Sample records for chiral resolving agents

  1. Chiral Separation of G-type Chemical Warfare Nerve Agents via Analytical Supercritical Fluid Chromatography

    PubMed Central

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-01-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(–) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(–) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. Chirality 26:817–824, 2014. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc. PMID:25298066

  2. Chiral separation of G-type chemical warfare nerve agents via analytical supercritical fluid chromatography.

    PubMed

    Kasten, Shane A; Zulli, Steven; Jones, Jonathan L; Dephillipo, Thomas; Cerasoli, Douglas M

    2014-12-01

    Chemical warfare nerve agents (CWNAs) are extremely toxic organophosphorus compounds that contain a chiral phosphorus center. Undirected synthesis of G-type CWNAs produces stereoisomers of tabun, sarin, soman, and cyclosarin (GA, GB, GD, and GF, respectively). Analytical-scale methods were developed using a supercritical fluid chromatography (SFC) system in tandem with a mass spectrometer for the separation, quantitation, and isolation of individual stereoisomers of GA, GB, GD, and GF. Screening various chiral stationary phases (CSPs) for the capacity to provide full baseline separation of the CWNAs revealed that a Regis WhelkO1 (SS) column was capable of separating the enantiomers of GA, GB, and GF, with elution of the P(+) enantiomer preceding elution of the corresponding P(-) enantiomer; two WhelkO1 (SS) columns had to be connected in series to achieve complete baseline resolution. The four diastereomers of GD were also resolved using two tandem WhelkO1 (SS) columns, with complete baseline separation of the two P(+) epimers. A single WhelkO1 (RR) column with inverse stereochemistry resulted in baseline separation of the GD P(-) epimers. The analytical methods described can be scaled to allow isolation of individual stereoisomers to assist in screening and development of countermeasures to organophosphorus nerve agents. © 2014 The Authors. Chirality published by John Wiley Periodicals, Inc.

  3. Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with β-cyclodextrin.

    PubMed

    Pérez-Trujillo, Míriam; Lindon, John C; Parella, Teodor; Keun, Hector C; Nicholson, Jeremy K; Athersuch, Toby J

    2012-03-20

    Differences in molecular chirality remain an important issue in drug metabolism and pharmacokinetics for the pharmaceutical industry and regulatory authorities, and chirality is an important feature of many endogenous metabolites. We present a method for the rapid, direct differentiation and identification of chiral drug enantiomers in human urine without pretreatment of any kind. Using the well-known anti-inflammatory chemical ibuprofen as one example, we demonstrate that the enantiomers of ibuprofen and the diastereoisomers of one of its main metabolites, the glucuronidated carboxylate derivative, can be resolved by (1)H NMR spectroscopy as a consequence of direct addition of the chiral cosolvating agent (CSA) β-cyclodextrin (βCD). This approach is simple, rapid, and robust, involves minimal sample manipulation, and does not require derivatization or purification of the sample. In addition, the method should allow the enantiodifferentiation of endogenous chiral metabolites, and this has potential value for differentiating metabolites from mammalian and microbial sources in biofluids. From these initial findings, we propose that more extensive and detailed enantiospecific metabolic profiling could be possible using CSA-NMR spectroscopy than has been previously reported.

  4. Determining the orientation of a chiral substrate using full-hemisphere angle-resolved photoelectron spectroscopy.

    PubMed

    Tadich, A; Riley, J; Thomsen, L; Cowie, B C C; Gladys, M J

    2011-10-21

    Chiral interfaces and substrates are of increasing importance in the field of enantioselective chemistry. To fully understand the enantiospecific interactions between chiral adsorbate molecules and the chiral substrate, it is vital that the chiral orientation of the substrate is known. In this Letter we demonstrate that full-hemisphere angle-resolved photoemission permits straightforward identification of the orientation of a chiral surface. The technique can be applied to any solid state system for which photoemission measurements are possible. © 2011 American Physical Society

  5. Resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine: chiral discrimination mechanism.

    PubMed

    Peng, Yangfeng; He, Quan; Rohani, Sohrab; Jenkins, Hilary

    2012-05-01

    During the resolution of 2-chloromandelic acid with (R)-(+)-N-benzyl-1-phenylethylamine, the crystals of the less soluble salt were grown, and their structure were determined and presented. The chiral discrimination mechanism was investigated by examining the weak intermolecular interactions (such as hydrogen bond, CH/π, and van der Waals interactions) and molecular packing mode in crystal structure of the less soluble diastereomeric salt. A one-dimensional double-chain hydrogen-bonding network and a "lock-and-key" supramolecular packing mode are disclosed. The investigation demonstrates that hydrophobic layers with corrugated surfaces can fit into the grooves of one another to realize a compact packing, when the molecular structure of resolving agent is much larger than that of the racemate. This "lock-and-key" assembly is recognized to be another characteristic of molecular packing contributing to the chiral discrimination, in addition to the well-known sandwich-like packing by hydrophobic layers with planar boundary surfaces. Copyright © 2012 Wiley Periodicals, Inc.

  6. Enantiodifferentiation through frequency-selective pure-shift (1)H nuclear magnetic resonance spectroscopy.

    PubMed

    Castañar, Laura; Pérez-Trujillo, Míriam; Nolis, Pau; Monteagudo, Eva; Virgili, Albert; Parella, Teodor

    2014-04-04

    A frequency-selective 1D (1) H nuclear magnetic resonance (NMR) experiment for the fast and sensitive determination of chemical-shift differences between overlapped resonances is proposed. The resulting fully homodecoupled (1) H NMR resonances appear as resolved 1D singlets without their typical J(HH) coupling constant multiplet structures. The high signal dispersion that is achieved is then exploited in enantiodiscrimination studies by using chiral solvating agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    PubMed

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  8. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

    PubMed

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu

    2018-04-24

    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  9. A chiral self-assembled monolayer derived from a resolving agent and its performance as a crystallization template for an organic compound from organic solvents.

    PubMed

    Bejarano-Villafuerte, Ángela; van der Meijden, Maarten W; Lingenfelder, Magalí; Wurst, Klaus; Kellogg, Richard M; Amabilino, David B

    2012-12-07

    A new chiral nonracemic thiol derived from a popular acidic resolving agent that incorporates a cyclic disubstituted phosphate group (phencyphos) has been prepared in enantiomerically pure form. The stereochemistry and absolute configuration were established by performing a single-crystal X-ray structural analysis of a synthetic intermediate. The thiol compound was used for the preparation of self-assembled monolayers (SAMs) on both monocrystalline and polycrystalline metallic gold, which have very different surface roughness. The monolayers were used to promote the nucleation and growth of crystals from nonaqueous solutions of an organic molecule (the parent phencyphos) of similar structure to the compound present in the monolayer. The template layers influence the nucleation and growth of the phencyphos crystals despite the lack of two-dimensional order in the surfaces. Heterogeneous nucleation of phencyphos takes place upon evaporation of either CHCl(3) or isopropanol solutions of the compound on the SAM surfaces, where the evaporation rate merely influences the size and homogeneity of the crystals. The roughness of the surface also plays an important role; the polycrystalline gold produces more homogeneous samples because of the greater number of nucleation sites. Clear evidence for nucleation and growth on the surfaces is shown by scanning electron microscopy. The variation in crystal form achieved by using different surfaces and solvents suggests that the layers are applicable for the preparation of organic crystals from organic solutions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Li, Wenguang [Los Alamos, NM

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  11. Tunable Chiroptical Properties from the Plasmonic Band to Metal-Ligand Charge Transfer Band of the Cysteine Capped Molybdenum Oxide Nanoparticles.

    PubMed

    Li, Yiwen; Cheng, Jiaji; Li, Jiagen; Zhu, Xi; He, TingChao; Chen, Rui; Tang, Zikang

    2018-06-25

    Understanding the interactions between a semiconducting nanocrystal surface and chiral anchoring molecules could resolve the mechanism of chirality induction in nanoscale and facilitate the rational design of chiral semiconducting materials for chiroptics. Herein, we present chiral molybdenum oxide nanoparticles in which chirality is transferred via a bio-to-nano approach. With facile controlling on the amount of chiral cysteine molecules under redox treatment, circular dichroism (CD) signals are generated in plasmon region and metal-ligand charge transfer band. The obtained enhanced CD signals with tunable line-shapes illustrate the possibility of using chiral molybdenum oxide nanoparticles as potentials for chiral semiconductor nanosensors, optoelectronics and photocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Metallocorroles as inherently chiral chromophores: resolution and electronic circular dichroism spectroscopy of a tungsten biscorrole.

    PubMed

    Schies, Christine; Alemayehu, Abraham B; Vazquez-Lima, Hugo; Thomas, Kolle E; Bruhn, Torsten; Bringmann, Gerhard; Ghosh, Abhik

    2017-06-01

    An inherently chiral metallocorrole has been resolved for the first time by means of HPLC on a chiral stationary phase. For the compound in question, a homoleptic tungsten biscorrole, the absolute configurations of the enantiomers were assigned using online HPLC-ECD measurements in conjunction with time-dependent CAM-B3LYP calculations, which provided accurate simulations of the ECD spectra.

  13. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2006-07-11

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts. The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.103 degree-cm2/decimole to about 700.times.103 degree-cm2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  14. Photoexcitation circular dichroism in chiral molecules

    NASA Astrophysics Data System (ADS)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  15. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  16. Diastereoselective preparation of (R)- and (S)-2-methoxy-2-phenylpent-3-ynoic acids and their use as reliable chiral derivatizing agents.

    PubMed

    Pérez-Estrada, Salvador; Joseph-Nathan, Pedro; Jiménez-Vázquez, Hugo A; Medina-López, Manuel E; Ayala-Mata, Francisco; Zepeda, L Gerardo

    2012-02-17

    Benzoyl-S,O-acetals 1a and 1b were used as chiral auxiliaries to achieve the diastereoselective preparation of both enantiomers of 2-methoxy-2-phenylpent-3-ynoic acids (MPPAs). The latter were condensed with several chiral secondary alcohols and some primary amines to evaluate their potential as chiral derivatizing agents (CDAs). The (1)H NMR spectra of the corresponding esters and amides showed strong consistency with the absolute configuration of the carbinol and amine moieties, whose observed ΔδL(1) and ΔδL(2) values were in the ranges of 0.1-0.4 and 0.02-0.12 ppm, respectively.

  17. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin

    The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis ofmore » the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.« less

  18. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications.

    PubMed

    Dai, Lixiong; Jones, Chloe M; Chan, Wesley Ting Kwok; Pham, Tiffany A; Ling, Xiaoxi; Gale, Eric M; Rotile, Nicholas J; Tai, William Chi-Shing; Anderson, Carolyn J; Caravan, Peter; Law, Ga-Lai

    2018-02-27

    Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] - . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy.

  19. Characterization of an Indole-3-Acetamide Hydrolase from Alcaligenes faecalis subsp. parafaecalis and Its Application in Efficient Preparation of Both Enantiomers of Chiral Building Block 2,3-Dihydro-1,4-Benzodioxin-2-Carboxylic Acid.

    PubMed

    Mishra, Pradeep; Kaur, Suneet; Sharma, Amar Nath; Jolly, Ravinder S

    2016-01-01

    Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of our knowledge this is the first application of IaaH in production of industrially important molecules.

  20. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    PubMed

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Combined use of chiral ionic liquid surfactants and neutral cyclodextrins: evaluation of ionic liquid head groups for enantioseparation of neutral compounds in capillary electrophoresis.

    PubMed

    Liu, Yijin; Shamsi, Shahab A

    2014-09-19

    Cyclodextrins (CDs) are most commonly used chiral selectors in capillary electrophoresis (CE). Although the use of neutral CDs and its derivatives have shown to resolve plethora of charged enantiomers, they cannot resolve neutral enantiomers. The use of ionic liquids (ILs) surfactants forming successful complex with CDs present itself an opportunity to resolve neutral enantiomers. In this work, the effect of IL head groups and their complexation ability with heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) was studied for the separation of neutral enantiomers by CE. First, cationic IL type surfactants with different chiral head groups were synthesized. Physicochemical properties such as critical micelle concentration were determined by surface tension, whereas aggregation and polarity were determined by fluorescence spectroscopy. The complexation ability of ILs with TM-β-CD was characterized in the gas phase by CE-mass spectrometry. The influence of the type of ILs head group and its concentration on chiral resolution, resolution per unit time and selectivity were investigated for four structurally diverse neutral compounds. The binding constants of the neutral analytes to the IL-CD complex were estimated by y-reciprocal method. The hydrophobicity of the side chain of the IL head group displayed significant effect on the binding constants and enantioseparations. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Chiral signatures in angle-resolved valence photoelectron spectroscopy of pure glycidol enantiomers.

    PubMed

    Garcia, Gustavo A; Nahon, Laurent; Harding, Chris J; Powis, Ivan

    2008-03-28

    Photoionization of the chiral molecule glycidol has been investigated in the valence region. Photoelectron circular dichroism (PECD) curves have been obtained at various photon energies by using circularly polarized VUV synchrotron radiation and a velocity map imaging technique to record angle-resolved photoelectron spectra (PES). The measured chiral asymmetries vary dramatically with the photon energy as well as with the ionized orbital, improving the effective orbital resolution of the PECD spectrum with respect to the PES. Typical asymmetry factors of 5% are observed, but the peak values measured range up to 15%. The experimental results are interpreted by continuum multiple scattering (CMS-Xalpha) calculations for several thermally accessible glycidol conformers. We find that a nearly quantitative agreement between theory and experiments can be achieved for the ionization of several molecular orbitals. Owing to the sensitivity of PECD to molecular conformation this allows us to identify the dominant conformer. The influence of intramolecular hydrogen bond orbital polarization is found to play a small yet significant role in determining the chiral asymmetry in the electron angular distributions.

  3. Chemical synthesis of water-soluble, chiral conducting-polymer complexes

    DOEpatents

    Wang, Hsing-Lin; McCarthy, Patrick A.; Yang, Sze Cheng

    2003-01-01

    The template-guided synthesis of water-soluble, chiral conducting polymer complexes is described. Synthesis of water-soluble polyaniline complexes is achieved by carefully controlling the experimental parameters such as; acid concentration, ionic strength, monomer/template ratio, total reagent concentration, and order of reagent addition. Chiral (helical) polyaniline complexes can be synthesized by addition of a chiral inducing agent (chiral acid) prior to polymerization, and the polyaniline helix can be controlled by the addition of the (+) or (-) form of the chiral acid. Moreover the quantity of chiral acid and the salt content has a significant impact on the degree of chirality in the final polymer complexes. The polyaniline and the template have been found to be mixed at the molecular level which results in chiral complexes that are robust through repeated doping and dedoping cycles.

  4. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM.

    PubMed

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-12-18

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r₁) values about four times higher than that of clinically used Gd-DTPA (Magnevist(®), Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (K(a)) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The K(a) values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo.

  5. Chromatographic Studies of Protein-Based Chiral Separations

    PubMed Central

    Bi, Cong; Zheng, Xiwei; Azaria, Shiden; Beeram, Sandya; Li, Zhao; Hage, David S.

    2016-01-01

    The development of separation methods for the analysis and resolution of chiral drugs and solutes has been an area of ongoing interest in pharmaceutical research. The use of proteins as chiral binding agents in high-performance liquid chromatography (HPLC) has been an approach that has received particular attention in such work. This report provides an overview of proteins that have been used as binding agents to create chiral stationary phases (CSPs) and in the use of chromatographic methods to study these materials and protein-based chiral separations. The supports and methods that have been employed to prepare protein-based CSPs will also be discussed and compared. Specific types of CSPs that are considered include those that employ serum transport proteins (e.g., human serum albumin, bovine serum albumin, and alpha1-acid glycoprotein), enzymes (e.g., penicillin G acylase, cellobiohydrolases, and α-chymotrypsin) or other types of proteins (e.g., ovomucoid, antibodies, and avidin or streptavidin). The properties and applications for each type of protein and CSP will also be discussed in terms of their use in chromatography and chiral separations. PMID:28344977

  6. Pharmacokinetics of Chiral Dendrimer-Triamine-Coordinated Gd-MRI Contrast Agents Evaluated by in Vivo MRI and Estimated by in Vitro QCM

    PubMed Central

    Miyake, Yuka; Ishikawa, Syungo; Kimura, Yu; Son, Aoi; Imai, Hirohiko; Matsuda, Tetsuya; Yamada, Hisatsugu; Toshimitsu, Akio; Kondo, Teruyuki

    2015-01-01

    Recently, we developed novel chiral dendrimer-triamine-coordinated Gd-MRI contrast agents (Gd-MRI CAs), which showed longitudinal relaxivity (r1) values about four times higher than that of clinically used Gd-DTPA (Magnevist®, Bayer). In our continuing study of pharmacokinetic differences derived from both the chirality and generation of Gd-MRI CAs, we found that the ability of chiral dendrimer Gd-MRI CAs to circulate within the body can be directly evaluated by in vitro MRI (7 T). In this study, the association constants (Ka) of chiral dendrimer Gd-MRI CAs to bovine serum albumin (BSA), measured and calculated with a quartz crystal microbalance (QCM) in vitro, were found to be an extremely easy means for evaluating the body-circulation ability of chiral dendrimer Gd-MRI CAs. The Ka values of S-isomeric dendrimer Gd-MRI CAs were generally greater than those of R-isomeric dendrimer Gd-MRI CAs, which is consistent with the results of our previous MRI study in vivo. PMID:26694418

  7. Chiral discrimination of α-hydroxy acids and N-Ts-α-amino acids induced by tetraaza macrocyclic chiral solvating agents by using 1H NMR spectroscopy.

    PubMed

    Lv, Caixia; Feng, Lei; Zhao, Hongmei; Wang, Guo; Stavropoulos, Pericles; Ai, Lin

    2017-02-21

    In the field of chiral recognition, reported chiral discrimination by 1 H NMR spectroscopy has mainly focused on various chiral analytes with a single chiral center, regarded as standard chiral substrates to evaluate the chiral discriminating abilities of a chiral auxiliary. Among them, chiral α-hydroxy acids, α-amino acids and their derivatives are chiral organic molecules involved in a wide variety of biological processes, and also play an important role in the area of preparation of pharmaceuticals, as they are part of the synthetic process in the production of chiral drug intermediates and protein-based drugs. In this paper, several α-hydroxy acids and N-Ts-α-amino acids were used to evaluate the chiral discriminating abilities of tetraaza macrocyclic chiral solvating agents (TAMCSAs) 1a-1d by 1 H NMR spectroscopy. The results indicate that α-hydroxy acids and N-Ts-α-amino acids were successfully discriminated in the presence of TAMCSAs 1a-1d by 1 H NMR spectroscopy in most cases. The enantiomers of the α-hydroxy acids and N-Ts-α-amino acids were assigned based on the change of integration of the 1 H NMR signals of the corresponding protons. The enantiomeric excesses (ee) of N-Ts-α-amino acids 11 with different optical compositions were calculated based on the integration of the 1 H NMR signals of the CH 3 protons (Ts group) of the enantiomers of (R)- and (S)-11 in the presence of TAMCSA 1b. At the same time, the possible chiral discriminating behaviors have been discussed by means of the Job plots of (±)-2 with TAMCSAs 1b and proposed theoretical models of the enantiomers of 2 and 6 with TAMCSA 1a, respectively.

  8. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation

    PubMed Central

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-01-01

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3, 5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. PMID:23891368

  9. Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.

    PubMed

    Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J

    2014-10-01

    A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Maltodextrins as chiral selectors in CE: molecular structure effect of basic chiral compounds on the enantioseparation.

    PubMed

    Tabani, Hadi; Fakhari, Ali Reza; Nojavan, Saeed

    2014-10-01

    Prediction of chiral separation for a compound using a chiral selector is an interesting and debatable work. For this purpose, in this study 23 chiral basic drugs with different chemical structures were selected as model solutes and the influence of their chemical structures on the enantioseparation in the presence of maltodextrin (MD) as chiral selector was investigated. For chiral separation, a 100-mM phosphate buffer solution (pH 3.0) containing 10% (w/v) MD with dextrose equivalent (DE) of 4-7 as chiral selector at the temperature of 25°C and voltage of 20 kV was used. Under this condition, baseline separation was achieved for nine chiral compounds and partial separation was obtained for another six chiral compounds while no enantioseparation was obtained for the remaining eight compounds. The results showed that the existence of at least two aromatic rings or cycloalkanes and an oxygen or nitrogen atom or -CN group directly bonded to the chiral center are necessary for baseline separation. With the obtained results in this study, chiral separation of a chiral compound can be estimated with MD-modified capillary electrophoresis before analysis. This prediction will minimize the number of preliminary experiments required to resolve enantiomers and will save time and cost. © 2014 Wiley Periodicals, Inc.

  11. Enantioseparation of thalidomide and its hydroxylated metabolites using capillary electrophoresis with various cyclodextrins and their combinations as chiral buffer additives.

    PubMed

    Meyring, M; Chankvetadze, B; Blaschke, G

    1999-09-01

    The separation of thalidomide (TD) and its hydroxylated metabolites including their simultaneous enantioseparation was studied in capillary electrophoresis (CE) using four different randomly substituted charged cyclodextrin (CD) derivatives, the combinations of some of them with each other, and beta-CD. TD, as well as two metabolites recently found in incubations of human liver microsomes and human blood, 5-hydroxythalidomide (5-OH-TD) and one of the diastereomeric 5'-hydroxythalidomides (5'-OH-TD), are neutral compounds. Therefore, they were resolved using charged chiral selectors in CE. Two different separation modes (normal polarity and carrier mode) and two different capillaries (fused-silica and polyacrylamide-coated) were tested. Based on the behavior of the individual CDs, their designed combinations were selected in order to improve the separation selectivity and enantioselectivity. Under optimized conditions all three chiral compounds and their enantiomers were resolved simultaneously.

  12. Chiral magnetic microspheres purified by centrifugal field flow fractionation and microspheres magnetic chiral chromatography for benzoin racemate separation.

    PubMed

    Tian, Ailin; Qi, Jing; Liu, Yating; Wang, Fengkang; Ito, Yoichiro; Wei, Yun

    2013-08-30

    Separation of enantiomers still remains a challenge due to their identical physical and chemical properties in a chiral environment, and the research on specific chiral selector along with separation techniques continues to be conducted to resolve individual enantiomers. In our laboratory the promising magnetic chiral microspheres Fe3O4@SiO2@cellulose-2, 3-bis (3,5-dimethylphenylcarbamate) have been developed to facilitate the resolution using both its magnetic property and chiral recognition ability. In our present studies this magnetic chiral selector was first purified by centrifuge field flow fractionation, and then used to separate benzoin racemate by a chromatographic method. Uniform-sized and masking-impurity-removed magnetic chiral selector was first obtained by field flow fractionation with ethanol through a spiral column mounted on the type-J planetary centrifuge, and using the purified magnetic chiral selector, the final chromatographic separation of benzoin racemate was successfully performed by eluting with ethanol through a coiled tube (wound around the cylindrical magnet to retain the magnetic chiral selector as a stationary phase) submerged in dry ice. In addition, an external magnetic field facilitates the recycling of the magnetic chiral selector. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Chiral ionic liquids in chromatographic and electrophoretic separations.

    PubMed

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spatiotemporally resolved magnetic dynamics in B20 chiral FeGe

    NASA Astrophysics Data System (ADS)

    Gray, Isaiah; Turgut, Emrah; Bartell, Jason; Fuchs, Gregory

    Chiral magnetic materials have shown promise for ultra-low-power memory devices exploiting low critical currents for manipulation of spin textures. This motivates systematic studies of chiral dynamics in thin films, both for understanding magnetic properties and for developing devices. We use time-resolved anomalous Nernst effect (TRANE) microscopy to examine ferromagnetic resonance modes in 170 nm thin films of B20 chiral FeGe. Using 3 ps laser pulses with 1.2 μm resolution to generate a local thermal gradient, we measure the resulting Nernst voltage, which is proportional to the in-plane component of the magnetization. We first characterize and image the static magnetic moment as a function of temperature near the helical phase transition at 273 K. We then excite ferromagnetic resonance with microwave current and study the dynamical modes as a function of temperature, spatial position, and frequency. We identify both the uniform field-polarized mode and the helical spin-polarized mode and study the different spatial structures of the two modes. This work was supported by the Cornell Center for Materials Science with funding from the NSF MRSEC program (DMR-1120296), and also by the DOE Office of Science (Grant No. DE-SC0012245).

  15. Thiol-ene click chemistry derived cationic cyclodextrin chiral stationary phase and its enhanced separation performance in liquid chromatography.

    PubMed

    Yao, Xiaobin; Tan, Timothy Thatt Yang; Wang, Yong

    2014-01-24

    This work is the first demonstration of a simple thiol-ene click chemistry to anchor vinyl imidazolium β-CD onto thiol silica to form a novel cationic native cyclodextrin (CD) chiral stationary phase (CSP). The CSP afforded high enantioseparation ability towards dansyl (Dns) amino acids, carboxylic aryl compounds and flavonoids in chiral HPLC. The current CSP demonstrates the highest resolving ability (selectivity >1.1, resolution >1.5) towards Dns amino acids in a mobile phase buffered at pH=6.5, with the resolution of Dns-dl-leucine as high as 6.97. 2,4-dichloride propionic acid (2,4-ClPOPA) was well resolved with the selectivity and resolution of 1.37 and 4.88, respectively. Compared to a previously reported native CD-CSP based on a triazole linkage, the current cationic CD-CSP shows a stronger retention and higher resolution towards acidic chiral compounds, ascribed to the propitious strong electrostatic attraction. Stability evaluation results indicated that thiol-ene reaction can provide a facile and robust approach for the preparation of positively charged CD CSPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. In situ synthesis of di-n-butyl l-tartrate-boric acid complex chiral selector and its application in chiral microemulsion electrokinetic chromatography.

    PubMed

    Hu, Shaoqiang; Chen, Yonglei; Zhu, Huadong; Zhu, Jinhua; Yan, Na; Chen, Xingguo

    2009-11-06

    A novel procedure for in situ assembling a complex chiral selector, di-n-butyl l-tartrate-boric acid complex, by the reaction of di-n-butyl l-tartrate with boric acid in a running buffer was reported and its application in the enantioseparation of beta-blockers and structural related compounds by chiral microemulsion electrokinetic chromatography (MEEKC) has been demonstrated. In order to achieve a good enantioseparation, the effect of dibutyl l-tartrate and sodium tetraborate concentration, surfactant identity and concentration, cosurfactant, buffer pH and composition, organic modifiers, as well as applied voltage and capillary length were investigated. Ten pairs of enantiomers that could not be separated with only dibutyl l-tartrate, obtained good chiral separation using the complex chiral selector; among them, seven pairs could be baseline resolved under optimized experimental conditions. The fixation of chiral centers by the formation of five-membered rings, and being oppositely charged with basic analytes were thought to be the key factors giving the complex chiral selector a superior chiral recognition capability. The effect of the molecular structure of analytes on enantioseparation was discussed in terms of molecular interaction.

  17. Implications of the causality principle for ultra chiral metamaterials

    PubMed Central

    Gorkunov, Maxim V.; Dmitrienko, Vladimir E.; Ezhov, Alexander A.; Artemov, Vladimir V.; Rogov, Oleg Y.

    2015-01-01

    Chiral metamaterials – artificial subwavelength structures with broken mirror symmetry – demonstrate outstanding degree of optical chirality that exhibits sophisticated spectral behavior and can eventually reach extreme values. Based on the fundamental causality principle we show how one can unambiguously relate the metamaterial circular dichroism and optical activity by the generalized Kramers-Kronig relations. Contrary to the conventional relations, the generalized ones provide a unique opportunity of extracting information on material-dependent zeroes of transmission coefficient in the upper half plane of complex frequency. We illustrate the merit of the formulated relations by applying them to the observed ultra chiral optical transmission spectra of subwavelength arrays of chiral holes in silver films. Apart from the possibility of precise verification of experimental data, the relations enable resolving complex eigenfrequencies of metamaterial intrinsic modes and resonances. PMID:25787007

  18. Enantioresolution in electrokinetic chromatography-complete filling technique using sulfated gamma-cyclodextrin. Software-free topological anticipation.

    PubMed

    Escuder-Gilabert, Laura; Martín-Biosca, Yolanda; Medina-Hernández, María José; Sagrado, Salvador

    2016-10-07

    Few papers have tried to predict the resolution ability of chiral selectors in capillary electrophoresis for the separation of the enantiomers of chiral compounds. In a previous work, we have used molecular information available on-line to establish enantioresolution levels of basic compounds using highly sulfated β-CD (HS-β-CD) as chiral selector in electrokinetic chromatography-complete filling technique (EKC-CFT). The present study is a continuation of this previous work, introducing some novelties. In this work, the ability of sulfated γ-cyclodextrin (S-γ-CD) as chiral selector in EKC-CFT is modelled for the first time. Thirty-three structurally unrelated cationic and neutral compounds (drugs and pesticides) are studied. Categorical enantioresolution levels (RsC, 0 or 1) are assigned from experimental enantioresolution values obtained at different S-γ-CD concentrations. Novel topological parameters connected to the chiral carbon (C * -parameters) are introduced. Four C * -parameters and a topological parameter of the whole molecule (aromatic atom count) are the most important variables according to a discriminant partial least squares-variable selection process. It suggests the preponderance of the topology adjacent to the chiral carbon to anticipate the RsC levels. A software-free anticipation protocol for new molecules is proposed. Over the current set of molecules evaluated, 100% of correct anticipations (resolved and non-resolved compounds) are obtained, while anticipation of some compounds remains undetermined. A criterion is introduced to alert on compounds which should not be anticipated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Immobilized polysaccharide derivatives: chiral packing materials for efficient HPLC resolution.

    PubMed

    Ikai, Tomoyuki; Yamamoto, Chiyo; Kamigaito, Masami; Okamoto, Yoshio

    2007-01-01

    Polysaccharide-based chiral packing materials (CPMs) for high-performance liquid chromatography have frequently been used not only to determine the enantiomeric excess of chiral compounds but also to preparatively resolve a wide range of racemates. However, these CPMs can be used with only a limited number of solvents as mobile phases because some organic solvents, such as tetrahydrofuran, chloroform, and so on, dissolve or swell the polysaccharide derivatives coated on a support, e.g., silica gel, and destroy their packed columns. The limitation of mobile phase selection is sometimes a serious problem for the efficient analytical and preparative resolution of enantiomers. This defect can be resolved by the immobilization of the polysaccharide derivatives onto silica gel. Efficient immobilizations have been attained through the radical copolymerization of the polysaccharide derivatives bearing small amounts of polymerizable residues and also through the polycondensation of the polysaccharide derivatives containing a few percent of 3-(triethoxysilyl)propyl residue. (c) 2007 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  20. Ultrafast Imaging of Chiral Surface Plasmon by Photoemission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Dai, Yanan; Dabrowski, Maciej; Petek, Hrvoje

    We employ Time-Resolved Photoemission Electron Microscopy (TR-PEEM) to study surface plasmon polariton (SPP) wave packet dynamics launched by tunable (VIS-UV) femtosecond pulses of various linear and circular polarizations. The plasmonic structures are micron size single-crystalline Ag islands grown in situ on Si surfaces and characterized by Low Energy Electron Microscopy (LEEM). The local fields of plasmonic modes enhance two and three photon photoemission (2PP and 3PP) at the regions of strong field enhancement. Imaging of the photoemission signal with PEEM electron optics thus images the plasmonic fields excited in the samples. The observed PEEM images with left and right circularly polarized light show chiral images, which is a consequence of the transverse spin momentum of surface plasmon. By changing incident light polarization, the plasmon interference pattern shifts with light ellipticity indicating a polarization dependent excitation phase of SPP. In addition, interferometric-time resolved measurements record the asymmetric SPP wave packet motion in order to characterize the dynamical properties of chiral SPP wave packets.

  1. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith.

    PubMed

    Yuan, Ruijuan; Wang, Yan; Ding, Guosheng

    2010-01-01

    A sulfated poly β-cyclodextrin (SPCD) modified silica-based monolithic column was prepared for enantiomeric separation. First, 2-hydroxy-3-allyloxy-propyl-β-cyclodextrin (allyl-β-CD) was bonded onto a bifunctional reagent 3-(methacryloxy)propyltriethoxysilane (γ-MAPS) modified silica-based monolith through radical polymerization; the column was then sulfated with chlorosulfonic acid. The SPCD chiral stationary phase resolved the boring problem associated with desalting when sulfated CDs were synthesized to act as chiral additives. The inorganic salt in the column introduced during the sulfating process could be easily removed by washing the column with water for some time. Chiral compounds investigated were successfully resolved into their enantiomers on the SPCD modified monolith in the capillary electrochromatography (CEC) mode. Due to the existence of the -SO(3)H group, electrosmotic flow (EOF) was obviously increased, and all of the separations could be carried out in 20 min with only a minor loss in the column efficiency and resolution.

  2. Femtosecond characterization of vibrational optical activity of chiral molecules.

    PubMed

    Rhee, Hanju; June, Young-Gun; Lee, Jang-Soo; Lee, Kyung-Koo; Ha, Jeong-Hyon; Kim, Zee Hwan; Jeon, Seung-Joon; Cho, Minhaeng

    2009-03-19

    Optical activity is the result of chiral molecules interacting differently with left versus right circularly polarized light. Because of this intrinsic link to molecular structure, the determination of optical activity through circular dichroism (CD) spectroscopy has long served as a routine method for obtaining structural information about chemical and biological systems in condensed phases. A recent development is time-resolved CD spectroscopy, which can in principle map the structural changes associated with biomolecular function and thus lead to mechanistic insights into fundamental biological processes. But implementing time-resolved CD measurements is experimentally challenging because CD is a notoriously weak effect (a factor of 10(-4)-10(-6) smaller than absorption). In fact, this problem has so far prevented time-resolved vibrational CD experiments. Here we show that vibrational CD spectroscopy with femtosecond time resolution can be realized when using heterodyned spectral interferometry to detect the phase and amplitude of the infrared optical activity free-induction-decay field in time (much like in a pulsed NMR experiment). We show that we can detect extremely weak signals in the presence of large achiral background contributions, by simultaneously measuring with a femtosecond laser pulse the vibrational CD and optical rotatory dispersion spectra of dissolved chiral limonene molecules. We have so far only targeted molecules in equilibrium, but it would be straightforward to extend the method for the observation of ultrafast structural changes such as those occurring during protein folding or asymmetric chemical reactions. That is, we should now be in a position to produce 'molecular motion pictures' of fundamental molecular processes from a chiral perspective.

  3. Chiral Luttinger liquids and a generalized Luttinger's theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Daniel; Zaletel, Michael; Moore, Joel

    2014-03-01

    We use bosonic field theories and the infinite system density matrix renormalization group (iDMRG) method to study infinite strips of fractional quantum Hall (FQH) states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge mode exponents and momenta without finite-size errors. We analyze states in the first and second level of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid (χLL) theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the non-chiral case. We prove a generalized Luttinger's theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in 1D.

  4. Efficient palladium-catalyzed asymmetric allylic alkylation of ketones and aldehydes.

    PubMed

    Zhao, Xiaohu; Liu, Delong; Xie, Fang; Liu, Yangang; Zhang, Wanbin

    2011-03-21

    Palladium-catalyzed asymmetric allylic alkylation of ketones, via enamines generated in situ as nucleophiles, were carried out smoothly with chiral metallocene-based P,N-ligands. Under the same conditions, however, reactions of aldehydes could hardly be observed. Subsequently, this obstacle was resolved by using chiral metallocene-based P,P-ligands. Both ketones and aldehydes afforded excellent enantioselectivities with up to 98% ee and 94% ee, respectively.

  5. Chirality and orbital order in charge density waves

    NASA Astrophysics Data System (ADS)

    van Wezel, Jasper

    2011-12-01

    Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.

  6. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection.

    PubMed

    Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W

    2018-05-22

    Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. On the origin of biological chirality via natural beta-decay

    NASA Technical Reports Server (NTRS)

    Noyes, H. P.; Bonner, W. A.; Tomlin, J. A.

    1977-01-01

    An hypothesis to account for the chirality (handedness) of some biological molecules is given. Experimental evidence suggests that longitudinally polarized electrons having the chirality of terrestrial beta-decay electrons remove dextro-leucine from a racemic mixture. If, by a similar mechanism, the terrestrial environment provided more levo- than dextro-amino acids, that would account for the chirality now observed in organic molecules. An isotope of potassium has been proposed as the natural beta-emitter responsible for biomolecular chirality; however, Carbon 14 may be an even more plausible candidate. Ready availability of the carbon isotope in the terrestrial environment of 4.5 aeons ago, and the role of leucine in protein synthesis indicate that these two agents may have been chief factors in the evolution of biomolecular chirality. Suggestions for further research in this area are made.

  8. Observation of the chiral magnetic effect in ZrTe₅

    DOE PAGES

    Li, Qiang; Kharzeev, Dmitri E.; Zhang, Cheng; ...

    2015-02-08

    The chiral magnetic effect is the generation of electric current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions (massless spin 1/2 particles with a definite projection of spin on momentum) – a dramatic phenomenon arising from a collective motion of particles and antiparticles in the Dirac sea. The recent discovery of Dirac semimetals with chiral quasi-particles opens a fascinating possibility to study this phenomenon in condensed matter experiments. Here we report on the first observation of chiral magnetic effect through the measurementmore » of magneto-transport in zirconium pentatelluride, ZrTe₅. Our angle-resolved photoemission spectroscopy experiments show that this material’s electronic structure is consistent with a 3D Dirac semimetal. We observe a large negative magnetoresistance when magnetic field is parallel with the current. The measured quadratic field dependence of the magnetoconductance is a clear indication of the chiral magnetic effect. Furthermore, the observed phenomenon stems from the effective transmutation of Dirac semimetal into a Weyl semimetal induced by the parallel electric and magnetic fields that represent a topologically nontrivial gauge field background.« less

  9. Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds.

    PubMed

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-06-01

    An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Enantioseparation of α-Hydroxyallylphosphonates and Phosphonoallylic Carbonate Derivatives on Chiral Stationary Phases Using Sequential UV, Polarimetric, and Refractive Index Detection.

    PubMed

    Hamper, Bruce C; Mannino, Michael P; Mueller, Melissa E; Harrison, Liam T; Spilling, Christopher D

    2016-09-01

    Chromatographic separation of the enantiomers of parent compounds dimethyl α-hydroxyallyl phosphonate and 1-(dimethoxyphosphoryl) allyl methyl carbonate was demonstrated by high-performance liquid chromatography (HPLC) using Chiralpak AS-H and ad-H chiral stationary phases (CSP), respectively, using a combination of UV, polarimetric, and refractive index detectors. A comparison was made of the separation efficiency and elution order of enantiomeric α-hydroxyallyl phosphonates and their carbonate derivatives on commercially available polysaccharide AS, ad, OD, IC-3, and Whelk-O 1 CSPs. In general, the α-hydroxyallyl phosphonates were resolved on the AS-H CSP, whereas the carbonate derivatives and were preferentially resolved on the ad-H CSP. The impact of aryl substitution on the resolution of analytes and was evaluated. Thermodynamic parameters determined for enantioselective adsorption hydroxyphosphonates and on the AS-H CSP and carbonate on the ad-H CSP demonstrated enthalpic control for separation of the enantiomers. Chirality 28:656-662, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Individual eigenvalue distributions of crossover chiral random matrices and low-energy constants of SU(2) × U(1) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Nishigaki, Shinsuke M.

    2018-02-01

    We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.

  12. Synthesis of Enantiomerically Pure Anthracyclinones

    NASA Astrophysics Data System (ADS)

    Achmatowicz, Osman; Szechner, Barbara

    The anthracycline antibiotics are among the most important clinical drugs used in the treatment of human cancer. The search for new agents with improved therapeutic efficacy and reduced cardiotoxicity stimulated considerable efforts in the synthesis of new analogues. Since the biological activity of anthracyclines depends on their natural absolute configuration, various strategies for the synthesis of enantiomerically pure anthracyclinones (aglycones) have been developed. They comprise: resolution of racemic intermediate, incorporation of a chiral fragment derived from natural and non-natural chiral pools, asymmetric synthesis with the use of a chiral auxiliary or a chiral reagent, and enantioselective catalysis. Synthetic advances towards enantiopure anthracyclinones reported over the last 17 years are reviewed.

  13. Method for the synthesis of chiral allylic alcohols utilizing selone based chiral derivatizing agents

    DOEpatents

    Silks, III, Louis A.

    2002-01-01

    Molecules containing a chiral 1,2-diol unit are synthesized from reactions between aldehydes and N-acyl selones. A chilled N-acyl selone is reacted with a Lewis acid such as TiCl.sub.4 and mixed with a tertiary amine such as diisopropylethylamine to generate an enolate solution. Upon further chilling of the enolate solution a desired aldehyde is added and after an acceptable reaction period a quencher is introduced and the product isolated.

  14. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  15. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    DOE PAGES

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    2017-07-01

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less

  16. Status of the chiral magnetic effect and collisions of isobars

    DOE PAGES

    Koch, Volker; Schlichting, Soeren; Skokov, Vladimir; ...

    2017-04-30

    Here, we examine the current theoretical and experimental status of the chiral magnetic effect. We discuss possible future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We then investigate the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item inmore » the strategy for completing the RHIC mission.« less

  17. Magnetoconductance signatures of chiral domain-wall bound states in magnetic topological insulators

    NASA Astrophysics Data System (ADS)

    Tiwari, Kunal L.; Coish, W. A.; Pereg-Barnea, T.

    2017-12-01

    Recent magnetoconductance measurements performed on magnetic topological insulator candidates have revealed butterfly-shaped hysteresis. This hysteresis has been attributed to the formation of gapless chiral domain-wall bound states during a magnetic-field sweep. We treat this phenomenon theoretically, providing a link between microscopic magnetization dynamics and butterfly hysteresis in magnetoconductance. Further, we illustrate how a spatially resolved conductance measurement can probe the most striking feature of the domain-wall bound states: their chirality. This work establishes a regime where a definitive link between butterfly hysteresis in longitudinal magneto-conductance and domain-wall bound states can be made. This analysis provides an important tool for the identification of magnetic topological insulators.

  18. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouxel, Jérémy R.; Kowalewski, Markus; Mukamel, Shaul

    Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. Here, we present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the paritymore » breaking geometry change thus revealing the enantiomer asymmetry.« less

  19. Chirality in adsorption on solid surfaces.

    PubMed

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral chromatography, and enantioselective catalysis.

  20. Separation mechanism of chiral impurities, ephedrine and pseudoephedrine, found in amphetamine-type substances using achiral modifiers in the gas phase.

    PubMed

    Holness, Howard K; Jamal, Adeel; Mebel, Alexander; Almirall, José R

    2012-11-01

    A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte-modifier clusters was also performed, and showed either "bridged" or "independent" binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.

  1. Chiral Luttinger liquids and a generalized Luttinger theorem in fractional quantum Hall edges via finite-entanglement scaling

    NASA Astrophysics Data System (ADS)

    Varjas, Dániel; Zaletel, Michael P.; Moore, Joel E.

    2013-10-01

    We use bosonic field theories and the infinite system density matrix renormalization group method to study infinite strips of fractional quantum Hall states starting from microscopic Hamiltonians. Finite-entanglement scaling allows us to accurately measure chiral central charge, edge-mode exponents, and momenta without finite-size errors. We analyze states in the first and second levels of the standard hierarchy and compare our results to predictions of the chiral Luttinger liquid theory. The results confirm the universality of scaling exponents in chiral edges and demonstrate that renormalization is subject to universal relations in the nonchiral case. We prove a generalized Luttinger theorem involving all singularities in the momentum-resolved density, which naturally arises when mapping Landau levels on a cylinder to a fermion chain and deepens our understanding of non-Fermi liquids in one dimension.

  2. Searching for Models Exhibiting High Circularly Polarized Luminescence: the Electroactive Inherently Chiral Oligothiophenes.

    PubMed

    Benincori, Tiziana; Appoloni, Giulio; Mussini, Patrizia Romana; Arnaboldi, Serena; Cirilli, Roberto; Quartapelle Procopio, Elsa; Panigati, Monica; Abbate, Sergio; Mazzeo, Giuseppe; Longhi, Giovanna

    2018-05-02

    Two new inherently chiral oligothiophenes characterized by the atropisomeric 3,3'-bithianaphtene scaffold functionalized with fused ring bithiophene derivatives, namely 4H-cyclopenta [2,1-b3:4b']dithiophene (CPDT) and dithieno[3,3-b:2',3'-d]pyrrole (DTP), were synthesized. The racemates were fully characterized and resolved into antipodes by enantioselective HPLC. The enantiomers were analyzed through different chiroptical techniques: electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) were employed to attribute the absolute configuration (AC). Comparison of experimental and calculated VCD spectra confirmed the DFT calculated conformational characteristics. The compound functionalized with two CPDT units was oxidized with FeCl3 and ECD and CPL of the resulting material were measured. Circularly Polarized Luminescence (CPL) was measured in order to verify if inherently chiral oligothiophenes could be promising systems for chiral photonics applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Attosecond-resolved photoionization of chiral molecules.

    PubMed

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Anagostic interactions in chiral separation. Polymorphism in a [Co(II)(L)] complex: Crystallographic and theoretical studies

    NASA Astrophysics Data System (ADS)

    Awwadi, Firas F.; Hodali, Hamdallah A.

    2018-02-01

    Syntheses and crystal structures of two polymorphs of the complex [Co(II)(L)], where H2L = 2,2'-[cis-1,2-diaminocyclohexanediylbis (nitrilo-methylidyne)]bis (5-dimethyl-amino]phenol, have been studied. The two polymorphs concomitantly crystallized by vapour diffusion of solvent. The first polymorph (I) crystallized as a racemate in the centrosymmetric tetragonal I41/a space group. The second polymorph (II) crystallized in the chiral orthorhombic space group P212121. The chiral conformers of symmetrical cis-1,2-disubstituted cyclohexane molecules cannot be resolved in the liquid or gas phases, due to the rapid ring inversion. In the present study, the two chiral conformers are present in crystals of polymorph I, whereas, only one chiral conformer is present in crystals of polymorph II. Crystal structure analysis indicated that the formation of two different polymorphs of [Co(II)(L)] complex can be rationalized based on Csbnd H⋯Co anagostic interactions. Density Functional Theory (DFT) calculations indicated that Csbnd H⋯Co interactions are due to HOMO-LUMO interactions.

  5. Probing the stereoselective interaction of ofloxacin enantiomers with corresponding monoclonal antibodies by multiple spectrometry

    NASA Astrophysics Data System (ADS)

    Mu, Hongtao; Xu, Zhenlin; Liu, Yingju; Sun, Yuanming; Wang, Baoling; Sun, Xiulan; Wang, Zhanhui; Eremin, Sergei; Zherdev, Anatoly V.; Dzantiev, Boris B.; Lei, Hongtao

    2018-04-01

    Although stereoselective antibody has immense potential in chiral compounds detection and separation, the interaction traits between stereoselective antibody and the corresponding antigenic enantiomers are not yet fully exploited. In this study, the stereospecific interactions between ofloxacin isomers and corresponding monoclonal antibodies (McAb-WR1 and McAb-MS1) were investigated using time-resolved fluorescence, steady-state fluorescence, and circular dichroism (CD) spectroscopic methods. The chiral recognition discrepancies of antibodies with ofloxacin isomers were reflected through binding constant, number of binding sites, driving forces and conformational changes. The major interacting forces of McAb-WR1 and McAb-MS1 chiral interaction systems were hydrophobic force and van der Waals forces joined up with hydrogen bonds, respectively. Synchronous fluorescence spectra and CD spectra results showed that the disturbing of tyrosine and tryptophan micro-environments were so slightly that no obvious secondary structure changes were found during the chiral hapten binding. Clarification of stereospecific interaction of antibody will facilitate the application of immunoassay to analyze chiral contaminants in food and other areas.

  6. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    PubMed

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  7. Natural Optical Activity of Chiral Epoxides: the Influence of Structure and Environment on the Intrinsic Chiroptical Response

    NASA Astrophysics Data System (ADS)

    Lemler, Paul M.; Craft, Clayton L.; Vaccaro, Patrick

    2017-06-01

    Chiral epoxides built upon nominally rigid frameworks that incorporate aryl substituents have been shown to provide versatile backbones for asymmetric syntheses designed to generate novel pharmaceutical and catalytic agents. The ubiquity of these species has motivated the present studies of their intrinsic (solvent-free) circular birefringence (CB), the measurement of which serves as a benchmark for quantum-chemical predictions of non-resonant chiroptical behavior and as a beachhead for understanding the often-pronounced mediation of such properties by environmental perturbations (e.g., solvation). The optical rotatory dispersion (or wavelength-resolved CB) of (R)-styrene oxide (R-SO) and (S,S)-phenylpropylene oxide (S-PPO) have been interrogated under ambient solvated and isolated conditions, where the latter efforts exploited the ultrasensitive techniques of cavity ring-down polarimetry. Both of the targeted systems display marked solvation effects as evinced by changes the magnitude and (in the case of R-SO) the sign of the extracted specific optical rotation, with the anomalously large response evoked from S-PPO distinguishing it from other members of the epoxide family. Linear-response calculations of dispersive optical activity have been performed at both density-functional and coupled-cluster levels of theory to unravel the structural and electronic origins of experimental findings, thereby suggesting the possible involvement of hindered torsional motion along dihedral coordinates adjoining phenyl and epoxide moieties.

  8. A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs

    PubMed Central

    Covell, Dustin J.; White, M. Christina

    2013-01-01

    Chiral oxygenated molecules are pervasive in natural products and medicinal agents; however, their chemical syntheses often necessitate numerous, wasteful steps involving functional group and oxidation state manipulations. Herein a strategy for synthesizing a readily diversifiable class of chiral building blocks, allylic alcohols, through sequential asymmetric C—H activation/resolution is evaluated against the state-of-the-art. The C—H oxidation routes’ capacity to strategically introduce oxygen into a sequence and thereby minimize non-productive manipulations is demonstrated to effect significant decreases in overall step-count and increases in yield and synthetic flexibility. PMID:25013239

  9. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  10. Time-resolved fluorescence study of exciplex formation in diastereomeric naproxen-pyrrolidine dyads.

    PubMed

    Khramtsova, Ekaterina A; Plyusnin, Viktor F; Magin, Ilya M; Kruppa, Alexander I; Polyakov, Nikolay E; Leshina, Tatyana V; Nuin, Edurne; Marin, M Luisa; Miranda, Miguel A

    2013-12-19

    The influence of chirality on the elementary processes triggered by excitation of the (S,S)- and (R,S)- diastereoisomers of naproxen-pyrrolidine (NPX-Pyr) dyads has been studied by time-resolved fluorescence in acetonitrile-benzene mixtures. In these systems, the quenching of the (1)NPX*-Pyr singlet excited state occurs through electron transfer and exciplex formation. Fluorescence lifetimes and quantum yields revealed a significant difference (around 20%) between the (S,S)- and (R,S)- diastereomers. In addition, the quantum yields of exciplexes differed by a factor of 2 regardless of solvent polarity. This allows us to suggest a similar influence of the chiral centers on the local charge transfer resulting in exciplex and full charge separation that leads to ion-biradicals. A simplified scheme is proposed to estimate a set of rate constant values (k1-k5) for the elementary stages in each solvent system.

  11. Separation of profen enantiomers by capillary electrophoresis using cyclodextrins as chiral selectors.

    PubMed

    Blanco, M; Coello, J; Iturriaga, H; Maspoch, S; Pérez-Maseda, C

    1998-01-09

    A method for resolving the enantiomers of various 2-arylpropionic acids (viz. ketoprofen, ibuprofen and fenoprofen) by capillary zone electrophoresis (CZE) using a background electrolyte (BGE) containing a cyclodextrin as chiral selector is proposed. The effects of the type of cyclodextrin used and its concentration on resolution were studied and heptakis-2,3,6-tri- O-methyl-beta-cyclodextrin was found to be the sole effective choice for the quantitative enantiomeric resolution of all the compounds tested. The influence of pH, BGE concentration, capillary temperature and addition of methanol to the BGE on resolution and other separation-related parameters was also studied. The three compounds studied can be enantiomerically resolved with a high efficiency in a short time (less than 20 min) with no capillary treatment. This makes the proposed method suitable for assessing the enantiomeric purity of commercially available pharmaceuticals.

  12. Chiral separation of the β2-sympathomimetic fenoterol by HPLC and capillary zone electrophoresis for pharmacokinetic studies.

    PubMed

    Ullrich, Thomas; Wesenberg, Dirk; Bleuel, Corinna; Krauss, Gerd-Joachim; Schmid, Martin G; Weiss, Michael; Gübitz, Gerald

    2010-10-01

    The development of methods for the separation of the enantiomers of fenoterol by chiral HPLC and capillary zone electrophoresis (CZE) is described. For the HPLC separation precolumn fluorescence derivatization with naphthyl isocyanate was applied. The resulting urea derivatives were resolved on a cellulose tris(3,5-dimethylphenylcarbamate)-coated silica gel column employing a column switching procedure. Detection was carried out fluorimetrically with a detection limit in the low ng/mL range. The method was adapted to the determination of fenoterol enantiomers in rat heart perfusates using liquid-liquid extraction. As an alternative a CE method was used for the direct separation of fenoterol enantiomers comparing different cyclodextrin derivatives as chiral selectors. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Fragile surface zero-energy flat bands in three-dimensional chiral superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2015-12-01

    We study surface zero-energy flat bands in three-dimensional chiral superconductors with pz(px+i py) ν -wave pairing symmetry (ν is a nonzero integer), based on topological arguments and tunneling conductance. It is shown that the surface flat bands are fragile against (i) the surface misorientation and (ii) the surface Rashba spin-orbit interaction. The fragility of (i) is specific to chiral SCs, whereas that of (ii) happens for general odd-parity SCs. We demonstrate that these flat-band instabilities vanish or suppress a zero-bias conductance peak in a normal/insulator/superconductor junction, which behavior is clearly different from high-Tc cuprates and noncentrosymmetric superconductors. By calculating the angle-resolved conductance, we also discuss a topological surface state associated with the coexistence of line and point nodes.

  14. Physical-Chemical Properties of the Chiral Fungicide Fenamidone and Strategies for Enantioselective Crystallization.

    PubMed

    Kort, Anne-Kathleen; Lorenz, Heike; Seidel-Morgenstern, Andreas

    2016-06-01

    Thermodynamic and kinetic parameters are of prime importance for designing crystallization processes. In this article, Preferential Crystallization, as a special approach to carry out enantioselective crystallization, is described to resolve the enantiomers of the chiral fungicide fenamidone. In preliminary investigations the melting behavior and solid-liquid equilibria in the presence of solvents were quantified. The analyses revealed a stable solid phase behavior of fenamidone in the applied solvents. Based on the results obtained, a two-step crystallization route was designed and realized capable of providing highly pure enantiomers. An initial Preferential Crystallization of the racemate was performed prior to crystallizing the target enantiomer preferentially out of the enriched mother liquor. Chirality 28:514-520, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Two Synthetic Methods for Preparation of Chiral Stationary Phases Using Crystalline Degradation Products of Vancomycin: Column Performance for Enantioseparation of Acidic and Basic Drugs.

    PubMed

    Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba

    2017-07-01

    Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.

  16. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films.

    PubMed

    Sun, Yujian; Zhang, Cuihong; Zhou, Le; Fang, Hua; Huang, Jianhua; Ma, Haipeng; Zhang, Yi; Yang, Jie; Zhang, Lan-Ying; Song, Ping; Gao, Yanzi; Xiao, Jiumei; Li, Fasheng; Li, Kexuan

    2016-12-30

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found that the weight ratio among acrylate monomers, thiol monomer PETMP and the polymercaptan Capcure 3-800 showed great influence on the properties of the fabricated PDLC films because of the existence of competition between thiol-acrylate reaction and acrylate monomer polymerization reaction. While adding polymercaptans curing agent Capcure 3-800 with appropriate concentration into the PDLC system, lower driven voltage and higher contrast ratio were achieved. This made the polymer network and electro-optical properties of the PDLC films easily tunable by the introduction of the thiol monomers.

  17. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    PubMed

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Additive free preparative chiral SFC separations of 2,2-dimethyl-3-aryl-propanoic acids.

    PubMed

    Wu, Dauh-Rurng; Yip, Shiuhang Henry; Li, Peng; Sun, Dawn; Kempson, James; Mathur, Arvind

    2016-11-30

    A series of racemic 2,2-dimethyl-3-aryl-propanoic acids were resolved by chiral supercritical fluid chromatography (SFC) without the use of an acidic additive, trifluoroacetic acid (TFA). The use of additive-free protic methanol as co-solvent in CO 2 was expanded to successfully resolve other series of carboxylic acid containing racemates. Large-scale SFC of racemic acid 4, 3-(1-(4-fluorophenyl)-1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoic acid, in methanol without TFA as additive on both Chiralpak AD-H and Chiralcel OJ-H will be discussed, along with impact on throughput and solvent consumption. Investigation of co-solvent effect on peak sharpening of acid racemate 20, 2-(2-chloro-9-fluoro-5H-chromeno[2,3-b]pyridin-5-yl)-2-methylpropanoic acid, without TFA further indicated that methanol in CO 2 provided improved peak shape compared with isopropanol (IPA) and acetonitrile. Finally, we discuss the resolution of basic aromatic chiral amines without the addition of basic additives such as diethylamine (DEA) and application of this protocol for the large-scale SFC separation of weakly basic indazole-containing racemate 14, methyl 3-(1H-indazol-5-yl)-2,2-dimethyl-3-phenylpropanoate, in methanol without DEA. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes.

    PubMed

    Albals, Dima; Heyden, Yvan Vander; Schmid, Martin G; Chankvetadze, Bezhan; Mangelings, Debby

    2016-03-20

    The screening part of an earlier defined chiral separation strategy in capillary electrochromatography (CEC) was used for the separation of ten cathinone- and amphetamine derivatives. They were analyzed using 4 polysaccharide-based chiral stationary phases (CSPs), containing cellulose tris(3,5-dimethylphenylcarbamate) (ODRH), amylose tris(3,5-dimethylphenylcarbamate) (ADH), amylose tris(5-chloro-2-methylphenylcarbamate) (LA2), and cellulose tris(4-chloro-3-methylphenylcarbamate) (LC4) as chiral selectors. After applying the screening to each compound, ADH and LC4 showed the highest success rate. In a second part of the study, a comparison between CEC and other analytical techniques used for chiral separations i.e., supercritical fluid chromatography (SFC), polar organic solvent chromatography (POSC), reversed-phase (RPLC) and normal-phase liquid chromatography (NPLC), was made. For this purpose, earlier defined screening approaches for each technique were applied to separate the 10 test substances. This allowed an overall comparison of the success rates of the screening steps of the 5 techniques for these compounds. The results showed that CEC had a similar enantioselectivity rate as NPLC and RPLC, producing the highest number of separations (9 out of 10 racemates). SFC resolved 7 compounds, while POSC gave only 2 separations. On the other hand, the baseline separation success rates for NPLC and RPLC was better than for CEC. For a second comparison, the same chiral stationary phases as in the CEC screening were also tested with all techniques at their specific screening conditions, which allowed a direct comparison of the performance of CEC versus the same CSPs in the other techniques. This comparison revealed that RPLC was able to separate all tested compounds, and also produced the highest number of baseline separations on the CSP that were used in the CEC screening step. CEC and NPLC showed the same success rate: nine out of ten substances were separated. When CEC and NPLC are combined, separation of the ten compounds can be achieved. SFC and POSC resolved eight and three compounds, respectively. POSC was the least attractive option as it expressed only limited enantioselectivity toward these compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Utilization of deep-sea microbial esterase PHE21 to generate chiral sec-butyl acetate through kinetic resolutions.

    PubMed

    Wang, Yilong; Xu, Yongkai; Zhang, Yun; Sun, Aijun; Hu, Yunfeng

    2018-06-08

    We previously identified and characterized 1 novel deep-sea microbial esterase PHE21 and used PHE21 as a green biocatalyst to generate chiral ethyl (S)-3-hydroxybutyrate, 1 key chiral chemical, with high enantiomeric excess and yield through kinetic resolution. Herein, we further explored the potential of esterase PHE21 in the enantioselective preparation of secondary butanol, which was hard to be resolved by lipases/esterases. Despite the fact that chiral secondary butanols and their ester derivatives were hard to prepare, esterase PHE21 was used as a green biocatalyst in the generation of (S)-sec-butyl acetate through hydrolytic reactions and the enantiomeric excess, and the conversion of (S)-sec-butyl acetate reached 98% and 52%, respectively, after process optimization. Esterase PHE21 was also used to generate (R)-sec-butyl acetate through asymmetric transesterification reactions, and the enantiomeric excess and conversion of (R)-sec-butyl acetate reached 64% and 43%, respectively, after process optimization. Deep-sea microbial esterase PHE21 was characterized to be a useful biocatalyst in the kinetic resolution of secondary butanol and other valuable chiral secondary alcohols. © 2018 Wiley Periodicals, Inc.

  1. Chiral charge and orbital order in 1T-TiSe2

    NASA Astrophysics Data System (ADS)

    van Wezel, Jasper

    2012-02-01

    Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density on the other hand, was discovered only very recently [1,2]. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we resolve this paradox by identifying the microscopic mechanism underlying the formation of the chiral charge density wave in 1T-TiSe2. It is shown that the emergence of chirality is accompanied by the simultaneous formation of orbital order [3] We show that this type of combined orbital and charge order may in fact be expected to be a generic property of a broad class of charge ordered materials and discuss the prerequisites for finding chiral charge order in other materials. [4pt] [1] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010). [2] J. van Wezel and P. B. Littlewood, Physics 3, 87 (2010). [3] J. van Wezel, arXiv:1106.1930v1 (2011).

  2. Enantioseparation of cetirizine by chromatographic methods and discrimination by 1H-NMR.

    PubMed

    Taha, Elham A; Salama, Nahla N; Wang, Shudong

    2009-03-01

    Cetirizine is an antihistaminic drug used to prevent and treat allergic conditions. It is currently marketed as a racemate. The H1-antagonist activity of cetirizine is primarily due to (R)-levocetirizine. This has led to the introduction of (R)-levocetirizine into clinical practice, and the chiral switching is expected to be more selective and safer. The present work represents three methods for the analysis and chiral discrimination of cetirizine. The first method was based on the enantioseparation of cetirizine on silica gel TLC plates using different chiral selectors as mobile phase additives. The mobile phase enabling successful resolution was acetonitrile-water 17: 3, (v/v) containing 1 mM of chiral selector, namely hydroxypropyl-beta-cyclodextrin, chondroitin sulphate or vancomycin hydrochloride. The second method was a validated high performance liquid chromatography (HPLC), based on stereoselective separation of cetirizine and quantitative determination of its eutomer (R)-levocetirizine on a monolithic C18 column using hydroxypropyl-beta-cyclodextrin as a chiral mobile phase additive. The resolved peaks of (R)-levocetirizine and (S)-dextrocetirizine were confirmed by further mass spectrometry. The third method used a (1)H-NMR technique to characterize cetirizine and (R)-levocetirizine. These methods are selective and accurate, and can be easily applied for chiral discrimination and determination of cetirizine in drug substance and drug product in quality control laboratory. Moreover, chiral purity testing of (R)-levocetirizine can also be monitored by the chromatographic methods. Copyright 2009 John Wiley & Sons, Ltd.

  3. Effects of molecular asymmetry of optically active molecules on the polarization properties of multiply scattered light

    NASA Astrophysics Data System (ADS)

    Vitkin, I. Alex; Laszlo, Richard D.; Whyman, Claire L.

    2002-02-01

    The use of polarized light for investigation of optically turbid systems has generated much recent interest since it has been shown that multiple scattering does not fully scramble the incident polarization states. It is possible under some conditions to measure polarization signals in diffusely scattered light, and use this information to characterize the structure or composition of the turbid medium. Furthermore, the idea of quantitative detection of optically active (chiral) molecules contained in such a system is attractive, particularly in clinical medicine where it may contribute to the development of a non-invasive method of glucose sensing in diabetic patients. This study uses polarization modulation and synchronous detection in the perpendicular and in the exact backscattering orientations to detect scattered light from liquid turbid samples containing varying amounts of L and D (left and right) isomeric forms of a chiral sugar. Polarization preservation increased with chiral concentrations in both orientations. In the perpendicular orientation, the optical rotation of the linearly polarized fraction also increased with the concentration of chiral solute, but in different directions for the two isomeric forms. There was no observed optical rotation in the exact backscattering geometry for either isomer. The presence of the chiral species is thus manifest in both detection directions, but the sense of the chiral asymmetry is not resolvable in retroreflection. The experiments show that useful information may be extracted from turbid chiral samples using polarized light.

  4. Readily Available Chiral Benzimidazoles-Derived Guanidines as Organocatalysts in the Asymmetric α-Amination of 1,3-Dicarbonyl Compounds.

    PubMed

    Benavent, Llorenç; Puccetti, Francesco; Baeza, Alejandro; Gómez-Martínez, Melania

    2017-08-11

    The synthesis and the evaluation as organocatalysts of new chiral guanidines derived from benzimidazoles in the enantioselective α-amination of 1,3-dicarbonyl compounds using di- t -butylazodicarboxylate as aminating agent is herein disclosed. The catalysts are readily synthesized through the reaction of 2-chlorobezimidazole and a chiral amine in moderate-to-good yields. Among all of them, those derived from ( R )-1-phenylethan-1-amine ( 1 ) and ( S )-1-(2-naphthyl)ethan-1-amine ( 3 ) turned out to be the most efficient for such asymmetric transformation, rendering good-to-high yields and moderate-to-good enantioselectivities for the amination products.

  5. All-electrical production of spin-polarized currents in carbon nanotubes: Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Santos, Hernán; Latgé, A.; Alvarellos, J. E.; Chico, Leonor

    2016-04-01

    We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found that different symmetries acting on spatial and spin variables have to be considered in order to explain the relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.

  6. Circularly polarized vacuum field in three-dimensional chiral photonic crystals probed by quantum dot emission

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Ota, Y.; Tajiri, T.; Tatebayashi, J.; Iwamoto, S.; Arakawa, Y.

    2017-11-01

    The modification of a circularly polarized vacuum field in three-dimensional chiral photonic crystals was measured by spontaneous emission from quantum dots in the structures. Due to the circularly polarized eigenmodes along the helical axis in the GaAs-based mirror-asymmetric structures we studied, we observed highly circularly polarized emission from the quantum dots. Both spectroscopic and time-resolved measurements confirmed that the obtained circularly polarized light was influenced by a large difference in the photonic density of states between the orthogonal components of the circular polarization in the vacuum field.

  7. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. © 2016 Wiley Periodicals, Inc.

  8. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  9. Coherence specific signal detection via chiral pump-probe spectroscopy.

    PubMed

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.

  10. Molecular-Level Design of Heterogeneous Chiral Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by formingmore » naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration, and the development of ways to imprint chiral centers on achiral solid surfaces. Chiral catalysis is not only a problem of great importance in its own right, but also the ultimate test of how to control selectivity in catalysis. The time is ripe for fundamental work in heterogeneous chiral catalysis to provide the U.S. with a leadership role in developing the next generation of catalytic processes for medicinal and agrochemical manufacturing. Our team provides the required expertise for a synergistic and comprehensive integration of physical and chemical experimentation with solid state and molecular reactivity theories to solve this problem.« less

  11. Baryon chiral perturbation theory extended beyond the low-energy region.

    PubMed

    Epelbaum, E; Gegelia, J; Meißner, Ulf-G; Yao, De-Liang

    We consider an extension of the one-nucleon sector of baryon chiral perturbation theory beyond the low-energy region. The applicability of this approach for higher energies is restricted to small scattering angles, i.e. the kinematical region, where the quark structure of hadrons cannot be resolved. The main idea is to re-arrange the low-energy effective Lagrangian according to a new power counting and to exploit the freedom of the choice of the renormalization condition for loop diagrams. We generalize the extended on-mass-shell scheme for the one-nucleon sector of baryon chiral perturbation theory by choosing a sliding scale, that is, we expand the physical amplitudes around kinematical points beyond the threshold. This requires the introduction of complex-valued renormalized coupling constants, which can be either extracted from experimental data, or calculated using the renormalization group evolution of coupling constants fixed in threshold region.

  12. dxz/yz subband structure and Chiral Orbital Angular Momentum of Nb doped SrTiO3 surface states

    NASA Astrophysics Data System (ADS)

    Soltani, Shoresh; Cho, Soohyun; Ryu, Hanyoung; Han, Garam; Kim, Timur; Hoesch, Moritz; Kim, Changyoung

    Using angle resolved photoemission spectroscopy (ARPES), we investigate subband structure and chiral orbital angular momentum (OAM) texture on the surface of lightly electron doped SrTiO3 single crystals. Our linearly polarized light ARPES data taken with 51 eV photons, reveal additional subbands for out-of-plane dxz/yzorbitals in addition to the previously reported ones. Our CD-ARPES data reveal a chiral OAM structure which we use as a clue to explain the origin of linear Rashba-like surface band splitting of Ti 3d t2g orbitals. The observed CD signal is enhanced near crossing points, where different orbitals hybridize, compatible with a linear Rashba-like surface band splitting. The work was supported by IBS-R009-G2. S.S., S.C., H.Y. and G. H. acknowledge were supported by Yonsei university, BK21 program.

  13. Electronic structure of the chiral helimagnet and 3d-intercalated transition metal dichalcogenide Cr 1/3NbS 2

    DOE PAGES

    Sirca, N.; Mo, S. -K.; Bondino, F.; ...

    2016-08-18

    The electronic structure of the chiral helimagnet Cr 1/3NbS 2 has been studied with core level and angle-resolved photoemission spectroscopy (ARPES). Intercalated Cr atoms are found to be effective in donating electrons to the NbS 2 layers but also cause significant modifications of the electronic structure of the host NbS 2 material. Specifically, the data provide evidence that a description of the electronic structure of Cr 1/3NbS 2 on the basis of a simple rigid band picture is untenable. The data also reveal substantial inconsistencies with the predictions of standard density functional theory. In conclusion, the relevance of these resultsmore » to the attainment of a correct description of the electronic structure of chiral helimagnets, magnetic thin films/multilayers, and transition metal dichalcogenides intercalated with 3d magnetic elements is discussed.« less

  14. Chiral-phase high-performance liquid chromatography of rotenoid racemates

    USGS Publications Warehouse

    Abidi, S.L.

    1987-01-01

    The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.

  15. Highly efficient chiral resolution of DL-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions.

    PubMed

    Iwama, Sekai; Kuyama, Kazunori; Mori, Yuko; Manoj, Kochunnoonny; Gonnade, Rajesh G; Suzuki, Katsuaki; Hughes, Colan E; Williams, P Andrew; Harris, Kenneth D M; Veesler, Stéphane; Takahashi, Hiroki; Tsue, Hirohito; Tamura, Rui

    2014-08-11

    An excellent chiral symmetry-breaking spontaneous enantiomeric resolution phenomenon, denoted preferential enrichment, was observed on recrystallization of the 1:1 cocrystal of dl-arginine and fumaric acid, which is classified as a racemic compound crystal with a high eutectic ee value (>95 %), under non-equilibrium crystallization conditions. On the basis of temperature-controlled video microscopy and in situ time-resolved solid-state (13) C NMR spectroscopic studies on the crystallization process, a new mechanism of phase transition that can induce preferential enrichment is proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    NASA Astrophysics Data System (ADS)

    Park, Mu-In; Park, Young-Jai; Yoon, Sean J.

    1998-12-01

    We apply an improved version of Batalin-Fradkin-Tyutin Hamiltonian method to the a = 1 chiral Schwinger model, which is much more nontrivial than the a>1 one. Furthermore, through the path integral quantization, we newly resolve the problem of the nontrivial 0954-3899/24/12/002/img6-function as well as that of the unwanted Fourier parameter 0954-3899/24/12/002/img7 in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino term irrelevant to the gauge symmetry as well as the usual WZ action.

  17. Impact of molecular flexibility on binding strength and self-sorting of chiral π-surfaces.

    PubMed

    Safont-Sempere, Marina M; Osswald, Peter; Stolte, Matthias; Grüne, Matthias; Renz, Manuel; Kaupp, Martin; Radacki, Krzysztof; Braunschweig, Holger; Würthner, Frank

    2011-06-22

    In this work, we have explored for the first time the influence of conformational flexibility of π-core on chiral self-sorting properties of perylene bisimides (PBIs) that are currently one of the most prominent classes of functional dyes. For this purpose, two series of chiral macrocyclic PBIs 3a-c and 4a-c comprising oligoethylene glycol bridges of different lengths at the 1,7 bay positions were synthesized and their atropo-enantiomers (P and M enantiomers) were resolved. Single crystal analysis of atropo-enantiomerically pure (P)-3a not only confirmed the structural integrity of the ethylene glycol bridged macrocycle but also illustrated the formation of π-stacked dimers with left-handed supramolecular helicity. Our detailed studies with the series of highly soluble chiral PBIs 4a-c by 1- and 2-D (1)H NMR techniques, and temperature- and concentration-dependent UV/vis absorption and circular dichroism (CD) spectroscopy revealed that in π-π-stacking dimerization of these PBIs chiral self-recognition (i.e., PP and MM homodimer formation) prevails over self-discrimination (i.e., PM heterodimer formation). Our studies clearly showed that with increasing conformational flexibility of PBI cores imparted by longer bridging units, the binding strength for the dimerization process increases, however, the efficiency for chiral self-recognition decreases. These results are rationalized in terms of an induced-fit mechanism facilitating more planarized π-scaffolds of PBIs containing longer bridging units upon π-π-stacking.

  18. Impact of pyrrolidine-bispyrrole DNA minor groove binding agents and chirality on global proteomic profile in Escherichia Coli.

    PubMed

    Yang, Ya-Ting; Lin, Chun-Yu; Jeng, Jingyueh; Ong, Chi-Wi

    2013-05-23

    There is great interest in the design of small molecules that selectively target minor grooves of duplex DNA for controlling specific gene expression implicated in a disease. The design of chiral small molecules for rational drug design has attracted increasing attention due to the chirality of DNA. Yet, there is limited research on the chirality effect of minor groove binders on DNA interaction, especially at the protein expression level. This paper is an attempt to illustrate that DNA binding affinity might not provide a full picture on the biological activities. Drug interacting at the genomic level can be translated to the proteomic level. Here we have illustrated that although the chiral bispyrrole-pyrrolidine-oligoamides, PySSPy and PyRSPy, showed low binding affinity to DNA, their influence at the proteomic level is significant. More importantly, the chirality also plays a role. Two-dimensional proteomic profile to identify the differentially expressed protein in Escherichia coli DH5α (E coli DH5α) were investigated. E coli DH5α incubated with the chiral PySSPy and PyRSPy, diastereomeric at the pyrrolidine ring, showed differential expression of eighteen proteins as observed through two dimensional proteomic profiling. These eighteen proteins identified by MALDI_TOF/TOF MS include antioxidant defense, DNA protection, protein synthesis, chaperone, and stress response proteins. No statistically significant toxicity was observed at the tested drug concentrations as measured via MTT assay. The current results showed that the chiral PySSPy and PyRSPy impact on the proteomic profiling of E coli DH5α, implicating the importance of drug chirality on biological activities at the molecular level.

  19. Enantioselective CE method for pharmacokinetic studies on ibuprofen and its chiral metabolites with reference to genetic polymorphism.

    PubMed

    Główka, Franciszek; Karaźniewicz, Marta

    2007-08-01

    A stereospecific CE method was elaborated for the quantification of ibuprofen enantiomers and their major phase I metabolites: 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen in plasma and urine. Optimal temperature and pH of BGE were established to obtain complete separation of eight ibuprofen chiral compounds and (+)-S indobufen, applied as an internal standard, during one analytical run. After isolation from biological matrices using SPE on an octadecyl stationary phase, the analytes were separated and resolved up to 10 min in a silica capillary filled with BGE, consisting of heptakis 2,3,6-tri-O-methyl-beta-CD in triethanolamine-phosphate buffer, pH 5.0. Complete enantioseparation of the all analytes confirmed specificity of the method. The calibration curves were linear in the range of 0.1-25.0 mg/L for IBP enantiomers and their chiral metabolites in 0.5 mL of plasma and 1.0-200.0 mg/L in 0.05 mL of urine. Following SPE procedure, recovery of the chiral analytes from the two media was in the ranges of 82-87%, 90-95% and 70-76% for ibuprofen, 2'-hydroxy-ibuprofen and 2'-carboxy-ibuprofen enantiomers, respectively. The validated method was successfully applied in pharmacokinetic investigations of IBP enantiomers as well as free chiral metabolites in reference to the genetic polymorphism of CYP450 2C isoenzymes.

  20. DEVELOPMENT OF AN AFFINITY SILICA MONOLITH CONTAINING HUMAN SERUM ALBUMIN FOR CHIRAL SEPARATIONS

    PubMed Central

    Mallik, Rangan; Hage, David S.

    2008-01-01

    An affinity monolith based on silica and containing immobilized human serum albumin (HSA) was developed and evaluated in terms of its binding, efficiency and selectivity in chiral separations. The results were compared with data obtained for the same protein when used as a chiral stationary phase with HPLC-grade silica particles or a monolith based on a copolymer of glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA). The surface coverage of HSA in the silica monolith was similar to values obtained with silica particles and a GMA/EDMA monolith. However, the higher surface area of the silica monolith gave a material that contained 1.3- to 2.2-times more immobilized HSA per unit volume when compared to silica particles or a GMA/EDMA monolith. The retention, efficiency and resolving power of the HSA silica monolith were evaluated using two chiral analytes: D/L-tryptophan and R/S-warfarin. The separation of R- and S-ibuprofen was also considered. The HSA silica monolith gave higher retention and higher or comparable resolution and efficiency when compared with HSA columns that contained silica particles or a GMA/EDMA monolith. The silica monolith also gave lower back pressures and separation impedances than these other materials. It was concluded that silica monoliths can be valuable alternatives to silica particles or GMA/EDMA monoliths when used with immobilized HSA as a chiral stationary phase. PMID:17475436

  1. Chiral lactic hydrazone derivatives as potential bioactive antibacterial agents: Synthesis, spectroscopic, structural and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz

    2017-01-01

    A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.

  2. Computations of the chirality-sensitive effect induced by an antisymmetric indirect spin–spin coupling

    NASA Astrophysics Data System (ADS)

    Garbacz, Piotr

    2018-05-01

    Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.

  3. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  4. Two new isobenzofuranone derivatives from the fruiting bodies of Hericium erinaceus.

    PubMed

    Li, Jing; Wang, Xu-Li; Li, Guang; Xu, Ping-Sheng; Xu, Kang-Ping; Tan, Gui-Shan

    2017-11-01

    Two new isobenzofuranone derivatives erinaceolactones G and H (1 and 2) were isolated from the ethanolic extract of fruiting bodies of Hericium erinaceus. Their structures were characterized on the basis of spectroscopic evidences. Compound 2 was suggested to be racemic by specific rotation, which was resolved by chiral HPLC into enantiomers.

  5. Enantioseparation of angiotensin II receptor type 1 blockers: evaluation of 6-substituted carbamoyl benzimidazoles on immobilized polysaccharide-based chiral stationary phases. Unusual temperature behavior.

    PubMed

    Su, Ran; Hou, Zhun; Sang, Lihong; Zhou, Zhi-Ming; Fang, Hao; Yang, Xinying

    2017-09-15

    Enantioseparation of thirteen 6-substituted carbamoyl benzimidazoles by high-performance liquid chromatography (HPLC) was investigated using two immobilized polysaccharide-based chiral stationary phases (CSPs), Chiralpak IC and Chiralpak IA, in normal-phase mode. Most of the examined compounds were completely resolved. The effects of a polar alcohol modifier, analyte structure, and column temperature on the chiral recognition were investigated. Furthermore, the structure-retention relationship was evaluated, and thermodynamic parameters were calculated from plots of ln k' or ln α versus 1/T. The thermodynamic parameters indicated that the separations were enthalpy-driven. Moreover, nonlinear van't Hoff plots were obtained on Chiralpak IA. However, two unusual phenomena were observed: (1) an unusual increase in retention with increasing temperature with linear van't Hoff plots on Chiralpak IC and (2) an extremely high T iso value (i.e., several thousand degrees centigrade). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy

    DOE PAGES

    Eills, J.; Blanchard, J. W.; Bougas, L.; ...

    2017-10-30

    Here, the weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear-magnetic-resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search formore » PNC in the 13C resonances of small molecules, and use the 1H resonances, which are insensitive to PNC, as an internal reference. We set a constraint on molecular PNC in 13C chemical shifts at a level of 10 –5 ppm, and provide a discussion of important considerations in the search for molecular PNC using NMR spectroscopy.« less

  7. Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eills, J.; Blanchard, J. W.; Bougas, L.

    Here, the weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear-magnetic-resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search formore » PNC in the 13C resonances of small molecules, and use the 1H resonances, which are insensitive to PNC, as an internal reference. We set a constraint on molecular PNC in 13C chemical shifts at a level of 10 –5 ppm, and provide a discussion of important considerations in the search for molecular PNC using NMR spectroscopy.« less

  8. Substituent effects on the enantioselective retention of anti-HIV 5-aryl-delta 2-1,2,4-oxadiazolines on R,R-DACH-DNB chiral stationary phase.

    PubMed

    Altomare, C; Cellamare, S; Carotti, A; Barreca, M L; Chimirri, A; Monforte, A M; Gasparrini, F; Villani, C; Cirilli, M; Mazza, F

    1996-01-01

    A series of racemic 3-phenyl-4-(1-adamantyl)-5-X-phenyl- delta 2-1,2,4-oxadiazo lines (PAdOx) were directly resolved by HPLC using a Pirkle-type stationary phase containing N,N'-(3,5-dinitrobenzoyl)-1(R),2(R)-diaminocyclohexane as chiral selector. The more retained enantiomers have S configuration, as demonstrated by X-ray crystallography and circular dichroism measurements. The influence of aromatic ring substituents on enantioselective retention was quantitatively assessed by traditional linear free energy-related (LFER) equations and comparative molecular field analysis (CoMFA). In good agreement with previous findings, the results from this study indicate that the increase in retention (k') is favoured mainly by the phi-basicity and the hydrophilicity of solute, whereas enantioselectivity (alpha) can be satisfactorily modeled by electronic and bulk parameters or CoMFA descriptors. The LFER equations and CoMFA models gave helpful insights into chiral recognition mechanisms.

  9. Optical properties of two-dimensional charge density wave materials

    NASA Astrophysics Data System (ADS)

    Sayers, Charles; Karbassi, Sara; Friedemann, Sven; da Como, Enrico

    Titanium diselenide (TiSe2) is a member of the layered transition metal dichalcogenide (TMD) materials. It exhibits unusual chiral charge ordering below 190 K after undergoing an initial phase transition to a commensurate (2 x 2 x 2) charge density wave (CDW) at 200 K which is enhanced further in the monolayer. Recently, the first evidence of chirality in a CDW system was discovered in this material by scanning tunneling microscopy and time-resolved reflectivity experiments, where separate left and right handed charge-ordered domains were found to exist within a single sample. We have prepared single crystals of 1T-TiSe2 using iodine vapour transport, and confirmed their quality by x-ray analysis and charge transport measurements. Using a combination of polarised optical spectroscopy techniques in the mid to far infrared (4 to 700 meV photon energy), we have measured an anisotropy relating to the CDW gap. We discuss the results on the basis of chiral domains with different handedness and the nature of the CDW transition.

  10. Universal interaction-driven gap in metallic carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Senger, Mitchell J.; McCulley, Daniel R.; Lotfizadeh, Neda; Deshpande, Vikram V.; Minot, Ethan D.

    2018-02-01

    Suspended metallic carbon nanotubes (m-CNTs) exhibit a remarkably large transport gap that can exceed 100 meV. Both experiment and theory suggest that strong electron-electron interactions play a crucial role in generating this electronic structure. To further understand this strongly interacting system, we have performed electronic measurements of suspended m-CNTs with known diameter and chiral angle. Spectrally resolved photocurrent microscopy was used to determine m-CNT structure. The room-temperature electrical characteristics of 18 individually contacted m-CNTs were compared to their respective diameter and chiral angle. At the charge neutrality point, we observe a peak in m-CNT resistance that scales exponentially with inverse diameter. Using a thermally activated transport model, we estimate that the transport gap is (450 meV nm)/D , where D is CNT diameter. We find no correlation between the gap and the CNT chiral angle. Our results add important constraints to theories attempting to describe the electronic structure of m-CNTs.

  11. Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.

    PubMed

    Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping

    2011-10-01

    The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.

  12. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation

    PubMed Central

    Oh, Sungwhan F.; Pillai, Padmini S.; Recchiuti, Antonio; Yang, Rong; Serhan, Charles N.

    2011-01-01

    E-series resolvins are antiinflammatory and pro-resolving lipid mediators derived from the ω-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) that actively clear inflammation to promote tissue homeostasis. Aspirin, in addition to exerting antithrombotic actions, also triggers the biosynthesis of these specialized pro-resolving mediators. Here, we used metabolomic profiling to investigate the biosynthesis of E-series resolvins with specific chiral chemistry in serum from human subjects and present evidence for new 18S series resolvins. Aspirin increased endogenous formation of 18S-hydroxyeicosapentaenoate (18S-HEPE) compared with 18R-HEPE, a known resolvin precursor. Human recombinant 5-lipoxygenase used both enantiomers as substrates, and recombinant LTA4 hydrolase (LTA4H) converted chiral 5S(6)-epoxide–containing intermediates to resolvin E1 and 18S-resolvin E1 (RvE1 and 18S-RvE1, respectively). 18S-RvE1 bound to the leukocyte GPCRs ChemR23 and BLT1 with increased affinity and potency compared with the R-epimer, but was more rapidly inactivated than RvE1 by dehydrogenase. Like RvE1, 18S-RvE1 enhanced macrophage phagocytosis of zymosan, E. coli, and apoptotic neutrophils and reduced both neutrophil infiltration and proinflammatory cytokines in murine peritonitis. These results demonstrate two parallel stereospecific pathways in the biosynthesis of E-series resolvins, 18R- and 18S-, which are antiinflammatory, pro-resolving, and non-phlogistic and may contribute to the beneficial actions of aspirin and ω-3 polyunsaturated fatty acids. PMID:21206090

  13. What can we Learn on Gas Phase Chiral Compounds by Photoelectron Circular Dichroism ?

    NASA Astrophysics Data System (ADS)

    Nahon, Laurent

    2017-06-01

    Since 15 years, a new type of chiroptical effect has been the subject of a large array of both theoretical and experimental studies: Photoelectron Circular Dichroism (PECD) in the angular distribution of photoelectrons produced by CPL-ionization of pure enantiomers in the gas phase observed as a very intense (up to 35 %) forward/backward asymmetry with respect to the photon axis and which reveals the chirality of the molecule (configuration). PECD happens to be an orbital-specific, photon energy dependent effect and is a very subtle probe of the molecular potential being very sensitive to static molecular structures such as conformers, chemical substitution, clusters, as well as to vibrational motion, much more so than other observables in photoionization such as the cross section or the β asymmetry parameter (for a recent review see L. Nahon, G. A. Garcia, and I. Powis, J. Elec. Spec. Rel. Phen. 204, 322 (2015)). Therefore PECD studies have both a fundamental interest as well and analytical interest, especially since chiral species are ubiquitous in the biosphere, food and medical industry. This last aspect is probably the driving force for the recent extension of PECD studies by the laser community using UV REMPI schemes. After a large introduction to the PECD process itself, and a description of our double imaging electron/ion coincidence set-up, several recent results on one-photon VUV PECD will be presented, including: - Sensitivity to chemical substitutions, isomerism and conformation - Case of floppy biomolecules such as amino acids alanine and proline with a conformer analysis and possible consequences for the origin of life's homochirality - Analytical capabilities in terms of enantiomeric excess determination on a pure molecule as well as on a mixture of compounds. Future trends for PECD studies will be given regarding the case of more complex/structured chiral systems as well as opportunities for time-resolved PECD opened by the recent first performance of PECD with fs HHG pulses and REMPI time-resolved PECD.

  14. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis.

    PubMed

    Fejős, Ida; Varga, Erzsébet; Benkovics, Gábor; Darcsi, András; Malanga, Milo; Fenyvesi, Éva; Sohajda, Tamás; Szente, Lajos; Béni, Szabolcs

    2016-10-07

    The enantioselectivity of neutral single-isomer synthetic precursors of sulfated-β-cyclodextrins was studied. Four neutral single-isomer cyclodextrins substituted on the secondary side with acetyl and/or methyl functional groups, heptakis(2-O-methyl-3,6-dihydroxy)-β-cyclodextrin (HM-β-CD), heptakis(2,3-di-O-acetyl-6-hydroxy)-β-cyclodextrin (HDA-β-CD), heptakis(2,3-di-O-methyl-6-hydroxy)-β-cyclodextrin (HDM-β-CD), heptakis(2-O-methyl-3-O-acetyl-6-hydroxy)-β-cyclodextrin (HMA-β-CD), and their sulfated analogs the negatively charged heptakis(2,3-di-O-methyl-6-sulfato)-β-cyclodextrin (HDMS-β-CD) and heptakis(2,3-di-O-acetyl-6-sulfato)-β-cyclodextrin (HDAS-β-CD) were investigated by non-aqueous capillary electrophoresis in the view of enantiodiscrimination for various drugs and related pharmaceutical compounds. The focus of the present work was on the chiral selectivity studies of the neutral derivatives, which are the synthesis intermediates of the sulfated products. The chiral recognition experiments proved that among the neutral compounds the HMA-β-CD shows remarkable enantioselectivity towards chiral guests in non-aqueous capillary electrophoresis, while HM-β-CD, HDA-β-CD and HDM-β-CD failed to resolve any of the 25 studied racemates under the applied experimental conditions. In order to get deeper insight into the molecular interactions between the studied single-isomer cyclodextrin and chiral fluoroquinolones (ofloxacin, gatifloxacin and lomefloxacin) and β-blockers (propranolol), 1 H and ROESY NMR experiments were performed. The 2-O-methylation in combination with the 3-O-acetylation of the host was evidenced to exclusively carry the essential spatial arrangement for chiral recognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The resolution of acyclic P-stereogenic phosphine oxides via the formation of diastereomeric complexes: A case study on ethyl-(2-methylphenyl)-phenylphosphine oxide.

    PubMed

    Bagi, Péter; Varga, Bence; Szilágyi, András; Karaghiosoff, Konstantin; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2018-04-01

    As an example of acyclic P-chiral phosphine oxides, the resolution of ethyl-(2-methylphenyl)-phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl-(2-methylphenyl)-phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal-forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)-ethyl-(2-methylphenyl)-phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X-ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition. © 2018 Wiley Periodicals, Inc.

  16. Stereochemical investigations of a novel class of chiral phosphapalladacycle complexes derived from 1-[(2,5-dimethyl)phenyl]ethyldiphenylphosphine.

    PubMed

    Ng, Joseph Kok-Peng; Li, Yongxin; Tan, Geok-Kheng; Koh, Lip-Lin; Vittal, Jagadese J; Leung, Pak-Hing

    2005-12-26

    The phosphapalladacycle derived from 1-(2',5'-dimethylphenyl)ethyldiphenylphosphine has been prepared in the optically active and racemic forms. The phosphine was synthesized as a racemate by the treatment of 1-chloro-1-(2',5'-dimethylphenyl)ethane with sodium diphenylphosphide in THF. The racemic phosphapalladacycle was subsequently obtained as the chloro-bridged dimer by the treatment of the phosphine with palladium(II) acetate followed by anion metathesis with lithium chloride. Alternatively, the phosphine could be optically resolved via metal complexation using (R,R)-bis(mu-chloro)bis{1-[1-(N,N-dimethylamino)ethyl]naphthyl-C(2),N}dipalladium(II) as the resolving agent. An efficient separation of the resulting diastereomeric complexes was achieved by silica gel chromatography. The obtained optically resolved diastereomers were next subject to chemoselective removal of the (R)-N,N-(dimethylamino)-1-(1-naphthyl)ethylaminate auxiliary by treatment with concentrated hydrochloric acid. This process yielded the binuclear dimer complexes containing the resolved eta(1)-P ligand. Cyclopalladation of the coordinated phosphine could next be performed by treatment of its eta(1)-P binuclear dimer with silver(I) hexafluorophosphate(V) in a dichloromethane/water mixture followed by treatment with lithium chloride, giving rise to a pair of optically pure enantiomeric dimers with [alpha](D) -322 and +319 degrees in CH(2)Cl(2). Despite the possibilities of the phosphine to attain a five- membered structure by ortho-palladation or a six-membered ring formation by aliphatic C-H bond activation, only the former was observed. X-ray crystallographic data of the meso dimer and an acetylacetonate derivative indicated that the phosphapalladacycle alpha-C methyl substituent was axially located. The 2-D (1)H-(1)H ROESY spectrum of the acetylacetonate derivative further revealed that the phosphapalladacycle was conformationally rigid in CDCl(3).

  17. Sensitive Amino Acid Composition and Chirality Analysis in the Martian Regolith with a Microfabricated in situ Analyzer

    NASA Astrophysics Data System (ADS)

    Skelley, A. M.; Grunthaner, F. J.; Bada, J. L.; Mathies, R. A.

    2003-12-01

    Recent advances in microfabricated "lab-on-a-chip" technologies have dramatically enhanced the capabilities of chemical and biochemical analyzers. The portability and sensitivity of these devices makes them ideal instruments for in situ chemical analysis on other planets. We have focused our initial studies on amino acid analysis because amino acids are more chemically resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker [1]. Previously, we developed a prototype electrophoresis chip, detection system and analysis method where the amino acids were labeled with fluorescein using FITC and then electrophoretically analyzed using g-cyclodextrin as the chiral resolution agent [2]. Extracts of the Murchison meteorite were analyzed, and the D/L ratios determined by microchip CE closely matched those from HPLC and GCMS and exhibited greater precision. Our microchip analyzer has now been further improved by establishing the capability of performing amino acid composition and chirality analyses using fluorescamine rather than FITC [3]. Fluorescamine is advantageous because it reacts more rapidly than FITC, and because excess reagent is hydrolyzed to a non-fluorescent product. Furthermore, the use of fluorescamine facilitates interfacing with the Mars Organic Detector (MOD) [4]. Fluorescamine-amino acids are separated using similar conditions as the FITC-aa, resulting in similar separation times and identical elution orders. Fluorescamine-aa are chirally resolved in the presence of hydroxy-propyl-b-cyclodextrin, and typical limits of detection are ˜ 50 nM. This work establishes the feasibility of combining fluorescamine labeling of amino acids with microfabricated CE devices to develop low-volume, high-sensitivity apparatus for extraterrestrial exploration. The stage is now set for the development of the Mars Organic Analyzer (MOA), a portable analysis system for amino acid extraction and chiral analysis that will combine the capabilities of microchip CE with the previously developed extraction capabilities of MOD [4]. Amino acids are first extracted from soil by sublimation to a cold finger coated with fluorescamine for solid phase labeling. Sample transfer between MOD and the CE device is achieved through a capillary sipper driven by microfabricated valves and pumps [5]. The construction of a portable MOA instrument will facilitate in situ studies of amino acids in Mars analog sites such as the Atacama Desert in Chile. Preliminary chiral analyses of Atacama soil extracts on the microfabricated CE device have shown amino acid detection down to low ppb concentrations. Future field tests in the Atacama Desert will explore the feasibility of the portable CE device for performing in situ amino acid analysis. This work will provide the technology base for the development the Mars Organic Laboratory (MOL), a portable device that will analyze a broad suite of biomolecules, including nucleobases, sugars, and organic acids and bases [6]. [1]J.L. Bada, G.D. McDonald, Icarus 114 (1995) 139. [2]L.D. Hutt, D.P. Glavin, J.L. Bada, R.A. Mathies, Anal. Chem. 71 (1999) 4000. [3]A.M. Skelley, R.A. Mathies, J. Chromatogr. A (2003) in press. [4]G. Kminek, J.L. Bada, O. Botta, D.P. Glavin, F. Grunthaner, Planet. Space Sci. 48 (2000) 1087. [5]W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, R.A. Mathies, Sens. Actuators B 89 (2003) 325. [6]A.M. Skelley, F.J. Grunthaner, J.F. Bada, R.A. Mathies, in SPIE: Proceedings of the In-Situ Instrument Technologies Meeting, Pasadena, CA, 2002.

  18. Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose.

    PubMed

    Trivedi, Rajiv; Rami Reddy, E; Kiran Kumar, Ch; Sridhar, B; Pranay Kumar, K; Srinivasa Rao, M

    2011-07-01

    A simple and efficient synthetic approach toward a series of chiral aryl boronate esters, starting from D-xylose, as anti-microbial agents, is described herein. Minimum inhibitory concentration and zone of inhibition revealed that these derivatives exhibit potent anti-bacterial and anti-fungal properties. Herein, we report the first anti-microbial activity of this class of compounds. All products have been characterized by NMR ((1)H, (13)C and (11)B), IR, elemental and mass spectral study. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Formation of helical organic-inorganic hybrid silica nanotubes using a chiral anionic gelator.

    PubMed

    Wang, Liwen; Wang, Hairui; Li, Yi; Zhuang, Wei; Zhu, Zhaoyong; Chen, Yuanli; Li, Baozong; Yang, Yonggang

    2011-03-01

    Right-handed helical organic-inorganic hybrid silica nanotubes were prepared using a chiral anionic gelator with 3-aminopropyltrimethoxysilane as a co-structure-directing agent and 1,4-bis(triethoxysilyl)benzene, 4,4'-bis(triethoxysilyl)-1,1'-biphenyl, bis(triethoxysilyl)methane, 1,2-bis(triethoxysilyl)ethane, and 1,2-bis(triethoxysilyl)ethene as the precursors. The sol-gel reactions were carried out in a mixture of water and ethanol at the volume ratio of 2.2:1.8. The nanostructures were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). For 4,4'-biphenylene-silica nanotube, the circular dichroism spectrum indicates at least some of the biphenyl rings within the walls stack in chiral form. The TEM images taken after different reaction time reveal a cooperative mechanism. The growth of the organic self-assemblies and the adsorption of the hybrid silica oligomers occurred at the same time.

  20. Digital Isotope Coding to Trace the Growth Process of Individual Single-Walled Carbon Nanotubes.

    PubMed

    Otsuka, Keigo; Yamamoto, Shun; Inoue, Taiki; Koyano, Bunsho; Ukai, Hiroyuki; Yoshikawa, Ryo; Xiang, Rong; Chiashi, Shohei; Maruyama, Shigeo

    2018-04-24

    Single-walled carbon nanotubes (SWCNTs) are attracting increasing attention as an ideal material for high-performance electronics through the preparation of arrays of purely semiconducting SWCNTs. Despite significant progress in the controlled synthesis of SWCNTs, their growth mechanism remains unclear due to difficulties in analyzing the time-resolved growth of individual SWCNTs under practical growth conditions. Here we present a method for tracing the diverse growth profiles of individual SWCNTs by embedding digitally coded isotope labels. Raman mapping showed that, after various incubation times, SWCNTs elongated monotonically until their abrupt termination. Ex situ analysis offered an opportunity to capture rare chirality changes along the SWCNTs, which resulted in sudden acceleration/deceleration of the growth rate. Dependence on growth parameters, such as temperature and carbon concentration, was also traced along individual SWCNTs, which could provide clues to chirality control. Systematic growth studies with a variety of catalysts and conditions, which combine the presented method with other characterization techniques, will lead to further understanding and control of chirality, length, and density of SWCNTs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdaway, David I. H., E-mail: d.holdaway@ucl.ac.uk; Olaya-Castro, Alexandra, E-mail: a.olaya@ucl.ac.uk; Collini, Elisabetta, E-mail: elisabetta.collini@unipd.it

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probemore » spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system.« less

  2. Louis Pasteur, language, and molecular chirality. I. Background and dissymmetry.

    PubMed

    Gal, Joseph

    2011-01-01

    Louis Pasteur resolved sodium ammonium (±)-tartrate in 1848, thereby discovering molecular chirality. Although hindered by the primitive state of organic chemistry, he introduced new terminology and nomenclature for his new science of molecular and crystal chirality. He was well prepared for this task by his rigorous education and innate abilities, and his linguistic achievements eventually earned him membership in the supreme institution for the French language, the Académie française. Dissymmetry had been in use in French from the early 1820s for disruption or absence of symmetry or for dissimilarity or difference in appearance between two objects, and Pasteur initially used it in the latter connotation, without any reference to handedness or enantiomorphism. Soon, however, he adopted it in the meaning of chirality. Asymmetry had been in use in French since 1691 but Pasteur ignored it in favor of dissymmetry. The two terms are not synonymous but it is not clear whether Pasteur recognized this difference in choosing the former over the latter. However, much of the literature mistranslates his dissymmetry as asymmetry. Twenty years before Pasteur the British polymath John Herschel proposed that optical rotation in the noncrystalline state is due to the "unsymmetrical" [his term] nature of the molecules and later used dissymmetrical for handed. Chirality, coined by Lord Kelvin in 1894 and introduced into chemistry by Mislow in 1962, has nearly completely replaced dissymmetry in the meaning of handedness, but the use of dissymmetry continues today in other contexts for lack of symmetry, reduction of symmetry, or dissimilarity. Copyright © 2010 Wiley-Liss, Inc.

  3. Preparation of tritium-labeled optical isomers of amino acids by ligand exchange chromatography on polyacrylamide sorbent containing L-phenylalanine groupings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotarev, Yu.A.; Penkina, V.I.; Dostavalov, I.N.

    Tritium-labeled optically active amino acids are obtained by resolving racemates of the corresponding amino acids by chromatography on a chiral polyacrylamide sorbent, filled with copper ions. The chiral sorbent is obtained by the action of formaldehyde and L-phenylalanine on a Biogel P-4 polyacrylamide gel in an alkaline medium. Data are given on the ligand exchange chromatography of amino acids on this sorbent, depending on the degree of filling of the sorbent by copper ions and the concentration of the eluent. Conditions were selected for the quantitative resolution of racemates of amino acids and examples are given of a preparative obtainingmore » of tritium labeled optical isomers of amino acids.« less

  4. Three-dimensional structural imaging of starch granules by second-harmonic generation circular dichroism.

    PubMed

    Zhuo, G-Y; Lee, H; Hsu, K-J; Huttunen, M J; Kauranen, M; Lin, Y-Y; Chu, S-W

    2014-03-01

    Chirality is one of the most fundamental and essential structural properties of biological molecules. Many important biological molecules including amino acids and polysaccharides are intrinsically chiral. Conventionally, chiral species can be distinguished by interaction with circularly polarized light, and circular dichroism is one of the best-known approaches for chirality detection. As a linear optical process, circular dichroism suffers from very low signal contrast and lack of spatial resolution in the axial direction. It has been demonstrated that by incorporating nonlinear interaction with circularly polarized excitation, second-harmonic generation circular dichroism can provide much higher signal contrast. However, previous circular dichroism and second-harmonic generation circular dichroism studies are mostly limited to probe chiralities at surfaces and interfaces. It is known that second-harmonic generation, as a second-order nonlinear optical effect, provides excellent optical sectioning capability when combined with a laser-scanning microscope. In this work, we combine the axial resolving power of second-harmonic generation and chiral sensitivity of second-harmonic generation circular dichroism to realize three-dimensional chiral detection in biological tissues. Within the point spread function of a tight focus, second-harmonic generation circular dichroism could arise from the macroscopic supramolecular packing as well as the microscopic intramolecular chirality, so our aim is to clarify the origins of second-harmonic generation circular dichroism response in complicated three-dimensional biological systems. The sample we use is starch granules whose second-harmonic generation-active molecules are amylopectin with both microscopic chirality due to its helical structure and macroscopic chirality due to its crystallized packing. We found that in a starch granule, the second-harmonic generation for right-handed circularly polarized excitation is significantly different from second-harmonic generation for left-handed one, offering excellent second-harmonic generation circular dichroism contrast that approaches 100%. In addition, three-dimensional visualization of second-harmonic generation circular dichroism distribution with sub-micrometer spatial resolution is realized. We observed second-harmonic generation circular dichroism sign change across the starch granules, and the result suggests that in thick biological tissue, second-harmonic generation circular dichroism arises from macroscopic molecular packing. Our result provides a new method to visualize the organization of three-dimensional structures of starch granules. The second-harmonic generation circular dichroism imaging method expands the horizon of nonlinear chiroptical studies from simplified surface/solution environments to complicated biological tissues. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  5. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    NASA Astrophysics Data System (ADS)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01492e

  6. Combined use of [TBA][L-ASP] and hydroxypropyl-β-cyclodextrin as selectors for separation of Cinchona alkaloids by capillary electrophoresis.

    PubMed

    Zhang, Yu; Yu, Haixia; Wu, Yujiao; Zhao, Wenyan; Yang, Min; Jing, Huanwang; Chen, Anjia

    2014-10-01

    In this paper, a new capillary electrophoresis (CE) separation and detection method was developed for the chiral separation of the four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) using hydroxypropyl-β-cyclodextrin (HP-β-CD) and chiral ionic liquid ([TBA][L-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, HP-β-CD and chiral ionic liquid concentrations, capillary temperature, and separation voltage were investigated. After optimization of separation conditions, baseline separation of the three analytes (cinchonidine, quinine, cinchonine) was achieved in fewer than 7 min in ammonium acetate background electrolyte (pH 5.0) with the addition of HP-β-CD in a concentration of 40 mM and [TBA][L-ASP] of 14 mM, while the baseline separation of cinchonine and quinidine was not obtained. Therefore, the first-order derivative electropherogram was applied for resolving overlapping peaks. Regression equations revealed a good linear relationship between peak areas in first-order derivative electropherograms and concentrations of the two diastereomer pairs. The results not only indicated that the first-order derivative electropherogram was effective in determination of a low content component and of those not fully separated from adjacent ones, but also showed that the ionic liquid appeared to be a very promising chiral selector in CE. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Expedited Selection of NMR Chiral Solvating Agents for Determination of Enantiopurity

    PubMed Central

    2016-01-01

    The use of NMR chiral solvating agents (CSAs) for the analysis of enantiopurity has been known for decades, but has been supplanted in recent years by chromatographic enantioseparation technology. While chromatographic methods for the analysis of enantiopurity are now commonplace and easy to implement, there are still individual compounds and entire classes of analytes where enantioseparation can prove extremely difficult, notably, compounds that are chiral by virtue of very subtle differences such as isotopic substitution or small differences in alkyl chain length. NMR analysis using CSAs can often be useful for such problems, but the traditional approach to selection of an appropriate CSA and the development of an NMR-based analysis method often involves a trial-and-error approach that can be relatively slow and tedious. In this study we describe a high-throughput experimentation approach to the selection of NMR CSAs that employs automation-enabled screening of prepared libraries of CSAs in a systematic fashion. This approach affords excellent results for a standard set of enantioenriched compounds, providing a valuable comparative data set for the effectiveness of CSAs for different classes of compounds. In addition, the technique has been successfully applied to challenging pharmaceutical development problems that are not amenable to chromatographic solutions. Overall, this methodology provides a rapid and powerful approach for investigating enantiopurity that compliments and augments conventional chromatographic approaches. PMID:27280168

  8. Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions.

    PubMed

    Herrera, Raquel P

    2016-06-01

    The reduction of different carbon-carbon or carbon-heteroatom double bonds is a powerful tool that generates in many cases new stereogenic centers. In the last decade, the organocatalytic version of these transformations has attracted more attention, and remarkable progress has been made in this way. Organocatalysts such as chiral Brønsted acids, thioureas, chiral secondary amines or Lewis bases have been successfully used for this purpose. In this context, this chapter will cover pioneering and seminal examples using Hantzsch dihydropyridines 1 and trichlorosilane 2 as reducing agents. More recent examples will be also cited in order to cover as much as possible the complete research in this field.

  9. Handedness inversion in preparing chiral 4, 4'-biphenylene-silica nanostructures

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wang, Hairui; Wang, Liwen; Zhou, Feng; Chen, Yuanli; Li, Baozong; Yang, Yonggang

    2011-04-01

    An anionic gelator, D-C12ValC10COONa, derived from D-valine can cause physical gels in water and organic solvents. Helical 4, 4'-biphenylene-silica nanotubes and nanoribbons were prepared using it with 3-aminopropyltrimethoxysilane as a co-structure-directing agent and 4, 4'-bis(triethoxysilyl)-1, 1'-biphenyl (BTESB) as precursor. It was found that the handedness of the hybrid silica nanotubes/nanoribbons is sensitive to the pH value and the concentration of the reaction mixtures. However, handedness inversion was not found by changing the reaction temperature. Circular dichroism spectra of the 4, 4'-biphenylene-silica nanotubes indicated that the chirality of the organic self-assemblies were successfully transferred to the twist of the biphenylene rings through the co-structure-directing agent. The handedness of the 4, 4'-biphenylene rings was also tunable by changing the pH value and the concentration of the reaction mixtures. The FESEM images and CD spectra taken after different reaction times indicated that the handedness inversion occurred after adding BTESB.

  10. Covalently functionalized carbon nanostructures and methods for their separation

    DOEpatents

    Wang, YuHuang; Brozena, Alexandra H; Deng, Shunliu; Zhang, Yin

    2015-03-17

    The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.

  11. Selective identification of specialized pro-resolving lipid mediators from their biosynthetic double di-oxygenation isomers.

    PubMed

    Hansen, Trond V; Dalli, Jesmond; Serhan, Charles N

    The n-3 polyunsaturated fatty acids are substrates for lipoxygenases and cyclooxygenases. During inflammatory processes, these enzymes form several distinct families of oxygenated polyunsaturated fatty acids coined specialized pro-resolving lipid mediators. Structural elucidation of these natural products using LC-MS/MS based metabololipidomics with the pico- to nanogram amounts of biosynthetic material available have been performed. The specialized pro-resolving lipid mediators display stereospecific and potent anti-inflammatory and pro-resolving actions. Most often the different families among these mediators are chemically characterized by two or three chiral, secondary alcohols, separated by either an E,E,Z -triene or an E,Z,E,E -tetraenemoiety. The lipoxygenases also form other oxygenated polyunsaturated natural products, coined double di-oxygenation products, that are constitutional isomers of the protectin and maresin families of specialized pro-resolving lipid mediators. Very often these products exhibit similar chromatographic properties and mass spectrometrical fragment ions as the pro-resolving mediators. In addition, the double di-oxygenation products are sometimes formed in larger amounts than the specialized pro-resolving lipid mediators. Thus, it is not always possible to distinguish between the specialized pro-resolving mediators and their double di-oxygenation isomers in biological systems, using LC/MS-based techniques. Herein, a convenient and easy-to-use protocol to meet this challenge is presented.

  12. Stability Indicating HPLC Method for the Determination of Chiral Purity of R-(-)-5-[2-aminopropyl]-2-methoxybenzene Sulfonamide.

    PubMed

    Kasawar, G B; Farooqui, M N

    2009-09-01

    A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 mug/ml, respectively for 20 mul injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide].

  13. Stability Indicating HPLC Method for the Determination of Chiral Purity of R-(-)-5-[2-aminopropyl]-2-methoxybenzene Sulfonamide

    PubMed Central

    Kasawar, G. B.; Farooqui, M. N.

    2009-01-01

    A chiral reverse phase liquid chromatographic method was developed for the enantiomeric resolution of racemic mixture of (-)-5-[2-aminopropyl]-2-methoxybenzene sulfonamide in bulk drug. The enantiomeric separation of sulfonamide was resolved on a Crownpak CR (+) column using perchloric acid buffer of pH 1.0 as mobile phase and with UV detection at 226 nm. The method is validated and proved to be robust. The limit of detection and quantification of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] was found to be 0.084 and 0.159 μg/ml, respectively for 20 μl injection volume. The percentage recovery of S (-)-(5)-[2-aminopropyl]-2-methoxybenzene sulfonamide] ranged from 99.57 to 101.88 in bulk drug samples of R (-)-(5)-[2- aminopropyl]-2-methoxybenzene sulfonamide]. PMID:20502572

  14. Optically active molecular magnets

    NASA Astrophysics Data System (ADS)

    Gruselle, Michel; Malezieux, Bernard; Train, Cyrille; Guyard-Duhayon, Carine; Clement, Rene; Benard, Sophie; Gredin, Patrick; Tonsuaadu, Kaia

    2005-08-01

    We describe the synthesis of two-dimensional {[MnIICrIII(C2O4)3]C} bimetallic networks that include as template cations C stilbazolium salts 4-[4-(N,N-dimethylamino)-α-styryl]-N-alkylpyridinium with alkyl = methyl (DAMS), 4-[4-methoxy- α-styryll-N-isopentylpyridinium (MIPS), and DAZOP, which is a DAMS analogue with the central [C=C] core replaced by an azo N=N] moiety. These networks are obtained in their optically active forms, using the resolved - or Λ- [CrIII(C204)3]3- anionic bricks as chiral-inducing reagents. The UV-visible properties of the networks and their natural circular dichroism (Cotton effects) demonstrate that the MIPS, DAZOP, and DAMS become chiral in [MnIICrIII(C204)3]- anionic matrices. The absolute configurations of the template cations inside the anionic framework depend on the configuration of the starting anionic reagent.

  15. Dissolution of topological Fermi arcs in a dirty Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan

    2017-11-01

    Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.

  16. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    NASA Astrophysics Data System (ADS)

    Tokunaga, S. K.; Hendricks, R. J.; Tarbutt, M. R.; Darquié, B.

    2017-05-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers is measurable. The molecules are produced with a rotational temperature of approximately 6 K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2 μm antisymmetric Re=O stretching mode of MTO with a resolution of 8 MHz and a frequency accuracy of 30 MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state. Our ability to produce dense samples of complex molecules of this type at low temperatures represents a key step towards a precision measurement of parity violation in a chiral species.

  17. A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction

    PubMed Central

    Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong

    2016-01-01

    Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426

  18. Chiral tunneling in gated inversion symmetric Weyl semimetal.

    PubMed

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-02-18

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penning, T.D.

    The enone, 2,2-diemthyl-3a..beta.., 6a..beta..-dihydro-4H-cyclopenta-1,3-dioxol-4-one, has been synthesized in six steps from cyclopentadiene, resolved using sulfoximine chemistry, and converted into (-)-prostaglandin E/sub 2/ methyl ester in three steps. Introduction of the optically pure omega side-chain using a conjugate addition of a stabilized organocopper reagent, followed by direct alkylation of the enolate with the ..cap alpha.. side-chain allylic iodide in the presence of hexamethylphosphoramide, afforded a trans, vicinally disubstituted cyclopentanone. Deprotection of the C-15 alcohol, followed by aluminum amalgam reduction of the C-10/oxygen bond, provided (-)-PGE/sub 2/ methyl ester in 47% overall yield from the enone. In an extension of previously describedmore » work, 2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide, prepared from l-ephedrine and thiophosphoryl chloride, was used to determine the enantiomeric excess of chiral alcohols in conjunction with /sup 31/P NMR. Chiral primary and secondary alcohols added quantitatively to the phospholidine to give diastereomers which could be analyzed by /sup 31/P NMR and HPLC. A number of other phosphorus heterocycles were also explored as potential chiral derivatizing reagents.« less

  20. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    PubMed

    Keiderling, Timothy A

    2017-12-01

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  1. Chiral tunneling in gated inversion symmetric Weyl semimetal

    PubMed Central

    Bai, Chunxu; Yang, Yanling; Chang, Kai

    2016-01-01

    Based on the chirality-resolved transfer-matrix method, we evaluate the chiral transport tunneling through Weyl semimetal multi-barrier structures created by periodic gates. It is shown that, in sharp contrast to the cases of three dimensional normal semimetals, the tunneling coefficient as a function of incident angle shows a strong anisotropic behavior. Importantly, the tunneling coefficients display an interesting periodic oscillation as a function of the crystallographic angle of the structures. With the increasement of the barriers, the tunneling current shows a Fabry-Perot type interferences. For superlattice structures, the fancy miniband effect has been revealed. Our results show that the angular dependence of the first bandgap can be reduced into a Lorentz formula. The disorder suppresses the oscillation of the tunneling conductance, but would not affect its average amplitude. This is in sharp contrast to that in multi-barrier conventional semiconductor structures. Moreover, numerical results for the dependence of the angularly averaged conductance on the incident energy and the structure parameters are presented and contrasted with those in two dimensional relativistic materials. Our work suggests that the gated Weyl semimetal opens a possible new route to access to new type nanoelectronic device. PMID:26888491

  2. Quantitative analysis of three chiral pesticide enantiomers by high-performance column liquid chromatography.

    PubMed

    Wang, Peng; Liu, Donghui; Gu, Xu; Jiang, Shuren; Zhou, Zhiqiang

    2008-01-01

    Methods for the enantiomeric quantitative determination of 3 chiral pesticides, paclobutrazol, myclobutanil, and uniconazole, and their residues in soil and water are reported. An effective chiral high-performance liquid chromatographic (HPLC)-UV method using an amylose-tris(3,5-dimethylphenylcarbamate; AD) column was developed for resolving the enantiomers and quantitative determination. The enantiomers were identified by a circular dichroism detector. Validation involved complete resolution of each of the 2 enantiomers, plus determination of linearity, precision, and limit of detection (LOD). The pesticide enantiomers were isolated by solvent extraction from soil and C18 solid-phase extraction from water. The 2 enantiomers of the 3 pesticides could be completely separated on the AD column using n-hexane isopropanol mobile phase. The linearity and precision results indicated that the method was reliable for the quantitative analysis of the enantiomers. LODs were 0.025, 0.05, and 0.05 mg/kg for each enantiomer of paclobutrazol, myclobutanil, and uniconazole, respectively. Recovery and precision data showed that the pretreatment procedures were satisfactory for enantiomer extraction and cleanup. This method can be used for optical purity determination of technical material and analysis of environmental residues.

  3. Enantioselective inhibition of microbial lipolytic enzymes by nonracemic monocyclic enolphosphonate analogues of cyclophostin.

    PubMed

    Point, Vanessa; Malla, Raj K; Carrière, Frederic; Canaan, Stéphane; Spilling, Christopher D; Cavalier, Jean-François

    2013-06-13

    Four nonracemic enolphosphonate analogues of Cyclophostin were obtained by asymmetric synthesis, and their absolute configurations at both phosphorus and C-5 carbon chiral centers were unambiguously assigned. The influence of chirality was studied by testing the inhibitory effects of these four stereoisomers toward the lipolytic activity of three microbial lipases: Fusarium solani cutinase, Rv0183, and LipY from Mycobacterium tuberculosis . Cutinase was highly diastereoselective for the (Sp) configuration using (Sc) inhibitors, whereas no obvious stereopreference at phosphorus was observed with (Rc) compounds. Conversely, Rv0183 exhibited strong enantioselective discrimination for (Sp) configuration regardless of the chirality at the asymmetric carbon atom. Lastly, LipY discriminated only the unusual diastereoisomeric configuration (Rc, Rp) leading to the most potent inhibitor. This work, which provides a fundamental premise for the understanding of the stereoselective relationships between nonracemic enolphosphonates and their inhibitory activity, also opens new prospects on the design and synthesis of highly specific enantioselective antimicrobial agents.

  4. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels.

    PubMed

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-05-01

    Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca(2+) elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. S-(+) evodiamine was more efficacious and potent than R-(-) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. © 2013 The British Pharmacological Society.

  5. Synthesis and anti-cancer activity of chiral tetrahydropyrazolo[1,5-a]pyridine-fused steroids.

    PubMed

    Lopes, Susana M M; Sousa, Emanuel P; Barreira, Luísa; Marques, Cátia; Rodrigues, Maria João; Pinho E Melo, Teresa M V D

    2017-06-01

    Regio- and stereoselective synthesis of novel chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused steroids via [8π+2π] cycloaddition of diazafulvenium methides with steroidal scaffolds is reported. The biological evaluation of the new family of hexacyclic steroids as anti-cancer agents was also carried out. Hexacyclic steroids bearing a benzyl group at C-22, derived from 16-dehydropregnenolone and 16-dehydroprogesterone, show considerable cytotoxicity against EL4 (murine T-lymphoma) in contrast with the corresponding C-22-unsubstituted derivatives showing low cytotoxicity. Thus, results indicate that the presence of the benzyl group is important to ensure cytotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Synthesis and bio-inspired optimization of drimenal: Discovery of chiral drimane fused oxazinones as promising antifungal and antibacterial candidates.

    PubMed

    Li, Dangdang; Zhang, Shasha; Song, Zehua; Li, Wei; Zhu, Feng; Zhang, Jiwen; Li, Shengkun

    2018-01-01

    The synthesis of antifungal natural product drimenal was accomplished. Bio-inspired optimization protruded chiral 8-(R)-drimane fused oxazinone D as a lead, considering favorable physicochemical profiles for novel pesticides. The improved scalable synthesis of scaffold D was implemented by Hofmann rearrangment under mild conditions. Detailed structural optimization was discussed for both antifungal and antibacterial exploration. Substituted groups (SGs) with C 3 ∼C 5 hydrocarbon chain are recommended for exploration of antifungal agents, while substituents with C 4 ∼C 6 carbon length are preferred for antibacterial ingredients. The chiral drimane fused oxazinone D8 was selected as a promising antifungal candidate against Botrytis cirerea, with an EC 50 value of 1.18 mg/L, with the enhancement of up to >25 folds and >80 folds than the mother compound D, and acyclic counterpart AB5, respectively. The in vivo bioassay confirmed much better preservative effect of D8 than that of Carbendazim. The chiral oxazinone variant D10 possessed prominent antibacterial activity, with MIC values of 8 mg/L against both Bacillus subtilis and Ralstonia solanacearum, showing advantages over the positive control streptomycin sulfate. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Practical Stereochemistry.

    PubMed

    Kellogg, Richard M

    2017-04-18

    The relationship between fundamental and applied is often uneasy, particularly in modern political climates. A familiar political view, aimed negatively at the scientific community, is that the former is a waste of money whereas the latter gives value for investment. The answer that fundamental is required as the basis for practical suffers from the fact that the timelines between fundamental and practical are often long and the routes contorted and unexpected. This has been my experience. In this Account, examples are given from the research in which I have been involved wherein quite fundamental considerations have led to various applications. The longer the time, the clearer and broader the relationship. Fundamental can and does lead to application. They need and depend on each other. I have seen this both from the side of academia and from small companies. In the course of the past 40 plus years, I have been involved in various aspects of stereochemistry and, in particular, chirality. It has been rewarding to see that several of the developments, most originally grounded in fundamental research considerations, have been used in the chemical community and given new dimensions and often practical applications by others. In this Account, a path-not planned deliberately by me-from orbital symmetry and Woodward-Hoffmann rules through crown ethers to conformational analysis to diastereomeric resolutions to deracemizations powered by Ostwald ripening and the Gibbs-Thomson effect to nucleation to helicenes is described. In order of discussion, the orbital symmetry aspects have via an unusual and unpredicted path has resulted in, among other things, a synthesis of hindered alkenes useful for the production of molecular motors. The crown ether aspects led to discovery of the utility of cesium salts particularly for racemization sensitive nucleophilic substitutions. Work on diastereomeric resolutions has concentrated on the mechanistic as well as practical/commercial aspects of the use of multiple resolving agents (Dutch resolution). During this work the complex relationship between nucleation and chirality in diastereomeric resolutions began to reveal itself. In general, nucleation, especially with involvement of chirality, is a topical challenge that has attracted the attention of many groups. The contribution of this knowledge to the development of attrition driven deracemizations of racemizable conglomerates is described. This remarkable technology allows, without intervention of chiral aids, conversion of certain racemates in quantitative yield and absolute enantiomeric excess to a single enantiomer. From a practical standpoint, this methodology has been used for the production in enantiomerically pure form of commercially interesting compounds like naproxen and clopidogrel (Plavix). Finally an STM investigation of the nucleation behavior of a helicene, prepared via a remarkably short and efficient route, on a metal surface is described.

  8. Fast determination of three-dimensional fibril orientation of type-I collagen via macroscopic chirality

    NASA Astrophysics Data System (ADS)

    Zhuo, Guan-Yu; Chen, Mei-Yu; Yeh, Chao-Yuan; Guo, Chin-Lin; Kao, Fu-Jen

    2017-01-01

    Polarization-resolved second harmonic generation (SHG) microscopy is appealing for studying structural proteins and well-organized biophotonic nanostructures, due to its highly sensitized structural specificity. In recent years, it has been used to investigate the chiroptical effect, particularly SHG circular dichroism (SHG-CD) in biological tissues. Although SHG-CD attributed to macromolecular structures has been demonstrated, the corresponding quantitative analysis and interpretation on how SHG correlates with second-order susceptibility χ(2) under circularly polarized excitations remains unclear. In this study, we demonstrate a method based on macroscopic chirality to elucidate the correlation between SHG-CD and the orientation angle of the molecular structure. By exploiting this approach, three-dimensional (3D) molecular orientation of type-I collagen is revealed with only two cross polarized SHG images (i.e., interactions of left and right circular polarizations) without acquiring an image stack of varying polarization.

  9. Functional Characterization of a Novel Marine Microbial GDSL Lipase and Its Utilization in the Resolution of (±)-1-Phenylethanol.

    PubMed

    Deng, Dun; Zhang, Yun; Sun, Aijun; Liang, Jiayuan; Hu, Yunfeng

    2016-04-01

    A novel GDSL lipase (MT6) was cloned from the genome of Marinactinospora thermotolerans SCSIO 00652 identified from the South China Sea. MT6 showed its maximum identity of 59 % with a putative lipase from Nocardiopsis dassonville. MT6 was heterologously expressed in E. coli BL21(DE3) and further functionally characterized. MT6 could efficiently resolve racemic 1-phenylethanol and generate (R)-1-phenylethanol with high enantiomeric excess (99 %) and conversion rate (54 %) through transesterification reactions after process optimization. Our report was the first one report about the utilization of one GDSL lipase in the preparation of chiral chemicals by transesterification reactions, and the optical selectivity of MT6 was interestingly opposite to those of other common lipases. GDSL lipases represented by MT6 possess great potential for the generation of valuable chiral chemicals in industry.

  10. Enantioselective supercritical fluid chromatography-tandem mass spectrometry method for simultaneous estimation of risperidone and its 9-hydroxyl metabolites in rat plasma.

    PubMed

    Prasad, Thatipamula R; Joseph, Siji; Kole, Prashant; Kumar, Anoop; Subramanian, Murali; Rajagopalan, Sudha; Kr, Prabhakar

    2017-11-01

    Objective of the current work was to develop a 'green chemistry' compliant selective and sensitive supercritical fluid chromatography-tandem mass spectrometry method for simultaneous estimation of risperidone (RIS) and its chiral metabolites in rat plasma. Methodology & results: Agilent 1260 Infinity analytical supercritical fluid chromatography system resolved RIS and its chiral metabolites within runtime of 6 min using a gradient chromatography method. Using a simple protein precipitation sample preparation followed by mass spectrometric detection achieved a sensitivity of 0.92 nM (lower limit of quantification). With linearity over four log units (0.91-7500 nM), the method was found to be selective, accurate, precise and robust. The method was validated and was successfully applied for simultaneous estimation of RIS and 9-hydroxyrisperidone metabolites (R & S individually) after intravenous and per oral administration to rats.

  11. From nodal-ring topological superfluids to spiral Majorana modes in cold atomic systems

    NASA Astrophysics Data System (ADS)

    He, Wen-Yu; Xu, Dong-Hui; Zhou, Benjamin T.; Zhou, Qi; Law, K. T.

    2018-04-01

    In this work, we consider a three-dimensional (3D) cubic optical lattice composed of coupled 1D wires with 1D spin-orbit coupling. When the s -wave pairing is induced through Feshbach resonance, the system becomes a topological superfluid with ring nodes, which are the ring nodal degeneracies in the bulk, and supports a large number of surface Majorana zero-energy modes. The large number of surface Majorana modes remain at zero energy even in the presence of disorder due to the protection from a chiral symmetry. When the chiral symmetry is broken, the system becomes a Weyl topological superfluid with Majorana arcs. With 3D spin-orbit coupling, the Weyl superfluid becomes a gapless phase with spiral Majorana modes on the surface. A spatial-resolved radio-frequency spectroscopy is suggested to detect this nodal-ring topological superfluid phase.

  12. Electronic properties of two inequivalent surfaces in MoTe2 studied by quasi-particle interference

    NASA Astrophysics Data System (ADS)

    Iaia, Davide; Shichao, Yan; Madhavan, Vidya

    MoTe2 has received renewed interest due to its topological properties. At a temperature below 250 K, MoTe2 is a type II Weyl semimetal hosting three-dimensional (3D) linearly dispersing states with well defined chirality. Nodes in this 3D dispersion are called Weyl points. Weyl points of opposite chirality are expected to be connected by topologically protected Fermi arcs. In this talk we discuss low temperature scanning tunneling microscopy studies of the electronic structure of MoTe2. The electronic properties are studied using quasi-particle interference technique which allows us to resolve Fermi arcs features and to clearly distinguish between two inequivalent MoTe2 surfaces. Our results provide important contributions to further our understanding of the electronic properties of this new and exotic class of materials. National Science Foundation (NSF).

  13. The Metolachlor Herbicide: An Exercise in Today's Stereochemistry

    ERIC Educational Resources Information Center

    Mannschreck, Albrecht; von Angerer, Erwin

    2009-01-01

    Metolachlor is one of the most widely used agents registered for the protection of many cultivated plants against weeds. Because of axial and central chirality, this molecule forms four stereoisomers, the investigation of which by [superscript 1]H NMR and chromatography is described. It is shown that the isomers do not interconvert at room…

  14. Drug/protein interactions studied by time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gustavsson, Thomas; Markovitsi, Dimitra; Vayá, Ignacio; Bonancía, Paula; Jiménez, M. C.; Miranda, Miguel A.

    2014-09-01

    We report here on a recent time-resolved fluorescence study [1] of the interaction between flurbiprofen (FBP), a chiral non-steroidal anti-inflammatory drug, and human serum albumin (HSA), the main transport protein in the human body. We compare the results obtained for the drug-protein complex with those of various covalently linked flurbiprofentryptophan dyads having well-defined geometries. In all cases stereoselective dynamic fluorescence quenching is observed, varying greatly from one system to another. In addition, the fluorescence anisotropy decays also display a clear stereoselectivity. For the drug-protein complexes, this can be interpreted in terms of the protein microenvironment playing a significant role in the conformational relaxation of FBP, which is more restricted in the case of the (R)- enantiomer.

  15. Chiral 2-Aminobenzimidazole as Bifunctional Catalyst in the Asymmetric Electrophilic Amination of Unprotected 3-Substituted Oxindoles.

    PubMed

    Benavent, Llorenç; Baeza, Alejandro; Freckleton, Megan

    2018-06-06

    The use of readily available chiral trans -cyclohexanediamine-benzimidazole derivatives as bifunctional organocatalysts in the asymmetric electrophilic amination of unprotected 3-substituted oxindoles is presented. Different organocatalysts were evaluated; the most successful one contained a dimethylamino moiety ( 5 ). With this catalyst under optimized conditions, different oxindoles containing a wide variety of substituents at the 3-position were aminated in good yields and with good to excellent enantioselectivities using di- tert -butylazodicarboxylate as the aminating agent. The procedure proved to be also efficient for the amination of 3-substituted benzofuranones, although with moderate results. A bifunctional role of the catalyst, acting as Brønsted base and hydrogen bond donor, is proposed according to the experimental results observed.

  16. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, Uttamkumar; Kirby, Stephen D.; Srinivasan, Prabhavathi

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P{submore » R} and P{sub S} stereoisomers at the P-chiral center. The tabun complex displayed only the P{sub R} stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.« less

  17. Crystal structures of human group-VIIA phospholipase A2 inhibited by organophosphorus nerve agents exhibit non-aged complexes.

    PubMed

    Samanta, Uttamkumar; Kirby, Stephen D; Srinivasan, Prabhavathi; Cerasoli, Douglas M; Bahnson, Brian J

    2009-08-15

    The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P(R) and P(S) stereoisomers at the P-chiral center. The tabun complex displayed only the P(R) stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.

  18. An approach to the determination of the enantiomeric excess at the extreme case by capillary electrophoresis.

    PubMed

    Xiao, Hongting; Fu, Xia; Liang, Shuang; Li, Youxin; Bao, James J; Zhang, Yong

    2015-08-21

    Capillary electrophoresis (CE) has been applied to determine the percentage of enantiomeric excess (ee%) of chiral compounds. In such assays, the quality of chiral selectors (CSs) plays vital roles in resolving the enantiomers for accurate determination of the ee%. Selecting an efficient CS is usually by trial and error, and is, if ever possible, time-consuming and costly. Here we propose a new approach by using the velocity gap mode of CE (VGCE) method, to simplify the method development process for ee% determination. With VGCE, it is still possible to measure ee% even when the CS has a weak resolving power. This is especially important at the extreme cases where one of the enantiomers is significantly higher than the other one. The key point of VGCE in this case is to fractionate the small part of the mixture containing both enantiomers from the major component of the enantiomer, which is already enantiopure. Baseline separations can be achieved between the two enantiomers for the small mixture due to less longitudinal dispersion, making it possible to determine the ee%. The feasibility of this VGCE approach was confirmed by the ee% measurements of amlodipine and ofloxacin, respectively. And the practical application of VGCE was tested by analyzing levamlodipine besylate tablet. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Scope of partial least-squares regression applied to the enantiomeric composition determination of ketoprofen from strongly overlapped chromatographic profiles.

    PubMed

    Padró, Juan M; Osorio-Grisales, Jaiver; Arancibia, Juan A; Olivieri, Alejandro C; Castells, Cecilia B

    2015-07-01

    Valuable quantitative information could be obtained from strongly overlapped chromatographic profiles of two enantiomers by using proper chemometric methods. Complete separation profiles where the peaks are fully resolved are difficult to achieve in chiral separation methods, and this becomes a particularly severe problem in case that the analyst needs to measure the chiral purity, i.e., when one of the enantiomers is present in the sample in very low concentrations. In this report, we explore the scope of a multivariate chemometric technique based on unfolded partial least-squares regression, as a mathematical tool to solve this quite frequent difficulty. This technique was applied to obtain quantitative results from partially overlapped chromatographic profiles of R- and S-ketoprofen, with different values of enantioresolution factors (from 0.81 down to less than 0.2 resolution units), and also at several different S:R enantiomeric ratios. Enantiomeric purity below 1% was determined with excellent precision even from almost completely overlapped signals. All these assays were tested on the most demanding condition, i.e., when the minor peak elutes immediately after the main peak. The results were validated using univariate calibration of completely resolved profiles and the method applied to the determination of enantiomeric purity of commercial pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Preparation and performance characterization of gold nanoparticles modified chiral capillary electrochromatography stationary phase].

    PubMed

    Xiong, Lele; Li, Ruijun; Ji, Yibing

    2017-07-08

    Gold nanoparticles (GNPs, 15 nm) were prepared and introduced to amino groups derived silica monolithic column. Bovine serum albumin (BSA) was immobilized via covalent modification method onto the carboxylic functionalized GNPs to afford chiral stationary phase (CSP) for enantioseparation. GNPs were well dispersed and successfully incorporated onto the columns with the contents as high as 17.18% by characterization method such as transmission electron microscopy (TEM), ultraviolet (UV)-visible absorption spectra and scanning electron microscopy (SEM). The preparation conditions of the BSA modified CSP were optimized and 10% (v/v) 3-aminopropyltriethoxysilane (APTES) and 15 g/L BSA were selected as appropriate reaction conditions. The enantioseparation performance of the BSA modified CSP has been investigated by capillary electrochromatography (CEC). Enantiomers of tryptophan, ephedrine and atenolol were resolved, and the baseline separation of tryptophan was achieved. Meanwhile, the influences of pH value, buffer concentrations and applied voltages used on the chiral separation were studied, and the optimal separation conditions were 10 mmol/L phosphate buffer at pH 7.4 and 15 kV applied voltages. In comparison with the BSA modified CSP prepared by physical adsorption, the CSP prepared by covalent modification method had better separation results, and the analytes could be separated directly without pre-column derivatization. In addition, the prepared BSA modified CSP exhibited good run to run repeatability with relative standard deviations (RSDs) of the migration times and selectivity factors not more than 2.3% and 0.96%, respectively. This work offers a good thinking for modification with other proteins or other types of chiral selectors.

  1. Optimization of a two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFS-MS) system to assess "in-vivo" inter-conversion of chiral drug molecules.

    PubMed

    Goel, Meenakshi; Larson, Eli; Venkatramani, C J; Al-Sayah, Mohammad A

    2018-05-01

    Enantioselective analysis is an essential requirement during the pharmaceutical development of chiral drug molecules. In pre-clinical and clinical studies, the Food and Drug Administration (FDA) mandates the assessment of "in vivo" inter-conversion of chiral drugs to determine their physiological effects. In-vivo analysis of the active pharmaceutical ingredient (API) and its potential metabolites could be quite challenging due to their low abundance (ng/mL levels) and matrix interferences. Therefore, highly selective and sensitive analytical techniques are required to separate the API and its metabolites from the matrix components and one another. Additionally, for chiral APIs, further analytical separation is required to resolve the API and its potential metabolites from their corresponding enantiomers. In this work, we demonstrate the optimization of our previously designed two-dimensional liquid chromatography-supercritical fluid chromatography-mass spectrometry (2D-LC-SFC -MS) system to achieve 10 ng/mL detection limit [1]. The first LC dimension, used as a desalting step, could efficiently separate the API from its potential metabolites and matrix components. The API and its metabolites were then trapped/focused on small trapping columns and transferred onto the second SFC dimension for chiral separation. Detection can be achieved by ultra-violet (UV) or MS detection. Different system parameters such as column dimensions, transfer volumes, trapping column stationary phase, system tubing internal diameter (i.d.), and detection techniques, were optimized to enhance the sensitivity of the 2D-LC-SFC-MS system. The limit of detection was determined to be 10 ng/mL. An application is described where a mouse hepatocyte treated sample was analyzed using the optimized 2D-LC-SFC-MS system with successful assessment of the ratio of API to its metabolite (1D-LC), as well as the corresponding enantiomeric excess values (% e.e.) of each (2D-SFC). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    PubMed

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  3. Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples.

    PubMed

    Creamer, Jessica S; Mora, Maria F; Willis, Peter A

    2017-01-17

    Amino acids are fundamental building blocks of terrestrial life as well as ubiquitous byproducts of abiotic reactions. In order to distinguish between amino acids formed by abiotic versus biotic processes it is possible to use chemical distributions to identify patterns unique to life. This article describes two capillary electrophoresis methods capable of resolving 17 amino acids found in high abundance in both biotic and abiotic samples (seven enantiomer pairs d/l-Ala, -Asp, -Glu, -His, -Leu, -Ser, -Val and the three achiral amino acids Gly, β-Ala, and GABA). To resolve the 13 neutral amino acids one method utilizes a background electrolyte containing γ-cyclodextrin and sodium taurocholate micelles. The acidic amino acid enantiomers were resolved with γ-cyclodextrin alone. These methods allow detection limits down to 5 nM for the neutral amino acids and 500 nM for acidic amino acids and were used to analyze samples collected from Mono Lake with minimal sample preparation.

  4. Synthesis and Utilization of Trialkylammonium-Substituted Cyclodextrins as Water-Soluble Chiral NMR Solvating Agents for Anionic Compounds.

    PubMed

    Dowey, Alison E; Puentes, Cira Mollings; Carey-Hatch, Mira; Sandridge, Keyana L; Krishna, Nikhil B; Wenzel, Thomas J

    2016-04-01

    Cationic trialkylammonium-substituted α-, β-, and γ-cyclodextrins containing trimethyl-, triethyl-, and tri-n-propylammonium substituent groups were synthesized and analyzed for utility as water-soluble chiral nuclear magnetic resonance (NMR) solvating agents. Racemic and enantiomerically pure (3-chloro-2-hydroxypropyl)trimethyl-, triethyl-, and tri-n-propyl ammonium chloride were synthesized from the corresponding trialkyl amine hydrochloride and either racemic or enantiomerically pure epichlorohydrin. The ammonium salts were then reacted with α-, β-, and γ-cyclodextrins at basic pH to provide the corresponding randomly substituted cationic cyclodextrins. The (1) H NMR spectra of a range of anionic, aromatic compounds was recorded with the cationic cyclodextrins. Cyclodextrins with a single stereochemistry at the hydroxy group on the (2-hydroxypropyl)trialkylammonium chloride substituent were often but not always more effective than the corresponding cyclodextrin in which the C-2 position was racemic. In several cases, the larger triethyl or tri-n-propyl derivatives were more effective than the corresponding trimethyl derivative at causing enantiomeric differentiation. None of the cyclodextrin derivatives were consistently the most effective for all of the anionic compounds studied. © 2016 Wiley Periodicals, Inc.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilchen, M.; Hartmann, G.; Rupprecht, P.

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  6. Ferromagnetic Resonance of a Single Magnetochiral Metamolecule of Permalloy

    NASA Astrophysics Data System (ADS)

    Kodama, Toshiyuki; Tomita, Satoshi; Kato, Takeshi; Oshima, Daiki; Iwata, Satoshi; Okamoto, Satoshi; Kikuchi, Nobuaki; Kitakami, Osamu; Hosoito, Nobuyoshi; Yanagi, Hisao

    2016-08-01

    We investigate the ferromagnetic resonance (FMR) of a single chiral structure of a ferromagnetic metal—the magnetochiral (MCh) metamolecule. Using a strain-driven self-coiling technique, micrometer-sized MCh metamolecules of metallic permalloy (Py) are fabricated without any residual Py films. The magnetization curves of ten Py MCh metamolecules obtained by an alternating gradient magnetometer show soft magnetic behavior. In cavity FMR with a magnetic-field sweep and coplanar-waveguide (CPW) FMR with a frequency sweep, the Kittel-mode FMR of the single Py metamolecule is observed. The CPW-FMR results, which are consistent with the cavity-FMR results, bring about the effective g factor, effective magnetization, and Gilbert damping of the single metamolecule. Together with calculations using these parameters, the angle-resolved cavity FMR reveals that the magnetization in the Py MCh metamolecule is most likely to be the hollow-bar type of configuration when the external magnetic field is applied parallel to the chiral axis, although the expected magnetization state at remanence is the corkscrew type of configuration.

  7. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol.

    PubMed

    Gal, J; DeVito, D; Harper, T W

    1981-01-01

    Chiral secondary alcohols were treated with (S)-(-)-1-phenylethyl isocyanate. For each racemic alcohol, the resulting diastereomeric urethane derivatives were resolved on flexible fused-silica capillary GLC columns with retention times of 15 min or less. Derivatization of individual enantiomers showed that the urethane derivatives of (R)-(-)-2-octanol, (R)-(+)-1-phenylethyl alcohol, and (S)-(+)-2,2,2-trifluoro-1-phenylethanol are eluted before the corresponding diastereomers. The procedure is simple and rapid, and is suitable for the determination of the enantiomeric composition of chiral alcohols extracted from biological media. A series of aliphatic alcohols, aryl alkyl carbinols, and arylalkyl alkyl carbinols were resolved with the procedure, and the degree of resolution varied from good to excellent. Eight achiral ketones were incubated, individually, with rabbit-liver 90,000 g supernatant fractions, and the enantiomeric composition of the alcohol metabolites was determined with the GLC procedure. The reductions proceeded with high stereoselectivity to give alcohol products of 90% or greater enantiomeric purity. The reduction of 2-octanone and acetophenone gave predominant alcohols of (S)-configuration, in agreement with the Baumann-Prelog rule. The configuration of the predominant alcohols arising in the reduction of the remainder of the ketones could not be firmly established, but the evidence suggests that they are also of the (S)-configuration. Fluorine or methyl substitution in the ortho position of acetophenone produced an increase in the stereoselectivity, and the alcohol produced from ortho-methylacetophenone was enantiomerically greater than 99% pure.

  8. Separation of enantiomers of new psychoactive substances by high-performance liquid chromatography.

    PubMed

    Kadkhodaei, Kian; Forcher, Lisa; Schmid, Martin G

    2018-03-01

    New psychoactive substances are defined as compounds with consciousness-changing effects and have been developed simultaneously with classical drugs. They arise through structural modifications of illegal substances and are mainly produced to circumvent laws. Availability is simple, since new psychoactive substances can be purchased from the Internet. Among them many chemical drug compound classes are chiral and thus the two resulting enantiomers can differ in their effects. The aim of this study is to develop a suitable chiral high-performance liquid chromatography separation method for a broad spectrum of new psychoactive substances using cellulose tris(3,5-dichlorophenylcarbamate) as a chiral selector. Experiments were performed by high-performance liquid chromatography in normal-phase mode under isocratic conditions using ultraviolet detection. Direct separation was carried out on a high-performance liquid chromatography column (Lux® i-Cellulose-5, 3.5 μm, Phenomenex®), available since 2016. Excellent separation results were obtained for cathinones. After further optimization, even 47 instead of 39 out of 52 cathinones showed baseline separation. For amphetamine derivatives, satisfactory results were not achieved. Further, new psychoactive substances from other compound classes such as benzofuranes, thiophenes, phenidines, phenidates, morpholines, and ketamines were partially resolved, depending on the polarity and degree of substitution. All analytes, which were mainly purchased from the Internet, were proven to be traded as racemates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Library of the Nanoscale Self-Assembly of Amino Acids on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Iski, Erin; Yitamben, Esmeralda; Guisinger, Nathan

    2012-02-01

    The investigation of the hierarchical self-assembly of amino acids on surfaces represents a unique test-bed for the origin of enantio-favoritism in biology and the transmission of chirality from single molecules to complete surface layers. These chiral systems, in particular the assembly of isoleucine and alanine on Cu(111), represent a direct link to the understanding of certain biological processes, specifically the preference for some amino acids to form alpha helices vs. beta-pleated sheets in the secondary structure of proteins. Low temperature, ultra-high vacuum, scanning tunneling microscopy (LT UHV-STM) is used to study the hierarchical self-assembly of different amino acids on a Cu(111) single crystal in an effort to build a library of their two-dimensional structure with molecular-scale resolution for enhanced protein and peptide studies. Both enantiopure and racemic structures are studied in order to elucidate how chirality can affect the self-assembly of the amino acids. In some cases, density functional theory (DFT) models can be used to confirm the experimental structure. The advent of such a library with fully resolved, two-dimensional structures at different molecular coverages would address some of the complex questions surrounding the preferential formation of alpha helices vs. beta-pleated sheets in proteins and lead to a better understanding of the key role played by these amino acids in protein sequencing.

  10. Synthesis of chiral chloroquine and its analogues as antimalarial agents.

    PubMed

    Sinha, Manish; Dola, Vasanth R; Soni, Awakash; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B

    2014-11-01

    In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13 b, S-13c, S-13 d and S-13 i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13 d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The first total synthesis of sporiolide A.

    PubMed

    Du, Yuguo; Chen, Qi; Linhardt, Robert J

    2006-10-27

    The first total synthesis of the natural cytotoxic agent sporiolide A has been accomplished from D-glucal in 16 steps with 6.1% overall yield. Carbohydrates were applied as the chiral templates to manipulate the absolute configuration during the synthesis. Pyridinium chlorochromate (PCC)-promoted transformation of the cyclic enol-ether to lactone, followed by Yamaguchi esterification and intramolecular ring closure metathesis, greatly facilitates synthesis of the target compound.

  12. Molecular Innovations Toward Theranostics of Aggressive Prostate Cancer

    DTIC Science & Technology

    2017-11-01

    the positive control. 3. Proposed biodistribution, pharmacokinetics, and potential cytotoxicity evaluation experiments were accomplished. Task 4...Radiochemistry and in vitro assay of the synthesized theranostic agents (Sun/Hsieh) Task 5: In vivo and PET/CT imaging evaluation of the synthesized...were designed, synthesized and evaluated using a well-validated model ligand (integrin αvβ3 ligand). Our work suggests that the chirality of BFC

  13. Nature's Chiral Catalyst and Anti-Malarial Agent: Isolation and Structure Elucidation of Cinchonine and Quinine from "Cinchona calisaya"

    ERIC Educational Resources Information Center

    Carroll, Anne-Marie; Kavanagh, David J.; McGovern, Fiona P.; Reilly, Joe W.; Walsh, John J.

    2012-01-01

    Nature is a well-recognized source of compounds of interest, but access is often an issue. One pertinent example is the cinchona alkaloids from the bark of "Cinchona calisaya." In this experiment, students at the third-year undergraduate level undertake the selective isolation and characterization of two of the four main alkaloids present in the…

  14. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis.

    PubMed

    Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C; MacMillan, David W C

    2016-02-17

    An asymmetric decarboxylative Csp(3)-Csp(2) cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents.

  15. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  16. Electrical control of flying spin precession in chiral 1D edge states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting

    2013-12-04

    Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.

  17. Time-resolved orbital angular momentum spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyan, Mehmet A.; Kikkawa, James M.

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  18. Chiral plaquette polaron theory of cuprate superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil; Goddard, William A., III

    2007-07-01

    Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a separation distance from (π/a,π/a) given by δQ≈(2π/a)x , where x is the doping. When the perturbed x2-y2 band energy in mean field is included, incommensurability along the Cu-O bond direction is favored. A resistivity ˜Tμ+1 arises when the polaron energy separation density is of the form ˜Δμ due to Coulomb scattering of the x2-y2 band with polarons. A uniform density leads to linear resistivity. The coupling of the x2-y2 band to the undoped Cud9 spins leads to the angle-resolved photoemission pseudogap and its qualitative doping and temperature dependence. The chiral plaquette polaron leads to an explanation of the evolution of the bilayer splitting in Bi-2212.

  19. The First Total Synthesis of Sporiolide A

    PubMed Central

    Chen, Qi; Linhardt, Robert J.

    2014-01-01

    The first total synthesis of the natural cytotoxic agent sporiolide A has been accomplished from D-glucal in 16 steps with 6.1% overall yield. Carbohydrates were applied as the chiral templates to manipulate the absolute configuration during the synthesis. Pyridinium chlorochromate (PCC)-promoted transformation of the cyclic enol-ether to lactone, followed by Yamaguchi esterification and intramolecular ring closure metathesis, greatly facilitates synthesis of the target compound. PMID:17064018

  20. Enantioselective Decarboxylative Arylation of α-Amino Acids via the Merger of Photoredox and Nickel Catalysis

    PubMed Central

    Zuo, Zhiwei; Cong, Huan; Li, Wei; Choi, Junwon; Fu, Gregory C.; MacMillan, David W. C.

    2016-01-01

    An asymmetric decarboxylative Csp3–Csp2 cross-coupling has been achieved via the synergistic merger of photoredox and nickel catalysis. This mild, operationally simple protocol transforms a wide variety of naturally abundant α-amino acids and readily available aryl halides into valuable chiral benzylic amines in high enantiomeric excess, thereby producing motifs found in pharmacologically active agents. PMID:26849354

  1. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon-counting acquisition) or a 2-D space (for contrast agents using energy resolved photon-counting acquisition and all materials using dual-kVp acquisition) as a measure of the degree of separation. Compared to dual-kVp techniques, an energy resolved detector provided a larger separation and the ability to separate different target materials using measurements acquired in different energy window pairs with a single x-ray exposure. Conclusions: We concluded that x-ray CT with an energy resolved photon-counting detector with more than two energy windows allows the separation of more than two types of materials, e.g., soft-tissue-like, bone-like, and one or more materials with K-edges in the energy range of interest. Separating material types using energy resolved photon-counting detectors has a number of advantages over dual-kVp CT in terms of the degree of separation and the number of materials that can be separated simultaneously.« less

  2. Regioisomeric and enantiomeric analyses of 24 designer cathinones and phenethylamines using ultra high performance liquid chromatography and capillary electrophoresis with added cyclodextrins.

    PubMed

    Li, Li; Lurie, Ira S

    2015-09-01

    DESIGNER: phenethylamines (PEAs) and cathinones have been encountered worldwide. Complete characterization of these substances can be challenging due to their chirality and variably substituted phenyl rings. In this study, 24 PEAs and cathinones were analyzed by ultra high performance liquid chromatography with photo diode array detection (UHPLC-PDA) on a variety of stationary phases, and by capillary electrophoresis on a dynamically coated capillary with PDA detection (CE-PDA). In the UHPLC-PDA study, a BEH Phenyl column resolved 18 of the 24 regioisomers in 8min, with good discrimination of the PEAs. In contrast, capillary zone electrophoresis (CZE) on a dynamically coated capillary partially or baseline resolved only 10 of the 24 regioisomers, but with improved discrimination of mono-substituted cathinones. A second series of CE-PDA experiments using 80mM (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) in the run buffer resolved all 24 regioisomers and all but two sets of enantiomers within 18min. Five illicit samples were successfully analyzed using the described methods. Published by Elsevier Ireland Ltd.

  3. Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a.

    PubMed

    Srivatsan, Avinash; Pera, Paula; Joshi, Penny; Wang, Yanfang; Missert, Joseph R; Tracy, Erin C; Tabaczynski, Walter A; Yao, Rutao; Sajjad, Munawwar; Baumann, Heinz; Pandey, Ravindra K

    2015-07-01

    We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thusmore » permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.« less

  5. Conflict resolution in multi-agent hybrid systems

    DOT National Transportation Integrated Search

    1996-12-01

    A conflict resolution architecture for multi-agent hybrid systems with emphasis on Air Traffic Management Systems (ATMS) is presented. In such systems, conflicts arise in the form of potential collisions which are resolved locally by inter-agent coor...

  6. Functional Characterization of a Robust Marine Microbial Esterase and Its Utilization in the Stereo-Selective Preparation of Ethyl (S)-3-Hydroxybutyrate.

    PubMed

    Wang, Yilong; Zhang, Yun; Hu, Yunfeng

    2016-11-01

    One novel microbial esterase PHE21 was cloned from the genome of Pseudomonas oryzihabitans HUP022 identified from the deep sea of the Western Pacific. PHE21 was heterologously expressed and functionally characterized to be a robust esterase which behaved high resistance to various metal ions, organic solvents, surfactants, and NaCl. Despite the fact that the two enantiomers of ethyl 3-hydroxybutyrate were hard to be enzymatically resolved before, we successfully resolved racemic ethyl 3-hydroxybutyrate through direct hydrolysis reactions and generated chiral ethyl (S)-3-hydroxybutyrate using esterase PHE21. After process optimization, the enantiomeric excess, the conversion rate, and the yield of desired product ethyl (S)-3-hydroxybutyrate could reach 99, 65, and 87 %, respectively. PHE21 is a novel marine microbial esterase with great potential in asymmetric synthesis as well as in other industries.

  7. Theory of tunneling spectroscopy for chiral topological superconductors

    NASA Astrophysics Data System (ADS)

    Ii, Akihiro; Yamakage, Ai; Yada, Keiji; Sato, Masatoshi; Tanaka, Yukio

    2012-11-01

    We study the charge conductance of an interface between a normal metal and a superconducting quantum anomalous Hall system, based on the recursive Green's function. The angle-resolved conductance γ(ky,eV) with momentum ky parallel to the interface and bias voltage V shows a rich structure depending on the Chern number N of the system. We find that when the bias voltage is tuned to the energy dispersion of the edge mode, eV=Eedge(ky), the angle-resolved conductance γ(ky,Eedge(ky)) shows a pronounced even-odd effect; the conductance vanishes for N=0 or 2, while it takes the universal value 2e2/h for N=1. In particular, in the N=2 phase, we find that the conductance γ(ky,Eedge(ky)) becomes 0 due to the interference of two degenerate Majorana edge modes, although the corresponding surface spectral weight remains nonzero.

  8. Photoelectron diffraction and holography: Some new directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadley, C.S.

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less

  9. Differential field responses of the little fire ant, Wasmannia auropunctata (Roger), to alarm pheromone enantiomers.

    PubMed

    Yu, Yang; Jang, Eric B; Siderhurst, Matthew S

    2014-12-01

    The little fire ant, Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae), is an invasive ant with negative impacts on both biodiversity and agriculture throughout the tropics and subtropics. Field experiments were conducted in order to elucidate the relative attractiveness of the enantiomers of the alarm pheromones, 2,5-dimethyl-3-(2-methylbutyl)pyrazine and 3-methyl-2-(2-methylbutyl)pyrazine. The enantiomers tested were synthesized from commercially available (S)-2-methylbutan-1-ol or kinetically resolved (R)-2-methylbutan-1-ol, prepared using Pseudomonas cepacia lipase (PCL). Bioassays conducted in a macadamia orchard on the island of Hawaii demonstrated that W. auropunctata were preferentially attracted to the (S)-enantiomers of both alkyl pyrazines over the racemic mixtures in all experiments. To our knowledge, this is the first instance of differential attraction of ants to the enantiomers of chiral pyrazine pheromones despite many examples of these compounds in the literature. In addition, using a chiral column it was determined that (S)-2,5-dimethyl-3-(2-methylbutyl)pyrazine and (S)-3-methyl-2-(2-methylbutyl)pyrazine are the only enantiomers produced by W. auropunctata.

  10. Emitter-site-selective photoelectron circular dichroism of trifluoromethyloxirane

    DOE PAGES

    Ilchen, M.; Hartmann, G.; Rupprecht, P.; ...

    2017-05-30

    The angle-resolved inner-shell photoionization of R-trifluoromethyloxirane, C 3H 3F 3O, is studied experimentally and theoretically. Thereby, we investigate the photoelectron circular dichroism (PECD) for nearly symmetric O 1s and F 1s electronic orbitals, which are localized on different molecular sites. The respective dichroic β 1 and angular distribution β 2 parameters are measured at the photoelectron kinetic energies from 1 to 16 eV by using variably polarized synchrotron radiation and velocity map imaging spectroscopy. The present experimental results are in good agreement with the outcome of ab initio electronic structure calculations. We report a sizable chiral asymmetry β 1 ofmore » up to about 9% for the K -shell photoionization of oxygen atom. For the individual fluorine atoms, the present calculations predict asymmetries of similar size. However, being averaged over all fluorine atoms, it drops down to about 2%, as also observed in the present experiment. Our study demonstrates a strong emitter and site sensitivity of PECD in the one-photon inner-shell ionization of this chiral molecule.« less

  11. Separation of drug stereoisomers by the formation of. beta. -cyclodextrin inclusion complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, D.W.; Ward, T.J.; Armstrong, R.D.

    For many drugs, only racemic mixtures are available for clinical use. Because different stereoisomers of drugs often cause different physiological responses, the use of pure isomers could elicit more exact therapeutic effects. Differential complexation of a variety of drug stereoisomers by immobilized ..beta..-cyclodextrin was investigated. Chiral recognition and racemic resolution were observed with a number of compounds from such clinically useful classes as ..beta..-blockers, calcium-channel blockers, sedative hypnotics, antihistamines, anticonvulsants, diuretics, and synthetic opiates. Separation of the diastereomers of the cardioactive and antimalarial cinchona alkaloids and of two antiestrogens was demonstrated as well. Three dimensional projections of ..beta..-cyclodextrin complexes ofmore » propanol, which is resolved by this technique, and warfarin, which is not, are compared. These studies have improved the understanding and application of the chiral interactions of ..beta..-cyclodextrin, and they have demonstrated a means to measure optical purity and to isolate or produce pure enantiomers of drugs. In addition, this highly specific technique could also be used in the pharmacological evaluation of enantiometric drugs. 27 references, 3 figures, 2 tables.« less

  12. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; Liu, Zhiqi; Bauer, E. D.; Betts, J. B.; Migliori, A.; Thompson, J. D.; Janoschek, M.; Maiorov, B.

    2018-03-01

    We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

  13. Weak coupling limit of F-theory models with MSSM spectrum and massless U(1)'s

    NASA Astrophysics Data System (ADS)

    Mayorga Peña, Damián Kaloni; Valandro, Roberto

    2018-03-01

    We consider the Sen limit of several global F-theory compactifications, some of which exhibit an MSSM-like spectrum. We show that these indeed have a consistent limit where they can be viewed as resulting from an intersecting brane configuration in type IIB. We discuss the match of the fluxes and the chiral spectrum in detail. We find that some D5-tadpole canceling gauge fluxes do not lift to harmonic vertical four-form fluxes in the resolved F-theory manifold. We discuss the connection between splitting of curves at weak coupling and remnant discrete symmetries.

  14. Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi

    DOE PAGES

    Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; ...

    2018-03-26

    In this paper, we investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Finally, our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.

  15. Spatially resolving density-dependent screening around a single charged atom in graphene

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.

    2017-05-01

    Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.

  16. Structure and Dynamics of Individual Diastereomeric Complexes on Platinum: Surface Studies Related to Heterogeneous Enantioselective Catalysis.

    PubMed

    Dong, Yi; Goubert, Guillaume; Groves, Michael N; Lemay, Jean-Christian; Hammer, Bjørk; McBreen, Peter H

    2017-05-16

    The modification of heterogeneous catalysts through the chemisorption of chiral molecules is a method to create catalytic sites for enantioselective surface reactions. The chiral molecule is called a chiral modifier by analogy to the terms chiral auxiliary or chiral ligand used in homogeneous asymmetric catalysis. While there has been progress in understanding how chirality transfer occurs, the intrinsic difficulties in determining enantioselective reaction mechanisms are compounded by the multisite nature of heterogeneous catalysts and by the challenges facing stereospecific surface analysis. However, molecular descriptions have now emerged that are sufficiently detailed to herald rapid advances in the area. The driving force for the development of heterogeneous enantioselective catalysts stems, at the minimum, from the practical advantages they might offer over their homogeneous counterparts in terms of process scalability and catalyst reusability. The broader rewards from their study lie in the insights gained on factors controlling selectivity in heterogeneous catalysis. Reactions on surfaces to produce a desired enantiomer in high excess are particularly challenging since at room temperature, barrier differences as low as ∼2 kcal/mol between pathways to R and S products are sufficient to yield an enantiomeric ratio (er) of 90:10. Such small energy differences are comparable to weak interadsorbate interaction energies and are much smaller than chemisorption or even most physisorption energies. In this Account, we describe combined experimental and theoretical surface studies of individual diastereomeric complexes formed between chiral modifiers and prochiral reactants on the Pt(111) surface. Our work is inspired by the catalysis literature on the enantioselective hydrogenation of activated ketones on cinchona-modified Pt catalysts. Using scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations, we probe the structures and relative abundances of non-covalently bonded complexes formed between three representative prochiral molecules and (R)-(+)-1-(1-naphthyl)ethylamine ((R)-NEA). All three prochiral molecules, 2,2,2-trifluoroacetophenone (TFAP), ketopantolactone (KPL), and methyl 3,3,3-trifluoropyruvate (MTFP), are found to form multiple complexation configurations around the ethylamine group of chemisorbed (R)-NEA. The principal intermolecular interaction is NH···O H-bonding. In each case, submolecularly resolved STM images permit the determination of the prochiral ratio (pr), pro-R to pro-S, proper to specific locations around the ethylamine group. The overall pr observed in experiments on large ensembles of KPL-(R)-NEA complexes is close to the er reported in the literature for the hydrogenation of KPL to pantolactone on (R)-NEA-modified Pt catalysts at 1 bar H 2 . The results of independent DFT and STM studies are merged to determine the geometries of the most abundant complexation configurations. The structures reveal the hierarchy of chemisorption and sometimes multiple H-bonding interactions operating in complexes. In particular, privileged complexes formed by KPL and MTFP reveal the participation of secondary CH···O interactions in stereocontrol. State-specific STM measurements on individual TFAP-(R)-NEA complexes show that complexation states interconvert through processes including prochiral inversion. The state-specific information on structure, prochirality, dynamics, and energy barriers delivered by the combination of DFT and STM provides insight on how to design better chiral modifiers.

  17. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    PubMed

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  18. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality

    PubMed Central

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-01-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction–mediated chirality induction and the intrinsic stereogenic center–controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, (S)-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction–mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly. PMID:29119137

  19. Application of antibody-mediated extraction for the stereoselective determination of the active metabolite of loxoprofen in human and rat plasma.

    PubMed

    Takasaki, W; Tanaka, Y

    1992-01-01

    Antibody-mediated extraction followed by chiral high-performance liquid chromatography (HPLC) was applied to stereoselective determination in human and rat plasma of the active metabolite [(2S,1'R,2'S)-trans-alcohol] with three chiral centers of Loxoprofen, a 2-arylpropionic acid antiinflammatory agent after oral administration. Antiserum against the (1'R,2'S)-cyclopentanol moiety was obtained from a rabbit immunized with bovine serum albumin conjugate linked to the propionic acid moiety, in which another chiral center is located. Then, the immunoglobulin G purified by a protein A column was coupled to BrCN-activated Sepharose 4B. Plasma samples were applied to the immobilized antibody column. After washing the column to remove unrequired stereoisomers, a mixture of two diastereomers whose configurations were 1'R,2'S in the cyclopentanol moiety was extracted with 95% methanol. The solvent was evaporated and the residue was derivatized with (+)-(R)-1-(1-naphthyl)ethylamine as a chiral reagent to separate the diastereomers by HPLC. This combined analytical method showed the stereoselective metabolism of Loxoprofen in human, that is, 64% of the total amount of four trans-alcohol stereoisomers was in the 2S,1'R,2'S form, which is the active metabolite. This phenomenon was also observed in rats given Loxoprofen and its (2S)- and (2R)-isomers, and is explained by stereoselective ketone reduction of Loxoprofen to the (1'R,2'S)-trans-alcohol and inversion from 2R to 2S in the propionic acid moiety. Antibody-mediated extraction should be a selective and simple clean-up method for determining haptens with complicated structures, combined with an appropriate analytical method.

  20. Chiral Platinum(II) Complexes Featuring Phosphine and Chloroquine Ligands as Cytotoxic and Monofunctional DNA-Binding Agents.

    PubMed

    Villarreal, Wilmer; Colina-Vegas, Legna; Rodrigues de Oliveira, Clayton; Tenorio, Juan C; Ellena, Javier; Gozzo, Fábio C; Cominetti, Marcia Regina; Ferreira, Antonio G; Ferreira, Marco Antonio Barbosa; Navarro, Maribel; Batista, Alzir A

    2015-12-21

    Chiral molecules in nature are involved in many biological events; their selectivity and specificity make them of great interest for understanding the behavior of bioactive molecules, by providing information about the chiral discrimination. Inspired by these conformational properties, we present the design and synthesis of novel chiral platinum(II) complexes featuring phosphine and chloroquine ligands with the general formula [PtCl(P)2(CQ)]PF6 (where (P)2 = triphenylphosphine (PPh3) (5), 1,3-bis(diphenylphosphine)propane (dppp) (6), 1,4-bis(diphenylphosphine)butane (dppb) (7), 1,1'-bis(diphenylphosphine)ferrocene (dppf) (8), and CQ = chloroquine] and their precursors of the type [PtCl2(P)2] are described. The complexes were characterized by elemental analysis, absorption spectroscopy in the infrared and ultraviolet-visible (UV-vis) regions, multinuclear ((1)H, (13)C, (31)P, (15)N, and (195)Pt) NMR spectroscopy, cyclic voltammetry, and mass spectrometry (in the case of chloroquine complexes). The interactions of the new platinum-chloroquine complexes with both albumin (BSA), using fluorescence spectroscopy, and DNA, by four widely reported methods were also evaluated. These experiments showed that these Pt-CQ complexes interact strongly with DNA and have high affinities for BSA, in contrast to CQ and CQDP (chloroquine diphosphate), which interact weakly with these biomolecules. Additional assays were performed in order to investigate the cytotoxicity of the platinum complexes against two healthy cell lines (mouse fibroblasts (L929) and the Chinese hamster lung (V79-4)) and four tumor cell lines (human breast (MDA-MB-231 and MCF-7), human lung (A549), and human prostate (DU-145)). The results suggest that the Pt-CQ complexes are generally more cytotoxic than the free CQ, showing that they are promising as anticancer drugs.

  1. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    DTIC Science & Technology

    2006-08-01

    aryl iodide to the Grignard reagent . Treatment of the magnesium compound with allyl bromide and CuCN·2LiCl afforded benzoate 4-11, which was then...cyclization of a linear peptide by conventional coupling agents to form a new amide bond (Scheme 1-12)36,44 Some common reagents are...dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), and expensive reagents such as HATU or PyBroP, which are more efficient.44 Racemization of the chiral

  2. Chiral Separation of G-type Chemical Warfare Nerve Agents via Analytical Seupercritical Fluid Chromatography

    DTIC Science & Technology

    2014-01-01

    UNCLASSIFIED b . ABSTRACT UNCLASSIFIED c. THIS PAGE UNCLASSIFIED UNLIMITED 8 19b. TELEPHONE NUMBER (include area code) 410-436-4412 Standard Form 298...plates (N), retention fac- tor ( k ), separation factor (α), and resolution (RS). 16 Parameters were used to verify both the enantioselectivity and the...time, tR, was determined by averaging the time to peak max- ima from subsequent injections. Calculation of k was carried out using the following

  3. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    PubMed

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  4. Electric line source illumination of a chiral cylinder placed in another chiral background medium

    NASA Astrophysics Data System (ADS)

    Aslam, M.; Saleem, A.; Awan, Z. A.

    2018-05-01

    An electric line source illumination of a chiral cylinder embedded in a chiral background medium is considered. The field expressions inside and outside of a chiral cylinder have been derived using the wave field decomposition approach. The effects of various chiral cylinders, chiral background media and source locations upon the scattering gain pattern have been investigated. It is observed that the chiral background reduces the backward scattering gain as compared to the free space background for a dielectric cylinder. It is also studied that by moving a line source away from a cylinder reduces the backward scattering gain for a chiral cylinder placed in a chiral background under some specific conditions. A unique phenomenon of reduced scattering gain has been observed at a specific observation angle for a chiral cylinder placed in a chiral background having an electric line source location of unity free space wavelength. An isotropic scattering gain pattern is observed for a chiral nihility background provided that if cylinder is chiral or chiral nihility type. It is also observed that this isotropic behaviour is independent of background and cylinder chirality.

  5. Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

    PubMed Central

    Akinkunmi, Ezekiel; Ojo, Isaac; Adebajo, Clement; Isabirye, David

    2017-01-01

    Enantiomerically enriched coordination compounds of aspartic acid and racemic mixtures of coordination compounds of glycine metal-ligand ratio 1 : 3 were synthesized and characterized using infrared and UV-Vis spectrophotometric techniques and magnetic susceptibility measurements. Five of the complexes were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride as resolving agents. The antimicrobial and cytotoxic activities of these complexes were then determined. The results obtained indicated that aspartic acid and glycine coordinated in a bidentate fashion. The enantiomeric purity of the compounds was in the range of 22.10–32.10%, with (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex as the more efficient resolving agent. The resolved complexes exhibited better activity in some cases compared to the parent complexes for both biological activities. It was therefore inferred that although the increase in the lipophilicity of the complexes may assist in the permeability of the complexes through the cell membrane of the pathogens, the enantiomeric purity of the complexes is also of importance in their activity as antimicrobial and cytotoxic agents. PMID:28293149

  6. Resolving the Magnetic Asymmetry of the Inner Space in Self-assembled Dimeric Capsules Based on Tetraurea-calix[4]pyrrole Components.

    PubMed

    Espelt, Mónica; Aragay, Gemma; Ballester, Pablo

    2015-01-01

    The encapsulation of N,N, N',N'-tetramethyl-1,5-pentanediamine-N,N'-dioxide 2 in a non-chiral capsular assembly formed by dimerization of tetraurea-calix[4]pyrrole 1a produced the observation of the N-methyl groups of the encapsulated guest as two separated singlets resonating highly upfield in the (1)H NMR spectrum. In order to clarify the origin of the observed signal splitting we assembled and studied a series of structurally related dimeric capsules. We used the tetraurea-calix[4]pyrrole 1a , the enantiomerically pure tetraurea-calix[4] pyrrole R-1b and the tetraurea-bisloop calix[4]pyrrole 1c as components of the produced assemblies. The (1)H NMR spectra of the assembled encapsulation complexes with bis-N-oxide 2 evidenced diverse splitting patterns of the N-methyl groups. In addition, 2D EXSY/ROESY NMR experiments revealed the existence of chemical exchange processes involving the separated methyl signals of the encapsulated guest. The capsular assemblies were mainly stabilized by a belt of eight head-to-tail hydrogen-bonded urea groups. The interconversion between the two senses of rotation of the unidirectionally oriented urea groups was slow on the (1)H NMR timescale. These characteristics determined the appearance of a new asymmetry element (supramolecular conformational chirality) in the assemblies that accounted for some of the magnetic asymmetries featured by the capsule's inner space. The racemization of the supramolecular chirality element was fast on the EXSY timescale and produced the chemical exchange processes detected for the encapsulation complexes.

  7. Circular spectropolarimetric sensing of chiral photosystems in decaying leaves

    NASA Astrophysics Data System (ADS)

    Patty, C. H. Lucas; Visser, Luuk J. J.; Ariese, Freek; Buma, Wybren Jan; Sparks, William B.; van Spanning, Rob J. M.; Röling, Wilfred F. M.; Snik, Frans

    2017-03-01

    Circular polarization spectroscopy has proven to be an indispensable tool in photosynthesis research and (bio)molecular research in general. Oxygenic photosystems typically display an asymmetric Cotton effect around the chlorophyll absorbance maximum with a signal ≤ 1 % . In vegetation, these signals are the direct result of the chirality of the supramolecular aggregates. The circular polarization is thus directly influenced by the composition and architecture of the photosynthetic macrodomains, and is thereby linked to photosynthetic functioning. Although ordinarily measured only on a molecular level, we have developed a new spectropolarimetric instrument, TreePol, that allows for both laboratory and in-the-field measurements. Through spectral multiplexing, TreePol is capable of fast measurements with a sensitivity of ∼ 1 *10-4 and is therefore suitable of non-destructively probing the molecular architecture of whole plant leaves. We have measured the chiroptical evolution of Hedera helix leaves for a period of 22 days. Spectrally resolved circular polarization measurements (450-900 nm) on whole leaves in transmission exhibit a strong decrease in the polarization signal over time after plucking, which we accredit to the deterioration of chiral macro-aggregates. Chlorophyll a levels measured over the same period by means of UV-vis absorption and fluorescence spectroscopy showed a much smaller decrease. With these results we are able to distinguish healthy from deteriorating leaves. Hereby we indicate the potency of circular polarization spectroscopy on whole and intact leaves as a nondestructive tool for structural and plant stress assessment. Additionally, we underline the establishment of circular polarization signals as remotely accessible means of detecting the presence of extraterrestrial life.

  8. Enhancing and reducing chirality by opposite circularly-polarized light irradiation on crystalline chiral domains consisting of nonchiral photoresponsive W-shaped liquid crystal molecules.

    PubMed

    Choi, Suk-Won; Takezoe, Hideo

    2016-09-28

    We found possible chirality enhancement and reduction in chiral domains formed by photoresponsive W-shaped molecules by irradiation with circularly polarized light (CPL). The W-shaped molecules exhibit a unique smectic phase with spontaneously segregated chiral domains, although the molecules are nonchiral. The chirality control was generated in the crystalline phase, which shows chiral segregation as in the upper smectic phase, and the result appeared to be as follows: for a certain chiral domain, right-CPL stimuli enhanced the chirality, while left-CPL stimuli reduced the chirality, and vice versa for another chiral domain. Interestingly, no domain-size change could be observed after CPL irradiation, suggesting some changes in the causes of chirality. In this way, the present system can recognize the handedness of the applied chiral stimuli. In other words, the present material can be used as a sensitive chiral-stimuli-recognizing material and should find invaluable applications, including in chiroptical switches, sensors, and memories as well as in chiral recognition.

  9. Aptamer-Encoded Nanopore for Ultrasensitive Detection of Bioterrorist Agent Ricin at Single-Molecule Resolution

    PubMed Central

    Gu, Li-Qun; Ding, Shu; Gao, Changlu

    2011-01-01

    The molecular-scale pore structure, called nanopore, can be formed from protein ion channels by genetic engineering or fabricated on solid substrates using fashion nanotechnology. Target molecules in interaction with the functionalized lumen of nanopore, can produce characteristic changes in the pore conductance, which act as fingerprints, allowing us to identify single molecules and simultaneously quantify each target species in the mixture. Nanopore sensors have been created for tremendous biomedical detections, with targets ranging from metal ions, drug compounds and cellular second messengers, to proteins and DNAs. Here we will review our recent discoveries with a lab-in-hand glass nanopore: single-molecule discrimination of chiral enantiomers with a trapped cyclodextrin, and sensing of bioterrorist agent ricin. PMID:19964179

  10. Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    PubMed Central

    Luo, Chaosheng; Wang, Zhen; Huang, Yong

    2015-01-01

    Enantioselective α-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular α-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an α-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2+1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using α-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development. PMID:26644194

  11. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA

    NASA Astrophysics Data System (ADS)

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-01

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.

  12. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    PubMed

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chiral signs of TPPS co-assemblies with chiral gelators: role of molecular and supramolecular chirality.

    PubMed

    Wang, Qiuling; Zhang, Li; Yang, Dong; Li, Tiesheng; Liu, Minghua

    2016-10-13

    A dianionic tetrakis(4-sulfonatophenyl)porphyrin (TPPS) self-assembled into J-aggregates when it co-assembled with a chiral cationic amphiphile via supramolecular gelation. The chiral signs of TPPS J aggregates followed the supramolecular chirality of amphiphilic assemblies rather than the molecular chirality of the amphiphile.

  14. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  15. Can Moral Hazard Be Resolved by Common-Knowledge in S4n-Knowledge?

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Takashi

    This article investigates the relationship between common-knowledge and agreement in multi-agent system, and to apply the agreement result by common-knowledge to the principal-agent model under non-partition information. We treat the two problems: (1) how we capture the fact that the agents agree on an event or they get consensus on it from epistemic point of view, and (2) how the agreement theorem will be able to make progress to settle a moral hazard problem in the principal-agents model under non-partition information. We shall propose a solution program for the moral hazard in the principal-agents model under non-partition information by common-knowledge. Let us start that the agents have the knowledge structure induced from a reflexive and transitive relation associated with the multi-modal logic S4n. Each agent obtains the membership value of an event under his/her private information, so he/she considers the event as fuzzy set. Specifically consider the situation that the agents commonly know all membership values of the other agents. In this circumstance we shall show the agreement theorem that consensus on the membership values among all agents can still be guaranteed. Furthermore, under certain assumptions we shall show that the moral hazard can be resolved in the principal-agent model when all the expected marginal costs are common-knowledge among the principal and agents.

  16. Association of two single-isomer anionic CD in NACE for the chiral and achiral separation of fenbendazole, its sulphoxide and sulphone metabolites: application to their determination after in vitro metabolism.

    PubMed

    Rousseau, Anne; Gillotin, Florian; Chiap, Patrice; Crommen, Jacques; Fillet, Marianne; Servais, Anne-Catherine

    2010-05-01

    A NACE method was developed for the separation of fenbendazole (FBZ), a prochiral drug giving rise to chiral (oxfendazole or OFZ) and nonchiral (FBZ sulphone or FBZSO(2)) metabolites. First, the effect of the nature and the concentration of CD as well as that of the acidic BGE on the enantiomeric separation of OFZ were studied. OFZ enantiomers were completely resolved using a BGE made up of 10 mM ammonium formate and 0.5 M TFA in methanol containing 10 mM heptakis(2,3-di-O-acetyl-6-O-sulfo)-beta-CD and 10 mM heptakis(2,3-di-O-methyl-6-O-sulfo)-beta-CD. Moreover, the NACE method was found to be particularly well suited to the simultaneous determination of FBZ, OFZ enantiomers, and FBZSO(2). Thiabendazole was selected as an internal standard. The CD-NACE potential was then evaluated for in vitro metabolism studies using FBZ as a model case. The OFZ enantiomers and FBZSO(2) could be detected after incubation of FBZ in the phenobarbital-induced male rat liver microsomes systems.

  17. Chiral discrimination in cyclodextrin complexes of amino acid derivatives: beta-cyclodextrin/N-acetyl-L-phenylalanine and N-acetyl-D-phenylalanine complexes.

    PubMed

    Alexander, Jennifer M; Clark, Joanna L; Brett, Tom J; Stezowski, John J

    2002-04-16

    In a systematic study of molecular recognition of amino acid derivatives in solid-state beta-cyclodextrin (beta-CD) complexes, we have determined crystal structures for complexes of beta-cyclodextrin/N-acetyl-L-phenylalanine at 298 and 20 K and for N-acetyl-D-phenylalanine at 298 K. The crystal structures for the N-acetyl-L-phenylalanine complex present disordered inclusion complexes for which the distribution of guest molecules at room temperature is not resolvable; however, they can be located with considerable confidence at low temperature. In contrast, the complex with N-acetyl-D-phenylalanine is well ordered at room temperature. The latter complex presents an example of a complex in this series in which a water molecule is included deeply in the hydrophobic torus of the extended dimer host. In an effort to understand the mechanisms of molecular recognition giving rise to the dramatic differences in crystallographic order in these crystal structures, we have examined the intermolecular interactions in detail and have examined insertion of the enantiomer of the D-complex into the chiral beta-CD complex crystal lattice.

  18. Smart skin spiral antenna with chiral absorber

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.

  19. Superstructures at Te/Au(111) interface evolving upon increasing Te coverage

    NASA Astrophysics Data System (ADS)

    Guan, Jiaqi; Huang, Xiaochun; Xu, Xiaofeng; Zhang, Shuyuan; Jia, Xun; Zhu, Xuetao; Wang, Weihua; Guo, Jiandong

    2018-03-01

    By in-situ low temperature scanning tunneling microscopy, we systematically investigated the superstructure evolution at Te/Au(111) interface upon increasing Te coverage. Te atoms form one-dimensional √{ 3} R30∘ chains at ∼0.10 monolayer (ML) coverage. Two two-dimensional chiral superstructures, (√{ 111} ×√{ 111}) R 4 .7∘ and (3√{ 21} × 3√{ 21}) R 10 .9∘ , are selectively formed with the Te coverage below and above 1/3 ML, respectively. The two chiral superstructures can be converted to each other reversibly by adding Te atoms or moderately annealing. A honeycomb-like superstructure, decorated with adatoms that are distributed in quasi-one-dimensional chains, is observed by further increasing the Te coverage to 4/9 ML. At the Te/Au(111) interface, an interfacial state at -0.65 eV to -0.55 eV below the Fermi level is also resolved by scanning tunneling spectroscopy. The formation of these Te-induced high-order superstructures is accompanied by relaxation of gold atoms in the surface layer, indicating a strong Te-Au interaction. Our work demonstrates a reliable method to fabricate Te nanostructures on noble metals in a controlled way.

  20. Theory of Microwave 5-WAVE Mixing of Chiral Molecules

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin

    2016-06-01

    Microwave three-wave mixing spectroscopy produces a Free Induction Decay Field that is proportional to the enantiomeric excess ( ee ) of a sample of chiral molecules. However, since there is an unavoidable loss of measured signal strength due to dephasing of the molecular emission, it is not possible to quantitate this ee unless one has an enantiomeric pure sample of the same molecule with which to compare the amplitude of the signal of a sample of unknown ee. In this talk, I will demonstrate that it is in principle possible to use a 5 wave mixing experiment, based upon AC Stark shifts produced by nearly resonant fields, to produce a differential splitting of a transition such that one has frequency resolved peaks for the two enantiomers. The peaks corresponding to the two enantiomers can be switched by phase cycling of the fields. This method is promising to allow the quantitative measurement of molecular ee's by microwave spectroscopy. There are experimental issues that make such an experiment difficult. It will likely be required to use of skimmed molecular beam (which will substantially reduce the number of molecular emitters and thus signal level) in order to reduce the field amplitude and phase inhomogeneity of the excited molecules.

  1. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  2. Polarization- and wavelength-resolved near-field imaging of complex plasmonic modes in Archimedean nanospirals

    DOE PAGES

    Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.; ...

    2018-02-15

    Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.

  3. Polarization- and wavelength-resolved near-field imaging of complex plasmonic modes in Archimedean nanospirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachtel, Jordan A.; Davidson, II, Roderick B.; Kovalik, Elena R.

    Asymmetric nanophotonic structures enable a wide range of opportunities in optical nanotechnology because they support efficient optical nonlinearities mediated by multiple plasmon resonances over a broad spectral range. The Archimedean nanospiral is a canonical example of a chiral plasmonic structure because it supports even-order nonlinearities that are not generally accessible in locally symmetric geometries. However, the complex spiral response makes nanoscale experimental characterization of the plasmonic near-field structure highly desirable. As a result, we employ high-efficiency, high-spatial-resolution cathodoluminescence imaging in a scanning transmission electron microscope to describe the spatial, spectral, and polarization response of plasmon modes in the nanospiral geometry.

  4. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  5. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE PAGES

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...

    2017-05-24

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  6. Fingerprints of entangled spin and orbital physics in itinerant ferromagnets via angle-resolved resonant photoemission

    NASA Astrophysics Data System (ADS)

    Da Pieve, F.

    2016-01-01

    A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.

  7. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  8. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.

    PubMed

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M

    2017-05-31

    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  9. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    PubMed Central

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  10. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory.

    PubMed

    Maeda, Katsuhiro; Hirose, Daisuke; Okoshi, Natsuki; Shimomura, Kouhei; Wada, Yuya; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji

    2018-03-07

    We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.

  11. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    PubMed

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    PubMed

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Chiral Magnetic Effect in Condensed Matters

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in the 3D Dirac and Weyl semimetals having a linear dispersion relation. Recently, the chiral magnetic effect was discovered in a 3D Dirac semimetal - zirconium pentatelluride, ZrTe5, in which a large negative magnetoresistance is observed when magnetic field is parallel with the current. It is now reported in more than a dozen Dirac and Weyl semimetals. Broadly speaking, the chiral magnetic effect can exist in a variety of condensed matters. In some cases, a material may be transformed into a Weyl semimetal by magnetic field, exhibiting the chiral magnetic effect. In other cases, the chiral magnetic current may be generated in magnetic Dirac semimetals without external magnetic field, or in asymmetric Weyl semimetals without electric field where only a magnetic field and the source of chiral quasipartiles would be necessary. In the limit of conserved quasiparticle chirality, charge transport by the chiral magnetic current is non-dissipative. The powerful notion of chirality, originally discovered in high-energy and nuclear physics, holds promise in new ways of transmitting and processing information and energy. At the same time, chiral materials have opened a fascinating possibility to study the quantum dynamics of relativistic field theory in condensed matter experiments.

  14. Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?

    ERIC Educational Resources Information Center

    LeMarechal, Jean Francois

    2008-01-01

    Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)

  15. Meta-Chirality: Fundamentals, Construction and Applications

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang

    2017-01-01

    Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560

  16. Emergence of chirality in hexagonally packed monolayers of hexapentyloxytriphenylene on Au(111): a joint experimental and theoretical study.

    PubMed

    Sleczkowski, Piotr; Katsonis, Nathalie; Kapitanchuk, Oleksiy; Marchenko, Alexandr; Mathevet, Fabrice; Croset, Bernard; Lacaze, Emmanuelle

    2014-11-11

    We investigate the expression of chirality in a monolayer formed spontaneously by 2,3,6,7,10,11-pentyloxytriphenylene (H5T) on Au(111). We resolve its interface morphology by combining scanning tunneling microscopy (STM) with theoretical calculations of intermolecular and interfacial interaction potentials. We observe two commensurate structures. While both of them belong to a hexagonal space group, analogical to the triangular symmetry of the molecule and the hexagonal symmetry of the substrate surface, they surprisingly reveal a 2D chiral character. The corresponding breaking of symmetry arises for two reasons. First it is due to the establishment of a large molecular density on the substrate, which leads to a rotation of the molecules with respect to the molecular network crystallographic axes to avoid steric repulsion between neighboring alkoxy chains. Second it is due to the molecule-substrate interactions, leading to commensurable large crystallographic cells associated with the large size of the molecule. As a consequence, molecular networks disoriented with respect to the high symmetry directions of the substrate are induced. The high simplicity of the intermolecular and molecule-substrate van der Waals interactions leading to these observations suggests a generic character for this kind of symmetry breaking. We demonstrate that, for similar molecular densities, only two kinds of molecular networks are stabilized by the molecule-substrate interactions. The most stable network favors the interfacial interactions between terminal alkoxy tails and Au(111). The metastable one favors a specific orientation of the triphenylene core with its symmetry axes collinear to the Au⟨110⟩. This specific orientation of the triphenylene cores with respect to Au(111) appears associated with an energy advantage larger by at least 0.26 eV with respect to the disoriented core.

  17. ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type

    NASA Astrophysics Data System (ADS)

    Baret, P.; Beaujolais, V.; Bougault, C.; Gaude, D.; Pierre, J.-L.

    1998-01-01

    ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type are described. The study of the gallium complex emphasizes: (i) that the inversion of the octahedral center is not observed and: (ii) the absence of exchange between free ligand and complex, at room temperature. In the case of the iron complex, assignments of the hyperfine shifted resolved resonances are achieved, based on temperature-behavior studies, which evidence the D3 symmetry of the complex. These assignments are in complete agreement with measured T1 values and proton-to-iron distances obtained from molecular modelling. Les complexes du gallium (III) et du fer (III) d'un ligand macrobicyclique chiral impliquant trois sous-unités de type binaphtol sont étudiés en RMN du proton en solution méthanolique. L'étude du complexe (diamagnétique) du gallium permet de montrer que le complexe : (i) ne subit pas d'inversion de la configuration (Δ/Λ) du site octaédrique et : (ii) qu'il n'y a pas d'échange entre ligand libre et complexe à la température ambiante. L'évolution du spectre du complexe paramagnétique du fer avec la température permet une attribution des protons du ligand et met en évidence la symétrie D3 du complexe. Une bonne corrélation est obtenue entre la distance fer-proton (donnée par la modélisation moléculaire) et le T1 du proton considéré.

  18. Micro-Detection System for Determination of the Biotic or Abiotic Origin of Amino Acids

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.

    2003-01-01

    The research carried out under this PIDDP involves the development of a breadboard version of a spacecraft-based system for the detection of amino acid chirality (molecular handedness) on solar system bodies. Chirality provides an unambiguous way of distinguishing between abiotic and biotic origins since only one mirror-image form is used in the functional molecules of life. Recent advances in a variety of nano-fabrication technologies have resulted in concepts for enabling miniaturized chemical and biological analytical systems. These are complete application-specific systems that integrate fluid micro handling systems for extracting and reacting target molecules, micro-separation technologies for enhanced sensitivity and resolution, and advanced detection technologies. This effort makes use of a relatively new technology that shows demonstrated promise for spacecraft-based amino acid analysis: microchip-based capillary electrophoresis (muCE). The muCE system is capable of analyzing the type of amino acids present as well as the relative amounts of their mirror image forms. The system we developed will be able to chirally resolve all of the major amino acids found in extraterrestrial material (Gly, Ala, Val, Pro, Asp, Glu, a-aminoisobutyric acid, and isovaline) at sub-part-per-billion levels. The _CE analysis requires that the amino acids be extracted from the sample and derivatized for either optical or electrochemical detection. In our implementation, the amino acids are released from the sample by sublimation and prepared for muCE analysis using a microfluidic circuit. In addition, we have investigated the use of a microfluidic circuit for the release of amino acids from samples in which sublimation has proven to be problematic.

  19. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    PubMed Central

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-01-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a ‘right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas ‘left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a ‘mother' subunit nanoparticle spawns a slightly tilted, consequential ‘daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures. PMID:28406143

  20. Chirality Differentiation by Diffusion in Chiral Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Jiang, Jinghua; Yang, Deng-Ke

    2017-01-01

    Chirality is of great importance in the living world. It helps differentiate biochemical reactions such as those that take place during digestion. It may also help differentiate physical processes such as diffusion. Aiming to study the latter effect, we investigate the diffusion of guest chiral molecules in chiral nematic (cholesteric) liquid-crystal hosts. We discover that the diffusion dramatically depends on the handedness of the guest and host molecules and the chiral differentiation is greatly enhanced by the proper alignment of the liquid-crystal host. The diffusion of a guest chiral molecule in a chiral host with the same handedness is much faster than in a chiral host with opposite handedness. We also observe that the differentiation of chirality depends on the diffusion direction with respect to the twisting direction (helical axis). These results might be important in understanding effects of chirality on physical processes that take place in biological organisms. In addition, this effect could be utilized for enantiomer separation.

  1. Implications of Chirality of Drugs and Excipients in Physical Pharmacy.

    NASA Astrophysics Data System (ADS)

    Duddu, Sarma P.

    1993-01-01

    The interactions of enantiomers of a chiral drug with other chemical entities, which may lead to changes and stereoselective differences in the physicochemical properties of the drug, were investigated. The various interactions described below employed ephedrine, pseudoephedrine and some of their salts, and to a minor extent, propranolol hydrochloride. The interaction of ephedrinium or pseudoephedrinium with the achiral anion, salicylate, yielded crystalline salts with the notable exception of homochiral ephedrine. Racemic ephedrinium salicylate exists as a centrosymmetric crystal (P2_1/n) whereas racemic pseudoephedrinium salicylate is a mixture of homochiral crystals (P2 _1). The inability of ephedrinium to exist as a homochiral salicylate salt is attributed to a high energy conformation of the ephedrinium cation, following conformational analysis. Arising from conformationally favorable interactions, the crystallization of racemic ephedrinium salicylate from aqueous solutions was utilized to improve the enantiomeric purity of a partially resolved mixture of ephedrine from 60% to 82% in one crystallization step. Interaction of the opposite enantiomers of ephedrine and pseudoephedrine in the solid, liquid, solution and vapor state produced the respective racemic compounds. The formation of racemic ephedrine in the solid state as predominantly second order (k = 392 mol^{-1} hr^{-1}), probably mediated by the vapor phase. The formation of racemic pseudoephedrine was predominantly diffusion-controlled in the solid state via an intermediate non-crystalline phase. The interaction with traces of the opposite enantiomer during crystallization of (RS)-(-)-ephedrinium 2-naphthalenesulfonate and (SS)-(+)-pseudoephedrinium salicylate changed pharmaceutically important solid state properties, including dissolution rate. Uptake of the enantiomeric impurity was measured by a new, sensitive HPLC method. The enantiomeric impurity, at mole fractions <= 0.0027 greatly increased the lattice disorder, i.e. entropy, measured calorimetrically. The release of propranolol hydrochloride from a sustained-release matrix containing HPMC and racemic propranolol hydrochloride was stereoselective, though variable, suggesting a differential interaction of the two enantiomers with the hydrated chiral matrix. Thus, the interaction of a chiral drug with other chemical entities leads to significant, interpretable changes in the physicochemical properties of the drug, which may have important implications in the design and development of reliable and effective solid dosage forms.

  2. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    PubMed

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  3. Cell chirality: its origin and roles in left–right asymmetric development

    PubMed Central

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  4. Cell chirality: its origin and roles in left-right asymmetric development.

    PubMed

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  5. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  6. Silver Films with Hierarchical Chirality.

    PubMed

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Switching chiral solitons for algebraic operation of topological quaternary digits

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hwan; Cheon, Sangmo; Yeom, Han Woong

    2017-02-01

    Chiral objects can be found throughout nature; in condensed matter chiral objects are often excited states protected by a system's topology. The use of chiral topological excitations to carry information has been demonstrated, where the information is robust against external perturbations. For instance, reading, writing, and transfer of binary information have been demonstrated with chiral topological excitations in magnetic systems, skyrmions, for spintronic devices. The next step is logic or algebraic operations of such topological bits. Here, we show experimentally the switching between chiral topological excitations or chiral solitons of different chirality in a one-dimensional electronic system with Z4 topological symmetry. We found that a fast-moving achiral soliton merges with chiral solitons to switch their handedness. This can lead to the realization of algebraic operation of Z4 topological charges. Chiral solitons could be a platform for storage and operation of robust topological multi-digit information.

  8. Chirality-controlled crystallization via screw dislocations.

    PubMed

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  9. Influence of Chirality in Ordered Block Copolymer Phases

    NASA Astrophysics Data System (ADS)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  10. Enzymatic synthesis of chiral amino‐alcohols by coupling transketolase and transaminase‐catalyzed reactions in a cascading continuous‐flow microreactor system

    PubMed Central

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P. C.; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C.; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank

    2017-01-01

    Abstract Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml−1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml−1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes. PMID:28986983

  11. Generating carbyne equivalents with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhaofeng; Herraiz, Ana G.; Del Hoyo, Ana M.; Suero, Marcos G.

    2018-02-01

    Carbon has the unique ability to bind four atoms and form stable tetravalent structures that are prevalent in nature. The lack of one or two valences leads to a set of species—carbocations, carbanions, radicals and carbenes—that is fundamental to our understanding of chemical reactivity. In contrast, the carbyne—a monovalent carbon with three non-bonded electrons—is a relatively unexplored reactive intermediate; the design of reactions involving a carbyne is limited by challenges associated with controlling its extreme reactivity and the lack of efficient sources. Given the innate ability of carbynes to form three new covalent bonds sequentially, we anticipated that a catalytic method of generating carbynes or related stabilized species would allow what we term an ‘assembly point’ disconnection approach for the construction of chiral centres. Here we describe a catalytic strategy that generates diazomethyl radicals as direct equivalents of carbyne species using visible-light photoredox catalysis. The ability of these carbyne equivalents to induce site-selective carbon-hydrogen bond cleavage in aromatic rings enables a useful diazomethylation reaction, which underpins sequencing control for the late-stage assembly-point functionalization of medically relevant agents. Our strategy provides an efficient route to libraries of potentially bioactive molecules through the installation of tailored chiral centres at carbon-hydrogen bonds, while complementing current translational late-stage functionalization processes. Furthermore, we exploit the dual radical and carbene character of the generated carbyne equivalent in the direct transformation of abundant chemical feedstocks into valuable chiral molecules.

  12. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies

    NASA Astrophysics Data System (ADS)

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-01

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter ET(30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λemmax) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems.

  13. Chiral alkylated-aniline as a noninvasive fluorescence sensor: Spectroscopic and molecular modeling studies.

    PubMed

    Sengupta, Bidisha; Mukherjee, Chirantan Sen; Chakraborty, Sandipan; Muhammad, Maria Jones; Gladney, William; Armstrong, George

    2017-12-05

    Aniline, heterocyclic aromatic amines, and arylamines are known carcinogens. Recently aniline mustard has come into prominence as a novel anticancer agent. In this project, microwave irradiation has been used to synthesize an optically active alkylated aniline namely 2,6-dimethyl-4-(1-(p-tolyl)ethyl)aniline (abbreviated DMPA). The presence of quartet and doublet peaks in NMR and a single chromatogram in HPLC verified that the final product DMPA, prepared from the synthesis reactions, had no major impurities. By using a Lux chiral column in HPLC, two peaks have been detected in the chromatogram, which correspond to two enantiomers of the chiral aniline derivative. Fluorescence spectroscopic measurements on DMPA indicated conspicuous dependence of its emission behavior on the polarity (in terms of the empirical polarity parameter E T (30)) of the homogeneous solvents used, a property important for an optical sensor. The nature of the emission profiles, along with the relevant parameter namely wavelength at emission maximum (λ em max ) is used to infer the distribution, binding and microenvironment of the DMPA molecules in human serum albumin protein (HSA). DMPA is weakly fluorescent in aqueous buffer medium, with a dramatic enhancement in the fluorescence emission in the presence of HSA. Molecular modeling studies have been carried out on the two enantiomers (R and S) of DMPA with HSA. The implications of these findings are examined in relation to the potentialities of DMPA as a novel fluorescence sensor for biological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preparative enantiomer separation of dichlorprop with a cinchona-derived chiral selector employing centrifugal partition chromatography and high-performance liquid chromatography: a comparative study.

    PubMed

    Gavioli, Elena; Maier, Norbert M; Minguillón, Cristina; Lindner, Wolfgang

    2004-10-01

    A countercurrent chromatography protocol for support-free preparative enantiomer separation of the herbicidal agent 2-(2,4-dichlorphenoxy)propionic acid (dichlorprop) was developed utilizing a purposefully designed, highly enantioselective chiral stationary-phase additive (CSPA) derived from bis-1,4-(dihydroquinidinyl)phthalazine. Guided by liquid-liquid extraction experiments, a solvent system consisting of 10 mM CSPA in methyl tert-butyl ether and 100 mM sodium phosphate buffer (pH 8.0) was identified as a suitable stationary/mobile-phase combination. This solvent system provided an ideal compromise among stationary-phase retention, enantioselectivity, and well-balanced analyte distribution behavior. Using a commercial centrifugal partition chromatography instrument, complete enantiomer separations of up to 366 mg of racemic dichlorprop could be achieved, corresponding to a sample load being equivalent to the molar amount of CSPA employed. Comparison of the preparative performance characteristics of the CPC protocol with that of a HPLC separation using a silica-supported bis-1,4-(dihydroquinidinyl)phthalazine chiral stationary phase CSP revealed comparable loading capacities for both techniques but a significantly lower solvent consumption for CPC. With respect to productivity, HPLC was found to be superior, mainly due to inherent flow rate restrictions of the CPC instrument. Given that further progress in instrumental design and engineering of dedicated, highly enantioselective CSPAs can be achieved, CPC may offer a viable alternative to CSP-based HPLC for preparative-scale enantiomer separation.

  15. Chiral permselectivity in surface-modified nanoporous opal films.

    PubMed

    Cichelli, Julie; Zharov, Ilya

    2006-06-28

    Nanoporous 7 mum thin opal films comprising 35 layers of 200 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with chiral selector moieties on the silica surface. Diffusion of chiral redox species through the opals was studied by cyclic voltammetry. The chiral opal films demonstrate high selectivity for transport of one enantiomer over the other. This chiral permselectivity is attributed to the surface-facilitated transport utilizing noncovalent interactions between the chiral permeant molecules and surface-bound chiral selectors.

  16. Chiral filtration-induced spin/valley polarization in silicene line defects

    NASA Astrophysics Data System (ADS)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  17. Understanding the interplay of weak forces in [3,3]-sigmatropic rearrangement for stereospecific synthesis of diamines.

    PubMed

    So, Soon Mog; Mui, Leo; Kim, Hyunwoo; Chin, Jik

    2012-08-21

    Chiral diamines are important building blocks for constructing stereoselective catalysts, including transition metal based catalysts and organocatalysts that facilitate oxidation, reduction, hydrolysis, and C-C bond forming reactions. These molecules are also critical components in the synthesis of drugs, including antiviral agents such as Tamiflu and Relenza and anticancer agents such as oxaliplatin and nutlin-3. The diaza-Cope rearrangement reaction provides one of the most versatile methods for rapidly generating a wide variety of chiral diamines stereospecifically and under mild conditions. Weak forces such as hydrogen bonding, electronic, steric, oxyanionic, and conjugation effects can drive this equilibrium process to completion. In this Account, we examine the effect of these individual weak forces on the value of the equilibrium constant for the diaza-Cope rearrangement reaction using both computational and experimental methods. The availability of a wide variety of aldehydes and diamines allows for the facile synthesis of the diimines needed to study the weak forces. Furthermore, because the reaction generally takes place cleanly at ambient temperature, we can easily measure equilibrium constants for rearrangement of the diimines. We use the Hammett equation to further examine the electronic and oxyanionic effects. In addition, computations and experiments provide us with new insights into the origin and extent of stereospecificity for this rearrangement reaction. The diaza-Cope rearrangement, with its unusual interplay between weak forces and the equilibrium constant of the reaction, provides a rare opportunity to study the effects of the fundamental weak forces on a chemical reaction. Among these many weak forces that affect the diaza-Cope rearrangement, the anion effect is the strongest (10.9 kcal/mol) followed by the resonance-assisted hydrogen-bond effect (7.1 kcal/mol), the steric effect (5.7 kcal/mol), the conjugation effect (5.5 kcal/mol), and the electronic effect (3.2 kcal/mol). Based on both computation and experimental data, the effects of these weak forces are additive. Understanding the interplay of the weak forces in the [3,3]-sigmatropic reaction is interesting in its own right and also provides valuable insights for the synthesis of chiral diamine based drugs and catalysts in excellent yield and enantiopurity.

  18. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.; Kikuchi, Yuta; Meyer, René

    2018-05-01

    We describe a new type of the chiral magnetic effect (CME) that should occur in Weyl semimetals (WSMs) with an asymmetry in the dispersion relations of the left- and right-handed (LH and RH) chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source can generate a non-vanishing chiral chemical potential. This is due to the different capacities of the LH and RH chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation for a rotationally invariant WSM with different Fermi velocities in the left and right chiral Weyl cones; we also consider the case of a WSM with Weyl nodes at different energies. We argue that this effect is generically present in WSMs with different dispersion relations for LH and RH chiral Weyl cones, such as SrSi2 recently predicted as a WSM with broken inversion and mirror symmetries, as long as the chiral relaxation time is much longer than the transport scattering time.

  19. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  20. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  1. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    PubMed

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  2. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    PubMed

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.

  3. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical chains from self-assembly. The handedness of the twisted lamella can be determined by using rotation experiment of polarized light microscopy (PLM). Similar to the self-assembly of BCPs*, the examined results suggest the homochiral evolution in the crystallized chiral polylactides. The results presented in this Account demonstrate the notable progress in the spectral and morphological determination for the examination of molecular, conformational, and hierarchical chirality in self-assembled twisted superstructures of chiral polymers and helical phases of block copolymers and suggest the attainability of homochiral evolution in the self-assembly of chiral homopolymers and BCPs*. The suggested methodologies for the understanding of the mechanisms of the chirality transfer at different length scales provide the approaches to give Supporting Information for disclosing the mysteries of the homochiral evolution from molecular level.

  4. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    PubMed

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  5. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2017-12-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  6. Timoshenko beam model for chiral materials

    NASA Astrophysics Data System (ADS)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  7. Some recent experimental results related to nuclear chirality

    NASA Astrophysics Data System (ADS)

    Timár, J.; Kuti, I.; Sohler, D.; Starosta, K.; Koike, T.; Paul, E. S.

    2014-09-01

    Detailed band structures of three chiral-candidate nuclei, 134Pr, 132La and 103Rh have been studied. The aim of the study was twofold. First, to try to explore the reasons behind the contradiction between the theoretically predicted chirality in these nuclei and the recently observed fingerprints that suggest non-chiral interpretation for the previous chiral candidate band doublets. Second, to search for multiple chiral bands of different types in these nuclei. In 134Pr a new πh11/2vh11/2 band has been observed besides the previously known chiral-candidate πh11/2vh11/2 doublet. This new band and the yrare πh11/2vh11/2 band show the expected features of a chiral doublet structure. This fact combined with the observed similarity between the band structures of 134Pr and 132La suggests that chirality might exist in these nuclei. The detailed study of the 103Rh band structure resulted in the observation of two new chiral-doublet looking structures besides the previously known one. This is indicative of possible existence of multiple chiral doublet structure in this nucleus.

  8. An efficient and highly stereoselective synthesis of new P-chiral 1,5-diphosphanylferrocene ligands and their use in enantioselective hydrogenation.

    PubMed

    Chen, Weiping; Roberts, J Stanley M; Whittall, John; Steiner, Alexander

    2006-07-21

    An efficient and highly stereoselective synthesis of P-chiral 1,5-diphosphanylferrocene ligands has been developed, and the introduction of P-chirality in ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding catalyst when matching of the planar chirality, the chirality at carbon and the chirality at phosphorus occurs.

  9. Catalytic Kinetic Resolution of Saturated N-Heterocycles by Enantioselective Amidation with Chiral Hydroxamic Acids.

    PubMed

    Kreituss, Imants; Bode, Jeffrey W

    2016-12-20

    The preparation of enantioenriched chiral compounds by kinetic resolution dates back to the laboratories of Louis Pasteur in the middle of the 19th century. Unlike asymmetric synthesis, this process can always deliver enantiopure material (ee > 99%) if the reactions are allowed to proceed to sufficient conversion and the selectivity of the process is not unity (s > 1). One of the most appealing and practical variants is acylative kinetic resolution, which affords easily separable reaction products, and several highly efficient enzymatic and small molecule catalysts are available. Unfortunately, this method is applicable to limited substrate classes such as alcohols and primary benzylamines. This Account focuses on our work in catalytic acylative kinetic resolution of saturated N-heterocycles, a class of molecules that has been notoriously difficult to access via asymmetric synthesis. We document the development of hydroxamic acids as suitable catalysts for enantioselective acylation of amines through relay catalysis. Alongside catalyst optimization and reaction development, we present mechanistic studies and theoretical calculation accounting for the origins of selectivity and revealing the concerted nature of many amide-bond forming reactions. Immobilization of the hydroxamic acid to form a polymer supported reagent allows simplification of the experimental setup, improvement in product purification, and extension of the substrate scope. The kinetic resolutions are operationally straight forward: reactions proceed at room temperature and open to air conditions, without generation of difficult-to-remove side products. This was utilized to achieve decagram scale resolution of antimalarial drug mefloquine to prepare more than 50 g of (+)-erythro-meflqouine (er > 99:1) from the racemate. The immobilized quasienantiomeric acyl hydroxamic acid reagents were also exploited for a rare practical implementation of parallel kinetic resolution that affords both enantiomers of the amine products in high enantiopurity. The success of this process relied on identification of two cleavable acyl groups alongside implementation of flow-chemistry techniques to ensure reusability of the resolving agents. The work discussed in this Account has laid foundations for new catalyst design as well as development of desymmetrization and dynamic kinetic resolution processes. In the meantime, as all the requisite reagents are commercially available, we hope that hydroxamic acid promoted acylative kinetic resolution will become a method of choice for preparation of saturated N-heterocycles in enantiopure form.

  10. Cell Chirality Drives Left-Right Asymmetric Morphogenesis

    PubMed Central

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila, we discovered that cells can have an intrinsic chirality to their structure, and that this “cell chirality” is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF (Myo31DF), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans, chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine. PMID:29666795

  11. FATE AND EFFECTS OF THE ENANTIOMERS OF CHIRAL ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral compounds, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. This holds true for pesticides, about 25% of which are chiral molecules, and other chiral environmental...

  12. The Resolution of Ibuprofen, 2-(4'-Isobutylphenyl) Propionic Acid

    ERIC Educational Resources Information Center

    McCullagh, James V.

    2008-01-01

    In this experiment the over-the-counter pain reliever ibuprofen is resolved using (S)-(-)-[alpha]-phenethylamine as the resolving agent. This procedure has several key advantages over previous resolution experiments. First, it involves the resolution of a well-known medicinal compound of commercial importance. Second, the resolution process is…

  13. Chiral magnetic effect in lattice QCD with a chiral chemical potential.

    PubMed

    Yamamoto, Arata

    2011-07-15

    We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.

  14. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  15. A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands.

    PubMed

    Chen, Weiping; Mbafor, William; Roberts, Stanley M; Whittall, John

    2006-03-29

    A very simple, highly stereoselective and modular synthesis of ferrocene-based P-chiral phosphine ligands has been developed. On the basis of this new methodology, several new families of ferrocene-based phosphine ligands have been prepared coupling chirality at phosphorus with other, more standard stereogenic features. The introduction of P-chirality into ferrocene-based phosphine ligands enhances the enantioselective discrimination produced by the corresponding Rh catalyst when a matching among the planar chirality, carbon chirality, and the chirality of phosphorus is achieved.

  16. Momentum space view of the ultrafast dynamics of surface photocurrents on topological insulators

    NASA Astrophysics Data System (ADS)

    Kuroda, K.; Reimann, J.; Güdde, J.; Höfer, U.

    2017-02-01

    The Dirac-cone surface states of topological insulators are characterized by a chiral spin texture in k-space with the electron spin locked to its parallel momentum. Mid-infrared pump pulses can induce spin-polarized photocurrents in such a topological surface state by optical transitions between the occupied and unoccupied part of the Dirac cone. We monitor the ultrafast dynamics of the corresponding asymmetric electron population in momentum space directly by time- and angle-resolved two-photon photoemission (2PPE). The elastic scattering times of 2.5 ps deduced for Sb2Te3 corresponds to a mean-fee path of 0.75 μm in real space.

  17. A web site for calculating the degree of chirality.

    PubMed

    Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David

    2011-01-01

    The web site, http://www.csm.huji.ac.il/, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures. Copyright © 2009 Wiley-Liss, Inc.

  18. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    DOE PAGES

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-03-24

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. Here, we study first-order hy-drodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiralmore » magnetic waves) and transverse velocity (chiral Alfvén wave). We also demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.« less

  19. Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces.

    PubMed

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2017-08-15

    Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These metasurfaces display vast possibilities for highly sensitive chirality discrimination in biological and chemical systems. Here, we show that two-layer metasurfaces based on twisted nanorods can generate giant spin-selective transmission and support engineered chirality in the near-infrared region. Two designed metasurfaces with opposite spin-selective transmission are proposed for treatment as enantiomers and can be used widely for spin selection and enhanced chiral sensing. Specifically, we demonstrate that the chirality in these proposed metasurfaces can be adjusted effectively by simply changing the orientation angle between the twisted nanorods. Our results offer simple and straightforward rules for chirality engineering in metasurfaces and suggest intriguing possibilities for the applications of such metasurfaces in spin optics and chiral sensing.

  20. Biomarkers of Oxidative Stress in the Assessment of Enantioselective Toxicity of Chiral Pesticides.

    PubMed

    Ye, Xiaoqing; Liu, Ying; Li, Feixue

    2017-01-01

    In biological systems, the individual stereoisomers of chiral substances possess significantly different biochemical properties because the specific structure-activity relationships are required for a common site on biomolecules. In the past decade, there has been increasing concern over the enantioselective toxicity of environmental chiral pollutants, especially chiral pesticides. Different responses and activities of a pair of enantiomers of chiral pesticides were often observed. Therefore, assessment of the enantioselective toxicological properties of chiral pesticides is a prerequisite in application of single-isomer products and particularly important for environmental protection. The development of biomarkers that can predict enantioselective effects from chiral pesticides has recently been gained more and more attention. The biomarkers of oxidative stress have become a topic of significant interest for toxic assessments. In this review, we summarized current knowledge and advances in the understanding of enantiomeric oxidative processes in biological systems in response to chiral pesticides. The consistent results in two types of chiral insecticides (synthetic pyrethroids and organochlorine pesticides) showed the significant difference in cytotoxicity of enantiomers, suggesting the antioxidant enzymes are reliable biomarkers for the assessment of toxicity of chiral chemicals. Results indicate that antioxidant enzymes are sensitive and valid biomarkers to assess the oxidative damage caused by chiral herbicides. In addition, it can be inferred that the enantioselectivity of chiral herbicides on antioxidant enzymes exists in other species. Compared with insecticides and herbicides, researches about the enantioselectivity of oxidative stress caused by chiral fungicides are quite limited. Only two kinds of chiral fungicides has been used to study the enantioselectivity of oxidative stress by now. The current knowledge that enantioselective processes of oxidative damage occur in organisms or cells extends toxicological studies of environmental contamination by chiral chemicals. These studies indicate that oxidative biomarkers can be useful for monitoring enantioselective toxicity of chiral contaminates, while comparing enantiomer-induced responses in different species should be approached with caution because of differences in uptake, target sites, biotransformation and pharmacokinetics of the enantiomers.

  1. Mitochondria are the primary target in the induction of apoptosis by chiral ruthenium(II) polypyridyl complexes in cancer cells.

    PubMed

    Wang, Jin-Quan; Zhang, Ping-Yu; Qian, Chen; Hou, Xiao-Juan; Ji, Liang-Nian; Chao, Hui

    2014-03-01

    A series of novel chiral ruthenium(II) polypyridyl complexes (Δ-Ru1, Λ-Ru1, Δ-Ru2, Λ-Ru2, Δ-Ru3, Λ-Ru3) were synthesized and evaluated to determine their antiproliferative activities. Colocalization, inductively coupled plasma mass spectrometry, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay studies showed that these ruthenium(II) complexes accumulated preferentially in the mitochondria and exhibited cytotoxicity against various cancer cells in vitro. The complex Δ-Ru1 is of particular interest because it was found to have half-maximal inhibitory concentrations comparable to those of cisplatin and better activity than cisplatin against a cisplatin-resistant cell line, A549-CP/R. Δ-Ru1 induced alterations in the mitochondrial membrane potential and triggered intrinsic mitochondria-mediated apoptosis in HeLa cells, which involved the regulation of Bcl-2 family members and the activation of caspases. Taken together, these data suggest that Δ-Ru1 may be a novel mitochondria-targeting anticancer agent.

  2. Water-Soluble Ruthenium (II) Chiral Heteroleptic Complexes with Amoebicidal in Vitro and in Vivo Activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan C; Torres-Gutiérrez, Carolina; Vázquez-Gasser, Cristina; Esquivel-Sánchez, José M; Flores-Alamo, Marcos; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Nequiz, Mario; Gudiño-Zayas, Marco; Laclette, Juan P; Carrero, Julio C; Ruiz-Azuara, Lena

    2017-02-09

    Three water-soluble Ru(II) chiral heteroleptic coordination compounds [Ru(en)(pdto)]Cl 2 (1), [Ru(gly)(pdto)]Cl (2), and [Ru(acac)(pdto)]Cl (3), where pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine, en = ethylendiamine, gly = glycinate, and acac = acetylacetonate, have been synthezised and fully characterized. The crystal structures of compounds 1-3 are described. The IC 50 values for compounds 1-3 are within nanomolar range (14, 12, and 6 nM, respectively). The cytotoxicity for human peripheral blood lymphocytes is extremely low (>100 μM). Selectivity indexes for Ru(II) compounds are in the range 700-1300. Trophozoites exposed to Ru(II) compounds die through an apoptotic pathway triggered by ROS production. The orally administration to infected mice induces a total elimination of the parasite charge in mice faeces 1-2-fold faster than metronidazole. Besides, all compounds inhibit the trophozoite proliferation in amoebic liver abscess induced in hamster. All our results lead us to propose these compounds as promising candidates as antiparasitic agents.

  3. In vitro DNA binding, pBR322 plasmid cleavage and molecular modeling study of chiral benzothiazole Schiff-base-valine Cu(II) and Zn(II) complexes to evaluate their enantiomeric biological disposition for molecular target DNA.

    PubMed

    Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh

    2014-10-15

    Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Conjugated Gammadion Chiral Metamaterial with Uniaxial Optical Activity and Negative Refractive Index

    DTIC Science & Technology

    2011-01-10

    in Fig. 4, we discuss a procedure of transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The...the transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The procedure shows how the magnetic or

  5. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.

    PubMed

    Zheng, Yan-Song; Hu, Yu-Jian; Li, Dong-Mi; Chen, Yi-Chang

    2010-01-15

    Pure enantiomers of carboxylic acids are a class of important biomolecules, chiral drugs, chiral reagents, etc. Analysis of the enantiomers usually needs expensive instrument or complex chiral receptors. However, to develop simple and reliable methods for the enantiomer analysis of acids is difficult. In this paper, chiral recognition of 2,3-dibenzoyltartaric acid and mandelic acid was first carried out by aggregation-induced emission molecules bearing optically pure aminol group, which was easily synthesized. The chiral recognition is not only seen by naked eyes but also measured by fluorophotometer. The difference of fluorescence intensity between the two enantiomers of the acids aroused by the aggregation-induced emission molecules was up to 598. The chiral recognition could be applied to quantitative analysis of enantiomer content of chiral acids. More chiral AIE amines need to be developed for enantiomer analysis of more carboxylic acids.

  6. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  7. Tailoring the chirality of light emission with spherical Si-based antennas.

    PubMed

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  8. Effect of the water content on the retention and enantioselectivity of albendazole and fenbendazole sulfoxides using amylose-based chiral stationary phases in organic-aqueous conditions.

    PubMed

    Materazzo, Sabrina; Carradori, Simone; Ferretti, Rosella; Gallinella, Bruno; Secci, Daniela; Cirilli, Roberto

    2014-01-31

    Four commercially available immobilized amylose-derived CSPs (Chiralpak IA-3, Chiralpak ID-3, Chiralpak IE-3 and Chiralpak IF-3) were used in the HPLC analysis of the chiral sulfoxides albendazole (ABZ-SO) and fenbendazole (FBZ-SO) and their in vivo sulfide precursor (ABZ and FBZ) and sulfone metabolite (ABZ-SO2 and FBZ-SO2) under organic-aqueous mode. U-shape retention maps, established by varying the water content in the acetonitrile- and ethanol-water mobile phases, were indicative of two retention mechanisms operating on the same CSP. The dual retention behavior of polysaccharide-based CSPs was exploited to design greener enantioselective and chemoselective separations in a short time frame. The enantiomers of ABZ-SO and FBZ-SO were baseline resolved with water-rich mobile phases (with the main component usually being 50-65% water in acetonitrile) on the IF-3 CSP and ethanol-water 100:5 mixture on the IA-3 and IE-3 CSPs. A simultaneous separation of ABZ (or FBZ), enantiomers of the corresponding sulfoxide and sulfone was achieved on the IA-3 using ethanol-water 100:60 (acetonitrile-water 100:100 for FBZ) as a mobile phase. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Critical end point in the presence of a chiral chemical potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Z. -F.; Cloët, I. C.; Lu, Y.

    A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physicallymore » motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with mu(5) > 0 can shed any light on a critical end point in the regular QCD phase diagram.« less

  10. High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase.

    PubMed

    Siódmiak, Tomasz; Mangelings, Debby; Vander Heyden, Yvan; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-03-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for obtaining products with high enantiopurity. Additionally, the influence of organic solvents (dichloromethane, dichloroethane, dichloropropane, and methyl tert-butyl ether), primary alcohols (methanol, ethanol, n-propanol, and n-butanol), reaction time, and temperature on the enantiomeric ratio and conversion was tested. The high values of enantiomeric ratio (E in the range of 51.3-90.5) of the esterification of (R,S)-flurbiprofen were obtained for all tested alcohols using Novozym 435, which have a great significance in the field of biotechnological synthesis of drugs. The optimal temperature range for the performed reactions was from 37 to 45 °C. As a result of the optimization, (R)-flurbiprofen methyl ester was obtained with a high optical purity, eep = 96.3 %, after 96 h of incubation. The enantiomeric ratio of the reaction was E = 90.5 and conversion was C = 35.7 %.

  11. Effective action and electromagnetic response of topological superconductors and Majorana-mass Weyl fermions

    NASA Astrophysics Data System (ADS)

    Stone, Michael; Lopes, Pedro L. e. S.

    2016-05-01

    Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.

  12. Atomic structures of B20 FeGe thin films grown on the Si(111) surface

    NASA Astrophysics Data System (ADS)

    Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong

    We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.

  13. Combined Experimental and Theoretical Investigations on Optical Activities of Möbius Aromatic and Möbius Antiaromatic Hexaphyrin Phosphorus Complexes.

    PubMed

    Mori, Tadashi; Tanaka, Takayuki; Higashino, Tomohiro; Yoshida, Kota; Osuka, Atsuhiro

    2016-06-23

    Intrinsically chiral Möbius aromatic [28]hexaphyrin monophosphorus(V) and Möbius antiaromatic [30]hexaphyrin bisphosphorus(V) complexes have been optically resolved and their absolute configurations (ACs) were determined by combined experimental and theoretical investigations on their circular dichroisms (CDs). First elutes in chiral HPLC exhibited strong positive Cotton effects (CEs) at the B-band, characteristic for the ML configurations in their Möbius strips. Weak CEs at the Q-band, if attainable, complemented their AC assignment. The whole CD pattern and intensity were well reproduced by time-dependent approximate coupled cluster theory using model systems that omit five outward meso-aryl substituents (inward-meso-retained model), providing a solid basis for AC assignment. The cost efficient TD-DFT method with appropriate functionals for fully substituted (nontruncated) complexes well reproduced CEs around the B-band (but less satisfactory at the Q-band), also allows the rapid AC estimation for their Möbius strips. Observed difference in CDs between aromatic and antiaromatic hexaphyrins were better interpreted by their shifts in energy levels and altered interactions of relevant molecular orbitals, rather than small differences in Möbius geometries nor aromatic/antiaromatic character, despite the correlations recently claimed in planar π-systems.

  14. 7 CFR 205.662 - Noncompliance procedure for certified operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative Compliance § 205.662... of a certified operation by a certifying agent or a State organic program's governing State official... demonstrates that each noncompliance has been resolved, the certifying agent or the State organic program's...

  15. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.

    PubMed

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  16. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  17. Five chiral Cd(II) complexes with dual chiral components: Effect of positional isomerism, luminescence and SHG response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lin, E-mail: lcheng@seu.edu.cn; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Southeast University, Nanjing 211189; Wang, Jun

    2015-01-15

    Five chiral Cd(II) complexes with dual chiral components have been synthesized by using a series of (1R,2R)–N{sup 1},N{sup 2}-bis(pyridinylmethyl)cyclohexane-1,2-diamine ligands with different N-positions of pyridyl rings and Cd(NO{sub 3}){sub 2}. The circular dichroism (CD) spectra and second-harmonic generation (SHG) efficiency measurements confirmed that they are of structural chirality in the bulk samples. The luminescent properties indicated that they may have potential applications as optical materials. The formation of discrete mononuclear and binuclear complexes, and one-dimensional chains may be attributed to positional isomerism of the ligands. - Graphical abstract: Five chiral Cd(II) complexes with dual chiral components have been synthesized bymore » using a series of chiral ligands with different N-positions of pyridyl rings. - Highlights: • Five chiral Cd(II) complexes with dual chiral components have been synthesized. • CD spectra and SHG efficiency of the bulk samples have been measured. • The complexes display luminescent properties.« less

  18. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    PubMed Central

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  19. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-06-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor-acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL).

  20. Chirality in molecular collision dynamics

    NASA Astrophysics Data System (ADS)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  1. Field redefinitions and Plebanski formalism for GR

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2018-07-01

    We point out that there exists a family of transformations acting on BF-type Lagrangians of gravity, with Lagrangians related by such a transformation corresponding to classically equivalent theories. A transformation of this type corresponds to a particular field redefinition. We discuss both the chiral and non-chiral cases. In the chiral case there is a one-parameter, and in the non-chiral case a two-parameter family of such transformations. In the chiral setup, we use these transformations to give an alternative derivation of the chiral BF plus potential formulation of general relativity that was proposed recently. In the non-chiral case, we show that there is a new BF plus potential type formulation of GR. We also make some remarks on the non-chiral pure connection formulation.

  2. Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.

    PubMed

    Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa

    2012-05-30

    Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    PubMed

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  4. Chiral corrections to the Adler-Weisberger sum rule

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  5. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    PubMed

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  6. Theoretical Foundation for Electric-Dipole-Allowed Chiral-Specific Fluorescence Optical Rotary Dispersion (F-ORD) from Interfacial Assemblies.

    PubMed

    Deng, Fengyuan; Ulcickas, James R W; Simpson, Garth J

    2016-11-03

    Fluorescence optical rotary dispersion (F-ORD) is proposed as a novel chiral-specific and interface-specific spectroscopic method. F-ORD measurements of uniaxial assemblies are predicted to be fully electric-dipole-allowed, with corresponding increases in sensitivity to chirality relative to chiral-specific measurements in isotropic assemblies that are commonly interpreted through coupling between electric and magnetic dynamic dipoles. Observations of strong chiral sensitivity in prior single-molecule fluorescence measurements of chiral interfacial molecules are in excellent qualitative agreement with the predictions of the F-ORD mechanism and challenging to otherwise explain. F-ORD may provide methods to suppress background fluorescence in studies of biological interfaces, as the detected signal requires both polar local order and interfacial chirality. In addition, the molecular-level descriptions of the mechanisms underpinning F-ORD may also potentially apply to aid in interpreting chiral-specific Raman and surface-enhanced Raman spectroscopy measurements of uniaxially oriented assemblies, opening up opportunities for chiral-specific and interface-specific vibrational spectroscopy.

  7. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  9. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.

    PubMed

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  10. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    PubMed Central

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  11. Topological chiral phonons in center-stacked bilayer triangle lattices

    NASA Astrophysics Data System (ADS)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  12. Enhanced Chiral Discriminatory van der Waals Interactions Mediated by Chiral Surfaces

    NASA Astrophysics Data System (ADS)

    Barcellona, Pablo; Safari, Hassan; Salam, A.; Buhmann, Stefan Yoshi

    2017-05-01

    We predict a discriminatory interaction between a chiral molecule and an achiral molecule which is mediated by a chiral body. To achieve this, we generalize the van der Waals interaction potential between two ground-state molecules with electric, magnetic, and chiral response to nontrivial environments. The force is evaluated using second-order perturbation theory with an effective Hamiltonian. Chiral media enhance or reduce the free interaction via many-body interactions, making it possible to measure the chiral contributions to the van der Waals force with current technology. The van der Waals interaction is discriminatory with respect to enantiomers of different handedness and could be used to separate enantiomers. We also suggest a specific geometric configuration where the electric contribution to the van der Waals interaction is zero, making the chiral component the dominant effect.

  13. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  14. Micropatterning of cells reveals chiral morphogenesis

    PubMed Central

    2013-01-01

    Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development. PMID:23672821

  15. Cooperative expression of atomic chirality in inorganic nanostructures.

    PubMed

    Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-02-02

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.

  16. Cooperative expression of atomic chirality in inorganic nanostructures

    PubMed Central

    Wang, Peng-peng; Yu, Shang-Jie; Govorov, Alexander O; Ouyang, Min

    2017-01-01

    Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks. PMID:28148957

  17. Application of L-proline derivatives as chiral shift reagents for enantiomeric recognition of carboxylic acids.

    PubMed

    Naziroglu, Hayriye Nevin; Durmaz, Mustafa; Bozkurt, Selahattin; Sirit, Abdulkadir

    2011-07-01

    Four proline-derived chiral receptors 5-8 were readily synthesized starting from L-proline. The enantiomeric recognition ability of chiral receptors was examined with a series of carboxylic acids by (1) H NMR spectroscopy. The molar ratio and the association constants of the chiral compounds with each of the enantiomers of guest molecules were determined by using Job plots and a nonlinear least-squares fitting method, respectively. The Job plots indicate that the hosts form 1:1 instantaneous complexes with all guests. The receptors exhibited different chiral recognition abilities toward the enantiomers of racemic guests. Among the chiral receptors used in this study, prolinamide 6 was found to be the best chiral shift reagent and is effective for the determination of the enantiomeric excess of chiral carboxylic acids. Copyright © 2011 Wiley-Liss, Inc.

  18. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    NASA Astrophysics Data System (ADS)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  19. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henneaux, Marc; Physique theorique et mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Bruxelles; Martinez, Cristian

    2010-09-15

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast,more » both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).« less

  20. Effect of molecular structure of tartrates on chiral recognition of tartrate-boric acid complex chiral selectors in chiral microemulsion electrokinetic chromatography.

    PubMed

    Hu, Shao-Qiang; Chen, Yong-Lei; Zhu, Hua-Dong; Shi, Hai-Jun; Yan, Na; Chen, Xing-Guo

    2010-08-20

    Eight l-tartrates and a d-tartrate with different alcohol moieties were used as chiral oils to prepare chiral microemulsions, which were utilized in conjunction with borate buffer to separate the enantiomers of beta-blockers or structurally related compounds by the chiral microemulsion electrokinetic chromatography (MEEKC) method. Among them, six were found to have a relatively good chiral separation performance and their chiral recognition effect in terms of both enantioselectivity and resolution increases linearly with the number of carbon atoms in the alkyl group of alcohol moiety. The tartrates containing alkyl groups of different structures but the same number of carbon atoms, i.e. one of straight chain and one of branched chain, provide similar enantioseparations. The trend was elucidated according to the changes in the difference of the steric matching between the molecules of two enantiomers and chiral selector. Furthermore, it was demonstrated for the first time that a water insoluble solid compound, di-i-butyl l-tartrate (mp. 73.5 degrees C), can be used as an oil to prepare a stable microemulsion to be used in the chiral MEEKC successfully. And a critical effect of the microemulsion for chiral separation, which has never been reported before, was found in this experiment, namely providing a hydrophobic environment to strengthen the interactions between the chiral selector and enantiomers. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Intelligent chiral sensing based on supramolecular and interfacial concepts.

    PubMed

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  2. Anatomy of the chiral magnetic effect in and out of equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri; Stephanov, Mikhail; Yee, Ho-Ung

    Here, we identify a new contribution to the chiral magnetic conductivity at finite frequencies—the magnetization current. This allows us to quantitatively reproduce the known field-theoretic time-dependent (AC) chiral magnetic response in terms of kinetic theory. We also evaluate the corresponding AC chiral magnetic conductivity in two-flavor QCD plasma at weak coupling. The magnetization current results from the spin response of chiral quasiparticles to magnetic field, and is thus proportional to the quasiparticle’s g -factor. Furthemrore, in condensed matter systems, where the chiral quasiparticles are emergent and the g -factor can significantly differ from 2, this opens up the possibility ofmore » tuning the AC chiral magnetic response.« less

  3. Anatomy of the chiral magnetic effect in and out of equilibrium

    DOE PAGES

    Kharzeev, Dmitri; Stephanov, Mikhail; Yee, Ho-Ung

    2017-03-28

    Here, we identify a new contribution to the chiral magnetic conductivity at finite frequencies—the magnetization current. This allows us to quantitatively reproduce the known field-theoretic time-dependent (AC) chiral magnetic response in terms of kinetic theory. We also evaluate the corresponding AC chiral magnetic conductivity in two-flavor QCD plasma at weak coupling. The magnetization current results from the spin response of chiral quasiparticles to magnetic field, and is thus proportional to the quasiparticle’s g -factor. Furthemrore, in condensed matter systems, where the chiral quasiparticles are emergent and the g -factor can significantly differ from 2, this opens up the possibility ofmore » tuning the AC chiral magnetic response.« less

  4. Active chiral fluids.

    PubMed

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  5. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth.

    PubMed

    Xu, Ziwei; Qiu, Lu; Ding, Feng

    2018-03-21

    Depending on its specific structure, or so-called chirality, a single-walled carbon nanotube (SWCNT) can be either a conductor or a semiconductor. This feature ensures great potential for building ∼1 nm sized electronics if chirality-selected SWCNTs could be achieved. However, due to the limited understanding of the growth mechanism of SWCNTs, reliable methods for chirality-selected SWCNTs are still pending. Here we present a theoretical model on the chirality assignment and control of SWCNTs during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of pentagons, especially the last (6 th ) one, during the nucleation stage. Our analysis showed that the chirality of a SWCNT is randomly assigned on a liquid or liquid-like catalyst surface, and two routes of synthesizing chirality-selected SWCNTs, which are verified by recent experimental achievements, are demonstrated. They are (i) by using high melting point crystalline catalysts, such as Ta, W, Re, Os, or their alloys, and (ii) by frequently changing the chirality of SWCNTs during their growth. This study paves the way for achieving chirality-selective SWCNT growth for high performance SWCNT based electronics.

  6. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century.

    PubMed

    Basheer, Al Arsh

    2018-04-01

    The chiral pollution is a serious issue for our health and environment due to the enantio-selective biodegradation of the chiral pollutants. It has adverse impact on our society and science. There is a big loss of our economy due to the use of racemic agrochemicals. The most notorious chiral pollutants are pesticides, polychloro biphenyls, polyaromatic hydrocarbons, brominated flame retardants, drugs, and pharmaceuticals. More than 1500 chiral pollutants are present in the environment. Unfortunately, there is no regulation and control of the chiral pollutants. Therefore, it is an urgent need of the present 21st century to develop a data bank on the chiral pollutants, guidelines for controlling the production, sale and use of the racemic agrochemicals and the other industrial products. The Governments of the different countries should come forward to initiate the regulations. US, FDA, US EPA, and WHO are the most important regulatory authorities and should think about the chiral pollutants. The present article highlights the impact of the chiral pollution on the society and science. Besides, the efforts have also been made to emphasize the need of the regulations to control the chiral pollution. © 2017 Wiley Periodicals, Inc.

  7. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that themore » chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.« less

  8. Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system.

    PubMed

    Gruber, Pia; Carvalho, Filipe; Marques, Marco P C; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank; Szita, Nicolas

    2018-03-01

    Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml -1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml -1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  9. Synthesis of Novel Chiral Sulfonamide-Bearing 1,2,4-Triazole-3-thione Analogs Derived from D- and L-Phenylalanine Esters as Potential Anti-Influenza Agents.

    PubMed

    Başaran, Eyüp; Karaküçük-Iyidoğan, Ayşegül; Schols, Dominique; Oruç-Emre, Emine Elçin

    2016-06-01

    Novel enantiopure 1,2,4-trizole-3-thiones containing a benzensulfonamide moiety were synthesized via multistep reaction sequence starting with D-phenylalanine methyl ester and L-phenylalanine ethyl ester as a source of chirality. The chemical structures of all compounds were characterized by elemental analysis, UV, IR, (1) H NMR, (13) C NMR, 2D NMR (HETCOR), and mass spectral data. All compounds were tested in vitro antiviral activity against a broad variety of DNA and RNA viruses and in vitro cytostatic activity against murine leukemia (L1210), human T-lymphocyte (CEM) and human cervix carcinoma (HeLa) cell lines. Although enantiopure 1,2,4-triazole-3-thione analogs in (R) configuration emerged as promising anti-influenza A H1N1 subtype in Madin Darby canine kidney cell cultures (MDCK), their enantiomers exhibited no activity. Especially compounds , , , , and (EC50 : 6.5, 6.1, 2.4, 1.6, 1.7 μM, respectively) had excellent activity against influenza A H1N1 subtype compared to the reference drug ribavirin (EC50 : 8.0 μM). Several compounds have been found to inhibit proliferation of L1210, CEM and HeLa cell cultures with IC50 in the 12-53 μM range. Compound and in (R) configuration were the most active compounds (IC50 : 12-22 μM for and IC50 : 19-23 μM for ). Chirality 28:495-513, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Disordered two-dimensional electron systems with chiral symmetry

    NASA Astrophysics Data System (ADS)

    Markoš, P.; Schweitzer, L.

    2012-10-01

    We review the results of our recent numerical investigations on the electronic properties of disordered two dimensional systems with chiral unitary, chiral orthogonal, and chiral symplectic symmetry. Of particular interest is the behavior of the density of states and the logarithmic scaling of the smallest Lyapunov exponents in the vicinity of the chiral quantum critical point in the band center at E=0. The observed peaks or depressions in the density of states, the distribution of the critical conductances, and the possible non-universality of the critical exponents for certain chiral unitary models are discussed.

  11. Chiral Symmetry Breaking and Complete Chiral Purity by Thermodynamic-Kinetic Feedback Near Equilibrium: Implications for the Origin of Biochirality

    NASA Astrophysics Data System (ADS)

    Viedma, Cristobal

    2007-05-01

    Chiral symmetry breaking occurs when a physical or chemical process spontaneously generates a large excess of one of the two enantiomers-left-handed (L) or right-handed (D)--with no preference as to which of the two enantiomers is produced. From the viewpoint of energy, these two enantiomers can exist with an equal probability, and inorganic processes that involve chiral products commonly yield a racemic mixture of both. The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking in chirality and has long intrigued the science community. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, some 140 years ago. Here, it is shown that two populations of chiral crystals of left and right hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking can be explained by the feedback between the thermodynamic control of dissolution and the kinetics of the growth process near equilibrium. This ``thermodynamic-kinetic feedback near equilibrium'' is established as a mechanism to achieve complete chiral purity in solid state from a previously solid racemic medium. The way in which this mechanism could operate in solutions of chiral biomolecules is described. Finally, based on this mechanism, experiments designed to search for chiral purity in a new way are proposed: chiral purity of amino acids or biopolymers is predicted in solid phase from a previously solid racemic medium. This process may have played a key role in the origin of biochirality.

  12. Free-standing mesoporous silica films with tunable chiral nematic structures.

    PubMed

    Shopsowitz, Kevin E; Qi, Hao; Hamad, Wadood Y; Maclachlan, Mark J

    2010-11-18

    Chirality at the molecular level is found in diverse biological structures, such as polysaccharides, proteins and DNA, and is responsible for many of their unique properties. Introducing chirality into porous inorganic solids may produce new types of materials that could be useful for chiral separation, stereospecific catalysis, chiral recognition (sensing) and photonic materials. Template synthesis of inorganic solids using the self-assembly of lyotropic liquid crystals offers access to materials with well-defined porous structures, but only recently has chirality been introduced into hexagonal mesostructures through the use of a chiral surfactant. Efforts to impart chirality at a larger length scale using self-assembly are almost unknown. Here we describe the development of a photonic mesoporous inorganic solid that is a cast of a chiral nematic liquid crystal formed from nanocrystalline cellulose. These materials may be obtained as free-standing films with high surface area. The peak reflected wavelength of the films can be varied across the entire visible spectrum and into the near-infrared through simple changes in the synthetic conditions. To the best of our knowledge these are the first materials to combine mesoporosity with long-range chiral ordering that produces photonic properties. Our findings could lead to the development of new materials for applications in, for example, tuneable reflective filters and sensors. In addition, this type of material could be used as a hard template to generate other new materials with chiral nematic structures.

  13. Time-resolved contrast-enhanced MRA (TWIST) with gadofosveset trisodium in the classification of soft-tissue vascular anomalies in the head and neck in children following updated 2014 ISSVA classification: first report on systematic evaluation of MRI and TWIST in a cohort of 47 children.

    PubMed

    Higgins, L J; Koshy, J; Mitchell, S E; Weiss, C R; Carson, K A; Huisman, T A G M; Tekes, A

    2016-01-01

    To evaluate the relative accuracy of contrast-enhanced time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced magnetic resonance imaging (MRI) following International Society for the Study of Vascular Anomalies updated 2014-based classification of soft-tissue vascular anomalies in the head and neck in children. Time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced MRI of children with diagnosis of soft-tissue vascular anomalies in the head and neck referred for MRI between 2008 and 2014 were retrospectively reviewed. Forty-seven children (0-18 years) were evaluated. Two paediatric neuroradiologists evaluated time-resolved MRA and conventional MRI in two different sessions (30 days apart). Blood-pool endovascular MRI contrast agent gadofosveset trisodium was used. The present cohort had the following diagnoses: infantile haemangioma (n=6), venous malformation (VM; n=23), lymphatic malformation (LM; n=16), arteriovenous malformation (AVM; n=2). Time-resolved MRA alone accurately classified 38/47 (81%) and conventional MRI 42/47 (89%), respectively. Although time-resolved MRA alone is slightly superior to conventional MRI alone for diagnosis of infantile haemangioma, conventional MRI is slightly better for diagnosis of venous and LMs. Neither time-resolved MRA nor conventional MRI was sufficient for accurate diagnosis of AVM in this cohort. Conventional MRI combined with time-resolved MRA accurately classified 44/47 cases (94%). Time-resolved MRA using gadofosveset trisodium can accurately classify soft-tissue vascular anomalies in the head and neck in children. The addition of time-resolved MRA to existing conventional MRI protocols provides haemodynamic information, assisting the diagnosis of vascular anomalies in the paediatric population at one-third of the dose of other MRI contrast agents. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. ENANTIOMER-SPECIFIC EFFECTS OF CHIRAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral pollutants, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. Considerable research has shown, for example, that chiral pesticides are degraded selectively by micr...

  15. Coordinative Alignment of Chiral Molecules to Control over the Chirality Transfer in Spontaneous Resolution and Asymmetric Catalysis.

    PubMed

    Xia, Zhengqiang; Jing, Xu; He, Cheng; Wang, Xiaoge; Duan, Chunying

    2017-11-13

    The production and availability of enantiomerically pure compounds that spurred the development of chiral technologies and materials are very important to the fine chemicals and pharmaceutical industries. By coordinative alignment of enantiopure guests in the metal‒organic frameworks, we reported an approach to control over the chirality of homochiral crystallization and asymmetric transformation. Synthesized by achiral triphenylamine derivatives, the chirality of silver frameworks was determined by the encapsulated enantiopure azomethine ylides, from which clear interaction patterns were observed to explore the chiral induction principles. With the changing of addition sequence of substrates, the enantioselectivity of asymmetric cycloaddition was controlled to verify the determinant on the chirality of the bulky MOF materials. The economical chirality amplification that merges a series of complicated self-inductions, bulk homochiral crystallization and enantioselective catalysis opens new avenues for enantiopure chemical synthesis and provides a promising path for the directional design and development of homochiral materials.

  16. [From symmetries to the laws of evolution. I. Chirality as a means of active media stratification].

    PubMed

    Tverdislov, V A; Sidorova, A É; Iakovenko, L V

    2012-01-01

    Features of the hypothetical evolution of a hierarchy of chiral objects formed by active media are discussed. On the basis of experimental facts a new synergetic generalization is made: an evolving system can repeatedly broaden the spectrum of its symmetry types within one level of organization which increases its complexity and change the sign of chirality during transition to a higher level. Switching the chirality sign of macroscopic objects provides irreversibility of stratification. The known chirality of biological structures at different levels suggests that the chiral L/D-stratification should be universal and the hierarchical paths are stable and determined. A high level enantiomorph with reciprocal chirality demonstrates a wider spectrum of functionality. A fractal description of natural hierarchical systems is pointed out to be inadequate because it implicates invariance of the chirality sign of the objects at different scales.

  17. Chirality correlation in double-wall carbon nanotubes as studied by electron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirahara, Kaori; Bandow, Shunji; Kociak, Mathieu

    2006-05-15

    Structural correlation between two adjacent graphitic layers in double-wall carbon nanotubes (DWNTs) was systematically examined by using electron diffraction. Chiral angles and tube diameters were carefully measured, and the chiral indices of individual DWNTs were accurately determined. As a result, it was found that the interlayer distances of DWNTs were widely distributed in the range between 0.34 and 0.38 nm. Chiralities of the inner and outer tubes tended to be distributed at higher chiral angles, approaching 30 deg., for the tubes with diameter D<{approx}3 nm. On the other hand, for the tubes with D>{approx}3 nm, the chiral angles were widelymore » distributed, covering the chiral map entirely. Therefore, we consider that tubes with small diameters have a tendency to form armchair type. Correlation of chiralities between the inner and outer tubes was found to be random.« less

  18. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  19. Molecular description of the propagation of chirality from molecules to complex systems: different mechanisms controlled by hydrophobic interactions.

    PubMed

    Marinelli, Fabrizio; Sorrenti, Alessandro; Corvaglia, Valentina; Leone, Vanessa; Mancini, Giovanna

    2012-11-12

    In this work a combined theoretical and experimental approach was used to elucidate and describe at the molecular level the basic interactions that drive the transfer of the chiral information from chiral surfactant molecules to dye/surfactant assemblies. It was found that both hydrophobic interactions and relative concentrations strongly influence the chiroptical features of the heteroaggregates. In particular it was observed that, depending on the length of the surfactant hydrophobic chain, the chiral information is transferred to the dye by stabilizing an enantiomer either of a chiral conformer or of a chiral topological arrangement. These findings underline the role of hydrophobic interactions in the transfer of chirality and provide an example of the potential of in silico simulations for providing an accurate description of the process of chirality propagation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chirality detection of enantiomers using twisted optical metamaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies.

  1. Transfer of chirality from light to a Disperse Red 1 molecular glass surface.

    PubMed

    Mazaheri, Leila; Lebel, Olivier; Nunzi, Jean-Michel

    2017-12-01

    Chiral structures and materials interact with light in well-documented ways, but light can also interact with achiral materials to generate chirality by inscribing its asymmetric configuration on photoresponsive materials, such as azobenzene derivatives. While it is thus possible to generate both two-dimensional (2D) and three-dimensional (3D) chirality, 2D chirality is especially attractive because of its non-reciprocity. Herein, 2D chirality is induced on the surface of a glass-forming Disperse Red 1 derivative by irradiation with a single laser beam, yielding crossed spontaneous surface relief gratings with different pitches. Azimuth rotations up to 10° have been observed, and the absence of 3D chirality has been confirmed. This method thus allows generating non-reciprocal planar chiral objects by a simple, single irradiation process on a thin film of a material that can easily be processed over large areas or onto small objects.

  2. Chirality detection of enantiomers using twisted optical metamaterials

    PubMed Central

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  3. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study

    PubMed Central

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-01-01

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au–allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. PMID:26248980

  4. Synergistic Enhancement of Microwave Absorption Using Hybridized Polyaniline@helical CNTs with Dual Chirality.

    PubMed

    Tian, Xin; Meng, Fanbin; Meng, Fanchen; Chen, Xiangnan; Guo, Yifan; Wang, Ying; Zhu, Wenjun; Zhou, Zuowan

    2017-05-10

    In this study, we designed a dual-chirality hierarchical structure to achieve a synergistically enhanced effect in microwave absorption via the hybridization of nanomaterials. Herein, polyaniline (PANi) nanorods with tunable chirality are grown on helical carbon nanotubes (HCNTs), a typical nanoscale chiral structure, through in situ polymerization. The experimental results show that the hierarchical hybrids (PANi@HCNTs) exhibit distinctly dual chirality and a significant enhancement in electromagnetic (EM) losses compared to those of either pure PANi or HCNTs. The maximum reflection loss of the as-prepared hybrids can reach -32.5 dB at 8.9 GHz. Further analysis demonstrates that combinations of chiral acid-doped PANi and coiled HCNTs with molecular and nanoscale chirality lead to synergistic effects resulting from the dual chirality. The so-called cross-polarization may result in additional interactions with induced EM waves in addition to multiscaled relaxations from functional groups and interfacial polarizations, which can benefit EM absorption.

  5. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    PubMed

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Blue phase liquid crystal phase transition for cyano compound chiral nematic liquid crystal mixtures with three two-ring core structures and chiral dopant concentrations

    NASA Astrophysics Data System (ADS)

    Shin, Jaesun; Kim, Beomjong; Jung, Wansu; Fahad, Mateen; Park, SangJin; Hong, Sung-Kyu

    2017-05-01

    Blue phase (BP) temperature range of a chiral nematic liquid crystal (LC) mixture is dependent upon the host nematic LC chemical structure and chiral dopant concentration. In this study, we investigated BP phase transition behaviour and helical twisting power (HTP) using three chiral dopant concentrations of cyano compound chiral nematic LC mixtures incorporating three two-ring core structures in the host nematic LCs. The effect of the host nematic LC core structure, HTP and chiral dopant concentrations were considered on BP temperature ranges, for two types of complete BPI and BPII without isotropic phase (Iso) and two types of coexistence state of BPI+Iso and BPII+Iso.

  7. Chiralities of spiral waves and their transitions.

    PubMed

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  8. New isocoumarins from a cold-adapted fungal strain mucor sp. and their developmental toxicity to zebrafish embryos.

    PubMed

    Feng, Chun-Chi; Chen, Guo-Dong; Zhao, Yan-Qiu; Xin, Sheng-Chang; Li, Song; Tang, Jin-Shan; Li, Xiao-Xia; Hu, Dan; Liu, Xing-Zhong; Gao, Hao

    2014-07-01

    Three new isocoumarin derivatives, mucorisocoumarins A-C (1-3, resp.), together with seven known compounds, 4-10, were isolated from the cold-adapted fungal strain Mucor sp. (No. XJ07027-5). The structures of the new compounds were identified by detailed IR, MS, and 1D- and 2D-NMR analyses. It was noteworthy that compounds 1, 2, 4, and 5 were successfully resolved by chiral HPLC, indicating that 1-7 should exist as enantiomers. In an embryonic developmental toxicity assay using a zebrafish model, compound 3 produced developmental abnormalities in the zebrafish embryos. This is the first report of isocoumarins with developmental toxicity to zebrafish embryos. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  9. Ultrafast optical excitation of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ogawa, N.; Seki, S.; Tokura, Y.

    2015-04-01

    Magnetic skyrmions in an insulating chiral magnet Cu2OSeO3 were studied by all-optical spin wave spectroscopy. The spins in the conical and skyrmion phases were excited by the impulsive magnetic field from the inverse-Faraday effect, and resultant spin dynamics were detected by using time-resolved magneto-optics. Clear dispersions of the helimagnon were observed, which is accompanied by a distinct transition into the skyrmion phase, by sweeping temperature and magnetic field. In addition to the collective excitations of skyrmions, i.e., rotation and breathing modes, several spin precession modes were identified, which would be specific to optical excitation. The ultrafast, nonthermal, and local excitation of the spin systems by photons would lead to the efficient manipulation of nano-magnetic structures.

  10. Chiral vacuum fluctuations in quantum gravity.

    PubMed

    Magueijo, João; Benincasa, Dionigi M T

    2011-03-25

    We examine tensor perturbations around a de Sitter background within the framework of Ashtekar's variables and its cousins parameterized by the Immirzi parameter γ. At the classical level we recover standard cosmological perturbation theory, with illuminating insights. Quantization leads to real novelties. In the low energy limit we find a second quantized theory of gravitons which displays different vacuum fluctuations for right and left gravitons. Nonetheless right and left gravitons have the same (positive) energies, resolving a number of paradoxes suggested in the literature. The right-left asymmetry of the vacuum fluctuations depends on γ and the ordering of the Hamiltonian constraint, and it would leave a distinctive imprint in the polarization of the cosmic microwave background, thus opening quantum gravity to observational test.

  11. Synthesis and Evaluation of Chirally Defined Side Chain Variants of 7-Chloro-4-Aminoquinoline To Overcome Drug Resistance in Malaria Chemotherapy

    PubMed Central

    Dola, Vasantha Rao; Soni, Awakash; Agarwal, Pooja; Ahmad, Hafsa; Raju, Kanumuri Siva Rama; Rashid, Mamunur; Wahajuddin, Muhammad; Srivastava, Kumkum; Haq, W.; Dwivedi, A. K.; Puri, S. K.

    2016-01-01

    ABSTRACT A novel 4-aminoquinoline derivative [(S)-7-chloro-N-(4-methyl-1-(4-methylpiperazin-1-yl)pentan-2-yl)-quinolin-4-amine triphosphate] exhibiting curative activity against chloroquine-resistant malaria parasites has been identified for preclinical development as a blood schizonticidal agent. The lead molecule selected after detailed structure-activity relationship (SAR) studies has good solid-state properties and promising activity against in vitro and in vivo experimental malaria models. The in vitro absorption, distribution, metabolism, and excretion (ADME) parameters indicate a favorable drug-like profile. PMID:27956423

  12. Effects of Fluctuations on Inhomogeneous Chiral Transitions

    NASA Astrophysics Data System (ADS)

    Lee, Tong-Gyu; Yoshiike, Ryo; Tatsumi, Toshitaka

    We discuss the features of the order-parameter fluctuations in the normal phase near the phase boundary and their effects on the phase transition from the normal to the inhomogeneous phase with spatially modulated order parameter. Focusing on the chiral symmetry breaking, i.e., inhomogeneous chiral transition, we consider the fluctuation of the chiral pair consisting of quark-antiquark or quark-hole pair within the two-flavor Nambu-Jona-Lasinio model in the chiral limit. We clarify the roles of quantum and thermal fluctuations and also argue that anomalies for thermodynamic quantities in the inhomogeneous chiral transition should lead to phenomenological implications.

  13. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M. X.; Guo, B., E-mail: binguo@whut.edu.cn; Peng, L.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  14. Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-05-01

    Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.

  15. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  16. Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials

    NASA Astrophysics Data System (ADS)

    Philip, Elizabath; Zeki Güngördü, M.; Pal, Sharmistha; Kung, Patrick; Kim, Seongsin Margaret

    2017-09-01

    In this article, recent progress and development of terahertz chiral metamaterials including stereometamaterials are thoroughly reviewed. This review mainly focuses on the fundamental principles of design and arrangement of meta-atoms in metamaterials exhibiting chirality with various asymmetry and symmetry and 2D and 3D configuration. Related optical and propagation properties in chiral metamaterials, such as optical activity, circular dichroism, and negative refraction for each different chiral metamaterials, are compared and investigated. Finally, comparison between chiral metamaterials with stereometamaterials in terms of the polarization selective operation along with the similarity and the distinction is addressed as well.

  17. Enantiomeric separation of six chiral pesticides that contain chiral sulfur/phosphorus atoms by supercritical fluid chromatography.

    PubMed

    Zhang, Lijun; Miao, Yelong; Lin, Chunmian

    2018-03-01

    Six chiral pesticides containing chiral sulfur/phosphorus atoms were separated by supercritical fluid chromatography with supercritical CO 2 as the main mobile phase component. The effect of the chiral stationary phase, different type and concentration of modifiers, column temperature, and backpressure on the separation efficiency was investigated to obtain the appropriate separation condition. Five chiral pesticides (isofenphos-methyl, isocarbophos, flufiprole, fipronil, and ethiprole) were baseline separated under experimental conditions, while isofenphos only obtained partial separation. The Chiralpak AD-3 column showed a better chiral separation ability than others for chiral pesticides containing chiral sulfur/phosphorus atoms. When different modifiers at the same concentration were used, the retention factor of pesticides except flufiprole decreased in the order of isopropanol, ethanol, methanol; meanwhile, the retention factor of flufiprole increased in the order of isopropanol, ethanol, methanol. For a given modifier, the retention factor and resolution decreased on the whole with the increase of its concentration. The enantiomer separation of five chiral pesticides was an "enthalpy-driven" process, and the separation factor decreased as the temperature increased. The backpressure of the mobile phase had little effect on the separation factor and resolution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Corolla chirality does not contribute to directed pollen movement in Hypericum perforatum (Hypericaceae): mirror image pinwheel flowers function as radially symmetric flowers in pollination.

    PubMed

    Diller, Carolina; Fenster, Charles B

    2016-07-01

    Corolla chirality, the pinwheel arrangement of petals within a flower, is found throughout the core eudicots. In 15 families, different chiral type flowers (i.e., right or left rotated corolla) exist on the same plant, and this condition is referred to as unfixed/enantiomorphic corolla chirality. There are no investigations on the significance of unfixed floral chirality on directed pollen movement even though analogous mirror image floral designs, for example, enantiostyly, has evolved in response to selection to direct pollinator and pollen movement. Here, we examine the role of corolla chirality on directing pollen transfer, pollinator behavior, and its potential influence on disassortative mating. We quantified pollen transfer and pollinator behavior and movement for both right and left rotated flowers in two populations of Hypericum perforatum. In addition, we quantified the number of right and left rotated flowers at the individual level. Pollinators were indifferent to corolla chirality resulting in no difference in pollen deposition between right and left flowers. Corolla chirality had no effect on pollinator and pollen movement between and within chiral morphs. Unlike other mirror image floral designs, corolla chirality appears to play no role in promoting disassortative mating in this species.

  19. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  20. Chiral pharmaceuticals: A review on their environmental occurrence and fate processes.

    PubMed

    Sanganyado, Edmond; Lu, Zhijiang; Fu, Qiuguo; Schlenk, Daniel; Gan, Jay

    2017-11-01

    More than 50% of pharmaceuticals in current use are chiral compounds. Enantiomers of the same pharmaceutical have identical physicochemical properties, but may exhibit differences in pharmacokinetics, pharmacodynamics and toxicity. The advancement in separation and detection methods has made it possible to analyze trace amounts of chiral compounds in environmental media. As a result, interest on chiral analysis and evaluation of stereoselectivity in environmental occurrence, phase distribution and degradation of chiral pharmaceuticals has grown substantially in recent years. Here we review recent studies on the analysis, occurrence, and fate of chiral pharmaceuticals in engineered and natural environments. Monitoring studies have shown ubiquitous presence of chiral pharmaceuticals in wastewater, surface waters, sediments, and sludge, particularly β-receptor antagonists, analgesics, antifungals, and antidepressants. Selective sorption and microbial degradation have been demonstrated to result in enrichment of one enantiomer over the other. The changes in enantiomer composition may also be caused by biologically catalyzed chiral inversion. However, accurate evaluation of chiral pharmaceuticals as trace environmental pollutants is often hampered by the lack of identification of the stereoconfiguration of enantiomers. Furthermore, a systematic approach including occurrence, fate and transport in various environmental matrices is needed to minimize uncertainties in risk assessment of chiral pharmaceuticals as emerging environmental contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chirality transition in the epoxidation of (-)-alpha-pinene and successive hydrolysis studied by Raman optical activity and DFT.

    PubMed

    Qiu, Shi; Li, Guanna; Liu, Peng; Wang, Changhao; Feng, Zhaochi; Li, Can

    2010-03-28

    Characterization of the chirality evolution involved in chemical and biochemical reaction processes is extremely important to the understanding of the chiral catalysis mechanism. In this work, the chiral transition from the epoxidation of (-)-alpha-pinene to alpha-pinene oxide and successive hydrolysis to (-)-pinanediol has been studied as an archetype of the asymmetric catalysis by Raman optical activity (ROA) and the DFT calculation. Minor changes of the absolute configuration of the chiral products from (-)-alpha-pinene to (-)-pinanediol lead to the dramatic variation in ROA spectra indicating that the chirality is delocalized in the whole molecule rather than only concentrated on the chiral centers. The oxygen atom of alpha-pinene oxide contributes strong ROA signals while the two hydroxyl groups of (-)-pinanediol give no apparent contribution to the chirality in terms of ROA signals. Isolation of the two symmetric anisotropic invariants shows that the predominant contribution to the ROA signals stems from the electric dipole-magnetic dipole invariant, and the bond polarizability model is indeed found to be a good approximation for molecules composed of entirely axially-symmetric bonds in alpha-pinene oxide and (-)-pinanediol. This study demonstrates the feasibility of using ROA to sensitively monitor the variation of the chirality transition during the chiral reactions either in the chemical or biological system.

  2. Natural terpene derivatives as new structural task-specific ionic liquids to enhance the enantiorecognition of acidic enantiomers on teicoplanin-based stationary phase by high-performance liquid chromatography.

    PubMed

    Flieger, Jolanta; Feder-Kubis, Joanna; Tatarczak-Michalewska, Małgorzata; Płazińska, Anita; Madejska, Anna; Swatko-Ossor, Marta

    2017-06-01

    We present the specific cooperative effect of a semisynthetic glycopeptide antibiotic teicoplanin and chiral ionic liquids containing the (1R,2S,5R)-(-)-menthol moiety on the chiral recognition of enantiomers of mandelic acid, vanilmandelic acid, and phenyllactic acid. Experiments were performed chromatographically on an Astec Chirobiotic T chiral stationary phase applying the mobile phase with the addition of the chiral ionic liquids. The stereoselective binding of enantiomers to teicoplanin in presence of new chiral ionic liquids were evaluated applying thermodynamic measurements and the docking simulations. Both the experimental and theoretical methods revealed that the chiral recognition of enantiomers in the presence of new chiral ionic liquids was enthalpy driven. The changes of the teicoplanin conformation occurring upon binding of the chiral ionic liquids are responsible for the differences in the standard changes in Gibbs energy (ΔG 0 ) values obtained for complexes formed by the R and S enantiomers and teicoplanin. Docking simulations revealed the steric adjustment between the chiral ionic liquids cyclohexane ring (chair conformation) and the β-d-glucosamine ring of teicoplanin and additionally hydrophobic interactions between the decanoic aliphatic chain of teicoplanin and the alkyl group of the tested salts. The obtained terpene derivatives can be considered as "structural task-specific ionic liquids" responsible for enhancing the chiral resolution in synergistic systems with two chiral selectors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. ENANTIOMERIC RATIOS OF CHIRAL PCB ATROPISOMERS IN RADIODATED SEDIMENT CORES

    EPA Science Inventory

    Enantiomeric ratios (ERs)) of chiral polychlorinated biphenyl (PCB) atropisomers were quantified in radiodated sediment cores of Lake Hartwell SC, a reservoir heavily impacted by PCBS, to study spatial and temporal changes in chirality. A chiral analysis of cores showed accumulat...

  4. Spectrum of the Wilson Dirac operator at finite lattice spacings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akemann, G.; Damgaard, P. H.; Splittorff, K.

    2011-04-15

    We consider the effect of discretization errors on the microscopic spectrum of the Wilson Dirac operator using both chiral perturbation theory and chiral random matrix theory. A graded chiral Lagrangian is used to evaluate the microscopic spectral density of the Hermitian Wilson Dirac operator as well as the distribution of the chirality over the real eigenvalues of the Wilson Dirac operator. It is shown that a chiral random matrix theory for the Wilson Dirac operator reproduces the leading zero-momentum terms of Wilson chiral perturbation theory. All results are obtained for a fixed index of the Wilson Dirac operator. The low-energymore » constants of Wilson chiral perturbation theory are shown to be constrained by the Hermiticity properties of the Wilson Dirac operator.« less

  5. Chiral nanoparticles in singular light fields

    PubMed Central

    Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2017-01-01

    The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre–Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams. PMID:28378842

  6. Chiral nanoparticles in singular light fields

    NASA Astrophysics Data System (ADS)

    Vovk, Ilia A.; Baimuratov, Anvar S.; Zhu, Weiren; Shalkovskiy, Alexey G.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2017-04-01

    The studying of how twisted light interacts with chiral matter on the nanoscale is paramount for tackling the challenging task of optomechanical separation of nanoparticle enantiomers, whose solution can revolutionize the entire pharmaceutical industry. Here we calculate optical forces and torques exerted on chiral nanoparticles by Laguerre-Gaussian beams carrying a topological charge. We show that regardless of the beam polarization, the nanoparticles are exposed to both chiral and achiral forces with nonzero reactive and dissipative components. Longitudinally polarized beams are found to produce chirality densities that can be 109 times higher than those of transversely polarized beams and that are comparable to the chirality densities of beams polarized circularly. Our results and analytical expressions prove useful in designing new strategies for mechanical separation of chiral nanoobjects with the help of highly focussed beams.

  7. Chirality: a relational geometric-physical property.

    PubMed

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  8. Study on the determination and chiral inversion of R-salbutamol in human plasma and urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhou, Ting; Zeng, Jing; Liu, Shan; Zhao, Ting; Wu, Jie; Lai, Wenshi; He, Mingzhi; Xu, Beining; Qu, Shanshan; Xu, Ling; Tan, Wen

    2015-10-01

    The chiral inversion has been a concerned issue during the research and development of a chiral drug. In this study, a sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for determination of salbutamol enantiomers in human plasma and urine. The chiral inversion mechanism of R-salbutamol was fully investigated for the first time by studying the effects of physicochemical factors, including pH, temperature and time. A fitted model to predict the chiral inversion ratio of R-salbutamol was proposed using a Box-Behnken design. All the samples were separated on an Astec Chirobiotic T column and detected by a tandem mass spectrometer in multiple reaction monitoring mode. Lower limit of quantification of 0.100ng/mL was achieved under the optimized conditions. The method was fully validated and successfully applied to the clinical pharmacokinetic study of R-salbutamol in healthy volunteers. Chiral inversion of R-salbutamol to S-salbutamol has been detected in urine samples. The results indicated that pH and temperature were two dominant factors that caused the chiral inversion of R-salbutamol, which should be taken into consideration during the analysis of chiral drugs. The chiral inversion of R-salbutamol determined in this study was confirmed resulted from the gastric acid in stomach rather than caused by the analysis conditions. Moreover, the calculated results of the fitted model matched very well with the enantioselective pharmacokinetic study of R-salbutamol, and the individual difference of the chiral inversion ratio of R-salbutamol was related to the individual gastric environment. On the basis of the results, this study provides important and concrete information not only for the chiral analysis but also for the metabolism research of chiral drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    PubMed

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs. Enantioselective biotransformation of chiral POPs is dependent on enzyme amounts and activities. However, the role of cytochrome P450 in enantioselective biotransformation has not yet been confirmed. Currently available data on biotransformation of chiral POPs provide a preliminary understanding of the fate of chiral compounds in organisms. Further detailed studies of species-dependent biotransformation pathway and molecular mechanism in various animal models should be performed to comprehensively understand chiral POP biotransformation.

  10. Investigating the nature of chiral near-field interactions

    NASA Astrophysics Data System (ADS)

    Barr, Lauren E.; Horsley, Simon A. R.; Hooper, Ian R.; Eager, Jake K.; Gallagher, Cameron P.; Hornett, Samuel M.; Hibbins, Alastair P.; Hendry, Euan

    2018-04-01

    In recent years, there have been reports of enhanced chiroptical interactions in the near-fields of antennas, postulated to be mediated by high spatial gradients in the electromagnetic fields. Here, using gigahertz experimentation, we investigate the nature of the chiral near-field generated by an array of staggered-rod antennas through its interaction with an array of aligned, subwavelength metallic helices. This allows us to eliminate many potential origins of enhancements, such as those associated with plasmon-exciton interactions, and search solely for enhancements due to the high spatial gradients in the chirality of the fields around chiral antennas (so-called `superchiral fields'). By comparing the strength of the chiral interaction with our helices to that of a homogeneous chiral layer with effective material parameters, we find that the strength of this chiral interaction can be predicted using a completely local effective medium approximation. This suggests no obvious enhancement in the chiral interaction in the near-field and indicates that nonlocal interactions are negligible in this system.

  11. Industrial-scale separation of high-purity single-chirality single-wall carbon nanotubes for biological imaging

    PubMed Central

    Yomogida, Yohei; Tanaka, Takeshi; Zhang, Minfang; Yudasaka, Masako; Wei, Xiaojun; Kataura, Hiromichi

    2016-01-01

    Single-chirality, single-wall carbon nanotubes are desired due to their inherent physical properties and performance characteristics. Here, we demonstrate a chromatographic separation method based on a newly discovered chirality-selective affinity between carbon nanotubes and a gel containing a mixture of the surfactants. In this system, two different selectivities are found: chiral-angle selectivity and diameter selectivity. Since the chirality of nanotubes is determined by the chiral angle and diameter, combining these independent selectivities leads to high-resolution single-chirality separation with milligram-scale throughput and high purity. Furthermore, we present efficient vascular imaging of mice using separated single-chirality (9,4) nanotubes. Due to efficient absorption and emission, blood vessels can be recognized even with the use of ∼100-fold lower injected dose than the reported value for pristine nanotubes. Thus, 1 day of separation provides material for up to 15,000 imaging experiments, which is acceptable for industrial use. PMID:27350127

  12. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure.

    PubMed

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa

    2017-12-13

    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  13. Strong-field control and enhancement of chiral response in bi-elliptical high-order harmonic generation: an analytical model

    NASA Astrophysics Data System (ADS)

    Ayuso, David; Decleva, Piero; Patchkovskii, Serguei; Smirnova, Olga

    2018-06-01

    The generation of high-order harmonics in a medium of chiral molecules driven by intense bi-elliptical laser fields can lead to strong chiroptical response in a broad range of harmonic numbers and ellipticities (Ayuso et al 2018 J. Phys. B: At. Mol. Opt. Phys. 51 06LT01). Here we present a comprehensive analytical model that can describe the most relevant features arising in the high-order harmonic spectra of chiral molecules driven by strong bi-elliptical fields. Our model recovers the physical picture underlying chiral high-order harmonic generation (HHG) based on ultrafast chiral hole motion and identifies the rotationally invariant molecular pseudoscalars responsible for chiral dynamics. Using the chiral molecule propylene oxide as an example, we show that one can control and enhance the chiral response in bi-elliptical HHG by tailoring the driving field, in particular by tuning its frequency, intensity and ellipticity, exploiting a suppression mechanism of achiral background based on the linear Stark effect.

  14. Charge/spin supercurrent and the Fulde-Ferrell state induced by crystal deformation in Weyl/Dirac superconductors

    NASA Astrophysics Data System (ADS)

    Matsushita, Taiki; Liu, Tianyu; Mizushima, Takeshi; Fujimoto, Satoshi

    2018-04-01

    It has been predicted that emergent chiral magnetic fields can be generated by crystal deformation in Weyl/Dirac metals and superconductors. The emergent fields give rise to chiral anomaly phenomena as in the case of Weyl semimetals with usual electromagnetic fields. Here, we clarify effects of the chiral magnetic field on Cooper pairs in Weyl/Dirac superconductors on the basis of the Ginzburg-Landau equation microscopically derived from the quasiclassical Eilenberger formalism. It is found that Cooper pairs are affected by the emergent chiral magnetic field in a dramatic way, and the pseudo-Lorentz force due to the chiral magnetic field stabilizes the Fulde-Ferrell state and causes a charge/spin supercurrent, which flows parallel to the chiral magnetic field in the case of Weyl/Dirac superconductors. This effect is in analogy with the chiral magnetic effect of Weyl semimetals. In addition, we elucidate that neither Meissner effect nor vortex state due to chiral magnetic fields occurs.

  15. Enantioseparation by Capillary Electrophoresis Using Ionic Liquids as Chiral Selectors.

    PubMed

    Greño, Maider; Marina, María Luisa; Castro-Puyana, María

    2018-11-02

    Capillary electrophoresis (CE) is one of the most widely employed analytical techniques to achieve enantiomeric separations. In spite of the fact that there are many chiral selectors commercially available to perform enantioseparations by CE, one of the most relevant topics in this field is the search for new selectors capable of providing high enantiomeric resolutions. Chiral ionic liquids (CILs) have interesting characteristics conferring them a high potential in chiral separations although only some of them are commercially available. The aim of this article is to review all the works published on the use of CILs as chiral selectors in the development of enantioselective methodologies by CE, covering the period from 2006 (when the first research work on this topic was published) to 2017. The use of CILs as sole chiral selectors, as chiral selectors in dual systems or as chiral ligands will be considered. This review also provides detailed analytical information on the experimental conditions used to carry out enantioseparations in different fields as well as on the separation mechanism involved.

  16. Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Rybalka, D. O.; Shovkovy, I. A.

    2017-05-01

    By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.

  17. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    PubMed

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  18. Chiral-selective nonlinear optical generation and emission control with plasmonic metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cai, Wenshan

    2016-09-01

    Metamaterials can be designed to exhibit extraordinarily strong chiral responses. Here we present a chiral metamaterial that produces both distinguishable linear and nonlinear features in the visible to near-infrared range. In additional to the gigantic chiral effects in the linear regime, the metamaterial demonstrates a pronounced contrast between second harmonic responses from the two circular polarizations. Linear and nonlinear images probed with circularly polarized lights show strongly defined contrast. Moreover, the chiral centers of the nanometallic structures with enhanced hotspots can be purposely opened for direct access, where emitters occupying the light-confining regions produce chiral-selective enhancement of two-photon luminescence.

  19. Chiral magnetic effect in condensed matter systems

    DOE PAGES

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum anomaly in relativistic field theory of chiral fermions. In the quark-gluon plasma, the axial anomaly induces topological charge changing transition that results in the generation of electrical current along the magnetic field. In condensed matter systems, the chiral magnetic effect was first predicted in the gapless semiconductors with tow energy bands having pointlike degeneracies. In addition, thirty years later after this prediction, the chiral magnetic effect was finally observed in the 3Dmore » Dirac/Weyl semimetals.« less

  20. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  1. Emergence of Chiral Phases in Active Torque Dipole Systems

    NASA Astrophysics Data System (ADS)

    Fialho, Ana; Tjhung, Elsen; Cates, Michael; Marenduzzo, Davide

    The common description of active particles as active force dipoles fails to take into account that active processes in biological systems often exhibit chiral asymmetries, generating active chiral processes and torque dipoles. Examples of such systems include cytoskeleton filaments which interact with motor proteins and beating cilia and flagella. In particular, the generation of active torques by the actomyosin cytoskeleton has been linked to the break of chiral symmetry at a cellular level. This phenomenon could constitute the primary determinant for the break of left-right symmetry in many living organisms, e.g. the position of the human heart within the human body. In order to account for the effects of chirality, we consider active torque dipoles which generate a chiral active stress. We characterize quasi-1D and 2D systems of torque dipoles, using a combination of linear stability analysis and numerical simulations (Lattice Boltzmann). Our results show that activity drives a spontaneous breaking of chiral symmetry, leading to the self-assembly of a chiral phase, in the absence of any thermodynamic interactions favoring cholesteric ordering. At high values of activity, we also observe labyrinthine patterns where the activity-induced chiral ordering is highly frustrated.

  2. Circularly Polarized Luminescence from Inorganic Materials: Encapsulating Guest Lanthanide Oxides in Chiral Silica Hosts.

    PubMed

    Sugimoto, Masumi; Liu, Xin-Ling; Tsunega, Seiji; Nakajima, Erika; Abe, Shunsuke; Nakashima, Takuya; Kawai, Tsuyoshi; Jin, Ren-Hua

    2018-05-02

    Recently, circularly polarized luminescence (CPL)-active systems have become a very hot and interesting subject in chirality- and optics-related areas. The CPL-active systems are usually available by two approaches: covalently combining a luminescent centre to chiral motif or associating the guest of luminescent probe to a chiral host. However, all the chiral components in CPL materials were organic, although the luminescent components were alternatively organics or inorganics. Herein, the first totally inorganic CPL-active system by "luminescent guest-chiral host" strategy is proposed. Luminescent sub-10 nm lanthanide oxides (Eu 2 O 3 or Tb 2 O 3 ) nanoparticles (guests) were encapsulated into chiral non-helical SiO 2 nanofibres (host) through calcination of chiral SiO 2 hybrid nanofibres, trapping Eu 3+ (or Tb 3+ ). These lanthanide oxides display circular dichroism (CD) optical activity in the ultraviolet wavelength and CPL signals around at 615 nm for Eu 3+ and 545 nm for Tb 3+ . This work has implications for inorganic-based CPL-active systems by incorporation of various luminescent guests within chiral inorganic hosts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Fluorescent Phthalocyanine Assembly Distinguishes Chiral Isomers of Different Types of Amino Acids and Sugars.

    PubMed

    Jiang, Yuying; Liu, Chenxi; Wang, Xiqian; Wang, Tianyu; Jiang, Jianzhuang

    2017-07-25

    The functions of some natural supramolecular architectures, such as ribosomes, are dependent on the recognition of different types of chiral biomolecules. However, the recognition of different types of chiral molecules (multiobject chiral recognition), such as amino acids and sugars, by independent and identically artificial supramolecular assembly, was rarely achieved. In this article, simple amphiphilic achiral phthalocyanine was found to form supramolecular chiral assemblies with charged water-soluble polymers upon host-guest interactions at the air/water interface. Among these systems, one identical phthalocyanine/poly(l-lysine) assembly not only can distinguish enantiomers of different amino acids but also can recognize several epimers of monose. The chiral recognitions were achieved by comparing either the steady-state fluorescence intensity or fluorescence quenching rate of phthalocyanine/poly(l-lysine) assemblies, before and after interaction with different small chiral molecules. It was demonstrated that the interactions between poly(l-lysine) and different small chiral molecules could change the aggregation of phthalocyanines. And the sensitivity of fluorescence and the excellent multiobject chiral recognition properties of the phthalocyanine/poly(l-lysine) assembly are dependent on the subtle molecular packing mode and the cooperation of different noncovalent interactions.

  4. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality

    PubMed Central

    Raymond, Michael J.; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V.; Wan, Leo Q.

    2016-01-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels. PMID:28360944

  5. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    PubMed

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  6. ENANTIOMERIC OCCURRENCE AND DISTRIBUTION OF CHIRAL ORGANOCHLORINE COMPOUNDS IN U.S. RIVER SEDIMENT AND BIOTA

    EPA Science Inventory

    River sediment and biota (fish, bivalves) from throughout the continental U.S. were analyzed for chiral organochlorine compounds (o,p'-DDT and DDD, some chlordane compounds, PCB atropisomers) to assess spatial trends in environmental chirality. Chiral PCB enantiomers were racemic...

  7. Corrigendum to "Co-occurrence of linear and circular dichroism in chiral sculptured ZrO2 thin films" [Opt. Mater. 75 (January 2018) 319-324

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Song, Li

    2018-05-01

    The authors regret .

  8. Enantiomeric distribution of some linalool containing essential oils and their biological activities

    USDA-ARS?s Scientific Manuscript database

    The enantiomeric composition of linalool was determined in 42 essential oils using chiral columns. Essential oils were analyzed by multidimentional gas chromatography-mass spectrometry using a non-chiral and chiral FSC column combination with modified '-cyclodextrine (Lipodex E) as the chiral statio...

  9. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  10. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    NASA Astrophysics Data System (ADS)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  11. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  12. Chirality in distorted square planar Pd(O,N)2 compounds.

    PubMed

    Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi

    2013-10-01

    Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.

  13. The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de

    2012-04-15

    We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less

  14. Spin-Wave Chirality and Its Manifestations in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Proskurin, Igor; Stamps, Robert L.; Ovchinnikov, Alexander S.; Kishine, Jun-ichiro

    2017-10-01

    As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a nonequilibrium spin-wave chirality density.

  15. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chiral Responsive Liquid Quantum Dots.

    PubMed

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.

    PubMed

    Sato, Hisako; Yamagishi, Akihiko

    2009-11-20

    The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.

  18. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    PubMed Central

    Sato, Hisako; Yamagishi, Akihiko

    2009-01-01

    The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959

  19. Chirality controlled responsive self-assembled nanotubes in water† †Electronic supplementary information (ESI) available: Detailed experimental procedures and analyses, UV-vis absorption and CD spectroscopy, cryo-TEM and widefield microscopy. See DOI: 10.1039/c6sc02935c Click here for additional data file.

    PubMed Central

    van Dijken, D. J.; Štacko, P.; Stuart, M. C. A.; Browne, W. R.

    2017-01-01

    The concept of using chirality to dictate dimensions and to store chiral information in self-assembled nanotubes in a fully controlled manner is presented. We report a photoresponsive amphiphile that co-assembles with its chiral counterpart to form nanotubes and demonstrate how chirality can be used to effect the formation of either micrometer long, achiral nanotubes or shorter (∼300 nm) chiral nanotubes that are bundled. The nature of these assemblies is studied using a variety of spectroscopic and microscopic techniques and it is shown that the tubes can be disassembled with light, thereby allowing the chiral information to be erased. PMID:28451300

  20. Asymmetric synthesis using chiral-encoded metal

    NASA Astrophysics Data System (ADS)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  1. Synthesis and Monkey-PET Study of (R)- and (S)-18F-Labeled 2-Arylbenzoheterocyclic Derivatives as Amyloid Probes with Distinctive in Vivo Kinetics.

    PubMed

    Yang, Yanping; Wang, Xuedan; Yang, Hui; Fu, Hualong; Zhang, Jinming; Zhang, Xiaojun; Dai, Jiapei; Zhang, Zhiyong; Lin, Chunping; Guo, Yuzhi; Cui, Mengchao

    2016-11-07

    This study describes an effective strategy to improve pharmacokinetics of Aβ imaging agents, offering a novel class of (R)- and (S)- 18 F-labeled 2-arylbenzoheterocyclic derivatives which bear an additional chiral hydroxyl group on the side chain. These ligands displayed binding abilities toward Aβ aggregates with K i values ranging from 3.2 to 195.6 nM. Chirality-related discrepancy was observed in biodistribution, and (S)-2-phenylbenzoxazole enantiomers exhibited vastly improved brain clearance with washout ratios higher than 20. Notably, (S)-[ 18 F]28 possessed high binding potency (K i = 7.6 nM) and exceptional brain kinetics (9.46% ID/g at 2 min, brain 2min /brain 60min = 27.8) that is superior to well-established [ 18 F]AV45. The excellent pharmacokinetics and low nonspecific binding of (S)-[ 18 F]28 were testified by dynamic PET/CT scans in monkey brains. In addition, (S)-[ 18 F]28 clearly labeled Aβ plaques both in vitro and ex vivo. These results might qualify (S)-[ 18 F]28 to detect Aβ plaques with high signal-to-noise ratio.

  2. Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles.

    PubMed

    Yuan, Xingyi; Tan, Yanji; Wei, Xiaoping; Li, Jianping

    2017-11-01

    A novel molecular imprinting electrochemiluminescence sensor for detecting chiral cinchonine molecules was developed with a molecularly imprinted polymer membrane on the surfaces of magnetic microspheres. Fe 3 O 4 @Au nanoparticles modified with 6-mercapto-beta-cyclodextrin were used as a carrier, cinchonine as a template molecule, methacrylic acid as a functional monomer and N,N'-methylenebisacrylamide as a cross-linking agent. Cinchonine was specifically recognized by the 6-mercapto-beta-cyclodextrin functional molecularly imprinted polymer and detected based on enhancement of the electrochemiluminescence intensity caused by the reaction of tertiary amino structures of cinchonine molecules with Ru(bpy) 3 2+ . Cinchonine concentrations of 1 × 10 -10 to 4 × 10 -7  mol/L showed a good linear relationship with changes of the electrochemiluminescence intensity, and the detection limit of the sensor was 3.13 × 10 -11  mol/L. The sensor has high sensitivity and selectivity, and is easy to renew. It was designed for detecting serum samples, with recovery rates of 98.2% to 107.6%. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  4. Optical Rotatory Dispersion: New Twists on AN Old Topic

    NASA Astrophysics Data System (ADS)

    Vaccaro, Patrick

    2017-06-01

    Among the many physicochemical properties used to distinguish chiral molecules, perhaps none has had as profound and sustained an impact in the realm of chemistry as the characteristic interactions that take place with polarized light. Of special note is the dispersive (non-resonant) phenomenon of circular birefringence (CB), the manifestation of which first was reported over two centuries ago and which still is employed routinely - in the more familiar guise of specific optical rotation - to gauge the enantiomeric purity of the products emerging from asymmetric syntheses. Concerted experimental and theoretical efforts designed to probe such electronic optical activity in isolated chiral molecules will be presented, with special emphasis directed towards the marked influence that intramolecular (vibrational and conformational) dynamics and intermolecular (environmental) perturbations can exert upon the intrinsic chiroptical response. Requisite isolated-molecule measurements have been made possible by our continuing development of cavity ring-down polarimetry (CRDP), an ultrasensitive polarimetric scheme that has permitted the first quantitative analyses of optical rotatory dispersion (ORD or wavelength-resolved CB) to be performed in rarefied (gaseous) media. Various technical aspects of CRDP will be discussed to illustrate the unique capabilities and practical limitations afforded by this novel methodology. Comparison of specific rotation values acquired for a broad spectrum of rigid and flexible chiral species under complementary isolated and solvated conditions will highlight the intimate coupling that exists among electronic and nuclear degrees of freedom as well as the pronounced, yet oftentimes counterintuitive, effects incurred by subtle solute-solvent interactions. The disparate nature of optical activity extracted from different surroundings will be demonstrated, with quantum-chemical calculations serving to elucidate the structural, electronic, and environmental provenance of observed behavior. In addition to unraveling basic processes that mediate chiroptical response in condensed media, the vapor-phase ORD benchmarks resulting from these studies afford a critical assessment for computational predictions of dispersive optical activity and for their burgeoning ability to assist in the assignment of absolute stereochemical configuration.

  5. Hidden charged dark matter and chiral dark radiation

    NASA Astrophysics Data System (ADS)

    Ko, P.; Nagata, Natsumi; Tang, Yong

    2017-10-01

    In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.

  6. Depth-Resolved Multispectral Sub-Surface Imaging Using Multifunctional Upconversion Phosphors with Paramagnetic Properties

    PubMed Central

    Ovanesyan, Zaven; Mimun, L. Christopher; Kumar, Gangadharan Ajith; Yust, Brian G.; Dannangoda, Chamath; Martirosyan, Karen S.; Sardar, Dhiraj K.

    2015-01-01

    Molecular imaging is very promising technique used for surgical guidance, which requires advancements related to properties of imaging agents and subsequent data retrieval methods from measured multispectral images. In this article, an upconversion material is introduced for subsurface near-infrared imaging and for the depth recovery of the material embedded below the biological tissue. The results confirm significant correlation between the analytical depth estimate of the material under the tissue and the measured ratio of emitted light from the material at two different wavelengths. Experiments with biological tissue samples demonstrate depth resolved imaging using the rare earth doped multifunctional phosphors. In vitro tests reveal no significant toxicity, whereas the magnetic measurements of the phosphors show that the particles are suitable as magnetic resonance imaging agents. The confocal imaging of fibroblast cells with these phosphors reveals their potential for in vivo imaging. The depth-resolved imaging technique with such phosphors has broad implications for real-time intraoperative surgical guidance. PMID:26322519

  7. Spectrally-resolved fluorescence cross sections of aerosolized biological live agents and simulants using five excitation wavelengths in a BSL-3 laboratory.

    PubMed

    Pan, Yong-Le; Hill, Steven C; Santarpia, Joshua L; Brinkley, Kelly; Sickler, Todd; Coleman, Mark; Williamson, Chatt; Gurton, Kris; Felton, Melvin; Pinnick, Ronald G; Baker, Neal; Eshbaugh, Jonathan; Hahn, Jerry; Smith, Emily; Alvarez, Ben; Prugh, Amber; Gardner, Warren

    2014-04-07

    A system for measuring spectrally-resolved fluorescence cross sections of single bioaerosol particles has been developed and employed in a biological safety level 3 (BSL-3) facility at Edgewood Chemical and Biological Center (ECBC). It is used to aerosolize the slurry or solution of live agents and surrogates into dried micron-size particles, and to measure the fluorescence spectra and sizes of the particles one at a time. Spectrally-resolved fluorescence cross sections were measured for (1) bacterial spores: Bacillus anthracis Ames (BaA), B. atrophaeus var. globigii (BG) (formerly known as Bacillus globigii), B. thuringiensis israelensis (Bti), B. thuringiensis kurstaki (Btk), B. anthracis Sterne (BaS); (2) vegetative bacteria: Escherichia coli (E. coli), Pantoea agglomerans (Eh) (formerly known as Erwinia herbicola), Yersinia rohdei (Yr), Yersinia pestis CO92 (Yp); and (3) virus preparations: Venezuelan equine encephalitis TC83 (VEE) and the bacteriophage MS2. The excitation wavelengths were 266 nm, 273 nm, 280 nm, 365 nm and 405 nm.

  8. Chiral pesticides: identification, description, and environmental implications.

    PubMed

    Ulrich, Elin M; Morrison, Candice N; Goldsmith, Michael R; Foreman, William T

    2012-01-01

    Of the 1,693 pesticides considered in this review, 1,594 are organic chemicals, 47 are inorganic chemicals, 53 are of biological origin (largely non chemical; insect,fungus, bacteria, virus, etc.), and 2 have an undetermined structure. Considering that the EPA's Office of Pesticide Programs found 1,252 pesticide active ingredients(EPA Pesticides Customer Service 2011), we consider this dataset to be comprehensive; however, no direct comparison of the compound lists was undertaken. Of all pesticides reviewed, 482 (28%) are chiral; 30% are chiral when considering only the organic chemical pesticides. A graph of this distribution is shown in Fig. 7a. Each pesticide is classified with up to three pesticidal utilities (e.g., fungicide, plant growth regulator, rodenticide, etc.), taken first from the Pesticide Manual as a primary source, and the Compendium of Common Pesticide Names website as a secondary source. Of the chiral pesticides, 195 (34%) are insecticides (including attractants, pheromones, and repellents), 150 (27%) are herbicides (including plant growth regulators and herbicide safeners), 104 (18%) are fungicides, and 55 (10%)are acaricides. The distribution of chiral pesticides by utility is shown in Fig. 7b,including categories of pesticides that make up 3%t or less of the usage categories.Figure 7c shows a similar distribution of non chiral pesticide usage categories. Of the chiral pesticides, 270 (56%) have one chiral feature, 105 (22%) have two chiral features, 30 (6.2%) have three chiral features, and 29 (6.0%) have ten or more chiral features.Chiral chemicals pose many difficulties in stereospecific synthesis, characterization, and analysis. When these compounds are purposely put into the environment,even more interesting complications arise in tracking, monitoring, and predicting their fate and risks. More than 475 pesticides are chiral, as are other chiral contaminants such as pharmaceuticals, polychlorinated biphenyls, brominated flame retardants, synthetic musks, and their degradates (Kallenborn and Hiihnerfuss 2001;Heeb et al. 2007; Hihnerfuss and Shah 2009). The stereoisomers of pesticides can have widely different efficacy, toxicity to nontarget organisms, and metabolic rates in biota. For these reasons, it is important to first be aware of likely fate and effect differences, to incorporate molecular asymmetry insights into research projects, and to study the individual stereoisomers of the applied pesticide material.With the advent of enantioselective chromatography techniques, the chirality of pesticides has been increasingly studied. While the ChirBase (Advanced ChemistryDevelopment 1997-2010) database does not include all published chiral analytical separations, it does contain more than 3,500 records for 146 of the 482 chiral pesticides (30%). The majority of the records are found in the liquid chromatography database (2,677 or 76%), followed by the gas chromatography database (652 or 18%),and the capillary electrophoresis database (203 or 6%). The finding that only 30% of the chiral pesticides covered in this review have entries in ChirBase highlights the need for expanded efforts to develop additional enantioselective chromatographic methods. Other techniques (e.g., nuclear magnetic resonance and other spectroscopy)are available for investigation of chiral compounds, but often are not utilized because of cost, complexity, or simply not recognizing that a pesticide is chiral.In this review, we have listed and have briefly described the general nature of chiral fungicides, herbicides, insecticides, and other miscellaneous classes. A data-set generated for this review contains 1,693 pesticides, the number of enantioselective separation records in ChirBase, pesticide usage class, SMILES structure string and counts of stereogenic centers. This dataset is publically available for download at the following website: http://www.epa.gov/heasd/products/products.html. With the information herein coupled to the publically accessible dataset, we can begin to develop the tools to handle molecular asymmetry as it applies to agrochemicals.Additional structure-based resources would allow further analysis of key parameters (e.g., exposure, toxicity, environmental fate, degradation, and risks) for individual stereoisomers of chiral compounds.

  9. Supercritical fluid chromatography versus high performance liquid chromatography for enantiomeric and diastereoisomeric separations on coated polysaccharides-based stationary phases: Application to dihydropyridone derivatives.

    PubMed

    Hoguet, Vanessa; Charton, Julie; Hecquet, Paul-Emile; Lakhmi, Chahinaze; Lipka, Emmanuelle

    2018-05-11

    For analytical applications, SFC has always remained in the shadow of LC. Analytical enantioseparation of eight dihydropyridone derivatives, was run in both High Performance Liquid Chromatography and Supercritical Fluid Chromatography. Four polysaccharide based chiral stationary phases namely amylose and cellulose tris(3, 5-dimethylphenylcarbamate), amylose tris((S)-α-phenylethylcarbamate) and cellulose tris(4-methylbenzoate) with four mobile phases consisted of either n-hexane/ethanol or propan-2-ol (80:20 v:v) or carbon dioxide/ethanol or propan-2-ol (80:20 v:v) mixtures were investigated under same operatory conditions (temperature and flow-rate). The elution strength, enantioselectivity and resolution were compared in the two methodologies. For these compounds, for most of the conditions, HPLC afforded shorter retention times and a higher resolution than SFC. HPLC appears particularly suitable for the separation of the compounds bearing two chiral centers. For instance compound 7 was baseline resolved on OD-H CSP under n-Hex/EtOH 80/20, with resolution values equal to 2.98, 1.55, 4.52, between the four stereoisomers in less than 17 min, whereas in SFC, this latter is not fully separated in 23 min under similar eluting conditions. After analytical screenings, the best conditions were transposed to semi-preparative scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Conformational effects in photoelectron circular dichroism

    NASA Astrophysics Data System (ADS)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  11. A novel aggregation-induced emission enhancement triggered by the assembly of a chiral gelator: from non-emissive nanofibers to emissive micro-loops.

    PubMed

    Chen, Wenrui; Qing, Guangyan; Sun, Taolei

    2016-12-22

    In this study, a novel aggregation-induced emission (AIE) enhancement triggered by the self-assembly of chiral gelator is described. Tuning of molecular chirality in situ triggers different assemblies of superstructures exhibiting fluorescence. This novel AIE material can constitute an emerging library of chiral supramolecules for turn-on fluorescent sensors. It will also help in better understanding the effects of chiral factors on the photophysical process.

  12. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes.

    PubMed

    Zheng, Jun; You, Shu-Li

    2014-11-24

    Enantioselective construction of axially chiral biaryls by direct C-H bond functionalization reactions has been realized. Novel axially chiral biaryls were synthesized by the direct C-H bond olefination of biaryl compounds, using a chiral [Cp*Rh(III)] catalyst, in good to excellent yields and enantioselectivities. The obtained axially chiral biaryls were found as suitable ligands for rhodium-catalyzed asymmetric conjugate additions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characterizing optical chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliokh, Konstantin Y.; Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198; Nori, Franco

    We examine the recently introduced measure of chirality of a monochromatic optical field [Y. Tang and A. E. Cohen, Phys. Rev. Lett. 104, 163901 (2010)] using the momentum (plane-wave) representation and helicity basis. Our analysis clarifies the physical meaning of the measure of chirality and unveils its close relation to the polarization helicity, spin angular momentum, energy density, and Poynting energy flow. We derive the operators of the optical chirality and of the corresponding chiral momentum, which acquire remarkably simple forms in the helicity representation.

  14. Search for evidence of life in space: analysis of enantiomeric organic molecules by N,N-dimethylformamide dimethylacetal derivative dependant Gas Chromatography-Mass Spectrometry.

    PubMed

    Freissinet, C; Buch, A; Sternberg, R; Szopa, C; Geffroy-Rodier, C; Jelinek, C; Stambouli, M

    2010-01-29

    Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Theory of magnetoelastic resonance in a monoaxial chiral helimagnet

    NASA Astrophysics Data System (ADS)

    Tereshchenko, A. A.; Ovchinnikov, A. S.; Proskurin, Igor; Sinitsyn, E. V.; Kishine, Jun-ichiro

    2018-05-01

    We study magnetoelastic resonance phenomena in a monoaxial chiral helimagnet belonging to the hexagonal crystal class. By computing the spectrum of a coupled elastic wave and spin wave, it is demonstrated how hybridization occurs depending on their chirality. Specific features of the magnetoelastic resonance are discussed for the conical phase and the soliton lattice phase stabilized in the monoaxial chiral helimagnet. The former phase exhibits appreciable nonreciprocity of the spectrum, and the latter is characterized by a multiresonance behavior. We propose that the nonreciprocal spin wave around the forced-ferromagnetic state has potential capability to convert the linearly polarized elastic wave to a circularly polarized one with the chirality opposite to the spin-wave chirality.

  16. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    PubMed Central

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  17. A complex-polarization-propagator protocol for magneto-chiral axial dichroism and birefringence dispersion.

    PubMed

    Cukras, Janusz; Kauczor, Joanna; Norman, Patrick; Rizzo, Antonio; Rikken, Geert L J A; Coriani, Sonia

    2016-05-21

    A computational protocol for magneto-chiral dichroism and magneto-chiral birefringence dispersion is presented within the framework of damped response theory, also known as complex polarization propagator theory, at the level of time-dependent Hartree-Fock and time-dependent density functional theory. Magneto-chiral dichroism and magneto-chiral birefringence spectra in the (resonant) frequency region below the first ionization threshold of R-methyloxirane and l-alanine are presented and compared with the corresponding results obtained for both the electronic circular dichroism and the magnetic circular dichroism. The additional information content yielded by the magneto-chiral phenomena, as well as their potential experimental detectability for the selected species, is discussed.

  18. Chiroptical studies on supramolecular chirality of molecular aggregates.

    PubMed

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.

  19. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    PubMed

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Observation of chiral phonons

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Yi, Jun; Li, Ming-Yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  2. Enantioselective Synthesis of 5,7-Bicyclic Ring Systems from Axially Chiral Allenes Using a Rh(I)-Catalyzed Cyclocarbonylation Reaction

    PubMed Central

    Grillet, Francois; Brummond, Kay M.

    2013-01-01

    A transfer of chirality in an intramolecular Rh(I)-catalyzed allenic Pauson-Khand reaction (APKR) to access tetrahydroazulenones, tetrahydrocyclopenta[c]azepinones and dihydrocyclopenta[c]oxepinones enantioselectively (22 – 99% ee) is described. The substitution pattern of the allene affected the transfer of chiral information. Complete transfer of chirality was obtained for all trisubstituted allenes, but loss of chiral information was observed for disubstituted allenes. This work constitutes the first demonstration of a transfer of chiral information from an allene to the 5-position of a cyclopentenone using a cyclocarbonylation reaction. The absolute configuration of the corresponding cyclocarbonylation product was also established, something that is rarely done. PMID:23485149

  3. Through-space transfer of chiral information mediated by a plasmonic nanomaterial

    NASA Astrophysics Data System (ADS)

    Ostovar Pour, Saeideh; Rocks, Louise; Faulds, Karen; Graham, Duncan; Parchaňský, Václav; Bouř, Petr; Blanch, Ewan W.

    2015-07-01

    The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionize the study of biomolecular processes. Such devices may structurally characterize the mechanisms of protein-ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of both ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule.

  4. Molecular chirality: language, history, and significance.

    PubMed

    Gal, Joseph

    2013-01-01

    In this chapter some background material concerning molecular chirality and enantiomerism is presented. First some basic chemical-molecular aspects of chirality are reviewed, after which certain relevant terminology whose use in the literature has been problematic is discussed. Then an overview is provided of some of the early discoveries that laid the foundations of the science of molecular chirality in chemistry and biology, including the discovery of the phenomenon of molecular chirality by L. Pasteur, the proposals for the asymmetric carbon atom by J.H. van 't Hoff and J.A. Lebel, Pasteur's discovery of biological enantioselectivity, the discovery of enantioselectivity at biological receptors by A. Piutti, the studies of enzymatic stereoselectivity by E. Fischer, and the work on enantioselectivity in pharmacology by A. Cushny. Finally, the role of molecular chirality in pharmacotherapy and new-drug development, arguably one of the main driving forces for the current intense interest in the phenomenon of molecular chirality, is discussed.

  5. Stable Pentaquarks from Strange Chiral Multiplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit.more » This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.« less

  6. A molecular propeller effect for chiral separation and analysis

    PubMed Central

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-01-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved. PMID:26216219

  7. One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials.

    PubMed

    Rizza, Carlo; Di Falco, Andrea; Scalora, Michael; Ciattoni, Alessandro

    2015-07-31

    We suggest that electromagnetic chirality, generally displayed by 3D or 2D complex chiral structures, can occur in 1D patterned composites whose components are achiral. This feature is highly unexpected in a 1D system which is geometrically achiral since its mirror image can always be superposed onto it by a 180 deg rotation. We analytically evaluate from first principles the bianisotropic response of multilayered metamaterials and we show that the chiral tensor is not vanishing if the system is geometrically one-dimensional chiral; i.e., its mirror image cannot be superposed onto it by using translations without resorting to rotations. As a signature of 1D chirality, we show that 1D chiral metamaterials support optical activity and we prove that this phenomenon undergoes a dramatic nonresonant enhancement in the epsilon-near-zero regime where the magnetoelectric coupling can become dominant in the constitutive relations.

  8. Enantioselective recognition at mesoporous chiral metal surfaces.

    PubMed

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  9. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

    PubMed

    Zheng, Jianzhong; Wu, Yijin; Deng, Ke; He, Meng; He, Liangcan; Cao, Jing; Zhang, Xugang; Liu, Yaling; Li, Shunxing; Tang, Zhiyong

    2016-09-27

    Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

  10. Chiral magnetic effect of light

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  11. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.

    PubMed

    Schnell, M; Sarriugarte, P; Neuman, T; Khanikaev, A B; Shvets, G; Aizpurua, J; Hillenbrand, R

    2016-01-13

    Chiral antennas and metasurfaces can be designed to react differently to left- and right-handed circularly polarized light, which enables novel optical properties such as giant optical activity and negative refraction. Here, we demonstrate that the underlying chiral near-field distributions can be directly mapped with scattering-type scanning near-field optical microscopy employing circularly polarized illumination. We apply our technique to visualize, for the first time, the circular-polarization selective nanofocusing of infrared light in Archimedean spiral antennas, and explain this chiral optical effect by directional launching of traveling waves in analogy to antenna theory. Moreover, we near-field image single-layer rosette and asymmetric dipole-monopole metasurfaces and find negligible and strong chiral optical near-field contrast, respectively. Our technique paves the way for near-field characterization of optical chirality in metal nanostructures, which will be essential for the future development of chiral antennas and metasurfaces and their applications.

  12. Chiral metamirrors for broadband spin-selective absorption

    NASA Astrophysics Data System (ADS)

    Jing, Liqiao; Wang, Zuojia; Yang, Yihao; Zheng, Bin; Liu, Yongmin; Chen, Hongsheng

    2017-06-01

    Chiral metamirrors are recently proposed metadevices that have the ability of selective reflection for the designated circularly polarized waves. However, previous chiral metamirrors only work in a narrow band, which would limit their potential applications in engineering. Here, we propose an approach towards broadband spin-selective absorption. By combining the chiral resonant modes of two asymmetric split-ring resonators, we design and construct a chiral metamirror that absorbs only the left-handed circularly waves over a broad frequency range. The measured results show a bandwidth of 5.1%, almost 96% larger than that of the narrowband metamirror. Furthermore, the proposed chiral metamirror exhibits prominent performance at oblique incidence, even when high-order diffraction appears. The total thickness of the metamirror is only one-ninth of the wavelength, highly suitable for on-chip integration. Our findings may provide an efficient approach to boost the working bandwidth of the chiral metamirror and could advance its applications in optical instruments.

  13. Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis.

    PubMed

    Ali, Imran; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2014-04-01

    NACE is an alternative technique to aqueous CE in the chiral separations of partially soluble racemates. Besides, partially water-soluble or insoluble chiral selectors may be exploited in the enantiomeric resolution in NACE. The high reproducibility due to low Joule heat generation and no change in BGE concentration may make NACE a routine analytical technique. These facts attracted scientists to use NACE for the chiral resolution. The present review describes the advances in the chiral separations by NACE and its application in pharmaceutical and biomedical analysis. The emphasis has been given to discuss the selection of the chiral selectors and organic solvents, applications of NACE, comparison between NACE and aqueous CE, and chiral recognition mechanism. Besides, efforts have also been made to predict the future perspectives of NACE. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A molecular propeller effect for chiral separation and analysis

    NASA Astrophysics Data System (ADS)

    Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas

    2015-07-01

    Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.

  15. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux.

    PubMed

    Hirono, Yuji; Kharzeev, Dmitri E; Yin, Yi

    2016-10-21

    We introduce a new mechanism for the chiral magnetic effect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic flux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  16. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  17. Cell chirality: emergence of asymmetry from cell culture.

    PubMed

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  18. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    PubMed Central

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  19. From cosmic chirality to protein structure: Lord Kelvin's legacy.

    PubMed

    Barron, Laurence D

    2012-11-01

    A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  20. Cell chirality: emergence of asymmetry from cell culture

    PubMed Central

    Wan, Leo Q.; Chin, Amanda S.; Worley, Kathryn E.; Ray, Poulomi

    2016-01-01

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left–right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821525

  1. Chirality Transfer in Gold(I)-Catalysed Direct Allylic Etherifications of Unactivated Alcohols: Experimental and Computational Study.

    PubMed

    Barker, Graeme; Johnson, David G; Young, Paul C; Macgregor, Stuart A; Lee, Ai-Lan

    2015-09-21

    Gold(I)-catalysed direct allylic etherifications have been successfully carried out with chirality transfer to yield enantioenriched, γ-substituted secondary allylic ethers. Our investigations include a full substrate-scope screen to ascertain substituent effects on the regioselectivity, stereoselectivity and efficiency of chirality transfer, as well as control experiments to elucidate the mechanistic subtleties of the chirality-transfer process. Crucially, addition of molecular sieves was found to be necessary to ensure efficient and general chirality transfer. Computational studies suggest that the efficiency of chirality transfer is linked to the aggregation of the alcohol nucleophile around the reactive π-bound Au-allylic ether complex. With a single alcohol nucleophile, a high degree of chirality transfer is predicted. However, if three alcohols are present, alternative proton transfer chain mechanisms that erode the efficiency of chirality transfer become competitive. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  2. On stability, chirality measures, and theoretical VCD spectra of the chiral C58X2 fullerenes (X = N, B).

    PubMed

    Ostrowski, Sławomir; Jamróz, Michał H; Rode, Joanna E; Dobrowolski, Jan Cz

    2012-01-12

    The stability of all 23 C(58)N(2) and C(58)B(2) heterofullerenes in the singlet and triplet states was determined at the B3LYP/6-31G** level. In equilibrium mixture the achiral (1,4) C(58)N(2) isomer would be populated in ca. 95.8%, the chiral (1,16) one in ca. 3.3%, and the achiral (1,4) C(58)B(2) in 100%, whereas all triplet state isomers are less stable. Fourteen out of 23 C(58)X(2) are chiral. Four different chirality measures were calculated by our own CHIMEA program: pure geometrical, labeled, mass, and charge. Intercorrelations between the measures for all chiral compounds indicate that the pure geometrical chirality measure is unstable and should not be used in QSAR predictions of the other molecular properties, while the labeled and mass-weighted ones are promising QSAR descriptors. For each chiral C(58)N(2) molecule, some very strong VCD bands, of intensity comparable with that in the IR spectra, can serve in identification and characterization of the isomers.

  3. Spin chirality and polarised neutron scattering

    NASA Astrophysics Data System (ADS)

    Plakhty, V. P.; Maleyev, S. V.; Kulda, J.; Visser, E. D.; Wosnitza, J.; Moskvin, E. V.; Brückel, Th.; Kremer, R. K.

    2001-03-01

    Possibilities of polarised neutrons in studies of chiral criticality are discussed. The critical exponents β C of the average chirality below TN, as well as φ C=β C+γ C and, therefore, γ C of the chiral susceptibility above TN are determined for a XY triangular lattice antiferromagnet (TLA) CsMnBr3: β C=0.44(2) , γ C=0.84(7) . The critical behaviour of the chirality that orders at TN with a relative precision of 5×10 -4 proves that the phase transition belongs to a new chiral universality class. For the TLA CsNiCl 3 ( S=1) we found in the XY region ( B=3 T) φ C=1.24(7) in agreement with the Monte-Carlo value φ C=1.22(6) for the chiral universality class. In the easy-axis region at B=1 T, φ C=0.54(4) , and the Haldane excitations are observed in the polarisation-dependent inelastic cross section above TN. The helimagnet holmium exhibits a different chiral criticality with φ C=1.56(5) , essentially higher than for TLAs.

  4. Structure Study of the Chiral Lactide Molecules by Chirped-Pulse Ftmw Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zaleski, Daniel P.; Neill, Justin L.; Pate, Brooks H.; Bialkowska-Jaworska, Ewa; Kisiel, Zbigniew

    2011-06-01

    Lactide is a six member cyclic diester with two chiral centers that forms from lactic acid in the presence of heat and an acid catalyst. It can form either a homo-chiral (RR) structure with both methyl groups equatorial or a hetero-chiral (RS) structure where one methyl group is equatorial and the other methyl group is axial. Structurally lactide is similar to lactic acid dimer; however, the kinked ring is covalently bonded and two waters are lost. And unlike lactic acid dimer, which has a very small dipole moment, the dipole moment of lactide is on the order of 3 Debye. Here the microwave spectra of the highly rigid homo- and hetero-chiral lactides are presented, which were first assigned in a heated lactic acid spectrum where the chemistry took place in the reservoir nozzles. Further isotopic information from a commercial sample of predominately homo-chiral lactide was obtained leading to a Kraitchman substitution structure of the homo-chiral lactide. Preliminary results of the cluster of homo-chiral lactide with one water molecule attached are also presented.

  5. Minimally doubled fermions and spontaneous chiral symmetry breaking

    NASA Astrophysics Data System (ADS)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  6. Neuronal growth on L- and D-cysteine self-assembled monolayers reveals neuronal chiral sensitivity.

    PubMed

    Baranes, Koby; Moshe, Hagay; Alon, Noa; Schwartz, Shmulik; Shefi, Orit

    2014-05-21

    Studying the interaction between neuronal cells and chiral molecules is fundamental for the design of novel biomaterials and drugs. Chirality influences all biological processes that involve intermolecular interaction. One common method used to study cellular interactions with different enantiomeric targets is the use of chiral surfaces. Based on previous studies that demonstrated the importance of cysteine in the nervous system, we studied the effect of L- and D-cysteine on single neuronal growth. L-Cysteine, which normally functions as a neuromodulator or a neuroprotective antioxidant, causes damage at elevated levels, which may occur post trauma. In this study, we grew adult neurons in culture enriched with L- and D-cysteine as free compounds or as self-assembled monolayers of chiral surfaces and examined the effect on the neuronal morphology and adhesion. Notably, we have found that exposure to the L-cysteine enantiomer inhibited, and even prevented, neuronal attachment more severely than exposure to the D-cysteine enantiomer. Atop the L-cysteine surfaces, neuronal growth was reduced and degenerated. Since the cysteine molecules were attached to the surface via the thiol groups, the neuronal membrane was exposed to the molecular chiral site. Thus, our results have demonstrated high neuronal chiral sensitivity, revealing chiral surfaces as indirect regulators of neuronal cells and providing a reference for studying chiral drugs.

  7. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry.

    PubMed

    Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela

    2007-05-05

    The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported. (c) 2007 Wiley-Liss, Inc.

  8. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    PubMed

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chiral Polychlorinated Biphenyl Transport, Metabolism and Distribution - A Review

    PubMed Central

    Lehmler, Hans-Joachim; Harrad, Stuart J.; Hühnerfuss, Heinrich; Kania-Korwel, Izabela; Lee, Cindy M.; Lu, Zhe; Wong, Charles S.

    2009-01-01

    Chirality can be exploited to gain insight into enantioselective fate processes that may otherwise remain undetected because only biological, but not physical and chemical transport and transformation processes in an achiral environment will change enantiomer compositions. This review provides an in-depth overview of the application of chirality to the study of chiral polychlorinated biphenyls (PCBs), an important group of legacy pollutants. Like other chiral compounds, individual PCB enantiomers may interact enantioselectively (or enantiospecifically) with chiral macromolecules, such as cytochrome P-450 enzymes or ryanodine receptors, leading to differences in their toxicological effects and the enantioselective formation of chiral biotransformation products. Species and congener-specific enantiomer enrichment has been demonstrated in environmental compartments, wildlife and mammals, including humans, typically due to a complex combination of biotransformation processes and uptake via the diet by passive diffusion. Changes in the enantiomer composition of chiral PCBs in the environment have been used to understand complex aerobic and anaerobic microbial transformation pathways, to delineate and quantify PCB sources and transport in the environment, to gain insight into the biotransformation of PCBs in aquatic food webs, and to investigate the enantioselective disposition of PCBs and their methylsulfonyl PCBs metabolites in rodents. Overall, changes in chiral signatures are powerful, but currently underutilized tools for studies of environmental and biological processes of PCBs. PMID:20384371

  10. The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth† †Electronic supplementary information (ESI) available: Details of density functional theory (DFT) calculations, definition of interfacial formation energy (IFE), cap formation energy and fitting equation, Fig. S1–S4 and Table S1. See DOI: 10.1039/c7sc04714b

    PubMed Central

    Xu, Ziwei; Qiu, Lu

    2018-01-01

    Depending on its specific structure, or so-called chirality, a single-walled carbon nanotube (SWCNT) can be either a conductor or a semiconductor. This feature ensures great potential for building ∼1 nm sized electronics if chirality-selected SWCNTs could be achieved. However, due to the limited understanding of the growth mechanism of SWCNTs, reliable methods for chirality-selected SWCNTs are still pending. Here we present a theoretical model on the chirality assignment and control of SWCNTs during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of pentagons, especially the last (6th) one, during the nucleation stage. Our analysis showed that the chirality of a SWCNT is randomly assigned on a liquid or liquid-like catalyst surface, and two routes of synthesizing chirality-selected SWCNTs, which are verified by recent experimental achievements, are demonstrated. They are (i) by using high melting point crystalline catalysts, such as Ta, W, Re, Os, or their alloys, and (ii) by frequently changing the chirality of SWCNTs during their growth. This study paves the way for achieving chirality-selective SWCNT growth for high performance SWCNT based electronics. PMID:29732090

  11. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Rediscovering Chirality - Role of S-Metoprolol in Cardiovascular Disease Management.

    PubMed

    Mohan, Jagdish C; Shah, Siddharth N; Chinchansurkar, Sunny; Dey, Arindam; Jain, Rishi

    2017-06-01

    The process of drug discovery and development today encompass a myriad of paths for bringing a new therapeutic molecule that has minimal adverse effects and of optimal use to the patient. Chirality was proposed in the direction of providing a purer and safer form of drug [Ex- cetrizine and levocetrizine]. Decades have passed since the introduction of this concept and numerous chiral molecules are in existence in therapeutics, yet somehow this concept has been ignored. This review aims to rediscover the ignored facts about chirality, its benefits and clear some common myths considering the example of S-Metoprolol in the management of Hypertension and other cardiovascular diseases. Relevant articles from Pubmed, Embase, Medline and Google Scholar were searched using the terms "Chiral", "Chirality", "Enantiomers", "Isomers", "Isomerism", "Stereo-chemistry", and "S-Metoprolol". Out of 103 articles found 17 articles mentioning in general about the concept of chirality and articles on study of S-metoprolol in various cardiovascular diseases were then reviewed. Many articles mention about the importance of chirality yet the concept has not been highlighted much. Clear benefits with chiral molecules have been documented for various drug molecules few amongst them being anaesthetics, antihypertensives, antidepressants. Benefits of S-metoprolol over racemate are also clear in terms of responder rates, dose of administration and adverse effects profile in various cardiovascular diseases. Chirality is a good way forward in providing a new drug molecule which is safe with lesser pharmacokinetic and pharmacodynamics variability, lesser side effects and more potent action. S-metoprolol is chirally pure form of racemate metoprolol and has lesser side effects, is safer in patients of COPD and Diabetes who also have hypertension and comparable responder rates at half the doses when compared to racemate.

  13. Chiral discrimination in nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  14. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  15. Crystallization-induced dynamic resolution of Fox chiral auxiliary and application to the diastereoselective electrophilic fluorination of amide enolates.

    PubMed

    Lubin, Hodney; Dupuis, Christophe; Pytkowicz, Julien; Brigaud, Thierry

    2013-04-05

    A highly efficient crystallization-induced dynamic resolution (CIDR) of trans-Fox (fluorinated oxazolidine) chiral auxiliary is reported. This chiral auxiliary was used for highly diastereoselective (>98% de) electrophilic fluorination of amide enolates. After removal of the chiral auxiliary, highly valuable enantiopure α-fluorocarboxylic acids and β-fluoroalcohols are obtained.

  16. Use of Chiral Oxazolidinones for a Multi-Step Synthetic Laboratory Module

    ERIC Educational Resources Information Center

    Betush, Matthew P.; Murphree, S. Shaun

    2009-01-01

    Chiral oxazolidinone chemistry is used as a framework for an advanced multi-step synthesis lab. The cost-effective and robust preparation of chiral starting materials is presented, as well as the use of chiral auxiliaries in a synthesis scheme that is appropriate for students currently in the second semester of the organic sequence. (Contains 1…

  17. Chiral selection on inorganic crystalline surfaces

    NASA Technical Reports Server (NTRS)

    Hazen, Robert M.; Sholl, David S.

    2003-01-01

    From synthetic drugs to biodegradable plastics to the origin of life, the chiral selection of molecules presents both daunting challenges and significant opportunities in materials science. Among the most promising, yet little explored, avenues for chiral molecular discrimination is adsorption on chiral crystalline surfaces - periodic environments that can select, concentrate and possibly even organize molecules into polymers and other macromolecular structures. Here we review experimental and theoretical approaches to chiral selection on inorganic crystalline surfaces - research that is poised to open this new frontier in understanding and exploiting surface-molecule interactions.

  18. Heavy-light mesons in chiral AdS/QCD

    NASA Astrophysics Data System (ADS)

    Liu, Yizhuang; Zahed, Ismail

    2017-06-01

    We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.

  19. Phenomenology of anomalous chiral transports in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang

    2018-01-01

    High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.

  20. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    PubMed

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. On consistency of hydrodynamic approximation for chiral media

    NASA Astrophysics Data System (ADS)

    Avdoshkin, A.; Kirilin, V. P.; Sadofyev, A. V.; Zakharov, V. I.

    2016-04-01

    We consider chiral liquids, that is liquids consisting of massless fermions and right-left asymmetric. In such media, one expects existence of electromagnetic current flowing along an external magnetic field, associated with the chiral anomaly. The current is predicted to be dissipation-free. We consider dynamics of chiral liquids, concentrating on the issues of possible instabilities and infrared sensitivity. Instabilities arise, generally speaking, already in the limit of vanishing electromagnetic constant, αel → 0. In particular, liquids with non-vanishing chiral chemical potential might decay into right-left asymmetric states containing vortices.

  2. Chirality-induced negative refraction in magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, B.

    2013-09-15

    Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing themore » external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.« less

  3. Quark structure of chiral solitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitri Diakonov

    2004-05-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections andmore » additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.« less

  4. A quantitative measure of chirality inside nucleic acid databank.

    PubMed

    Pietropaolo, Adriana; Parrinello, Michele

    2011-08-01

    We show the capability of a chirality index (Pietropaolo et al., Proteins 2008;70:667-677) to investigate nucleic acid structures because of its high sensitivity to helical conformations. By analyzing selected structures of DNA and RNA, we have found that sequences rich in cytosine and guanine have a tendency to left-handed chirality, in contrast to regions rich in adenine or thymine which show strong negative, right-handed, chirality values. We also analyze RNA structures, where specific loops and hairpin motifs are characterized by a well-defined chirality value. We find that in nucleosome the chirality is exalted, whereas in ribosome it is reduced. Our results illustrate the sensitivity of this descriptor for nucleic acid conformations. Copyright © 2011 Wiley-Liss, Inc.

  5. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    PubMed

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  6. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality.

    PubMed

    Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J

    2016-02-24

    Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    PubMed

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  9. Evidence of chiral bands in even-even nuclei

    NASA Astrophysics Data System (ADS)

    Petrache, C. M.; Lv, B. F.; Astier, A.; Dupont, E.; Wang, Y. K.; Zhang, S. Q.; Zhao, P. W.; Ren, Z. X.; Meng, J.; Greenlees, P. T.; Badran, H.; Cox, D. M.; Grahn, T.; Julin, R.; Juutinen, S.; Konki, J.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Saren, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.; Cederwall, B.; Aktas, Ö.; Ertoprak, A.; Liu, H.; Matta, S.; Subramaniam, P.; Guo, S.; Liu, M. L.; Zhou, X. H.; Wang, K. L.; Kuti, I.; Timár, J.; Tucholski, A.; Srebrny, J.; Andreoiu, C.

    2018-04-01

    Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus 136Nd. One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands (M χ D ) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and B (M 1 )/B (E 2 ) values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the observed bands, which correspond to shapes with maximum triaxiality induced by different multiquasiparticle configurations in 136Nd.

  10. Enantioselective environmental toxicology of chiral pesticides.

    PubMed

    Ye, Jing; Zhao, Meirong; Niu, Lili; Liu, Weiping

    2015-03-16

    The enantioselective environmental toxic effect of chiral pesticides is becoming more important. As the industry develops, increasing numbers of chiral insecticides and herbicides will be introduced into use, potentially posing toxic effects on nontarget living beings. Chiral pesticides, including herbicides such as acylanilides, phenoxypropanoic acids, and imidazolinones, and insecticides such as synthetic pyrethroids, organophosphates, and DDT often behave enantioselectively during agricultural use. These compounds also pose unpredictable enantioselective ecological threats to nontarget living beings and/or humans, affecting the food chain and entire ecosystems. Thus, to investigate the enantioselective toxic effects of chiral insecticides and herbicides is necessary during environmental protection. The environmental toxicology of chiral pesticides, especially the findings obtained from studies conducted in our laboratory during the past 10 years, is reviewed.

  11. The importance of role sending in the sensemaking of change agent roles.

    PubMed

    Tucker, Danielle A; Hendy, Jane; Barlow, James

    2015-01-01

    The purpose of this paper is to investigate what happens when a lack of role-sending results in ambiguous change agent roles during a large scale organisational reconfiguration. The authors consider the role of sensemaking in resolving role ambiguity of middle manager change agents and the consequences of this for organisational restructuring. Data were collected from a case study analysis of significant organisational reconfiguration across a local National Health Service Trust in the UK. Data consists of 82 interviews, complemented by analysis of over 100 documents and field notes from 51 hours of observations collected over five phases covering a three year period before, during and after the reconfiguration. An inductive qualitative analysis revealed the sensemaking processes by which ambiguity in role definition was resolved. The data explains how change agents collectively make sense of a role in their own way, drawing on their own experiences and views as well as cues from other organisational members. The authors also identified the organisational outcomes which resulted from this freedom in sensemaking. This study demonstrates that by leaving too much flexibility in the definition of the role, agents developed their own sensemaking which was subsequently very difficult to manipulate. In creating new roles, management first needs to have a realistic vision of the task and roles that their agents will perform, and second, to communicate these expectations to both those responsible for recruiting these roles and to the agents themselves. Much of the focus in sensemaking research has been on the importance of change agents' sensemaking of the change but there has been little focus on how change agents sensemake their own role in the change.

  12. Probing Phonon Dynamics in Individual Single-Walled Carbon Nanotubes.

    PubMed

    Jiang, Tao; Hong, Hao; Liu, Can; Liu, Wei-Tao; Liu, Kaihui; Wu, Shiwei

    2018-04-11

    Interactions between elementary excitations, such as carriers, phonons, and plasmons, are critical for understanding the optical and electronic properties of materials. The significance of these interactions is more prominent in low-dimensional materials and can dominate their physical properties due to the enhanced interactions between these excitations. One-dimensional single-walled carbon nanotubes provide an ideal system for studying such interactions due to their perfect physical structures and rich electronic properties. Here we investigated G-mode phonon dynamics in individual suspended chirality-resolved single-walled carbon nanotubes by time-resolved anti-Stokes Raman spectroscopy. The improved technique allowed us to probe the intrinsic phonon information on a single-tube level and exclude the influences of tube-tube and tube-substrate interactions. We found that the G-mode phonon lifetime ranges from 0.75-2.25 ps and critically depends on whether the tube is metallic or semiconducting. In comparison with the phonon lifetimes in graphene and graphite, we revealed structure-dependent carrier-phonon and phonon-phonon interactions in nanotubes. Our results provide new information for optimizing the design of nanotube electronic/optoelectronic devices by better understanding and utilizing their phonon decay channels.

  13. Walking peptide on Au(110) surface: Origin and nature of interfacial process

    NASA Astrophysics Data System (ADS)

    Humblot, V.; Tejeda, A.; Landoulsi, J.; Vallée, A.; Naitabdi, A.; Taleb, A.; Pradier, C.-M.

    2014-10-01

    IGF tri-peptide adsorption on Au(110)-(1 × 2) under Ultra High Vacuum (UHV) conditions has been investigated using surface science techniques such as synchrotron based Angle Resolved X-ray Photoemission Spectroscopy (AR-PES or AR-XPS), Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM). The behaviour of IGF molecules has been revealed to be coverage dependent; at low coverage, there is formation of islands presenting a chiral self-organised molecular network with a (4 2, - 3 2) symmetry as shown by Low Energy Electron Diffraction (LEED) and Scanning Tunnelling Microscopy (STM) on the unaltered Au(110)-(1 × 2) reconstruction, suggesting significant intermolecular interactions. When the coverage is increased, the islands grow bigger, and one can observe the disappearance of the self-organised network, along with a remarkable destruction of the (1 × 2) substrate reconstruction, as shown by STM. The effect of IGF on the surface gold atoms has been further confirmed by angle-resolved photoemission measurements which suggest a modification of the electronic states with the (1 × 2) symmetry. The resulting molecular organisation, and overall the gold surface disorganisation, prove a strong surface-molecule interaction, which may be probably be explained by a covalent bonding.

  14. Experimental observation of the topological structure of exceptional points in an ultrathin hybridized metamaterial

    NASA Astrophysics Data System (ADS)

    Kang, Ming; Zhu, Weiren; Rukhlenko, Ivan D.

    2017-12-01

    The exceptional point (EP), which is one of the most important branch-type singularities exclusive to non-Hermitian systems, has been observed recently in various synthetic materials, giving rise to counterintuitive phenomena due to the nontrivial topology of the EP. Here, we present a direct experimental observation of the topological structure of the EPs via the angle-resolved transmission measurement of a hybridized metamaterial. Both eigenvalues and eigenvectors show branch-point singularities in the investigated biparametric space of frequency and incident angle. Importantly, the angle-resolved transmission coefficients provide all the information about the eigenvalues as well as the corresponding eigenvectors in the biparametric space, revealing the nontrivial topological structure of the EP, such as mode switching and the topological phase for a parameter loop encircling the EP. It is shown that the appearance of the EP in the scattering matrix is related directly to the perfect unidirectional transmission and the chirality of the EP corresponds to the maximum or minimum value of the asymmetric factor. Our investigation uncovers the capabilities of metamaterials for exploring the physics of EPs and their potential for having extreme optical properties, which provide potential applications in the spectral band ranging from microwaves to visible frequencies.

  15. Characteristics of chiral plasma plumes generated in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Nie, LanLan; Liu, FengWu; Zhou, XinCai; Lu, XinPei; Xian, YuBin

    2018-05-01

    A chiral plasma plume has recently been generated inside a dielectric tube without the use of an external magnetic field. In this paper, we seek to further study the key properties of such a chiral plume to improve our understanding of how this interesting structure is generated and controlled. The chiral plume is generated by externally mounting a stainless steel helical coil or a ring onto the dielectric tube. By changing the pitch of the helical coil, the pitch of the plasma plume can be controlled, with the shape of the plume following the shape of the helical coil. The addition of the helical coil significantly expands the range of parameters under which the chiral plasma plume appears. When the frequency of the applied voltage increases, additional stable discharge channels appear between the adjacent helices. The addition of two helical coils results in the formation of two chiral plasma plumes, which follow the shape of the helical coils. When a metal ring is placed on the outside of the tube, there is no chiral plasma plume between the high voltage electrode and the ring; however, a chiral plasma plume appears on the right side of the ring if the distance between the ring and the high voltage electrode is small. These findings suggest that the chiral plasma can be effectively modulated and guided using an externally mounted helical coil, which acts as the floating/actual ground to reduce the impedance of the discharge and as such contributes to the emergence of the chiral plasma plume behavior.

  16. Criteria of backscattering in chiral one-way photonic crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Pi-Ju; Chang, Shu-Wei

    2016-03-01

    Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.

  17. Enantiomeric separation of volatile organics by gas chromatography for the in situ analysis of extraterrestrial materials: kinetics and thermodynamics investigation of various chiral stationary phases.

    PubMed

    Freissinet, C; Buch, A; Szopa, C; Sternberg, R

    2013-09-06

    The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-β-PM, with a CSP composed of dissolved permethylated β-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    PubMed

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  19. Electrochemical impedance based chiral analysis of anti-ascorbutic drug: l-Ascorbic acid and d-ascorbic acid using C-dots decorated conductive polymer nano-composite electrode.

    PubMed

    Pandey, Indu; Kant, Rama

    2016-03-15

    Clinical manifestations owing to l-ascorbic acid for scurvy as comparison to d-ascorbic acid and challenges of chiral purity are overcome by using chiral selective conductive polymer nanocomposite which mimics antibodies and enzymes. A novel chiral selective imprinted polyaniline-ferrocene-sulfonic acid film has been electrochemically fabricated on C-dots modified pencil graphite electrode. The performance of the obtained l-ascorbic acid or d-ascorbic acid chiral selective sensor was investigated by electrochemical impedance spectroscopy, cyclic and differential pulse voltammetry. The surface characteristics of the C-dots, chiral sensor before and after the de-doping of chiral d- and l-ascorbic acid were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction spectroscopy. Excellent recognition results were obtained by difference in electron transfer resistance. The proposed chiral sensor is capable of measuring d-ascorbic acid or l-ascorbic acid in aqueous as well as in real and commercial samples within the range of 0.020-0.187 nM and 0.003-0.232 nM with detection limit of 0.00073 nM and 0.00016 nM, respectively. The proposed method has also been examined for the chiral selective recognition of ascorbic acid isomers (d- and l-) quantitatively, in complicated matrices of real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Determination of the absolute configurations at stereogenic centers in the presence of axial chirality.

    PubMed

    Polavarapu, Prasad L; Jeirath, Neha; Kurtán, Tibor; Pescitelli, Gennaro; Krohn, Karsten

    2009-01-01

    Cephalochromin, a homodimeric naphthpyranone natural product, contains both axial chirality due to the hindered rotation along the biaryl axis and central chirality due to the C-2, C-2' stereogenic centers of the fused pyranone ring. For determining the absolute configurations (ACs) of central chirality elements, different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD), and optical rotation (OR), have been used. From these experimental data, in conjunction with corresponding quantum chemical predictions at B3LYP/6-311G* level, it is found that the ECD spectra of cephalochromin are dominated by its axial chirality and are not suitable to distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers and hence to determine the ACs of the central chirality elements. OR signs also did not distinguish the (aS,2S,2'S) and (aS,2R,2'R) diastereomers. On other hand, VCD spectrum of cephalochromin exhibited separate spectral features attributable to axial chirality and stereogenic centers, thereby allowing the determination of both types of chirality elements. This is the first investigation demonstrating that, because of vibrations specific to the studied stereogenic centers, VCD spectroscopy can be used to simultaneously determine the ACs of axial and central chirality elements whenever other chiroptical methods (ECD and OR) fail to report on them. (c) 2009 Wiley-Liss, Inc.

  1. Chiral magnetic effect in condensed matter systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kharzeev, Dmitri E.

    2016-12-01

    The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].

  2. Chiral Polymers.

    DTIC Science & Technology

    1984-10-01

    regardless of the method of polymerization. The styrene-bead copolymers were packed in HPLC columns, but none were especiall, effective in separating...enantiomers in a racemic mixture. The chiral butyrolactone polymer was coated on silica, but this material did not effect resolution of racemic mixtures in an...been effected utilizing chiral oxazolines3 prompted the initial efforts to synthesize various chiral 2-vinyl- oxazoline monomers for incorporation

  3. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  4. Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube

    DTIC Science & Technology

    2015-07-17

    Final 3. DATES COVERED (From - To) 01-June-2014 to 31-May-2015 4. TITLE AND SUBTITLE Investigation of Chirality Selection Mechanism of...of two significant mechanistic aspects of carbon nanotube (CNT) array growth under chemical vapor deposition conditions: chirality selectivity and...affected by the morphological evolution of catalyst particles. 15. SUBJECT TERMS Carbon Nanotubes, Chirality , Processing, Catalysis

  5. Periodic chiral structures

    NASA Technical Reports Server (NTRS)

    Jaggard, Dwight L.; Engheta, Nader; Pelet, Philippe; Liu, John C.; Kowarz, Marek W.; Kim, Yunjin

    1989-01-01

    The electromagnetic properties of a structure that is both chiral and periodic are investigated using coupled-mode equations. The periodicity is described by a sinusoidal perturbation of the permittivity, permeability, and chiral admittance. The coupled-mode equations are derived from physical considerations and used to examine bandgap structure and reflected and transmitted fields. Chirality is observed predominantly in transmission, whereas periodicity is present in both reflection and transmission.

  6. Lock-in of a Chiral Soliton Lattice by Itinerant Electrons

    NASA Astrophysics Data System (ADS)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-03-01

    Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.

  7. Enantiospecific Detection of Chiral Nanosamples Using Photoinduced Force

    NASA Astrophysics Data System (ADS)

    Kamandi, Mohammad; Albooyeh, Mohammad; Guclu, Caner; Veysi, Mehdi; Zeng, Jinwei; Wickramasinghe, Kumar; Capolino, Filippo

    2017-12-01

    We propose a high-resolution microscopy technique for enantiospecific detection of chiral samples down to sub-100-nm size based on force measurement. We delve into the differential photoinduced optical force Δ F exerted on an achiral probe in the vicinity of a chiral sample when left and right circularly polarized beams separately excite the sample-probe interactive system. We analytically prove that Δ F is entangled with the enantiomer type of the sample enabling enantiospecific detection of chiral inclusions. Moreover, we demonstrate that Δ F is linearly dependent on both the chiral response of the sample and the electric response of the tip and is inversely related to the quartic power of probe-sample distance. We provide physical insight into the transfer of optical activity from the chiral sample to the achiral tip based on a rigorous analytical approach. We support our theoretical achievements by several numerical examples highlighting the potential application of the derived analytic properties. Lastly, we demonstrate the sensitivity of our method to enantiospecify nanoscale chiral samples with chirality parameter on the order of 0.01 and discuss how the sensitivity of our proposed technique can be further improved.

  8. Chiral HPLC for a study of the optical purity of new liquid crystalline materials derived from lactic acid

    NASA Astrophysics Data System (ADS)

    Vojtylová, T.; Kašpar, M.; Hamplová, V.; Novotná, V.; Sýkora, D.

    2014-08-01

    New liquid crystalline (LC) materials were prepared by derivatization of lactic acid. First compound possesses the lactic acid unit as the only chiral center and the second group of LC materials contains two chiral centers. Mesomorphic properties of both the newly synthesized LC materials were studied and the presence of the SmA*-SmC* or exhibit the twist grain boundary (TGB) phases, namely TGBA and TGBC, in a wide range of temperatures down to the room temperature was established. The potential of high-performance liquid chromatography (HPLC) applying chiral stationary phases to separate enantiomers or diastereoisomers of the synthesized LC compounds was evaluated. Two different brands of commercial chiral sorbents, Lux Amylose-2 and Chiralpak AD-3, both based on modified silica with derivatized polysaccharide, were employed in the development of separation procedures. The optimized chiral HPLC method provided a baseline separation of the individual enantiomers for the LC material containing one chiral center. In the case of the more complex compound with two asymmetric carbon atoms, where four isomers exist, partial separation was reached only using the current chiral HPLC.

  9. The combination of high Q factor and chirality in twin cavities and microcavity chain

    PubMed Central

    Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin

    2014-01-01

    Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881

  10. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality.

    PubMed

    Petrovic, Ana G; Vantomme, Ghislaine; Negrón-Abril, Yashira L; Lubian, Elisa; Saielli, Giacomo; Menegazzo, Ileana; Cordero, Roselynn; Proni, Gloria; Nakanishi, Koji; Carofiglio, Tommaso; Berova, Nina

    2011-10-01

    The transfer of chirality from a guest molecule to an achiral host is the subject of significant interest especially when, upon chiral induction, the chiroptical response of the host/guest complex can effectively report the absolute configuration (AC) of the guest. For more than a decade, dimeric metalloporphyrin hosts (tweezers) have been successfully applied as chirality probes for determination of the AC for a wide variety of chiral synthetic compounds and natural products. The objective of this study is to investigate the utility of a new class of melamine-bridged Zn-porphyrin tweezers as sensitive AC reporters. A combined approach based on an experimental CD analysis and a theoretical prediction of the prevailing interporphyrin helicity demonstrates that these tweezers display favorable properties for chiral recognition. Herein, we discuss the application of the melamine-bridged tweezer to the chiral recognition of a diverse set of chiral guests, such as 1,2-diamines, α-amino-esters and amides, secondary alcohols, and 1,2-amino-alcohols. The bulky periphery and the presence of a rigid porphyrin linkage lead, in some cases, to a more enhanced CD sensitivity than that reported earlier with other tweezers. Copyright © 2011 Wiley-Liss, Inc.

  11. Broken chiral symmetry on a null plane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, Silas R., E-mail: silas@physics.unh.edu

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-planemore » description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.« less

  12. Coupling mesodomain positional ordering to intra-domain orientational ordering in block copolymer assembly

    NASA Astrophysics Data System (ADS)

    Burke, Christopher; Reddy, Abhiram; Prasad, Ishan; Grason, Gregory

    Block copolymer (BCP) melts form a number of symmetric microphases, e.g. columnar or double gyroid phases. BCPs with a block composed of chiral monomers are observed to form bulk phases with broken chiral symmetry e.g. a phase of hexagonally ordered helical mesodomains. Other new structures may be possible, e.g. double gyroid with preferred chirality which has potential photonic applications. One approach to understanding chirality transfer from monomer to the bulk is to use self consistent field theory (SCFT) and incorporate an orientational order parameter with a preference for handed twist in chiral block segments, much like the texture of cholesteric liquid crystal. Polymer chains in achiral BCPs exhibit orientational ordering which couples to the microphase geometry; a spontaneous preference for ordering may have an effect on the geometry. The influence of a preference for chiral polar (vectorial) segment order has been studied to some extent, though the influence of coupling to chiral tensorial (nematic) order has not yet been developed. We present a computational approach using SCFT with vector and tensor order which employs well developed pseudo-spectral methods. Using this we explore how tensor order influences which structures form, and if it can promote chiral phases.

  13. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    PubMed

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chiral quantum dot based materials

    NASA Astrophysics Data System (ADS)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  15. Experimental Evidence of Chiral Ferrimagnetism in Amorphous GdCo Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Lambert, Charles-Henri; Kent, Noah

    Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii-Moriya interaction (DMI)-a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy-element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X-ray magnetic circular dichroism spectroscopy, and tailoring thickness,more » capping, and rare-earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. Finally, the type of chiral domain walls depends on the rare-earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.« less

  16. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    PubMed Central

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  17. In situ evidence for chirality-dependent growth rates of individual carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rao, Rahul; Liptak, David; Cherukuri, Tonya; Yakobson, Boris I.; Maruyama, Benji

    2012-03-01

    Chiral-selective growth of single-walled carbon nanotubes (SWNTs) remains a great challenge that hinders their use in applications such as electronics and medicine. Recent experimental and theoretical reports have begun to address this problem by suggesting that selectivity may be achieved during nucleation by changing the catalyst composition or structure. Nevertheless, to establish a rational basis for chiral-selective synthesis, the underlying mechanisms governing nucleation, growth, and termination of SWNTs must be better understood. To this end, we report the first measurements of growth rates of individual SWNTs through in situ Raman spectroscopy and correlate them with their chiral angles. Our results show that the growth rates are directly proportional to the chiral angles, in agreement with recent theoretical predictions. Importantly, the evidence singles out the growth stage as responsible for the chiral distribution—distinct from nucleation and termination which might also affect the final product distribution. Our results suggest a route to chiral-selective synthesis of SWNTs through rational synthetic design strategies based on kinetic control.

  18. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    NASA Astrophysics Data System (ADS)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  19. Macdonald index and chiral algebra

    NASA Astrophysics Data System (ADS)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  20. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

Top