show that both tensor and LS forces of our quark model are in good agreement with the experimental facts.
Violation of quark-hadron duality and spectral chiral moments in QCD
Gonzalez-Alonso, Martin; Pich, Antonio; Prades, Joaquim
2010-04-01
We analyze the spectral moments of the V-A two-point correlation function. Using all known short-distance constraints and the most recent experimental data from tau decays, we determine the lowest spectral moments, trying to assess the uncertainties associated with the so-called violations of quark-hadron duality. We have generated a large number of acceptable spectral functions, satisfying all conditions, and have used them to extract the wanted hadronic parameters through a careful statistical analysis. We obtain accurate values for the {chi}PT couplings L{sub 10} and C{sub 87}, and a realistic determination of the dimension six and eight contributions in the operator product expansion, O{sub 6}=(-5.4{sub -1.6}{sup +3.6}){center_dot}10{sup -3} GeV{sup 6} and O{sub 8}=(-8.9{sub -7.4}{sup +12.6}){center_dot}10{sup -3} GeV{sup 8}, showing that the duality-violation effects have been underestimated in previous literature.
Ogino, Yoshiyuki; Asahi, Toru
2015-05-21
In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi; Peixoto, Thiago C.; Roy, Victor; Serna, Fernando E.; Krein, Gastão
2016-04-01
We have calculated the temperature dependence of shear η and bulk ζ viscosities of quark matter due to quark-meson fluctuations. The quark thermal width originating from quantum fluctuations of quark-π and quark-σ loops at finite temperature is calculated with the formalism of real-time thermal field theory. Temperature-dependent constituent-quark and meson masses and quark-meson couplings are obtained in the Nambu-Jona-Lasinio model. We found a nontrivial influence of the temperature-dependent masses and couplings on the Landau-cut structure of the quark self-energy. Our results for the ratios η /s and ζ /s , where s is the entropy density (also determined in the Nambu-Jona-Lasinio model in the quasiparticle approximation), are in fair agreement with results of the literature obtained from different models and techniques. In particular, our result for η /s has a minimum very close to the quantum lower bound, η /s =1 /4 π .
Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons
NASA Astrophysics Data System (ADS)
Zhang, Ya; Zhai, Feng; Guo, Bin; Yi, Lin; Jiang, Wei
2017-07-01
A quantum hydrodynamic model is used to study the edge modes of chiral Berry plasmons in two-dimensional materials with nonzero Berry flux. A quantum effect of collective electron motions appears in systems with a high electron density. For the considered edge plasmon, the transcendental equation of the dispersion relation is solved nonlinearly and semianalytically. We predict a one-way chiral edge state in the presence of the quantum statistical effect and quantum diffraction effect. Indeed, the plasmon frequencies for counterpropagating edge modes exhibit different long-wavelength limits. The quantum effect can enhance the chirality of edge plasmons and their spatial confinement.
Strange hadronic loops of the proton: A quark model calculation
Paul Geiger; Nathan Isgur
1996-10-01
Nontrivial q{anti q} sea effects have their origin in the low-Q{sup 2} dynamics of strong QCD. The authors present here a quark model calculation of the contribution of s{anti s} pairs arising from a complete set of OZI-allowed strong Y{sup *}K{sup *} hadronic loops to the net spin of the proton, to its charge radius, and to its magnetic moment. The calculation is performed in an ``unquenched quark model'' which has been shown to preserve the spectroscopic successes of the naive quark model and to respect the OZI rule. They speculate that an extension of the calculation to the nonstrange sea will show that most of the ``missing spin'' of the proton is in orbital angular momenta.
NASA Astrophysics Data System (ADS)
Botella, F. J.; Branco, G. C.; Rebelo, M. N.; Silva-Marcos, J. I.
2016-12-01
We point out that in the standard model there is meaningful quark mixing even in the extreme chiral (EC) limit, where only the third generation of quarks acquires mass. This mixing is in general expected to be of order 1 and the fact that |V13|2+|V23|2≈1.6 ×1 0-3 implies a novel fine-tuning problem in the SM which we point out for the first time. We propose a possible way of avoiding this fine-tuning by introducing a symmetry S which leads to VCKM=1 , with only the third generation of quarks acquiring mass. We consider two scenarios for generating the mass of the first two quark generations and full quark mixing based on the assumption that the masses of the first two quark families are not generated by the standard Higgs. One consists of the introduction of a second Higgs doublet which is neutral under S . The second scenario consists of assuming new physics at a high energy scale, contributing to the masses of light quark generations, in an effective field theory approach. This last scenario leads to couplings of the Higgs particle to s s ¯ and c c ¯ which are significantly enhanced with respect to those of the SM. In both schemes, one has scalar-mediated flavor-changing neutral currents which are naturally suppressed. Flavor-violating top decays are predicted in the second scenario at the level Br (t →h c )≥5 ×1 0-5 .
Quark-model identification of baryon ground and resonant states
Melde, T.; Plessas, W.; Sengl, B.
2008-06-01
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of the baryon spectra, the spin-flavor structure of the baryon eigenstates, the behavior of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires one to include also resonances that are presently reported from experiments with only two-star status.
Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model
Gilberto Ramalho, Kazuo Tsushima
2011-09-01
We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.
Dynamics of pentaquarks in constituent quark models: recent developments
Stancu, Fl.
2005-06-14
Some recent developments in the study of light and heavy pentaquarks are reviewed, mainly within constituent quark models. Emphasis is made on results obtained in the flavor-spin model where a nearly ideal octet-antidecuplet mixing is obtained. The charmed antisextet is reviewed in the context of an SU(4) classification.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
NASA Astrophysics Data System (ADS)
Hosaka, A.; Toki, H.; Weise, W.
1990-01-01
We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.
Nucleation of quark matter in the PQM model
Mintz, Bruno W.; Stiele, Rainer; Schaffner-Bielich, Juergen; Ramos, Rudnei O.
2013-03-25
We use Langer's theory to calculate the surface tension of critical bubbles in a first-order quark-hadron phase transition at moderate and high baryon chemical potential, as predicted by the Polyakov-Quark-Meson (PQM) model at the mean-field level. We define an effective 4-dimensional order parameter, which is used to overestimate the surface tension of nucleating bubbles within the thin-wall approximation. We find relatively low values for the surface tension, {Sigma} Less-Than-Or-Equivalent-To 15MeV/fm{sup 2}. This implies that a metastable state, such as a supercooled quark-gluon plasma (QGP), quickly decays even in regions relatively close to the coexistence line of the phase diagram. Possible consequences for cosmology are briefly outlined.
Rare {Lambda}{sub b} decays in a quark model
Mott, L.; Roberts, W.
2010-08-05
Hadronic form factors for the rare weak transitions {Lambda}{sub b{yields}{Lambda}}{sup (*)} are calculated using a nonrelativistic quark model. The form factors obtained in this way are found to satisfy the relationships expecetd from the heavy quark effective theory. Differential decay rates and branching ratios are calculated for the dileptonic decays {Lambda}{sub b{yields}{Lambda}}{sup (*)}l{sup +}l{sup -}, for both ground state and excited daughter baryons. Inclusion of the long distance contributions from charmonium resonances significantly enhances the decay rates. Future work is outlined.
Checker Board Model predicts 5 Generations of Quarks
NASA Astrophysics Data System (ADS)
Lach, Theodore M., II
2002-10-01
The Checker Board Model (CBM) of the nucleus is a 2 Dimensional model that relies on the belief that nature is superbly symmetric and the belief that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the checker board array structures and this in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus, one might call it Super Symmetric, helps explain the stable structure of the alpha particle. A semi-classical (relativistic) approach was used to explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and two newly proposed quarks (1) : the "up" and the "dn" quarks, not to be confused with the lighter u and d quarks in the standard model. Using the prescribed 2D checkerboard arrays where protons go on dark squares and neutrons go on light squares, one is able to recreate all the known nuclei. This exercise came up with structures that could explain the rational for the Halo nuclei and why 9He was so unstable where as 8He was much more stable and 10He is not a bound structure. Since the heavy masses of the "up" and "dn" quark (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented that would explain why "up" and "dn" were so heavy. Trial and error resulted in the empirical fitting of these two new quarks into a scheme that placed them between the mass of u / d and the c / s quarks. This new particle physics model predicts that nature has 5 generations not 3. Perhaps it should be called the 5G model. The two new generations come from the "up" and "dn' quark and a much heavier generation of a 42.5 GeV "massive dn" or (Big Bottom, B') and 65 GeV "massive up" or (Big
Quark-meson coupling model with the cloudy bag
Nagai, S.; Miyatsu, T.; Saito, Kenji; Tsushima, Kazuo
2008-07-01
Using the volume coupling version of the cloudy bag model, the quark-meson coupling model is extended to study the role of pion field and the properties of nuclear matter. The extended model includes the effect of gluon exchange as well as the pion-cloud effect, and provides a good description of the nuclear matter properties. The relationship between the extended model and the EFT approach to nuclear matter is also discussed.
Quark susceptibility in a generalized dynamical quasiparticle model
NASA Astrophysics Data System (ADS)
Berrehrah, H.; Cassing, W.; Bratkovskaya, E.; Steinert, Th.
2016-04-01
The quark susceptibility χq at zero and finite quark chemical potential provides a critical benchmark to determine the quark-gluon-plasma (QGP) degrees of freedom in relation to the results from lattice QCD (lQCD) in addition to the equation of state and transport coefficients. Here we extend the familiar dynamical quasiparticle model (DQPM) to partonic propagators that explicitly depend on the three-momentum with respect to the partonic medium at rest in order to match perturbative QCD (pQCD) at high momenta. Within the extended dynamical quasiparticle model (DQPM*) we reproduce simultaneously the lQCD results for the quark number density and susceptibility and the QGP pressure at zero and finite (but small) chemical potential μq. The shear viscosity η and the electric conductivity σe from the extended quasiparticle model (DQPM*) also turn out to be in close agreement with lattice results for μq=0 . The DQPM*, furthermore, allows one to evaluate the momentum p , temperature T , and chemical potential μq dependencies of the partonic degrees of freedom also for larger μq, which are mandatory for transport studies of heavy-ion collisions in the regime 5 <√{sN N}<10 GeV.
Nonlinear realization of chiral symmetry on the lattice
NASA Astrophysics Data System (ADS)
Chandrasekharan, Shailesh; Pepe, Michele; Steffen, Frank Daniel; Wiese, Uwe-Jens
2003-12-01
We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.
Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry
NASA Astrophysics Data System (ADS)
Lawrie, E. A.
2017-09-01
Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry.
Meson exchange potentials in an NN quark model with quark-antiquark excitations
NASA Astrophysics Data System (ADS)
Fujiwara, Y.; Hecht, K. T.
1986-04-01
In a recent quark-model study of the NN interaction, we explicitly incorporated the qq¯ excitations inherent in the quark-gluon interaction lagrangian into the model space, and examined the contributions to the NN potential of particular (3 q)( q overlineq) components of the single-nucleon wave function, with specific baryon and meson quantum numbers, through the Wigner transforms of the resultant coupling terms of the quark exchange kernels. The present investigation focuses on the long-range parts of the potentials. It is shown that these arise almost entirely through two of the 25 possible types of exchange terms, and that these two correspond to the simple exchange of a q overlineq pair between the two nucleons and contribute only through coupling terms for which the (3q) components have the quantum numbers of a nucleon and the ( q overlineq) component the color-singlet character of a real pseudoscalar or vector meson. The potentials arising from these simple color-singlet q overlineq exchanges have been evaluated in explicit analytic form. In their dependence on nucleon ( σ1, · σ2) and ( τ1 · τ2) factors and the relative importance and signs of spin-spin, spin-independent central, LS, and tensor terms they have all the characteristics of conventional OBEP's. They are in remarkably good agreement with conventional OBEP's in the r ⩾ 1.2 fm range and have the same qualitative radial features over an even wider range, the one exception being the steep short-range repulsive rise of the spin-independent central term of the ω-exchange potential. The corresponding q overlineq exchange potential instead changes sign to become attractive at r < 0.8 fm.
Threshold pion photoproduction in a light-cone quark model
NASA Astrophysics Data System (ADS)
Konen, W.; Drechsel, D.
1991-07-01
The instantaneous and seagull graphs are calculated for pion photoproduction in a relativistic light-cone model of the nucleon. In both pseudoscalar and pseudovector coupling we find the ratios A (-): A (0): A (+) = 1: ( {-1}/{2}μ):( {-9}/{5}μ) in the nonrelativistic limit. These results correspond to the sum of seagull and Z-graph in the nonrelativistic quark model. In pseudovector coupling also the numerical results for realistic-model parameters are close to those values.
Quark fragmentation functions in NJL-jet model
NASA Astrophysics Data System (ADS)
Bentz, Wolfgang; Matevosyan, Hrayr; Thomas, Anthony
2014-09-01
We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. We report on our studies of quark fragmentation functions in the Nambu-Jona-Lasinio (NJL) - jet model. The results of Monte-Carlo simulations for the fragmentation functions to mesons and nucleons, as well as to pion and kaon pairs (dihadron fragmentation functions) are presented. The important role of intermediate vector meson resonances for those semi-inclusive deep inelastic production processes is emphasized. Our studies are very relevant for the extraction of transverse momentum dependent quark distribution functions from measured scattering cross sections. Supported by Grant in Aid for Scientific Research, Japanese Ministry of Education, Culture, Sports, Science and Technology, Project No. 20168769.
Two potential quark models for double heavy baryons
Puchkov, A. M.; Kozhedub, A. V.
2016-01-22
Baryons containing two heavy quarks (QQ{sup ′} q) are treated in the Born-Oppenheimer approximation. Two non-relativistic potential models are proposed, in which the Schrödinger equation admits a separation of variables in prolate and oblate spheroidal coordinates, respectively. In the first model, the potential is equal to the sum of Coulomb potentials of the two heavy quarks, separated from each other by a distance - R and linear potential of confinement. In the second model the center distance parameter R is assumed to be purely imaginary. In this case, the potential is defined by the two-sheeted mapping with singularities being concentrated on a circle rather than at separate points. Thus, in the first model diquark appears as a segment, and in the second - as a circle. In this paper we calculate the mass spectrum of double heavy baryons in both models, and compare it with previous results.
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the W jj
Ko, P.; Omura, Yuji; Yu, Chaehyun
2012-01-01
We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model (SM), which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.
Hadron-quark phase transition in asymmetric matter with dynamical quark masses
Shao, G. Y.; Colonna, M.; Di Toro, M.; Greco, V.; Plumari, S.; Liu, B.; Liu, Y. X.
2011-05-01
The two-equation-of-state model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu-Jona-Lasinio effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed-current quark masses, the main important effect of the chiral dynamics is the appearance of an end point for the coexistence zone. We show that a first-order hadron-quark phase transition may take place in the region T subset of (50-80) MeV and {rho}{sub B} subset of (2-4){rho}{sub 0}, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From the isospin properties of the mixed phase, some possible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of a critical end point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
NASA Astrophysics Data System (ADS)
Agrawal, P. K.; Pawar, D. D.
2017-03-01
We studied plane symmetric cosmological model in the presence of quark and strange quark matter with the help of f( R, T) theory. To decipher solutions of plane symmetric space-time, we used power law relation between scale factor and deceleration parameter. We considered the special law of variation of Hubble's parameter proposed by Berman ( Nuovo Cimento B74, 182, 1983) which yields constant deceleration parameter. We also discussed the physical behavior of the solutions by using some physical parameters.
Sea quark flavor asymmetry of hadrons in statistical balance model
Zhang Bin; Zhang Yongjun
2010-10-01
We suggested a Monte Carlo approach to simulate a kinetic equilibrium ensemble, and proved the equivalence to the linear equations method on equilibrium. With the convenience of the numerical method, we introduced variable splitting rates representing the details of the dynamics as model parameters which were not considered in previous works. The dependence on model parameters was studied, and it was found that the sea quark flavor asymmetry weakly depends on model parameters. It reflects the statistics principle, contributes the dominant part of the asymmetry, and the effect caused by details of the dynamics is small. We also applied the Monte Carlo approach of the statistical model to predict the theoretical sea quark asymmetries in kaons, octet baryons {Sigma}, {Xi}, and {Delta} baryons, even in exotic pentaquark states.
Chiral baryon with quantized pions
McNeil, J.A.; Price, J.A.
1993-04-01
The authors consider a hybrid chiral baryon model starting from the Gell-Mann-Levy linear sigma model with the sigma and pion fields coupled to quarks. Instead of employing the standard hedgehog ansatz, the authors solve the model using a Fock-space configuration consisting of a component with three quarks plus a component with three quarks and an explicit pion. In each component, the quarks (and pion) are directly coupled to the spin and isospin appropriate to a nucleon and the coupling is preserved throughout the calculation. The authors minimizes the groundstate expectation value of the Gell-Mann-Levy Hamiltonian to obtain the equations of motion which are solved self-consistently. They calculatess the canonical set of nucleon observables and compare them with previous work.
NASA Astrophysics Data System (ADS)
Liu, Keh-Fei
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of πNσ term and strangeness. The third one is the role of chiral U(1) anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Quark Models of Duality in Electron and Neutrino Scattering
Wally Melnitchouk
2006-02-01
Results of recent analyses of electromagnetic structure functions in the resonance region suggest that duality-violating higher twists are small above Q^2 ~ 1 GeV^2. We analyze the systematics of local duality within a quark model framework for various modes of spin-flavor symmetry breaking. On the basis of these models we discuss expectations for the workings of duality in neutrino scattering.
Lattice spin models for non-Abelian chiral spin liquids
Lecheminant, P.; Tsvelik, A. M.
2017-04-26
Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2)n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2)n gapless edge excitations.
Heavy-light mesons in chiral AdS/QCD
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2017-06-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Dissipative vibrational model for chiral recognition in olfaction
NASA Astrophysics Data System (ADS)
Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin
2015-09-01
We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.
Probing composite models at the LHC with exotic quarks production
NASA Astrophysics Data System (ADS)
Kukla, Romain
2017-03-01
After the Higgs boson hunt, the LHC could be a powerful tool to unravel the mystery of which physics lies beyond the realm of the Standard Model. Different new sectors have been postulated to address naturalness: SUSY, extra dimensions and strong dynamics theories. Composite models extend EWSB to a global symmetry breaking whose pseudo-Goldstone boson is the SM Higgs boson. The resulting mass spectrum originates from a partial mixing between fundamental fermions and composite fields which creates massive states including new heavy quarks coupled preferentially to the top quark. Searches for these top partners have been carried out by the ATLAS and CMS collaborations, constraining the models. Other composite contributions are expected to enhance the 4-top production, which should be observable in the next years at the LHC.
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Quark orbital angular momentum in the MIT bag model
NASA Astrophysics Data System (ADS)
Courtoy, A.; Miramontes, A. S.
2017-01-01
We present the results for the generalized transverse momentum distribution related to quark orbital angular momentum, i.e., F14, in the MIT bag model. This model has been modified to include the Peierls-Yoccoz projection to restore translational invariance. Such a modification allows us to fulfil more satisfactorily basic sum rules that would otherwise be less elegantly carried out with the original version. Using the same model, we have calculated the twist-3 generalized parton distribution (GPD) that corresponds to orbital angular momentum à la Ji, through the Penttinen-Polyakov-Shuvaev-Strikman sum rule. Recently, a new relation between the two definitions of the quark orbital angular momentum at the density level has been proposed, which we illustrate here within the model. The sum rule is fulfilled. Still within the framework of the MIT bag model, we analyze the Wandzura-Wilczek expression for the GPD of interest. The genuine quark-gluon contribution is evaluated directly thanks to the equation of motion of the bag, which allows for a direct control of the kinematical contributions to the twist-3 GPD.
Semileptonic decays of double heavy baryons in a relativistic constituent three-quark model
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.
2009-08-01
We study the semileptonic decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit, which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.
A New Cluster Updating for 2-D SU(2) × SU(2) Chiral Model
NASA Astrophysics Data System (ADS)
Zhang, Jianbo; Ji, Daren
1993-09-01
We propose a variant version of Wolff's cluster algorithm, which may be extended to SU(N) × SU(N) chiral model, and test it in 2-dimensional SU(2) × SU(2) chiral model. The results show that the new method can efficiently reduce the critical slowing down in SU(2) × SU(2) chiral model.
A Cluster Algorithm for the 2-D SU(3) × SU(3) Chiral Model
NASA Astrophysics Data System (ADS)
Ji, Da-ren; Zhang, Jian-bo
1996-07-01
To extend the cluster algorithm to SU(N) × SU(N) chiral models, a variant version of Wolff's cluster algorithm is proposed and tested for the 2-dimensional SU(3) × SU(3) chiral model. The results show that the new method can reduce the critical slowing down in SU(3) × SU(3) chiral model.
Chiral relaxation time at the crossover of quantum chromodynamics
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.; Chernodub, M.
2016-09-01
We study microscopic processes responsible for chirality flips in the thermal bath of quantum chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely, T ≃(150 ,200 ) MeV . The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and σ meson; hence we refer to these processes simply as one-pion (one-σ ) exchanges. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time τ . We find τ ≃0.1 ÷1 fm /c around the chiral crossover.
Electroexcitation of the Roper resonance in the relativistic quark models
Inna Aznauryan
2007-08-01
The amplitudes of the transition gamma* N -> P11(1440) are calculated within light-front relativistic quark model assuming that the P11(1440) is the first radial excitation of the 3q nucleon state. The results are compared with those obtained in close approaches by other authors and with standard nonrelativistic results. One of the reasons for this study was to present all these results within unified definition of helicity amplitudes consistent with the definition used in the extraction of the helicity amplitudes from experimental data in one-pion electroproduction. The results of relativistic quark models are qualitatively in good agreement with each other and differ strongly from nonrelativistic calculations. At small Q2 , these results for the transverse amplitude A12 are consistent, but fail to reproduce experimental data. The most probable explanation of this discrepancy is the absence of pion cloud contribution in the approaches under consideration.
Quark-lepton symmetric model at the LHC
NASA Astrophysics Data System (ADS)
Clarke, Jackson D.; Foot, Robert; Volkas, Raymond R.
2012-04-01
We investigate the quark-lepton symmetric model of Foot and Lew in the context of the Large Hadron Collider (LHC). In this “bottom-up” extension to the standard model, quark-lepton symmetry is achieved by introducing a gauged “leptonic color” symmetry which is spontaneously broken above the electroweak scale. If this breaking occurs at the TeV scale, then we expect new physics to be discovered at the LHC. We examine three areas of interest: the Z' heavy neutral gauge boson, charge ±1/2 exotic leptons, and a color triplet scalar diquark. We find that the LHC has already explored and/or will explore new parameter space for these particles over the course of its lifetime.
Semileptonic Decays of Heavy Omega Baryons in a Quark Model
Muslema Pervin; Winston Roberts; Simon Capstick
2006-03-24
The semileptonic decays of {Omega}{sub c} and {Omega}{sub b} are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy {Lambda} baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For {Omega}{sub b} to {Omega}{sub c} the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured {Lambda}{sub c}{sup +} {yields} {Lambda}e{sup +}{nu} rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of {Omega}{sub b} to pairs of ground and excited {Omega}{sub c} states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of {Omega}{sub Q} vary minimally within the models we use. We obtain an average value of (84 {+-} 2%) for the fraction of {Omega}{sub c} {yields} {Xi}{sup (*)} decays to ground states, and 91% for the fraction of {Omega}{sub c} {yields} {Omega}{sup (*)} decays to the ground state {Omega}. The elastic fraction of {Omega}{sub b} {yields} {Omega}{sub c} ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models.
Spin Structure Functions in a Covariant Spectator Quark Model
G. Ramalho, Franz Gross and M. T. Peña
2010-12-01
We apply the covariant spectator quark–diquark model, already probed in the description of the nucleon elastic form factors, to the calculation of the deep inelastic scattering (DIS) spin-independent and spin-dependent structure functions of the nucleon. The nucleon wave function is given by a combination of quark–diquark orbital states, corresponding to S, D and P-waves. A simple form for the quark distribution function associated to the P and D waves is tested.
NN interaction from bag-model quark interchange
Bakker, B.L.G.; Bozoian, M.; Maslow, J.N.; Weber, H.J.
1982-03-01
A partial-wave helicity-state analysis of elastic nucleon-nucleon scattering is carried out in momentum space. Its basis is a one- and two-boson exchange amplitude from a bag-model quark interchange mechanism. The resulting phase shifts and bound-state parameters of the deuteron are compared with other meson theoretic potentials and data up to laboratory energies of approx.350 MeV.
Improved quark coalescence for a multi-phase transport model
NASA Astrophysics Data System (ADS)
He, Yuncun; Lin, Zi-Wei
2017-07-01
The string melting version of a multi-phase transport model is often applied to high-energy heavy-ion collisions since the dense matter thus formed is expected to be in parton degrees of freedom. In this work we improve its quark coalescence component, which describes the hadronization of the partonic matter to a hadronic matter. We removed the previous constraint that forced the numbers of mesons, baryons, and antibaryons in an event to be separately conserved through the quark coalescence process. A quark now could form either a meson or a baryon depending on the distance to its coalescence partner(s). We then compare results from the improved model with the experimental data on hadron d N /d y ,pT spectra, and v2 in heavy-ion collisions from √{s NN}=62.4 GeV to 5.02 TeV. We show that, besides being able to describe these observables for low-pTpions and kaons, the improved model also better describes the low-p T baryon observables in general, especially the baryon p T spectra and antibaryon-to-baryon ratios for multistrange baryons.
Chiral magnetic effect in condensed matter systems
NASA Astrophysics Data System (ADS)
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim
2017-01-01
We study the generation of strong large scale magnetic fields in compact stars containing degenerate quark matter with unbroken chiral symmetry. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. In this system we predict the enhancement of the seed magnetic field 1012 G to the strengths (1014 - 1015) G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also apply of the obtained results to model the generation of magnetic fields in magnetars.
Nucleon-antinucleon annihilation in chiral soliton model
Musakhanov, M.M. . Inst. for Nuclear Theory Tashkentskij Gosudarstvennyj Univ., Tashkent . Dept. of Theoretical Physics); Musatov, I.V. . Research Inst. of Applied Physics)
1991-09-07
We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S{bar S} potential. Contribution of the annihilation channel to the elastic scattering is discussed.
Self-consistent Models of Strong Interaction with Chiral Symmetry
DOE R&D Accomplishments Database
Nambu, Y.; Pascual, P.
1963-04-01
Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)
Quark-gluon vertex model and lattice-QCD data
Bhagwat, M.S.; Tandy, P.C.
2004-11-01
A model for the dressed-quark-gluon vertex, at zero gluon momentum, is formed from a nonperturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory. The required input is an existing ladder-rainbow model Bethe-Salpeter kernel from an approach based on the Dyson-Schwinger equations; no new parameters are introduced. The model includes an Ansatz for the triple-gluon vertex. Two of the three vertex amplitudes from the model provide a pointwise description of the recent quenched-lattice-QCD data. An estimate of the effects of quenching is made.
Models of quark-hadron matter and compact stars
Schramm, S.; Steinheimer, J.; Dexheimer, V.; Negreiros, R.
2016-01-22
Phenomenological approaches to Quantum Chromodynamics covering the whole region of low and high temperatures and/or densities must address the problem that the effective degrees of freedom change from hadrons to quarks and gluons. We approach this task with a unified description of hadronic and quark matter allowing for cross-over as well as first or second-order phase transitions. As a further benefit of such an approach, a quantitatively satisfactory description of nuclear ground state matter as well as nuclear and hypernuclear properties can be achieved. We apply this model to neutron stars and consider potential constraints on star properties arising from lattice gauge results in relation with the observation of 2 solar mass stars.
Radiative leptonic Bc decay in the relativistic independent quark model
NASA Astrophysics Data System (ADS)
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2008-12-01
The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.
Nuclear pasta phases within the quark-meson coupling model
NASA Astrophysics Data System (ADS)
Grams, Guilherme; Santos, Alexandre M.; Panda, Prafulla K.; Providência, Constança; Menezes, Débora P.
2017-05-01
In this work, the low-density regions of nuclear and neutron star matter are studied. The search for the existence of nuclear pasta phases in this region is performed within the context of the quark-meson coupling (QMC) model, which incorporates quark degrees of freedom. Fixed proton fractions are considered, as well as nuclear matter in β equilibrium at zero temperature. We discuss the recent attempts to better understand the surface energy in the coexistence phases regime and we present results that show the existence of the pasta phases subject to some choices of the surface energy coefficient. We also analyze the influence of the nuclear pasta on some neutron star properties. The equation of state containing the pasta phase will be part of a complete grid for future use in supernova simulations.
Λc semileptonic decays in a quark model
NASA Astrophysics Data System (ADS)
Hussain, Md Mozammel; Roberts, Winston
2017-03-01
Hadronic form factors for semileptonic decay of the Λc are calculated in a nonrelativistic quark model. The full quark model wave functions are employed to numerically calculate the form factors to all relevant orders in (1 /mc, 1 /ms). The form factors obtained satisfy relationships expected from the heavy quark effective theory (HQET). The differential decay rates and branching fractions are calculated for transitions to the ground state and a number of excited states of Λ . The branching fraction of the semileptonic decay width to the total width of Λc has been calculated and compared with other theoretical estimates and experimental results. The branching fractions for Λc→Λ*l+νl→Σ π l+νl and Λc→Λ*l+νl→N K ¯ l+νl are also calculated. Apart from decays to the ground state Λ (1115 ) , it is found that decays through the Λ (1405 ) provide a significant portion of the branching fraction Λc→Xsl νl . A new estimate for f =B (Λc+→Λ l+νl)/B (Λc+→Xsl+νl) is obtained.
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Mukhopadhyay, N.C.; Zhang, L.
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
Chiral Thirring–Wess model with Faddeevian regularization
Rahaman, Anisur
2015-03-15
Replacing vector type of interaction of the Thirring–Wess model by the chiral type a new model is presented which is termed here as chiral Thirring–Wess model. Ambiguity parameters of regularization are so chosen that the model falls into the Faddeevian class. The resulting Faddeevian class of model in general does not possess Lorentz invariance. However we can exploit the arbitrariness admissible in the ambiguity parameters to relate the quantum mechanically generated ambiguity parameters with the classical parameter involved in the masslike term of the gauge field which helps to maintain physical Lorentz invariance instead of the absence of manifestly Lorentz covariance of the model. The phase space structure and the theoretical spectrum of this class of model have been determined through Dirac’s method of quantization of constraint system.
Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not
NASA Astrophysics Data System (ADS)
Bar-Shalom, Shaouly; Soni, Amarjit
2017-03-01
We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z2 symmetry, which couples the ;heavy; scalar doublet only to the 4th generation fermions and the ;light; one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin α ≲ O (10-3)) between the two CP-even scalars h , H and heavy 4th generation quark and lepton masses mt‧ ,mb‧ ≲ 400 GeV and mν‧ ,mτ‧ ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q‧ - Higgs systems (q‧ =t‧ ,b‧), that can be searched for at the LHC. For example, the heavy scalar states of the model, S = H , A ,H+, may have BR (S →qbar‧q‧) ∼ O (1), giving rise to observable qbar‧q‧ signals on resonance, followed by the flavor changing q‧ decays t‧ → uh (u = u , c) and/or b‧ → dh (d = d , s , b). This leads to rather distinct signatures, with or without charged leptons, of the form qbar‧q‧ →(nj + mb + ℓW) S (j and b being light and b-quark jets, respectively), with n + m + ℓ = 6- 8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching ratio in the
An Anderson-like model of the QCD chiral transition
NASA Astrophysics Data System (ADS)
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-06-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
A Euclidean bridge to the relativistic constituent quark model
NASA Astrophysics Data System (ADS)
Hobbs, Timothy; Alberg, Mary; Miller, Gerald
2017-01-01
We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.
Hyperon stars in a modified quark meson coupling model
NASA Astrophysics Data System (ADS)
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2016-09-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.
Two flavor superconductivity in non-local models
Duhau, R.; Grunfeld, A.G.; Scoccola, N.N.
2004-12-02
In the present work we study a relativistic quark model at finite temperature and density with non-local quark-antiquark and quark-quark interactions with SU(2) flavour and SU(3) color symmetries. After proper bosonization, we analyze the structure of the corresponding phase diagram and discuss the competition between the chiral and 2SC phases.
Successes and failures of the constituent quark model
Lipkin, H.J.
1982-01-01
Our approach considers the model as a possible bridge between QCD and the experimental data and examines its predictions to see where these succeed and where they fail. We also attempt to improve the model by looking for additional simple assumptions which give better fits to the experimental data. But we avoid complicated models with too many ad hoc assumptions and too many free parameters; these can fit everything but teach us nothing. We define our constituent quark model by analogy with the constituent electron model of the atom and the constituent nucleon model of the nucleus. In the same way that an atom is assumed to consist only of constituent electrons and a central Coulomb field and a nucleus is assumed to consist only of constituent nucleons hadrons are assumed to consist only of their constituent valence quarks with no bag, no glue, no ocean, nor other constituents. Although these constituent models are oversimplified and neglect other constituents we push them as far as we can. Atomic physics has photons and vacuum polarization as well as constituent electrons, but the constituent model is adequate for calculating most features of the spectrum when finer details like the Lamb shift are neglected. 54 references.
NASA Astrophysics Data System (ADS)
Garron, Nicolas; Hudspith, Renwick J.; Lytle, Andrew T.
2016-11-01
We compute the hadronic matrix elements of the four-quark operators relevant for {K}^0-{overline{K}}^0 mixing beyond the Standard Model. Our results are from lattice QCD simulations with n f = 2 + 1 flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing ( a ˜ 0 .08 and a ˜ 0 .11 fm) and with lightest unitary pion mass ˜ 300 MeV. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of ˜ 5% or better.
Intrinsic transverse momentum and dynamical chiral symmetry breaking
Christian Weiss, Peter Schweitzer, Mark Strikman
2013-01-01
We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.
Warm stellar matter within the quark-meson-coupling model
NASA Astrophysics Data System (ADS)
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providencia, C.; Menezes, D. P.
2010-10-15
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
The heavy Top Quark Partner in Little Higgs Models
Larios, F.; Perez, M. A.; Penunuri, F.
2008-07-02
Little Higgs models provide a natural explanation for the lightness of the Higgs mass. Through the mechanism of collective symmetry breaking, one loop quadratic divergent contributions to the Higgs mass are avoided. In these models a heavy partner of the Top quark appears as required to cancel out the Top's loop contribution. This heavy Top could be produced at the LHC mainly in the single mode. Because of flavor mixing a large FCNC gtT coupling can be generated at one loop that could boost the single T production mode through gg fusion.
Azimuthal spin asymmetries in light-cone constituent quark models
Boffi, S.; Pasquini, B.; Efremov, A. V.; Schweitzer, P.
2009-05-01
We present results for all leading-twist azimuthal spin asymmetries in semi-inclusive lepton-nucleon deep-inelastic scattering due to T-even transverse-momentum dependent parton distribution functions on the basis of a light-cone constituent quark model. Attention is paid to discuss the range of applicability of the model, especially with regard to the scale dependence of the observables and the transverse-momentum dependence of the distributions. We find good agreement with available experimental data and present predictions to be further tested by future CLAS, COMPASS, and HERMES data.
Exotic hadron production in a quark combination model
Han Wei; Shao Fenglan; Li Shiyuan; Shang Yonghui; Yao Tao
2009-09-15
The philosophy on production of exotic hadrons (multiquark states) in the framework of the quark combination model is investigated, taking f{sub 0}(980) as an example. The production rate and p{sub T} spectra of f{sub 0}(980) considered as (ss) or (sqsq), respectively, are calculated and compared in Au+Au collisions at {radical}(s{sub NN})=200 GeV. The unitarity of various combination models, when open for exotic hadron production, is addressed.
Model-independent analysis of quark mass matrices
Choudhury, D.; Sarkar, U.
1989-06-01
In view of the apparent inconsistency of the Stech, Fritzsch-Stech, and Fritzsch-Shin models and only marginal agreement of the Fritzsch and modified Fritzsch-Stech models with recent data on /ital B//sub /ital d///sup 0/-/bar B/ /sub /ital d///sup 0/ mixing, we analyze the general quark mass matrices for three generations. Phenomenological considerations restrict the range of parameters involved to different sectors. In the present framework, the constraints corresponding to various /ital Ansa/$/ital uml/---/ital tze/ have been discussed.
NASA Astrophysics Data System (ADS)
Tsue, Y.; Providência, C.; Providência, J. D.; Yamamura, M.
2011-07-01
In the modified Bonn quark model in which quark-pairing and particle-hole interactions are included, color-singlet states are examined in addition to the color-neutral quark-triplet state by a method of boson realization. The region which consists of single-quarks, quark pairs and quark triplets is analyzed.
General structure of democratic mass matrix of quark sector in E6 model
NASA Astrophysics Data System (ADS)
Ciftci, R.; ćiftci, A. K.
2016-03-01
An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
Parton distribution in pseudoscalar mesons with a light-front constituent quark model
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Ahmed, Isthiaq; Tsushima, Kazuo
2016-05-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function [1, 2, 3]. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions (PDFs), we use both the conditions in the light-cone wave function, i.e., when s ¯ quark is on-shell, and when u quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses [4, 5].
The Baryon Number Two System in the Chiral Soliton Model
NASA Astrophysics Data System (ADS)
Mantovani-Sarti, Valentina; Drago, Alessandro; Vento, Vicente; Park, Byung-Yoon
2013-03-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter
NASA Astrophysics Data System (ADS)
Berdermann, J.; Blaschke, D.; Fischer, T.; Kachanovich, A.
2016-12-01
We study thermodynamic and transport properties for the isotropic color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter under compact star constraints within a Nambu-Jona-Lasinio-type chiral quark model. Chiral symmetry breaking and the phase transition to superconducting quark matter leads to a density dependent change of quark masses, chemical potentials, and diquark gap. A self-consistent treatment of these physical quantities influences the microscopic calculations of transport properties. We present results for the iso-CSL direct URCA emissivities and bulk viscosities, which fulfil the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare our results with the phenomenologically successful, but yet heuristic 2 SC +X phase. We show that the microscopically founded iso-CSL phase can replace the purely phenomenological 2 SC +X phase in modern simulations of the cooling evolution for compact stars with color-superconducting quark matter interior.
A Top Quark Story: Quark Mixing, CP Violation and Rare Decays in the Standard Model
NASA Astrophysics Data System (ADS)
Buras, Andrzej J.; Harlander, Michaela K.
We review the highligths of quark mixing, particle-antiparticle mixing, CP-violation and rare K- and B-decays in the standard model. Special role in this review is played by the top quark. We give a collection of formulae for many interesting K- and B-decays exhibiting their mt- dependence with the help of penguin-box expansion. Using the existing data on | Vcb |, | Vub/Vcb |, ɛ- parameter and B_d^0 - bar B_d^0 mixing we perform a detailed analysis of the unitarity triangle (Δ) exhibiting its dependence on mt, FB, BK, | Vcb | and | Vub/Vcb |. Anticipating the future progress in the reduction of the uncertainties in xd, FB, BK, | Vcb, | and | Vub/Vcb | and not waiting for the top, we perform a hunting of mt, | Vtd | and of Δ through the flavour changing neutral current processes. This enterprise can be considerably sharpened in the 90's through the measurements of several interesting branching ratios such as B(K^ + to π ^ + ν bar ν ),B(K_L to π ^0 ν bar ν ),B(K_L to π ^0 e^ + e^ - ),B(K_L to μ bar μ ),B(B to K^ * γ ),B(B to K^ * ν bar ν ) and CP-asymmetries in neutral B-decays. Several possible scenarios of this hunting are presented. Scaling laws for FCNC-processes relating Vcb and mt dependences are emphasized. A graphical representation of top hunting in terms of | Vtd | mt plots is proposed. We derive a formula for mt in terms of B(K^ + to π ^ + ν bar ν ),B(K_L to π ^0 ν bar ν ) and B(K_L to μ bar μ )_{SD} which does not involve CKM parameters and we obtain a relation between these three branching ratios which must be experimentally satisfied if the standard model is the whole story. We also demonstrate how the poorly known ratio |Vub|/|Vcb| can in principle be determined by means of FCNC-processes. Our views on ɛ1/ɛ and on the role of rac in K^ + to π ^ + ν bar ν are presented. Throughout this review we stress the role of short distance QCD-corrections summarizing the present status of two-loop calculations. A shopping list for the
Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings
X.-H. Guo; P.C. Tandy; A.W. Thomas
2006-03-01
We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.
Hypernuclei in the quark-meson coupling model
K. Tsushima, P. A. M. Guichon
2010-07-01
We present results of hypernuclei calculated in the latest quark-meson coupling (QMC) model, where the effect of the mean scalar field in-medium on the one-gluon exchange hyperfine interaction, is also included self-consistently. The extra repulsion associated with this increased hyperfine interaction in-medium completely changes the predictions for {\\Sigma} hypernuclei. Whereas in the earlier version of QMC they were bound by an amount similar to {\\Lambda} hypernuclei, they are unbound in the latest version of QMC, in qualitative agreement with the experimental absence of such states.
Rotating hybrid stars with the Dyson-Schwinger quark model
NASA Astrophysics Data System (ADS)
Wei, J.-B.; Chen, H.; Burgio, G. F.; Schulze, H.-J.
2017-08-01
We study rapidly rotating hybrid stars with the Dyson-Schwinger model for quark matter and the Brueckner-Hartree-Fock many-body theory with realistic two-body and three-body forces for nuclear matter. We determine the maximum gravitational mass, equatorial radius, and rotation frequency of stable stellar configurations by considering the constraints of the Keplerian limit and the secular axisymmetric instability, and compare with observational data. We also discuss the rotational evolution for constant baryonic mass and find a spin-up phenomenon for supramassive stars before they collapse to black holes.
Viscous quark-gluon plasma model through fluid QCD approach
Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id
2014-09-25
A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.
Broken chiral symmetry on a null plane
Beane, Silas R.
2013-10-15
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.
Random matrix models for chiral and diquark condensation
Vanderheyden, B.; Jackson, A.D.
2005-06-14
We consider random matrix models for the thermodynamic competition between chiral symmetry breaking and diquark condensation in QCD at finite temperature and finite baryon density. The models produce mean field phase diagrams whose topology depends solely on the global symmetries of the theory. We discuss the block structure of the interactions that is imposed by chiral, spin, and color degrees of freedom and comment on the treatment of density and temperature effects. Extension of the coupling parameters to a larger class of theories allows us to investigate the robustness of the phase topology with respect to variations in the dynamics of the interactions. We briefly study the phase structure as a function of coupling parameters and the number of colors.
Dmitrasinovic, V. . E-mail: dmitrasin@yahoo.com; Toki, H.
2006-02-15
We make a critical comparison of several versions of instanton-induced interactions present in the literature, all based on ITEP group's extension to three colours and flavours of 't Hooft's effective lagrangian, with the predictions of the phenomenological Kobayashi-Kondo-Maskawa (KKM) chiral quark lagrangian. We analyze the effects of all versions of the effective U {sub A} (1) symmetry breaking interactions on light hadron spectra in the non-relativistic constituent quark model. We show that the KKMT force, when used as a residual hyperfine interaction reproduces the correct ordering of pseudoscalar and vector mesons even without explicitly taking chiral symmetry into account. Moreover, the nucleon spectra are also correctly reproduced, only the Roper resonance remains too high, albeit lower than usual, at 1660 MeV. The latter's lower than expected mass is not due to a small excitation energy, as in the Glozman-Riska (GR) model, but to a combination of colour, flavour, and spatial wave function properties that enhance the relevant matrix elements. The KKMT interaction explicitly depends on flavour and spin of the quarks, but unlike the GR flavour-spin one it has a firm footing in QCD. In the process we provide several technical advances, in particular we show the first explicit derivation of the three-body Fierz transformation and apply it to the KKM interaction. We also discuss the ambiguities associated with the colour degree of freedom.
Continuum model for chiral induced spin selectivity in helical molecules
Medina, Ernesto; González-Arraga, Luis A.; Finkelstein-Shapiro, Daniel; Mujica, Vladimiro; Berche, Bertrand
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
K- nuclear potentials from in-medium chirally motivated models
NASA Astrophysics Data System (ADS)
Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.
2011-10-01
A self-consistent scheme for constructing K- nuclear optical potentials from subthreshold in-medium K¯N s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K- quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -ReVK-chiral=85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium K¯N threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ2-dependent phenomenological terms, found to be dominated by ρ2 contributions that could represent K¯NN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K- quasibound nuclear states are presented.
Particle production within the quark meson coupling model
Panda, P. K.; Menezes, D. P.; Providencia, C.
2009-07-15
Quark-meson coupling (QMC) models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter. In the regime of hot hadronic matter very few calculations exist using the QMC model, in particular when applied to particle yields in heavy ion collisions. In the present work, we identify the free energy of the bag with the effective mass of the baryons and we calculate the particle production yields on a Au+Au collision at the BNL Relativistic Heavy Ion Collider (RHIC) with the QMC model and compare them with results obtained previously with other relativistic models. A smaller temperature for the fireball, T=132 MeV, is obtained because of the smaller effective baryon masses predicted by QMC. QMC was also applied to the description of particle yields at the CERN Super Proton Synchrotron (SPS) in Pb+Pb collisions.
Extended Chiral ({sigma},{pi},{omega}) Mean-Field Model with Vacuum Fluctuation Corrections
Uechi, Schun T.; Uechi, Hiroshi
2011-10-21
Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral){sigma}-{omega} mean-field theory, which is thermodynamically consistent, relativistic and Lorentz-covariant. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the spontaneous chiral symmetry breaking, which is different from conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.
Finite Nuclei in the Quark-Meson Coupling Model.
Stone, J R; Guichon, P A M; Reinhard, P G; Thomas, A W
2016-03-04
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
Finite Nuclei in the Quark-Meson Coupling Model
NASA Astrophysics Data System (ADS)
Stone, J. R.; Guichon, P. A. M.; Reinhard, P. G.; Thomas, A. W.
2016-03-01
We report the first use of the effective quark-meson coupling (QMC) energy density functional (EDF), derived from a quark model of hadron structure, to study a broad range of ground state properties of even-even nuclei across the periodic table in the nonrelativistic Hartree-Fock+BCS framework. The novelty of the QMC model is that the nuclear medium effects are treated through modification of the internal structure of the nucleon. The density dependence is microscopically derived and the spin-orbit term arises naturally. The QMC EDF depends on a single set of four adjustable parameters having a clear physics basis. When applied to diverse ground state data the QMC EDF already produces, in its present simple form, overall agreement with experiment of a quality comparable to a representative Skyrme EDF. There exist, however, multiple Skyrme parameter sets, frequently tailored to describe selected nuclear phenomena. The QMC EDF set of fewer parameters, derived in this work, is not open to such variation, chosen set being applied, without adjustment, to both the properties of finite nuclei and nuclear matter.
NASA Astrophysics Data System (ADS)
Coppola, M.; Allen, P.; Grunfeld, A. G.; Scoccola, N. N.
2017-09-01
The properties of magnetized color superconducting cold dense quark matter under compact star conditions are investigated using an S U (2 )f Nambu Jona-Lasinio (NJL)-type model in which the divergences are treated using a magnetic field independent regularization scheme in order to avoid unphysical oscillations. We study the phase diagram for several model parametrizations. The features of each phase are analyzed through the behavior of the chiral and superconducting condensates together with the different particle densities for increasing chemical potential or magnetic field. While confirming previous results derived for the zero magnetic field or isospin symmetric matter case, we show how the phases are modified in the presence of β -equilibrium as well as color and electric charge neutrality conditions.
NASA Astrophysics Data System (ADS)
Price, C. E.; Shepard, J. R.
1991-04-01
We compute properties of the nucleon in a hybrid chiral model based on the linear σ-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and gA. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations.
Nuclear chiral dynamics and phases of QCD
NASA Astrophysics Data System (ADS)
Weise, W.
2012-04-01
This presentation starts with a brief review of our current picture of QCD phases, derived from lattice QCD thermodynamics and from models based on the symmetries and symmetry breaking patterns of QCD. Typical approaches widely used in this context are the PNJL and chiral quark-meson models. It is pointed out, however, that the modeling of the phase diagram in terms of quarks as quasiparticles misses important and well known nuclear physics constraints. In the hadronic phase of QCD governed by confinement and spontaneously broken chiral symmetry, in-medium chiral effective field theory is the appropriate framework, with pions and nucleons as active degrees of freedom. Nuclear chiral thermodynamics is outlined and the liquid-gas phase transition is described. The density and temperature dependence of the chiral condensate is deduced. As a consequence of two- and three-body correlations in the nuclear medium, no tendency towards a first-order chiral phase transition is found at least up to twice the baryon density of normal nuclear matter and up to temperatures of about 100 MeV. Isospin-asymmetric nuclear matter and neutron matter are also discussed. An outlook is given on new tightened constraints for the equation-of-state of cold and highly compressed matter as implied by a recently observed two-solar-mass neutron star.
Exclusive versus inclusive semileptonic {anti B} decays in the quark model
Nathan Isgur
1996-10-01
Some emerging difficulties in the theoretical description of exclusive semileptonic {anti B} decays are discussed in the context of the quark model. While there are no unambiguous problems at this time, the author discusses physics beyond the valence quark model which should eventually be probed by precision measurements of B semileptonic decays.
Unquenched quark model for baryons: Magnetic moments, spins, and orbital angular momenta
Bijker, R.; Santopinto, E.
2009-12-15
We present an unquenched quark model for baryons in which the effects of the quark-antiquark pairs (uu, dd, and ss) are taken into account in an explicit form via a microscopic, QCD-inspired, quark-antiquark creation mechanism. In the present approach, the contribution of the quark-antiquark pairs can be studied for any inital baryon and for any flavor of the qq pairs. It is shown that, while the inclusion of the qq pairs does not affect the baryon magnetic moments, it leads to a sizable contribution of the orbital angular momentum to the spin of the proton and the {lambda} hyperon.
Distinguishing Standard Model Extensions using MonoTop Chirality at the LHC
NASA Astrophysics Data System (ADS)
Mueller, Ryan; Allahverdi, Rouzbeh; Dalchenko, Mykhailo; Dutta, Bhaskar; Flórez, Andrés; Gao, Yu; Kamon, Teruki; Kolev, Nikolay; Segura, Manuel
2017-01-01
Spectral analysis of the top quark final states is a promising method to distinguish physics beyond the standard model (BSM) from the SM. Many BSM physics with top quark final states feature top quarks with right or left handed polarized helicity. The energy spectrum of the top quark decay products can be used to distinguish the top quark helicity. A Delphes simulation of a minimal standard model extension featuring a color scalar triplet that decays into a left handed top and a dark matter (DM) candidate is compared with a right handed model to demonstrate how such an energy spectrum varies and differentiates models. Both the hadronic and leptonic decay channels of the top quark are considered in the analysis. In the hadronic channel the right and left handed models are separated at 95% CL with a production cross section of 20 fb and 100 fb-1 integrated luminosity of 13 TeV proton-proton collisions at the LHC.
Revisiting vectorlike quark models with enhanced top Yukawa coupling
NASA Astrophysics Data System (ADS)
Hashimoto, Michio
2017-08-01
We revisit a scenario with an enhanced top Yukawa coupling in vectorlike quark (VLQ) models, where the top Yukawa coupling is larger than the standard model value and the lightest VLQ has a negative Yukawa coupling. We find that the parameter space satisfying the LHC bounds of the Higgs signal strengths consistently with the precision measurements is rather wide. Because the Lagrangian parameters of the Yukawa couplings are large, such scenario can be realized in some strongly interacting theories. It also turns out that there is a noticeable relation between the contributions of the triangle and box diagrams in the g g →h h process by using the lowest order of the 1 /M expansion where M is the heavy mass running in the loops.
Finite nuclei in relativistic models with a light chiral scalar meson
Serot, B.D.; Furnstahl, R.J.
1993-10-01
Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field
NASA Astrophysics Data System (ADS)
Dudal, David; Granado, Diego R.; Mertens, Thomas G.
2017-03-01
We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.
Competing mechanisms of chiral symmetry breaking in a generalized Gross-Neveu model
Boehmer, Christian; Thies, Michael
2010-05-15
Chiral symmetry of the 2-dimensional chiral Gross-Neveu model is broken explicitly by a bare mass term as well as a splitting of scalar and pseudoscalar coupling constants. The vacuum and light hadrons--mesons and baryons which become massless in the chiral limit--are explored analytically in leading order of the derivative expansion by means of a double sine-Gordon equation. Depending on the parameters, this model features new phenomena as compared to previously investigated 4-fermion models: spontaneous breaking of parity, a nontrivial chiral vacuum angle, twisted kinklike baryons whose baryon number reflects the vacuum angle, crystals with alternating baryons, and appearance of a false vacuum.
Aspects of the strongly interacting matter phase diagram within non-local quark models
Pagura, V.; Dumm, D. G.; Scoccola, N. N.
2013-03-25
We study a nonlocal extension of the so-called Polyakov Nambu-Jona-Lasinio model at finite temperature and chemical potential, considering the impact of the presence of dynamical quarks on the scale parameter appearing in the Polyakov potential. Both real and imaginary chemical potentials are considered. The effect of varying the current quark mass is also investigated.
Finite Hypernuclei in the Latest Quark-Meson Coupling Model
Pierre A. M. Guichon; Anthony W. Thomas; Kazuo Tsushima
2007-12-12
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $\\Lambda$ and $\\Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $\\Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $\\Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $\\Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $\\Sigma$-atoms.
Top quark decays with flavor violation in extended models
NASA Astrophysics Data System (ADS)
Aranda, J. I.; Gómez, D. E.; Cortés-Maldonado, I.; Ramírez-Zavaleta, F.; Tututi, E. S.
2016-10-01
We analyze the top quark decays t → cg and t → cγ mediated by a new neutral gauge boson, identified as Z', in the context of the sequential Z model. We focus our attention on the corresponding branching ratios, which are a function of the Z' boson mass. The study range is taken from 2 TeV to 6 TeV, which is compatible with the resonant region of the dileptonic channel reported by ATLAS and CMS Collaborations. Finally, our preliminary results tell us that the branching ratios of t → cg and t → cγ processes can be of the order of 10-11 and 10-13, respectively.
Nucleon parton distributions in a light-front quark model
NASA Astrophysics Data System (ADS)
Gutsche, Thomas; Lyubovitskij, Valery E.; Schmidt, Ivan
2017-02-01
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ ˜ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q_v(x) and δ q_v(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN).
Chiral model of the nucleon: Projecting the hedgehog as a coherent state
NASA Astrophysics Data System (ADS)
Birse, Michael C.
1986-04-01
The construction of baryon states with good spin and isospin is studied in a chiral model. This is a linear σ model, describing quarks interacting with pions and σ mesons. It has previously been investigated in the mean-field approximation (MFA), using the hedgehog ansatz. The ansatz corresponds to a mixture of spin-isospin eigenstates. A coherent state is used to provide a quantum description for the mesonic part of the wave function. The hedgehog baryon is projected onto states with good spin and isospin. The Peierls-Yoccoz projection is used, in analogy with the treatment of deformed nuclei. As well as N and Δ, a J=T=(5/2) baryon state is obtained. The wave functions are varied after projection. For the N and Δ, the resulting field distributions are fairly similar to those from the MFA. Various nucleon properties are calculated. These include proton and neutron charge radii, for which reasonable agreement with experiment is obtained. Results for other properties are similar to those obtained with an approximate projection method, and indicate the need to extend the present approach to include vector mesons and the effects of vacuum polarization. Comparisons are made with wave functions used in the cloudy bag and Skyrme models.
Chiral model of the nucleon: Projecting the hedgehog as a coherent state
Birse, M.C.
1986-04-01
The construction of baryon states with good spin and isospin is studied in a chiral model. This is a linear sigma model, describing quarks interacting with pions and sigma mesons. It has previously been investigated in the mean-field approximation (MFA), using the hedgehog ansatz. The ansatz corresponds to a mixture of spin-isospin eigenstates. A coherent state is used to provide a quantum description for the mesonic part of the wave function. The hedgehog baryon is projected onto states with good spin and isospin. The Peierls-Yoccoz projection is used, in analogy with the treatment of deformed nuclei. As well as N and ..delta.., a J = T = (5/2) baryon state is obtained. The wave functions are varied after projection. For the N and ..delta.., the resulting field distributions are fairly similar to those from the MFA. Various nucleon properties are calculated. These include proton and neutron charge radii, for which reasonable agreement with experiment is obtained. Results for other properties are similar to those obtained with an approximate projection method, and indicate the need to extend the present approach to include vector mesons and the effects of vacuum polarization. Comparisons are made with wave functions used in the cloudy bag and Skyrme models.
Polarized heavy baryon production in quark-diquark model considering two different scenarios
NASA Astrophysics Data System (ADS)
Moosavi Nejad, S. Mohammad; Delpasand, M.
2017-09-01
At sufficiently large transverse momentum, the dominant production mechanism for heavy baryons is actually the fragmentation. In this work, we first study the direct fragmentation of a heavy quark into the unpolarized triply heavy baryons in the leading order of perturbative QCD. In a completely different approach, we also analyze the two-stage fragmentation of a heavy quark into a scalar diquark followed by the fragmentation of such a scalar diquark into a triply heavy baryon: quark-diquark model of baryons. The results of this model are in acceptable agreement with those obtained through a full perturbative regime. Relying on the quark-diquark model and considering two different scenarios we determine the spin-dependent fragmentation functions of polarized heavy baryons in such a way that a vector or a pseudoscalar heavy diquark is an intermediate particle between the initial heavy quark and the final state baryon.
Heavy-tailed chiral random matrix theory
NASA Astrophysics Data System (ADS)
Kanazawa, Takuya
2016-05-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Two-particle twist-3 distribution amplitudes of the pion and kaon in the light-front quark model
NASA Astrophysics Data System (ADS)
Choi, Ho-Meoyng; Ji, Chueng-Ryong
2017-03-01
We investigate the two-particle twist-3 distribution amplitudes (DAs) of the pseudoscalar mesons, in particular pseudoscalar [ϕ3;M P(x ) ] and pseudotensor [ϕ3;M σ(x ) ] DAs of the pion and kaon, in the light-front quark model based on the variational principle. We find that the behavior of the conformal symmetry in each meson distribution amplitude depends on the chiral-limit characteristics of the light-front trial wave function taken in the variational principle. We specifically take the two different light-front trial wave functions, Gaussian vs power-law type, and discuss their characteristics of the conformal symmetry in the chiral symmetry limit as well as their resulting degree of the conformal symmetry breaking in ϕ3;M P(x ) and ϕ3;M σ(x ) depending on the trial wave function taken in the computation. We present numerical results of transverse moments, Gegenbauer moments and ξ -moments and compare them with other available model estimates. The SU(3) flavor-symmetry breaking effect is also quantified with the numerical computation.
Phase structure in a chiral model of nuclear matter
Phat, Tran Huu; Anh, Nguyen Tuan; Tam, Dinh Thanh
2011-08-15
The phase structure of symmetric nuclear matter in the extended Nambu-Jona-Lasinio (ENJL) model is studied by means of the effective potential in the one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical first-order phase transition of the liquid-gas transition occurs at zero temperature, T=0, which weakens as T grows and eventually ends up with a second-order critical point at T=20 MeV. This phase transition scenario is confirmed by investigating the evolution of the effective potential versus the effective nucleon mass and the equation of state.
Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W
2003-01-17
A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.
Spin polarization in high density quark matter under a strong external magnetic field
NASA Astrophysics Data System (ADS)
Tsue, Yasuhiko; da Providência, João; Providência, Constança; Yamamura, Masatoshi; Bohr, Henrik
In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs.
Current conservation in the covariant quark-diquark model of the nucleon
NASA Astrophysics Data System (ADS)
Oettel, M.; Pichowsky, M. A.; von Smekal, L.
2000-07-01
The description of baryons as fully relativistic bound states of quark and glue reduces to an effective Bethe-Salpeter equation with quark-exchange interaction when irreducible 3-quark interactions are neglected and separable 2-quark (diquark) correlations are assumed. This covariant quark-diquark model of baryons is studied with the inclusion of the quark substructure of the diquark correlations. In order to maintain electromagnetic current conservation it is then necessary to go beyond the impulse approximation. A conserved current is obtained by including the coupling of the photon to the exchanged quark and direct “seagull” couplings to the diquark structure. Adopting a simple dynamical model of constituent quarks and exploring various parametrisations of scalar diquark correlations, the nucleon Bethe-Salpeter equation is solved and the proton and neutron electromagnetic form factors are calculated numerically. The resulting magnetic moments are still about 50% too small, the improvements necessary to remedy this are discussed. The results obtained in this framework provide an excellent description of the electric form factors (and charge radii) of the proton, up to a photon momentum transfer of 3.5 GeV2, and the neutron.
Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model.
He, Yin-Chen; Sheng, D N; Chen, Yan
2014-04-04
Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor--anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.
Analyzing the Boer-Mulders function within different quark models
Courtoy, A.; Vento, V.; Scopetta, S.
2009-10-01
A general formalism for the evaluation of time-reversal odd parton distributions is applied here to calculate the Boer-Mulders function. The same formalism when applied to evaluate the Sivers function led to results which fulfill the Burkardt sum rule quite well. The calculation here has been performed for two different models of proton structure: a constituent quark model and the MIT bag model. In the latter case, important differences are found with respect to a previous evaluation in the same framework, a feature already encountered in the calculation of the Sivers function. The results obtained are consistent with the present wisdom, i.e., the contributions for the u and d flavors turn out to have the same sign, following the pattern suggested analyzing the model-independent features of the impact parameter dependent generalized parton distributions. It is therefore confirmed that the present approach is suitable for the analysis of time-reversal odd distribution functions. A critical comparison between the outcomes of the two models, as well as between the results of the calculations for the Sivers and Boer-Mulders functions, is also carried out.
Phenomenology of strongly coupled chiral gauge theories
Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.
2016-11-25
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.
QCD θ-vacua from the chiral limit to the quenched limit
NASA Astrophysics Data System (ADS)
Mameda, Kazuya
2014-12-01
We investigate the dependence of the QCD vacuum structure on the θ-angle and quark mass, using the Di-Vecchia-Veneziano model. Although the Di-Vecchia-Veneziano model is a chiral effective model, it contains the topological properties of the pure Yang-Mills theory. It is shown that within this model, the ground state energies for all θ are continuous functions of quark mass from the chiral limit to the quenched limit, even including the first order phase transition at θ = π. Based on this effective model, we discuss (i) how the ground state depends on quark mass, and (ii) why the phase transition at θ = π is present in both the chiral and the quenched limit. In order to analyze the relation between quark mass and the θ-vacua, we calculate the chiral condensate as a function of quark mass. Also, considering the presence of the innate metastable states included in the QCD θ-vacuum, we also give a unified understanding of the phase transitions at θ = π in the chiral and quenched limit.
Instanton-dyon ensembles with quarks with modified boundary conditions
NASA Astrophysics Data System (ADS)
Larsen, Rasmus; Shuryak, Edward
2016-11-01
We modify the quark periodicity condition on the thermal circle by the introduction of some phases—known also as "flavor holonomies"— different quark flavors. These phases provide a valuable tool, to be used for better understanding of deconfinement and chiral restoration phase transitions: by changing them, one can dramatically modify both phase transitions. In the language of instanton constituents—instanton-dyons or monopoles—changing the quark periodicity condition has a very direct explanation: the interplay of flavor and color holonomies can switch topological zero modes between various dyon types. The model we will study in detail, the so-called ZN c-symmetric QCD model with equal number of colors and flavors Nc=Nf=2 and special arrangement of flavor and color holonomies, ensures the "most democratic" setting, in which each quark flavor and each dyon type are in one-to-one correspondence. The usual QCD has the opposite "most exclusive" arrangement: all quarks are antiperiodic and, thus, all zero modes fall on only one—twisted or L —dyon type. As we show by ensemble simulation, deconfinement and chiral restoration phase transitions in these two models are dramatically different. In the usual QCD, both are smooth crossovers: but in the case of the Z2-symmetric model, deconfinement becomes a strong first-order transition, while chiral symmetry remains broken for all dyon densities studied. These results are in good correspondence with those from recent lattice simulations.
Baryon exotics in the quark model, the skyrme model, and QCD.
Jenkins, Elizabeth; Manohar, Aneesh V
2004-07-09
We derive the quantum numbers of baryon exotics in the quark model and the Skyrme model and show that they agree for arbitrary colors and flavors. We define exoticness E, which can be used to classify the states. The exotic baryons include the recently discovered qqqqq pentaquarks (E=1), as well as exotic baryons with additional qq pairs (E>/=1). The mass formula for nonexotic and exotic baryons is given as an expansion in 1/N(c) and allows one to relate the moment of inertia of the Skyrme soliton to the mass of a constituent quark.
General structure of democratic mass matrix of quark sector in E{sub 6} model
Ciftci, R.; Çiftci, A. K.
2016-03-25
An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.
Langevin simulation of the chirally decomposed sine-Gordon model
Moriconi, L.; Moriconi, M.
2005-07-01
A large class of quantum and statistical field theoretical models, encompassing relevant condensed matter and non-Abelian gauge systems, are defined in terms of complex actions. As the ordinary Monte Carlo methods are useless in dealing with these models, alternative computational strategies have been proposed along the years. The Langevin technique, in particular, is known to be frequently plagued with difficulties such as strong numerical instabilities or subtle ergodic behavior. Regarding the chirally decomposed version of the sine-Gordon model as a prototypical case for the failure of the Langevin approach, we devise a truncation prescription in the stochastic differential equations which yields numerical stability and is assumed not to spoil the Berezinskii-Kosterlitz-Thouless transition. This conjecture is supported by a finite size scaling analysis, whereby a massive phase ending at a line of critical points is clearly observed for the truncated stochastic model.
Block renormalization study on the nonequilibrium chiral Ising model.
Kim, Mina; Park, Su-Chan; Noh, Jae Dong
2015-01-01
We present a numerical study on the ordering dynamics of a one-dimensional nonequilibrium Ising spin system with chirality. This system is characterized by a direction-dependent spin update rule. Pairs of +- spins can flip to ++ or -- with probability (1-u) or to -+ with probability u while -+ pairs are frozen. The system was found to evolve into the ferromagnetic ordered state at any u<1 exhibiting the power-law scaling of the characteristic length scale ξ∼t(1/z) and the domain-wall density ρ∼t(-δ). The scaling exponents z and δ were found to vary continuously with the parameter u. To establish the anomalous power-law scaling firmly, we perform the block renormalization analysis proposed by Basu and Hinrichsen [U. Basu and H. Hinrichsen, J. Stat. Mech.: Theor. Exp. (2011)]. The block renormalization method predicts, under the assumption of dynamic scale invariance, a scaling relation that can be used to estimate the scaling exponent numerically. We find the condition under which the scaling relation is justified. We then apply the method to our model and obtain the critical exponent zδ at several values of u. The numerical result is in perfect agreement with that of the previous study. This study serves as additional evidence for the claim that the nonequilibrium chiral Ising model displays power-law scaling behavior with continuously varying exponents.
Magnetic moments of baryons containing all heavy quarks in the quark-diquark model
NASA Astrophysics Data System (ADS)
Thakkar, Kaushal; Majethiya, Ajay; Vinodkumar, P. C.
2016-09-01
The triply heavy flavour baryons are studied using the quark-diquark description of the three-body system. The confinement potential for the present study of triply heavy flavour baryons is assumed as Coulomb plus power potential with power index ν. We have solved the Schrödinger equation numerically to calculate the masses of triply heavy flavour baryons. The masses and magnetic moments of triply heavy flavour baryons are computed for different power indices, ν, starting from 0.4 to 1.0. The predicted masses and magnetic moments are in good agreement with other theoretical predictions.
The Top Quark as a Window to Beyond the Standard Model Physics
Yu, Chiu-Tien
2013-01-01
The top quark was the last of the Standard Model quarks to be discovered, and is of considerable interest. The closeness of the top quark mass to the electroweak scale is suggestive that the top quark could be closely related to the mechanisms for electroweak symmetry breaking. Any new physics in electroweak symmetry breaking models could then preferentially couple to the top quark, making the top quark a promising probe for new physics. In this thesis, we will explore two aspects of the top quark as a harbinger to new physics: the top forward-backward asymmetry as seen at the Tevatron and the search for stops. In this thesis, we will discuss the Asymmetric Left-Right Model (ALRM), a model that is based on the gauge group $U'(1)\\times SU(2)\\times SU'(2)$ with couplings $g_1^\\prime, g_2^\\prime,$ and $g'$ associated with the fields $B',W,W'$, respectively, and show how this model can explain the top forward-backward asymmetry. We will then explore the scalar sector of the ALRM, and provide a specific Higgs mechanism that provides the masses for the $W'$ and $Z'$ bosons. The top forward-backward asymmetry is a test of invariance of charge-conjugation. Thus, we look at the $X$-gluon model, a model that was motivated by the top forward-backward asymmetry, and show that one can look at the longitudinal polarization of the top-quark to test parity conservation. Finally, we investigate searches for stop squarks, the supersymmetric partner of the top quark, at the Large Hadron Collider (LHC) using shape-based analyses.
Multiplicity fluctuation and correlation of identified baryons in a quark combination model
NASA Astrophysics Data System (ADS)
Song, Jun; Li, Hai-hong; Wang, Rui-qin; Shao, Feng-lan
2017-01-01
The dynamical multiplicity fluctuations and correlations of identified baryons and antibaryons produced by the hadronization of a bulk quark system are systematically studied in a quark combination model. Starting from the most basic dynamics of the quark combination which is necessary for multiplicity study, we analyze moments (variance, skewness, and kurtosis) of inclusive multiplicity distributions of identified baryons, two-baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of a quark system with given quark number and antiquark number. We obtain a series of interesting results, e.g., binomial behavior of multiplicity moments, coinciding flavor-dependent two-baryon correlation, and universal baryon-antibaryon correlation, which can be regarded as general features of the quark combination. We further take into account correlations and fluctuations of quark numbers before hadronization and study their influence on multiple production of baryons and antibaryons. We find that quark number fluctuations and flavor conservation lead to a series of important results such as the negative p Ω¯ + multiplicity correlation and universal two-baryon correlations. We also study the influence of resonance decays in order to compare our results with future experimental data in ultrarelativistic heavy ion collisions at the Large Hadron Collider.
Why the proton spin is not due to quarks
Karliner, M.
1988-07-01
Recent EMC data on the spin-dependent proton structure function suggest that very little of the proton spin is due to the helicity of the quarks inside it. We argue that, at leading order in the 1/N/sub c/ expansion, none of the proton spin would be carried by quarks in the chiral limit where m/sub q/ = 0. This model-independent result is based on a physical picture of the nucleon as a soliton solution of the effective chiral Lagrangian of large-N/sub c/ QCD. The Skyrme model is then used to estimate quark contribution to the proton spin when chiral symmetry and flavor SU(3) are broken: this contribution turns out to be small, as suggested by the EMC. Next, we discuss the other possible contributions to the proton helicity in the infinite-momentum frame---polarized gluons (..delta..G), and orbital angular momentum (L/sub z/). We argue on general grounds and by explicit example the ..delta..G = 0 and that if the parameters of the chiral Lagrangian are adjusted so that gluons carry /approximately/50% of the proton momentum, most of the orbital angular momentum L/sub z/ is carried by quarks. We mention several experiments to test the EMC results and their interpretation. 43 refs., 3 figs.
Dark matter and dark energy from quark bag model
Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com
2013-08-01
We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.
String Models for the Heavy Quark-Antiquark Bound States.
NASA Astrophysics Data System (ADS)
Tse, Sze-Man
1988-12-01
The heavy quark-antiquark bound state is examined in the phenomenological string models. Specifically, the Nambu-Goto model and the Polyakov's smooth string model are studied in the large-D limit, D being the number of transverse space-time dimensions. The static potential V(R) is extracted in both models in the large-D limit. In the former case, this amounts to the usual saddle point calculation. In the latter case, the renormalized, physical string tension is expressed in terms of the bare string tension and the extrinsic curvature coupling. A systematic loop expansion of V(R) is developed and carried out explicitly to one loop order, with the two loops result presented without detail. For large separations R, the potential is linear in R with corrections of order 1/R. The coefficient of the 1/R Luscher term has the universal value -piD/24 to any finite order in the loop expansion. For very small separations R, the potential V(R) is also proportional to 1/R with a coefficient twice that of Luscher's term. The corrections are logarithmically small. Polyakov's smooth string model is extended to the finite temperature situation. The temperature dependence of the string tension is investigated in the large-D limit. The effective string tension is calculated to the second order in the loop expansion. At low temperature, it differs from that of the Nambu-Goto model only by terms that fall exponentially with inverse temperature. Comparison of the potential V(R) in the smooth string model with lattice gauge calculation and hadron spectroscopy data yields a consistent result.
Forward-backward asymmetry of the top quark in diquark models
Arhrib, Abdesslam; Benbrik, Rachid; Chen, Chuan-Hung
2010-08-01
Motivated by the recent unexpected large forward-backward asymmetry of the top-quark observed by D0 and CDF at the Tevatron, we investigate a possible explanation for the anomaly within the framework of diquark models. In the diquark models, the top-quark pair production is mediated by the u-channel diagram. It is found that the color-triplet diquark can generate the forward-backward asymmetry of 20% when the constraint from the cross section of the top-quark pair production is taken into account.
NASA Astrophysics Data System (ADS)
Kojo, Toru; Hidaka, Yoshimasa; Fukushima, Kenji; McLerran, Larry D.; Pisarski, Robert D.
2012-02-01
We elaborate how to construct interweaving chiral spirals in (2+1) dimensions, defined as a superposition of chiral spirals oriented in different directions. We divide a two-dimensional Fermi sea into distinct wedges, characterized by the opening angle 2 Θ and depth Q≃p, where p is the Fermi momentum. In each wedge, the energy is lowered by forming a single chiral spiral. The optimal values for Θ and Q are chosen by balancing this gain in energy versus the cost of deforming the Fermi surface (which dominates at large Θ) and patch-patch interactions (dominant at small Θ). Using a non-local four-Fermi interaction model, we estimate the gain and cost in energy by expanding in terms of 1/N (where N is the number of colors), Λ/Q, and Θ. Due to a form factor in our non-local model, at small 1/N the mass gap (chiral condensate) is large, and the interaction among quarks and the condensate local in momentum space. Consequently, interactions between different patches are localized near their boundaries, and it is simple to embed many chiral spirals. We identify the dominant and subdominant terms at high density and categorize formulate an expansion in terms of Λ/Q or Θ. The kinetic term in the transverse directions is subdominant, so that techniques from (1+1)-dimensional systems can be utilized. To leading order in 1/N and Λ/Q, the total gain in energy is ˜pΛQCD2 with Θ˜(. Since Θ decreases with increasing p, there should be phase transitions associated with the change in the wedge number. We also argue the effects of subdominant terms at lower density where the large- N approximation is more reliable.
Viet, Dao Xuan; Kawamura, Hikaru
2009-01-16
Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at nonzero temperatures T_{CG}>T_{SG}>0, exhibiting spin-chirality decoupling.
Describing the strongly interacting quark-gluon plasma through the Friedberg-Lee model
NASA Astrophysics Data System (ADS)
Shu, Song; Li, Jia-Rong
2010-10-01
The Friedberg-Lee (FL) model is studied at finite temperature and density. The soliton solutions of the FL model in the deconfinement phase transition are solved and thoroughly discussed for certain boundary conditions. We indicate that the solitons before and after the deconfinement have different physical meanings: the soliton before deconfinement represents hadrons, while the soliton after the deconfinement represents the bound state of quarks which leads to a strongly interacting quark-gluon plasma phase. The corresponding phase diagram is given.
NASA Astrophysics Data System (ADS)
Pan, Zan; Cui, Zhu-Fang; Chang, Chao-Hsi; Zong, Hong-Shi
2017-05-01
To investigate the finite-volume effects on the chiral symmetry restoration and the deconfinement transition for a quantum chromodynamics (QCD) system with Nf = 2 (two quark flavors), we apply the Polyakov-loop extended Nambu-Jona-Lasinio model by introducing a chiral chemical potential μ5 artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents, but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, μc/μ5c and Tc/T5c, are significantly affected by the system size R. The behavior is that Tc increases slowly with μ5 when R is “large” and Tc decreases first and then increases with μ5 when R is “small.” It is also found that for a fixed μ5, there is a Rmin, where the critical end point vanishes and the whole phase diagram becomes a crossover when R < Rmin. Therefore, we suggest that for the heavy-ion collision experiments, which is to study the possible location of CEP, the finite-volume behavior should be taken into account.
ND and NB systems in quark delocalization color screening model
NASA Astrophysics Data System (ADS)
Zhao, Lifang; Huang, Hongxia; Ping, Jialun
2017-02-01
The ND and NB systems with I = 0 and 1, JP=1/2^{±}, 3/2^{±}, and 5/2^{±} are investigated within the framework of the quark delocalization color screening model. The results show that all the positive-parity states are unbound. By coupling to the ND^{ast} channel, the state ND with I = 0, JP=1/2- can form a bound state, which can be invoked to explain the observed Σ(2800) state. The mass of the ND^{ast} with I = 0, JP=3/2- is close to that of the reported Λc(2940)+, which indicates that Λc(2940)+ can be explained as a ND^{ast} molecular state in QDCSM. Besides, the Δ D^{ast} with I = 1, JP=5/2- is also a possible resonance state. The results of the bottom case of the NB system are similar to those of the ND system. Searching for these states will be a challenging subject of experiments.
ERIC Educational Resources Information Center
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
ERIC Educational Resources Information Center
Dakin, James T.
1974-01-01
Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R.J. ); Serot, B.D. )
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.
Nucleating quark droplets in the core of magnetars
NASA Astrophysics Data System (ADS)
Kroff, D.; Fraga, E. S.
2015-01-01
To assess the possibility of homogeneous nucleation of quark matter in magnetars, we investigate the formation of chirally symmetric droplets in a cold and dense environment in the presence of an external magnetic field. As a framework, we use the one-loop effective potential of the two-flavor quark-meson model. Within the thin-wall approximation, we extract all relevant nucleation parameters and provide an estimate for the typical time scales for the chiral phase conversion in magnetized compact star matter. We show how the critical chemical potential, critical radius, correlation length and surface tension are affected, and how their combination to define the nucleation time seems to allow for nucleation of quark droplets in magnetar matter even for not so small values of the surface tension.
Dynamical chiral-symmetry breaking in dual QCD
NASA Astrophysics Data System (ADS)
Krein, G.; Williams, A. G.
1991-05-01
We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate and the pion decay constant fπ within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ.
Chiral symmetry breaking by monopole condensation
NASA Astrophysics Data System (ADS)
Iwazaki, Aiichi
2017-08-01
Under the assumption of Abelian dominance in QCD, we have shown that chiral condensate is locally present around each QCD monopole. The essence is that either charge or chirality of a quark is not conserved, when the low energy massless quark collides with QCD monopole. In reality, the charge is conserved so that the chirality is not conserved. Reviewing the presence of the local chiral condensate, we show by using chiral anomaly that chiral nonsymmetric quark pair production takes place when a color charge is putted in a vacuum with monopole condensation, while chiral symmetric pair production takes place in a vacuum with no monopole condensation. Our results strongly indicate that the chiral symmetry is broken by the monopole condensation.
Analytic properties of the quark propagator from an effective infrared interaction model
NASA Astrophysics Data System (ADS)
Windisch, Andreas
2017-04-01
In this paper, I investigate the analytic properties of the quark propagator Dyson-Schwinger equation (DSE) in the Landau gauge. In the quark self-energy, the combined gluon propagator and quark-gluon vertex is modeled by an effective interaction (the so-called Maris-Tandy interaction), where the ultraviolet term is neglected. This renders the loop integrand of the quark self-energy analytic on the cut plane -π
LATTICE QCD THERMODYNAMICS WITH WILSON QUARKS.
EJIRI,S.
2007-11-20
We review studies of QCD thermodynamics by lattice QCD simulations with dynamical Wilson quarks. After explaining the basic properties of QCD with Wilson quarks at finite temperature including the phase structure and the scaling properties around the chiral phase transition, we discuss the critical temperature, the equation of state and heavy-quark free energies.
SPONTANEOUS CP VIOLATION AND QUARK MASS AMBIGUITIES.
CREUTZ,M.
2004-09-21
I explore the regions of quark masses where CP will be spontaneously broken in the strong interactions. The boundaries of these regions are controlled by the chiral anomaly, which manifests itself in ambiguities in the definition of non-degenerate quark masses. In particular, the concept of a single massless quark is ill defined.
Weak decays of the B c meson to B s and B mesonsin the relativistic quark model
NASA Astrophysics Data System (ADS)
Ebert, D.; Faustov, R. N.; Galkin, V. O.
2003-12-01
Semileptonic and non-leptonic decays of the B c meson to B s and B mesons, caused by the cto s,d quark transitions, are studied in the framework of the relativistic quark model. The heavy quark expansion in inverse powers of the active c and spectator bar b quark is used to simplify calculations while the final s and d quarks in the B s and B mesons are treated relativistically. The decay form factors are explicitly expressed through the overlap integrals of the meson wave functions in the whole accessible kinematical range. The obtained results are compared with the predictions of other approaches.
Quantum inverse scattering and the lambda deformed principal chiral model
NASA Astrophysics Data System (ADS)
Appadu, Calan; Hollowood, Timothy J.; Price, Dafydd
2017-07-01
The lambda model is a one parameter deformation of the principal chiral model that arises when regularizing the non-compactness of a non-abelian T dual in string theory. It is a current-current deformation of a WZW model that is known to be integrable at the classical and quantum level. The standard techniques of the quantum inverse scattering method cannot be applied because the Poisson bracket is non ultra-local. Inspired by an approach of Faddeev and Reshetikhin, we show that in this class of models, there is a way to deform the symplectic structure of the theory leading to a much simpler theory that is ultra-local and can be quantized on the lattice whilst preserving integrability. This lattice theory takes the form of a generalized spin chain that can be solved by standard algebraic Bethe Ansatz techniques. We then argue that the IR limit of the lattice theory lies in the universality class of the lambda model implying that the spin chain provides a way to apply the quantum inverse scattering method to this non ultra-local theory. This points to a way of applying the same ideas to other lambda models and potentially the string world-sheet theory in the gauge-gravity correspondence.
Polyakov-loop suppression of colored states in a quark-meson-diquark plasma
NASA Astrophysics Data System (ADS)
Blaschke, D.; Dubinin, A.; Buballa, M.
2015-06-01
A quark-meson-diquark plasma is considered within the Polyakov-loop extended Nambu-Jona-Lasinio model for dynamical chiral symmetry breaking and restoration in quark matter. Based on a generalized Beth-Uhlenbeck approach to mesons and diquarks we present the thermodynamics of this system including the Mott dissociation of mesons and diquarks at finite temperature. A striking result is the suppression of the diquark abundance below the chiral restoration temperature by the coupling to the Polyakov loop, because of their color degree of freedom. This is understood in close analogy to the suppression of quark distributions by the same mechanism. Mesons as color singlets are unaffected by the Polyakov-loop suppression. At temperatures above the chiral restoration mesons and diquarks are both suppressed due to the Mott effect, whereby the positive resonance contribution to the pressure is largely compensated by the negative scattering contribution in accordance with the Levinson theorem.
Fluctuation instability of the Dirac Sea in quark models of strong interactions
NASA Astrophysics Data System (ADS)
Zinovjev, G. M.; Molodtsov, S. V.
2016-03-01
A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.
Fluctuation instability of the Dirac Sea in quark models of strong interactions
Zinovjev, G. M.; Molodtsov, S. V.
2016-03-15
A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.
Dressed Quark Mass Dependence of Pion and Kaon Form Factors
Ninomiya, Y.; Bentz, W.; Cloet, I. C.
2015-02-04
The structure of hadrons is described well by the Nambu-Jona-Lasinio (NJL) model, which is a chiral effective quark theory of QCD. In this work we explore the electromagnetic structure of the pion and kaon using the three-flavor NJL model in the proper-time regularization scheme, including effects of the pion cloud at the quark level. In the calculation there is only one free parameter, which we take as the dressed light quark (u and d) mass. In the regime where the dressed light quark mass is approximately 0.25 GeV we find that the calculated values of the kaon decay constant, current quark masses, and quark condensates are consistent with experiment- and QCD-based analyses. We also investigate the dressed light quark mass dependence of the pion and kaon electromagnetic form factors, where comparison with empirical data and QCD predictions also favors a dressed light quark mass near 0.25 GeV.
Quasiparticle properties of the quarks of the Nambu-Jona-Lasinio model
NASA Astrophysics Data System (ADS)
Cao, Nan-Wei; Shakin, C. M.; Sun, Wei-Dong
1992-12-01
In spite of the apparent limitations of the model, in recent years there have been many applications of the Nambu-Jona-Lasinio (NJL) model in the study of hadron structure and in the study of the behavior of nuclear matter at finite temperature and density. A number of researchers have studied a generalized SU(3) version of the NJL model. For example, Vogl, Lutz, Klimt, and Weise [Nucl. Phys. A516 469 (1990)] have performed extensive calculations that include a calculation of a scalar form factor of a constituent quark, Fs(q2), and a calculation of a quark sigma term σq. (In their work, the latter quantity is related to the nucleon sigma term σN as in a constituent quark model: σN=3σq.) These calculations are made in what may be termed a sigma-dominance approximation. In the work reported here, we review the important role played by the nucleon sigma term in understanding the behavior of the quark condensate in the presence of matter. We make use of the original SU(2) version of the NJL model to study how various quark properties are modified when we take into account the dressing of the constituent quarks by the pion, the Goldstone boson of the model. We calculate the quark self-energy arising from emission and absorption of a pion and also show how the calculation of the scalar form factor of the quark and σq are modified due to the coupling of the quark to the pion. The correction terms considered here serve to reduce the value of σq by a small amount relative to the value obtained in the simplest version of the sigma dominance model. For example, for a Euclidean momentum cutoff, Λ=1050 MeV, the uncorrected result is σN=54.6 MeV. That value is then reduced to σN=51.5 MeV, if the corrections due to the pion ``dressing'' are included. It is also found that the residue at the quasiparticle pole of the quark propagator Z is about 0.86 when the coupling to the pion field is taken into account.
STRANGE GOINGS ON IN QUARK MATTER.
SCHAFER,T.
2001-06-05
We review recent work on how the superfluid state of three flavor quark matter is affected by non-zero quark masses and chemical potentials. The study of hadronic matter at high baryon density has recently attracted a lot of interest. At zero baryon density chiral symmetry is broken by a quark-anti-quark condensate. At high density condensation in the quark-anti-quark channel is suppressed. Instead, attractive interactions in the color anti-symmetric quark-quark channel favor the formation of diquark condensates. As a consequence, cold dense quark matter is expected to be a color superconductor. The symmetry breaking pattern depends on the density, the number of quark flavors, and their masses. A particularly symmetric phase is the color-flavor-locked (CFL) phase of three flavor quark matter. This phase is believed to be the true ground state of ordinary matter at very large density.
Chiral Potts rapidity curve descended from six-vertex model and symmetry group of rapidities
NASA Astrophysics Data System (ADS)
Roan, Shi-shyr
2005-08-01
In this paper, we present a systematical account of the descending procedure from the six-vertex model to the N-state chiral Potts model through fusion relations of τ(j)-operators, following the works of Bazhanov-Stroganov and Baxter-Bazhanov-Perk. A careful analysis of the descending process leads to the appearance of the high genus curve as the rapidity constraint for the chiral Potts models. Full symmetries of the rapidity curve are identified, as is its symmetry group structure. By normalized transfer matrices of the chiral Potts model, the τ(2)T relation can be reduced to functional equations over a hyperelliptic curve associated with rapidities, by which the degeneracy of τ(2)-eigenvalues is revealed in the case of the superintegrable chiral Potts model.
Deconfinement, chiral transition and localisation in a QCD-like model
NASA Astrophysics Data System (ADS)
Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc
2017-02-01
We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N T = 4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.
Modeling optical reflectance from chiral micromirrors embedded in manuka beetles
NASA Astrophysics Data System (ADS)
Hodgkinson, Ian J.; De Silva, Lakshman; Murray, Petra; Wu, Qi Hong; Arnold, Matthew; Leader, John P.
2004-08-01
Optical and electron microscopies reveal complexity in the multilayered chiral coatings that produce green metallic-like reflections from manuka (scarab) beetles. In particular the reflectors are shown to have the form of small concave pits and troughs that are filled with contouring chiral material. Each chiral micro-reflector presents a range of pitch and tilt to an incident beam of light. The presentation attempts to relate these physical properties to optical properties such as spectral reflectance, angle of spread and perceived color of the beetles.
Gluonic Lorentz violation and chiral perturbation theory
NASA Astrophysics Data System (ADS)
Noordmans, J. P.
2017-04-01
By applying chiral-perturbation-theory methods to the QCD sector of the Lorentz-violating Standard-Model Extension, we investigate Lorentz violation in the strong interactions. In particular, we consider the C P T -even pure-gluon operator of the minimal Standard-Model Extension. We construct the lowest-order chiral effective Lagrangian for three as well as two light quark flavors. We develop the power-counting rules and construct the heavy-baryon chiral-perturbation-theory Lagrangian, which we use to calculate Lorentz-violating contributions to the nucleon self-energy. Using the constructed effective operators, we derive the first stringent limits on many of the components of the relevant Lorentz-violating parameter. We also obtain the Lorentz-violating nucleon-nucleon potential. We suggest that this potential may be used to obtain new limits from atomic-clock or deuteron storage-ring experiments.
A quark model of {bar {Lambda}}{Lambda} production in {bar p}p interactions
Alberg, M.A. |; Henley, E.M.; Wilets, L.; Kunz, P.D.
1993-12-31
A quark model which includes both scalar and vector contributions to the reaction mechanism (SV quark model) is used in a DWBA calculation of {anti {Lambda}}{Lambda} production in {bar p}p interactions. Total and differential cross-sections, polarizations, depolarizations, and spin-correlation coefficients are computed for laboratory momenta from threshold to 1695 MeV/c. The free parameters of the calculation are the scalar and vector strengths, a quark cluster size parameter, and the parameters of the unknown {anti {Lambda}}{Lambda} potentials. Good agreement with experiment is found for constructive interference of the scalar and vector terms, and for {anti {Lambda}}{Lambda} potentials which differ from those suggested by several authors on the basis of SU(3) arguments. The fit to the data is better than that obtained by other quark models, which use only scalar or vector annihilation terms. The agreement with experiment is also better than that found in meson-exchange models. The recent suggestion [1] that measurement of the depolarization parameter D{sub nn} can be used to discriminate between meson-exchange and quark models is examined in detail. We conclude that a measurement of D{sub nn} will provide a test of which of these models, as presently constructed, is the more appropriate description of strangeness production in the {bar p}p {yields} {anti {Lambda}}{Lambda} reaction.
Vacuum polarization corrections to low energy quark effective couplings
NASA Astrophysics Data System (ADS)
Paulo, Ademar; Braghin, Fabio L.
2014-07-01
In this work corrections to low energy punctual effective quark couplings up to the eighth order are calculated by considering vacuum polarization effects with the scalar quark-antiquark condensate. The departing point is a QCD-based Nambu-Jona-Lasinio model. By separating the quark field into two components, one that condenses and another one for interacting quarks, the former is integrated out with the help of usual auxiliary fields and an effective action in terms of interacting quark fields is found. The scalar auxiliary field reduces to the quark-antiquark condensate in the vacuum and the determinant is expanded in powers of the quark-antiquark bilinears generating chiral invariant effective 2N-quark interactions (N =2,3…). The corresponding coupling constants and effective masses are estimated, and the general trend is that for increasing the effective gluon mass the values of the effective coupling constants decrease. All the values are in good agreement with phenomenological fits.
Effects of quark matter and color superconductivity in compact stars
NASA Astrophysics Data System (ADS)
Blaschke, D.; Grigorian, H.; Aguilera, D. N.; Yasui, S.; Toki, H.
2003-04-01
The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form factors of the interaction on the phase diagram of quark matter under the condition of β- equilibrium and charge neutrality. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of ΔMc2 ~ 1053 erg. We study the consequences of antineutrino trapping in hot quark matter for quark star configurations with possible diquark condensation and discuss the claim that this energy could serve as an engine for explosive phenomena. A ``phase diagram'' for rotating compact stars (angular velocity-baryon mass plane) is suggested as a heuristic tool for obtaining constraints on the equation of state of QCD at high densities. It has a critical line dividing hadronic from quark core stars which is correlated with a local maximum of the moment of inertia and can thus be subject to experimental verification by observation of the rotational behavior of accreting compact stars.
Chiral symmetry in quarkyonic matter
Kojo, T.
2012-05-15
The 1/N{sub c} expansion classifies nuclear matter, deconfined quark matter, and Quarkyonic matter in low temperature region. We investigate the realization of chiral symmetry in Quarkyonic matter by taking into account condensations of chiral particle-hole pairs. It is argued that chiral symmetry and parity are locally violated by the formation of chiral spirals, <{psi}-bar exp (2i{mu}{sub q} z{gamma}{sup 0} {gamma}{sup z}){psi}> . An extension to multiple chiral spirals is also briefly discussed.
Light-Front Quantized Chiral Model and its Vacuum Structure
Srivastava, Prem P.
1998-11-30
The bosonized Chiral Schwinger model (CSM) is quantized on the light-front (LF). The physical Hilbert space of CSM is obtained directly once the constraints on the LF phase space are eliminated. The discussion of the degenerate vacua and the absence in the CSM of the theta-vacua, as found in the Schwinger model (SM), becomes straightforward. The differences in the structures of the mass excitations and the vacua in these gauge theories are displayed transparently. The procedure followed is the one used successfully in the previous works for describing the spontaneous symmetry breaking (SSB) and the SM on the LF. The physical contents following from the LF quantized theory agree with those known in the conventional treatment. The LF hyperplane is argued to be equally appropriate as the conventional equal-time one for the canonical quantization. Some comments on the irrelevance, in quantized field theory, of the fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of hyperbolic partial differential equation are also made.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.; Stadler, Alfred; Gross, Franz
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Quark mixing in an S3 symmetric model with two Higgs doublets
NASA Astrophysics Data System (ADS)
Das, Dipankar; Dey, Ujjal Kumar; Pal, Palash B.
2017-08-01
We construct a model where the smallness of the masses of first quark generations implies the near block diagonal nature of the Cabibbo-Kobayashi-Maskawa matrix and vice versa. For this setup, we rely on a two Higgs-doublet model structure with an S3 symmetry. We show that an SM-like Higgs emerges naturally from such a construction. Moreover, the ratio of two VEVs, tan β , can be precisely determined from the requirement of the near masslessness of the up- and down-quarks. The flavor changing neutral current structure that arises from our model is also very predictive.
NASA Astrophysics Data System (ADS)
Rajagopal, Krishna; Sadofyev, Andrey V.
2015-10-01
We provide a holographic evaluation of novel contributions to the drag force acting on a heavy quark moving through strongly interacting plasma. The new contributions are chiral in the sense that they act in opposite directions in plasmas containing an excess of left- or right-handed quarks. The new contributions are proportional to the coefficient of the axial anomaly, and in this sense also are chiral. These new contributions to the drag force act either parallel to or antiparallel to an external magnetic field or to the vorticity of the fluid plasma. In all these respects, these contributions to the drag force felt by a heavy quark are analogous to the chiral magnetic effect (CME) on light quarks. However, the new contribution to the drag force is independent of the electric charge of the heavy quark and is the same for heavy quarks and antiquarks, meaning that these novel effects do not in fact contribute to the CME current. We show that although the chiral drag force can be non-vanishing for heavy quarks that are at rest in the local fluid rest frame, it does vanish for heavy quarks that are at rest in a suitably chosen frame. In this frame, the heavy quark at rest sees counterpropagating momentum and charge currents, both proportional to the axial anomaly coefficient, but feels no drag force. This provides strong concrete evidence for the absence of dissipation in chiral transport, something that has been predicted previously via consideration of symmetries. Along the way to our principal results, we provide a general calculation of the corrections to the drag force due to the presence of gradients in the flowing fluid in the presence of a nonzero chemical potential. We close with a consequence of our result that is at least in principle observable in heavy ion collisions, namely an anticorrelation between the direction of the CME current for light quarks in a given event and the direction of the kick given to the momentum of all the heavy quarks and
Chiral electroweak gauge interactions
NASA Astrophysics Data System (ADS)
Rajpoot, Subhash
1990-10-01
The hypercharge U(1)Y of the standard electroweak model is split into chiral hypercharges U(1)L×U(1)R. Under the new gauge symmetry SU(2)L×U(1)L×U(1)R, quarks and leptons are left-handed doublets transforming only under SU(2)L×U(1)L and right-handed singlets transforming only under U(1)R. Consistent with the measurements of the mass of the standard massive neutral boson Z0 at the SLAC and CERN colliders and the neutral-current couplings involving neutrino beams and electron beams, the additional massive neutral gauge boson can be as light as a few hundred GeV. The model utilizes the generalized see saw mechanism of Gell-Mann, Ramond, and Slansky to give masses to all the fermions of the theory.
{rho}-{omega} mixing self-energy and model quark-gluon dynamics
Roberts, C.D.; Mitchell, K.L.; Tandy, P.C.; Cahill, R.T.
1995-08-01
The u-d quark-loop vacuum polarization process that mixes the {omega} and {rho} mesons and its contribution to the Charge-Symmetry-Breaking (CSB) piece of the nucleon-nucleon (NN) interaction has been studied in a QCD-based, model field theory: the Global Color-symmetry Model (GCM), using a confining quark propagator obtained in earlier studies. In fitting NN phase shifts it was found necessary to include a term in the NN potential that has, conventionally, been attributed to the mixing between {omega} and {rho} mesons that arises because of isospin asymmetry at the quark level, as manifest in the small u-d current-quark-mass difference. To the present, this term was modeled and assumed to be momentum independent. It is important to understand this term in the context of QCD. The results of this study indicate that the modification of the meson propagators produced by the quark loop is alone not sufficient to account for the observed charge symmetry breaking effects in the NN interaction. We are exploring other possible mechanisms which may describe the origin of CSB in the NN interaction.
Chirally symmetric strong and electroweak interactions
NASA Astrophysics Data System (ADS)
Rajpoot, Subhash
1988-07-01
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3) L×SU(3) R×SU(2) L×SU(2) R×U(1) B- L where quantum chromodynamics originates in the chiral colour group SU(3) L×SU(3) R and the electroweak interaction originates in the ambidextrous electroweak interaction group SU L×SU(2) R×U(1) B- L. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2) L×SU(2) R. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3) C×U(1) em and give masses to all the quarks and leptons of the theory. All fermion masses are “see-saw” masses.
Thomas-Fermi Quark Model and Techniques to Improve Lattice QCD Calculation
NASA Astrophysics Data System (ADS)
Liu, Quan
Two topics are discussed separately in this thesis. In the first part a semiclassical quark model, called the Thomas-Fermi quark model, is reviewed. After a modified approach to spin in the model is introduced, I present the calculation of the spectra of octet and decuplet baryons. The six-quark doubly strange H-dibaryon state is also investigated. In the second part, two numerical techniques which improve latice QCD calculations are covered. The first one, which we call Polynomial-Preconditioned GMRES-DR(PP-GMRESDR), is used to speed up the calculation of large systems of linear equations in LQCD. The second one, called the Polynomial-Subtraction method, is used to help reduce the noise variance of the calculations for disconnected loops in LQCD.
Relation between SNs and GRBs in a quark-deconfinement model
NASA Astrophysics Data System (ADS)
Drago, Alessandro; Pagliara, Giuseppe; Pagliaroli, Giulia; Villante, Francesco; Vissani, Francesco
We discuss a model in which compact stars can release a huge amount of energy by combusting neutrons and protons into deconfined quarks. In this way quark deconfinement can constitute the inner engine of at least a fraction of the "long" GRBs. We show that the release of energy due to quark deconfinement is consistent with the standard scenario describing the fate of massive stars. The main role played by quark deconfinement is to provide an extra flux of neutrinos, which can revitalize the explosion. This is specially important in the case of marginally failed SNs, in which the fall-back is small. A rapid rotation of the progenitor can also help in reducing the fall-back, and in providing to the compact star the time delay needed to deconfine quarks. We discuss the temporal structure of GRBs and the possible interpretation of GRBs in which a time delay exists between the SN explosion and the GRB. We also discuss the various active periods of the GRB in terms of progressive rearrangements of the compact star at the center. In conclusion, we show that a model for GRBs based on quark deconfinement is not alternative to the collapsar-hypernova model, but at the contrary it completes that model in the cases of small fall-back, after a marginally failed SN explosion. 1) Berezhiani Z., Bombaci I., Drago A., Frontera F. and Lavagno A. "Gamma-ray bursts from delayed collapse of neutron stars to quark matter stars". Astrophys. J. 586 (2003) 1250 2) Drago, A., Lavagno, A. and Pagliara, G. "Effects of color superconductivity on the structure and formation of compact stars". Phys. Rev. D69 (2004) 057505 3) Drago, A. and Pagliara, G. "Quiescent times in Gamma-Ray-Bursts: hints of a dormant inner engine". Astrophys. J. 665 (2007) 1227 4) Alford, M., Blaschke D., Drago A., Klahn T., Pagliara G. and Schaffner-Bielich J. "Quark matter in compact stars?". Nature 445 (2007) E7 5) Drago A., Lavagno A. and Parenti I. "Burning of a hadronic star into a quark or a hybrid star". Astrophys
Modeling strongly coupled quark gluon plasmas: hydro vs transport vs general relativity
NASA Astrophysics Data System (ADS)
Gyulassy, Miklos
2008-04-01
The discovery of near perfect fluid flow and very high jet opacity in nuclear collisions at 200 AGeV at RHIC/BNL have challenged traditional weak coupling perturbative QCD modeling of quark gluon plasmas. A critical assessment of current theoretical uncertainties facing competing approaches based on relativistic hydrodynamics, quasi-parton transport dynamics, and novel string theory inspired general relativity modeling will be presented. Special focus will be on identified (charm and bottom) heavy quark jets that will serve as powerful probes in upcoming RHIC and LHC experiments to better constrain the initial conditions as well as energy loss mechanisms leading to rapid equilibration in ultra-relativistic nuclear collisions.
How I got to work with Feynman on the covariant quark model
NASA Astrophysics Data System (ADS)
Ravndal, Finn
2015-01-01
In the period 1968-1974 I was a graduate student and then a postdoc at Caltech and was involved with the developments of the quark and parton models. Most of this time I worked in close contact with Richard Feynman and thus was present from the parton model was proposed until QCD was formulated. A personal account is presented how the collaboration took place and how the various stages of this development looked like from the inside until QCD was established as a theory for strong interactions with the partons being quarks and gluons.
How I Got to Work with Feynman on the Covariant Quark Model
NASA Astrophysics Data System (ADS)
Ravndal, Finn
2015-03-01
In the period 1968-1974 I was a graduate student and then a postdoc at Caltech and was involved with the developments of the quark and parton models. Most of this time I worked in close contact with Richard Feynman and thus was present from the parton model was proposed until QCD was formulated. A personal account is presented how the collaboration took place and how the various stages of this development looked like from the inside until QCD was established as a theory for strong interactions with the partons being quarks and gluons.
Negative parity pentaquarks in large N{sub c} QCD and quark model
Pirjol, Dan; Schat, Carlos
2005-02-01
Recently, the 1/N{sub c} expansion has been applied to the study of exotic baryons containing both quarks and antiquarks. We extend this approach to exotic states with mixed-symmetric spin-flavor symmetry, which correspond in the quark model to negative parity pentaquarks, and discuss the large N{sub c} predictions for their mass spectrum. The heavy exotics Qq{sup 4} transform as 3,6,15 and 15{sup '} under SU(3), while the light states qq{sup 4} include the exotic multiplets 10,27,35. We give mass relations among these multiplets in the 1/N{sub c} expansion. In the quark model, the mass splittings between these states are given by color-spin interactions. Using the observation of an anticharmed exotic by the H1 Collaboration, we give predictions for the masses of other expected heavy pentaquarks.
Model-independent measurement of the W boson helicity in top quark decays at D0
Abazov, V.M.
2007-11-01
We present the first model-independent measurement of the helicity of W bosons produced in top quark decays, based on a 1 fb{sup -1} sample of candidate t{bar t} events in the dilepton and lepton plus jets channels collected by the D0 detector at the Fermilab Tevatron p{bar p} Collider. We reconstruct the angle {theta}* between the momenta of the down-type fermion and the top quark in the W boson rest frame for each top quark decay. A fit of the resulting cos {theta}* distribution finds that the fraction of longitudinal W bosons f{sub 0} = 0.390 {+-} 0.177 (stat.) {+-} 0.104 (syst.) and the fraction of right-handed W bosons f{sub +} = 0.171 {+-} 0.102 (stat.) {+-} 0.058 (syst.), which is consistent at the 27% C.L. with the standard model.
Kaon condensation in the quark-meson coupling model and compact stars
Menezes, D.P.; Panda, P.K.; Providencia, C.
2005-09-01
The properties of neutron stars, consisting of a crust of hadrons and an internal part of hadrons and kaon condensate, are calculated within the quark-meson-coupling model. We considered stars with nucleons only in the hadron phase and also stars with hyperons as well. The results are compared with the ones obtained from the nonlinear Walecka model for the hadronic phase.
Gershun, V. D.
2010-02-15
We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemann space of the chiral primitive invariant currents and on the chiral nonprimitive Casimir operators as Hamiltonians.
Natarajan, Ramanathan; Basak, Subhash C
2011-01-01
Due to the advancement in chiral synthesis and separation technology and the new regulatory policies for chiral pharmaceuticals several manufacturers are replacing the previously marketed racemate chemicals with single enantiomeric products, the so called chiral switch. Though 25% of agrochemicals are chiral in nature, most of them are sold as racemates or enantiomer enriched products. Chiral pesticides and some of the pharmaceuticals reach the human food chain as pollutants. Stereoisomers (enantiomers and diastereoisomers) not only differ from one another in their medicinal effects, but also in their phramacokinectic (adsorption, distribution, biotransformation and excretion) profiles and toxicological properties. Several recent attempts have been reported in the literature on developing mathematical models to predict the properties of chiral molecules from structure and such methods utilized numerical characterization. A comparison of different mathematical approaches on the numerical characterization of molecules with chiral center(s) and a brief background on the importance of stereochemistry in pharmacology, agrochemistry and environmental toxicology is presented.
Numerical modelling of chirality-induced bi-directional swimming of artificial flagella.
Namdeo, S; Khaderi, S N; Onck, P R
2014-02-08
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers.
Numerical modelling of chirality-induced bi-directional swimming of artificial flagella
Namdeo, S.; Khaderi, S. N.; Onck, P. R.
2014-01-01
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chirality-induced) swimmer whose chiral shape and rotational velocity can be controlled by an external magnetic field. In our model, we numerically solve the coupled governing equations that describe the system dynamics (i.e. solid mechanics, fluid dynamics and magnetostatics). We explore the swimming response as a function of the characteristic dimensionless parameters and put special emphasis on controlling the swimming direction. Our results provide fundamental physical insight on the chirality-induced propulsion, and it provides guidelines for the design of magnetic bi-directional micro-swimmers. PMID:24511253
Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking
Peter Schweitzer, Mark Strikman, Christian Weiss
2013-01-01
The dynamical breaking of chiral symmetry in QCD is caused by nonperturbative interactions on a distance scale rho ~ 0.3 fm, much smaller than the typical hadronic size R ~ 1 fm. These short-distance interactions influence the intrinsic transverse momentum distributions of partons and their correlations at a low normalization point. We study this phenomenon in an effective description of the low-energy dynamics in terms of chiral constituent quark degrees of freedom, which refers to the large-N_c limit of QCD. The nucleon is obtained as a system of constituent quarks and antiquarks moving in a self-consistent classical chiral field (relativistic mean-field approximation, or chiral quark-soliton model). The calculated transverse momentum distributions of constituent quarks and antiquarks are matched with QCD quarks, antiquarks and gluons at the chiral symmetry--breaking scale rho^{-2}. We find that the transverse momentum distribution of valence quarks is localized at p_T^2 ~ R^{-2} and roughly of Gaussian shape. The distribution of unpolarized sea quarks exhibits a would-be power-like tail ~1/p_T^2 extending up to the chiral symmetry-breaking scale. Similar behavior is observed in the flavor-nonsinglet polarized sea. The high-momentum tails are the result of short-range correlations between sea quarks in the nucleon's light-cone wave function, which are analogous to short-range NN correlations in nuclei. We show that the nucleon's light-cone wave function contains correlated pairs of transverse size rho << R with scalar-isoscalar (Sigma) and pseudoscalar-isovector (Pi) quantum numbers, whose internal wave functions have a distinctive spin structure and become identical at p_T^2 ~ rho^{-2} (restoration of chiral symmetry). These features are model-independent and represent an effect of dynamical chiral symmetry breaking on the nucleon's partonic structure. Our results have numerous implications for the transverse momentum distributions of particles produced in hard
QCD phenomenology based on a chiral effective Lagrangian
NASA Astrophysics Data System (ADS)
Hatsuda, Tetsuo; Kunihiro, Teiji
1994-10-01
We review the Nambu-Jona-Lasinio (NJL) approach to the dynamical breaking of chiral symmetry in Quantum Chromodynamics (QCD). After a general overview of the nonperturbative aspects of OCD, we introduce the NJL model as a low-energy effective theory of QCD. The collective nature of hadrons and the constituent quark model are treated in a unified way. Various aspects of QCD related to the dynamical and explicit breaking of chiral symmetry and the axial anomaly can be well described. The subjects treated in part I include the vacuum structure of QCD, mass spectra and coupling constants of hadrons, flavor mixing in mesons, the violation of the OZI rule in baryons, and the validity of the chiral perturbation in QCD. It is shown that a subtle interplay between the axial anomaly and the current-quark masses plays important roles, and a realistic evaluation of the strangeness and heavy quark contents of hadrons is given. Also the problem of elusive scalar mesons is studied in detail. For a pedagogical reason, we first present an account of basic ingredients and detailed technical aspects of the NJL model using simple versions of it. In part II, the NJL model is applied to the system at finite temperature ( T) and density (ϱ) relevant to the early universe, interior of the neutron stars and the ultrarelativistic heavy ion collisions. After a brief introduction of the field theory at finite temperature, phenomena associated with the restoration of chiral symmetry in the medium are examined. The subjects treated here include the quark condensates in the medium, meson properties at finite T (ϱ) and their experimental implications. A special attemtion is paid to fluctuation phenomena near the critical temperature, i.e., possible existence of soft modes in the scalar channel and a jump of the quark-number susceptibility in the vector channel.
NASA Astrophysics Data System (ADS)
Fujiwara, Y.; Nakamoto, C.; Suzuki, Y.
1996-03-01
A simultaneous description of the NN and YN interactions is attempted in the resonating-group formulation of the spin-flavor SU6 quark model, in which the full Fermi-Breit interaction with explicit quark-mass dependence acts between quarks, and all the mesons of scalar and pseudoscalar nonets couple directly to quarks. An overall agreement with the existing data is obtained with few adjustable parameters. In the Λp elastic total cross sections, the cusp structure at the ΣN threshold is strongly enhanced by the antisymmetric LS- force generated from the Fermi-Breit interaction.
On the phase structure of a chiral invariant Higgs-Yukawa model
NASA Astrophysics Data System (ADS)
Gerhold, Philipp
2006-12-01
In the past the construction of Higgs-Yukawa models on the lattice was blocked by the lack of a consistent definition of a chiral invariant Yukawa coupling term. Here, we consider a chiral invariant Higgs-Yukawa model based on the overlap operator D (ov) realized by the Neuberger- Dirac operator. As a first step towards a numerical examination of this model we study its phase diagram by means of an analytic 1/N f -expansion, which is possible for small and for large values of the Yukawa coupling constant. In the case of strong Yukawa couplings the model effectively becomes an O(4)-symmetric non-linear σ -model.
Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, Jaroslav; Apollinari, G.; Apresyan, A.; /Purdue U. /Waseda U.
2009-06-01
In a search for new phenomena in a signature suppressed in the standard model of elementary particles (SM), we compare the inclusive production of events containing a lepton ({ell}), a photon ({gamma}), significant transverse momentum imbalance (E{sub T}), and a jet identified as containing a b-quark, to SM predictions. The search uses data produced in proton-antiproton collisions at {radical}s = 1.96 TeV corresponding to 1.9 fb{sup -1} of integrated luminosity taken with the CDF detector at the Fermilab Tevatron. We find 28 {ell}{gamma}bE{sub T} events versus an expectation of 31.0{sub -3.5}{sup +4.1} events. If we further require events to contain at least three jets and large total transverse energy, simulations predict that the largest SM source is top-quark pair production with an additional radiated photon, t{bar t} + {gamma}. In the data we observe 16 t{bar t}{gamma} candidate events versus an expectation from non-top-quark SM sources of 11.2{sub -2.1}{sup +2.3}. Assuming the difference between the observed number and the predicted non-top-quark total is due to SM top quark production, we estimate the t{bar t} cross section to be 0.15 {+-} 0.08 pb.
Non-hedgehog ansatz and the role of the. omega. meson in the chiral soliton models
Araki, M.
1987-05-01
We propose a non-''hedgehog'' ansatz for the pion in two types of quark models, numbers I and II, which are based on the linear and nonlinear sigma model, respectively. With the new ansatz, we find the equations of motion can be solved exactly in model I and approximately in model II. We show that by introducing the ..omega..-quark interaction, the predictions of g/sub A/, g/sub ..pi..//sub NN/, and ..mu../sub p/ are significantly improved in a case within model II.
The Quark-Deconfinement Nova model for Gamma-Ray Bursts
Bombaci, I.
2005-10-21
We report on a new model which is able to explain how a gamma-ray burst (GRB) can take place days or years after a supernova explosion. We show that above a threshold value of the gravitational mass a pure hadronic star ('neutron star') is metastable to the conversion into a quark star (hybrid star or strange star), i.e. a star made at least in part of deconfined quark matter. The stellar conversion process can be delayed if finite size effects at the interface between hadronic and deconfined quark matter phases are taken into account. A huge amount of energy, on the order of 1052 - 1053 ergs, is released during the conversion process and can produce a powerful gamma-ray burst. The delay between the supernova explosion generating the metastable neutron star and the new collapse can explain the delay inferred in GRB 990705 and in GRB 011211.
Nuclear symmetry energy in a modified quark-meson coupling model
NASA Astrophysics Data System (ADS)
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2015-10-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. We find an analytic expression for the symmetry energy Esym as a function of its slope L . Our result establishes a linear correlation between L and Esym. We also analyze the constraint on neutron star radii in (p n ) matter with β equilibrium.
Probing vector-like quark models with Higgs-boson pair production
NASA Astrophysics Data System (ADS)
Cacciapaglia, Giacomo; Cai, Haiying; Carvalho, Alexandra; Deandrea, Aldo; Flacke, Thomas; Fuks, Benjamin; Majumder, Devdatta; Shao, Hua-Sheng
2017-07-01
We investigate Higgs-boson pair production at the LHC when the final state system arises from decays of vector-like quarks coupling to the Higgs boson and the Standard Model quarks. Our phenomenological study includes next-to-leading-order QCD corrections, which are important to guarantee accurate predictions, and focuses on a detailed analysis of a di-Higgs signal in the four b-jet channel. Whereas existing Run II CMS and ATLAS analyses are not specifically designed for probing non-resonant, vector-like-quark induced, di-Higgs production, we show that they nevertheless offer some potential for these modes. We then investigate the possibility of distinguishing between the various di-Higgs production mechanisms by exploiting the kinematic properties of the signal.
Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio model
Menezes, D. P.; Pinto, M. Benghi; Avancini, S. S.; Martinez, A. Perez; Providencia, C.
2009-03-15
In the present work we use the large-N{sub c} approximation to investigate quark matter described by the SU(2) Nambu-Jona-Lasinio model subject to a strong magnetic field. The Landau levels are filled in such a way that usual kinks appear in the effective mass and other related quantities. {beta} equilibrium is also considered and the macroscopic properties of a magnetar described by this quark matter is obtained. Our study shows that the magnetar masses and radii are larger if the magnetic field increases but only very large fields ({>=}10{sup 18} G) affect the equation of state in a non-negligible way.
Quark-Gluon Plasma in a Bag Model with a Soft Surface
NASA Astrophysics Data System (ADS)
Jacobsen, Rafael B.; Marranghello, Guilherme F.; Vasconcellos, César A. Z.; Mesquita, Alexandre
We analyze the implications of quantum hadrodynamics (QHD) and quantum chromodynamics (QCD) to model, respectively, two distinct phases of nuclear matter, a baryon-meson phase and a quark-gluon phase. We develop an equation of state (EoS) in the framework of a quark-meson coupling model for the hadron-meson phase using a new version of the fuzzy bag model with scalar-isoscalar, vector-isoscalar and vector-isovector meson-quark couplings and leptonic degrees of freedom as well as the constrains from chemical equilibrium, baryon number and electric charge conservation. We model the EoS for the QGP phase for asymptotically free massless quarks and gluons using the MIT approach and a temperature and baryon chemical potential dependent bag constant, B(T,μ), which allows an isentropic equilibrium phase transition from a QGP to a hadron gas as determined by thermodynamics. Our predictions yield the EoS and static global properties of neutron stars and protoneutron stars at low and moderate values of temperature. Our results are slightly modified in comparison to predictions based on the standard MIT bag model with a constant bag pressure B.
Li, Shengkun; Li, Dangdang; Xiao, Taifeng; Zhang, ShaSha; Song, Zehua; Ma, Hongyu
2016-11-23
Chirality greatly influences the biological and pharmacological properties of a pesticide and will contribute to unnecessary environmental loading and undesired ecological impact. No structure and activity relationship (SAR) of enantiopure succinate dehydrogenase inhibitors (SDHIs) was documented during the structure optimization of boscalids. On the basis of commercial SDHIs, oxazoline natural products, and versatile oxazoline ligands in organic synthesis, the first effort was devoted to explore the chiral SDHIs and the preliminary mechanism thereof. Fine-tuning furnished chiral nicotinamides 4ag as a more promising fungicidal candidate against Rhizoctonia solani, Botrytis cinerea, and Sclerotinia sclerotiorum, with EC50 values of 0.58, 0.42, and 2.10 mg/L, respectively. In vivo bioassay and molecular docking were investigated to explore the potential in practical application and plausible novelty in action mechanism, respectively. The unexpected molecular docking model showed the different chiral effects on the binding site with the amino acid residues. This chiral nicotinamide also featured easy synthesis and cost-efficacy. It will provide a powerful complement to the commercial SDHI fungicides with the introduction of chirality.
Understanding complex chiral plasmonics.
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-11-07
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the 'host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.
Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.
2010-08-05
Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.
QCD equations of state and the quark-gluon plasma liquid model
NASA Astrophysics Data System (ADS)
Letessier, Jean; Rafelski, Johann
2003-03-01
Recent advances in the study of equations of state of thermal lattice quantum chromodynamics obtained at nonzero baryon density allow validation of the quark-gluon plasma (QGP) liquid model equations of state (EOS). We study here the properties of the QGP-EOS near to the phase transformation boundary at finite baryon density and show a close agreement with the lattice results.
Pentaquarks in the medium in the quark-meson coupling model
Panda, P.K.; Providencia, C.; Menezes, D.P.
2005-11-01
We calculate the properties of the pentaquarks {theta}{sup +} and {xi}{sup --,0} in symmetric nuclear matter using the quark-meson coupling model (QMC). The stability of the {theta}{sup +} in the medium with respect to the channel {theta}{sup +}{yields}NK{sup +} is discussed.
Supersymmetric Model of ρ-Meson Propagator in Quark-Gluon Plasma
NASA Astrophysics Data System (ADS)
Rostampour, M.; Saadat, H.
2012-08-01
In this work we study supersymmetric model of ρ-meson propagation in quark-gluon plasma. Then we apply this method to total absorption cross sections of photon and photino. We use supersymmetric condition to find that absorption cross sections of photon should be equal to absorption cross sections of photino.
Dynamical Calculation of Θ+ Mass and Decay width in the Quark Model
NASA Astrophysics Data System (ADS)
Rostampour, M.; Saadat, H.; Farahani, H.
2012-08-01
In this paper we study the mass splitting and the decay width of pentaquark (Θ+) at the ground states in the framework of flux tube, quark delocalization and color screening model. We consider the pentaquark as diquark-triquark configuration and obtained closer values of mass splitting and the decay width of Θ+ to the experimental data.
Collider-independent top quark forward-backward asymmetries: Standard model predictions
NASA Astrophysics Data System (ADS)
Aguilar-Saavedra, J. A.; Bernreuther, W.; Si, Z.-G.
2012-12-01
We compute, for top quark pair production at the Tevatron and the Large Hadron Collider, the collider-independent forward-backward asymmetries defined by [Aguilar-Saavedra and Juste, Phys. Rev. Lett. 109, 211804 (2012).PRLTAO0031-9007] in the standard model at next-to-leading order in QCD, including also electromagnetic and weak corrections.
Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.
2010-06-01
We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.
Mass spectra and decays of ground and orbitally excited cb¯ states in nonrelativistic quark model
NASA Astrophysics Data System (ADS)
Monteiro, Antony Prakash; Bhat, Manjunath; Vijaya Kumar, K. B.
2017-02-01
The complete spectrum of cb¯ states is obtained in a phenomenological nonrelativistic quark model (NRQM), which consists of a confinement potential and one gluon exchange potential (OGEP) as effective quark-antiquark potential. We make predictions for the radiative decay (E1 and M1) widths and weak decay widths of cb¯ states in the framework of NRQM formalism.
Introduction to chiral symmetry
Koch, V.
1996-01-08
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.
Equation of State for a Quark Gluon Plasma in the Fuzzy Bag Model
NASA Astrophysics Data System (ADS)
Jacobsen, R. B.; Vasconcellos, C. A. Z.; Bodmann, Bardo E. J.; Dillig, Manfred
2004-12-01
We study two distinct phases of nuclear matter, a baryon-meson phase and a quark-gluon phase (QGP). For the baryon-meson phase we develop an equation of state (EoS) using a quark-meson formulation based on a new version of the fuzzy bag model with scalar-isoscalar, vector-isoscalar and vector-isovector meson-quark couplings and leptonic degrees of freedom as well as the constraints of chemical equilibrium, baryon number and electric charge conservation. For the QGP phase we model an EoS for asymptotically free massless quarks and gluons using the MIT approach and a temperature and baryon chemical potential dependent bag constant, B(T,μ), which allows an isentropic equilibrium phase transition from a QGP to a hadron gas. Our main results indicate the EoS and static global properties of neutron stars and protoneutron stars at low and moderate values of temperature are slightly modified in comparison to the predictions based on the MIT bag model with a constant B.
Analysis of the mixing matrix in a model with coincident quark electroweak and mass eigenstates
NASA Astrophysics Data System (ADS)
Vidal, J.
1988-08-01
A new approach to relating quark masses and mixing angles was proposed by del Águila, Kane, and Quirós, in which the mass matrix for the weak eigenstates was assumed to be diagonal in the absence of mixing with heavier quarks. The purpose of this paper is to examine in detail the constraints of CP violation and B0-B¯ 0 mixing on the quark-mixing-angle matrix of the model and the range of mt for which the description could hold. For the case where CP violation and B0-B¯ 0 mixing arise from the quark mixing matrix the result is that, for at least some values of the parameters, mt can be as small as 85 GeV but not less. In addition, ||Vub||/||Vcb|| is required to be larger than 0.11, an important constraint on the model. Mixing and CP violation arising from flavor-changing currents present in the model are also examined.
Beta Functions in Chirally Deformed Supersymmetric Sigma Models in Two Dimensions
NASA Astrophysics Data System (ADS)
Vainshtein, Arkady
We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 =(2, 2) supersymmetry to the chiral one, 𝒩 =(0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.
Beta functions in Chirally deformed supersymmetric sigma models in two dimensions
NASA Astrophysics Data System (ADS)
Vainshtein, Arkady
2016-10-01
We study two-dimensional sigma models where the chiral deformation diminished the original 𝒩 = (2, 2) supersymmetry to the chiral one, 𝒩 = (0, 2). Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional 𝒩 = 1 theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the β functions in terms of the anomalous dimensions analogous to the NSVZ β function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.
Chiral Imbalance in QCD and its consequences
NASA Astrophysics Data System (ADS)
Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec
2016-10-01
Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton
Quark degrees of freedom in nuclear matter
NASA Astrophysics Data System (ADS)
Baldo, Marcello
2017-06-01
The microscopic theory of Nuclear Matter has been approached along the years by different many-body methods and different nucleon-nucleon (NN) interactions. The realistic NN interactions can be classified mainly into two categories. One relies on the meson-nucleon coupling scheme, within relativistic or non-relativistic framework. The so-called chiral interactions are based on the assumption that, once the pion exchange contribution has been explicitly isolated, it is possible to expand the NN interaction in a series of point interaction terms which respect the underlying QCD chiral symmetry. In both schemes three-body (TBF) or higher forces can be constructed, which can have different degrees of phenomenological character. The TBF are essential to get the Nuclear Matter saturation point close to the phenomenological one. However the QCD quark degrees of freedom are not explicitly introduced. It will be shown that a realistic NN interaction that is constructed from the quark degrees of freedom can produce the correct saturation point without the need of TBF. The corresponding Equation of State is compatible with all the phenomenological constraints, including the Neutron Star maximum mass limit. Taking this result literally, one can say that quarks have been revealed in Nuclear Matter. Another conclusion is that the effect of TBF is model dependent.
Model of an exotic chiral superconducting phase in a graphene bilayer.
Hosseini, Mir Vahid; Zareyan, Malek
2012-04-06
We theoretically demonstrate the formation of a new type of unconventional superconductivity in graphene materials, which exhibits a gapless property. The studied superconductivity is based on an interlayer pairing of chiral electrons in bilayer graphene, which results in an exotic s-wave spin-triplet condensate order with anomalous thermodynamic properties. These include the possibility of a temperature-induced condensation causing an increase of the pairing gap with increasing temperature and an entropy of the stable superconducting state which can be higher than its value in the normal state. Our study reveals the analogy of the interlayer superconductivity in graphene materials to the color superconductivity in dense quark matter and the gapless pairing states in nuclear matter and ultracold atomic gases.
Exclusive Rare B ( s, c) Decays in Light-Front Quark Model
NASA Astrophysics Data System (ADS)
Choi, Ho-Meoyng
2013-03-01
We investigate the exclusive rare {B_sto (K,η^{(')})(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} and {B_cto D_{(s)}(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} ( ℓ = e, μ, τ) decays within the standard model and the light-front quark model constrained by the variational principle for the QCD motivated effective Hamiltonian. The branching ratios and the longitudinal lepton polarization asymmetries are calculated and compared with other theoretical model predictions.
Angular momentum coefficients for meson strong decay and unquenched quark models
NASA Astrophysics Data System (ADS)
Burns, T. J.
2014-08-01
In most meson strong decay and unquenched (coupled-channel) quark models, the pair-creation operator is a scalar product of vectors in the spin and spatial degrees of freedom. While differing in the spatial part, most models have the same spin part, which creates a qq¯ pair coupled to spin triplet, with the spins of the initial quarks as spectators. This is a basic assumption of the P30 model, and is well known to arise also in the flux tube model, starting from the strong coupling expansion of lattice QCD. In this article the same structure is shown to emerge in the Cornell model, in the dominant contributions of a more general microscopic decay model, and in the pseudoscalar-meson emission model. A solution is obtained for arbitrary matrix elements in these "nonflip, triplet" models, expressed as a weighted sum over spatial matrix elements. The coefficients in the expansion, which involve the spin degrees of freedom and the associated angular momentum algebra, are model independent. Tables of the angular momentum coefficients are presented which can be used in future calculations, avoiding tedious Clebsch-Gordan sums. The symmetry and orthogonality properties of the coefficients are discussed, as well as their application to transitions involving hybrid mesons and states of mixed spin. New selection rules are derived, and existing ones generalized. The coefficients lead to model-independent relations among decay amplitudes and widths which can be tested in experiment and lattice QCD. They can also be used to explain how mass shifts in the unquenched quark model do not spoil successful predictions of the ordinary (quenched) quark model.
Model-independent constraints on lepton-flavor-violating decays of the top quark
Kile, Jennifer; Soni, Amarjit
2008-11-01
The imminent start of the Large Hadron Collider, which is expected to produce {approx}10{sup 8} tt pairs per year, provides an unprecedented opportunity for top physics. As the top quark is widely expected to be rather sensitive to effects of new physics, a detailed study of its properties, including rare decays, is called for. A possible, experimentally distinctive decay is the case where a top decays to a light quark and a flavor-violating lepton-antilepton pair. We use an effective operator analysis to place model-independent bounds on contributions to the decays t{yields}ue{sup {+-}}{mu}{sup {+-}} and t{yields}ce{sup {+-}}{mu}{sup {+-}}. We enumerate the dimension-six operators which contribute to these decays and which are invariant under the standard model gauge group. We separate these operators into two classes, one with operators where the top quark belongs to an SU(2) doublet and thus can contribute at tree level to low-energy processes, and one class with operators where the top quark is a right-handed singlet and can only contribute to low-energy processes via loop diagrams. We use B and K decays to place limits on the coefficients of some of these operators, but find that several remain unconstrained and could potentially make observable contributions to top decay.
NASA Astrophysics Data System (ADS)
Jido, Daisuke; Sakashita, Minori
2016-08-01
The possibility of having a diquark configuration in heavy baryons, such as Λ and Λ, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Λ and Λ baryons are composed of the heavy quark and the point-like scalar-isoscalar ud diquark, we solve the two-body Schrödinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Λ and Λ in the quark-diquark picture, while the Λ and Λ spectra are reproduced with half the strength of the confinement string tension than for the quarkonium. The finite size effect of the diquark is also examined and it is found that the introduction of a finite size diquark would resolve the failure of the spectrum reproduction. The Ξ excitation energy is also calculated and is found to be smaller than Λ in the quark-diquark model. This is not consistent with experimental observations.
Scalar-quark systems and chimera hadrons in SU(3){sub c} lattice QCD
Iida, H.; Takahashi, T. T.; Suganuma, H.
2007-06-01
In terms of mass generation in the strong interaction without chiral symmetry breaking, we perform the first study for light scalar-quarks {phi} (colored scalar particles with 3{sub c} or idealized diquarks) and their color-singlet hadronic states using quenched SU(3){sub c} lattice QCD with {beta}=5.70 (i.e., a{approx_equal}0.18 fm) and lattice size 16{sup 3}x32. We investigate ''scalar-quark mesons'' {phi}{sup {dagger}}{phi} and ''scalar-quark baryons'' {phi}{phi}{phi} as the bound states of scalar-quarks {phi}. We also investigate the color-singlet bound states of scalar-quarks {phi} and quarks {psi}, i.e., {phi}{sup {dagger}}{psi}, {psi}{psi}{phi}, and {phi}{phi}{psi}, which we name ''chimera hadrons.'' All the new-type hadrons including {phi} are found to have a large mass even for zero bare scalar-quark mass m{sub {phi}}=0 at a{sup -1}{approx_equal}1 GeV. We find a ''constituent scalar-quark/quark picture'' for both scalar-quark hadrons and chimera hadrons. Namely, the mass of the new-type hadron composed of m {phi}'s and n {psi}'s, M{sub m{phi}}{sub +n{psi}}, approximately satisfies M{sub m{phi}}{sub +n{psi}}{approx_equal}mM{sub {phi}}+nM{sub {psi}}, where M{sub {phi}} and M{sub {psi}} are the constituent scalar-quark and quark masses, respectively. We estimate the constituent scalar-quark mass M{sub {phi}} for m{sub {phi}}=0 at a{sup -1}{approx_equal}1 GeV as M{sub {phi}}{approx_equal}1.5-1.6 GeV, which is much larger than the constituent quark mass M{sub {psi}}{approx_equal}400 MeV in the chiral limit. Thus, scalar quarks acquire a large mass due to large quantum corrections by gluons in the systems including scalar quarks. Together with other evidences of mass generation of glueballs and charmonia, we conjecture that all colored particles generally acquire a large effective mass due to dressed gluon effects. In addition, the large mass generation of pointlike colored scalar particles indicates that plausible diquarks used in effective hadron models cannot
Hypernuclei and dense matter in RMF model with chiral SU(3) potential
Tsubakihara, K.; Matsumiya, H.; Maekawa, H.; Ohnishi, A.
2008-05-21
We present a RMF model including chiral SU(3) potential which is suggested form strong coupling limit of lattice QCD and we discuss nuclear star in this chiral SU(3) RMF model and show an effect to nuclear star maximum mass by introducing this potential. The calculation results in soft EOS which imcomressibility is as similar as empirical value. However, when we mind an appearance of hyperon, estimated nuclear star maximum mass underestimates the observable data. We suppose we have to investigate re-stiffen mechanism in high baryon density phase.
Unexpected manifestation of quark condensation
Zinovjev, G. M.; Molodtsov, S. V.
2015-05-15
A comparative analysis of some quark ensembles governed by a four-fermion interaction is performed. Arguments in support of the statement that the presence of a gas-liquid phase transition is a feature peculiar to them are adduced. The instability of small quark droplets is discussed and is attributed to the formation of a chiral soliton. The stability of baryon matter is due to a mixed phase of the vacuum and baryon matter.
Quantum solitons in the nonlinear {sigma} model with broken chiral symmetry
Kostyuk, A.P.; Kobushkin, A.P.; Chepilko, N.M.
1995-08-01
It is proven that the quantum-mechanical approach to the analysis of global radial breathing of the hedgehog-like field configuration leads to dynamically stable soliton solutions in the nonlinear {sigma} model without a Skyrme term. Such solutions exist only when the chiral symmetry of the model is broken. 9 refs., 1 tab.
Isospin breaking and chiral symmetry restoration
Gomez Nicola, A.; Torres Andres, R.
2011-04-01
We analyze quark condensates and chiral (scalar) susceptibilities including isospin-breaking effects at finite temperature T. These include m{sub u{ne}}m{sub d} contributions as well as electromagnetic (e{ne}0) corrections, both treated in a consistent chiral Lagrangian framework to leading order in SU(2) and SU(3) chiral perturbation theory, so that our predictions are model-independent. The chiral restoration temperature extracted from
Propagation of cosmic rays through the atmosphere in the quark-gluon strings model
NASA Technical Reports Server (NTRS)
Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.
1985-01-01
The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.
a Numerical Study of Quark Confinement in Low - Abelian Gauge Models
NASA Astrophysics Data System (ADS)
Potvin, Jean
The strong force between quarks and gluons has the peculiar property of preventing them from being isolated, as they always seem to be confined inside hadrons. Quantum Chromodynamics, or QCD, is the leading candidate as a theory of this strong interaction; however, its quark confinement properties are very difficult to study theoretically. Hoping to gain some useful and general insight on the physics of QCD, we have studied two models which are qualitatively similar to, and much simpler than Quantum Chromodynamics. Using numerical lattice gauge theory techniques, we have inves- tigated the potential V(L) between two heavy quarks. As suggested by charmonium phenomenology, V(L) has the form: V(,(L)) = -A/L + T L; L < L(,o), V(,(L)) (TURN) c = constant; L >> L(,o). First, we have computed the string tension "T" in compact Quan- tum Electrodynamics in three dimensions, without light fermions (quarks). As a function of the coupling "g", our data shows T to be constrained between the two envelopes g('2)/2 and (4SQRT.(8) g('-2)) exp ( -4.4g('-2)) , in similarity with QCD. Moreover, we have found the lines of force of this model to behave like a string for g (LESSTHEQ) 1.16, i.e., to have an energy density proportional to (1/1nL). In the second part of this work, we consider Quantum Electro- dynamics in two dimensions, this time including the light fermions; the latter are responsible for the screening of the (color) electric field between the heavy quarks, leading to the cut-off "c" and the screening length "L(,o)" above. We have found L(,o) to depend on the light quark mass "m/e" in the following way: for the case of only one dynamical flavor present, eL(,o)('(1)) (TURN) 3SQRT.((pi)/16 + (m/e)('2)) m/e < 1, while, in the case of two flavors of about the same mass, eL(,o)('(1)) (LESSTHEQ) 2eL(,o)('(2)) (LESSTHEQ) (eL(,o)('(1)))('2) (eL(,o)('(1)) -1))('-1). The last result shows the presence of a flavor -flavor interaction through mutual screening, in addition to the usual
NASA Astrophysics Data System (ADS)
Powell, Philip D.; Baym, Gordon
2013-07-01
We investigate the effects of realistic quark masses and local color neutrality on quark pairing in the three-flavor Polyakov-Nambu-Jona-Lasinio model. While prior studies have indicated the presence of light flavor quark (2SC) or symmetric color-flavor-locked (CFL) pairing at low temperatures, we find that in the absence of a local color neutrality constraint the inclusion of the Polyakov loop gives rise to phases in which all quark colors and flavors pair, but with unequal magnitudes. We study this asymmetric color-flavor-locked (ACFL) phase, which can exist even for equal mass quarks, identifying its location in the phase diagram, the order of the associated phase transitions, and its symmetry breaking pattern, which proves to be the intersection of the symmetry groups of the 2SC and CFL phases. We also investigate the effects of the strange quark mass on this new phase and the QCD phase diagram generally. Finally, we analyze the effect of a local color neutrality constraint on these phases of asymmetric pairing. We observe that for massless quarks the neutrality constraint renders the 2SC phase energetically unfavorable, eliminating it at low temperatures, and giving rise to the previously proposed low temperature critical point, with associated continuity between the hadronic and ACFL phases. For realistic strange quark masses, however, the neutrality constraint shrinks the 2SC region of the phase diagram, but does not eliminate it, at T=0.
Chiral Phase Transition in Soft-Wall AdS/QCD
NASA Astrophysics Data System (ADS)
Jacobson, Theodore
2016-09-01
We investigate the chiral phase transition, which describes the shift from broken to restored chiral symmetry at high temperatures and densities, within a soft-wall model of AdS/QCD. Extending previous work in this approach to strongly-coupled quantum chromodynamics, we obtain independent sources of explicit and spontaneous symmetry breaking at finite baryon chemical potential. Using black hole thermodynamics, we explore the effects of temperature and chemical potential on the chiral condensate, in the case of zero and finite quark mass. In the chiral limit, the transition is second-order, with a critical temperature of 155 MeV and critical density of 566 MeV, consistent with lattice calculations. For a physical value of the light quark mass, the transition is a rapid crossover, with a pseudo-transition temperature and density of 151 MeV and 559 MeV, respectively. The mass-splitting between the vector and axial-vector mesons indicates clear chiral symmetry breaking, and is expected to vanish as chiral symmetry is restored. Quantitative analysis of the mass spectra as temperature and density increase reveals that the meson bound states melt before the chiral phase transition occurs.
Extension of Standard Model with a Complex Singlet and Iso-Doublet Vector Quarks
NASA Astrophysics Data System (ADS)
Darvishi, Neda
2017-07-01
In this paper the extension of the SM by a neutral complex scalar singlet with a nonzero vacuum expectation value and a heavy vector quark pair is considered. This model provides an extra source of spontaneous CP violation. The focus of this article is to obtain the rate of baryon number generation. We show that the considered model provides a strong enough first-order electroweak phase transition to suppress the baryon-violating sphaleron process.
Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.
Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan
2016-01-01
The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and
Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1
NASA Astrophysics Data System (ADS)
Blanke, Monika; Buras, Andrzej J.; Recksiegel, Stefan
2016-04-01
The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard W^± and Z^0 gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes K^+→ π ^+ν bar{ν }, KL→ π ^0ν bar{ν }, K_L→ μ ^+μ ^-, B→ X_sγ , B_{s,d}→ μ ^+μ ^-, B→ K^{(*)}ℓ ^+ℓ ^-, B→ K^{(*)}ν bar{ν }, and \\varepsilon '/\\varepsilon . Taking into account the constraints from Δ F=2 processes, significant departures from the SM predictions for K^+→ π ^+ν bar{ν } and KL→ π ^0ν bar{ν } are possible, while the effects in B decays are much smaller. In particular, the LHT model favours B(Bs→ μ ^+μ ^-) ≥ B(Bs→ μ ^+μ ^-)_SM, which is not supported by the data, and the present anomalies in B→ K^{(*)}ℓ ^+ℓ ^- decays cannot be explained in this model. With the recent lattice and large N input the imposition of the \\varepsilon '/\\varepsilon constraint implies a significant suppression of the branching ratio for KL→ π ^0ν bar{ν } with respect to its SM value while allowing only for small modifications of K^+→ π ^+ν bar{ν }. Finally, we investigate how the LHT physics could be distinguished from other models by means of
Chiral symmetry and π-π scattering in the Covariant Spectator Theory
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; ...
2014-11-14
The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less
Response of nucleons to external probes in hedgehog models. I. Electromagnetic polarizabilities
Broniowski, W.; Cohen, T.D. )
1993-01-01
Electromagnetic polarizabilities of the nucleon are analyzed in a hedgehog model with quark and meson degrees of freedom. Semiclassical methods are used (linear response theory, quantization via cranking). It is found that in hedgehog models (Skyrmion, chiral quark models, Nambu--Jona-Lasinio model), the average electric polarizability of the nucleon, [alpha][sub [ital N
Spin Polarization in High Density Quark Matter
NASA Astrophysics Data System (ADS)
Bohr, Henrik; Panda, Prafulla K.; Providência, Constança; da Providência, João
2013-04-01
We investigate the occurrence of a ferromagnetic phase transition in high density hadronic matter (e.g., in the interior of a neutron star). This could be induced by a four-fermion interaction analogous to the one which is responsible for chiral symmetry breaking in the Nambu-Jona-Lasinio model, to which it is related through a Fierz transformation. Flavor SU(2) and flavor SU(3) quark matter are considered. A second-order phase transition is predicted at densities about 5 times the normal nuclear matter density. It is also found that in flavor SU(3) quark matter, a first-order transition from the so-called 2 flavor super-conducting phase to the ferromagnetic phase arises. The color-flavor-locked phase may be completely hidden by the FP.
Classical strongly coupled quark-gluon plasma. I. Model and molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Gelman, Boris A.; Shuryak, Edward V.; Zahed, Ismail
2006-10-01
We propose a model for the description of strongly interacting quarks and gluon quasiparticles at T=(1-3)Tc as a classical and nonrelativistic colored Coulomb gas. The sign and strength of the interparticle interactions are fixed by the scalar product of their classical color vectors subject to Wong's equations. The model displays a number of phases as the Coulomb coupling is increased ranging from a gas, to a liquid, to a crystal with antiferromagnetic-like color ordering. We analyze the model using molecular dynamics simulations and discuss the density-density correlator in real time. We extract pertinent decorrelation times, diffusion, and viscosity constants for all phases. The classical results when extrapolated to the strongly coupled quark-gluon plasma suggest that the phase is liquid-like, with a diffusion constant D≈0.1/T and a shear viscosity to entropy density ratio η/s≈1/3.
See-Saw Masses for Quarks and Leptons in AN Ambidextrous Electroweak Interaction Model
NASA Astrophysics Data System (ADS)
Rajpoot, S.
An ambidextrous electroweak interaction model with SU(2)L×SU(2)R×U(1) gauge symmetry is described in which the conventional quarks and leptons are accompanied by a set of new fermions that transform as singlets of SU(2)L×SU(2)R. The model has only two doublets of Higgs scalars. The masses of all known quarks and leptons result from the see-saw mechanism between the conventional fermions and the new “singlet” fermions. Neutrino neutral current interactions are identical to those of the standard SU(2)L×U(1) model. The singlet fermion masses lie in the 100-GeV to 1-TeV range to be probed by the oncoming accelerators of the 1990’s.
See-saw masses for quarks and leptons in an ambidextrous electroweak interaction model
NASA Astrophysics Data System (ADS)
Rajpoot, S.
1987-06-01
An ambidextrous electroweak interaction model with SU(2) L× SU(2) R×U(1) gauge symmetry is described in which the conventional quarks and leptons are accompanied by a set of new fermions that transform as singlets of SU(2) L×SU(2) R. The model has only two doublets of Higgs scalars. The masses of all known quarks and leptons result from the see-saw mechanism between the conventional fermions and the new “singles” fermions. Neutrino neutral current interactions are identical to those of the standard SU(2) L×U(1) model. The singlet fermion masses lie in the 100 GeV to 1 TeV range, to be probed by the oncoming accelerators of the 1990's.
Kac-Moody Algebra for Two Dimensional Principal Chiral Models
NASA Astrophysics Data System (ADS)
Chou, Kuang-Chao; Song, Xing-Chang
A Darboux transformation depending on single continuous parameter t is constructed for a principal chiral field. The transformation forms a nonlinear representation of the group for any fixed value of t. Part of the kernel in the Riemann-Hilbert transform is shown to be related to the Darboux transformation with its generators forming a Kac-Moody algebra. Conserved currents associated with the Kac-Moody algebra of the linearized equations and the Nöether current for the group transformations with fixed value of t are obtained.
Dynamical chiral symmetry breaking in the NJL model with a constant external magnetic field
NASA Astrophysics Data System (ADS)
Shi, Song; Yang, You-Chang; Xia, Yong-Hui; Cui, Zhu-Fang; Liu, Xiao-Jun; Zong, Hong-Shi
2015-02-01
In this paper, we develop a new method that is different from the Schwinger proper time method to deduce the fermion propagator with a constant external magnetic field. In the NJL model, we use this method to find the gap equation at zero and nonzero temperature and give the numerical results and phase diagram between the magnetic field and temperature. Additionally, we introduce the current mass to study the susceptibilities because there is a new parameter (the strength of the external magnetic field) in this problem. Corresponding to this new parameter, we define a new susceptibility χB to compare with the other two susceptibilities χc (chiral susceptibility) and χT (thermal susceptibility). All three susceptibilities show that when the current mass is not zero, the phase transition is a crossover, while for comparison, in the chiral limit, the susceptibilities show a second order phase transition. Last, we give the critical coefficients of different susceptibilities in the chiral limit.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
NASA Astrophysics Data System (ADS)
Golosov, D. I.
2013-03-01
We consider a spinless extended Falicov--Kimball model at half-filling, for the case of opposite-parity bands. Within the Hartree--Fock approach, we calculate the excitation energies in the chiral phase, which is a possible mean-field solution in the presence of a hybridisation. It is shown that the chiral phase is unstable. We then briefly review the accumulated results on stability and degeneracies of the excitonic insulator phase. Based on these, we conclude that the presence of both hybridisation and narrow-band hopping is required for electronic ferroelectricity.
Chiral Schwinger model based on the Batalin-Fradkin-Vilkovisky formalism
Kim, Y.; Kim, S.; Kim, W.; Park, Y.; Kim, K.Y.; Kim, Y. )
1992-11-15
We quantize the bosonized chiral Schwinger model by using the systematic Batalin-Fradkin-Vilkovisky formalism. We derive a Becchi-Rouet-Stora-Tyutin gauge-fixed covariant action showing that the auxiliary fields introduced in the formalism turn into the Wess-Zumino scalar.
Strong decays of excited 1D charmed(-strange) mesons in the covariant oscillator quark model
NASA Astrophysics Data System (ADS)
Maeda, Tomohito; Yoshida, Kento; Yamada, Kenji; Ishida, Shin; Oda, Masuho
2016-05-01
Recently observed charmed mesons, D1* (2760), D3* (2760) and charmed-strange mesons, Ds1 * (2860), Ds3 * (2860), by BaBar and LHCb collaborations are considered to be plausible candidates for c q ¯ 13 DJ (q = u, d, s) states. We calculate the strong decays with one pion (kaon) emission of these states including well-established 1S and 1P charmed(-strange) mesons within the framework of the covariant oscillator quark model. The results obtained are compared with the experimental data and the typical nonrelativistic quark-model calculations. Concerning the results for 1S and 1P states, we find that, thanks to the relativistic effects of decay form factors, our model parameters take reasonable values, though our relativistic approach and the nonrelativistic quark model give similar decay widths in agreement with experiment. While the results obtained for 13 DJ=1,3 states are roughly consistent with the present data, they should be checked by the future precise measurement.
NASA Astrophysics Data System (ADS)
Basler, H.; Buballa, M.
2010-03-01
We use a Nambu-Jona-Lasinio type model to investigate the phase diagram of dense quark matter under neutron star conditions in mean-field approximation. The model contains self-consistently determined quark masses and allows for diquark condensation in the scalar as well as in the pseudoscalar channel. The latter gives rise to the possibility of K0 condensation in the color-flavor locked phase. In agreement with earlier studies we find that this CFLK0 phase covers large regions of the phase diagram and that the predominant part of this phase is fully gapped. We show, however, that there exists a region at very low temperatures where the CFLK0 solutions become gapless, possibly indicating an instability towards anisotropic or inhomogeneous phases. The physical significance of solutions with pseudoscalar diquark condensates in the 2SC phase is discussed as well.
Variational Monte Carlo study of pentaquark states in a correlated quark model
Mark Paris
2005-10-25
Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo in a correlated quark model. The spectrum is assumed to exhibit a narrow resonance with strangeness $S=+1$. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with spin-parity 1/2- (1/2+) is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results.
Sivers and Boer-Mulders functions in Light-Cone Quark Models
Pasquini, Barbara; Yuan, Feng
2010-01-29
Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S- and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favourable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions.
Effective field theories of baryons and mesons, or, what do quarks do?
Keaton, G.L.
1995-06-26
This thesis is an attempt to understand the properties of the protons, pions and other hadrons in terms of their fundamental building blocks. In the first chapter the author reviews several of the approaches that have already been developed. The Nambu-Jona-Lasinio model offers the classic example of a derivation of meson properties from a quark Lagrangian. The chiral quark model encodes much of the intuition acquired in recent decades. The author also discusses the non-linear sigma model, the Skyrme model, and the constituent quark model, which is one of the oldest and most successful models. In the constituent quark model, the constituent quark appears to be different from the current quark that appears in the fundamental QCD Lagrangian. Recently it was proposed that the constituent quark is a topological soliton. In chapter 2 the author investigates this soliton, calculating its mass, radius, magnetic moment, color magnetic moment, and spin structure function. Within the approximations used, the magnetic moments and spin structure function cannot simultaneously be made to agree with the constituent quark model. In chapter 3 the author uses a different plan of attack. Rather than trying to model the constituents of the baryon, he begins with an effective field theory of baryons and mesons, with couplings and masses that are simply determined phenomenologically. Meson loop corrections to baryon axial currents are then computed in the 1/N expansion. It is already known that the one-loop corrections are suppressed by a factor 1/N; here it is shown that the two-loop corrections are suppressed by 1/N{sup 2}. To leading order, these corrections are exactly the same as would be calculated in the constituent quark model. This method therefore offers a different approach to the constituent quark.
A Petal-type Chiral NADH Model: Design, Synthesis and its Asymmetric Reduction
Bai, Cui-Bing; Wang, Nai-Xing; Wang, Yan-Jing; Xing, Yalan; Zhang, Wei; Lan, Xing-Wang
2015-01-01
A new type of NADH model compound has been synthesized by an efficient and convenient method. This model compound exhibits high reactivity and enantioselectivity in asymmetric reduction reactions. The results show that chiral NADH model S could be effectively combined with Mg2+ to form ternary complexes. This novel C3 symmetrical NADH model is capable of fluorescence emission at 460 nm when excited at 377 nm. PMID:26648413
Spin and flavor strange quark content of the nucleon
Dahiya, Harleen; Gupta, Manmohan
2008-07-01
Several spin and flavor dependent parameters characterizing the strangeness content of the nucleon have been calculated in the chiral constituent quark model with configuration mixing ({chi}CQM{sub config}) which is known to provide a satisfactory explanation of the ''proton spin crisis'' and related issues. In particular, we have calculated the strange spin polarization {delta}s, the strangeness contribution to the weak axial vector couplings {delta}{sub 8} etc., strangeness contribution to the magnetic moments {mu}(p){sup s} etc., the strange quark flavor fraction f{sub s}, the strangeness dependent quark flavor ratios (2s/u+d) and (2s/u+d) etc. Our results are consistent with the recent experimental observations.
Rare top quark decays in Alternative Left-Right Symmetric Models
Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.
2007-06-19
We evaluate the flavor changing neutral currents (FCNC) decay t {yields} H0 + c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t {yields} c + {gamma}, which involves radiative corrections.
Quark mean field model with pion and gluon corrections for Λ and Ξ0 hypernuclei and neutron stars
NASA Astrophysics Data System (ADS)
Xing, Xueyong; Hu, Jinniu; Shen, Hong
2017-05-01
Properties of Λ and Ξ0 hypernuclei and neutron stars are investigated in a quark mean field model with pion and gluon corrections. First, u , d , and s quarks are confined by relativistic harmonic oscillator potentials to generate baryons, such as nucleons and Λ , Σ , and Ξ hyperons. The effects of pion-quark coupling and one-gluon exchange are considered perturbatively. Then, the baryons interact with each other through exchanging σ , ω , and ρ mesons between quarks in hypernuclei and nuclear matter. The strengths of confinement potentials for u , d , and s quarks are determined by the masses and radii of free baryons. The coupling constants between the quarks and mesons are fixed by the ground-state properties of several nuclei and single-hyperon potentials at nuclear saturation density, which yields three parameter sets for the coupling constants between mesons and quarks, named QMF-NK1S, QMF-NK2S, and QMF-NK3S. Compared to the results of the previous quark mean field model without pion and gluon corrections, it is found that properties of Λ hypernuclei, i.e., the single-Λ energies, are more consistent with the experimental observables. Properties of Ξ0 hypernuclei are also calculated and compared with the results in the previous quark mean field model. With these three parameter sets, the neutron stars containing hyperons are investigated through solving the Tolman-Oppenheimer-Volkoff equation. Maximum masses of neutron stars approach 2.1 M⊙ with hyperons, and corresponding radii are around 13 km.
Quark Spectra, Topology, and Random Matrix Theory
Edwards, R.G.; Heller, U.M.; Kiskis, J.; Narayanan, R.
1999-05-01
Quark spectra in QCD are linked to fundamental properties of the theory including the identification of pions as the Goldstone bosons of spontaneously broken chiral symmetry. The lattice overlap Dirac operator provides a nonperturbative, ultraviolet-regularized description of quarks with the correct chiral symmetry. Properties of the spectrum of this operator and their relation to random matrix theory are studied here. In particular, the predictions from chiral random matrix theory in topologically nontrivial gauge field sectors are tested for the first time. {copyright} {ital 1999} {ital The American Physical Society}
Chiral gravitational waves from chiral fermions
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Sabancilar, Eray
2017-07-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
Ibrahim, Tarek; Nath, Pran
2010-09-01
The electric dipole moment (EDM) of the top quark is calculated in a model with a vector like multiplet which mixes with the third generation in an extension of the minimal supersymmetric standard model. Such mixings allow for new CP violating phases. Including these new CP phases, the EDM of the top in this class of models is computed. The top EDM arises from loops involving the exchange of the W, the Z as well as from the exchange involving the charginos, the neutralinos, the gluino, and the vector like multiplet and their superpartners. The analysis of the EDM of the top is more complicated than for the light quarks because the mass of the external fermion, in this case the top quark mass cannot be ignored relative to the masses inside the loops. A numerical analysis is presented and it is shown that the top EDM could be close to 10{sup -19} ecm consistent with the current limits on the EDM of the electron, the neutron and on atomic EDMs. A top EDM of size 10{sup -19} ecm could be accessible in collider experiments such as the International Linear Collider.
Confinement of quarks and valence gluons in SU( N) Yang-Mills-Higgs models
NASA Astrophysics Data System (ADS)
Oxman, L. E.
2013-03-01
In this work, we analyze a class of Yang-Mills models containing adjoint Higgs fields, with SU( N) symmetry spontaneously broken down to Z( N), showing they contain center vortices, Y-junctions formed by them, and junctions where different center vortices are smoothly interpolated by monopole-like configurations. In the context of dual superconductors, these objects represent different states of the gluon field. Center vortices confine quarks to form normal hadron states. The interpolating monopole, which in our model cannot exist as an isolated configuration, is identified with a confined valence gluon. A junction containing a monopole can bind quarks in a color nonsinglet state to form an overall neutral object, identified with a hybrid hadron. These states, formed by quarks bound to a valence gluon, are allowed by QCD, and current experimental collaborations are aimed at identifying them. Finally, considering the general version of the model, based on a compact simple gauge group G, the picture is completed with a heuristic discussion about why it would be natural using as G the dual of the chromoelectric gauge group G e, and external pointlike monopoles to represent the mesonic and baryonic Wilson loops.
CSOS models descending from chiral Potts models: degeneracy of the eigenspace and loop algebra
NASA Astrophysics Data System (ADS)
Au-Yang, Helen; Perk, Jacques H. H.
2016-04-01
Monodromy matrices of the {{\\boldsymbol{τ }}}2\\phantom{^{\\prime }} model are known to satisfy a Yang-Baxter equation with a six-vertex R-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this R-matrix. We show the reason why in the superintegrable case the eigenspace is degenerate, but not in the general case. We then show that the eigenspaces of special CSOS models descending from the chiral Potts model are also degenerate. The existence of an L({{sl}}2) quantum loop algebra (or subalgebra) in these models is established by showing that the Serre relations hold for the generators. The highest weight polynomial (or the Drinfeld polynomial) of the representation is obtained by using the method of Baxter for the superintegrable case. As a byproduct, the eigenvalues of all such CSOS models are given explicitly.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-12-22
In this study, a search is presented for pair production of a new heavy quark (Q) that decays into a W boson and a light quark (q) in the final state where one W boson decays leptonically (to an electron or muon plus a neutrino) and the other W boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb–1 of pp collisions at √s = 8 TeV collected by the ATLAS detector at the LHC. No evidence of QQ¯ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level,more » assuming BR(Q → Wq)=1. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR(Q → Wq) versus BR(Q → Hq).« less
nd Scattering Observables Derived from the Quark-Model Baryon-Baryon Interaction
Fujiwara, Y.; Fukukawa, K.
2010-05-12
We solve the nd scattering in the Faddeev formalism, employing the NN sector of the quark-model baryon-baryon interaction fss2. The energy-dependence of the NN interaction, inherent to the (3q)-(3q) resonating-group formulation, is eliminated by the standard off-shell transformation utilizing the 1/sq root(N) factor, where N is the normalization kernel for the (3q)-(3q) system. This procedure yields an extra nonlocality, whose effect is very important to reproduce all the scattering observables below E{sub n}<=65 MeV. The different off-shell properties from the standard meson-exchange potentials, related to the non-locality of the quark-exchange kernel, yields appreciable effects to the differential cross sections and polarization observables of the nd elastic scattering, which are usually attributed to the specific properties of three-body forces.
Bottom-quark forward-backward asymmetry in the standard model and beyond.
Grinstein, Benjamín; Murphy, Christopher W
2013-08-09
We computed the bottom-quark forward-backward asymmetry at the Tevatron in the standard model (SM) and for several new physics scenarios. Near the Z pole, the SM bottom asymmetry is dominated by tree level exchanges of electroweak gauge bosons. While above the Z pole, next-to-leading order QCD dominates the SM asymmetry as was the case with the top-quark forward-backward asymmetry. Light new physics, M(NP)≲150 GeV, can cause significant deviations from the SM prediction for the bottom asymmetry. The bottom asymmetry can be used to distinguish between competing new physics (NP) explanations of the top asymmetry based on how the NP interferes with s-channel gluon and Z exchange.
Probing Quark-Gluon-Plasma properties with a Bayesian model-to-data comparison
NASA Astrophysics Data System (ADS)
Cai, Tianji; Bernhard, Jonah; Ke, Weiyao; Bass, Steffen; Duke QCD Group Team
2016-09-01
Experiments at RHIC and LHC study a special state of matter called the Quark Gluon Plasma (QGP), where quarks and gluons roam freely, by colliding relativistic heavy-ions. Given the transitory nature of the QGP, its properties can only be explored by comparing computational models of its formation and evolution to experimental data. The models fall, roughly speaking, under two categories-those solely using relativistic viscous hydrodynamics (pure hydro model) and those that in addition couple to a microscopic Boltzmann transport for the later evolution of the hadronic decay products (hybrid model). Each of these models has multiple parameters that encode the physical properties we want to probe and that need to be calibrated to experimental data, a task which is computationally expensive, but necessary for the knowledge extraction and determination of the models' quality. Our group has developed an analysis technique based on Bayesian Statistics to perform the model calibration and to extract probability distributions for each model parameter. Following the previous work that applies the technique to the hybrid model, we now perform a similar analysis on a pure-hydro model and display the posterior distributions for the same set of model parameters. We also develop a set of criteria to assess the quality of the two models with respect to their ability to describe current experimental data. Funded by Duke University Goldman Sachs Research Fellowship.
Semileptonic decays of Λb baryons in the relativistic quark model
NASA Astrophysics Data System (ADS)
Faustov, R. N.; Galkin, V. O.
2016-10-01
Semileptonic Λb decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy Λb→Λcℓνℓ and heavy-to-light Λb→p ℓνℓ decay branching fractions are calculated. The results agree within error bars with the experimental value of the branching fraction of the Λb→Λc+l-ν¯l decay. From the recent LHCb data on the ratio of the branching fractions of the heavy-to-light and heavy-to-heavy semileptonic Λb decays the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements |Vu b|/|Vc b| is obtained. It is consistent with the corresponding ratio determined from the inclusive B meson decays.
Dual Superconducting Model of QCD and the Spectra of Heavy and Heavy- Light Quark Systems
NASA Astrophysics Data System (ADS)
Fulcher, Lp
1997-04-01
The dual superconducting model of QCD provides a natural explanation of quark confinement as a Meissner effect, where the magnetic condensate present in the vacuum attempts to exclude the colour electric flux lines produced by the quark sources. The essential physics of this model is incorporated in an approach developed by Baker, Ball and Zachariasen(M. Baker, J. Ball and F. Zachariasen, Phys. Rev. D51), 1968(1995)., where the field equations are used to eliminate the Higgs field and the dual gluon fields and thus to express the interaction between a quark and an antiquark as an effective potential. Considering the spin averages of upsilon, charmonium and heavy-flavor states allows one to focus on the central potential and the leading relativistic corrections to it. The challenge is to account for the properties of these systems with the same set of potential parameters. Some important progress in this direction will be described. The spinless Salpeter equation is used to consider the effects of relativistic kinematics(L. Fulcher, Phys. Rev. D50), 447(1994)..
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3D Dirac/Weyl semimetals.
NASA Astrophysics Data System (ADS)
Dvornikov, Maxim
2016-12-01
We study the generation of strong large scale magnetic fields in dense quark matter. The magnetic field growth is owing to the magnetic field instability driven by the electroweak interaction of quarks. We discuss the situation when the chiral symmetry is unbroken in the degenerate quark matter. In this case we predict the amplification of the seed magnetic field 1012G to the strengths (1014 -1015)G. In our analysis we use the typical parameters of the quark matter in the core of a hybrid star or in a quark star. We also discuss the application of the obtained results to describe the magnetic fields generation in magnetars.
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
Keegan, Ronan M.; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D.; Rigden, Daniel J.
2015-01-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected. PMID:25664744
Keegan, Ronan M; Bibby, Jaclyn; Thomas, Jens; Xu, Dong; Zhang, Yang; Mayans, Olga; Winn, Martyn D; Rigden, Daniel J
2015-02-01
AMPLE clusters and truncates ab initio protein structure predictions, producing search models for molecular replacement. Here, an interesting degree of complementarity is shown between targets solved using the different ab initio modelling programs QUARK and ROSETTA. Search models derived from either program collectively solve almost all of the all-helical targets in the test set. Initial solutions produced by Phaser after only 5 min perform surprisingly well, improving the prospects for in situ structure solution by AMPLE during synchrotron visits. Taken together, the results show the potential for AMPLE to run more quickly and successfully solve more targets than previously suspected.
Search for the Standard Model Higgs Boson Produced in Association with Top Quarks
Wilson, Jonathan Samuel
2011-01-01
We have performed a search for the Standard Model Higgs boson produced in association with top quarks in the lepton plus jets channel. We impose no constraints on the decay of the Higgs boson. We employ ensembles of neural networks to discriminate events containing a Higgs boson from the dominant tt¯background, and set upper bounds on the Higgs production cross section. At a Higgs boson mass mH = 120 GeV/c2 , we expect to exclude a cross section 12.7 times the Standard Model prediction, and we observe an exclusion 27.4 times the Standard Model prediction with 95 % confidence.
The polarized structure function of the nucleons with a non-extensive statistical quark model
Trevisan, Luis A.; Mirez, Carlos
2013-05-06
We studied an application of nonextensive thermodynamics to describe the polarized structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution, often used in the statistical models, were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and the chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon and by {Delta}u and {Delta}d of the polarized functions.
Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C
2013-01-01
Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.
Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables
NASA Astrophysics Data System (ADS)
Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun
2016-08-01
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.
Strange quark matter in the presence of explicit symmetry breaking interactions
NASA Astrophysics Data System (ADS)
Moreira, J.; Morais, J.; Hiller, B.; Osipov, A. A.; Blin, A. H.
2015-06-01
It is shown that a first-order transition associated with a jump in the strange-quark mass appears in a generalized three-flavor Nambu-Jona-Lasinio treatment of quark matter. The generalization of the Lagrangian displays the complete set of spin-0 interactions at leading and subleading orders (LO and NLO) in 1/Nc counting, including the recently derived NLO explicit chiral symmetry breaking interactions which are of the same order as the 't Hooft flavor determinant. The parameters of the model are tightly constrained by the low-energy characteristics in both the pseudoscalar and scalar meson sectors. The transition occurs in a moderate chemical potential region (μ ≃400 MeV for zero temperature) in addition to the usual chiral transition associated with the light-quark sector. This feature has at its root the inclusion of the explicit chiral symmetry breaking interactions, which therefore can be seen to act as a catalyst in the production of strange-quark matter when compared to the conventional version of the model that takes only into account the 't Hooft interaction in the NLO. It can be traced back to the effect of the interactions which do not violate the Okubo-Zweig-Iizuka rule, without which the empirical ordering of the scalars (mK⋆
Large-U limit of a Hubbard model in a magnetic field: Chiral spin interactions and paramagnetism
NASA Astrophysics Data System (ADS)
Sen, Diptiman; Chitra, R.
1995-01-01
We consider the large-U limit of the one-band Hubbard model at half-filling on a nonbipartite two-dimensional lattice. An external magnetic field can induce a three-spin chiral interaction at order 1/U2. We discuss situations in which, at low temperatures, the chiral term may have a larger effect than the Pauli coupling of electron spins to a magnetic field. We present a model that explicitly demonstrates this. The ground state is a singlet with a gap; hence the spin susceptibility is zero while the chiral susceptibility is finite and paramagnetic.
Fujiwara, Y.; Nakamoto, C.; Suzuki, Y.
1996-03-01
A simultaneous description of the {ital NN} and {ital YN} interactions is attempted in the resonating-group formulation of the spin-flavor SU{sub 6} quark model, in which the full Fermi-Breit interaction with explicit quark-mass dependence acts between quarks, and all the mesons of scalar and pseudo-scalar nonets couple directly to quarks. An overall agreement with the existing data is obtained with few adjustable parameters. In the {Lambda}{ital p} elastic total cross sections, the cusp structure at the {Sigma}{ital N} threshold is strongly enhanced by the antisymmetric {ital LS}{sup ({minus})} force generated from the Fermi-Breit interaction. {copyright} {ital 1996 The American Physical Society.}
Phenomenology of strongly coupled chiral gauge theories
Bai, Yang; Berger, Joshua; Osborne, James; ...
2016-11-25
A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1)' gauge symmetry such that their bare masses are related to the U(1)'-breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of suchmore » models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z'γ resonance, where the Z' naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.« less
Phase diagram and critical end point in nonlocal PNJL models with wavefunction renormalization
Contrera, Gustavo A.; Orsaria, Milva G.; Scoccola, Norberto N.
2010-11-12
We study the chiral phase transition at finite temperature and chemical potential considering a non-local chiral quark model which includes wave-function renormalization and coupling to the Polyakov loop. In particular, we determine the position of the Critical End Point as well as the value of the associated critical exponents for different model parameterizations.
[pi]-[pi] scattering in a QCD-based model field theory
Roberts, C.D.; Cahill, R.T.; Sevior, M.E.; Iannella, N. School of Physical Sciences, Flinders University of South Australia, Bedford Park, SA 5042 School of Physics, University of Melbourne, Parkville, Victoria 3052 )
1994-01-01
A model field theory, in which the interaction between quarks is mediated by dressed vector boson exchange, is used to analyze the pionic sector of QCD. It is shown that this model, which incorporates dynamical chiral symmetry breaking, asymptotic freedom, and quark confinement, allows one to calculate [ital f][sub [pi