Sample records for chirp sonar profiles

  1. Modeling interface roughness scattering in a layered seabed for normal-incident chirp sonar signals.

    PubMed

    Tang, Dajun; Hefner, Brian T

    2012-04-01

    Downward looking sonar, such as the chirp sonar, is widely used as a sediment survey tool in shallow water environments. Inversion of geo-acoustic parameters from such sonar data precedes the availability of forward models. An exact numerical model is developed to initiate the simulation of the acoustic field produced by such a sonar in the presence of multiple rough interfaces. The sediment layers are assumed to be fluid layers with non-intercepting rough interfaces.

  2. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  3. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T.; Arnold, T.

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface withmore » a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.« less

  4. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  5. Method for shaping and aiming narrow beams. [sonar mapping and target identification

    NASA Technical Reports Server (NTRS)

    Heyser, R. C. (Inventor)

    1981-01-01

    A sonar method and apparatus is discribed which utilizes a linear frequency chirp in a transmitter/receiver having a correlator to synthesize a narrow beamwidth pattern from otherwise broadbeam transducers when there is relative velocity between the transmitter/receiver and the target. The chirp is so produced in a generator in bandwidth, B, and time, T, as to produce a time bandwidth product, TB, that is increased for a narrower angle. A replica of the chirp produced in a generator is time delayed and Doppler shifted for use as a reference in the receiver for correlation of received chirps from targets. This reference is Doppler shifted to select targets preferentially, thereby to not only synthesize a narrow beam but also aim the beam in azimuth and elevation.

  6. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  7. Short-time fractional Fourier methods for the time-frequency representation of chirp signals.

    PubMed

    Capus, Chris; Brown, Keith

    2003-06-01

    The fractional Fourier transform (FrFT) provides a valuable tool for the analysis of linear chirp signals. This paper develops two short-time FrFT variants which are suited to the analysis of multicomponent and nonlinear chirp signals. Outputs have similar properties to the short-time Fourier transform (STFT) but show improved time-frequency resolution. The FrFT is a parameterized transform with parameter, a, related to chirp rate. The two short-time implementations differ in how the value of a is chosen. In the first, a global optimization procedure selects one value of a with reference to the entire signal. In the second, a values are selected independently for each windowed section. Comparative variance measures based on the Gaussian function are given and are shown to be consistent with the uncertainty principle in fractional domains. For appropriately chosen FrFT orders, the derived fractional domain uncertainty relationship is minimized for Gaussian windowed linear chirp signals. The two short-time FrFT algorithms have complementary strengths demonstrated by time-frequency representations for a multicomponent bat chirp, a highly nonlinear quadratic chirp, and an output pulse from a finite-difference sonar model with dispersive change. These representations illustrate the improvements obtained in using FrFT based algorithms compared to the STFT.

  8. Pre-Holocene to Modern Evolution of the Lower Delaware Estuary: Constraints from High-Resolution Chirp Subbottom Profiles

    NASA Astrophysics Data System (ADS)

    Daw, Julianne

    Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally

  9. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  10. Effect of pulse profile and chirp on a laser wakefield generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaomei; Shen Baifei; Ji Liangliang

    2012-05-15

    A laser wakefield driven by an asymmetric laser pulse with/without chirp is investigated analytically and through two-dimensional particle-in-cell simulations. For a laser pulse with an appropriate pulse length compared with the plasma wavelength, the wakefield amplitude can be enhanced by using an asymmetric un-chirped laser pulse with a fast rise time; however, the growth is small. On the other hand, the wakefield can be greatly enhanced for both positively chirped laser pulse having a fast rise time and negatively chirped laser pulse having a slow rise time. Simulations show that at the early laser-plasma interaction stage, due to the influencemore » of the fast rise time the wakefield driven by the positively chirped laser pulse is more intense than that driven by the negatively chirped laser pulse, which is in good agreement with analytical results. At a later time, since the laser pulse with positive chirp exhibits opposite evolution to the one with negative chirp when propagating in plasma, the wakefield in the latter case grows more intensely. These effects should be useful in laser wakefield acceleration experiments operating at low plasma densities.« less

  11. Numerical analysis of double chirp effect in tapered and linearly chirped fiber Bragg gratings.

    PubMed

    Markowski, Konrad; Jedrzejewski, Kazimierz; Osuch, Tomasz

    2016-06-10

    In this paper, a theoretical analysis of recently developed tapered chirped fiber Bragg gratings (TCFBG) written in co-directional and counter-directional configurations is presented. In particular, the effects of the synthesis of chirps resulting from both a fused taper profile and a linearly chirped fringe pattern of the induced refractive index changes within the fiber core are extensively examined. For this purpose, a numerical model based on the transfer matrix method (TMM) and the coupled mode theory (CMT) was developed for such a grating. The impact of TCFBG parameters, such as grating length and steepness of the taper transition, as well as the effect of the fringe pattern chirp rate on the spectral properties of the resulting gratings, are presented. Results show that, by using the appropriate design process, TCFBGs with reduced or enhanced resulting chirp, and thus with widely tailored spectral responses, can be easily achieved. In turn, it reveals a great potential application of such structures. The presented numerical approach provides an excellent tool for TCFBG design.

  12. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

    PubMed

    Lee, Wu-Jung; Moss, Cynthia F

    2016-05-01

    It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compression sonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.

  13. Studying seafloor bedforms using autonomous stationary imaging and profiling sonars

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Sherwood, Christopher R.

    2014-01-01

    The Sediment Transport Group at the U.S. Geological Survey, Woods Hole Coastal and Marine Science Center uses downward looking sonars deployed on seafloor tripods to assess and measure the formation and migration of bedforms. The sonars have been used in three resolution-testing experiments, and deployed autonomously to observe changes in the seafloor for up to two months in seven field experiments since 2002. The sonar data are recorded concurrently with measurements of waves and currents to: a) relate bedform geometry to sediment and flow characteristics; b) assess hydrodynamic drag caused by bedforms; and c) estimate bedform sediment transport rates, all with the goal of evaluating and improving numerical models of these processes. Our hardware, data processing methods, and test and validation procedures have evolved since 2001. We now employ a standard sonar configuration that provides reliable data for correlating flow conditions with bedform morphology. Plans for the future are to sample more rapidly and improve the precision of our tripod orientation measurements.

  14. Interaction of free charged particles with a chirped electromagnetic pulse.

    PubMed

    Khachatryan, A G; van Goor, F A; Boller, K-J

    2004-12-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM chirped pulse. Different types of chirp and pulse envelopes are considered. In the case of small chirp, an analytical expression is found for arbitrary temporal profiles of the chirp and the pulse envelope. In the 3D case, the interaction with a chirped pulse results in a polarization-dependent scattering of charged particles.

  15. Digital sonar system

    DOEpatents

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal. 4 figs.

  16. Digital sonar system

    DOEpatents

    Young, Kenneth K.; Wilkes, R. Jeffrey

    1995-01-01

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits a responding multifrequency sonar signal.

  17. Digital sonar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.K.; Wilkes, R.J.

    1995-11-21

    A transponder of an active digital sonar system identifies a multifrequency underwater activating sonar signal received from a remote sonar transmitter. The transponder includes a transducer that receives acoustic waves, including the activating sonar signal, and generates an analog electrical receipt signal. The analog electrical receipt signal is converted to a digital receipt signal and cross-correlated with a digital transmission signal pattern corresponding to the activating sonar signal. A relative peak in the cross-correlation value is indicative of the activating sonar signal having been received by the transponder. In response to identifying the activating sonar signal, the transponder transmits amore » responding multifrequency sonar signal. 4 figs.« less

  18. Digitally controlled sonars

    NASA Technical Reports Server (NTRS)

    Hansen, G. R.

    1983-01-01

    Sonars are usually designed and constructed as stand alone instruments. That is, all elements or subsystems of the sonar are provided: power conditioning, displays, intercommunications, control, receiver, transmitter, and transducer. The sonars which are a part of the Advanced Ocean Test Development Platform (AOTDP) represent a departure from this manner of implementation and are configured more like an instrumentation system. Only the transducer, transmitter, and receiver which are unique to a particular sonar function; Up, Down, Side Scan, exist as separable subsystems. The remaining functions are reserved to the AOTDP and serve all sonars and other instrumentation in a shared manner. The organization and functions of the common AOTDP elements were described and then the interface with the sonars discussed. The techniques for software control of the sonar parameters were explained followed by the details of the realization of the sonar functions and some discussion of the performance of the side scan sonars.

  19. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  20. Archive of digital Chirp sub-bottom profile data collected during USGS Cruise 07SCC01 offshore of the Chandeleur Islands, Louisiana, June 2007

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2010-01-01

    In June of 2007, the U.S. Geological Survey (USGS) conducted a geophysical survey offshore of the Chandeleur Islands, Louisiana, in cooperation with the Louisiana Department of Natural Resources (LDNR) as part of the USGS Barrier Island Comprehensive Monitoring (BICM) project. This project is part of a broader study focused on Subsidence and Coastal Change (SCC). The purpose of the study was to investigate the shallow geologic framework and monitor the enviromental impacts of Hurricane Katrina (Louisiana landfall was on August 29, 2005) on the Gulf Coast's barrier island chains. This report serves as an archive of unprocessed digital 512i and 424 Chirp sub-bottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 07SCC01 tells us the data were collected in 2007 for the Subsidence and Coastal Change (SCC) study and the data were collected during the first field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). All Chirp systems use a signal of continuously varying frequency; the Chirp systems used during this survey produce high resolution, shallow penetration profile images beneath the seafloor. The towfish is a sound source and receiver, which is typically towed 1 - 2 m below the sea surface. The acoustic energy is reflected at density boundaries (such as the seafloor or sediment layers

  1. Comparison and prediction of chirping in NSTX and DIII-D

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Berk, Herbert; Gorelenkov, Nikolai; Heidbrink, William; Kramer, Gerrit; Nazikian, Raffi; Pace, David; Podesta, Mario; van Zeeland, Michael

    2016-10-01

    We present an explanation of why frequency chirping of Alfven waves is ubiquitous in NSTX and rarely observed in DIII-D. A time-delayed cubic nonlinear equation is employed for the study of the onset of nonlinear phase-space structures. Its explosive solutions are chirping precursors. We employ NOVA and NOVA-K codes to provide consistent Alfvenic eigenmodes and weighted physical contributions from all regions of phase space. In addition, TRANSP is employed to determine the diffusivity needed to fulfill power balance. Though background micro-turbulence is usually unimportant in determining the energetic particle spatial profile, it may still be important with regard to whether chirping structures likely form. We show that the energetic particle micro-turbulent induced scattering often competes with collisional pitch-angle scattering. This competition explains the tendency for NSTX, where micro-turbulence is weak, to exhibit Alfvénic chirping, whereas in DIII-D turbulent diffusion usually dominates and chirping is not observed except when micro-turbulence markedly reduces.

  2. Single-channel seismic-reflection profiles and sidescan sonar records collected during May 15-20, 1978, on the southern New England continental shelf

    USGS Publications Warehouse

    Twichell, David C.

    1980-01-01

    The U.S. Geological Survey completed a cruise aboard the R/V CAPE HENLOPEN during May 15-20, 1978, to map the surface character, thickness and extent of the fine-grained.sediment deposit that covers an area 100 x 200 km on the southern New England Continental Shelf. The study area lies between Great South Channel to the east and Black Channel to the west, and extends from the 50-m isobath to the shelf edge.Single-channel high-resolution seismic-reflection profiles and echo-sounding profiles were collected along 941 km of trackline, sidescan sonar records were collected along 673 km of trackline. The subbottom profiles were collected by using a Huntec*system that was towed at midwater depths. Filters were set at 1 to 7 kHz. Echo-sounding records were collected by using a 60 kHz EDO Western system. A Klein stdescan sonar, set to scan 100 m to either side of the towed fish, was used to collect the sonographs.Navigation during the survey was done by the scientific staff using Loran-C equipment. Fixes were recorded and logged at least every 15 minutes; after the cruise, they were digitized and stored on magnetic tape.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo­sounding, and sidescan sonar records collected during the cruise can be purchased from the National Geophysical and Solar-Terrestrial Data Center, NOAA (National Oceanic ancl Atmosphere Administration), Boulder, CO 80302.

  3. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  4. Electron heating enhancement by frequency-chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir

    2014-09-14

    Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic fieldmore » is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.« less

  5. Geophysical data from offshore of the Gulf Islands National Seashore, Cat Island to Western Horn Island, Mississippi

    USGS Publications Warehouse

    Pendleton, E.A.; Baldwin, W.E.; Danforth, W.W.; DeWitt, N.T.; Forde, A.S.; Foster, D.S.; Kelso, K.W.; Pfeiffer, W.R.; Turecek, A.M.; Flocks, J.G.; Twichell, D.C.

    2011-01-01

    This report contains the geophysical and geospatial data that were collected along the western offshore side of the Gulf Islands of Mississippi on the research vessel Tommy Munro during two cruises in 2010. Geophysical data were collected by the U.S. Geological Survey in Woods Hole, Massachusetts, and St. Petersburg, Forida, in cooperation with the U.S. Army Corps of Engineers Mobile District. Bathymetric-sonar, sidescan-sonar, and Chirp seismic-reflection data were acquired with the following equipment, respectively: Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonars; Klein 3000 and 3900 dual-frequency sidescan sonars; and an EdgeTech 512i Chirp sub-bottom profiling system. The long-term goals of this mapping effort are to produce high-quality, high-resolution geologic maps and interpretations that can be utilized to identify sand resources within the region, to better understand the Holocene evolution, and to anticipate future changes in this coastal system. Processed geospatial data files and the geophysical data provided in this report help attain these goals.

  6. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of themore » seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.« less

  7. Detection to the DepositFan Occurring in the Sun Moon Lake Using Geophysical Sonar Data

    NASA Astrophysics Data System (ADS)

    Mimi, L.

    2014-12-01

    Located in central Taiwan, the Sun Moon Lake is an U-shaped basin with the waters capacity for 138.68 × 106m³. The water is input through two underground tunnels from the Wu-Jie dam in the upstream of the Zhuo-shui river. Although the Wu-Jie dam has been trying to keep the tunnels transporting clean water into the lake, the water is still mixed with muds. The silty water brings the deposits accumulating outwards from positions of the tunnel outlets resulting in a deposit fan formed in the lake. To monitor how the fan is accumulated is then very important in terms of environmental issue, tourism and electric power resources. Institute of Oceanography, National Taiwan University therefore conducted projects to use the multi-beam echo sounders to collect bathymetric data, and used the Chirp sub-bottom profiler to explore silted pattern inside the deposit fan. With these data, underwater topographic maps were plotted to observe the shape and internal structure of the fan. Moreover, two sets of data obtained in 2006 and 2012 were used to estimate the siltation magnitude and pattern in the six years period.The multi-beam sounder is Resons Seabat 9001s model; it collects 60 values in each of the swaths positioned by the DGPS method.The sub-bottom profiler is the EdgeTech 3100P Chirp Sonar, its acoustic wave frequency is in 2 ~ 16kHz. The data give the siltation amount in the Sun Moon Lake was around 3× 106 m³, which gives annual siltation rate at 5× 105 m³. The leading edge of the deposit fan has been expanded westwards 2 km from the water outlet since the tunnel was built 70 years ago; however, outside the deposit fan, the siltation shows insignificant amount on the water bottom.In the past few years the siltation mainly occurs outside in the east side of lake, more closer to the water outlets, the terrain had been increased from 744 m to 746 m (748.5 meters is stranded level of the lake).Observing sub-bottom profiler data, we can clearly see the location of the

  8. Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke

    2018-01-01

    Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.

  9. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  10. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    NASA Astrophysics Data System (ADS)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation

  11. Orthogonal Chirp-Based Ultrasonic Positioning

    PubMed Central

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-01-01

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454

  12. Orthogonal Chirp-Based Ultrasonic Positioning.

    PubMed

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-04-27

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.

  13. The Climate Hazards group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Funk, C. C.; Husak, G. J.; Pedreros, D. H.; Landsfeld, M.; Verdin, J. P.; Shukla, S.

    2013-12-01

    CHIRP and CHIRPS are new quasi-global precipitation products with daily to seasonal time scales, a 0.05° resolution, and a 1981 to near real-time period of record. Developed by the Climate Hazards Group at UCSB and scientists at the U.S. Geological Survey Earth Resources Observation and Science Center specifically for drought early warning and environmental monitoring, CHIRPS provides moderate latency precipitation estimates that place observed hydrologic extremes in their historic context. Three main types of information are used in the CHIRPS: (1) global 0.05° precipitation climatologies, (2) time-varying grids of satellite-based precipitation estimates, and (3) in situ precipitation observations. CHIRP: The global grids of long-term (1980-2009) average precipitation were estimated for each month based on station data, averaged satellite observations, and physiographic parameters. 1981-present time-varying grids of satellite precipitation were derived from spatially varying regression models based on pentadal cold cloud duration (CCD) values and TRMM V7 training data. The CCD time-series were derived from the CPC and NOAA B1 datasets. Pentadal CCD-percent anomaly values were multiplied by pentadal climatology fields to produce low bias pentadal precipitation estimates. CHIRPS: The CHG station blending procedure uses the satellite-observed spatial covariance structure to assign relative weights to neighboring stations and the CHIRP values. The CHIRPS blending procedure is based on the expected correlation between precipitation at a given target location and precipitation at the locations of the neighboring observation stations. These correlations are estimated using the CHIRP fields. The CHG has developed an extensive archive of in situ daily, pentadal and monthly precipitation totals. The CHG database has over half a billion daily rainfall observations since 1980 and another half billion before 1980. Most of these observations come from four sets of global

  14. Propagation properties of the chirped Airy beams through the gradient-index medium

    NASA Astrophysics Data System (ADS)

    Feng, Liyan; Zhang, Jianbin; Pang, Zihao; Wang, Linyi; Zhong, Tianfen; Yang, Xiangbo; Deng, Dongmei

    2017-11-01

    Through analytical derivation and numerical analysis, the propagation properties of the chirped Airy(CAi) beams in the gradient-index medium are investigated. The intensity and the phase distributions, the propagation trajectory and the Poynting vector of the CAi beams are demonstrated to investigate the propagation properties. Owing to the special and symmetrical refractive index profile of the gradient-index medium, the CAi beams propagate periodically. The effects of the distribution factor and the chirped parameter on the propagation of the CAi beams are analyzed. As the increasing of the distribution factor, the intensity distribution of the CAi beams is more scattering. However, with the chirped parameter increasing, the focusing property of the CAi beams strengthens. The variation of the chirped parameter can change the position of the peak intensity maximum, but it cannot alter the period of the peak intensity. The variations of the initial phase and the energy of the beams in the transverse plane expedite accordingly.

  15. Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schluck, F.; Lehmann, G.; Spatschek, K. H.

    Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less

  16. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    NASA Astrophysics Data System (ADS)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  17. Minehunting sonar system research and development

    NASA Astrophysics Data System (ADS)

    Ferguson, Brian

    2002-05-01

    Sea mines have the potential to threaten the freedom of the seas by disrupting maritime trade and restricting the freedom of maneuver of navies. The acoustic detection, localization, and classification of sea mines involves a sequence of operations starting with the transmission of a sonar pulse and ending with an operator interpreting the information on a sonar display. A recent improvement to the process stems from the application of neural networks to the computed aided detection of sea mines. The advent of ultrawideband sonar transducers together with pulse compression techniques offers a thousandfold increase in the bandwidth-time product of conventional minehunting sonar transmissions enabling stealth mines to be detected at longer ranges. These wideband signals also enable mines to be imaged at safe standoff distances by applying tomographic image reconstruction techniques. The coupling of wideband transducer technology with synthetic aperture processing enhances the resolution of side scan sonars in both the cross-track and along-track directions. The principles on which conventional and advanced minehunting sonars are based are reviewed and the results of applying novel sonar signal processing algorithms to high-frequency sonar data collected in Australian waters are presented.

  18. Chirp subbottom profile data collected in 2015 from the northern Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Forde, Arnell S.; DeWitt, Nancy T.; Fredericks, Jake J.; Miselis, Jennifer L.

    2018-01-30

    As part of the Barrier Island Evolution Research project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore geophysical survey around the northern Chandeleur Islands, Louisiana, in September 2015. The objective of the project is to improve the understanding of barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual time scales (1–5 years). Collecting geophysical data can help researchers identify relations between the geologic history of the islands and their present day morphology and sediment distribution. High-resolution geophysical data collected along this rapidly changing barrier island system can provide a unique time-series dataset to further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over medium-term time scales (months to years). Subbottom profile data were collected in September 2015 offshore of the northern Chandeleur Islands, during USGS Field Activity Number 2015-331-FA. Data products, including raw digital chirp subbottom data, processed subbottom profile images, survey trackline map, navigation files, geographic information system data files and formal Federal Geographic Data Committee metadata, and Field Activity Collection System and operation logs are available for download.

  19. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Junjie; Zeng Bin; Yu Yongli

    2010-11-15

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecondmore » pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.« less

  20. Multibeam Formation with a Parametric Sonar

    DTIC Science & Technology

    1976-03-05

    AD-A022 815 MULTIBEAM FORMATION WITH A PARAMETRIC SONAR Robert L. White Texas University at Austin Prepared for: Office of Naval Research 5 March...PARAMETRIC SONAR Final Report under Contract N00014-70-A-0166, Task 0020 1 February - 31 July 1974 Robe&, L. White OFFICE OF NAVAL RESEARCH Contract N00014...78712 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. r-X: ~ ... ABSTRACT Parametric sonar has proven to be an effective concept in sonar

  1. Quaternary sedimentary processes on the northwestern African continental margin - An integrated study using side-scan sonar, high-resolution profiling, and core data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masson, D.G.; Huggett, Q.J.; Weaver, P.P.E.

    1991-08-01

    Side-scan sonar data, cores, and high-resolution profiles have been used to produce an integrated model of sedimentation for the continental margin west of the Canary Islands. Long-range side-scan sonar (GLORIA) data and a grid of 3.5-kHz profiles, covering some 200,000 km{sup 2} allow a regional appraisal of sedimentation. More detailed studies of selected areas have been undertaken using a new 30 kHz deep-towed side-scan sonar (TOBI) developed by the U.K. Institute of Oceanographic Sciences. Sediment cores have been used both to calibrate acoustic facies identified on sonographs and for detailed stratigraphic studies. The most recent significant sedimentation event in themore » area is to Saharan Sediment Slide, which carried material from the upper continental slope off West Africa to the edge of the Madeira Abyssal Plain, a distance of some 1000 km. The authors data shows the downslope evolution of the debris flow. Near the Canaries, it is a 20-m-thick deposit rafting coherent blocks of more than 1 km diameter; side-scan records show a strong flow-parallel fabric on a scale of tens of meters. On the lower slope, the debris flow thins to a few meters, the flow fabric disappears, and the rafted blocks decrease to meters in diameter. Side-scan data from the lower slope show that the Saharan Slide buries an older landscape of turbidity current channels, typically 1 km wide and 50 m deep. Evidence from the Madeiran Abyssal Plain indicates a history of large but infrequent turbidity currents, the emplacement of which is related to the effects of sea level changes on the northwest African margin.« less

  2. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli I: Versus Click and Tone Burst Stimuli.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to generate normative auditory brainstem response (ABR) wave component peak latency and amplitude values for neonates with air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli (i.e., 500, 1000, 2000, and 4000 Hz). A second objective was to compare neonate ABRs to CE-Chirp stimuli with ABR responses to traditional click and tone burst stimuli with the same stimulus parameters. Participants were 168 healthy neonates. ABRs were obtained to air- and bone-conducted CE-Chirp and click stimuli and air-conducted CE-Chirp octave band and tone burst stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps and clicks. The effect of stimulus level was also examined with bone-conducted CE-Chirps and clicks and air-conducted CE-Chirp octave band stimuli. In general, ABR wave V amplitudes to air- and bone-conducted CE-Chirp stimuli were significantly larger (p < 0.05) than those evoked to traditional click and tone burst stimuli. Systematic statistically significant (p < 0.05) wave V latency differences existed between the air- and bone-conducted CE-Chirp and CE-Chirp octave band stimuli relative to traditional click and tone burst stimuli. ABRs to air- and bone-conducted CE-Chirps and CE-Chirp octave band stimuli may be valuable in the assessment of newborn infants. However, the prognostic value of such stimuli needs to be validated.

  3. Field trial of a Doppler sonar system for fisheries applications

    NASA Astrophysics Data System (ADS)

    Tollefsen, Cristina D. S.; Zedel, Len

    2003-10-01

    Various deployments of commercial Doppler current profiling systems have demonstrated that these instruments can detect fish and measure their swimming speeds. However, research into the possible application of Doppler sonar to fisheries problems is limited and has not taken advantage of coherent signal processing schemes. A field trial was undertaken in August 2002 to explore the capabilities of a coherent Doppler sonar when applied to detecting discrete targets. The passage of migrating salmon on the Fraser River in British Columbia provided an ideal test opportunity with fish of well-defined swimming behavior and allowed for comparisons with conventional fisheries acoustics techniques. The instrument tested was a 250-kHz sonar which provided for phase coding of transmit pulses and coherent sampling of successive acoustic returns. The field trial resulted in 11 consecutive days of Doppler sonar data acquired during the peak of the sockeye salmon (Oncorhynchus nerka) migration. A total of 7425 individual fish were identified and their swimming speed was measured with an accuracy of between 10 cms-1 and 20 cms-1, which depended on pulse length, pulse spacing, and target range. By comparison, water velocity measurements made with the same instrument can only achieve a theoretical accuracy of 60 cms-1.

  4. Estimating the delay-Doppler of target echo in a high clutter underwater environment using wideband linear chirp signals: Evaluation of performance with experimental data.

    PubMed

    Yu, Ge; Yang, T C; Piao, Shengchun

    2017-10-01

    A chirp signal is a signal with linearly varying instantaneous frequency over the signal bandwidth, also known as a linear frequency modulated (LFM) signal. It is widely used in communication, radar, active sonar, and other applications due to its Doppler tolerance property in signal detection using the matched filter (MF) processing. Modern sonar uses high-gain, wideband signals to improve the signal to reverberation ratio. High gain implies a high product of the signal bandwidth and duration. However, wideband and/or long duration LFM signals are no longer Doppler tolerant. The shortcoming of the standard MF processing is loss of performance, and bias in range estimation. This paper uses the wideband ambiguity function and the fractional Fourier transform method to estimate the target velocity and restore the performance. Target velocity or Doppler provides a clue for differentiating the target from the background reverberation and clutter. The methods are applied to simulated and experimental data.

  5. Chirp Scaling Algorithms for SAR Processing

    NASA Technical Reports Server (NTRS)

    Jin, M.; Cheng, T.; Chen, M.

    1993-01-01

    The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.

  6. Dolphin sonar detection and discrimination capabilities

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-05-01

    Dolphins have a very sophisticated short range sonar that surpasses all technological sonar in its capabilities to perform complex target discrimination and recognition tasks. The system that the U.S. Navy has for detecting mines buried under ocean sediment is one that uses Atlantic bottlenose dolphins. However, close examination of the dolphin sonar system will reveal that the dolphin acoustic hardware is fairly ordinary and not very special. The transmitted signals have peak-to-peak amplitudes as high as 225-228 dB re 1 μPa which translates to an rms value of approximately 210-213 dB. The transmit beamwidth is fairly broad at about 10o in both the horizontal and vertical planes and the receiving beamwidth is slightly broader by several degrees. The auditory filters are not very narrow with Q values of about 8.4. Despite these fairly ordinary features of the acoustic system, these animals still demonstrate very unusual and astonishing capabilities. Some of the capabilities of the dolphin sonar system will be presented and the reasons for their keen sonar capabilities will be discussed. Important features of their sonar include the broadband clicklike signals used, adaptive sonar search capabilities and large dynamic range of its auditory system.

  7. Mid-Frequency Sonar Interactions with Beaked Whales

    DTIC Science & Technology

    2010-09-30

    1 Mid-Frequency Sonar Interactions with Beaked Whales PI Kenneth G. Foote Woods Hole Oceanographic Institution, 98 Water Street, Woods Hole, MA...modeling and visualization system, called the Virtual Beaked Whale, to enable users to predict mid-frequency sonar -induced acoustic fields inside beaked...nature of sonar interactions with beaked whales, and may prove useful in evaluating alternate sonar transmit signals that retain the required

  8. Chirped femtosecond pulse scattering by spherical particles

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Woo; Xiao, Gang-Yao; Lee, Tong-Nyong

    1996-05-01

    Generalized Lorentz-Mie formulas are used to study the scattering characteristics when a chirped femtosecond pulse illuminates a spherical particle. For a linear chirped Gaussian pulse with the envelope function g( tau ) = exp[- pi (1 + ib) tau 2], dimensionless parameter b is defined as a chirp. The calculation illustrated that even for pulses with a constant carrier wavelength ( lambda 0 = 0.5 mu m) and pulse-filling coefficient (l0 = 1.98), the efficiencies for extinction and scattering differ very much between the carrier wave and the different chirped pulses. The slowly varying background of the extinction and the scattering curves is damped by the chirp. When the pulse is deeply chirped, the maxima and minima of the background curves reduce to the point where they disappear, and the efficiency curves illustrate a steplike dependence on the sphere size. Another feature is that the only on the amount of chirp (|b|), regardless of upchirp (b greater than 0) or downchirp (b less than 0).

  9. A Directional Dogbone Flextensional Sonar Transducer

    DTIC Science & Technology

    2010-10-01

    A Directional Dogbone Flextensional Sonar Transducer Stephen C. Butler Naval Undersea Warfare Center, Newport, RI 02841 Abstract: In order to...transmit energy in one direction, sonar flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The...electroacoustic performance and compared with an experimental data. Keywords: Transducer, Flextensional, Sonar , Piezoelectric, Directional, Cardioid

  10. Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.

  11. Reflectivity of linear and nonlinear gamma radiated apodized chirped Bragg grating under ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdalla, Taymour A.; Faculty of Science, Tabuk University, Tabuk

    In this paper, the effect Co{sup 60} gamma radiation is investigated on the effective refractive index of apodized chirped Bragg grating. Nine apodization profiles are considered. Comparison between the reflectivity of the gamma radiated and non radiated fiber Bragg grating has been carried out. The electric field of signals propagating through the apodized chirped fiber Bragg grating (ACFBG) is first calculated from which, new values for the refractive index are determined. The nonlinear effects appear on the ACFBG reflectivity. The effect of nonlinearity and undersea temperature and pressure on the grating is also studied.

  12. Atwater Valley Deep-Towed Sidescan Sonar Imagery and Bathymetric Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joan M. Gardner; Mike Czarnecki; Rick Hagen

    2005-11-22

    The purpose of this project was to conduct detailed surface mapping of one of the areas drilled by the Joint Industry Project with ChevronTexaco to understand gas hydrates in the Gulf of Mexico. The gently sloping, mostly flat floor of the Mississippi Canyon is interrupted by mounds and depressions that presumably reflect the complex geology and geohydrology related to turbidite deposition and pervasive salt tectonism. The seafloor mounds we mapped in this study occur in approximately 1300 water depth along the floor of the Mississippi Canyon in lease block areas Atwater Valley 13 and 14. High resolution sidescan sonar (100more » kHz and 500 kHz) backscatter imagery, and chirp sub-bottom profiler data were collected using the DT1 deep-towed oceanographic mapping instrument, concentrating on the region directly adjacent to and surrounding two mounds identified as, mounds D and F, and in the region directly adjacent to and surrounding the mounds. The backscatter data have been mosaiced and normalized to provide information on the shape and extent of the mounds, the possible lateral extent of fauna, such as mussel and clam fields on the mounds, possible seep related flows and the occurrence of carbonate material. The extent of a mudflow can be mapped on the southeastern side of mound F. The backscatter data show extremely high-resolution detail about the shape, relief, and morphology of the mounds. This information, coupled with porewater chemistry , DTAGS and heatflow data form a coherent picture of possible mechanics for fluid venting and flora/fauna of the seeps in this region.« less

  13. High-resolution seismic-reflection profiles and sidescan-sonar records collected on Block Island Sound by U.S. Geological Survey, R/V ASTERIAS, cruise AST 81-2

    USGS Publications Warehouse

    Needell, S. W.; Lewis, R.S.

    1982-01-01

    Cruise AST 81-2 was conducted aboard the R/V ASTERIAS during September 10-18, 1981, in Block Island Sound by the U.S. Geological Survey. It was funded in part by the Connecticut Geological and Natural History Survey. The purpose of the study was to define and map the geology and shallow structure, to determine the geologic framework and late Tertiary to Holocene history, and to identify and map any potential geologic hazards of Block Island Sound.The survey was conducted using an EG&G Uniboom seismic system and an EDO Western sidescan-sonar system. Seismic signals were band-passed between 400 and 4,000 Hz and were recorded at a quarter-second sweep rate. Sidescan sonographs were collected at a 100-m scan range to each side of the ship track. In all, 702 km of seismic-reflection profiles and 402 km of sidescan-sonar records were collected. Navigation was by Loran-C, and the ship position was recorded at 5-minute intervals. Seismic-reflection profiling is continuous and good in quality. Sidescan-sonar records are varied in quality; coverage was intermittent and eventu­ally terminated owing to difficulties with the recorder.Original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection pro­files and the sidescan sonographs can be purchased only from the National Geo­physical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broad­way, Boulder, CO 80303 (telephone 303-497-6338).

  14. Sonar equations for planetary exploration.

    PubMed

    Ainslie, Michael A; Leighton, Timothy G

    2016-08-01

    The set of formulations commonly known as "the sonar equations" have for many decades been used to quantify the performance of sonar systems in terms of their ability to detect and localize objects submerged in seawater. The efficacy of the sonar equations, with individual terms evaluated in decibels, is well established in Earth's oceans. The sonar equations have been used in the past for missions to other planets and moons in the solar system, for which they are shown to be less suitable. While it would be preferable to undertake high-fidelity acoustical calculations to support planning, execution, and interpretation of acoustic data from planetary probes, to avoid possible errors for planned missions to such extraterrestrial bodies in future, doing so requires awareness of the pitfalls pointed out in this paper. There is a need to reexamine the assumptions, practices, and calibrations that work well for Earth to ensure that the sonar equations can be accurately applied in combination with the decibel to extraterrestrial scenarios. Examples are given for icy oceans such as exist on Europa and Ganymede, Titan's hydrocarbon lakes, and for the gaseous atmospheres of (for example) Jupiter and Venus.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J. V.

    Chirp signals have evolved primarily from radar/sonar signal processing applications specifically attempting to estimate the location of a target in surveillance/tracking volume. The chirp, which is essentially a sinusoidal signal whose phase changes instantaneously at each time sample, has an interesting property in that its correlation approximates an impulse function. It is well-known that a matched-filter detector in radar/sonar estimates the target range by cross-correlating a replicant of the transmitted chirp with the measurement data reflected from the target back to the radar/sonar receiver yielding a maximum peak corresponding to the echo time and therefore enabling the desired range estimate.more » In this application, we perform the same operation as a radar or sonar system, that is, we transmit a “chirp-like pulse” into the target medium and attempt to first detect its presence and second estimate its location or range. Our problem is complicated by the presence of disturbance signals from surrounding broadcast stations as well as extraneous sources of interference in our frequency bands and of course the ever present random noise from instrumentation. First, we discuss the chirp signal itself and illustrate its inherent properties and then develop a model-based processing scheme enabling both the detection and estimation of the signal from noisy measurement data.« less

  16. Geometric Corrections for Topographic Distortion from Side Scan Sonar Data Obtained by ANKOU System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Fujio; Kato, Yukihiro; Ogasawara, Shohei

    The ANKOU is a newly developed, full ocean depth, long-range vector side scan sonar system. The system provides real time vector side scan sonar data to produce backscattering images and bathymetric maps for seafloor swaths up to 10 km on either side of ship's centerline. Complete geometric corrections are made using towfish attitude and cross-track distortions known as foreshortening and layover caused by violation of the flat bottom assumption. Foreshortening and layover refers to pixels which have been placed at an incorrect cross-track distance. Our correction of this topographic distortion is accomplished by interpolating a bathymetric profile and ANKOU phase data. We applied these processing techniques to ANKOU backscattering data obtained from off Boso Peninsula, and confirmed their efficiency and utility for making geometric corrections of side scan sonar data.

  17. Neonate Auditory Brainstem Responses to CE-Chirp and CE-Chirp Octave Band Stimuli II: Versus Adult Auditory Brainstem Responses.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    The purpose of the study was to examine the differences in auditory brainstem response (ABR) latency and amplitude indices to the CE-Chirp stimuli in neonates versus young adults as a function of stimulus level, rate, polarity, frequency and gender. Participants were 168 healthy neonates and 20 normal-hearing young adults. ABRs were obtained to air- and bone-conducted CE-Chirps and air-conducted CE-Chirp octave band stimuli. The effects of stimulus level, rate, and polarity were examined with air-conducted CE-Chirps. The effect of stimulus level was also examined with bone-conducted CE-Chirps and CE-Chirp octave band stimuli. The effect of gender was examined across all stimulus manipulations. In general, ABR wave V amplitudes were significantly larger (p < 0.0001) and latencies were significantly shorter (p < 0.0001) for adults versus neonates for all air-conducted CE-Chirp stimuli with all stimulus manipulations. For bone-conducted CE-Chirps, infants had significantly shorter wave V latencies than adults at 15 dB nHL and 45 dB nHL (p = 0.02). Adult wave V amplitude was significantly larger for bone-conducted CE-Chirps only at 30 dB nHL (p = 0.02). The effect of gender was not statistically significant across all measures (p > 0.05). Significant differences in ABR latencies and amplitudes exist between newborns and young adults using CE-Chirp stimuli. These differences are consistent with differences to traditional click and tone burst stimuli and reflect maturational differences as a function of age. These findings continue to emphasize the importance of interpreting ABR results using age-based normative data.

  18. High-resolution geophysical data from the Inner Continental Shelf: South of Martha's Vineyard and north of Nantucket, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Brothers, Laura L.; Foster, David S.; Andrews, Brian D.; Baldwin, Wayne E.; Schwab, William C.

    2016-10-28

    The U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management have cooperated to map approximately 185 square kilometers of the inner continental shelf south of Martha’s Vineyard and north of Nantucket, Massachusetts. This report contains geophysical data collected by the U.S. Geological Survey during a survey in 2013. The geophysical data include (1) swath bathymetry collected by using interferometric sonar, (2) acoustic backscatter from the interferometric sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of coastal Massachusetts, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.

  19. Callback response of dugongs to conspecific chirp playbacks.

    PubMed

    Ichikawa, Kotaro; Akamatsu, Tomonari; Shinke, Tomio; Adulyanukosol, Kanjana; Arai, Nobuaki

    2011-06-01

    Dugongs (Dugong dugon) produce bird-like calls such as chirps and trills. The vocal responses of dugongs to playbacks of several acoustic stimuli were investigated. Animals were exposed to four different playback stimuli: a recorded chirp from a wild dugong, a synthesized down-sweep sound, a synthesized constant-frequency sound, and silence. Wild dugongs vocalized more frequently after playback of broadcast chirps than that after constant-frequency sounds or silence. The down-sweep sound also elicited more vocal responses than did silence. No significant difference was found between the broadcast chirps and the down-sweep sound. The ratio of wild dugong chirps to all calls and the dominant frequencies of the wild dugong calls were significantly higher during playbacks of broadcast chirps, down-sweep sounds, and constant-frequency sounds than during those of silence. The source level and duration of dugong chirps increased significantly as signaling distance increased. No significant correlation was found between signaling distance and the source level of trills. These results show that dugongs vocalize to playbacks of frequency-modulated signals and suggest that the source level of dugong chirps may be manipulated to compensate for transmission loss between the source and receiver. This study provides the first behavioral observations revealing the function of dugong chirps. © 2011 Acoustical Society of America

  20. Processing of SeaMARC swath sonar imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratson, L.; Malinverno, A.; Edwards, M.

    1990-05-01

    Side-scan swath sonar systems have become an increasingly important means of mapping the sea floor. Two such systems are the deep-towed, high-resolution SeaMARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution SeaMARC II sonar, which has a swath width of 10 km. The sea-floor imagery of acoustic backscatter output by the SeaMARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the sea-floor imagery is greatly facilitated by image processing. Image processing of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of sea-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces sea-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the processes shaping formerly hidden subsea terrains.« less

  1. Sonar beam dynamics in leaf-nosed bats

    PubMed Central

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-01-01

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats’ nose leaf. PMID:27384865

  2. Sonar beam dynamics in leaf-nosed bats.

    PubMed

    Linnenschmidt, Meike; Wiegrebe, Lutz

    2016-07-07

    Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.

  3. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement.

    PubMed

    Markowski, Konrad; Jędrzejewski, Kazimierz; Marzęcki, Michał; Osuch, Tomasz

    2017-04-01

    A novel concept of a Fabry-Perot (F-P) cavity composed of two linearly chirped fiber Bragg gratings written in a thermally fused fiber taper is presented. Both chirped gratings are written in counter-directional chirp configuration, where chirps resulting from the optical fiber taper profile and linearly increasing grating periods cancel each other out, forming a high-quality F-P resonator. A new strain-sensing mechanism is proposed in the presented structure, which is based on strain-induced detuning of the F-P resonator. Due to the different strain and temperature responses of the cavity, the resonator can be used for the simultaneous measurement of these physical quantities, or it can be used as a temperature-independent strain sensor.

  4. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2015-09-30

    3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal...active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design...beamformer variants is examined. 15. SUBJECT TERMS Pulsed active sonar (PAS), continuous active sonar (CAS), strong delay and Doppler-spread direct blast

  5. Sonar Test and Test Instrumentation Support.

    DTIC Science & Technology

    1979-03-29

    AD-AlSO 055 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS F/6 17/1 SONAR TEST AND TEST INSTRUMENTATION SUPPORT (U) MAR 79 0 D BAKER N00140-76-C-64a7... SONAR TEST AND TEST INSTRUMENTATION SUPPORT quarterly progress report September - 30 November 197Pj 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) S...involves technical support with sonar testing, test instrumentation, and documentation. This report describes progress made under the tasks that are

  6. Chirped-pulse coherent-OTDR with predistortion

    NASA Astrophysics Data System (ADS)

    Xiong, Ji; Jiang, Jialin; Wu, Yue; Chen, Yongxiang; Xie, Lianlian; Fu, Yun; Wang, Zinan

    2018-03-01

    In this paper, a novel method for generating high-quality chirped pulses with IQ modulator is studied theoretically and experimentally, which is a crucial building block for high-performance coherent optical time-domain reflectometry (COTDR). In order to compensate the nonlinearity of the modulator transfer function, we present a predistortion technique for chirped-pulse coherent optical time-domain reflectometry (CP-COTDR), the arcsin predistortion method and the single sideband with a suppressed carrier analog modulation used to generate the high quality chirped optical pulse. The high order sidebands, due to the large amplitude of the modulation signal and the nonlinear transfer function of the IQ modulator, can be relieved by the predistortion process, which means the power and the quality of the generated chirped pulse has been improved. In the experiment, this method increases the peak power of the chirped pulse by 4.2 dB compared to the case without predistortion process, as for the CP-COTDR system, this method increases the signal-to-noise ratio of the demodulated phase variation by 6.3 dB.

  7. Role of Frequency Chirp and Energy Flow Directionality in the Strong Coupling Regime of Brillouin-Based Plasma Amplification.

    PubMed

    Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S

    2016-12-02

    A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.

  8. A modified adaptive algorithm of dealing with the high chirp when chirped pulses propagating in optical fiber

    NASA Astrophysics Data System (ADS)

    Wu, Lianglong; Fu, Xiquan; Guo, Xing

    2013-03-01

    In this paper, we propose a modified adaptive algorithm (MAA) of dealing with the high chirp to efficiently simulate the propagation of chirped pulses along an optical fiber for the propagation distance shorter than the "temporal focal length". The basis of the MAA is that the chirp term of initial pulse is treated as the rapidly varying part by means of the idea of the slowly varying envelope approximation (SVEA). Numerical simulations show that the performance of the MAA is validated, and that the proposed method can decrease the number of sampling points by orders of magnitude. In addition, the computational efficiency of the MAA compared with the time-domain beam propagation method (BPM) can be enhanced with the increase of the chirp of initial pulse.

  9. Sonar Test and Test Instrumentation Support.

    DTIC Science & Technology

    1976-11-10

    AD-AI0 � TEXAS UNIV AT AUSTIN APPLIED RESEARCH LARS F/6 17/1 SONAR TEST AND TEST INSTRUMENTATION SUPPDRT.1U) NoV 76 0 0 BAKER N00140-76-C-&687...UNCLASSIFIED_ NL i 0 00 THE UNIVERSITY OF TEXAS AT AUSTIN 10 November 1976 Copy No. 3 SONAR TEST AND TEST INSTRUMENTATION SUPPORT Quarterly Progress...8217 mi a - I TABLE OF CONTENTS A pag. I. INTRODUCTION 1 II. AN/FQM-IO(V) SONAR TEST SET FIELD SUPPORT 3 A. Introduction 3 B. Visit to NAVSHIPYD PEARL 3 C

  10. Wavelength-spacing-tunable multichannel filter incorporating a sampled chirped fiber Bragg grating based on a symmetrical chirp-tuning technique without center wavelength shift

    NASA Astrophysics Data System (ADS)

    Han, Young-Geun; Dong, Xinyong; Lee, Ju Han; Lee, Sang Bae

    2006-12-01

    We propose and experimentally demonstrate a simple and flexible scheme for a wavelength-spacing-tunable multichannel filter exploiting a sampled chirped fiber Bragg grating based on a symmetrical modification of the chirp ratio. Symmetrical bending along a sampled chirped fiber Bragg grating attached to a flexible cantilever beam induces a variation of the chirp ratio and a reflection chirp bandwidth of the grating without a center wavelength shift. Accordingly, the wavelength spacing of a sampled chirped fiber Bragg grating is continuously controlled by the reflection chirp bandwidth variation of the grating corresponding to the bending direction, which allows for realization of an effective wavelength-spacing-tunable multichannel filter. Based on the proposed technique, we achieve the continuous tunability of the wavelength spacing in a range from 1.51 to 6.11 nm, depending on the bending direction of the cantilever beam.

  11. High-Resolution geophysical data from the inner continental shelf at Vineyard Sound, Massachusetts

    USGS Publications Warehouse

    Andrews, Brian D.; Ackerman, Seth D.; Baldwin, Wayne E.; Foster, David S.; Schwab, William C.

    2013-01-01

    The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have mapped approximately 340 square kilometers of the inner continental shelf in Vineyard Sound, Massachusetts, under a cooperative mapping program. The geophysical data collected between 2009 and 2011 by the U.S. Geological Survey as part of this program are published in this report. The data include (1) swath bathymetry from interferometric sonar, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These data were collected to support research on the influence of sea-level change and sediment supply on coastal evolution and sediment transport processes and to provide baseline seabed characterization information required for management of coastal and offshore resources within the coastal zone of Massachusetts.

  12. pathChirp: Efficient Available Bandwidth Estimation for Network Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cottrell, Les

    2003-04-30

    This paper presents pathChirp, a new active probing tool for estimating the available bandwidth on a communication network path. Based on the concept of ''self-induced congestion,'' pathChirp features an exponential flight pattern of probes we call a chirp. Packet chips offer several significant advantages over current probing schemes based on packet pairs or packet trains. By rapidly increasing the probing rate within each chirp, pathChirp obtains a rich set of information from which to dynamically estimate the available bandwidth. Since it uses only packet interarrival times for estimation, pathChirp does not require synchronous nor highly stable clocks at the sendermore » and receiver. We test pathChirp with simulations and Internet experiments and find that it provides good estimates of the available bandwidth while using only a fraction of the number of probe bytes that current state-of-the-art techniques use.« less

  13. Observing Ocean Ecosystems with Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Maxwell, Adam R.; Ham, Kenneth D.

    2016-12-01

    We present a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) is built to connect to an instrumentation network, where it consumes a real-time stream of sonar data and archives tracking and biomass data.

  14. Diver-based integrated navigation/sonar sensor

    NASA Astrophysics Data System (ADS)

    Lent, Keith H.

    1999-07-01

    Two diver based systems, the Small Object Locating Sonar (SOLS) and the Integrated Navigation and Sonar Sensor (INSS) have been developed at Applied Research Laboratories, the University of Texas at Austin (ARL:UT). They are small and easy to use systems that allow a diver to: detect, classify, and identify underwater objects; render large sector visual images; and track, map and reacquire diver location, diver path, and target locations. The INSS hardware consists of a unique, simple, single beam high resolution sonar, an acoustic navigation systems, an electronic depth gauge, compass, and GPS and RF interfaces, all integrated with a standard 486 based PC. These diver sonars have been evaluated by the very shallow water mine countermeasure detachment since spring 1997. Results are very positive, showing significantly greater capabilities than current diver held systems. For example, the detection ranges are increased over existing systems, and the system allows the divers to classify mines at a significant stand off range. As a result, the INSS design has been chosen for acquisition as the next generation diver navigation and sonar system. The EDMs for this system will be designed and built by ARL:UT during 1998 and 1999 with production planned in 2000.

  15. Multibeam sonar backscatter data processing

    NASA Astrophysics Data System (ADS)

    Schimel, Alexandre C. G.; Beaudoin, Jonathan; Parnum, Iain M.; Le Bas, Tim; Schmidt, Val; Keith, Gordon; Ierodiaconou, Daniel

    2018-06-01

    Multibeam sonar systems now routinely record seafloor backscatter data, which are processed into backscatter mosaics and angular responses, both of which can assist in identifying seafloor types and morphology. Those data products are obtained from the multibeam sonar raw data files through a sequence of data processing stages that follows a basic plan, but the implementation of which varies greatly between sonar systems and software. In this article, we provide a comprehensive review of this backscatter data processing chain, with a focus on the variability in the possible implementation of each processing stage. Our objective for undertaking this task is twofold: (1) to provide an overview of backscatter data processing for the consideration of the general user and (2) to provide suggestions to multibeam sonar manufacturers, software providers and the operators of these systems and software for eventually reducing the lack of control, uncertainty and variability associated with current data processing implementations and the resulting backscatter data products. One such suggestion is the adoption of a nomenclature for increasingly refined levels of processing, akin to the nomenclature adopted for satellite remote-sensing data deliverables.

  16. Analysis of intrapulse chirp in CO2 oscillators

    NASA Technical Reports Server (NTRS)

    Moody, Stephen E.; Berger, Russell G.; Thayer, William J., III

    1987-01-01

    Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed.

  17. Band limited chirp stimulation in vestibular evoked myogenic potentials.

    PubMed

    Walther, Leif Erik; Cebulla, Mario

    2016-10-01

    Air conducted vestibular evoked myogenic potentials (VEMP) can be elicited by various low frequency and intense sound stimuli, mainly clicks or short tone bursts (STB). Chirp stimuli are increasingly used in diagnostic audiological evaluations as an effective means to obtain acoustically evoked responses in narrowed or extended frequency ranges. We hypothesized in this study that band limited chirp stimulation, which covers the main sensitivity range of sound sensitive otolithic afferents (around 500 Hz), might be useful for application in cervical and ocular VEMP to air conduction. For this purpose we designed a chirp stimulus ranging 250-1000 Hz (up chirp). The chirp stimulus was delivered with a stimulus intensity of 100 dB nHL in normal subjects (n = 10) and patients with otolith involvement (vestibular neuritis) (n = 6). Amplitudes of the designed chirp ("CW-VEMP-chirp, 250-1000 Hz") were compared with amplitudes of VEMPs evoked by click stimuli (0.1 ms) and a short tone burst (STB, 1-2-1, 8 ms, 500 Hz). CVEMPs and oVEMPs were detectable in 9 of 10 normal individuals. Statistical evaluation in healthy patients revealed significantly larger cVEMP and oVEMP amplitudes for CW-VEMP-chirp (250-1000 Hz) stimuli. CVEMP amplitudes evoked by CW-VEMP-chirp (250-1000 Hz) showed a high stability in comparison with click and STB stimulation. CW-VEMP-chirp (250-1000 Hz) showed abnormal cVEMP and oVEMP amplitudes in patients with vestibular neuritis, with the same properties as click and STB stimulated VEMPs. We conclude that the designed CW-VEMP-chirp (250-1000 Hz) is an effective stimulus which can be further used in VEMP diagnostic. Since a chirp stimulus can be easily varied in its properties, in particular with regard to frequency, this might be a promising tool for further investigations.

  18. Click- and chirp-evoked human compound action potentials

    PubMed Central

    Chertoff, Mark; Lichtenhan, Jeffery; Willis, Marie

    2010-01-01

    In the experiments reported here, the amplitude and the latency of human compound action potentials (CAPs) evoked from a chirp stimulus are compared to those evoked from a traditional click stimulus. The chirp stimulus was created with a frequency sweep to compensate for basilar membrane traveling wave delay using the O-Chirp equations from Fobel and Dau [(2004). J. Acoust. Soc. Am. 116, 2213–2222] derived from otoacoustic emission data. Human cochlear traveling wave delay estimates were obtained from derived compound band action potentials provided by Eggermont [(1979). J. Acoust. Soc. Am. 65, 463–470]. CAPs were recorded from an electrode placed on the tympanic membrane (TM), and the acoustic signals were monitored with a probe tube microphone attached to the TM electrode. Results showed that the amplitude and latency of chirp-evoked N1 of the CAP differed from click-evoked CAPs in several regards. For the chirp-evoked CAP, the N1 amplitude was significantly larger than the click-evoked N1s. The latency-intensity function was significantly shallower for chirp-evoked CAPs as compared to click-evoked CAPs. This suggests that auditory nerve fibers respond with more unison to a chirp stimulus than to a click stimulus. PMID:21117748

  19. FD-CHIRP: hosted payload system engineering lessons

    NASA Astrophysics Data System (ADS)

    Schueler, Carl F.

    2012-10-01

    The Commercially Hosted Infrared Payload (CHIRP) Flight Demonstration (FD-CHIRP) launched 21 Sept 2011 was designated a "resounding success" as the first Wide Field-of-View (WFOV) staring infrared (IR) sensor flown in geostationary earth orbit (GEO) with a primary mission of Missile Warning (MW). FD-CHIRP was an Air Force research and development project initiated in July 2008 via an unsolicited industry proposal aimed to mature and reduce the risk of WFOV sensors and ground processing technologies. Unlike the Defense Support Program (DSP) and the Space Based Infrared System (SBIRS) which were acquired via traditional integrated sensor and satellite design, FDCHIRP was developed using the "commercially hosted" approach. The FD-CHIRP host spacecraft and sensor were independently designed, creating significant development risk to the industry proposer, especially under a Firm Fixed Price contract. Yet, within 39 months of contract initiation, FD-CHIRP was launched and successfully operated in GEO to 30 June 2012 at a total cost of 111M including the 82.9M CHIRP commercial-hosting contract and a $28M sensor upgrade. The commercial-hosting contract included sensor and spacecraft modifications, integration and test, design and development of secure Mission Operations and Analysis Centers, launch, and nearly a year of GEO operations with 70 Mbps secure data acquisition. The Air Force extended the contract for six months to continue operations through the end of calendar 2012. This paper outlines system engineering challenges FD-CHIRP overcame and key lessons to smooth development of future commercially hosted missions.

  20. Quadratic Frequency Modulation Signals Parameter Estimation Based on Two-Dimensional Product Modified Parameterized Chirp Rate-Quadratic Chirp Rate Distribution.

    PubMed

    Qu, Zhiyu; Qu, Fuxin; Hou, Changbo; Jing, Fulong

    2018-05-19

    In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution (2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR) domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying different CR-QCR domains with different scale factors. Compared with high order ambiguity function-integrated cubic phase function and modified Lv's distribution, the simulation results verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms suppression performance for multi-QFM signals with reasonable computation cost.

  1. Frequency chirpings in Alfven continuum

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin

    2017-10-01

    We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.

  2. Sonar-induced temporary hearing loss in dolphins

    PubMed Central

    Mooney, T. Aran; Nachtigall, Paul E.; Vlachos, Stephanie

    2009-01-01

    There is increasing concern that human-produced ocean noise is adversely affecting marine mammals, as several recent cetacean mass strandings may have been caused by animals' interactions with naval ‘mid-frequency’ sonar. However, it has yet to be empirically demonstrated how sonar could induce these strandings or cause physiological effects. In controlled experimental studies, we show that mid-frequency sonar can induce temporary hearing loss in a bottlenose dolphin (Tursiops truncatus). Mild-behavioural alterations were also associated with the exposures. The auditory effects were induced only by repeated exposures to intense sonar pings with total sound exposure levels of 214 dB re: 1 μPa2 s. Data support an increasing energy model to predict temporary noise-induced hearing loss and indicate that odontocete noise exposure effects bear trends similar to terrestrial mammals. Thus, sonar can induce physiological and behavioural effects in at least one species of odontocete; however, exposures must be of prolonged, high sound exposures levels to generate these effects. PMID:19364712

  3. Whales and Sonar: Environmental Exemptions for the Navy’s Mid-Frequency Active Sonar Training

    DTIC Science & Technology

    2008-11-14

    Balaenoptera musculus E Finback whale Balaenoptera physalus E Humpback whale Megaptera novaeangliae E Killer Southern whale Resident DPS Orcinus orca...Salmo) mykiss T Steelhead south central CA coast Oncorhynchus (=Salmo) mykiss E Steelhead southern CA coast Oncorhynchus (=Salmo) mykiss E Blue whale ...Order Code RL34403 Whales and Sonar: Environmental Exemptions for the Navy’s Mid-Frequency Active Sonar Training Updated November 14, 2008 Kristina

  4. Calculation and manipulation of the chirp rates of high-order harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Schafer, K.J.

    2005-01-01

    We calculate the linear chirp rates of high-order harmonics in argon, generated by intense, 810 nm laser pulses, and explore the dependence of the chirp rate on harmonic order, driving laser intensity, and pulse duration. By using a time-frequency representation of the harmonic fields we can identify several different linear chirp contributions to the plateau harmonics. Our results, which are based on numerical integration of the time-dependent Schroedinger equation, are in good agreement with the adiabatic predictions of the strong field approximation for the chirp rates. Extending the theoretical analysis in the recent paper by Mauritsson et al. [Phys. Rev.more » A 70, 021801(R) (2004)], we also manipulate the chirp rates of the harmonics by adding a chirp to the driving pulse. We show that the chirp rate for harmonic q is given by the sum of the intrinsic chirp rate, which is determined by the new duration and peak intensity of the chirped driving pulse, and q times the external chirp rate.« less

  5. The sonar aperture and its neural representation in bats.

    PubMed

    Heinrich, Melina; Warmbold, Alexander; Hoffmann, Susanne; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-10-26

    As opposed to visual imaging, biosonar imaging of spatial object properties represents a challenge for the auditory system because its sensory epithelium is not arranged along space axes. For echolocating bats, object width is encoded by the amplitude of its echo (echo intensity) but also by the naturally covarying spread of angles of incidence from which the echoes impinge on the bat's ears (sonar aperture). It is unclear whether bats use the echo intensity and/or the sonar aperture to estimate an object's width. We addressed this question in a combined psychophysical and electrophysiological approach. In three virtual-object playback experiments, bats of the species Phyllostomus discolor had to discriminate simple reflections of their own echolocation calls differing in echo intensity, sonar aperture, or both. Discrimination performance for objects with physically correct covariation of sonar aperture and echo intensity ("object width") did not differ from discrimination performances when only the sonar aperture was varied. Thus, the bats were able to detect changes in object width in the absence of intensity cues. The psychophysical results are reflected in the responses of a population of units in the auditory midbrain and cortex that responded strongest to echoes from objects with a specific sonar aperture, regardless of variations in echo intensity. Neurometric functions obtained from cortical units encoding the sonar aperture are sufficient to explain the behavioral performance of the bats. These current data show that the sonar aperture is a behaviorally relevant and reliably encoded cue for object size in bat sonar.

  6. Audible sonar images generated with proprioception for target analysis.

    PubMed

    Kuc, Roman B

    2017-05-01

    Some blind humans have demonstrated the ability to detect and classify objects with echolocation using palatal clicks. An audible-sonar robot mimics human click emissions, binaural hearing, and head movements to extract interaural time and level differences from target echoes. Targets of various complexity are examined by transverse displacements of the sonar and by target pose rotations that model movements performed by the blind. Controlled sonar movements executed by the robot provide data that model proprioception information available to blind humans for examining targets from various aspects. The audible sonar uses this sonar location and orientation information to form two-dimensional target images that are similar to medical diagnostic ultrasound tomograms. Simple targets, such as single round and square posts, produce distinguishable and recognizable images. More complex targets configured with several simple objects generate diffraction effects and multiple reflections that produce image artifacts. The presentation illustrates the capabilities and limitations of target classification from audible sonar images.

  7. Geophysical Data from Offshore of the Chandeleur Islands, Eastern Mississippi Delta

    USGS Publications Warehouse

    Baldwin, Wayne E.; Pendleton, Elizabeth A.; Twichell, David C.

    2009-01-01

    This report contains the geophysical and geospatial data that were collected during two cruises on the R/V Acadiana along the eastern, offshore side of the Chandeleur Islands in 2006 and 2007. Data were acquired with the following equipment: a Systems Engineering and Assessment, Ltd., SwathPlus interferometric sonar; a Klein 3000 dual-frequency sidescan sonar; and an EdgeTech 512i chirp sub-bottom profiling system. The long-term goal of this mapping effort is to produce high-quality, high-resolution geologic maps and geophysical interpretations that can be utilized to investigate the impact of Hurricane Katrina, identify sand resources within the region, and make predictions regarding the future evolution of this coastal system.

  8. High-resolution geophysical data from the inner continental shelf—Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Andrews, Brian D.; Foster, David S.; Baldwin, Wayne E.; Schwab, William C.

    2012-01-01

    The U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM) have cooperated to map approximately 410 square kilometers (km²) of the inner continental shelf in Buzzards Bay, Massachusetts. This report contains geophysical data collected by the USGS on three cruises conducted in 2009, 2010, and 2011, and additional bathymetry data collected by the National Oceanic and Atmospheric Administration in 2004. The geophysical data include (1) swath bathymetry using interferometric sonar and multibeam echosounder systems, (2) acoustic backscatter from sidescan sonar, and (3) seismic-reflection profiles from a chirp subbottom profiler. These spatial data support research on the Quaternary evolution of Buzzards Bay, the influence of sea-level change and sediment supply on coastal evolution, and efforts to understand the type, distribution, and quality of subtidal marine habitats in the coastal ocean of Massachusetts.

  9. Ceteacean Social Behavioral Response to Sonar

    DTIC Science & Technology

    2011-09-30

    behavior data of humpback whales and minke whales was recorded during 5 and 1 CEEs respectively (including tagging, baseline, sonar exposure and...during fieldwork efforts in 2012 and 2013. Figure 1. Example of humpback whale group behavior sampling...cetacean behavioral responses to sonar signals and other stimuli (tagging effort, killer whale playbacks) as well as baseline behavior, are studied

  10. Behavioral responses by grey seals (Halichoerus grypus) to high frequency sonar.

    PubMed

    Hastie, Gordon D; Donovan, Carl; Götz, Thomas; Janik, Vincent M

    2014-02-15

    The use of high frequency sonar is now commonplace in the marine environment. Most marine mammals rely on sound to navigate, and for detecting prey, and there is the potential that the acoustic signals of sonar could cause behavioral responses. To investigate this, we carried out behavioral response tests with grey seals to two sonar systems (200 and 375 kHz systems). Results showed that both systems had significant effects on the seals behavior; when the 200 kHz sonar was active, seals spent significantly more time hauled out and, although seals remained swimming during operation of the 375 kHz sonar, they were distributed further from the sonar. The results show that although peak sonar frequencies may be above marine mammal hearing ranges, high levels of sound can be produced within their hearing ranges that elicit behavioral responses; this has clear implications for the widespread use of sonar in the marine environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chirped-cavity dispersion-compensation filter design.

    PubMed

    Li, Ya-Ping; Chen, Sheng-Hui; Lee, Cheng-Chung

    2006-03-01

    A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires-Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry-Perot filter with a spacer layer (2 mH or 2 mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50 fs2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.

  12. Chirped-cavity dispersion-compensation filter design

    NASA Astrophysics Data System (ADS)

    Li, Ya-Ping; Chen, Sheng-Hui; Lee, Cheng-Chung

    2006-03-01

    A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires-Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry-Perot filter with a spacer layer (2 mH or 2 mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50 fs2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.

  13. Delphinid behavioral responses to incidental mid-frequency active sonar.

    PubMed

    Henderson, E Elizabeth; Smith, Michael H; Gassmann, Martin; Wiggins, Sean M; Douglas, Annie B; Hildebrand, John A

    2014-10-01

    Opportunistic observations of behavioral responses by delphinids to incidental mid-frequency active (MFA) sonar were recorded in the Southern California Bight from 2004 through 2008 using visual focal follows, static hydrophones, and autonomous recorders. Sound pressure levels were calculated between 2 and 8 kHz. Surface behavioral responses were observed in 26 groups from at least three species of 46 groups out of five species encountered during MFA sonar incidents. Responses included changes in behavioral state or direction of travel, changes in vocalization rates and call intensity, or a lack of vocalizations while MFA sonar occurred. However, 46% of focal groups not exposed to sonar also changed their behavior, and 43% of focal groups exposed to sonar did not change their behavior. Mean peak sound pressure levels when a behavioral response occurred were around 122 dB re: 1 μPa. Acoustic localizations of dolphin groups exhibiting a response gave insight into nighttime movement patterns and provided evidence that impacts of sonar may be mediated by behavioral state. The lack of response in some cases may indicate a tolerance of or habituation to MFA sonar by local populations; however, the responses that occur at lower received levels may point to some sensitization as well.

  14. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT03 offshore of the Gulf Islands National Seashore, Mississippi, from East Ship Island, Mississippi, to Dauphin Island, Alabama, April 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Gibson, James N.; Wiese, Dana S.

    2012-01-01

    Data were collected aboard the U.S. Army Corps of Engineers (USACE) SV Irvington, a 56-foot (ft) Kvichak Marine Industries, Inc., catamaran (fig. 2). Side scan sonar and multibeam bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the starboard side just slightly behind the vessel, close to the seafloor. The multibeam transducer was attached to a retractable strut-arm lowered between the catamaran hulls. Navigation was acquired with an Applanix POS MV and differentially corrected using the broadcast signal from a local National Geodetic Survey (NGS) Continuously Operating Reference Station (CORS) beacon. See the digital FACS equipment log for details about the acquisition equipment used. Raw datasets were stored digitally and processed using HYPACK Inc., HYSWEEP software at the USACE Mobile, Ala., District office. For more information on processing refer to the Equipment and Processing page. Chirp seismic data were also collected during this survey and are archived separately.

  15. Real-Time 3D Sonar Modeling And Visualization

    DTIC Science & Technology

    1998-06-01

    looking back towards Manta sonar beam, Manta plus sonar from 1000m off track. 185 NUWC sponsor Erik Chaum Principal investigator Don Brutzman...USN Sonar Officer LT Kevin Byrne USN Intelligence Officer CPT Russell Storms USA Erik Chaum works in NUWC Code 22. He supervised the design and...McGhee, Bob, "The Phoenix Autonomous Underwater Vehicle," chapter 13, AI-BasedMobile Robots, editors David Kortenkamp, Pete Bonasso and Robin Murphy

  16. Sonar Transducer Reliability Improvement Program (STRIP) FY81.

    DTIC Science & Technology

    1981-10-01

    that must be considered when selecting a material for the design of a sonar transducer. In the past decade, plastics have decreased in cost and...required in a sonar transducer system. A recent example of this type of failure has been with a neoprene .tfer formulation which was designed to meet...subject of the first design specification for transducer elastomers. Previous work on this material under the aegis of the Sonar Transduction

  17. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    PubMed

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels. © 2012 Acoustical Society of America

  18. Gain control in the sonar of odontocetes.

    PubMed

    Ya Supin, Alexander; Nachtigall, Paul E

    2013-06-01

    The sonar of odontocetes processes echo-signals within a wide range of echo levels. The level of echoes varies widely by tens of decibels depending on the level of the emitted sonar pulse, the target strength, the distance to the target, and the sound absorption by the water media. The auditory system of odontocetes must be capable of effective perception, analysis, and discrimination of echo-signals within all this variability. The sonar of odontocetes has several mechanisms to compensate for the echo-level variation (gain control). To date, several mechanisms of the biosonar gain control have been revealed in odontocetes: (1) adjustment of emitted sonar pulse levels (the longer the distance to the target, the higher the level of the emitted pulse), (2) short-term variation of hearing sensitivity based on forward masking of the echo by the preceding self-heard emitted pulse and subsequent release from the masking, and (3) active long-term control of hearing sensitivity. Recent investigations with the use of the auditory evoked-potential technique have demonstrated that these mechanisms effectively minimize the variation of the response to the echo when either the emitted sonar pulse level, or the target distance, or both vary within a wide range. A short review of these data is presented herein.

  19. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  20. Bathymetry mapping using a GPS-sonar equipped remote control boat: Application in waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Coggins, Liah; Ghadouani, Anas; Ghisalberti, Marco

    2014-05-01

    Traditionally, bathymetry mapping of ponds, lakes and rivers have used techniques which are low in spatial resolution, sometimes subjective in terms of precision and accuracy, labour intensive, and that require a high level of safety precautions. In waste stabilisation ponds (WSP) in particular, sludge heights, and thus sludge volume, are commonly measured using a sludge judge (a clear plastic pipe with length markings). A remote control boat fitted with a GPS-equipped sonar unit can improve the resolution of depth measurements, and reduce safety and labour requirements. Sonar devices equipped with GPS technology, also known as fish finders, are readily available and widely used by people in boating. Through the use of GPS technology in conjunction with sonar, the location and depth can be recorded electronically onto a memory card. However, despite its high applicability to the field, this technology has so far been underutilised. In the case of WSP, the sonar can measure the water depth to the top of the sludge layer, which can then be used to develop contour maps of sludge distribution and to determine sludge volume. The coupling of sonar technology with a remotely operative vehicle has several advantages of traditional measurement techniques, particularly in removing human subjectivity of readings, and the sonar being able to collect more data points in a shorter period of time, and continuously, with a much higher spatial resolution. The GPS-sonar equipped remote control boat has been tested on in excess of 50 WSP within Western Australia, and has shown a very strong correlation (R2 = 0.98) between spot readings taken with the sonar compared to a sludge judge. This has shown that the remote control boat with GPS-sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution, while greatly reducing profiling time. Remotely operated vehicles, such as the one built in this study, are useful for not only determining sludge

  1. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C. J.; Hua, J. F.; Wan, Y.

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Sincemore » only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. Lastly, this method is demonstrated through particle-in-cell simulations and experiment.« less

  2. Directional Receiver for Biomimetic Sonar System

    NASA Astrophysics Data System (ADS)

    Guarato, Francesco; Andrews, Heather; Windmill, James F.; Jackson, Joseph; Gachagan, Anthony

    An ultrasonic localization method for a sonar system equipped with an emitter and two directional receivers and inspired by bat echolocation uses knowledge of the beam pattern of the receivers to estimate target orientation. Rousettus leschenaultii's left ear constitutes the model for the design of the optimal receiver for this sonar system and 3D printing was used to fabricate receiver structures comprising of two truncated cones with an elliptical external perimeter and a parabolic flare rate in the upper part. Measurements show one receiver has a predominant lobe in the same region and with similar attenuation values as the bat ear model. The final sonar system is to be mounted on vehicular and aerial robots which require remote control for motion and sensors for estimation of each robot's location.

  3. Optimizing chirped laser pulse parameters for electron acceleration in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhyani, Mina; Jahangiri, Fazel; Niknam, Ali Reza

    2015-11-14

    Electron dynamics in the field of a chirped linearly polarized laser pulse is investigated. Variations of electron energy gain versus chirp parameter, time duration, and initial phase of laser pulse are studied. Based on maximizing laser pulse asymmetry, a numerical optimization procedure is presented, which leads to the elimination of rapid fluctuations of gain versus the chirp parameter. Instead, a smooth variation is observed that considerably reduces the accuracy required for experimentally adjusting the chirp parameter.

  4. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    PubMed

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  5. BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar

    PubMed Central

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647

  6. Role of misalignment-induced angular chirp in the electro-optic detection of THz waves.

    PubMed

    Walsh, D A; Cliffe, M J; Pan, R; Snedden, E W; Graham, D M; Gillespie, W A; Jamison, S P

    2014-05-19

    A general description of electro-optic detection including non-collinear phase matching and finite transverse beam profiles is presented. It is shown theoretically and experimentally that non-collinear phase matching in ZnTe (and similar materials) produces an angular chirp in the χ(2)-generated optical signal. Due to this, in non-collinear THz and probe arrangements such as single-shot THz measurements or through accidental misalignment, measurement of an undistorted THz signal is critically dependent on having sufficient angular acceptance in the optical probe path. The associated spatial walk-off can also preclude the phase retardation approximation used in THz-TDS. The rate of misalignment-induced chirping in commonly used ZnTe and GaP schemes is tabulated, allowing ready analysis of a detection system.

  7. Sonar Transducer Reliability Improvement Program (STRIP)

    DTIC Science & Technology

    1981-01-01

    Fair *[51] EPDM NORDOL 1370 - Poor *[511 NATURAL 1155- Poor *[51] NITRILE 6100 - Good *[51] VITON CTBN (BF635075) - Poor *[511 CORK- RUBBER ... aging problems have been found. A report entitled "Reliability and Service Life Concepts for Sonar Transducer Applications" has been completed. - A draft...or aging problems have been found. See Section 9. * A report entitled "Reliability and Service Life Concepts for Sonar Transducer Applications" has

  8. Simulation of Chirping Avalanche in Neighborhood of TAE gap

    NASA Astrophysics Data System (ADS)

    Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin

    2016-10-01

    A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).

  9. Chirp mixing

    NASA Astrophysics Data System (ADS)

    Khaneja, Navin

    2018-07-01

    In this paper, we develop the theory of chirp mixing in NMR spectroscopy. The working principle is simple, given coupled homonuclear spins with offsets in range [ - B, B ] , we adiabatically sweep through the resonances. This achieves cross polarization between the z magnetization of the coupled spins. We repeat this basic operation many times with a supercycle to achieve appropriate mixing time. When we sweep through the resonances, midway between the resonances of the coupled spin I and S, the effective field seen by two spins is the same and hence they precess at same frequency around their effective fields. This means the coupling, which normally gets averaged out due to the chemical shift difference is no more averaged out for a short time and we get mixing. In this paper, we develop these basic ideas. By virtue of its design, the chirp mixing is much more broadband compared to state of the art methods. The proposed methodology is demonstrated on 13 C mixing in a sample of Alanine.

  10. Timing matters: sonar call groups facilitate target localization in bats.

    PubMed

    Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.

  11. Timing matters: sonar call groups facilitate target localization in bats

    PubMed Central

    Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509

  12. Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer.

    PubMed

    Carvalho, William O F; Spadoti, Danilo H; Silvestre, Enrique; Beltran-Mejia, Felipe

    2018-05-20

    A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

  13. Beaked whales respond to simulated and actual navy sonar.

    PubMed

    Tyack, Peter L; Zimmer, Walter M X; Moretti, David; Southall, Brandon L; Claridge, Diane E; Durban, John W; Clark, Christopher W; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L

    2011-03-14

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2-3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2-3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  14. Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.

    PubMed

    Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo

    2016-09-01

    In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.

  15. Comparison between ABR with click and narrow band chirp stimuli in children.

    PubMed

    Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria

    2014-08-01

    Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  17. Use of handheld sonar to locate a missing diver.

    PubMed

    McGrane, Owen; Cronin, Aaron; Hile, David

    2013-03-01

    The purpose of this study was to investigate whether a handheld sonar device significantly reduces the mean time needed to locate a missing diver. This institutional review board approved, prospective, crossover study used a voluntary convenience sample of 10 scuba divers. Participants conducted both a standard and modified search to locate a simulated missing diver. The standard search utilized a conventional search pattern starting at the point where the missing diver (simulated) was last seen. The modified search used a sonar beacon to augment the search. For each search method, successful completion of the search was defined as locating the missing diver within 40 minutes. Twenty total dives were completed. Using a standard search pattern, the missing diver was found by only 1 diver (10%), taking 18 minutes and 45 seconds. In the sonar-assisted search group, the missing diver was found by all 10 participants (100%), taking an average of 2 minutes and 47 seconds (SD 1 minute, 20 seconds). Using the nonparametric related samples Wilcoxon signed rank test, actual times between the sonar group and the standard group were significant (P < .01). Using paired samples t tests, the sonar group's self-assessed confidence increased significantly after using the sonar (P < .001), whereas the standard group decreased in confidence (not statistically significant, P = .111). Handheld sonar significantly reduces the mean duration to locate a missing diver as well as increasing users' confidence in their ability to find a missing diver when compared with standard search techniques. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  18. Habituation analysis of chirp vs. tone evoked auditory late responses.

    PubMed

    Kern, Kevin; Royter, Vladislav; Corona-Strauss, Farah I; Mariam, Mai; Strauss, Daniel J

    2010-01-01

    We have recently shown that tone evoked auditory late responses are able to proof that habituation is occurring [1], [2]. The sweep to sweep analysis using time scale coherence method from [1] is used. Where clear results using tone evoked ALRs were obtained. Now it is of interest how does the results behave using chirp evoked ALRs compared to tone evoked ALRs so that basilar membrane dispersion is compensated. We presented three different tone bursts and three different band limited chirps to 10 subjects using two different loudness levels which the subjects determined themselves before as medium and uncomfortably loud. The 3 chirps are band limited within 3 different ranges, the chirp with the lowest center frequency has the smallest range (according to octave-band). Chirps and tone bursts are using the same center frequencies.

  19. Enhanced Sidescan-Sonar Imagery, North-Central Long Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Schattgen, P.T.; Doran, E.F.

    2008-01-01

    The U.S. Geological Survey, National Oceanic and Atmospheric Administration (NOAA), and Connecticut Department of Environmental Protection have been working cooperatively to map the sea-floor geology within Long Island Sound. Sidescan-sonar imagery collected during three NOAA hydrographic surveys (H11043, H11044, and H11045) was used to interpret the surficial-sediment distribution and sedimentary environments within the Sound. The original sidescan-sonar imagery generated by NOAA was used to evaluate hazards to navigation, which does not require consistent tonal matching throughout the survey. In order to fully utilize these data for geologic interpretation, artifacts within the imagery, primarily due to sidescan-system settings (for example, gain changes), processing techniques (for example, lack of across-track normalization) and environmental noise (for example, sea state), need to be minimized. Sidescan-sonar imagery from surveys H11043, H11044, and H11045 in north-central Long Island Sound was enhanced by matching the grayscale tones between adjacent sidescan-sonar lines to decrease the patchwork effect caused by numerous artifacts and to provide a more coherent sidescan-sonar image for use in geologic interpretation.

  20. Co-adaptation of Electric Organ Discharges and Chirps in South American Ghost Knifefishes (Apteronotidae)

    PubMed Central

    Petzold, Jacquelyn M.; Marsat, Gary; Smith, G. Troy

    2016-01-01

    Animal communication signals that simultaneously share the same sensory channel are likely to coevolve to maximize the transmission of each signal component. Weakly electric fish continuously produce a weakly electric field that functions in communication. Fish modulate the electric organ discharge (EOD) on short timescales to produce context-specific signals called chirps. EODs and chirps are simultaneously detected by electroreceptors and processed in the electrosensory system. We analyzed these signals, first to explore whether EOD waveform is encoded in the signal received by electroreceptors and then to examine how EODs and chirps interact to influence conspicuousness. Our findings show that gross discrimination of sinusoidal from complex EOD waveforms is feasible for all species, but fine discrimination of waveform may be possible only for species with waveforms of intermediate complexity. The degree of chirp frequency modulation and chirp relative decay strongly influenced chirp conspicuousness, but other chirp parameters were less influential. The frequency difference between the interacting EODs also strongly impacted chirp conspicuousness. Finally, we developed a method for creating hybrid chirp/EOD combinations to independently analyze the impact of chirp species, EOD species, and EOD difference frequency on chirp conspicuousness. All three components and their interactions strongly influenced chirp conspicuousness, which suggests that evolutionary changes in parameters of either chirps or EODs are likely to influence chirp detection. Examining other environmental factors such as noise created by fish movement and species-typical patterns of sociality may enrich our understanding of how interacting EODs affect the detection and discrimination of chirps across species. PMID:27989653

  1. Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp

    NASA Astrophysics Data System (ADS)

    Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei

    2018-01-01

    Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.

  2. Enhanced Sidescan-Sonar Imagery Offshore of Southeastern Massachusetts

    USGS Publications Warehouse

    Poppe, Lawrence J.; McMullen, Kate Y.; Williams, S. Jeffress; Ackerman, Seth D.; Glomb, K.A.; Forfinski, N.A.

    2008-01-01

    The U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and Massachusetts Office of Coastal Zone Management (CZM) have been working cooperatively to map and study the coastal sea floor. The sidescan-sonar imagery collected during NOAA hydrographic surveys has been included as part of these studies. However, the original sonar imagery contains tonal artifacts from environmental noise (for example, sea state), equipment settings (for example, power and gain changes), and processing (for example, inaccurate cross-track and line-to-line normalization), which impart a quilt-like patchwork appearance to the mosaics. These artifacts can obscure the normalized backscatter properties of the sea floor. To address this issue, sidescan-sonar imagery from surveys H11076 and H11079 offshore of southeastern Massachusetts was enhanced by matching backscatter tones of adjacent sidescan-sonar lines. These mosaics provide continuous grayscale perspectives of the backscatter, more accurately reveal the sea-floor geologic trends, and minimize the environment-, acquisition-, and processing-related noise.

  3. Beaked Whales Respond to Simulated and Actual Navy Sonar

    PubMed Central

    Tyack, Peter L.; Zimmer, Walter M. X.; Moretti, David; Southall, Brandon L.; Claridge, Diane E.; Durban, John W.; Clark, Christopher W.; D'Amico, Angela; DiMarzio, Nancy; Jarvis, Susan; McCarthy, Elena; Morrissey, Ronald; Ward, Jessica; Boyd, Ian L.

    2011-01-01

    Beaked whales have mass stranded during some naval sonar exercises, but the cause is unknown. They are difficult to sight but can reliably be detected by listening for echolocation clicks produced during deep foraging dives. Listening for these clicks, we documented Blainville's beaked whales, Mesoplodon densirostris, in a naval underwater range where sonars are in regular use near Andros Island, Bahamas. An array of bottom-mounted hydrophones can detect beaked whales when they click anywhere within the range. We used two complementary methods to investigate behavioral responses of beaked whales to sonar: an opportunistic approach that monitored whale responses to multi-day naval exercises involving tactical mid-frequency sonars, and an experimental approach using playbacks of simulated sonar and control sounds to whales tagged with a device that records sound, movement, and orientation. Here we show that in both exposure conditions beaked whales stopped echolocating during deep foraging dives and moved away. During actual sonar exercises, beaked whales were primarily detected near the periphery of the range, on average 16 km away from the sonar transmissions. Once the exercise stopped, beaked whales gradually filled in the center of the range over 2–3 days. A satellite tagged whale moved outside the range during an exercise, returning over 2–3 days post-exercise. The experimental approach used tags to measure acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure levels below 142 dB re 1 µPa by stopping echolocation followed by unusually long and slow ascents from their foraging dives. The combined results indicate similar disruption of foraging behavior and avoidance by beaked whales in the two different contexts, at exposures well below those used by regulators to define

  4. Chirp of the single attosecond pulse generated by a polarization gating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Zenghu

    2005-02-01

    The chirp of the xuv supercontinuum generated by a polarization gating is investigated by comparing three-dimensional nonadiabatic numerical simulations with classical calculations. The origin of the chirp is the dependence of the energy gain by an electron on the return time. The chirp is positive and its value is almost the same as that when a linearly polarized laser is used. Although the 250-eV-wide supercontinuum corresponds to a single attosecond pulse, the shortest duration of the pulse is limited by the chirp. By compensating the positive chirp with the negative group velocity dispersion of a Sn filter, it is predictedmore » that a single 58-as pulse can be generated.« less

  5. The method for scanning reshaping the spectrum of chirped laser pulse based on the quadratic electro-optic effects

    NASA Astrophysics Data System (ADS)

    Ye, Rong; Yin, Ming; Wu, Xianyun; Tan, Hang

    2017-10-01

    T A new method for scanning reshaping the spectrum of chirped laser pulse based on quadratic electro-optic effects is proposed. The scanning reshaping scheme with a two-beam interference system is designed and the spectrum reshaping properties are analyzed theoretically. For the Gaussian chirped laser pulse with central wavelength λ0=800nm, nearly flat-topped spectral profiles with wider bandwidth is obtained with the proposed scanning reshaping method, which is beneficial to compensate for the gain narrowing effect in CPA and OPCPA. Further numerical simulations show that the reshaped spectrum is sensitive to the time-delay and deviation of the voltage applied to the crystal. In order to avoid narrowing or distorting the reshaped spectrum pointing to target, it is necessary to reduce the unfavorable deviations. With the rapid and wide applications of ultra-short laser pulse supported by some latter research results including photo-associative formation of ultra-cold molecules from ultra-cold atoms[1-3], laser-induced communications[4], capsule implosions on the National Ignition Facility(NIF)[5-6], the control of the temporal and spectral profiles of laser pulse is very important and urgently need to be addressed. Generally, the control of the pulse profiles depends on practical applications, ranging from femtosecond and picosecond to nanosecond. For instance, the basic shaping setup is a Fourier transform system for ultra-short laser pulse. The most important element is a spatially patterned mask which modulates the phase or amplitude, or sometimes the polarization after the pulse is decomposed into its constituent spectral components by usually a grating and a lens[7]. One of the generation techniques of ultra-short laser pulse is the chirped pulse amplifications(CPA), which brings a new era of development for high energy and high peak intensity ultra-short laser pulse, proposed by D. Strcik and G. Mourou from the chirping radar technology in microwave region

  6. Broadband spectroscopy of dynamic impedances with short chirp pulses.

    PubMed

    Min, M; Land, R; Paavle, T; Parve, T; Annus, P; Trebbels, D

    2011-07-01

    An impedance spectrum of dynamic systems is time dependent. Fast impedance changes take place, for example, in high throughput microfluidic devices and in operating cardiovascular systems. Measurements must be as short as possible to avoid significant impedance changes during the spectrum analysis, and as long as possible for enlarging the excitation energy and obtaining a better signal-to-noise ratio (SNR). The authors propose to use specific short chirp pulses for excitation. Thanks to the specific properties of the chirp function, it is possible to meet the needs for a spectrum bandwidth, measurement time and SNR so that the most accurate impedance spectrogram can be obtained. The chirp wave excitation can include thousands of cycles when the impedance changes slowly, but in the case of very high speed changes it can be shorter than a single cycle, preserving the same excitation bandwidth. For example, a 100 kHz bandwidth can be covered by the chirp pulse with durations from 10 µs to 1 s; only its excitation energy differs also 10(5) times. After discussing theoretical short chirp properties in detail, the authors show how to generate short chirps in the microsecond range with a bandwidth up to a few MHz by using digital synthesis architectures developed inside a low-cost standard field programmable gate array.

  7. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2016-01-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441

  8. Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2016-09-01

    Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.

  9. Archive of digital chirp subbottom profile data collected during USGS cruise 11BIM01 Offshore of the Chandeleur Islands, Louisiana, June 2011

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Miselis, Jennifer L.; Flocks, James G.; Wiese, Dana S.

    2013-01-01

    From June 3 to 13, 2011, the U.S. Geological Survey conducted a geophysical survey to investigate the geologic controls on barrier island framework and long-term sediment transport along the oil spill mitigation sand berm constructed at the north end and just offshore of the Chandeleur Islands, LA. This effort is part of a broader USGS study, which seeks to better understand barrier island evolution over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided.

  10. Archive of Digital Chirp Sub-bottom Profile Data Collected During USGS Cruises 08CCT02 and 08CCT03, Mississippi Gulf Islands, July and September 2008

    USGS Publications Warehouse

    Barry, K.M.; Cavers, D.A.; Kneale, C.W.

    2011-01-01

    In July and September of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, MS, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. This project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp sub-bottom profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the sub-bottom profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  11. Frequency-chirp rates of harmonics driven by a few-cycle pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murakami, M.; Mauritsson, J.; Gaarde, M.B.

    2005-08-15

    We present numerical calculations of the time-frequency characteristics of cutoff harmonics generated by few-cycle laser pulses. We find that for driving pulses as short as three optical cycles, the adiabatic prediction for the harmonic chirp rate is very accurate. This negative chirp is so large that the resulting bandwidth causes substantial overlap between neighboring harmonics, and the harmonic phase therefore appears to not vary in time or frequency. By adding a compensating positive chirp to the driving pulse, which reduces the harmonic bandwidth and allows for the appearance of the negative chirp, we can measure the harmonic chirp rates. Wemore » also find that the positive chirp on the driving pulse causes the harmonics to shift down in frequency. We show that this counterintuitive result is caused by the change in the strong field continuum dynamics introduced by the variation of the driving frequency with time.« less

  12. Laser chirp effect on femtosecond laser filamentation generated for pulse compression.

    PubMed

    Park, Juyun; Lee, Jae-Hwan; Nam, Chang H

    2008-03-31

    The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.

  13. Analysis of radial and longitudinal force of plasma wakefield generated by a chirped pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghasemi, Leila; Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir

    2015-08-15

    In present paper, the chirp effect of an electromagnetic pulse via an analytical model of wakefield generation is studied. Different types of chirps are employed in this study. Our results show that by the use of nonlinear chirped pulse the longitudinal wakefield and focusing force is stronger than that of linear chirped pulse. It is indicated that quadratic nonlinear chirped pulses are globally much efficient than periodic nonlinear chirped pulses. Our calculations also predict that in nonlinear chirped pulse case, the overlap of focusing and accelerating regions is broader than that achieved in linear chirped pulse.

  14. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  15. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    PubMed

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small

  16. Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.

  17. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  18. Phase-locking and coherent power combining of broadband linearly chirped optical waves.

    PubMed

    Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon

    2012-11-05

    We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.

  19. Test-retest reliability of auditory brainstem responses to chirp stimuli in newborns.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    2014-11-01

    The purpose of this study was to examine the test-retest reliability of auditory brainstem responses (ABRs) to air- and bone-conducted chirp stimuli in newborns as a function of intensity. A repeated measures quasi-experimental design was employed. Thirty healthy newborns participated. ABRs were evoked using 60, 45, and 30 dB nHL air-conducted CE-Chirps and 45, 30, and 15 dB nHL bone-conducted CE-Chirps at a rate of 57.7/s. Measures were repeated by a second tester. Statistically significant correlations (p <.0001) and predictive linear relations (p <.0001) were found between testers for wave V latencies and amplitudes to air- and bone-conducted CE-Chirps. There were also no statistically significant differences between testers with wave V latencies and amplitudes to air- and bone-conducted CE-Chirps (p >.05). As expected, significant differences in wave V latencies and amplitudes were seen as a function of stimulus intensity for air- and bone-conducted CE-Chirps (p <.0001). These results suggest that ABRs to air- and bone-conducted CE-Chirps can be reliably repeated in newborns with different testers. The CE-Chirp may be valuable for both screening and diagnostic audiologic assessments of newborns.

  20. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  1. Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar.

    PubMed

    Barber, Zeb W; Babbitt, Wm Randall; Kaylor, Brant; Reibel, Randy R; Roos, Peter A

    2010-01-10

    As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

  2. Hybrid chirped pulse amplification system

    DOEpatents

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  3. Exploring Agro-Climatic Trends in Ethiopia Using CHIRPS

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Funk, C. C.; Brown, M. E.; Korecha, D.; Seid, Y. M.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) uses the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) to monitor agricultural food production in different regions of the world. CHIRPS is a 1981-present, 5 day, approximately 5km resolution, rainfall product based on a combination of geostationary satellite observations, a high resolution climatology and in situ station observations. Furthermore, FEWS NET has developed a gridded implementation of the Water Requirement Satisfaction Index (WRSI), a water balance measurement indicator of crop performance. This study takes advantage of the CHIRPS' long term period of record and high spatial and temporal resolution to examine agro-climatic trends in Ethiopia. We use the CHIRPS rainfall dataset to calculate the WRSI for the boreal spring and summer crop seasons, as well as for spring-summer rangelands conditions. We find substantial long term rainfall declines in the spring and summer seasons across southeastern and northeastern Ethiopia. Crop Model results indicate that rainfall declines in the cropped regions have been associated with water deficits during the critical grain filling periods in well populated and/or highly vulnerable parts of eastern Ethiopia. WRSI results in the pastoral areas indicate substantial reductions in rangeland health during the later part of the growing seasons. These health declines correspond to the regions of Somaliland and Afar that have experienced chronic severe food insecurity since 2010. Key words: CHIRPS, satellite estimated rainfall, agricultural production

  4. Implementation and testing of a Deep Water Correlation Velocity Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickey, F.R.; Bookheimer, W.C.; Rhoades, K.W.

    1983-05-01

    The paper describes a new sonar designated the Magnavox MX 810 Deep Water Correlation Sonar which is under development by the General Electric Company and the Magnavox Advanced Products and Systems Company. The sonar measures ship's velocity relative to the bottom but instead of using the conventional doppler effect, it uses the correlation method described by Dickey and Edward in 1978. In this method, the narrow beams required for doppler are not needed and a low frequency that penetrates to the bottom in deep water is used. The sonar was designed with the constraint that it use a transducer thatmore » mounts through a single 12 inch gate valve. Most offshore geophysical surveys at present make use of an integrated navigation system with bottom referenced velocity input from a doppler sonar which, because of limitations on the sonar bottomtracking range, has difficulty in areas where the water depth is greater than about 500 meters. The MX 810 provides bottom tracking in regions of much greater water depth. It also may be applied as an aid in continuous positioning of a vessel over a fixed location. It also should prove useful as a more general navigation aid. The sonar is undergoing a series of tests using Magnavox's facilities for the purpose of verifying the performance and obtaining data to support and quantify planned improvements in both software and hardware. A prototype transducer of only 5 watts power output was used, but in spite of this low power, successful operation to depths of 1900 meters was obtained. Extrapolation to system parameters to be implemented in production models predicts operation to depths of 5000 meters.« less

  5. High-performance, multi-faceted research sonar electronics

    NASA Astrophysics Data System (ADS)

    Moseley, Julian W.

    This thesis describes the design, implementation and testing of a research sonar system capable of performing complex applications such as coherent Doppler measurement and synthetic aperture imaging. Specifically, this thesis presents an approach to improve the precision of the timing control and increase the signal-to-noise ratio of an existing research sonar. A dedicated timing control subsystem, and hardware drivers are designed to improve the efficiency of the old sonar's timing operations. A low noise preamplifier is designed to reduce the noise component in the received signal arriving at the input of the system's data acquisition board. Noise analysis, frequency response, and timing simulation data are generated in order to predict the functionality and performance improvements expected when the subsystems are implemented. Experimental data, gathered using these subsys- tems, are presented, and are shown to closely match the simulation results, thus verifying performance.

  6. Sonar surveys used in gas-storage cavern analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, N.G.

    1998-05-04

    Natural-gas storage cavern internal configuration, inspection information, and cavern integrity data can be obtained during high-pressure operations with specialized gas-sonar survey logging techniques. TransGas Ltd., Regina, Sask., has successfully performed these operations on several of its deepest and highest pressurized caverns. The data can determine gas-in-place inventory and assess changes in spatial volumes. These changes can result from cavern creep, shrinkage, or closure or from various downhole abnormalities such as fluid infill or collapse of the sidewall or roof. The paper discusses conventional surveys with sonar, running surveys in pressurized caverns, accuracy of the sonar survey, initial development of Cavernmore » 5, a roof fall, Cavern 4 development, and a damaged string.« less

  7. Real-time chirp-coded imaging with a programmable ultrasound biomicroscope.

    PubMed

    Bosisio, Mattéo R; Hasquenoph, Jean-Michel; Sandrin, Laurent; Laugier, Pascal; Bridal, S Lori; Yon, Sylvain

    2010-03-01

    Ultrasound biomicroscopy (UBM) of mice can provide a testing ground for new imaging strategies. The UBM system presented in this paper facilitates the development of imaging and measurement methods with programmable design, arbitrary waveform coding, broad bandwidth (2-80 MHz), digital filtering, programmable processing, RF data acquisition, multithread/multicore real-time display, and rapid mechanical scanning (chirp (1.28, 2.56, and 5.12 micros durations) sequences with matched filter analysis are implemented in real time. Chirp and conventional impulse imaging (31 and 46 MHz center frequencies) of a wire phantom at fast sectorial scanning (0.7 degrees ms(-1), 20 frames/s one-way image rate) are compared. Axial and lateral resolutions at the focus with chirps approach impulse imaging resolutions. Chirps yield 10-15 dB gain in SNR and a 2-3 mm gain in imaging depth. Real-time impulse and chirp-coded imaging (at 10-5 frames/s) are demonstrated in the mouse, in vivo. The system's open structure favors test and implementation of new sequences.

  8. Measurement and control of the frequency chirp rate of high-order harmonic pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauritsson, J.; Johnsson, P.; Lopez-Martens, R.

    2004-08-01

    We measure the chirp rate of harmonics 13 to 23 in argon by cross correlation with a 12 femtosecond probe pulse. Under low ionization conditions, we directly measure the negative chirp due to the atomic dipole phase, and show that an additional chirp on the pump pulse is transferred to the qth harmonic as q times the fundamental chirp. Our results are in accord with simulations using the experimentally measured 815 nm pump and probe pulses. The ability to measure and manipulate the harmonic chirp rate is essential for the characterization and optimization of attosecond pulse trains.

  9. Effects of chirp on two-dimensional Fourier transform electronic spectra.

    PubMed

    Tekavec, Patrick F; Myers, Jeffrey A; Lewis, Kristin L M; Fuller, Franklin D; Ogilvie, Jennifer P

    2010-05-24

    We examine the effect that pulse chirp has on the shape of two- dimensional electronic spectra through calculations and experiments. For the calculations we use a model two electronic level system with a solvent interaction represented by a simple Gaussian correlation function and compare the resulting spectra to experiments carried out on an organic dye molecule (Rhodamine 800). Both calculations and experiments show that distortions due to chirp are most significant when the pulses used in the experiment have different amounts of chirp, introducing peak shape asymmetry that could be interpreted as spectrally dependent relaxation. When all pulses have similar chirp the distortions are reduced but still affect the anti-diagonal symmetry of the peak shapes and introduce negative features that could be interpreted as excited state absorption.

  10. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern of Africa

    NASA Astrophysics Data System (ADS)

    Dinku, T.; Funk, C. C.; Tadesse, T.; Ceccato, P.

    2017-12-01

    Long and temporally consistent rainfall time series are essential in climate analyses and applications. Rainfall data from station observations are inadequate over many parts of the world due to sparse or non-existent observation networks, or limited reporting of gauge observations. As a result, satellite rainfall estimates have been used as an alternative or as a supplement to station observations. However, many satellite-based rainfall products with long time series suffer from coarse spatial and temporal resolutions and inhomogeneities caused by variations in satellite inputs. There are some satellite rainfall products with reasonably consistent time series, but they are often limited to specific geographic areas. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and quasi-global coverage. In this study, CHIRP and CHIRPS were evaluated over East Africa at daily, dekadal (10-day) and monthly time scales. The evaluation was done by comparing the satellite products with rain gauge data from about 1200 stations. The is unprecedented number of validation stations for this region covering. The results provide a unique region-wide understanding of how satellite products perform over different climatic/geographic (low lands, mountainous regions, and coastal) regions. The CHIRP and CHIRPS products were also compared with two similar satellite rainfall products: the African Rainfall Climatology version 2 (ARC2) and the latest release of the Tropical Applications of Meteorology using Satellite data (TAMSAT). The results show that both CHIRP and CHIRPS products are significantly better than ARC2 with higher skill and low or no bias. These products were also found to be slightly better than the latest version of the TAMSAT product. A comparison was also done between the latest release of the TAMSAT product

  11. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  12. The Dolphin Sonar: Excellent Capabilities In Spite of Some Mediocre Properties

    NASA Astrophysics Data System (ADS)

    Au, Whitlow W. L.

    2004-11-01

    Dolphin sonar research has been conducted for several decades and much has been learned about the capabilities of echolocating dolphins to detect, discriminate and recognize underwater targets. The results of these research projects suggest that dolphins possess the most sophisticated of all sonar for short ranges and shallow water where reverberation and clutter echoes are high. The critical feature of the dolphin sonar is the capability of discriminating and recognizing complex targets in a highly reverberant and noisy environment. The dolphin's detection threshold in reverberation occurs at a echo-to reverberation ratio of approximately 4 dB. Echolocating dolphins also have the capability to make fine discriminate of target properties such as wall thickness difference of water-filled cylinders and material differences in metallic plates. The high-resolution property of the animal's echolocation signals and the high dynamic range of its auditory system are important factors in their outstanding discrimination capabilities. In the wall thickness discrimination of cylinder experiment, time differences between echo highlights at small as 500-600 ns can be resolved by echolocating dolphins. Measurements of the targets used in the metallic plate composition experiment suggest that dolphins attended to echo components that were 20-30 dB below the maximum level for a specific target. It is interesting to realize that some of the properties of the dolphin sonar system are fairly mediocre, yet the total performance of the system is often outstanding. When compared to some technological sonar, the energy content of the dolphin sonar signal is not very high, the transmission and receiving beamwidths are fairly large, and the auditory filters are not very narrow. Yet the dolphin sonar has demonstrated excellent capabilities in spite the mediocre features of its "hardware." Reasons why dolphins can perform complex sonar task will be discussed in light of the "equipment" they

  13. Miniature sonar fish tag

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1975-01-01

    Self-powered sonar device may be implanted in body of fish. It transmits signal that can be detected with portable tracking gear or by automatic detection-and-tracking system. Operating life of over 4000 hours may be expected. Device itself may be used almost indefinitely.

  14. Investigation of Non-linear Chirp Coding for Improved Second Harmonic Pulse Compression.

    PubMed

    Arif, Muhammad; Ali, Muhammad Asim; Shaikh, Muhammad Mujtaba; Freear, Steven

    2017-08-01

    Non-linear frequency-modulated (NLFM) chirp coding was investigated to improve the pulse compression of the second harmonic chirp signal by reducing the range side lobe level. The problem of spectral overlap between the fundamental component and second harmonic component (SHC) was also investigated. Therefore, two methods were proposed: method I for the non-overlap condition and method II with the pulse inversion technique for the overlap harmonic condition. In both methods, the performance of the NLFM chirp was compared with that of the reference LFM chirp signals. Experiments were performed using a 2.25 MHz transducer mounted coaxially at a distance of 5 cm with a 1 mm hydrophone in a water tank, and the peak negative pressure of 300 kPa was set at the receiver. Both simulations and experimental results revealed that the peak side lobe level (PSL) of the compressed SHC of the NLFM chirp was improved by at least 13 dB in method I and 5 dB in method II when compared with the PSL of LFM chirps. Similarly, the integrated side lobe level (ISL) of the compressed SHC of the NLFM chirp was improved by at least 8 dB when compared with the ISL of LFM chirps. In both methods, the axial main lobe width of the compressed NLFM chirp was comparable to that of the LFM signals. The signal-to-noise ratio of the SHC of NLFM was improved by as much as 0.8 dB, when compared with the SHC of the LFM signal having the same energy level. The results also revealed the robustness of the NLFM chirp under a frequency-dependent attenuation of 0.5 dB/cm·MHz up to a penetration depth of 5 cm and a Doppler shift up to 12 kHz. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  16. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less

  17. A case study on pseudo 3-D Chirp sub-bottom profiler (SBP) survey for the detection of a fault trace in shallow sedimentary layers at gas hydrate site in the Ulleung Basin, East Sea

    NASA Astrophysics Data System (ADS)

    Kim, Young-Jun; Koo, Nam-Hyung; Cheong, Snons; Kim, Jung-Ki; Chun, Jong-Hwa; Shin, Sung-Ryul; Riedel, Michael; Lee, Ho-Young

    2016-10-01

    A pseudo 3-D Chirp sub-bottom profiler (SBP) survey was conducted to define the extension of a fault that was previously identified on low-resolution 2-D seismic data with an emphasis on the shallow sedimentary layers and to determine if the fault extends to the seafloor. The geophysical survey was conducted as part of an environmental impact assessment for a proposed gas hydrate production test in the Ulleung Basin, East Sea. The Chirp SBP raw data were acquired over an area of 1 km × 1 km with an average line spacing of 20 m. To produce a 3-D Chirp SBP volume, we developed an optimal processing sequence that was divided into two steps. The first phase of 2-D data processing included a sweep signature estimation, correlation, deconvolution, swell effect correction, and migration. The second phase of 3-D data processing was composed of a bin design, bin gathering of the final processed 2-D data set, amplitude normalization, and residual statics correction. The 3-D Chirp SBP volume provides enhanced imaging especially due to the residual static processing using a moving average method and shows better continuity of the sedimentary layers and consistency of the reflection events than the individual 2-D lines. Deformation of the seafloor as a result of the fault was detected, and the fault offset increases in the deeper sedimentary layers. We also determined that the fault strikes northwest-southeast. However, the shallow sub-seafloor sediments have high porosities and therefore do not exhibit brittle fault-behavior but rather deform continuously due to fault movement.

  18. Thomson scattering in high-intensity chirped laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in; Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion ofmore » its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.« less

  19. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  20. A theoretical investigation of chirp insonification of ultrasound contrast agents.

    PubMed

    Barlow, Euan; Mulholland, Anthony J; Gachagan, Anthony; Nordon, Alison

    2011-08-01

    A theoretical investigation of second harmonic imaging of an Ultrasound Contrast Agent (UCA) under chirp insonification is considered. By solving the UCA's dynamical equation analytically, the effect that the chirp signal parameters and the UCA shell parameters have on the amplitude of the second harmonic frequency are examined. This allows optimal parameter values to be identified which maximise the UCA's second harmonic response. A relationship is found for the chirp parameters which ensures that a signal can be designed to resonate a UCA for a given set of shell parameters. It is also shown that the shell thickness, shell viscosity and shell elasticity parameter should be as small as realistically possible in order to maximise the second harmonic amplitude. Keller-Herring, Second Harmonic, Chirp, Ultrasound Contrast Agent. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers

    NASA Astrophysics Data System (ADS)

    Cai, Wangyang; Wang, Lei; Wen, Shuangchun

    2018-04-01

    The dynamic propagation of the initial chirped Airy pulse in single-mode fibers is studied numerically, special attention being paid to the role of the third-order dispersion (TOD). It is shown that for the positive TOD, the Airy pulse experiences inversion irrespective of the sign of initial chirp. The role of TOD in the dynamic propagation of the initial chirped Airy pulse depends on the combined sign of the group-velocity dispersion (GVD) and the initial chirp. If the GVD and chirp have the opposite signs, the chirped Airy pulse compresses first and passes through a breakdown area, then reconstructs a new Airy pattern with opposite acceleration, with the breakdown area becoming small and the main peak of the new Airy pattern becoming asymmetric with an oscillatory structure due to the positive TOD. If the GVD and chirp have the same signs, the finite-energy Airy pulse compresses to a focal point and then inverses its acceleration, in the case of positive TOD, the distance to the focal point becoming smaller. At zero-dispersion point, the finite-energy Airy pulse inverses to the opposite acceleration at a focal point, with the tight-focusing effect being reduced by initial chirp. Under the effect of negative TOD, the initial chirped Airy pulse disperses and the lobes split. In addition, in the anomalous dispersion region, for strong nonlinearity, the initial chirped Airy pulse splits and enters a soliton shedding regime.

  2. Range compensation for backscattering measurements in the difference-frequency nearfield of a parametric sonar.

    PubMed

    Foote, Kenneth G

    2012-05-01

    Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.

  3. Archive of digital chirp subbottom profile data collected during USGS Cruise 13GFP01, Brownlee Dam and Hells Canyon Reservoir, Idaho and Oregon, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Fosness, Ryan L.; Welcker, Chris; Kelso, Kyle W.

    2014-01-01

    From March 16 - 31, 2013, the U.S. Geological Survey in cooperation with the Idaho Power Company conducted a geophysical survey to investigate sediment deposits and long-term sediment transport within the Snake River from Brownlee Dam to Hells Canyon Reservoir, along the Idaho and Oregon border; this effort will help the USGS to better understand geologic processes. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report.

  4. Multiresolution 3-D reconstruction from side-scan sonar images.

    PubMed

    Coiras, Enrique; Petillot, Yvan; Lane, David M

    2007-02-01

    In this paper, a new method for the estimation of seabed elevation maps from side-scan sonar images is presented. The side-scan image formation process is represented by a Lambertian diffuse model, which is then inverted by a multiresolution optimization procedure inspired by expectation-maximization to account for the characteristics of the imaged seafloor region. On convergence of the model, approximations for seabed reflectivity, side-scan beam pattern, and seabed altitude are obtained. The performance of the system is evaluated against a real structure of known dimensions. Reconstruction results for images acquired by different sonar sensors are presented. Applications to augmented reality for the simulation of targets in sonar imagery are also discussed.

  5. Archive of digital chirp subbottom profile data collected during USGS Cruise 13CCT04 offshore of Petit Bois Island, Mississippi, August 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Flocks, James G.; Kindinger, Jack G.; Bernier, Julie C.; Kelso, Kyle W.; Wiese, Dana S.

    2015-01-01

    From August 13-23, 2013, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE) conducted geophysical surveys to investigate the geologic controls on barrier island framework and long-term sediment transport offshore of Petit Bois Island, Mississippi. This investigation is part of a broader USGS study on Coastal Change and Transport (CCT). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) with partial funding provided by the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained-showing a relative increase in signal amplitude-digital images of the seismic profiles are provided.

  6. Technology Infusion of CodeSonar into the Space Network Ground Segment

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  7. Echolocating bats rely on audiovocal feedback to adapt sonar signal design.

    PubMed

    Luo, Jinhong; Moss, Cynthia F

    2017-10-10

    Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.

  8. Chirp-modulated visual evoked potential as a generalization of steady state visual evoked potential

    NASA Astrophysics Data System (ADS)

    Tu, Tao; Xin, Yi; Gao, Xiaorong; Gao, Shangkai

    2012-02-01

    Visual evoked potentials (VEPs) are of great concern in cognitive and clinical neuroscience as well as in the recent research field of brain-computer interfaces (BCIs). In this study, a chirp-modulated stimulation was employed to serve as a novel type of visual stimulus. Based on our empirical study, the chirp stimuli visual evoked potential (Chirp-VEP) preserved frequency features of the chirp stimulus analogous to the steady state evoked potential (SSVEP), and therefore it can be regarded as a generalization of SSVEP. Specifically, we first investigated the characteristics of the Chirp-VEP in the time-frequency domain and the fractional domain via fractional Fourier transform. We also proposed a group delay technique to derive the apparent latency from Chirp-VEP. Results on EEG data showed that our approach outperformed the traditional SSVEP-based method in efficiency and ease of apparent latency estimation. For the recruited six subjects, the average apparent latencies ranged from 100 to 130 ms. Finally, we implemented a BCI system with six targets to validate the feasibility of Chirp-VEP as a potential candidate in the field of BCIs.

  9. Phase-locking transition in a chirped superconducting Josephson resonator.

    PubMed

    Naaman, O; Aumentado, J; Friedland, L; Wurtele, J S; Siddiqi, I

    2008-09-12

    We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.

  10. Cascaded chirped photon acceleration for efficient frequency conversion

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2018-05-01

    A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.

  11. Chirp-enhanced fast light in semiconductor optical amplifiers.

    PubMed

    Sedgwick, F G; Pesala, Bala; Uskov, Alexander V; Chang-Hasnain, C J

    2007-12-24

    We present a novel scheme to increase the THz-bandwidth fast light effect in semiconductor optical amplifiers and increase the number of advanced pulses. By introducing a linear chirp to the input pulses before the SOA and recompressing at the output with an opposite chirp, the advance-bandwidth product reached 3.5 at room temperature, 1.55 microm wavelength. This is the largest number reported, to the best of our knowledge, for a semiconductor slow/fast light device.

  12. Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

    DTIC Science & Technology

    2006-01-01

    Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery ...AND SUBTITLE Development of Mid-Frequency Multibeam Sonar for Fisheries Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Washington,School of Aquatic and Fishery Sciences,Box 355020,Seattle,WA,98195 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME

  13. Development of Mid-Frequency Multibeam Sonar for Fisheries Applications

    DTIC Science & Technology

    2007-01-01

    Development of Mid-Frequency Multibeam Sonar for Fisheries Applications John K. Horne University of Washington, School of Aquatic and Fishery ...SUBTITLE Development of Mid-Frequency Multibeam Sonar for Fisheries Applications 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...School of Aquatic and Fishery Sciences,Box 355020 ,Seattle,WA,98195 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND

  14. A Mobile Robot Sonar System with Obstacle Avoidance.

    DTIC Science & Technology

    1994-03-01

    WITH OBSTACLE - AVOIDANCE __ by __ Patrick Gerard Byrne March 1994 Thesis Advisor : Yutaka Kanayama Approved for public release; distribution is...point p is on a line L whose normal has an orientation a and whose distance from the origin is r (Figure 5). This method has an advantage in expressing...sonar(FRONTR); Wine(&pl); while(hitl I >’- 100.0 11 hitl 1 - 0.0 ){ hitl I = sonar(FRONTR); I skipO; line(&p3); gat- robO (&posit 1); while(positl.x

  15. Aided target recognition processing of MUDSS sonar data

    NASA Astrophysics Data System (ADS)

    Lau, Brian; Chao, Tien-Hsin

    1998-09-01

    The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.

  16. New virtual sonar and wireless sensor system concepts

    NASA Astrophysics Data System (ADS)

    Houston, B. H.; Bucaro, J. A.; Romano, A. J.

    2004-05-01

    Recently, exciting new sensor array concepts have been proposed which, if realized, could revolutionize how we approach surface mounted acoustic sensor systems for underwater vehicles. Two such schemes are so-called ``virtual sonar'' which is formulated around Helmholtz integral processing and ``wireless'' systems which transfer sensor information through radiated RF signals. The ``virtual sonar'' concept provides an interesting framework through which to combat the dilatory effects of the structure on surface mounted sensor systems including structure-borne vibration and variations in structure-backing impedance. The ``wireless'' concept would eliminate the necessity of a complex wiring or fiber-optic external network while minimizing vehicle penetrations. Such systems, however, would require a number of advances in sensor and RF waveguide technologies. In this presentation, we will discuss those sensor and sensor-related developments which are desired or required in order to make practical such new sensor system concepts, and we will present several underwater applications from the perspective of exploiting these new sonar concepts. [Work supported by ONR.

  17. Combining split-beam and dual-frequency identification sonars to estimate abundance of anadromous fishes in the Roanoke River, North Carolina

    USGS Publications Warehouse

    Hughes, Jacob B.; Hightower, Joseph E.

    2015-01-01

    Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.

  18. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  19. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-08-02

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.

  20. Introduction to Sonar, Naval Education and Training Command. Revised Edition.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    This Rate Training Manual (RTM) and Nonresident Career Course form a self-study package for those U.S. Navy personnel who are seeking advancement in the Sonar Technician Rating. Among the requirements of the rating are the abilities to obtain and interpret underwater data, operate and maintain upkeep of sonar equipment, and interpret target and…

  1. Beaked Whales Respond to Simulated and Actual Navy Sonar

    DTIC Science & Technology

    2011-03-14

    predator recognition in harbour seals. Nature 420: 171–173. 34. Ford JKB (1989) Acoustic behavior of resident killer whales (Orcinus orca) off Vancouver...acoustic exposure and behavioral reactions of beaked whales to one controlled exposure each of simulated military sonar, killer whale calls, and band...of simulated military sonar, killer whale calls, and band-limited noise. The beaked whales reacted to these three sound playbacks at sound pressure

  2. Progress Towards Chirped-Pulse Fourier Transform Thz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Douglass, Kevin O.; Plusquellic, David F.; Gerecht, Eyal

    2010-06-01

    New opportunities are provided by the development of higher power THz frequency multiplier sources, the development of a broadband Chirped-Pulse FTMW spectroscopy technique at microwave and mm Wave frequencies, and recently demonstrated heterodyne hot electron bolometer detection technology in the THz frequency region with near quantum noise-limited performance and high spectral resolution. Combining these three technologies and extending the chirped-pulse technique to 0.85 THz enables a host of new applications. NIST is currently pursing applications as a point sensor for greenhouse gases, volatile organic compounds, and potentially human breath. The generation and detection of phase stable chirped pulses at 850 GHz will be demonstrated. A description of the experimental setup and preliminary data will be presented for nitrous oxide. G.G. Brown, B.C. Dian, K.O. Douglass, S.M. Geyer, S. Shipman and B.H. Pate, Rev.Sci.Instrum. 79 (2008) 053103. E. Gerecht, D. Gu, L. You, K.S. Yngvesson, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. 56, (2008) 1083.

  3. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments.

    PubMed

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F

    2014-12-15

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. © 2014. Published by The Company of Biologists Ltd.

  4. Bats coordinate sonar and flight behavior as they forage in open and cluttered environments

    PubMed Central

    Falk, Benjamin; Jakobsen, Lasse; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    Echolocating bats use active sensing as they emit sounds and listen to the returning echoes to probe their environment for navigation, obstacle avoidance and pursuit of prey. The sensing behavior of bats includes the planning of 3D spatial trajectory paths, which are guided by echo information. In this study, we examined the relationship between active sonar sampling and flight motor output as bats changed environments from open space to an artificial forest in a laboratory flight room. Using high-speed video and audio recordings, we reconstructed and analyzed 3D flight trajectories, sonar beam aim and acoustic sonar emission patterns as the bats captured prey. We found that big brown bats adjusted their sonar call structure, temporal patterning and flight speed in response to environmental change. The sonar beam aim of the bats predicted the flight turn rate in both the open room and the forest. However, the relationship between sonar beam aim and turn rate changed in the forest during the final stage of prey pursuit, during which the bat made shallower turns. We found flight stereotypy developed over multiple days in the forest, but did not find evidence for a reduction in active sonar sampling with experience. The temporal patterning of sonar sound groups was related to path planning around obstacles in the forest. Together, these results contribute to our understanding of how bats coordinate echolocation and flight behavior to represent and navigate their environment. PMID:25394632

  5. Best chirplet chain: Near-optimal detection of gravitational wave chirps

    NASA Astrophysics Data System (ADS)

    Chassande-Mottin, Éric; Pai, Archana

    2006-02-01

    The list of putative sources of gravitational waves possibly detected by the ongoing worldwide network of large scale interferometers has been continuously growing in the last years. For some of them, the detection is made difficult by the lack of a complete information about the expected signal. We concentrate on the case where the expected gravitational wave (GW) is a quasiperiodic frequency modulated signal i.e., a chirp. In this article, we address the question of detecting an a priori unknown GW chirp. We introduce a general chirp model and claim that it includes all physically realistic GW chirps. We produce a finite grid of template waveforms which samples the resulting set of possible chirps. If we follow the classical approach (used for the detection of inspiralling binary chirps, for instance), we would build a bank of quadrature matched filters comparing the data to each of the templates of this grid. The detection would then be achieved by thresholding the output, the maximum giving the individual which best fits the data. In the present case, this exhaustive search is not tractable because of the very large number of templates in the grid. We show that the exhaustive search can be reformulated (using approximations) as a pattern search in the time-frequency plane. This motivates an approximate but feasible alternative solution which is clearly linked to the optimal one. The time-frequency representation and pattern search algorithm are fully determined by the reformulation. This contrasts with the other time-frequency based methods presented in the literature for the same problem, where these choices are justified by “ad hoc” arguments. In particular, the time-frequency representation has to be unitary. Finally, we assess the performance, robustness and computational cost of the proposed method with several benchmarks using simulated data.

  6. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  7. Whale songs lengthen in response to sonar

    NASA Astrophysics Data System (ADS)

    Miller, Patrick J. O.; Biassoni, Nicoletta; Samuels, Amy; Tyack, Peter L.

    2000-06-01

    There is growing concern about the effects of man-made noise on marine life. In particular, marine mammals that use sound to communicate, navigate, and detect predators and prey may try to avoid loud sound sources up to tens of kilometres away. Here, in a study conducted in cooperation with the US Navy, we show that the singing behaviour of male humpback whales was altered when they were exposed to LFA (low-frequency active) sonar. As the song of these whales is associated with reproduction, widespread alteration of their singing behaviour might affect demographic parameters, or it could represent a strategy to compensate for interference from the sonar.

  8. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context.

    PubMed

    Bar-Yosef, Omer; Rotman, Yaron; Nelken, Israel

    2002-10-01

    The responses of neurons to natural sounds and simplified natural sounds were recorded in the primary auditory cortex (AI) of halothane-anesthetized cats. Bird chirps were used as the base natural stimuli. They were first presented within the original acoustic context (at least 250 msec of sounds before and after each chirp). The first simplification step consisted of extracting a short segment containing just the chirp from the longer segment. For the second step, the chirp was cleaned of its accompanying background noise. Finally, each chirp was replaced by an artificial version that had approximately the same frequency trajectory but with constant amplitude. Neurons had a wide range of different response patterns to these stimuli, and many neurons had late response components in addition, or instead of, their onset responses. In general, every simplification step had a substantial influence on the responses. Neither the extracted chirp nor the clean chirp evoked a similar response to the chirp presented within its acoustic context. The extracted chirp evoked different responses than its clean version. The artificial chirps evoked stronger responses with a shorter latency than the corresponding clean chirp because of envelope differences. These results illustrate the sensitivity of neurons in AI to small perturbations of their acoustic input. In particular, they pose a challenge to models based on linear summation of energy within a spectrotemporal receptive field.

  9. Frequency chirping for resonance-enhanced electron energy during laser acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, D.N.; Suk, H.

    2006-04-15

    The model given by Singh-Tripathi [Phys. Plasmas 11, 743 (2004)] for laser electron acceleration in a magnetic wiggler is revisited by including the effect of laser frequency chirping. Laser frequency chirp helps to maintain the resonance condition longer, which increases the electron energy gain. A significant enhancement in electron energy gain during laser acceleration is observed.

  10. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.

    PubMed

    Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M

    2007-03-01

    We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.

  11. 78 FR 68091 - Certain Marine Sonar Imaging Devices, Products Containing the Same, and Components Thereof...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-898] Certain Marine Sonar Imaging Devices... importation of certain marine sonar imaging devices, products containing the same, and components thereof by... marine sonar imaging devices, products containing the same, and components thereof by reason of...

  12. Dynamic Chirp Control and Pulse Compression for Attosecond High-Order Harmonic Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Yinghui; Zeng Zhinan; Zou Pu

    2009-07-24

    We propose a scheme to compensate dynamically the intrinsic chirp of the attosecond harmonic pulses. By adding a weak second harmonic laser field to the driving laser field, the chirp compensation can be varied from the negative to the positive continuously by simply adjusting the relative time delay between the two-color pulses. Using this technique, the compensation of the negative chirp in harmonic emission is demonstrated experimentally for the first time and the nearly transform-limited attosecond pulse trains are obtained.

  13. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  14. Swath sonar mapping of Earth's submarine plate boundaries

    NASA Astrophysics Data System (ADS)

    Carbotte, S. M.; Ferrini, V. L.; Celnick, M.; Nitsche, F. O.; Ryan, W. B. F.

    2014-12-01

    The recent loss of Malaysia Airlines flight MH370 in an area of the Indian Ocean where less than 5% of the seafloor is mapped with depth sounding data (Smith and Marks, EOS 2014) highlights the striking lack of detailed knowledge of the topography of the seabed for much of the worlds' oceans. Advances in swath sonar mapping technology over the past 30 years have led to dramatic improvements in our capability to map the seabed. However, the oceans are vast and only an estimated 10% of the seafloor has been mapped with these systems. Furthermore, the available coverage is highly heterogeneous and focused within areas of national strategic priority and community scientific interest. The major plate boundaries that encircle the globe, most of which are located in the submarine environment, have been a significant focus of marine geoscience research since the advent of swath sonar mapping. While the location of these plate boundaries are well defined from satellite-derived bathymetry, significant regions remain unmapped at the high-resolutions provided by swath sonars and that are needed to study active volcanic and tectonic plate boundary processes. Within the plate interiors, some fossil plate boundary zones, major hotspot volcanoes, and other volcanic provinces have been the focus of dedicated research programs. Away from these major tectonic structures, swath mapping coverage is limited to sparse ocean transit lines which often reveal previously unknown deep-sea channels and other little studied sedimentary structures not resolvable in existing low-resolution global compilations, highlighting the value of these data even in the tectonically quiet plate interiors. Here, we give an overview of multibeam swath sonar mapping of the major plate boundaries of the globe as extracted from public archives. Significant quantities of swath sonar data acquired from deep-sea regions are in restricted-access international archives. Open access to more of these data sets would

  15. Development of a sonar-based object recognition system

    NASA Astrophysics Data System (ADS)

    Ecemis, Mustafa Ihsan

    2001-02-01

    Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop

  16. Generation and parametric amplification of broadband chirped pulses in the near-infrared

    NASA Astrophysics Data System (ADS)

    Marcinkevičiūtė, A.; Michailovas, K.; Butkus, R.

    2018-05-01

    We demonstrate generation and optical parametric amplification of broadband chirped pulses in the range of 1.8- 2 . 5 μm. The setup is built around Ti:sapphire oscillator as a seed source and 1 kHz Nd:YAG laser system as a pump source. Visible broadband seed pulses are temporally stretched and amplified in a non-collinear optical parametric amplifier before being mixed with fundamental harmonic of the pump laser. Difference frequency generation between positively-chirped broadband pulses centered at 0 . 7 μm and non-chirped narrowband pulses at 1064 nm produces negatively-chirped wide spectral bandwidth pulses in the infrared. After subsequent parametric amplification, pulses with more than 0.5 mJ energy were obtained with spectral bandwidth supporting transform-limited pulse durations as short as 23 fs.

  17. Chirping for efficiency enhancement of the free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, G.T.; Goldstein, J.C.

    1988-01-01

    One-dimensional numerical studies have been made of free-electron laser oscillators in which the incident electron energy varies (chirps) as a function of time over each micropulse. Optical radiation resonant with such micropulses is chirped in frequency. Highest calculated efficiency (up to 8.1% for wavelengths near 10 ..mu..m) has been obtained in cases where the optical pulse at saturation is short compared to the slippage. 8 refs., 7 figs., 1 tab.

  18. Suppression of stimulated Brillouin scattering in optical fibers using a linearly chirped diode laser.

    PubMed

    White, J O; Vasilyev, A; Cahill, J P; Satyan, N; Okusaga, O; Rakuljic, G; Mungan, C E; Yariv, A

    2012-07-02

    The output of high power fiber amplifiers is typically limited by stimulated Brillouin scattering (SBS). An analysis of SBS with a chirped pump laser indicates that a chirp of 2.5 × 10(15) Hz/s could raise, by an order of magnitude, the SBS threshold of a 20-m fiber. A diode laser with a constant output power and a linear chirp of 5 × 10(15) Hz/s has been previously demonstrated. In a low-power proof-of-concept experiment, the threshold for SBS in a 6-km fiber is increased by a factor of 100 with a chirp of 5 × 10(14) Hz/s. A linear chirp will enable straightforward coherent combination of multiple fiber amplifiers, with electronic compensation of path length differences on the order of 0.2 m.

  19. A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.

    2003-06-01

    The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one canmore » see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.« less

  20. A comparison of the role of beamwidth in biological and engineered sonar.

    PubMed

    Todd, Bryan D; Müller, Rolf

    2017-12-28

    Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In nature, biosonar is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and ears) representing bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large, if not wider, than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches.

  1. Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.

    Chirped quasi-phase-matched optical parametric amplifiers (chirped QPM OPAs) are investigated experimentally. The measured collinear gain is constant over a broad bandwidth, which makes these devices attractive candidates for use in femtosecond amplifier systems. The experiment also shows that chirped QPM OPAs support noncollinear gain-guided modes. These modes can dominate the desired collinear gain and generate intense parametric fluorescence. Finally, design guidelines to mitigate these parasitic processes are discussed.

  2. Estimation and simulation of multi-beam sonar noise.

    PubMed

    Holmin, Arne Johannes; Korneliussen, Rolf J; Tjøstheim, Dag

    2016-02-01

    Methods for the estimation and modeling of noise present in multi-beam sonar data, including the magnitude, probability distribution, and spatial correlation of the noise, are developed. The methods consider individual acoustic samples and facilitate compensation of highly localized noise as well as subtraction of noise estimates averaged over time. The modeled noise is included in an existing multi-beam sonar simulation model [Holmin, Handegard, Korneliussen, and Tjøstheim, J. Acoust. Soc. Am. 132, 3720-3734 (2012)], resulting in an improved model that can be used to strengthen interpretation of data collected in situ at any signal to noise ratio. Two experiments, from the former study in which multi-beam sonar data of herring schools were simulated, are repeated with inclusion of noise. These experiments demonstrate (1) the potentially large effect of changes in fish orientation on the backscatter from a school, and (2) the estimation of behavioral characteristics such as the polarization and packing density of fish schools. The latter is achieved by comparing real data with simulated data for different polarizations and packing densities.

  3. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  4. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  5. First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

    PubMed

    DeRuiter, Stacy L; Southall, Brandon L; Calambokidis, John; Zimmer, Walter M X; Sadykova, Dinara; Falcone, Erin A; Friedlaender, Ari S; Joseph, John E; Moretti, David; Schorr, Gregory S; Thomas, Len; Tyack, Peter L

    2013-08-23

    Most marine mammal- strandings coincident with naval sonar exercises have involved Cuvier's beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89-127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78-106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.

  6. Notched-noise embedded frequency specific chirps for objective audiometry using auditory brainstem responses

    PubMed Central

    Corona-Strauss, Farah I.; Schick, Bernhard; Delb, Wolfgang; Strauss, Daniel J.

    2012-01-01

    It has been shown recently that chirp-evoked auditory brainstem responses (ABRs) show better performance than click stimulations, especially at low intensity levels. In this paper we present the development, test, and evaluation of a series of notched-noise embedded frequency specific chirps. ABRs were collected in healthy young control subjects using the developed stimuli. Results of the analysis of the corresponding ABRs using a time-scale phase synchronization stability (PSS) measure are also reported. The resultant wave V amplitude and latency measures showed a similar behavior as for values reported in literature. The PSS of frequency specific chirp-evoked ABRs reflected the presence of the wave V for all stimulation intensities. The scales that resulted in higher PSS are in line with previous findings, where ABRs evoked by broadband chirps were analyzed, and which stated that low frequency channels are better for the recognition and analysis of chirp-evoked ABRs. We conclude that the development and test of the series of notched-noise embedded frequency specific chirps allowed the assessment of frequency specific ABRs, showing an identifiable wave V for different intensity levels. Future work may include the development of a faster automatic recognition scheme for these frequency specific ABRs. PMID:26557336

  7. Contralateral Inhibition of Click- and Chirp-Evoked Human Compound Action Potentials

    PubMed Central

    Smith, Spencer B.; Lichtenhan, Jeffery T.; Cone, Barbara K.

    2017-01-01

    Cochlear outer hair cells (OHC) receive direct efferent feedback from the caudal auditory brainstem via the medial olivocochlear (MOC) bundle. This circuit provides the neural substrate for the MOC reflex, which inhibits cochlear amplifier gain and is believed to play a role in listening in noise and protection from acoustic overexposure. The human MOC reflex has been studied extensively using otoacoustic emissions (OAE) paradigms; however, these measurements are insensitive to subsequent “downstream” efferent effects on the neural ensembles that mediate hearing. In this experiment, click- and chirp-evoked auditory nerve compound action potential (CAP) amplitudes were measured electrocochleographically from the human eardrum without and with MOC reflex activation elicited by contralateral broadband noise. We hypothesized that the chirp would be a more optimal stimulus for measuring neural MOC effects because it synchronizes excitation along the entire length of the basilar membrane and thus evokes a more robust CAP than a click at low to moderate stimulus levels. Chirps produced larger CAPs than clicks at all stimulus intensities (50–80 dB ppeSPL). MOC reflex inhibition of CAPs was larger for chirps than clicks at low stimulus levels when quantified both in terms of amplitude reduction and effective attenuation. Effective attenuation was larger for chirp- and click-evoked CAPs than for click-evoked OAEs measured from the same subjects. Our results suggest that the chirp is an optimal stimulus for evoking CAPs at low stimulus intensities and for assessing MOC reflex effects on the auditory nerve. Further, our work supports previous findings that MOC reflex effects at the level of the auditory nerve are underestimated by measures of OAE inhibition. PMID:28420960

  8. Detecting the spatial chirp signals by fractional Fourier lens with transformation materials

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, J.

    2018-02-01

    Fractional Fourier transform (FrFT) is the general form of the Fourier transform and is an important tool in signal processing. As one typical application of FrFT, detecting the chirp rate (CR, or known as the rate of frequency change) of a chirp signal is important in many optical measurements. The optical FrFT that based on graded index lens fails to detect the high CR chirp because the short wave propagation distance of the impulse in the lens will weaken the paraxial approximation condition. With the help of transformation optics, the improved FrFT lens is proposed to adjust the high CR as well as the impulse location of the given input chirp signal. The designed transformation materials can implement the effect of space compression, making the input chirp signal is equivalent to have lower CR, therefore the system can satisfy the paraxial approximation better. As a result, this lens can improve the detection precision for the high CR. The numerical simulations verified the design. The proposed device may have both theoretical and practical values, and the design demonstrates the ability and flexibility of TO in spatial signal processing.

  9. Overview of Spontaneous Frequency Chirping in Confined Plasmas

    NASA Astrophysics Data System (ADS)

    Berk, Herbert

    2012-10-01

    Spontaneous rapid frequency chirping is now a commonly observed phenomenon in plasmas with an energetic particle component. These particles typically induce so called weak instabilities, where they excite background waves that the plasma can support such as shear Alfven waves. The explanation for this phenomenon attributes the frequency chirping to the formation of phase space structures in the form of holes and clumps. Normally a saturated mode, in the presence of background dissipation, would be expected decay after saturation as the background plasma absorbs the energy of the excited wave. However the phase space structures take an alternate route, and move to a regions of phase space that are lower energy states of the energetic particle distribution. Through the wave-resonant particle interaction, this movement is locked to the frequency observed by the wave. This phenomenon implies that alternate mechanisms for plasma relaxation need to be considered for plasma states new marginal stability. It is also possible that these chirping mechanisms can be used to advantage to externally control states of plasma.

  10. Controlling nanoscale acoustic strains in silicon using chirped femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Tzianaki, E.; Bakarezos, M.; Tsibidis, G. D.; Petrakis, S.; Loukakos, P. A.; Kosmidis, C.; Tatarakis, M.; Papadogiannis, N. A.

    2016-06-01

    The influence of femtosecond laser pulse chirp on laser-generated longitudinal acoustic strains in Si (100) monocrystal substrates is studied. Degenerate femtosecond pump-probe transient reflectivity measurements are performed using a layered structure of thin Ti transducer film on an Si substrate. Experimental results show that acoustic strains, manifested as strong Brillouin oscillations, are more effectively induced when negatively chirped femtosecond laser pulses pump the transducer. These results are theoretically supported by a modified thermo-mechanical model based on the combination of a revised two-temperature model and elasticity theory that takes into account the instantaneous frequency of the chirped femtosecond laser pump pulses.

  11. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of

  12. Optical chirped beam amplification and propagation

    DOEpatents

    Barty, Christopher P.

    2004-10-12

    A short pulse laser system uses dispersive optics in a chirped-beam amplification architecture to produce high peak power pulses and high peak intensities without the potential for intensity dependent damage to downstream optical components after amplification.

  13. Fly's eye condenser based on chirped microlens arrays

    NASA Astrophysics Data System (ADS)

    Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan

    2007-09-01

    Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.

  14. A direct approach for the design of chirp stimuli used for the recording of auditory brainstem responses

    PubMed Central

    Elberling, Claus; Don, Manuel

    2010-01-01

    A recent study evaluates auditory brainstem responses (ABRs) evoked by chirps of different durations (sweeping rates) [Elberling et al. (2010). J. Acoust. Soc. Am. 128, 215–223]. The study demonstrates that shorter chirps are most efficient at higher levels of stimulation whereas longer chirps are most efficient at lower levels. Mechanisms other than the traveling wave delay, in particular, upward spread of excitation and changes in cochlear-neural delay with level, are suggested to be responsible for these findings. As a consequence, delay models based on estimates of the traveling wave delay are insufficient for the design of chirp stimuli, and another delay model based on a direct approach is therefore proposed. The direct approach uses ABR-latencies from normal-hearing subjects in response to octave-band chirps over a wide range of levels. The octave-band chirps are constructed by decomposing a broad-band chirp, and constitute a subset of the chirp. The delay compensations of the proposed model are similar to those found in the previous experimental study, which thus verifies the results of the proposed model. PMID:21110591

  15. Chirped Pulse Spectrometer Operating at 200 GHz

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Bray, Cédric; Hickson, Kevin; Fontanari, Daniele; Mouelhi, Meriem; Cuisset, Arnaud; Mouret, Gaël; Bocquet, Robin

    2018-01-01

    The combination of electronic sources operating at high frequencies and modern microwave instrumentation has enabled the recent development of chirped pulse spectrometers for the millimetre and THz bands. This type of instrument can operate at high resolution which is particularly suited to gas-phase rotational spectroscopy. The construction of a chirped pulse spectrometer operating at 200 GHz is described in detail while attention is paid to the phase stability and the data accumulation over many cycles. Validation using carbonyl sulphide has allowed the detection limit of the instrument to be established as function of the accumulation. A large number of OCS transitions were identified using a 10-GHz chirped pulse and include the six most abundant isotopologues, the weakest line corresponding to the fundamental R(17) transition of 16O13C33S with a line strength of 4.3 × 10-26 cm-1/(molecule cm-2). The linearity of the system response for different degrees of data accumulation and transition line strength was confirmed over four orders of magnitudes. A simple analysis of the time-domain data was demonstrated to provide the line-broadening coefficient without the need for conversion by a Fourier transform. Finally, the pulse duration is discussed and optimal values are given for both Doppler-limited and collisional regimes.

  16. Low sidelobe level and high time resolution for metallic ultrasonic testing with linear-chirp-Golay coded excitation

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaying; Gang, Tie; Ye, Chaofeng; Cong, Sen

    2018-04-01

    Linear-chirp-Golay (LCG)-coded excitation combined with pulse compression is proposed in this paper to improve the time resolution and suppress sidelobe in ultrasonic testing. The LCG-coded excitation is binary complementary pair Golay signal with linear-chirp signal applied on every sub pulse. Compared with conventional excitation which is a common ultrasonic testing method using a brief narrow pulse as exciting signal, the performances of LCG-coded excitation, in terms of time resolution improvement and sidelobe suppression, are studied via numerical and experimental investigations. The numerical simulations are implemented using Matlab K-wave toolbox. It is seen from the simulation results that time resolution of LCG excitation is 35.5% higher and peak sidelobe level (PSL) is 57.6 dB lower than linear-chirp excitation with 2.4 MHz chirp bandwidth and 3 μs time duration. In the B-scan experiment, time resolution of LCG excitation is higher and PSL is lower than conventional brief pulse excitation and chirp excitation. In terms of time resolution, LCG-coded signal has better performance than chirp signal. Moreover, the impact of chirp bandwidth on LCG-coded signal is less than that on chirp signal. In addition, the sidelobe of LCG-coded signal is lower than that of chirp signal with pulse compression.

  17. Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozument, Kirill; Colombo, Anthony P.; Zhou Yan

    2011-09-30

    Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.

  18. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.

    PubMed

    Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M; Liu, Yi; Grelu, Philippe

    2016-06-01

    We shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability.

  19. Characterization and compensation of the residual chirp in a Mach-Zehnder-type electro-optical intensity modulator.

    PubMed

    Rogers, C E; Carini, J L; Pechkis, J A; Gould, P L

    2010-01-18

    We utilize various techniques to characterize the residual phase modulation of a waveguide-based Mach-Zehnder electro-optical intensity modulator. A heterodyne technique is used to directly measure the phase change due to a given change in intensity, thereby determining the chirp parameter of the device. This chirp parameter is also measured by examining the ratio of sidebands for sinusoidal amplitude modulation. Finally, the frequency chirp caused by an intensity pulse on the nanosecond time scale is measured via the heterodyne signal. We show that this chirp can be largely compensated with a separate phase modulator. The various measurements of the chirp parameter are in reasonable agreement.

  20. Archive of digital chirp subbottom profile data collected during USGS cruise 10BIM04 offshore Cat Island, Mississippi, September 2010

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Kindinger, Jack G.; Miselis, Jennifer L.; Wiese, Dana S.; Buster, Noreen A.

    2012-01-01

    In September of 2010, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers (USACE), conducted a geophysical survey to investigate the geologic controls on barrier island framework of Cat Island, Miss., as part of a broader USGS study on Barrier Island Mapping (BIM). These surveys were funded through the Mississippi Coastal Improvements Program (MsCIP) and the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask. This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, GIS files, Field Activity Collection System (FACS) logs, and formal FGDC metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. The USGS Saint Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 10BIM04 tells us the data were collected in 2010 during the fourth field activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity identification (ID). All chirp systems use a signal of continuously varying frequency; the EdgeTech SB-512i system used during this survey produces high-resolution, shallow-penetration (typically less than 50 milliseconds (ms)) profile images of sub-seafloor stratigraphy. The towfish contains a transducer that transmits and receives acoustic energy; it was housed within a float system (built at the SPCMSC), which allows the towfish to be towed at a constant depth of 1.07 meters (m) below the sea surface. As transmitted acoustic energy intersects density boundaries, such as the seafloor or sub

  1. Duobinary pulse shaping for frequency chirp enabled complex modulation.

    PubMed

    Che, Di; Yuan, Feng; Khodakarami, Hamid; Shieh, William

    2016-09-01

    The frequency chirp of optical direct modulation (DM) used to be a performance barrier of optical transmission system, because it broadens the signal optical spectrum, which becomes more susceptible to chromatic dispersion induced inter-symbol interference (ISI). However, by considering the chirp as frequency modulation, the single DM simultaneously generates a 2-D signal containing the intensity and phase (namely, the time integral of frequency). This complex modulation concept significantly increases the optical signal to noise ratio (OSNR) sensitivity of DM systems. This Letter studies the duobinary pulse shaping (DB-PS) for chirp enabled DM and its impact on the optical bandwidth and system OSNR sensitivity. DB-PS relieves the bandwidth requirement, at the sacrifice of system OSNR sensitivity. As DB-PS induces a controlled ISI, the receiver requires one more tap for maximum likelihood sequence estimation (MLSE). We verify this modified MLSE with a 10-Gbaud duobinary PAM-4 transmission experiment.

  2. Female giant panda (Ailuropoda melanoleuca) chirps advertise the caller's fertile phase

    PubMed Central

    Charlton, Benjamin D.; Keating, Jennifer L.; Rengui, Li; Huang, Yan; Swaisgood, Ronald R.

    2010-01-01

    Although female mammal vocal behaviour is known to advertise fertility, to date, no non-human mammal study has shown that the acoustic structure of female calls varies significantly around their fertile period. Here, we used a combination of hormone measurements and acoustic analyses to determine whether female giant panda chirps have the potential to signal the caller's precise oestrous stage (fertile versus pre-fertile). We then used playback experiments to examine the response of male giant pandas to female chirps produced during fertile versus pre-fertile phases of the caller's reproductive cycle. Our results show that the acoustic structure of female giant panda chirps differs between fertile and pre-fertile callers and that male giant pandas can perceive differences in female chirps that allow them to determine the exact timing of the female's fertile phase. These findings indicate that male giant pandas could use vocal cues to preferentially associate and copulate with females at the optimum time for insemination and reveal the likely importance of female vocal signals for coordinating reproductive efforts in this critically endangered species. PMID:19955154

  3. Side-scan sonar mapping: Pseudo-real-time processing and mosaicking techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danforth, W.W.; Schwab, W.C.; O'Brien, T.F.

    1990-05-01

    The US Geological Survey (USGS) surveyed 1,000 km{sup 2} of the continental shelf off San Francisco during a 17-day cruise, using a 120-kHz side-scan sonar system, and produced a digitally processed sonar mosaic of the survey area. The data were processed and mosaicked in real time using software developed at the Lamont-Doherty Geological Observatory and modified by the USGS, a substantial task due to the enormous amount of data produced by high-resolution side-scan systems. Approximately 33 megabytes of data were acquired every 1.5 hr. The real-time sonar images were displayed on a PC-based workstation and the data were transferred tomore » a UNIX minicomputer where the sonar images were slant-range corrected, enhanced using an averaging method of desampling and a linear-contrast stretch, merged with navigation, geographically oriented at a user-selected scale, and finally output to a thermal printer. The hard-copy output was then used to construct a mosaic of the survey area. The final product of this technique is a UTM-projected map-mosaic of sea-floor backscatter variations, which could be used, for example, to locate appropriate sites for sediment sampling to ground truth the sonar imagery while still at sea. More importantly, reconnaissance surveys of this type allow for the analysis and interpretation of the mosaic during a cruise, thus greatly reducing the preparation time needed for planning follow-up studies of a particular area.« less

  4. Two-photon absorption spectroscopy using intense phase-chirped entangled beams

    NASA Astrophysics Data System (ADS)

    Svozilík, Jiří; Peřina, Jan; León-Montiel, Roberto de J.

    2018-06-01

    We numerically analyze the use of intense entangled twin beams for ultra-sensitive spectroscopic measurements in chemical and biological systems. The examined scheme makes use of intense frequency-modulated (chirped) entangled beams to successfully extract information about the intermediate material states that contribute to the two-photon excitation of an absorbing medium. Robustness of the presented method is examined with respect to the applied intervals of the frequency chirp.

  5. Development of a 2 MHz Sonar Sensor for Inspection of Bridge Substructures.

    PubMed

    Park, Chul; Kim, Youngseok; Lee, Heungsu; Choi, Sangsik; Jung, Haewook

    2018-04-16

    Hydraulic factors account for a large part of the causes of bridge collapse. Due to the nature of the underwater environment, quick and accurate inspection is required when damage occurs. In this study, we developed a 2 MHz side scan sonar sensor module and effective operation technique by improving the limitations of existing sonar. Through field tests, we analyzed the correlation of factors affecting the resolution of the sonar data such as the angle of survey, the distance from the underwater structure and the water depth. The effect of the distance and the water depth and the structure on the survey angle was 66~82%. We also derived the relationship between these factors as a regression model for effective operating techniques. It is considered that application of the developed 2 MHz side scan sonar and its operation method could contribute to prevention of bridge collapses and disasters by quickly and accurately checking the damage of bridge substructures due to hydraulic factors.

  6. Development of a 2 MHz Sonar Sensor for Inspection of Bridge Substructures

    PubMed Central

    Park, Chul; Lee, Heungsu; Choi, Sangsik; Jung, Haewook

    2018-01-01

    Hydraulic factors account for a large part of the causes of bridge collapse. Due to the nature of the underwater environment, quick and accurate inspection is required when damage occurs. In this study, we developed a 2 MHz side scan sonar sensor module and effective operation technique by improving the limitations of existing sonar. Through field tests, we analyzed the correlation of factors affecting the resolution of the sonar data such as the angle of survey, the distance from the underwater structure and the water depth. The effect of the distance and the water depth and the structure on the survey angle was 66~82%. We also derived the relationship between these factors as a regression model for effective operating techniques. It is considered that application of the developed 2 MHz side scan sonar and its operation method could contribute to prevention of bridge collapses and disasters by quickly and accurately checking the damage of bridge substructures due to hydraulic factors. PMID:29659557

  7. Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2017-01-01

    In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.

  8. Novel sonar signal processing tool using Shannon entropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quazi, A.H.

    1996-06-01

    Traditionally, conventional signal processing extracts information from sonar signals using amplitude, signal energy or frequency domain quantities obtained using spectral analysis techniques. The object is to investigate an alternate approach which is entirely different than that of traditional signal processing. This alternate approach is to utilize the Shannon entropy as a tool for the processing of sonar signals with emphasis on detection, classification, and localization leading to superior sonar system performance. Traditionally, sonar signals are processed coherently, semi-coherently, and incoherently, depending upon the a priori knowledge of the signals and noise. Here, the detection, classification, and localization technique will bemore » based on the concept of the entropy of the random process. Under a constant energy constraint, the entropy of a received process bearing finite number of sample points is maximum when hypothesis H{sub 0} (that the received process consists of noise alone) is true and decreases when correlated signal is present (H{sub 1}). Therefore, the strategy used for detection is: (I) Calculate the entropy of the received data; then, (II) compare the entropy with the maximum value; and, finally, (III) make decision: H{sub 1} is assumed if the difference is large compared to pre-assigned threshold and H{sub 0} is otherwise assumed. The test statistics will be different between entropies under H{sub 0} and H{sub 1}. Here, we shall show the simulated results for detecting stationary and non-stationary signals in noise, and results on detection of defects in a Plexiglas bar using an ultrasonic experiment conducted by Hughes. {copyright} {ital 1996 American Institute of Physics.}« less

  9. Assessment of Marine Mammal Impact Zones for Use of Military Sonar in the Baltic Sea.

    PubMed

    Andersson, Mathias H; Johansson, Torbjörn

    2016-01-01

    Military sonars are known to have caused cetaceans to strand. Navies in shallow seas use different frequencies and sonar pulses, commonly frequencies between 25 and 100 kHz, compared with most studied NATO sonar systems that have been evaluated for their environmental impact. These frequencies match the frequencies of best hearing in the harbor porpoises and seals resident in the Baltic Sea. This study uses published temporary and permanent threshold shifts, measured behavioral response thresholds, technical specifications of a sonar system, and environmental parameters affecting sound propagation common for the Baltic Sea to estimate the impact zones for harbor porpoises and seals.

  10. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  11. A novel approach to surveying sturgeon using side-scan sonar and occupancy modeling

    USGS Publications Warehouse

    Flowers, H. Jared; Hightower, Joseph E.

    2013-01-01

    Technological advances represent opportunities to enhance and supplement traditional fisheries sampling approaches. One example with growing importance for fisheries research is hydroacoustic technologies such as side-scan sonar. Advantages of side-scan sonar over traditional techniques include the ability to sample large areas efficiently and the potential to survey fish without physical handling-important for species of conservation concern, such as endangered sturgeons. Our objectives were to design an efficient survey methodology for sampling Atlantic Sturgeon Acipenser oxyrinchus by using side-scan sonar and to developmethods for analyzing these data. In North Carolina and South Carolina, we surveyed six rivers thought to contain varying abundances of sturgeon by using a combination of side-scan sonar, telemetry, and video cameras (i.e., to sample jumping sturgeon). Lower reaches of each river near the saltwater-freshwater interface were surveyed on three occasions (generally successive days), and we used occupancy modeling to analyze these data.We were able to detect sturgeon in five of six rivers by using these methods. Side-scan sonar was effective in detecting sturgeon, with estimated gear-specific detection probabilities ranging from 0.2 to 0.5 and river-specific occupancy estimates (per 2-km river segment) ranging from 0.0 to 0.8. Future extensions of this occupancy modeling framework will involve the use of side-scan sonar data to assess sturgeon habitat and abundance in different river systems.

  12. Enhancing high-order harmonic generation by sculpting waveforms with chirp

    NASA Astrophysics Data System (ADS)

    Peng, Dian; Frolov, M. V.; Pi, Liang-Wen; Starace, Anthony F.

    2018-05-01

    We present a theoretical analysis showing how chirp can be used to sculpt two-color driving laser field waveforms in order to enhance high-order harmonic generation (HHG) and/or extend HHG cutoff energies. Specifically, we consider driving laser field waveforms composed of two ultrashort pulses having different carrier frequencies in each of which a linear chirp is introduced. Two pairs of carrier frequencies of the component pulses are considered: (ω , 2 ω ) and (ω , 3 ω ). Our results show how changing the signs of the chirps in each of the two component pulses leads to drastic changes in the HHG spectra. Our theoretical analysis is based on numerical solutions of the time-dependent Schrödinger equation and on a semiclassical analytical approach that affords a clear physical interpretation of how our optimized waveforms lead to enhanced HHG spectra.

  13. Chirped self-similar optical pulses in tapered centrosymmetric nonlinear waveguides doped with resonant impurities

    NASA Astrophysics Data System (ADS)

    He, J. R.; Xu, S. L.; Xue, L.

    2017-11-01

    Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.

  14. Effects of auditory selective attention on chirp evoked auditory steady state responses.

    PubMed

    Bohr, Andreas; Bernarding, Corinna; Strauss, Daniel J; Corona-Strauss, Farah I

    2011-01-01

    Auditory steady state responses (ASSRs) are frequently used to assess auditory function. Recently, the interest in effects of attention on ASSRs has increased. In this paper, we investigated for the first time possible effects of attention on AS-SRs evoked by amplitude modulated and frequency modulated chirps paradigms. Different paradigms were designed using chirps with low and high frequency content, and the stimulation was presented in a monaural and dichotic modality. A total of 10 young subjects participated in the study, they were instructed to ignore the stimuli and after a second repetition they had to detect a deviant stimulus. In the time domain analysis, we found enhanced amplitudes for the attended conditions. Furthermore, we noticed higher amplitudes values for the condition using frequency modulated low frequency chirps evoked by a monaural stimulation. The most difference between attended and unattended modality was exhibited at the dichotic case of the amplitude modulated condition using chirps with low frequency content.

  15. Measurement of stream channel habitat using sonar

    USGS Publications Warehouse

    Flug, Marshall; Seitz, Heather; Scott, John

    1998-01-01

    An efficient and low cost technique using a sonar system was evaluated for describing channel geometry and quantifying inundated area in a large river. The boat-mounted portable sonar equipment was used to record water depths and river width measurements for direct storage on a laptop computer. The field data collected from repeated traverses at a cross-section were evaluated to determine the precision of the system and field technique. Results from validation at two different sites showed average sample standard deviations (S.D.s) of 0.12 m for these complete cross-sections, with coefficient of variations of 10%. Validation using only the mid-channel river cross-section data yields an average sample S.D. of 0.05 m, with a coefficient of variation below 5%, at a stable and gauged river site using only measurements of water depths greater than 0.6 m. Accuracy of the sonar system was evaluated by comparison to traditionally surveyed transect data from a regularly gauged site. We observed an average mean squared deviation of 46.0 cm2, considering only that portion of the cross-section inundated by more than 0.6 m of water. Our procedure proved to be a reliable, accurate, safe, quick, and economic method to record river depths, discharges, bed conditions, and substratum composition necessary for stream habitat studies.

  16. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.

    PubMed

    Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming

    2009-09-14

    The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

  17. Are chirps better than clicks and tonebursts for evoking middle latency responses?

    PubMed

    Atcherson, Samuel R; Moore, Page C

    2014-06-01

    The middle latency response (MLR) is considered a valid clinical tool for assessing the integrity of cortical and subcortical structures. Several investigators have demonstrated that a rising frequency chirp stimulus is capable of eliciting not only larger wave V amplitudes but larger MLR components as well. However, the chirp has never been specifically examined in a hemispheric electrode montage setup that is typical for neurodiagnostic application and site-of-lesion testing. The purpose of this study was to examine the effect of chirp, click, and toneburst stimuli on MLR waveform peak latency and peak-to-peak amplitude in a hemispheric electrode montage setup. This study used a repeated-measures design. A total of 10 young adult participants (3 males, 7 females) with normal hearing were recruited and had negative histories of audiologic, otologic, and neurologic involvement, and no reported language or learning difficulties. MLR latencies (Na, Pa, Nb, and Pb) and peak-to-peak amplitudes (Na-Pa, Pa-Nb, and Nb-Pb) were measured for all conditions and were statistically evaluated for left hemisphere-right ear (C3-A2) and right hemisphere-left ear (C4-A1) recordings. Statistical analyses revealed no significant difference between C3-A2 and C4-A1 peak-to-peak amplitudes; therefore, data were collapsed. Stimulus comparisons revealed that Na evoked by tonebursts were statistically prolonged compared with both chirp and click, and that both Na-Pa and Pa-Nb peak-to-peak amplitudes were statistically larger for chirps compared with both clicks and tonebursts, and for clicks compared with tonebursts. The results of this study support the hypothesis that a chirp would offer a clinical advantage to the click and toneburst in overall peak-to-peak amplitude. As expected, normal-hearing participants did not exhibit hemispheric differences when comparing C3-A2 and C4-A1 peak-to-peak amplitudes demonstrating symmetric auditory brain function. However, chirp-evoked MLRs will

  18. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    NASA Astrophysics Data System (ADS)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  19. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  20. Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources

    DOE PAGES

    Terzić, Balša; Reeves, Cody; Krafft, Geoffrey A.

    2016-04-25

    Recently various laser-chirping schemes have been investigated with the goal of reducing or eliminating ponderomotive line broadening in Compton or Thomson scattering occurring at high laser intensities. Moreover, as a next level of detail in the spectrum calculations, we have calculated the line smoothing and broadening expected due to incident beam energy spread within a one-dimensional plane wave model for the incident laser pulse, both for compensated (chirped) and unchirped cases. The scattered compensated distributions are treatable analytically within three models for the envelope of the incident laser pulses: Gaussian, Lorentzian, or hyperbolic secant. We use the new results tomore » demonstrate that the laser chirping in Compton sources at high laser intensities: (i) enables the use of higher order harmonics, thereby reducing the required electron beam energies; and (ii) increases the photon yield in a small frequency band beyond that possible with the fundamental without chirping. We found that this combination of chirping and higher harmonics can lead to substantial savings in the design, construction and operational costs of the new Compton sources. This is of particular importance to the widely popular laser-plasma accelerator based Compton sources, as the improvement in their beam quality enters the regime where chirping is most effective.« less

  1. Seismic-reflection and sidescan-sonar data collected off eastern Cape Cod, Massachusetts, during April 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 98 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the inner shelf of eastern Cape Cod, Massachusetts, during April 1979. The data were obtained during cruise NE-1-79 of the R/V NEECHO. The purposes of the survey were: (1) to study the development of barrier islands; (2) to document the frequency and rate of migration of inlets that breach barrier islands; and (3) to define the characteristics of shoreface ridges on a barrier island.he survey uti I ized two acoustic systems. Information about the bottom was obtained by using an EDO Western model 606 sidescan-sonar system (100 kHz). Profiles of the subbottom were collected by an EG&G Uni boom transducer (400-4,000 Hz) and a Del Norte streamer. Positional control for al I track! ines was provided by a shore-based Miniranger system and by LORAN-C.The quality of the records generally is very good. However, subbottom penetration did vary somewhat from place to place during the survey due to the nature of the bottom sediments and to the presence or absence of buried channels.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are avai I able for purchase from the National Geophysical pnd Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303 (303-497-6338).

  2. Archive of digital Chirp subbottom profile data collected during USGS cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2011-01-01

    In June and July of 2009, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). The surveys were funded through the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php). This report serves as an archive of unprocessed digital Chirp seismic profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Single-beam and Swath bathymetry data were also collected during these cruises and will be published as a separate archive. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  3. Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults.

    PubMed

    Cobb, Kensi M; Stuart, Andrew

    2016-08-01

    The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level (nHL). The lowest stimulus intensity level at which a wave V was identifiable and replicable was considered the ABR threshold. ABR thresholds to air-conducted CE-Chirps were 9.8 dB nHL for neonates and adults. ABR thresholds to bone-conducted CE-Chirps were 3.8 and 13.8 dB nHL for neonates and adults, respectively. The difference in ABR thresholds to bone-conducted CE-Chirps was significantly different (p < .0001, ηp2 = .45). Adults had significantly larger wave V amplitudes to air- (p < .0001, ηp2 = .50) and bone-conducted (p = .013, ηp2 = .15) CE-Chirps at a stimulus intensity of 30 dB nHL. At the same intensity, adults evidenced significantly shorter wave V latencies (p < .0001, ηp2 = .49) only with air-conducted CE-chirps. The difference in ABR thresholds and wave V latencies to air- and bone-conducted CE-Chirps between neonates and adults may be attributed to a disparity in effective signal delivery to the cochlea.

  4. Potential Population Consequences of Active Sonar Disturbance in Atlantic Herring: Estimating the Maximum Risk.

    PubMed

    Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael

    2016-01-01

    Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population.

  5. Side-scan sonar imaging of the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Anima, Roberto; Wong, Florence L.; Hogg, David; Galanis, Peter

    2007-01-01

    This paper presents data collection methods and side-scan sonar data collected along the Colorado River in Grand Canyon in August and September of 2000. The purpose of the data collection effort was to image the distribution of sand between Glen Canyon Dam and river mile 87.4 before and after the 31,600 cfs flow of September 6-8. The side-scan sonar imaging focused on pools between rapids but included smaller rapids where possible.

  6. Color and Grey Scale in Sonar Displays

    NASA Technical Reports Server (NTRS)

    Kraiss, K. F.; Kuettelwesch, K. H.

    1984-01-01

    In spite of numerous publications 1 it is still rather unclear, whether color is of any help in sonar displays. The work presented here deals with a particular type of sonar data, i.e., LOFAR-grams (low frequency analysing and recording) where acoustic sensor data are continuously written as a time-frequency plot. The question to be answered quantitatively is, whether color coding does improve target detection when compared with a grey scale code. The data show significant differences in receiver-operating characteristics performance for the selected codes. In addition it turned out, that the background noise level affects the performance dramatically for some color codes, while others remain stable or even improve. Generally valid rules are presented on how to generate useful color scales for this particular application.

  7. Blue whales respond to simulated mid-frequency military sonar

    PubMed Central

    Goldbogen, Jeremy A.; Southall, Brandon L.; DeRuiter, Stacy L.; Calambokidis, John; Friedlaender, Ari S.; Hazen, Elliott L.; Falcone, Erin A.; Schorr, Gregory S.; Douglas, Annie; Moretti, David J.; Kyburg, Chris; McKenna, Megan F.; Tyack, Peter L.

    2013-01-01

    Mid-frequency military (1–10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health. PMID:23825206

  8. Blue whales respond to simulated mid-frequency military sonar.

    PubMed

    Goldbogen, Jeremy A; Southall, Brandon L; DeRuiter, Stacy L; Calambokidis, John; Friedlaender, Ari S; Hazen, Elliott L; Falcone, Erin A; Schorr, Gregory S; Douglas, Annie; Moretti, David J; Kyburg, Chris; McKenna, Megan F; Tyack, Peter L

    2013-08-22

    Mid-frequency military (1-10 kHz) sonars have been associated with lethal mass strandings of deep-diving toothed whales, but the effects on endangered baleen whale species are virtually unknown. Here, we used controlled exposure experiments with simulated military sonar and other mid-frequency sounds to measure behavioural responses of tagged blue whales (Balaenoptera musculus) in feeding areas within the Southern California Bight. Despite using source levels orders of magnitude below some operational military systems, our results demonstrate that mid-frequency sound can significantly affect blue whale behaviour, especially during deep feeding modes. When a response occurred, behavioural changes varied widely from cessation of deep feeding to increased swimming speed and directed travel away from the sound source. The variability of these behavioural responses was largely influenced by a complex interaction of behavioural state, the type of mid-frequency sound and received sound level. Sonar-induced disruption of feeding and displacement from high-quality prey patches could have significant and previously undocumented impacts on baleen whale foraging ecology, individual fitness and population health.

  9. Effects of Energy Chirp on Echo-Enabled Harmonic Generation Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Ratner, D.; Stupakov, G.

    2009-02-23

    We study effects of energy chirp on echo-enabled harmonic generation (EEHG). Analytical expressions are compared with numerical simulations for both harmonic and bunching factors. We also discuss the EEHG free-electron laser bandwidth increase due to an energy-modulated beam and its pulse length dependence on the electron energy chirp.

  10. Fusion of Local Statistical Parameters for Buried Underwater Mine Detection in Sonar Imaging

    NASA Astrophysics Data System (ADS)

    Maussang, F.; Rombaut, M.; Chanussot, J.; Hétet, A.; Amate, M.

    2008-12-01

    Detection of buried underwater objects, and especially mines, is a current crucial strategic task. Images provided by sonar systems allowing to penetrate in the sea floor, such as the synthetic aperture sonars (SASs), are of great interest for the detection and classification of such objects. However, the signal-to-noise ratio is fairly low and advanced information processing is required for a correct and reliable detection of the echoes generated by the objects. The detection method proposed in this paper is based on a data-fusion architecture using the belief theory. The input data of this architecture are local statistical characteristics extracted from SAS data corresponding to the first-, second-, third-, and fourth-order statistical properties of the sonar images, respectively. The interest of these parameters is derived from a statistical model of the sonar data. Numerical criteria are also proposed to estimate the detection performances and to validate the method.

  11. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  12. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  13. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  14. Marine Mammals and Active Sonar

    DTIC Science & Technology

    2005-10-01

    Stafford , K. M., C. G. Fox, and D. S. Clark. 1998 . Long - range acoustic detection , localization of blue whale calls in the northeast...signal processing generated by other projects. The current effort on detection , classification, and localization of northern right whales as well as a...causal mechanisms of sonar-related beaked whale strandings. ONR is funding various research projects including passive acoustic detection

  15. Photoacoustic simulation study of chirp excitation response from different size absorbers

    NASA Astrophysics Data System (ADS)

    Jnawali, K.; Chinni, B.; Dogra, V.; Rao, N.

    2017-03-01

    Photoacoustic (PA) imaging is a hybrid imaging modality that integrates the strength of optical and ultrasound imaging. Nanosecond (ns) pulsed lasers used in current PA imaging systems are expensive, bulky and they often waste energy. We propose and evaluate, through simulations, the use of a continuous wave (CW) laser whose amplitude is linear frequency modulated (chirp) for PA imaging. The chirp signal provides signal-to-side-lobe ratio (SSR) improvement potential and full control over PA signal frequencies excited in the sample. The PA signal spectrum is a function of absorber size and the time frequencies present in the chirp. A mismatch between the input chirp spectrum and the output PA signal spectrum can affect the compressed pulse that is recovered from cross-correlating the two. We have quantitatively characterized this effect. The k-wave Matlab tool box was used to simulate PA signals in three dimensions for absorbers ranging in size from 0.1 mm to 0.6 mm, in response to laser excitation amplitude that is linearly swept from 0.5 MHz to 4 MHz. This sweep frequency range was chosen based on the spectrum analysis of a PA signal generated from ex-vivo human prostate tissue samples. In comparison, the energy wastage by a ns laser pulse was also estimated. For the chirp methodology, the compressed pulse peak amplitude, pulse width and side lobe structure parameters were extracted for different size absorbers. While the SSR increased 6 fold with absorber size, the pulse width decreased by 25%.

  16. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Liangyou; Tan Fang; Gong Qihuang

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less

  17. Bubble-based acoustic radiation force using chirp insonation to reduce standing wave effects.

    PubMed

    Erpelding, Todd N; Hollman, Kyle W; O'Donnell, Matthew

    2007-02-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young's modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200 and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size.

  18. Estimation of multiple accelerated motions using chirp-Fourier transform and clustering.

    PubMed

    Alexiadis, Dimitrios S; Sergiadis, George D

    2007-01-01

    Motion estimation in the spatiotemporal domain has been extensively studied and many methodologies have been proposed, which, however, cannot handle both time-varying and multiple motions. Extending previously published ideas, we present an efficient method for estimating multiple, linearly time-varying motions. It is shown that the estimation of accelerated motions is equivalent to the parameter estimation of superpositioned chirp signals. From this viewpoint, one can exploit established signal processing tools such as the chirp-Fourier transform. It is shown that accelerated motion results in energy concentration along planes in the 4-D space: spatial frequencies-temporal frequency-chirp rate. Using fuzzy c-planes clustering, we estimate the plane/motion parameters. The effectiveness of our method is verified on both synthetic as well as real sequences and its advantages are highlighted.

  19. Quantum dynamics of a two-state system induced by a chirped zero-area pulse

    NASA Astrophysics Data System (ADS)

    Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2016-02-01

    It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.

  20. The optimal input optical pulse shape for the self-phase modulation based chirp generator

    NASA Astrophysics Data System (ADS)

    Zachinyaev, Yuriy; Rumyantsev, Konstantin

    2018-04-01

    The work is aimed to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator allowing to achieve high values of chirp frequency deviation. During the research, the structure of the device based on self-phase modulation effect using has been analyzed. The influence of the input optical pulse shape of the transmitting optical module on the chirp frequency deviation has been studied. The relationship between the frequency deviation of the generated chirp and frequency linearity for the three options for implementation of the pulse shape has been also estimated. The results of research are related to the development of the theory of radio processors based on fiber-optic structures and can be used in radars, secure communications, geolocation and tomography.

  1. Auditory brainstem responses to broad-band chirps: amplitude growth functions in sedated and anaesthetised infants.

    PubMed

    Mühler, Roland; Rahne, Torsten; Verhey, Jesko L

    2013-01-01

    Recently an optimized broad-band chirp stimulus has been proposed for the objective estimation of hearing thresholds with auditory brainstem responses (ABRs). Several studies have demonstrated that this stimulus, compensating for the travelling wave delay of the frequency components of a click stimulus at the basilar membrane, evokes larger ABR amplitudes in adults. This study analyses the amplitude of chirp-evoked ABRs recorded in infants below 48 month of age under clinical conditions and compares these results with literature data. Chirp-evoked ABR recordings in 46 infants under chloral hydrate sedation or general anaesthesia were analysed retrospectively. The amplitude of the wave V was measured as a function of the stimulus intensity. To compare ABR amplitudes across infants with different hearing losses, the stimulus intensity was readjusted to the subjects' individual physiological threshold in dB SL (sensation level). Individual wave V amplitudes were plotted against stimulus intensity and individual amplitude growth functions were calculated. To investigate the maturation of chirp-evoked ABR, data from infants below and above 18 months of age were analysed separately. Chirp-evoked ABR amplitudes in both age groups were larger than the click-evoked ABR amplitudes in young infants from the literature. Amplitudes of chirp-evoked ABR in infants above 18 months of age were not substantially smaller than those reported for normal hearing adults. Amplitudes recorded in infants below 18 months were significantly smaller than those in infants above 18 months. A significant difference between chirp-evoked ABR amplitudes recorded in sedation or under general anaesthesia was not found. The higher amplitudes of ABR elicited by a broadband chirp stimulus allow for a reduction of the recording time in young infants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Introduction to Sonar, Navy Training Course.

    ERIC Educational Resources Information Center

    Naval Personnel Program Support Activity, Washington, DC.

    Fundamentals of sonar systems are presented in this book, prepared for both regular navy and naval reserve personnel who are seeking advancement in rating. An introductory description is first made of submarines and antisubmarine units. Determination of underwater targets is analyzed from the background of true and relative bearings, true and…

  3. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  4. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †.

    PubMed

    Lee, Yeongjun; Choi, Jinwoo; Ko, Nak Yong; Choi, Hyun-Taek

    2017-08-24

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status-i.e., the existence and identity (or name)-of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods-particle filtering and Bayesian feature estimation-are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented.

  5. Probability-Based Recognition Framework for Underwater Landmarks Using Sonar Images †

    PubMed Central

    Choi, Jinwoo; Choi, Hyun-Taek

    2017-01-01

    This paper proposes a probability-based framework for recognizing underwater landmarks using sonar images. Current recognition methods use a single image, which does not provide reliable results because of weaknesses of the sonar image such as unstable acoustic source, many speckle noises, low resolution images, single channel image, and so on. However, using consecutive sonar images, if the status—i.e., the existence and identity (or name)—of an object is continuously evaluated by a stochastic method, the result of the recognition method is available for calculating the uncertainty, and it is more suitable for various applications. Our proposed framework consists of three steps: (1) candidate selection, (2) continuity evaluation, and (3) Bayesian feature estimation. Two probability methods—particle filtering and Bayesian feature estimation—are used to repeatedly estimate the continuity and feature of objects in consecutive images. Thus, the status of the object is repeatedly predicted and updated by a stochastic method. Furthermore, we develop an artificial landmark to increase detectability by an imaging sonar, which we apply to the characteristics of acoustic waves, such as instability and reflection depending on the roughness of the reflector surface. The proposed method is verified by conducting basin experiments, and the results are presented. PMID:28837068

  6. Sonar sound groups and increased terminal buzz duration reflect task complexity in hunting bats.

    PubMed

    Hulgard, Katrine; Ratcliffe, John M

    2016-02-09

    More difficult tasks are generally regarded as such because they demand greater attention. Echolocators provide rare insight into this relationship because biosonar signals can be monitored. Here we show that bats produce longer terminal buzzes and more sonar sound groups during their approach to prey under presumably more difficult conditions. Specifically, we found Daubenton's bats, Myotis daubentonii, produced longer buzzes when aerial-hawking versus water-trawling prey, but that bats taking revolving air- and water-borne prey produced more sonar sound groups than did the bats when taking stationary prey. Buzz duration and sonar sound groups have been suggested to be independent means by which bats attend to would-be targets and other objects of interest. We suggest that for attacking bats both should be considered as indicators of task difficulty and that the buzz is, essentially, an extended sonar sound group.

  7. Bubble-Based Acoustic Radiation Force Using Chirp Insonation to Reduce Standing Wave Effects

    PubMed Central

    Erpelding, Todd N.; Hollman, Kyle W.; O’Donnell, Matthew

    2007-01-01

    Bubble-based acoustic radiation force can measure local viscoelastic properties of tissue. High intensity acoustic waves applied to laser-generated bubbles induce displacements inversely proportional to local Young’s modulus. In certain instances, long pulse durations are desirable but are susceptible to standing wave artifacts, which corrupt displacement measurements. Chirp pulse acoustic radiation force was investigated as a method to reduce standing wave artifacts. Chirp pulses with linear frequency sweep magnitudes of 100, 200, and 300 kHz centered around 1.5 MHz were applied to glass beads within gelatin phantoms and laser-generated bubbles within porcine lenses. The ultrasound transducer was translated axially to vary standing wave conditions, while comparing displacements using chirp pulses and 1.5 MHz tone burst pulses of the same duration and peak rarefactional pressure. Results demonstrated significant reduction in standing wave effects using chirp pulses, with displacement proportional to acoustic intensity and bubble size. PMID:17306697

  8. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.

    PubMed

    Dunlap, K D; DiBenedictis, B T; Banever, S R

    2010-07-01

    Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial low-frequency electric signals and to heterospecific electric fish whose EOD contains low-frequency components. Fish chirped at rates above background when presented with low-frequency (10-300 Hz) sine-wave stimuli; at 30 and 150 Hz, the threshold amplitude for response was 1 mV cm(-1). Low-frequency (30 Hz) stimuli also potentiated the chirp response to high-frequency ( approximately 900 Hz) stimuli. Fish increased their chirp rate when presented with two heterospecific electric fish, Sternopygus macrurus and Brachyhypopomus gauderio, but did not respond to the presence of the non-electric fish Carassius auratus. Fish chirped to low-frequency (150 Hz) signals that mimic those of S. macrurus and to EOD playbacks of B. gauderio. The response to the B. gauderio playback was reduced when the low-frequency component (<150 Hz) was experimentally filtered out. Thus, A. leptorhynchus appears to chirp specifically to the electric signals of heterospecific electric fish, and the low-frequency components of heterospecific EODs significantly influence chirp rate. These results raise the possibility that chirps function to communicate to conspecifics about the presence of a heterospecific fish or to communicate directly to heterospecific fish.

  9. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    PubMed Central

    MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  10. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series.

    PubMed

    Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible.

  11. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation.

    PubMed

    Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; von Benda-Beckmann, Alexander M; Sivle, Lise D; Visser, Fleur; Curé, Charlotte; Tyack, Peter L; Miller, Patrick J O

    2017-11-15

    Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission ('ramp-up'). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators - maximum sound pressure level (SPL max ), cumulative sound exposure level (SEL cum ) and minimum source-whale range ( R min ) - compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 ( n =11) differed significantly from those in FullPower ( n =12) by -3.0 dB (SPL max ), -2.0 dB (SEL cum ) and +168 m ( R min ), but not significantly from those in RampUp2 ( n =9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: -4.7 dB (SPL max ), -3.4 dB (SEL cum ) and +291 m ( R min ). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. © 2017. Published by The Company of Biologists

  12. Lack of behavioural responses of humpback whales (Megaptera novaeangliae) indicate limited effectiveness of sonar mitigation

    PubMed Central

    Kvadsheim, Petter H.; Lam, Frans-Peter A.; von Benda-Beckmann, Alexander M.; Sivle, Lise D.; Visser, Fleur; Curé, Charlotte; Tyack, Peter L.; Miller, Patrick J. O.

    2017-01-01

    ABSTRACT Exposure to underwater sound can cause permanent hearing loss and other physiological effects in marine animals. To reduce this risk, naval sonars are sometimes gradually increased in intensity at the start of transmission (‘ramp-up’). Here, we conducted experiments in which tagged humpback whales were approached with a ship to test whether a sonar operation preceded by ramp-up reduced three risk indicators – maximum sound pressure level (SPLmax), cumulative sound exposure level (SELcum) and minimum source–whale range (Rmin) – compared with a sonar operation not preceded by ramp-up. Whales were subject to one no-sonar control session and either two successive ramp-up sessions (RampUp1, RampUp2) or a ramp-up session (RampUp1) and a full-power session (FullPower). Full-power sessions were conducted only twice; for other whales we used acoustic modelling that assumed transmission of the full-power sequence during their no-sonar control. Averaged over all whales, risk indicators in RampUp1 (n=11) differed significantly from those in FullPower (n=12) by −3.0 dB (SPLmax), −2.0 dB (SELcum) and +168 m (Rmin), but not significantly from those in RampUp2 (n=9). Only five whales in RampUp1, four whales in RampUp2 and none in FullPower or control sessions avoided the sound source. For RampUp1, we found statistically significant differences in risk indicators between whales that avoided the sonar and whales that did not: −4.7 dB (SPLmax), −3.4 dB (SELcum) and +291 m (Rmin). In contrast, for RampUp2, these differences were smaller and not significant. This study suggests that sonar ramp-up has a positive but limited mitigative effect for humpback whales overall, but that ramp-up can reduce the risk of harm more effectively in situations when animals are more responsive and likely to avoid the sonar, e.g. owing to novelty of the stimulus, when they are in the path of an approaching sonar ship. PMID:29141878

  13. Improvement of SPM nonlinear limit by chirped duobinary PolSK transmission

    NASA Astrophysics Data System (ADS)

    Yang, Lixiu; Fan, Jiayu; Wang, Lutang; Huang, Zhaoming

    2005-02-01

    In today's terrestrial long-haul optical fiber communication systems, high channel powers are required to obtain a large transmission distance with reasonable optical amplifier spacing. In such systems, however, the presence of nonlinear effects such as the self-phase modulation (SPM) and the fiber dispersion as well as their combined effects, called SPM-induced nonlinear limitation or SPM limit, will seriously degrade the system performances in respect of the effective transmission distance and ultimately become a limiting factor in high-speed, long-haul optical fiber transmission.In this paper, a new transmission format: chirped duobinary PolSK transmission, has been proposed to generate a pre-chirped duobianry signal with fixed polarity (either positive or negative), which is modulated by a PolSK modulator. This format is based on a transmitter setup consisting of a duobinary PolSK Modulation transmitter followed by an additional phase modulator. The chirped duobinary PolSK transmission reduces the signal degradation and spectral broadening in the nonlinear regime significantly. Thus it shifts this SPM nonlinear limit to enable more relaxed dispersion compensation at high optical power compared to the conventional duobinary schemes.The simulation results show chirped duobinary PolSK transmission enlarges the dispersion limited transmission distance, increases the dispersion tolerance and overcome the SPM nonlinear limit.

  14. 3S(expn 2): Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2013-09-30

    orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401. 9...of sonar signals by long-finned pilot whales (Globicephala melas ). Marine Mammal sci Aoki K, Sakai M, Miller PJO, Visser F, Sato K (2013) Body...Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401

  15. Qualitative and quantitative processing of side-scan sonar data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwan, F.S.; Anderson, A.L.; Hilde, T.W.C.

    1990-06-01

    Modern side-scan sonar systems allow vast areas of seafloor to be rapidly imaged and quantitatively mapped in detail. The application of remote sensing image processing techniques can be used to correct for various distortions inherent in raw sonography. Corrections are possible for water column, slant-range, aspect ratio, speckle and striping noise, multiple returns, power drop-off, and for georeferencing. The final products reveal seafloor features and patterns that are geometrically correct, georeferenced, and have improved signal/noise ratio. These products can be merged with other georeferenced data bases for further database management and information extraction. In order to compare data collected bymore » different systems from a common area and to ground truth measurements and geoacoustic models, quantitative correction must be made for calibrated sonar system and bathymetry effects. Such data inversion must account for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area, and grazing angle effects. Seafloor classification can then be performed on the calculated back-scattering strength using Lambert's Law and regression analysis. Examples are given using both approaches: image analysis and inversion of data based on the sonar equation.« less

  16. Forming maps of targets having multiple reflectors with a biomimetic audible sonar.

    PubMed

    Kuc, Roman

    2018-05-01

    A biomimetic audible sonar mimics human echolocation by emitting clicks and sensing echoes binaurally to investigate the limitations in acoustic mapping of 2.5 dimensional targets. A monaural sonar that provides only echo time-of-flight values produces biased maps that lie outside the target surfaces. Reflector bearing estimates derived from the first echoes detected by a binaural sonar are employed to form unbiased maps. Multiple echoes from a target introduce phantom-reflector artifacts into its map because later echoes are produced by reflectors at bearings different from those determined from the first echoes. In addition, overlapping echoes interfere to produce bearing errors. Addressing the causes of these bearing errors motivates a processing approach that employs template matching to extract valid echoes. Interfering echoes can mimic a valid echo and also form PR artifacts. These artifacts are eliminated by recognizing the bearing fluctuations that characterize echo interference. Removing PR artifacts produces a map that resembles the physical target shape to within the resolution capabilities of the sonar. The remaining differences between the target shape and the final map are void artifacts caused by invalid or missing echoes.

  17. Bounding the error on bottom estimation for multi-angle swath bathymetry sonar

    NASA Astrophysics Data System (ADS)

    Mullins, Geoff K.; Bird, John S.

    2005-04-01

    With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.

  18. Frequency chirped light at large detuning with an injection-locked diode laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, K.; Disla, M.; Dellatto, J.

    2015-04-15

    We have developed a laser system to generate frequency-chirped light at rapid modulation speeds (∼100 MHz) with a large frequency offset. Light from an external cavity diode laser with its frequency locked to an atomic resonance is passed through a lithium niobate electro-optical phase modulator. The phase modulator is driven by a ∼6 GHz signal whose frequency is itself modulated with a RF MHz signal (<200 MHz). A second injection locked diode laser is used to filter out all of the light except the frequency-chirped ±1 order by more than 30 dB. Using this system, it is possible to generatemore » a 1 GHz frequency chirp in 5 ns.« less

  19. Chirped frequency transfer: a tool for synchronization and time transfer.

    PubMed

    Raupach, Sebastian M F; Grosche, Gesine

    2014-06-01

    We propose and demonstrate the phase-stabilized transfer of a chirped frequency as a tool for synchronization and time transfer. Technically, this is done by evaluating remote measurements of the transferred, chirped frequency. The gates of the frequency counters, here driven by a 10-MHz oscillation derived from a hydrogen maser, play a role analogous to the 1-pulse per second (PPS) signals usually employed for time transfer. In general, for time transfer, the gates consequently must be related to the external clock. Synchronizing observations based on frequency measurements, on the other hand, only requires a stable oscillator driving the frequency counters. In a proof of principle, we demonstrate the suppression of symmetrical delays, such as the geometrical path delay. We transfer an optical frequency chirped by around 240 kHz/s over a fiber link of around 149 km. We observe an accuracy and simultaneity, as well as a precision (Allan deviation, 18,000 s averaging interval) of the transferred frequency of around 2 × 10(-19). We apply chirped frequency transfer to remote measurements of the synchronization between two counters' gate intervals. Here, we find a precision of around 200 ps at an estimated overall uncertainty of around 500 ps. The measurement results agree with those obtained from reference measurements, being well within the uncertainty. In the present setup, timing offsets up to 4 min can be measured unambiguously. We indicate how this range can be extended further.

  20. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Liqiang; Chu, Tianshu; Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071

    2011-11-15

    In this paper, we theoretically discuss the combined chirp effects on the isolated attosecond generation when a model Ar is exposed to an intense 5-fs, 800-nm fundamental chirped pulse combined with a weak 10-fs, 1200-nm controlling chirped pulse. It shows that for the case of the chirp parameters {beta}{sub 1} = 6.1 (corresponding to the 800-nm field) and {beta}{sub 2} = 4.0 (corresponding to the 1200-nm field), both the harmonic cutoff energy and the supercontinuum can be remarkably extended resulting in a 663-eV bandwidth. Moreover, due to the introduction of the chirps, the short quantum path is selected to contributemore » to the harmonic spectrum. Finally, by superposing a properly selected harmonic spectrum in the supercontinuum region, an isolated pulse as short as 31 as (5 as) is generated without (with) phase compensation.« less

  1. High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

    PubMed

    Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O

    2014-06-15

    The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bats' avoidance of real and virtual objects: implications for the sonar coding of object size.

    PubMed

    Goerlitz, Holger R; Genzel, Daria; Wiegrebe, Lutz

    2012-01-01

    Fast movement in complex environments requires the controlled evasion of obstacles. Sonar-based obstacle evasion involves analysing the acoustic features of object-echoes (e.g., echo amplitude) that correlate with this object's physical features (e.g., object size). Here, we investigated sonar-based obstacle evasion in bats emerging in groups from their day roost. Using video-recordings, we first show that the bats evaded a small real object (ultrasonic loudspeaker) despite the familiar flight situation. Secondly, we studied the sonar coding of object size by adding a larger virtual object. The virtual object echo was generated by real-time convolution of the bats' calls with the acoustic impulse response of a large spherical disc and played from the loudspeaker. Contrary to the real object, the virtual object did not elicit evasive flight, despite the spectro-temporal similarity of real and virtual object echoes. Yet, their spatial echo features differ: virtual object echoes lack the spread of angles of incidence from which the echoes of large objects arrive at a bat's ears (sonar aperture). We hypothesise that this mismatch of spectro-temporal and spatial echo features caused the lack of virtual object evasion and suggest that the sonar aperture of object echoscapes contributes to the sonar coding of object size. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Archive of digital chirp subbottom profile data collected during USGS cruises 13BIM02 and 13BIM07 offshore of the Chandeleur Islands, Louisiana, 2013

    USGS Publications Warehouse

    Forde, Arnell S.; Miselis, Jennifer L.; Flocks, James G.; Bernier, Julie C.; Wiese, Dana S.

    2014-01-01

    On July 5–19 (cruise 13BIM02) and August 22–September 1 (cruise 13BIM07), 2013, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on barrier island evolution and medium-term and interannual sediment transport along the oil spill mitigation sand berm constructed at the north end and offshore of the Chandeleur Islands, Louisiana. This investigation is part of a broader USGS study, which seeks to understand barrier island evolution better over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained–showing a relative increase in signal amplitude–digital images of the seismic profiles are provided. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report.

  4. Some Processing and Dynamic-Range Issues in Side-Scan Sonar Work

    NASA Astrophysics Data System (ADS)

    Asper, V. L.; Caruthers, J. W.

    2007-05-01

    Often side-scan sonar data are collected in such a way that they afford little opportunity to do more than simply display them as images. These images are often limited in dynamic range and stored only in an 8-bit tiff format of numbers representing less than true intensity values. Furthermore, there is little prior knowledge during a survey of the best range in which to set those eight bits. This can result in clipped strong targets and/or the depth of shadows so that the bits that can be recovered from the image are not fully representative of target or bottom backscatter strengths. Several top-of-the-line sonars do have a means of logging high-bit-rate digital data (sometimes only as an option), but only dedicated specialists pay much attention to such data, if they record them at all. Most users of side-scan sonars are interested only in the images. Discussed in this paper are issues related to storing and processing of high-bit-rate digital data to preserve their integrity for future enhanced, after- the-fact use and ability to recover actual backscatter strengths. This papers discusses issues in the use high-bit- rate, digital side-scan sonar data. This work was supported by the Office of Naval Research, Code 321OA, and the Naval Oceanographic Office, Mine Warfare Program.

  5. Pulse compression of harmonic chirp signals using the fractional fourier transform.

    PubMed

    Arif, M; Cowell, D M J; Freear, S

    2010-06-01

    In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Design and comparative performance analysis of different chirping profiles of tanh apodized fiber Bragg grating and comparison with the dispersion compensation fiber for long-haul transmission system

    NASA Astrophysics Data System (ADS)

    Dar, Aasif Bashir; Jha, Rakesh Kumar

    2017-03-01

    Various dispersion compensation units are presented and evaluated in this paper. These dispersion compensation units include dispersion compensation fiber (DCF), DCF merged with fiber Bragg grating (FBG) (joint technique), and linear, square root, and cube root chirped tanh apodized FBG. For the performance evaluation 10 Gb/s NRZ transmission system over 100-km-long single-mode fiber is used. The three chirped FBGs are optimized individually to yield pulse width reduction percentage (PWRP) of 86.66, 79.96, 62.42% for linear, square root, and cube root, respectively. The DCF and Joint technique both provide a remarkable PWRP of 94.45 and 96.96%, respectively. The performance of optimized linear chirped tanh apodized FBG and DCF is compared for long-haul transmission system on the basis of quality factor of received signal. For both the systems maximum transmission distance is calculated such that quality factor is ≥ 6 at the receiver and result shows that performance of FBG is comparable to that of DCF with advantages of very low cost, small size and reduced nonlinear effects.

  7. Chirp- and random-based coded ultrasonic excitation for localized blood-brain barrier opening

    PubMed Central

    Kamimura, HAS; Wang, S; Wu, S-Y; Karakatsani, ME; Acosta, C; Carneiro, AAO; Konofagou, EE

    2015-01-01

    Chirp- and random-based coded excitation methods have been proposed to reduce standing wave formation and improve focusing of transcranial ultrasound. However, no clear evidence has been shown to support the benefits of these ultrasonic excitation sequences in vivo. This study evaluates the chirp and periodic selection of random frequency (PSRF) coded-excitation methods for opening the blood-brain barrier (BBB) in mice. Three groups of mice (n=15) were injected with polydisperse microbubbles and sonicated in the caudate putamen using the chirp/PSRF coded (bandwidth: 1.5-1.9 MHz, peak negative pressure: 0.52 MPa, duration: 30 s) or standard ultrasound (frequency: 1.5 MHz, pressure: 0.52 MPa, burst duration: 20 ms, duration: 5 min) sequences. T1-weighted contrast-enhanced MRI scans were performed to quantitatively analyze focused ultrasound induced BBB opening. The mean opening volumes evaluated from the MRI were 9.38±5.71 mm3, 8.91±3.91 mm3 and 35.47 ± 5.10 mm3 for the chirp, random and regular sonications, respectively. The mean cavitation levels were 55.40±28.43 V.s, 63.87±29.97 V.s and 356.52±257.15 V.s for the chirp, random and regular sonications, respectively. The chirp and PSRF coded pulsing sequences improved the BBB opening localization by inducing lower cavitation levels and smaller opening volumes compared to results of the regular sonication technique. Larger bandwidths were associated with more focused targeting but were limited by the frequency response of the transducer, the skull attenuation and the microbubbles optimal frequency range. The coded methods could therefore facilitate highly localized drug delivery as well as benefit other transcranial ultrasound techniques that use higher pressure levels and higher precision to induce the necessary bioeffects in a brain region while avoiding damage to the surrounding healthy tissue. PMID:26394091

  8. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts.

    PubMed

    Schramm, Chaim A; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity-divergence plots and longitudinal phylogenetic "birthday" trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/.

  9. Shear wave speed and dispersion measurements using crawling wave chirps.

    PubMed

    Hah, Zaegyoo; Partin, Alexander; Parker, Kevin J

    2014-10-01

    This article demonstrates the measurement of shear wave speed and shear speed dispersion of biomaterials using a chirp signal that launches waves over a range of frequencies. A biomaterial is vibrated by two vibration sources that generate shear waves inside the medium, which is scanned by an ultrasound imaging system. Doppler processing of the acquired signal produces an image of the square of vibration amplitude that shows repetitive constructive and destructive interference patterns called "crawling waves." With a chirp vibration signal, successive Doppler frames are generated from different source frequencies. Collected frames generate a distinctive pattern which is used to calculate the shear speed and shear speed dispersion. A special reciprocal chirp is designed such that the equi-phase lines of a motion slice image are straight lines. Detailed analysis is provided to generate a closed-form solution for calculating the shear wave speed and the dispersion. Also several phantoms and an ex vivo human liver sample are scanned and the estimation results are presented. © The Author(s) 2014.

  10. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences.

    PubMed

    Voelz, David G; Roggemann, Michael C

    2009-11-10

    Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.

  11. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: Implications for high-frequency nonlinear imaging

    PubMed Central

    Shekhar, Himanshu; Doyley, Marvin M.

    2013-01-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P®) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI. PMID:23654417

  12. The response of phospholipid-encapsulated microbubbles to chirp-coded excitation: implications for high-frequency nonlinear imaging.

    PubMed

    Shekhar, Himanshu; Doyley, Marvin M

    2013-05-01

    The current excitation strategy for harmonic and subharmonic imaging (HI and SHI) uses short sine-bursts. However, alternate pulsing strategies may be useful for enhancing nonlinear emissions from ultrasound contrast agents. The goal of this study was to corroborate the hypothesis that chirp-coded excitation can improve the performance of high-frequency HI and SHI. A secondary goal was to understand the mechanisms that govern the response of ultrasound contrast agents to chirp-coded and sine-burst excitation schemes. Numerical simulations and acoustic measurements were conducted to evaluate the response of a commercial contrast agent (Targestar-P(®)) to chirp-coded and sine-burst excitation (10 MHz frequency, peak pressures 290 kPa). The results of the acoustic measurements revealed an improvement in signal-to-noise ratio by 4 to 14 dB, and a two- to threefold reduction in the subharmonic threshold with chirp-coded excitation. Simulations conducted with the Marmottant model suggest that an increase in expansion-dominated radial excursion of microbubbles was the mechanism responsible for the stronger nonlinear response. Additionally, chirp-coded excitation detected the nonlinear response for a wider range of agent concentrations than sine-bursts. Therefore, chirp-coded excitation could be a viable approach for enhancing the performance of HI and SHI.

  13. PMHT Approach for Multi-Target Multi-Sensor Sonar Tracking in Clutter.

    PubMed

    Li, Xiaohua; Li, Yaan; Yu, Jing; Chen, Xiao; Dai, Miao

    2015-11-06

    Multi-sensor sonar tracking has many advantages, such as the potential to reduce the overall measurement uncertainty and the possibility to hide the receiver. However, the use of multi-target multi-sensor sonar tracking is challenging because of the complexity of the underwater environment, especially the low target detection probability and extremely large number of false alarms caused by reverberation. In this work, to solve the problem of multi-target multi-sensor sonar tracking in the presence of clutter, a novel probabilistic multi-hypothesis tracker (PMHT) approach based on the extended Kalman filter (EKF) and unscented Kalman filter (UKF) is proposed. The PMHT can efficiently handle the unknown measurements-to-targets and measurements-to-transmitters data association ambiguity. The EKF and UKF are used to deal with the high degree of nonlinearity in the measurement model. The simulation results show that the proposed algorithm can improve the target tracking performance in a cluttered environment greatly, and its computational load is low.

  14. Chirp optical coherence tomography of layered scattering media.

    PubMed

    Haberland, U H; Blazek, V; Schmitt, H J

    1998-07-01

    A new noninvasive technique that reveals cross sectional images of scattering media is presented. It is based on a continuous wave frequency modulated radar, but uses a tunable laser in the near infrared. As the full width at half maximum resolution of 16 μm is demonstrated with an external cavity laser, the chirp optical coherence tomography becomes an alternative to conventional short coherence tomography with the advantage of a simplified optical setup. The analysis of two-layer solid phantoms shows that the backscattered light gets stronger with decreasing anisotropic factor and increasing scattering coefficient, as predicted by Monte Carlo simulations. By introducing a two-phase chirp sequence, the combination of lateral resolved perfusion and depth resolved structure is shown. © 1998 Society of Photo-Optical Instrumentation Engineers.

  15. Electromagnetic Chirps from Neutron Star–Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan; Tsang, David; Kelly, Bernard J.

    2018-02-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  16. Electromagnetic Chirps from Neutron Star-Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Dal Canton, Tito; Camp, Jordan B.; Tsang, David; Kelly, Bernard J.

    2018-01-01

    We calculate the electromagnetic signal of a gamma-ray flare coming from the surface of a neutron star shortly before merger with a black hole companion. Using a new version of the Monte Carlo radiation transport code Pandurata that incorporates dynamic spacetimes, we integrate photon geodesics from the neutron star surface until they reach a distant observer or are captured by the black hole. The gamma-ray light curve is modulated by a number of relativistic effects, including Doppler beaming and gravitational lensing. Because the photons originate from the inspiraling neutron star, the light curve closely resembles the corresponding gravitational waveform: a chirp signal characterized by a steadily increasing frequency and amplitude. We propose to search for these electromagnetic chirps using matched filtering algorithms similar to those used in LIGO data analysis.

  17. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions.

    PubMed

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group.

  18. Groups of bats improve sonar efficiency through mutual suppression of pulse emissions

    PubMed Central

    Jarvis, Jenna; Jackson, William; Smotherman, Michael

    2013-01-01

    How bats adapt their sonar behavior to accommodate the noisiness of a crowded day roost is a mystery. Some bats change their pulse acoustics to enhance the distinction between theirs and another bat's echoes, but additional mechanisms are needed to explain the bat sonar system's exceptional resilience to jamming by conspecifics. Variable pulse repetition rate strategies offer one potential solution to this dynamic problem, but precisely how changes in pulse rate could improve sonar performance in social settings is unclear. Here we show that bats decrease their emission rates as population density increases, following a pattern that reflects a cumulative mutual suppression of each other's pulse emissions. Playback of artificially-generated echolocation pulses similarly slowed emission rates, demonstrating that suppression was mediated by hearing the pulses of other bats. Slower emission rates did not support an antiphonal emission strategy but did reduce the relative proportion of emitted pulses that overlapped with another bat's emissions, reducing the relative rate of mutual interference. The prevalence of acoustic interferences occurring amongst bats was empirically determined to be a linear function of population density and mean emission rates. Consequently as group size increased, small reductions in emission rates spread across the group partially mitigated the increase in interference rate. Drawing on lessons learned from communications networking theory we show how modest decreases in pulse emission rates can significantly increase the net information throughput of the shared acoustic space, thereby improving sonar efficiency for all individuals in a group. We propose that an automated acoustic suppression of pulse emissions triggered by bats hearing each other's emissions dynamically optimizes sonar efficiency for the entire group. PMID:23781208

  19. Generation of 3D ellipsoidal laser beams by means of a profiled volume chirped Bragg grating

    NASA Astrophysics Data System (ADS)

    Mironov, S. Yu; Poteomkin, A. K.; Gacheva, E. I.; Andrianov, A. V.; Zelenogorskii, V. V.; Vasiliev, R.; Smirnov, V.; Krasilnikov, M.; Stephan, F.; Khazanov, E. A.

    2016-05-01

    A method for shaping photocathode laser driver pulses into 3D ellipsoidal form has been proposed and implemented. The key idea of the method is to use a chirped Bragg grating recorded within the ellipsoid volume and absent outside it. If a beam with a constant (within the grating reflection band) spectral density and uniform (within the grating aperture) cross-section is incident on such a grating, the reflected beam will be a 3D ellipsoid in space and time. 3D ellipsoidal beams were obtained in experiment for the first time. It is expected that such laser beams will allow the electron bunch emittance to be reduced when applied at R± photo injectors.

  20. Individual acoustic variation in Belding's ground squirrel alarm chirps in the High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    McCowan, Brenda; Hooper, Stacie L.

    2002-03-01

    The acoustic structure of calls within call types can vary as function of individual identity, sex, and social group membership and is important in kin and social group recognition. Belding's ground squirrels (Spermophilus beldingi) produce alarm chirps that function in predator avoidance but little is known about the acoustic variability of these alarm chirps. The purpose of this preliminary study was to analyze the acoustic structure of alarm chirps with respect to individual differences (e.g., signature information) from eight Belding's ground squirrels from four different lakes in the High Sierra Nevada. Results demonstrate that alarm chirps are individually distinctive, and that acoustic similarity among individuals may correspond to genetic similarity and thus dispersal patterns in this species. These data suggest, on a preliminary basis, that the acoustic structure of calls might be used as a bioacoustic tool for tracking individuals, dispersal, and other population dynamics in Belding's ground squirrels, and perhaps other vocal species.

  1. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.

    PubMed

    Hupé, Ginette J; Lewis, John E; Benda, Jan

    2008-01-01

    The brown ghost knifefish, Apteronotus leptorhynchus, is a model wave-type gymnotiform used extensively in neuroethological studies. As all weakly electric fish, they produce an electric field (electric organ discharge, EOD) and can detect electric signals in their environments using electroreceptors. During social interactions, A. leptorhynchus produce communication signals by modulating the frequency and amplitude of their EOD. The Type 2 chirp, a transient increase in EOD frequency, is the most common modulation type. We will first present a description of A. leptorhynchus chirp production from a behavioural perspective, followed by a discussion of the mechanisms by which chirps are encoded by electroreceptor afferents (P-units). Both the production and encoding of chirps are influenced by the difference in EOD frequency between interacting fish, the so-called beat or difference frequency (Df). Chirps are produced most often when the Df is small, whereas attacks are more common when Dfs are large. Correlation analysis has shown that chirp production induces an echo response in interacting conspecifics and that chirps are produced when attack rates are low. Here we show that both of these relationships are strongest when Dfs are large. Electrophysiological recordings from electroreceptor afferents (P-units) have suggested that small, Type 2 chirps are encoded by increases in electroreceptor synchrony at low Dfs only. How Type 2 chirps are encoded at higher Dfs, where the signals seem to exert the greatest behavioural influence, was unknown. Here, we provide evidence that at higher Dfs, chirps could be encoded by a desynchronization of the P-unit population activity.

  2. Coherent chirped pulse laser network with Mickelson phase conjugator.

    PubMed

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  3. Generation of picosecond optical pulse based on chirp compensation

    NASA Astrophysics Data System (ADS)

    Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2017-10-01

    Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.

  4. Range side lobe inversion for chirp-encoded dual-band tissue harmonic imaging.

    PubMed

    Shen, Che-Chou; Peng, Jun-Kai; Wu, Chi

    2014-02-01

    Dual-band (DB) harmonic imaging is performed by transmitting and receiving at both fundamental band (f0) and second-harmonic band (2f0). In our previous work, particular chirp excitation has been developed to increase the signal- to-noise ratio in DB harmonic imaging. However, spectral overlap between the second-order DB harmonic signals results in range side lobes in the pulse compression. In this study, a novel range side lobe inversion (RSI) method is developed to alleviate the level of range side lobes from spectral overlap. The method is implemented by firing an auxiliary chirp to change the polarity of the range side lobes so that the range side lobes can be suppressed in the combination of the original chirp and the auxiliary chirp. Hydrophone measurements show that the RSI method reduces the range side lobe level (RSLL) and thus increases the quality of pulse compression in DB harmonic imaging. With the signal bandwidth of 60%, the RSLL decreases from -23 dB to -36 dB and the corresponding compression quality improves from 78% to 94%. B-mode images also indicate that the magnitude of range side lobe is suppressed by 7 dB when the RSI method is applied.

  5. SONAR: A High-Throughput Pipeline for Inferring Antibody Ontogenies from Longitudinal Sequencing of B Cell Transcripts

    PubMed Central

    Schramm, Chaim A.; Sheng, Zizhang; Zhang, Zhenhai; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence

    2016-01-01

    The rapid advance of massively parallel or next-generation sequencing technologies has made possible the characterization of B cell receptor repertoires in ever greater detail, and these developments have triggered a proliferation of software tools for processing and annotating these data. Of especial interest, however, is the capability to track the development of specific antibody lineages across time, which remains beyond the scope of most current programs. We have previously reported on the use of techniques such as inter- and intradonor analysis and CDR3 tracing to identify transcripts related to an antibody of interest. Here, we present Software for the Ontogenic aNalysis of Antibody Repertoires (SONAR), capable of automating both general repertoire analysis and specialized techniques for investigating specific lineages. SONAR annotates next-generation sequencing data, identifies transcripts in a lineage of interest, and tracks lineage development across multiple time points. SONAR also generates figures, such as identity–divergence plots and longitudinal phylogenetic “birthday” trees, and provides interfaces to other programs such as DNAML and BEAST. SONAR can be downloaded as a ready-to-run Docker image or manually installed on a local machine. In the latter case, it can also be configured to take advantage of a high-performance computing cluster for the most computationally intensive steps, if available. In summary, this software provides a useful new tool for the processing of large next-generation sequencing datasets and the ontogenic analysis of neutralizing antibody lineages. SONAR can be found at https://github.com/scharch/SONAR, and the Docker image can be obtained from https://hub.docker.com/r/scharch/sonar/. PMID:27708645

  6. Characterization of a Louisiana Bay Bottom

    NASA Astrophysics Data System (ADS)

    Freeman, A. M.; Roberts, H. H.

    2016-02-01

    This study correlates side-scan sonar and CHIRP water bottom-subbottom acoustic amplitudes with cone penetrometer data to expand the limited understanding of the geotechnical properties of sediments in coastal Louisiana's bays. Standardized analysis procedures were developed to characterize the bay bottom and shallow subsurface of the Sister Lake bay bottom. The CHIRP subbottom acoustic data provide relative amplitude information regarding reflection horizons of the bay bottom and shallow subsurface. An amplitude analysis technique was designed to identify different reflectance regions within the lake from the CHIRP subbottom profile data. This amplitude reflectivity analysis technique provides insight into the relative hardness of the bay bottom and shallow subsurface, useful in identifying areas of erosion versus deposition from storms, as well as areas suitable for cultch plants for state oyster seed grounds, or perhaps other restoration projects. Side-scan and CHIRP amplitude reflectivity results are compared to penetrometer data that quantifies geotechnical properties of surface and near-surface sediments. Initial results indicate distinct penetrometer signatures that characterize different substrate areas including soft bottom, storm-deposited silt-rich sediments, oyster cultch, and natural oyster reef areas. Although amplitude analysis of high resolution acoustic data does not directly quantify the geotechnical properties of bottom sediments, our analysis indicates a close relationship. The analysis procedures developed in this study can be applied in other dynamic coastal environments, "calibrating" the use of synoptic acoustic methods for large-scale water bottom characterization.

  7. Off-axis targets maximize bearing Fisher Information in broadband active sonar.

    PubMed

    Kloepper, Laura N; Buck, John R; Liu, Yang; Nachtigall, Paul E

    2018-01-01

    Broadband active sonar systems estimate range from time delay and velocity from Doppler shift. Relatively little attention has been paid to how the received echo spectrum encodes information about the bearing of an object. This letter derives the bearing Fisher Information encoded in the frequency dependent transmitter beampattern. This leads to a counter-intuitive result: directing the sonar beam so that a target of interest is slightly off-axis maximizes the bearing information about the target. Beam aim data from a dolphin biosonar experiment agree closely with the angle predicted to maximize bearing information.

  8. Sidescan-Sonar Imagery and Surficial Geologic Interpretations of the Sea Floor in Central Rhode Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Denny, J.F.; Haupt, T.A.; Crocker, J.M.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology of areas along the northeastern coast of the United States. During 2004, the NOAA Ship RUDE conducted Hydrographic Survey H11321 in Rhode Island Sound. This sidescan-sonar and bathymetry survey covers an area of 93 km? located 12 km southeast of Brenton Point, RI in water depths of 28-39 m (fig. 1). The purpose of this report is to delineate sea floor features and sedimentary environments of this area in central Rhode Island Sound using sidescan-sonar and bathymetric data from NOAA Survey H11321 and seismic-reflection data from a previous USGS field study (Needell and others, 1983a). This is important for the study of benthic habitats and provides a framework for future research. Prior work in this area includes the mapping of surface sediments and surficial geology. McMaster (1960) collected sediment samples from Rhode Island Sound and Narragansett Bay and mapped our study area as having a sandy sea floor. In addition, one sample of sand from the National Ocean Service (NOS) Hydrographic Database came from a location in the northeast part of our study area in 1939 (fig. 2; Poppe and others, 2003). McMaster and others (1968) used seismic-reflection profiles to map the locations of a cuesta of Cretaceous sediments crossing Rhode Island Sound and post-Cretaceous drainage channels. Knebel and others (1982) identified sedimentary environments in Rhode Island Sound using sidescan sonographs. Needell and others (1983b) studied the Quaternary geology and mapped the structure, sedimentary environments, and geologic hazards in Rhode Island Sound using sidescan-sonar and seismic-reflection data. Sidescan-sonar and bathymetric data from NOAA Survey H11320, which overlaps the far eastern edge of our study area, was interpreted to consist of basins surrounded by a moraine and bathymetric highs composed of till with areas of rocks

  9. The Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) dataset and its applications in drought risk management

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Funk, Chris; Peterson, Pete; McNally, Amy; Dinku, Tufa; Barbosa, Humberto; Paredes-Trejo, Franklin; Pedreros, Diego; Husak, Greg

    2017-04-01

    A high quality, long-term, high-resolution precipitation dataset is key for supporting drought-related risk management and food security early warning. Here, we present the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center under the direction of Famine Early Warning Systems Network (FEWS NET). CHIRPS is a quasi-global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. We begin by describing the three main components of CHIRPS - a high-resolution climatology, time-varying cold cloud duration precipitation estimates, and in situ precipitation estimates, and how they are combined. We then present a validation of this dataset and describe how CHIRPS is being disseminated and used in different applications, such as large-scale hydrologic models and crop water balance models. Validation of CHIRPS has focused on comparisons with precipitation products with global coverage, long periods of record and near real-time availability such as CPC-Unified, CFS Reanalysis and ECMWF datasets and datasets such GPCC and GPCP that incorporate high quality in situ datasets from places such as Uganda, Colombia, and the Sahel. The CHIRPS is shown to have low systematic errors (bias) and low mean absolute errors. We find that CHIRPS performance appears quite similar to research quality products like the GPCC and GPCP, but with higher resolution and lower latency. We also present results from independent validation studies focused on South America and East Africa. CHIRPS is currently being used to drive FEWS NET Land Data Assimilation System (FLDAS), that incorporates multiple hydrologic models, and Water Requirement Satisfaction Index (WRSI), which is a widely used crop water balance model. The outputs (such as

  10. Sonar gas seepage characterization using high resolution systems at short ranges

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.

    2017-12-01

    Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We

  11. Theory and Simulation of Gain-Guided Noncollinear Modes in Chirped Quasi-Phase-Matched Optical Parametric Amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    Chirped quasi-phase-matched (QPM) gratings offer essentially constant gain over wide bandwidths, making them promising candidates for short-pulse optical parametric amplifiers. However, experiments have shown that high-gain non-collinear processes exist in spite of the dephasing caused by the non-uniformity of the QPM grating and compete with the desired collinear broadband gain of the amplifier. In this paper, these non-collinear gain-guided modes are investigated numerically and analytically in a model that includes longitudinal non-uniformity of the phase-matching profile, lateral localization of the pump beam and non-collinear propagation of the interacting waves.

  12. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery

    PubMed Central

    Buscombe, Daniel; Wheaton, Joseph M.

    2018-01-01

    Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar. PMID:29538449

  13. Alluvial substrate mapping by automated texture segmentation of recreational-grade side scan sonar imagery.

    PubMed

    Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M

    2018-01-01

    Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.

  14. All-fiber highly chirped dissipative soliton generation in the telecom range.

    PubMed

    Kharenko, Denis S; Zhdanov, Innokentiy S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Turitsyn, Sergei K; Babin, Sergey A

    2017-08-15

    A high-energy (0.93 nJ) all-fiber erbium femtosecond oscillator operating in the telecom spectral range is proposed and realized. The laser cavity, built of commercially available fibers and components, combines polarization maintaining (PM) and non-PM parts providing stable generation of highly chirped (chirp parameter 40) pulses compressed in an output piece of standard PM fiber to 165 fs. The results of the numerical simulation agree well with the experiment. The analyzed intracavity pulse dynamics enables the classification of the generated pulses as dissipative solitons.

  15. Testing of a Composite Wavelet Filter to Enhance Automated Target Recognition in SONAR

    NASA Technical Reports Server (NTRS)

    Chiang, Jeffrey N.

    2011-01-01

    Automated Target Recognition (ATR) systems aim to automate target detection, recognition, and tracking. The current project applies a JPL ATR system to low resolution SONAR and camera videos taken from Unmanned Underwater Vehicles (UUVs). These SONAR images are inherently noisy and difficult to interpret, and pictures taken underwater are unreliable due to murkiness and inconsistent lighting. The ATR system breaks target recognition into three stages: 1) Videos of both SONAR and camera footage are broken into frames and preprocessed to enhance images and detect Regions of Interest (ROIs). 2) Features are extracted from these ROIs in preparation for classification. 3) ROIs are classified as true or false positives using a standard Neural Network based on the extracted features. Several preprocessing, feature extraction, and training methods are tested and discussed in this report.

  16. Study on characteristics of chirp about Doppler wind lidar system

    NASA Astrophysics Data System (ADS)

    Du, Li-fang; Yang, Guo-tao; Wang, Ji-hong; Yue, Chuan; Chen, Lin-xiang

    2016-11-01

    In the doppler wind lidar, usually every 4MHz frequency error will produce wind error of 1m/s of 532nm laser. In the Doppler lidar system, frequency stabilization was achieved through absorption of iodine molecules. Commands that control the instrumental system were based on the PID algorithm and coded using VB language. The frequency of the seed laser was locked to iodine molecular absorption line 1109 which is close to the upper edge of the absorption range, with long-time (>4h) frequency-locking accuracy being≤0.5MHz and long-time frequency stability being 10-9 . The experimental result indicated that the seed frequency and the pulse laser frequency have a deviation, which effect is called the laser chirp characteristics. Finally chirp test system was constructed and tested the frequency offset in time. And such frequency deviation is known as Chirp of the laser pulse. The real-time measured frequency difference of the continuous and pulsed lights was about 10MHz, long-time stability deviation was around 5MHz. After experimental testing technology mature, which can monitoring the signal at long-term with corrected the wind speed.

  17. Optical chirp z-transform processor with a simplified architecture.

    PubMed

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.

  18. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water.

    PubMed

    Pan, Xiang; Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-04-10

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments.

  19. Coherent and Noncoherent Joint Processing of Sonar for Detection of Small Targets in Shallow Water

    PubMed Central

    Jiang, Jingning; Li, Si; Ding, Zhenping; Pan, Chen; Gong, Xianyi

    2018-01-01

    A coherent-noncoherent joint processing framework is proposed for active sonar to combine diversity gain and beamforming gain for detection of a small target in shallow water environments. Sonar utilizes widely-spaced arrays to sense environments and illuminate a target of interest from multiple angles. Meanwhile, it exploits spatial diversity for time-reversal focusing to suppress reverberation, mainly strong bottom reverberation. For enhancement of robustness of time-reversal focusing, an adaptive iterative strategy is utilized in the processing framework. A probing signal is firstly transmitted and echoes of a likely target are utilized as steering vectors for the second transmission. With spatial diversity, target bearing and range are estimated using a broadband signal model. Numerical simulations show that the novel sonar outperforms the traditional phased-array sonar due to benefits of spatial diversity. The effectiveness of the proposed framework has been validated by localization of a small target in at-lake experiments. PMID:29642637

  20. Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system.

    PubMed

    Sun, Yang; Zhao, Shukui; Dayton, Paul A; Ferrara, Katherine W

    2006-06-01

    Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings previously were applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high-speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse in which diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low-frequency modulation of the oscillation envelope was obvious. However, low-frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the -6 dB echo length was 0.9 and 1.1 micros for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low-frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing

  1. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification

    NASA Astrophysics Data System (ADS)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-11-01

    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  2. Influence of laser frequency chirp on deuteron energy from laser-driven deuterated methane cluster expansion

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Liu, J. S.

    2010-06-01

    The simulations of three-dimensional particle dynamics are carried out to investigate the Coulomb explosion dynamics of deuterated methane clusters under the irradiation of an ultrashort intense laser pulse. The final kinetic energy of deuterons produced from the cluster explosion is calculated as a function of the pulse width, the laser intensity and the pulse chirp. It is found that the deuteron energy obtained in an intense laser pulse with negative chirp is higher than that with positive chirp, which agrees qualitatively with the experimental results reported by Fukuda et al. [Y. Fukuda et al., Phys. Rev. A 67, 061201 (2003)].

  3. Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities.

    PubMed

    Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2011-02-28

    We propose a novel photonic structure to implement a chirped single-bandpass microwave photonic filter based on the amplitude modulation of a broadband optical signal transmitted by a non-linear dispersive element and an interferometric system prior to balanced photodetection. A full reconfigurability of the filter is achieved since amplitude and phase responses can be independently controlled. We have experimentally demonstrated chirp values up to tens of ns/GHz, which is, as far as we know, one order of magnitude better than others achieved by electrical approaches and furthermore, without restrictions in terms of frequency tuning since a frequency operation range up to 40 GHz has been experimentally demonstrated.

  4. Building Climate Service Capacities in Eastern Africa with CHIRP and GeoCLIM

    NASA Astrophysics Data System (ADS)

    Pedreros, D. H.; Magadzire, T.; Funk, C. C.; Verdin, J. P.; Peterson, P.; Landsfeld, M.; Husak, G. J.

    2013-12-01

    In developing countries there is a great need for capacity building within national and regional climate agencies to develop and analyze historical and real time gridded rainfall datasets. These datasets are of key importance for monitoring climate and agricultural food production at decadal and seasonal time scales, and for informing local decision makers. The Famine Early Warning Systems Network (FEWS NET), working together with the U.S. Geological Survey (USGS) and the Climate Hazards Group (CHG) of the University of California Santa Barbara, has developed an integrated set of data products and tools to support the development of African climate services. The core data product is the Climate Hazards Group Infrared Precipitation (CHIRP) dataset. The CHIRP is a new rainfall dataset resulting from the blending of satellite estimated precipitation with high resolution precipitation climatology. The CHIRP depicts rainfall on five day totals at 5km spatial resolution from 1981 to present. The CHG is developing and deploying a standalone tool - the GeoCLIM - which will allow national and regional meteorological agencies to blend the CHIRP with station observations, run simple crop water balance models, and conduct climatological, trend, and time series analysis. Blending satellite estimates and gauge data helps overcome limited in situ observing networks. Furthermore, the GeoCLIM combines rainfall, soil, and evapotranspiration data with crop hydrological requirements to calculate agricultural water balance, presented as the Water Requirement Satisfaction Index (WRSI). The WRSI is a measurement of the degree in which a crop's hydrological requirements have been satisfied by rainfall. We present the results of a training session for personnel of the East African Intergovernmental Authority on Development Climate Prediction and Applications Center. The two week training program included the use of the GeoCLIM to improve CHIRP using station data, and to calculate and

  5. Geophysical Data Collected off the South Shore of Martha's Vineyard, Massachusetts

    USGS Publications Warehouse

    Denny, J.F.; Danforth, W.W.; Foster, D.S.; Sherwood, C.R.

    2010-01-01

    The U.S. Geological Survey Woods Hole Science Center conducted a nearshore geophysical survey offshore of the southern coast of Martha's Vineyard, in the vicinity of the Martha's Vineyard Coastal Observatory in 2007. This mapping program was part of a larger research effort supporting the Office of Naval Research Ripples Directed-Research Initiative studies at Martha's Vineyard Coastal Observatory designed to improve our understanding of coastal sediment-transport processes. The survey was conducted aboard the Megan T. Miller August 9-13, 2007. The study area covers 35 square kilometers from about 0.2 kilometers to 5 kilometers offshore of the south shore of Martha's Vineyard, and ranges in depth from ~6 to 24 meters. The geophysical mapping utilized the following suite of high-resolution instrumentation to map the surficial sediment distribution, bathymetry, and sub-surface geology: a dual-frequency 100/500 kilohertz sidescan-sonar system, 234 kilohertz interferometric sonar, and 500 hertz -12 kilohertz chirp subbottom profiler. These geophysical data will be used to provide initial conditions for wave and circulation modeling within the study area.

  6. Description and Evaluation of a Four-Channel, Coherent 100-kHz Sidescan Sonar

    DTIC Science & Technology

    2004-12-01

    document contains color images. 14. ABSTRACT This report documents the design and features of a new, four-channel, coherent 100-kHz sidescan sonar...Atlantic Technical Memorandum DRDC Atlantic TM 2004-204 December 2004 Abstract This report documents the design and features of a new...Results This report documents the design and features of this new high-frequency sonar system. These initial field trial results demonstrate some of

  7. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat

    PubMed Central

    Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H.; Moss, Cynthia F.

    2017-01-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively “illuminate” a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used “piston model” that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array—an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways. PMID:29244805

  8. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat.

    PubMed

    Lee, Wu-Jung; Falk, Benjamin; Chiu, Chen; Krishnan, Anand; Arbour, Jessica H; Moss, Cynthia F

    2017-12-01

    Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used "piston model" that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array-an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

  9. Influence of chirp on laser-pulse amplification in Brillouin backscattering schemes

    NASA Astrophysics Data System (ADS)

    Lehmann, Goetz; Schluck, Friedrich; Spatschek, Karl-Heinz

    2015-11-01

    Plasma-based amplification of laser pulses is currently discussed as a key component for the next generation of high-intensity laser systems, possibly enabling the generation of ultra-short pulses in the exawatt-zetawatt regime. In these scenarios the energy of a long pump pulse (several ps to ns of duration) is transferred to a short seed pulse via a plasma oscillation. Weakly- and strongly-coupled (sc) Brillouin backscattering have been identified as potential candidates for robust amplification scenarios. With the help of three-wave interaction models, we investigate the influence of a chirp of the pump beam on the seed amplification. We show that chirp can mitigate deleterious spontaneous Raman backscattering of the pump off noise and that at the same time the amplification dynamics due to Brillouin scattering is still intact. For the experimentally very interesting case of sc-Brillouin we find a dependence of the efficiency on the sign of the chirp. Funding provided by project B10 of SFB TR18 of the Deutsche Forschungsgemeinschaft (DFG).

  10. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    PubMed

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  11. Increasing global accessibility and understanding of water column sonar data

    NASA Astrophysics Data System (ADS)

    Wall, C.; Anderson, C.; Mesick, S.; Parsons, A. R.; Boyer, T.; McLean, S. J.

    2016-02-01

    Active acoustic (sonar) technology is of increasing importance for research examining the water column. NOAA uses water column sonar data to map acoustic properties from the ocean surface to the seafloor - from bubbles to biology to bottom. Scientific echosounders aboard fishery survey vessels are used to estimate biomass, measure fish school morphology, and characterize habitat. These surveys produce large volumes of data that are costly and difficult to maintain due to their size, complexity, and proprietary format that require specific software and extensive knowledge. However, through proper management they can deliver valuable information beyond their original collection purpose. In order to maximize the benefit to the public, the data must be easily discoverable and accessible. Access to ancillary data is also needed for complete environmental context and ecosystem assessment. NOAA's National Centers for Environmental Information, in partnership with NOAA's National Marine Fisheries Service and the University of Colorado, created a national archive for the stewardship and distribution of water column sonar data collected on NOAA and academic vessels. A web-based access page allows users to query the metadata and access the raw sonar data. Visualization products being developed allow researchers and the public to understand the quality and content of large volumes of archived data more easily. Such products transform the complex data into a digestible image or graphic and are highly valuable for a broad audience of varying backgrounds. Concurrently collected oceanographic data and bathymetric data are being integrated into the data access web page to provide an ecosystem-wide understanding of the area ensonified. Benefits of the archive include global access to an unprecedented nationwide dataset and the increased potential for researchers to address cross-cutting scientific questions to advance the field of marine ecosystem acoustics.

  12. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    NASA Astrophysics Data System (ADS)

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  13. Maps showing the change in modern sediment thickness on the Inner Continental Shelf offshore of Fire Island, New York, between 1996-97 and 2011

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2015-01-01

    The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thickness and distribution as mapped during these two investigations. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.

  14. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  15. A risk function for behavioral disruption of Blainville's beaked whales (Mesoplodon densirostris) from mid-frequency active sonar.

    PubMed

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world's oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville's beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville's beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville's beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150 dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function.

  16. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    NASA Astrophysics Data System (ADS)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  17. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    PubMed

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  18. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.

    PubMed

    Dunlap, Kent D; Chung, Michael; Castellano, James F

    2013-07-01

    Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.

  19. Seismic-reflection and sidescan-sonar data collected on the Potomac River, Maryland and Virginia, during May 1979

    USGS Publications Warehouse

    Knebel, Harley J.

    1981-01-01

    The U.S. Geological Survey collected 2,170 line kilometers of single-channel seismic-reflection profiles and sidescan sonar records on the Potomac River during R/V NEECHO cruise NE-3-79 in May 1979. The purposes of the survey were to define: (1) areas of sediment accumulation and erosion; (2) the thickness of Holocene sediments; (3) the internal structure of the near-surface sediments; (4) the types of bottom topography; and (5) the general geologic framework of the tidal river and estuary.The survey utilized a variety of acoustic systems. Bottom data were obtained by using a Raytheon _1/ model DE-719 fathometer (200 kHz) and an EDO Western model 606 sidescan-sonar system (100 kHz). Subbottom data were collected with a 7-kHz Raytheon model PTR-106 system and a small airgun system (170-645 Hz band pass; l in3 chamber). An EDO Western sidescan fish (model 604-150) coupled with a 2.5-kHz seismic-reflection system also was used during the longitudinal run up the river. The totals for the ,various kinds of data collected were 481 line kilometers each of fathometer, sidescan sonar, 7-kHz, and airgun records, and 246 line kilometers of 2.5-kHz records. Positional control for all tracklines was provided by frequent radar fixes, by dead reckoning, and by sightings on buoys, landmarks, and other navigational aids.The quality of the acoustic records varied with location in the river. Good fathometer and sidescan-sonar records were collected along all tracklines. However, because of the nature of the sediments within some sections of the river, the degree of subbottom penetration in many places was limited. In general, the subbottom penetration and resolution were poor in the upper and middle reaches of the river, whereas the subbottom records from the lower reach usually were quite good.The original records may be examined at the U.S. Geological Survey, Woods Hole, MA 02543. Microfilm copies of the data are available for purchase from the National Geophysical and Solar

  20. Broadband continuous-variable entanglement source using a chirped poling nonlinear crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J. S.; Sun, L.; Yu, X. Q.

    2010-01-15

    Aperiodically poled nonlinear crystal can be used as a broadband continuous-variable entanglement source and has strong stability under perturbations. We study the conversion dynamics of the sum-frequency generation and the quantum correlation of the two pump fields in a chirped-structure nonlinear crystal using the quantum stochastic method. The results show that there exists a frequency window for the pumps where two optical fields can perform efficient upconversion. The two pump fields are demonstrated to be entangled in the window and the chirped-structure crystal can be used as a continuous-variable entanglement source with a broad response bandwidth.

  1. Across-canyon movement of earthquake-induced sediment gravity flow offshore southwestern Taiwan.

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ting; Su, Chih-Chieh; Lu, Yi-Wei; Cheng, Yiya

    2017-04-01

    Caused by the origin of oblique collision between the Eurasian and Philippine Sea Plate, Taiwan Island inevitably faces the destiny to be continuously influenced by frequent and severe earthquake activities. Thus, earthquake-induced sediment gravity flows are common marine geo-hazards in the submarine region of Taiwan. The Pingtung Doublet earthquakes occurred in Dec. 2006 offshore Fangliao Township and two submarine cables were broken at the Fangliao Submarine Canyon (FLSC) head, simultaneously. On the eastern side of the FLSC head, chirp sonar profiles and high-resolution bathymetry data revealed linear seafloor failures along the northwest direction and merged into the FLSC. Moreover, cores taken from the seafloor failure area and in the FLSC also observed thick debrite and turbidite layers at core tops. Nevertheless, in the western side of the FLSC head, local fishermen reported disturbed water just after the Pingtung Doublet earthquakes. Hence series of cores and chirp sonar data were collected at the western side of the FLSC, trying to figure out the linkage of Pingtung Doublet earthquakes induced gravity flow deposits on both sides of the FLSC. The analysis results suggest that the deposits of disturbed water at the western side of FLSC head was caused by the finer suspended sediments separated from the main body at the top of the gravity flow. Our results point out besides the traditional well-known downward transportation in the canyon, the across-canyon movement may also leave stratigraphic records and help us to establish a more complete transportation process of a sediment gravity flow.

  2. Isolated few-cycle radiation from chirped-pulse compression of a superradiant free-electron laser

    DOE PAGES

    Huang, Yen -Chieh; Zhang, Zhen; Chen, Chia -Hsiang; ...

    2015-08-31

    When a short electron bunch traverses an undulator to radiate a wavelength longer than the bunch length, intense superradiance from the electron bunch can quickly deplete the electron’s kinetic energy and lead to generation of an isolated chirped radiation pulse. Here, we develop a theory to describe this novel chirped pulse radiation in a superradiant free-electron laser and show the opportunity to generate isolated few-cycle high-power radiation through chirped-pulse compression after the undulator. The theory is completely characterized by how fast the electron energy is depleted for a given length of an undulator. We further present two design examples atmore » the THz and extreme-ultraviolet wavelengths and numerically generate isolated three- and nine-cycle radiation pulses, respectively.« less

  3. Note: Directly measuring the direct digital synthesizer frequency chirp-rate for an atom interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Juan-Juan; Zhou, Min-Kang, E-mail: zkhu@hust.edu.cn, E-mail: zmk@hust.edu.cn; Zhang, Qiao-Zhen

    2015-09-15

    During gravity measurements with Raman type atom interferometry, the frequency of the laser used to drive Raman transition is scanned by chirping the frequency of a direct digital synthesizer (DDS), and the local gravity is determined by precisely measuring the chip rate α of DDS. We present an effective method that can directly evaluate the frequency chirp rate stability of our DDS. By mixing a pair of synchronous linear sweeping signals, the chirp rate fluctuation is precisely measured with a frequency counter. The measurement result shows that the relative α instability can reach 5.7 × 10{sup −11} in 1 s,more » which is neglectable in a 10{sup −9} g level atom interferometry gravimeter.« less

  4. Evaluating the use of side-scan sonar for detecting freshwater mussel beds in turbid river environments

    USGS Publications Warehouse

    Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas

    2015-01-01

    Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.

  5. Handbook of Sonar Transducer Passive Materials

    DTIC Science & Technology

    1981-10-30

    Water A sorption 570 -19 days 4.3 1.6 (mg/cm ) Water Permeability 38°C 44 (01 10gI 2 0Cm/cm 2 /cm-hr -torr) ൪ . .7- a. Compounding Recipe The gum...materials in sonar transducers I are discussed. Factors in the compounding and processing of elastorneric materials which affect end-product performance~ are...A. Scope of the Handbook ................ B. Problems r.,f General Consideration ............ C. Compounding of Elastomers

  6. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  7. Enhanced echolocation via robust statistics and super-resolution of sonar images

    NASA Astrophysics Data System (ADS)

    Kim, Kio

    Echolocation is a process in which an animal uses acoustic signals to exchange information with environments. In a recent study, Neretti et al. have shown that the use of robust statistics can significantly improve the resiliency of echolocation against noise and enhance its accuracy by suppressing the development of sidelobes in the processing of an echo signal. In this research, the use of robust statistics is extended to problems in underwater explorations. The dissertation consists of two parts. Part I describes how robust statistics can enhance the identification of target objects, which in this case are cylindrical containers filled with four different liquids. Particularly, this work employs a variation of an existing robust estimator called an L-estimator, which was first suggested by Koenker and Bassett. As pointed out by Au et al.; a 'highlight interval' is an important feature, and it is closely related with many other important features that are known to be crucial for dolphin echolocation. A varied L-estimator described in this text is used to enhance the detection of highlight intervals, which eventually leads to a successful classification of echo signals. Part II extends the problem into 2 dimensions. Thanks to the advances in material and computer technology, various sonar imaging modalities are available on the market. By registering acoustic images from such video sequences, one can extract more information on the region of interest. Computer vision and image processing allowed application of robust statistics to the acoustic images produced by forward looking sonar systems, such as Dual-frequency Identification Sonar and ProViewer. The first use of robust statistics for sonar image enhancement in this text is in image registration. Random Sampling Consensus (RANSAC) is widely used for image registration. The registration algorithm using RANSAC is optimized for sonar image registration, and the performance is studied. The second use of robust

  8. Mechanism of inverted-chirp infrasonic radiation from sprites

    NASA Astrophysics Data System (ADS)

    de Larquier, Sebastien; Pasko, Victor P.

    2010-12-01

    Farges and Blanc (2010) reported inverted-chirp infrasonic signals with high frequencies arriving before low frequencies, possibly emitted by sprite discharges and observed on the ground at close range (<100 km) from the source. In the present work a parallel version of a 2-D FDTD model of infrasound propagation in a realistic atmosphere is applied to demonstrate that the observed morphology of infrasound signals is consistent with general scaling of diameters of sprite streamers inversely proportionally to the air density. The smaller structures at lower altitudes radiate higher infrasonic frequencies that arrive first at the observational point on the ground, while the low frequency components are delayed because they originate at lower air densities at higher altitudes. The results demonstrate that strong absorption of high frequency infrasonic components at high altitudes (i.e., ˜0.2 dB/km for 8 Hz at 70 km) may also contribute to formation of inverted-chirp signals observed on the ground at close range.

  9. Studies on a Spatialized Audio Interface for Sonar

    DTIC Science & Technology

    2011-10-03

    addition of spatialized audio to visual displays for sonar is much akin to the development of talking movies in the early days of cinema and can be...than using the brute-force approach. PCA is one among several techniques that share similarities with the computational architecture of a

  10. Detecting the presence-absence of bluefin tuna by automated analysis of medium-range sonars on fishing vessels.

    PubMed

    Uranga, Jon; Arrizabalaga, Haritz; Boyra, Guillermo; Hernandez, Maria Carmen; Goñi, Nicolas; Arregui, Igor; Fernandes, Jose A; Yurramendi, Yosu; Santiago, Josu

    2017-01-01

    This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics. Scientific data was used to classify each region into a class ("tuna" or "no-tuna") and build a dataset to train and evaluate classification models by using supervised learning. The methodology performed well when validated with commercial sonar screenshots, and has the potential to automatically analyze high volumes of data at a low cost. This represents a first milestone towards the development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay of Biscay. Future research lines and additional alternatives to inform stock assessments are also discussed.

  11. Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.

    PubMed

    Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard

    2017-04-01

    Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.

  12. Effect of chromatic-dispersion-induced chirp on the temporal coherence properties of individual beams from spontaneous four-wave mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiaoxin; Li Xiaoying; Cui Liang

    2011-08-15

    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. Based on spontaneous four-wave mixing in optical fibers, we study the effect of chirp on the temporal coherence property by introducing a different amount of chirp into either the pulsed pump or individual signal (idler) beam. The investigation shows that the pump chirp induces additional frequency correlation into photon pairs; the mutual spectral correlation of photon pairs and the coherence of individual beam can be characterized by measuring the intensity correlation function g{sup (2)}more » of the individual beam. To improve the coherence degree, the pump chirp should be minimized. Moreover, a Hong-Ou-Mandel-type two-photon interference experiment with the signal beams generated in two different fibers illustrates that the chirp of the individual signal (idler) beam does not change the temporal coherence degree, but affects the temporal mode matching. To achieve high visibility among multiple sources, apart from improving the coherence degree, mode matching should be optimized by managing the chirps of individual beams.« less

  13. Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system

    PubMed Central

    Sun, Yang; Zhao, Shukui; Dayton, Paul A.; Ferrara, Katherine W.

    2006-01-01

    Rayleigh-Plesset analysis, ultra-high speed photography, and single bubble acoustical recordings have previously been applied independently to characterize the radial oscillation and resulting echoes from a microbubble in response to an ultrasonic pulse. In addition, high speed photography has shown that microbubbles are destroyed over a single pulse or pulse train by diffusion and fragmentation. In order to develop a single model to characterize microbubble echoes based on oscillatory and destructive characteristics, an optical-acoustical system was developed to simultaneously record the optical image and backscattered echo from each microbubble. Combined observation provides the opportunity to compare predictions for oscillation and echoes with experimental results and identify discrepancies due to diffusion or fragmentation. Optimization of agents and insonating pulse parameters may be facilitated with this system. The mean correlation of the predicted and experimental radius-time curves and echoes exceeds 0.7 for the parameters studied here. An important application of this new system is to record and analyze microbubble response to a long pulse where diffusion is shown to occur over the pulse duration. The microbubble response to an increasing or decreasing chirp is evaluated using this new tool. For chirp insonation beginning with the lower center frequency, low frequency modulation of the oscillation envelope was obvious. However, low frequency modulation was not observed in the radial oscillation produced by decreasing chirp insonation. Comparison of the echoes from similar sized microbubbles following increasing and decreasing chirp insonation demonstrated that the echoes were not time-reversed replicas. Using a transmission pressure of 620 kPa, the −6 dB echo length was 0.9 and 1.1 μs for increasing and decreasing chirp insonation, respectively (P = 0.02). The mean power in the low frequency portion of the echoes was 8 (mV)2 and 13 (mV)2 for increasing

  14. Volterra equalization of complex modulation utilizing frequency chirp in directly modulated lasers

    NASA Astrophysics Data System (ADS)

    Hu, Shaohua; Yi, Xingwen; Zhang, Jing; Song, Yang; Zhu, Mingyue; Qiu, Kun

    2018-02-01

    We apply Volterra-based equalization for complex modulated optical signals utilizing the frequency chirp in DMLs. We experimentally demonstrate that the higher order Volterra filter is necessary in the higher speed transmissions. For further study, we isolate the adiabatic chirp by injection locking and realize the optical PM transmission. We make a comparison among IM, FM and PM with Volterra equalization, finding that PM and FM are more power insensitive and suitable for high speed, power limited fiber transmission. The performance can be further improved by exploiting the diversity gain.

  15. Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range.

    PubMed

    Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei

    2013-05-06

    A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.

  16. Model-based approach to the detection and classification of mines in sidescan sonar.

    PubMed

    Reed, Scott; Petillot, Yvan; Bell, Judith

    2004-01-10

    This paper presents a model-based approach to mine detection and classification by use of sidescan sonar. Advances in autonomous underwater vehicle technology have increased the interest in automatic target recognition systems in an effort to automate a process that is currently carried out by a human operator. Current automated systems generally require training and thus produce poor results when the test data set is different from the training set. This has led to research into unsupervised systems, which are able to cope with the large variability in conditions and terrains seen in sidescan imagery. The system presented in this paper first detects possible minelike objects using a Markov random field model, which operates well on noisy images, such as sidescan, and allows a priori information to be included through the use of priors. The highlight and shadow regions of the object are then extracted with a cooperating statistical snake, which assumes these regions are statistically separate from the background. Finally, a classification decision is made using Dempster-Shafer theory, where the extracted features are compared with synthetic realizations generated with a sidescan sonar simulator model. Results for the entire process are shown on real sidescan sonar data. Similarities between the sidescan sonar and synthetic aperture radar (SAR) imaging processes ensure that the approach outlined here could be made applied to SAR image analysis.

  17. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats

    PubMed Central

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F.

    2015-01-01

    ABSTRACT Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. PMID:26582935

  18. Evaluation of the Performance of the Distributed Phased-MIMO Sonar.

    PubMed

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-11

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments.

  19. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  20. Archive of digital chirp subbottom profile data collected during USGS cruise 12BIM03 offshore of the Chandeleur Islands, Louisiana, July 2012

    USGS Publications Warehouse

    Forde, Arnell S.; Miselis, Jennifer L.; Wiese, Dana S.

    2014-01-01

    From July 23 - 31, 2012, the U.S. Geological Survey conducted geophysical surveys to investigate the geologic controls on barrier island framework and long-term sediment transport along the oil spill mitigation sand berm constructed at the north end and just offshore of the Chandeleur Islands, La. (figure 1). This effort is part of a broader USGS study, which seeks to better understand barrier island evolution over medium time scales (months to years). This report serves as an archive of unprocessed digital chirp subbottom data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (showing a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Abbreviations page for expansions of acronyms and abbreviations used in this report. The USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier to each cruise or field activity. For example, 12BIM03 tells us the data were collected in 2012 during the third field activity for that project in that calendar year and BIM is a generic code, which represents efforts related to Barrier Island Mapping. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. All chirp systems use a signal of continuously varying frequency; the EdgeTech SB-424 system used during this survey produces high-resolution, shallow-penetration (typically less than 50 milliseconds (ms)) profile images of sub-seafloor stratigraphy. The towfish contains a transducer that transmits and receives acoustic energy and is typically towed 1 - 2 m below the sea surface. As transmitted acoustic energy intersects density boundaries, such as the seafloor or sub-surface sediment layers, energy is reflected back toward the transducer, received

  1. Helium in chirped laser fields as a time-asymmetric atomic switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaprálová-Žďánská, Petra Ruth, E-mail: kapralova@jh-inst.cas.cz; J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 182 23 Prague 8; Moiseyev, Nimrod, E-mail: nimrod@tx.technion.ac.il

    2014-07-07

    Tuning the laser parameters exceptional points in the spectrum of the dressed laser helium atom are obtained. The weak linearly polarized laser couples the ground state and the doubly excited P-states of helium. We show here that for specific chirped laser pulses that encircle an exceptional point one can get the time-asymmetric phenomenon, where for a negative chirped laser pulse the ground state is transformed into the doubly excited auto-ionization state, while for a positive chirped laser pulse the resonance state is not populated and the neutral helium atoms remains in the ground state as the laser pulse is turnedmore » off. Moreover, we show that the results are very sensitive to the closed contour we choose. This time-asymmetric state exchange phenomenon can be considered as a time-asymmetric atomic switch. The optimal time-asymmetric switch is obtained when the closed loop that encircles the exceptional point is large, while for the smallest loops, the time-asymmetric phenomenon does not take place. A systematic way for studying the effect of the chosen closed contour that encircles the exceptional point on the time-asymmetric phenomenon is proposed.« less

  2. [Analysis of scatterer microstructure feature based on Chirp-Z transform cepstrum].

    PubMed

    Guo, Jianzhong; Lin, Shuyu

    2007-12-01

    The fundamental research field of medical ultrasound has been the characterization of tissue scatterers. The signal processing method is widely used in this research field. A new method of Chirp-Z Transform Cepstrum for mean spacing estimation of tissue scatterers using ultrasonic scattered signals has been developed. By using this method together with conventional AR cepstrum method, we processed the backscattered signals of mimic tissue and pig liver in vitro. The results illustrated that the Chirp-Z Transform Cepstrum method is effective for signal analysis of ultrasonic scattering and characterization of tissue scatterers, and it can improve the resolution for mean spacing estimation of tissue scatterers.

  3. A Risk Function for Behavioral Disruption of Blainville’s Beaked Whales (Mesoplodon densirostris) from Mid-Frequency Active Sonar

    PubMed Central

    Moretti, David; Thomas, Len; Marques, Tiago; Harwood, John; Dilley, Ashley; Neales, Bert; Shaffer, Jessica; McCarthy, Elena; New, Leslie; Jarvis, Susan; Morrissey, Ronald

    2014-01-01

    There is increasing concern about the potential effects of noise pollution on marine life in the world’s oceans. For marine mammals, anthropogenic sounds may cause behavioral disruption, and this can be quantified using a risk function that relates sound exposure to a measured behavioral response. Beaked whales are a taxon of deep diving whales that may be particularly susceptible to naval sonar as the species has been associated with sonar-related mass stranding events. Here we derive the first empirical risk function for Blainville’s beaked whales (Mesoplodon densirostris) by combining in situ data from passive acoustic monitoring of animal vocalizations and navy sonar operations with precise ship tracks and sound field modeling. The hydrophone array at the Atlantic Undersea Test and Evaluation Center, Bahamas, was used to locate vocalizing groups of Blainville’s beaked whales and identify sonar transmissions before, during, and after Mid-Frequency Active (MFA) sonar operations. Sonar transmission times and source levels were combined with ship tracks using a sound propagation model to estimate the received level (RL) at each hydrophone. A generalized additive model was fitted to data to model the presence or absence of the start of foraging dives in 30-minute periods as a function of the corresponding sonar RL at the hydrophone closest to the center of each group. This model was then used to construct a risk function that can be used to estimate the probability of a behavioral change (cessation of foraging) the individual members of a Blainville’s beaked whale population might experience as a function of sonar RL. The function predicts a 0.5 probability of disturbance at a RL of 150dBrms re µPa (CI: 144 to 155) This is 15dB lower than the level used historically by the US Navy in their risk assessments but 10 dB higher than the current 140 dB step-function. PMID:24465477

  4. Interferometric side scan sonar and data fusion

    NASA Astrophysics Data System (ADS)

    Sintes, Christophe R.; Solaiman, Basel

    2000-04-01

    This paper concerns the possibilities of sea bottom imaging and altitude determining of each imaged point. The performances of new side scan sonars which are able to image the sea bottom with a high definition and are able to evaluate the relief with the same definition derive from an interferometric multisensor system. The drawbacks concern the precision of the numerical altitude model. One way to improve the measurements precision is to merge all the information issued from the multi-sensors system. This leads to increase the Signal to Noise Ratio (SNR) and the robustness of the used method. The aim of this paper is to clearly demonstrate the ability to derive benefits of all information issued from the three arrays side scan sonar by merging: (1) the three phase signals obtained at the output of the sensors, (2) this same set of data after the application of different processing methods, and (3) the a priori relief contextual information. The key idea the proposed fusion technique is to exploit the strength and the weaknesses of each data element in the fusion of process so that the global SNR will be improved as well as the robustness to hostile noisy environments.

  5. Development and applications of an acoustic package for deep-sea sub-bottom profiling and detailed seafloor imaging

    NASA Astrophysics Data System (ADS)

    Nishimura, Kiyokazu; Kisimoto, Kiyoyuki; Joshima, Masato; Arai, Kohsaku

    In the deep-sea geological survey, good survey results are difficult to obtain by a conventional surface-towed acoustic survey system, because the horizontal resolution is limited due to the long distance between the sensor and the target (seafloor). In order to improve the horizontal resolution, a deep-tow system, which tows the sensor in the vicinity of seafloor, is most practical, and many such systems have been developed and used until today. It is not easy, however, to carry out a high-density survey in a small area by maneuvering the towing body altitude sufficiently close to the seafloor with rugged topography. A ROV (Remotely Operated Vehicle) can be used to solve this problem. The ROV makes a high-density 2D survey feasible because of its maneuverability, although a long-distance survey is difficult with it. Accordingly, we have developed an acoustic survey system installed on a ROV. The system named DAIPACK (Deep-sea Acoustic Imaging Package) consists of (1) a deep-sea sub-bottom profiler and (2) a deep-sea sidescan sonar. (1) Deep-sea sub-bottom profiler A light-weight and compact sub-bottom profiler for shallow water was chosen to improve and repackage for the deep sea usage. The system is composed of three units; a transducer, an electronic unit and a notebook computer for system control and data acquisition. The source frequency is 10kHz. To convert the system for the deep sea, the transducer was exchanged for the deep sea model, and the electronic unit was improved accordingly. The electronic unit and the notebook computer were installed in a spherical pressure vessel. (2) Deep-sea sidescan sonar We remodeled a compact shallow sea sidescan sonar(water depth limitation is 30m ) into a deep sea one. This sidescan sonar is composed of a sonar towfish (transducers and an electronic unit ), a cable and a notebook computer (data processor). To accommodate in the deep water, the transducers were remodeled into a high pressure resistance type, and the

  6. Detecting the presence-absence of bluefin tuna by automated analysis of medium-range sonars on fishing vessels

    PubMed Central

    Uranga, Jon; Arrizabalaga, Haritz; Boyra, Guillermo; Hernandez, Maria Carmen; Goñi, Nicolas; Arregui, Igor; Fernandes, Jose A.; Yurramendi, Yosu; Santiago, Josu

    2017-01-01

    This study presents a methodology for the automated analysis of commercial medium-range sonar signals for detecting presence/absence of bluefin tuna (Tunnus thynnus) in the Bay of Biscay. The approach uses image processing techniques to analyze sonar screenshots. For each sonar image we extracted measurable regions and analyzed their characteristics. Scientific data was used to classify each region into a class (“tuna” or “no-tuna”) and build a dataset to train and evaluate classification models by using supervised learning. The methodology performed well when validated with commercial sonar screenshots, and has the potential to automatically analyze high volumes of data at a low cost. This represents a first milestone towards the development of acoustic, fishery-independent indices of abundance for bluefin tuna in the Bay of Biscay. Future research lines and additional alternatives to inform stock assessments are also discussed. PMID:28152032

  7. Fusion and Gaussian mixture based classifiers for SONAR data

    NASA Astrophysics Data System (ADS)

    Kotari, Vikas; Chang, KC

    2011-06-01

    Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence detection and classification of underwater mines is essential for the safety of naval vessels. This necessitates a formulation of highly efficient classifiers and detection techniques. Current techniques primarily focus on signals from one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, we formulated a fusion-based classifier and a Gaussian mixture model (GMM) based classifier for classification of underwater mines. The emphasis has been on sound navigation and ranging (SONAR) signals due to their extensive use in current naval operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI) repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior classification accuracy over conventional single source cases and validate our approach.

  8. Patterns of Occurrence and Marine Mammal Acoustic Behavior in Relation to Navy Sonar Activity Off Jacksonville, Florida.

    PubMed

    Oswald, Julie N; Norris, Thomas F; Yack, Tina M; Ferguson, Elizabeth L; Kumar, Anurag; Nissen, Jene; Bell, Joel

    2016-01-01

    Passive acoustic data collected from marine autonomous recording units deployed off Jacksonville, FL (from 13 September to 8 October 2009 and 3 December 2009 to 8 January 2010), were analyzed for detection of cetaceans and Navy sonar. Cetaceans detected included Balaenoptera acutorostrata, Eubalaena glacialis, B. borealis, Physeter macrocephalus, blackfish, and delphinids. E. glacialis were detected at shallow and, somewhat unexpectedly, deep sites. P. macrocephalus were characterized by a strong diel pattern. B. acutorostrata showed the strongest relationship between sonar activity and vocal behavior. These results provide a preliminary assessment of cetacean occurrence off Jacksonville and new insights on vocal responses to sonar.

  9. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  10. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  11. Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform.

    PubMed

    Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan

    2016-01-01

    Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.

  12. A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp.

    PubMed

    Liu, Qing; Huang, Zhigang; Kou, Yanhong; Wang, Jinling

    2018-04-25

    Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD) derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far effect. Then the generation and detection methods as well as the performances of ChPN are discussed by theoretical analysis and simulation. The results show that, for ChPN signals with the same main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier (BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has better performance in most aspects. In engineering practice, a ChPN receiver can be implemented by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future positioning applications.

  13. A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp

    PubMed Central

    Huang, Zhigang; Kou, Yanhong; Wang, Jinling

    2018-01-01

    Signal modulation is an essential design factor of a positioning system, which directly impacts the system’s potential performance. Chirp compressions have been widely applied in the fields of communication, radar, and indoor positioning owing to their high compression gain and good resistance to narrowband interferences and multipath fading. Based on linear chirp, we present a modulation method named chirped pseudo-noise (ChPN). The mathematical model of the ChPN signal is provided with its auto-correlation function (ACF) and the power spectrum density (PSD) derived. The ChPN with orthogonal chirps is also discussed, which has better resistance to near-far effect. Then the generation and detection methods as well as the performances of ChPN are discussed by theoretical analysis and simulation. The results show that, for ChPN signals with the same main-lobe bandwidth (MLB), generally, the signal with a larger sweep bandwidth has better tracking precision and multipath resistance. ChPN yields slighter ACF peaks ambiguity due to its lower ACF side-peaks, although its tracking precision is a little worse than that of a binary offset carrier (BOC) with the same MLB. Moreover, ChPN provides better overall anti-multipath performance than BOC. For the ChPN signals with the same code rate, a signal with a larger sweep bandwidth has better performance in most aspects. In engineering practice, a ChPN receiver can be implemented by minor modifications of a BOC receiver. Thus, ChPN modulation shows promise for future positioning applications. PMID:29693581

  14. Multibeam Sonar Backscatter Data Acquisition and Processing: Guidelines and Recommendations from the GEOHAB Backscatter Working Group

    NASA Astrophysics Data System (ADS)

    Heffron, E.; Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T.

    2015-12-01

    Backscatter data acquired with multibeam sonars are now commonly used for the remote geological interpretation of the seabed. The systems hardware, software, and processing methods and tools have grown in numbers and improved over the years, yet many issues linger: there are no standard procedures for acquisition, poor or absent calibration, limited understanding and documentation of processing methods, etc. A workshop organized at the GeoHab (a community of geoscientists and biologists around the topic of marine habitat mapping) annual meeting in 2013 was dedicated to seafloor backscatter data from multibeam sonars and concluded that there was an overwhelming need for better coherence and agreement on the topics of acquisition, processing and interpretation of data. The GeoHab Backscatter Working Group (BSWG) was subsequently created with the purpose of documenting and synthetizing the state-of-the-art in sensors and techniques available today and proposing methods for best practice in the acquisition and processing of backscatter data. Two years later, the resulting document "Backscatter measurements by seafloor-mapping sonars: Guidelines and Recommendations" was completed1. The document provides: An introduction to backscatter measurements by seafloor-mapping sonars; A background on the physical principles of sonar backscatter; A discussion on users' needs from a wide spectrum of community end-users; A review on backscatter measurement; An analysis of best practices in data acquisition; A review of data processing principles with details on present software implementation; and finally A synthesis and key recommendations. This presentation reviews the BSWG mandate, structure, and development of this document. It details the various chapter contents, its recommendations to sonar manufacturers, operators, data processing software developers and end-users and its implication for the marine geology community. 1: Downloadable at https://www.niwa.co.nz/coasts-and-oceans/research-projects/backscatter-measurement-guidelines

  15. Salmon escapement estimates into the Togiak River using sonar, Togiak National Wildlife Refuge, Alaska, 1987, 1988, and 1990

    USGS Publications Warehouse

    Irving, David B.; Finn, James E.; Larson, James P.

    1995-01-01

    We began a three year study in 1987 to test the feasibility of using sonar in the Togiak River to estimate salmon escapements. Current methods rely on periodic aerial surveys and a counting tower at river kilometer 97. Escapement estimates are not available until 10 to 14 days after the salmon enter the river. Water depth and turbidity preclude relocating the tower to the lower river and affect the reliability of aerial surveys. To determine whether an alternative method could be developed to improve the timeliness and accuracy of current escapement monitoring, Bendix sonar units were operated during 1987, 1988, and 1990. Two sonar stations were set up opposite each other at river kilometer 30 and were operated 24 hours per day, seven days per week. Catches from gill nets with 12, 14, and 20 cm stretch mesh, a beach seine, and visual observations were used to estimate species composition. Length and sex data were collected from salmon caught in the nets to assess sampling bias.In 1987, sonar was used to select optimal sites and enumerate coho salmon. In 1988 and 1990, the sites identified in 1987 were used to estimate the escapement of five salmon species. Sockeye salmon escapement was estimated at 512,581 and 589,321, chinook at 7,698 and 15,098, chum at 246,144 and 134,958, coho at 78,588 and 28,290, and pink at 96,167 and 131,484. Sonar estimates of sockeye salmon were two to three times the Alaska Department of Fish and Game's escapement estimate based on aerial surveys and tower counts. The source of error was probably a combination of over-estimating the total number of targets counted by the sonar and by incorrectly estimating species composition.Total salmon escapement estimates using sonar may be feasible but several more years of development are needed. Because of the overlapped salmon run timing, estimating species composition appears the most difficult aspect of using sonar for management. Possible improvements include using a larger beach seine or

  16. Evaluation of the Performance of the Distributed Phased-MIMO Sonar

    PubMed Central

    Pan, Xiang; Jiang, Jingning; Wang, Nan

    2017-01-01

    A broadband signal model is proposed for a distributed multiple-input multiple-output (MIMO) sonar system consisting of two transmitters and a receiving linear array. Transmitters are widely separated to illuminate the different aspects of an extended target of interest. The beamforming technique is utilized at the reception ends for enhancement of weak target echoes. A MIMO detector is designed with the estimated target position parameters within the general likelihood rate test (GLRT) framework. For the high signal-to-noise ratio case, the detection performance of the MIMO system is better than that of the phased-array system in the numerical simulations and the tank experiments. The robustness of the distributed phased-MIMO sonar system is further demonstrated in localization of a target in at-lake experiments. PMID:28085071

  17. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales.

    PubMed

    Sivle, L D; Kvadsheim, P H; Fahlman, A; Lam, F P A; Tyack, P L; Miller, P J O

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1-2 kHz and mid frequency active sonar (MFAS): 6-7 kHz] during three field seasons (2006-2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals.

  18. Changes in dive behavior during naval sonar exposure in killer whales, long-finned pilot whales, and sperm whales

    PubMed Central

    Sivle, L. D.; Kvadsheim, P. H.; Fahlman, A.; Lam, F. P. A.; Tyack, P. L.; Miller, P. J. O.

    2012-01-01

    Anthropogenic underwater sound in the environment might potentially affect the behavior of marine mammals enough to have an impact on their reproduction and survival. Diving behavior of four killer whales (Orcinus orca), seven long-finned pilot whales (Globicephala melas), and four sperm whales (Physeter macrocephalus) was studied during controlled exposures to naval sonar [low frequency active sonar (LFAS): 1–2 kHz and mid frequency active sonar (MFAS): 6–7 kHz] during three field seasons (2006–2009). Diving behavior was monitored before, during and after sonar exposure using an archival tag placed on the animal with suction cups. The tag recorded the animal's vertical movement, and additional data on horizontal movement and vocalizations were used to determine behavioral modes. Killer whales that were conducting deep dives at sonar onset changed abruptly to shallow diving (ShD) during LFAS, while killer whales conducting deep dives at the onset of MFAS did not alter dive mode. When in ShD mode at sonar onset, killer whales did not change their diving behavior. Pilot and sperm whales performed normal deep dives (NDD) during MFAS exposure. During LFAS exposures, long-finned pilot whales mostly performed fewer deep dives and some sperm whales performed shallower and shorter dives. Acoustic recording data presented previously indicates that deep diving (DD) is associated with feeding. Therefore, the observed changes in dive behavior of the three species could potentially reduce the foraging efficiency of the affected animals. PMID:23087648

  19. Chirped self-similar waves for quadratic-cubic nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2017-12-01

    We have constructed analytical self-similar wave solutions for quadratic-cubic Nonlinear Schrödinger equation (QC-NLSE) by means of similarity transformation method. Then, we have investigated the role of chirping on these self-similar waves as they propagate through the tapered graded index waveguide. We have revealed that the chirping leads to interesting features and allows us to control the propagation of self-similar waves. This has been demonstrated for two cases (i) periodically distributed system and (ii) constant choice of system parameters. We expect our results to be useful in designing high performance optical devices.

  20. Chirped pulse digital holography for measuring the sequence of ultrafast optical wavefronts

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2018-04-01

    Optical setups for measuring the sequence of ultrafast optical wavefronts using a chirped pulse as a reference wave in digital holography are proposed and analyzed. In this method, multiple ultrafast object pulses are used to probe the temporal evolution of ultrafast phenomena and they are interfered with a chirped reference wave to record a digital hologram. Wavefronts at different times can be reconstructed separately from the recorded hologram when the reference pulse can be treated as a quasi-monochromatic wave during the pulse width of each object pulse. The feasibility of this method is demonstrated by numerical simulation.

  1. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2013-09-30

    exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38...pilot whales (Globicephala melas ). Marine Mammal Science. [in review, refereed] 8 Kvadsheim, PH, Miller, PJO, Tyack, P, Sivle, LD, Lam, FPA, and...killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401

  2. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-12-11

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  3. Comparison of ABR response amplitude, test time, and estimation of hearing threshold using frequency specific chirp and tone pip stimuli in newborns.

    PubMed

    Ferm, Inga; Lightfoot, Guy; Stevens, John

    2013-06-01

    To evaluate the auditory brainstem response (ABR) amplitudes evoked by tone pip and narrowband chirp (NB CE-Chirp) stimuli when testing post-screening newborns and to determine the difference in estimated hearing level correction values. Tests were performed with tone pips and NB CE-Chirps at 4 kHz or 1 kHz. The response amplitude, response quality (Fmp), and residual noise were compared for both stimuli. Thirty babies (42 ears) who passed our ABR discharge criterion at 4 kHz following referral from their newborn hearing screen. Overall, NB CE-Chirp responses were 64% larger than the tone pip responses, closer to those evoked by clicks. Fmp was significantly higher for NB CE-Chirps. It is anticipated that there could be significant reductions in test time for the same signal to noise ratio by using NB CE-Chirps when testing newborns. This effect may vary in practice and is likely to be most beneficial for babies with low amplitude ABR responses. We propose that the ABR nHL threshold to eHL correction for NB CE-Chirps should be approximately 5 dB less than the corrections for tone pips at 4 and 1 kHz.

  4. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  5. Automated Threshold Selection for Template-Based Sonar Target Detection

    DTIC Science & Technology

    2017-08-01

    test based on the distribution of the matched filter correlations. From the matched filter output we evaluate target sized areas and surrounding...synthetic aperture sonar data that were part of the evaluation . Figure 3 shows a nearly uniform seafloor. Figure 4 is more complex, with

  6. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.

    PubMed

    Falk, Benjamin; Kasnadi, Joseph; Moss, Cynthia F

    2015-11-01

    Echolocating bats face the challenge of coordinating flight kinematics with the production of echolocation signals used to guide navigation. Previous studies of bat flight have focused on kinematics of fruit and nectar-feeding bats, often in wind tunnels with limited maneuvering, and without analysis of echolocation behavior. In this study, we engaged insectivorous big brown bats in a task requiring simultaneous turning and climbing flight, and used synchronized high-speed motion-tracking cameras and audio recordings to quantify the animals' coordination of wing kinematics and echolocation. Bats varied flight speed, turn rate, climb rate and wingbeat rate as they navigated around obstacles, and they adapted their sonar signals in patterning, duration and frequency in relation to the timing of flight maneuvers. We found that bats timed the emission of sonar calls with the upstroke phase of the wingbeat cycle in straight flight, and that this relationship changed when bats turned to navigate obstacles. We also characterized the unsteadiness of climbing and turning flight, as well as the relationship between speed and kinematic parameters. Adaptations in the bats' echolocation call frequency suggest changes in beam width and sonar field of view in relation to obstacles and flight behavior. By characterizing flight and sonar behaviors in an insectivorous bat species, we find evidence of exquisitely tight coordination of sensory and motor systems for obstacle navigation and insect capture. © 2015. Published by The Company of Biologists Ltd.

  7. Some Computed Effects of Dome Skin and Temperature Differential on Operation of the AN/SQS-26 Sonar Equipment

    DTIC Science & Technology

    1963-10-04

    Tolerances of Transducer Elements and Preamplifiers on Beam Formation and SSI Performance in the AN/SQS-26 Sonar Equipment (U)", TRACOR Document Number 63...SQS-26 SONAR EQUIPMENT (U) Prepared for GROLP - 4 DOWNGRADED AT% YEAR INTERVALS: l LJ.I The Bureau of Ships DECLASSIFIED A ER 12 YEARS. r . Code 688E t...ON.PERATION OF THEP ,,, Ts 4a nAinS-26 SONAR pul i~ ~ ~ ~ ~ ~ ~ ~~%,i forre o teSFXPora aaeet Prepared for Bull by: DSS11TIAVAILAIIL CODES The Bureau of Ships

  8. High-Frequency Chirp Ultrasound Imaging with an Annular-array for Ophthalmologic and Small-Animal Imaging

    PubMed Central

    Mamou, Jonathan; Aristizábal, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.; Turnbull, Daniel H.

    2009-01-01

    High-frequency ultrasound (HFU, > 20 MHz) is an attractive means of obtaining fine-resolution images of biological tissues for ophthalmologic, dermatological, and small-animal imaging applications. Even with current improvements in circuit designs and high-frequency equipment, HFU suffers from two inherent limitations. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU is usually limited to shallow imaging because of the significant attenuation in most tissues. In a previous study, a five-element annular array with a 17-MHz center frequency was excited using chirp-coded signals, and a synthetic-focusing algorithm was used to extend the DOF and increase penetration depth. In the present study, a similar approach with two different five-element annular arrays operating near a center frequency of 35-MHz is implemented and validated. Following validation studies, the chirp-imaging methods were applied to imaging vitreous-hemorrhage mimicking phantoms and mouse embryos. Images of the vitreous phantom showed increased sensitivity using the chirp method compared to a standard monocycle imaging method, and blood droplets could be visualized 4 mm deeper into the phantom. Three-dimensional datasets of 12.5-day-old, mouse-embryo heads were acquired in utero using chirp and conventional excitations. Images were formed and brains ventricles were segmented and reconstructed in three dimensions. The brain-ventricle volumes for the monocycle excitation exhibited artifacts that were not apparent on the chirp-based dataset reconstruction. PMID:19394754

  9. A new and efficient theoretical model to analyze chirped grating distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Arif, Muhammad

    Threshold conditions of a distributed feedback (DFB) laser with a linearly chirped grating are investigated using a new and efficient method. DFB laser with chirped grating is found to have significant effects on the lasing characteristics. The coupled wave equations for these lasers are derived and solved using a power series method to obtain the threshold condition. A Newton- Raphson routine is used to solve the threshold conditions numerically to obtain threshold gain and lasing wavelengths. To prove the validity of this model, it is applied to both conventional index-coupled and complex- coupled DFB lasers. The threshold gain margins are calculated as functions of the ratio of the gain coupling to index coupling (|κg|/|κ n|), and the phase difference between the index and gain gratings. It was found that for coupling coefficient |κ|l < 0.9, the laser shows a mode degeneracy at particular values of the ratio |κ g|/|κn|, for cleaved facets. We found that at phase differences π/2 and 3π/2, between the gain and index grating, for an AR-coated complex-coupled laser, the laser becomes multimode and a different mode starts to lase. We also studied the effect of the facet reflectivity (both magnitude and phase) on the gain margin of a complex- coupled DFB laser. Although, the gain margin varies slowly with the magnitude of the facet reflectivity, it shows large variations as a function of the phase. Spatial hole burning was found to be minimum at phase difference nπ, n = 0, 1, ... and maximum at phase differences π/2 and 3π/2. The single mode gain margin of an index-coupled linearly chirped CG-DFB is calculated for different chirping factors and coupling constants. We found that there is clearly an optimum chirping for which the single mode gain margin is maximum. The gain margins were calculated also for different positions of the cavity center. The effect of the facet reflectivities and their phases on the gain margin was investigated. We found the gain

  10. On the single sweep processing of auditory brainstem responses: click vs. chirp stimulations and active vs. passive electrodes.

    PubMed

    Corona-Strauss, Farah I; Delb, Wolfgang; Bloching, Marc; Strauss, Daniel J

    2008-01-01

    We have recently shown that click evoked auditory brainstem responses (ABRs) single sweeps can efficiently be processed by a hybrid novelty detection system. This approach allowed for the objective detection of hearing thresholds in a fraction of time of conventional schemes, making it appropriate for the efficient implementation of newborn hearing screening procedures. It is the objective of this study to evaluate whether this approach might further be improved by different stimulation paradigms and electrode settings. In particular, we evaluate chirp stimulations which compensate the basilar-membrane dispersion and active electrodes which are less sensitive to movements. This is the first study which is directed to a single sweep processing of chirp evoked ABRs. By concentrating on transparent features and a minimum number of adjustable parameters, we present an objective comparison of click vs.chirp stimulations and active vs. passive electrodes in the ultrafast ABR detection. We show that chirp evoked brainstem responses and active electrodes might improve the single sweeps analysis of ABRs.Consequently, we conclude that a single sweep processing of ABRs for the objective determination of hearing thresholds can further be improved by the use of optimized chirp stimulations and active electrodes.

  11. Chirped-Superlattice, Blocked-Intersubband QWIP

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Ting, David; Bandara, Sumith

    2004-01-01

    An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low

  12. Photonic generation of phase-stable and wideband chirped microwave signals based on phase-locked dual optical frequency combs.

    PubMed

    Tong, Yitian; Zhou, Qian; Han, Daming; Li, Baiyu; Xie, Weilin; Liu, Zhangweiyi; Qin, Jie; Wang, Xiaocheng; Dong, Yi; Hu, Weisheng

    2016-08-15

    A photonics-based scheme is presented for generating wideband and phase-stable chirped microwave signals based on two phase-locked combs with fixed and agile repetition rates. By tuning the difference of the two combs' repetition rates and extracting different order comb tones, a wideband linearly frequency-chirped microwave signal with flexible carrier frequency and chirped range is obtained. Owing to the scheme of dual-heterodyne phase transfer and phase-locked loop, extrinsic phase drift and noise induced by the separated optical paths is detected and suppressed efficiently. Linearly frequency-chirped microwave signals from 5 to 15 GHz and 237 to 247 GHz with 30 ms duration are achieved, respectively, contributing to the time-bandwidth product of 3×108. And less than 1.3×10-5 linearity errors (RMS) are also obtained.

  13. Auditory Brainstem Responses for Click and CE-chirp Stimuli in Individuals with and without Occupational Noise Exposure

    PubMed Central

    Pushpalatha, Zeena Venkatacheluvaiah; Konadath, Sreeraj

    2016-01-01

    Introduction: Encoding of CE-chirp and click stimuli in auditory system was studied using auditory brainstem responses (ABRs) among individuals with and without noise exposure. Materials and Methods: The study consisted of two groups. Group 1 (experimental group) consisted of 20 (40 ears) individuals exposed to occupational noise with hearing thresholds within 25 dB HL. They were further divided into three subgroups based on duration of noise exposure (0–5 years of exposure-T1, 5–10 years of exposure-T2, and >10 years of exposure-T3). Group 2 (control group) consisted of 20 individuals (40 ears). Absolute latency and amplitude of waves I, III, and V were compared between the two groups for both click and CE-chirp stimuli. T1, T2, and T3 groups were compared for the same parameters to see the effect of noise exposure duration on CE-chirp and click ABR. Result: In Click ABR, while both the parameters for wave III were significantly poorer for the experimental group, wave V showed a significant decline in terms of amplitude only. There was no significant difference obtained for any of the parameters for wave I. In CE-Chirp ABR, the latencies for all three waves were significantly prolonged in the experimental group. However, there was a significant decrease in terms of amplitude in only wave V for the same group. Discussion: Compared to click evoked ABR, CE-Chirp ABR was found to be more sensitive in comparison of latency parameters in individuals with occupational noise exposure. Monitoring of early pathological changes at the brainstem level can be studied effectively by using CE-Chirp stimulus in comparison to click stimulus. Conclusion: This study indicates that ABR's obtained with CE-chirp stimuli serves as an effective tool to identify the early pathological changes due to occupational noise exposure when compared to click evoked ABR. PMID:27762255

  14. Processing, mosaicking and management of the Monterey Bay digital sidescan-sonar images

    USGS Publications Warehouse

    Chavez, P.S.; Isbrecht, J.; Galanis, P.; Gabel, G.L.; Sides, S.C.; Soltesz, D.L.; Ross, Stephanie L.; Velasco, M.G.

    2002-01-01

    Sidescan-sonar imaging systems with digital capabilities have now been available for approximately 20 years. In this paper we present several of the various digital image processing techniques developed by the U.S. Geological Survey (USGS) and used to apply intensity/radiometric and geometric corrections, as well as enhance and digitally mosaic, sidescan-sonar images of the Monterey Bay region. New software run by a WWW server was designed and implemented to allow very large image data sets, such as the digital mosaic, to be easily viewed interactively, including the ability to roam throughout the digital mosaic at the web site in either compressed or full 1-m resolution. The processing is separated into the two different stages: preprocessing and information extraction. In the preprocessing stage, sensor-specific algorithms are applied to correct for both geometric and intensity/radiometric distortions introduced by the sensor. This is followed by digital mosaicking of the track-line strips into quadrangle format which can be used as input to either visual or digital image analysis and interpretation. An automatic seam removal procedure was used in combination with an interactive digital feathering/stenciling procedure to help minimize tone or seam matching problems between image strips from adjacent track-lines. The sidescan-sonar image processing package is part of the USGS Mini Image Processing System (MIPS) and has been designed to process data collected by any 'generic' digital sidescan-sonar imaging system. The USGS MIPS software, developed over the last 20 years as a public domain package, is available on the WWW at: http://terraweb.wr.usgs.gov/trs/software.html.

  15. Photonic generation of low phase noise arbitrary chirped microwave waveforms with large time-bandwidth product.

    PubMed

    Xie, Weilin; Xia, Zongyang; Zhou, Qian; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2015-07-13

    We present a photonic approach for generating low phase noise, arbitrary chirped microwave waveforms based on heterodyne beating between high order correlated comb lines extracted from frequency-agile optical frequency comb. Using the dual heterodyne phase transfer scheme, extrinsic phase noises induced by the separate optical paths are efficiently suppressed by 42-dB at 1-Hz offset frequency. Linearly chirped microwave waveforms are achieved within 30-ms temporal duration, contributing to a large time-bandwidth product. The linearity measurement leads to less than 90 kHz RMS frequency error during the entire chirp duration, exhibiting excellent linearity for the microwave and sub-THz waveforms. The capability of generating arbitrary waveforms up to sub-THz band with flexible temporal duration, long repetition period, broad bandwidth, and large time-bandwidth product is investigated and discussed.

  16. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2015-09-30

    long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic Mammals 38: 362-401. Moretti, D., Thomas, L...2014). The social context of individual foraging behaviour in long-finned pilot whales (Globicephala melas ). Behaviour 151: 1453-1477. DOI: 10.1163...response thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas ). Mar. Poll. Bull.83: 165-180. DOI: 10.1016

  17. 3S2: Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

    DTIC Science & Technology

    2015-09-30

    experimental exposures of killer (Orcinus orca), long-finned pilot (Globicephala melas ), and sperm whales (Physeter macrocephalus) to naval sonar. Aquatic...Kvadsheim P.H., Huisman J. and Tyack P.L. (2014). The social context of individual foraging behaviour in long-finned pilot whales (Globicephala melas ...Wensveen P.J., Miller P. J. O. (2014). High response thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas

  18. Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.

    PubMed

    von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2016-01-01

    Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.

  19. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium.

    PubMed

    Xie, Jintao; Zhang, Jianbin; Ye, Junran; Liu, Haowei; Liang, Zhuoying; Long, Shangjie; Zhou, Kangzhu; Deng, Dongmei

    2018-03-05

    We introduce the propagation of the first-order chirped Airy vortex beams (FCAiV) in a chiral medium analytically. Results show that the FCAiV beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams, which have totally different propagation trajectories in the chiral medium. In this paper, we investigate the effects of the first-order chirped parameter β, the chiral parameter γ and the optical vortex on the propagation process of the FCAiV beams. It is shown that the propagation trajectory of the FCAiV beams declines with the chirped parameter increasing. Besides, the increase of the chiral parameter acting on the LCPV beams makes the relative position between the main lobe and the optical vortex further while the effect on the RCPV beams is the opposite. Furthermore, the relative position between the main lobe and the optical vortex contributes to the position of the intensity focusing. Meanwhile, with the chiral parameter increasing, the maximum gradient and scattering forces of the LCPV beams decrease but those of the RCPV beams will increase during the propagation. It is significant that we can control the propagation trajectory, the intensity focusing position and the radiation forces of the FCAiV beams by varying the chirped parameter and the chiral parameter.

  20. Pre-chirp managed nonlinear amplification in fibers delivering 100  W, 60  fs pulses.

    PubMed

    Liu, Wei; Schimpf, Damian N; Eidam, Tino; Limpert, Jens; Tünnermann, Andreas; Kärtner, Franz X; Chang, Guoqing

    2015-01-15

    We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.

  1. Detecting submerged bodies: controlled research using side-scan sonar to detect submerged proxy cadavers.

    PubMed

    Healy, Carrie A; Schultz, John J; Parker, Kenneth; Lowers, Bim

    2015-05-01

    Forensic investigators routinely deploy side-scan sonar for submerged body searches. This study adds to the limited body of literature by undertaking a controlled project to understand how variables affect detection of submerged bodies using side-scan sonar. Research consisted of two phases using small and medium-sized pig (Sus scrofa) carcasses as proxies for human bodies to investigate the effects of terrain, body size, frequency, swath width, and state of decomposition. Results demonstrated that a clear, flat, sandy pond floor terrain was optimal for detection of the target as irregular terrain and/or vegetation are major limitations that can obscure the target. A higher frequency towfish was preferred for small bodies, and a 20 m swath width allowed greater visibility and easier maneuverability of the boat in this environment. Also, the medium-sized carcasses were discernable throughout the 81-day study period, indicating that it is possible to detect bodies undergoing decomposition with side-scan sonar. © 2015 American Academy of Forensic Sciences.

  2. Chirp echo Fourier transform EPR-detected NMR.

    PubMed

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Chirp echo Fourier transform EPR-detected NMR

    NASA Astrophysics Data System (ADS)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  4. Velocity measurement using frequency domain interferometer and chirped pulse laser

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nishimura, Y.; Mori, Y.; Hanayama, R.; Kitagawa, Y.; Sekine, T.; Sato, N.; Kurita, T.; Kawashima, T.; Sunahara, A.; Sentoku, Y.; Miura, E.; Iwamoto, A.; Sakagami, H.

    2017-02-01

    An ultra-intense short pulse laser induces a shock wave in material. The pressure of shock compression is stronger than a few tens GPa. To characterize shock waves, time-resolved velocity measurement in nano- or pico-second time scale is needed. Frequency domain interferometer and chirped pulse laser provide single-shot time-resolved measurement. We have developed a laser-driven shock compression system and frequency domain interferometer with CPA laser. In this paper, we show the principle of velocity measurement using a frequency domain interferometer and a chirped pulse laser. Next, we numerically calculated spectral interferograms and show the time-resolved velocity measurement can be done from the phase analysis of spectral interferograms. Moreover we conduct the laser driven shock generation and shock velocity measurement. From the spectral fringes, we analyze the velocities of the sample and shockwaves.

  5. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  6. Review on Photonic Generation of Chirp Arbitrary Microwave Waveforms for Remote Sensing Application

    NASA Astrophysics Data System (ADS)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash; Athokpam, Bidhanshel Singh

    2017-12-01

    A novel technique to generate an arbitrary chirped waveform by harnessing features of lithium niobate (LiNb O_3) Mach-Zehnder modulator is proposed and demonstrated. The most important application of chirped microwave waveform is that, it improves the range resolution of radar. Microwave photonics system provides high bandwidth capabilities of fiber-optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, it should be consider that microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper, we have thoroughly reviewed the arbitrary chirped microwave generation techniques by using photonics technology.

  7. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    PubMed Central

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  8. THz field engineering in two-color femtosecond filaments using chirped and delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; González de Alaiza Martínez, P.; Thiele, I.; Skupin, S.; Bergé, L.

    2018-03-01

    We numerically study the influence of chirping and delaying several ionizing two-color light pulses in order to engineer terahertz (THz) wave generation in air. By means of comprehensive 3D simulations, it is shown that two chirped pulses can increase the THz yield when they are separated by a suitable time delay for the same laser energy in focused propagation geometry. To interpret these results, the local current theory is revisited and we propose an easy, accessible all-optical criterion that predicts the laser-to-THz conversion efficiencies given any input laser spectrum. In the filamentation regime, numerical simulations display evidence that a chirped pulse is able to produce more THz radiation due to propagation effects, which maintain the two colors of the laser field more efficiently coupled over long distances. A large delay between two pulses promotes multi-peaked THz spectra as well as conversion efficiencies above 10‑4.

  9. Linear Scour Depressions or Bedforms? Using Interferometric Sonar to Investigate Nearshore Sediment Transport

    NASA Astrophysics Data System (ADS)

    Borrelli, M.; Giese, G. S.; Dingman, S. L.; Gontz, A. M.; Adams, M. B.; Norton, A. R.; Brown, T. L.

    2011-12-01

    A series of ambiguous features on the seafloor off the coast of Provincetown, Massachusetts USA has been identified in two bathymetric lidar surveys (2007, 2010) conducted by the US Army Corps of Engineers. Similar features in the area have been described as linear scour depressions by other investigators, but at deeper water depths. These features exhibit some of the characteristics of bedforms, they have migrated tens of meters and maintained similar 3 dimensional morphologies. However, what would be described as the slipface more closely resembles the updrift face of a linear scour depression. The features are in relatively shallow water (9 - 15 m), are 150 - 200 m long, have spacings of 100 - 150 m and are 5-6 m in height. Further investigations are being undertaken to better understand these features and nearshore sediment transport in the area. The features appear along a high energy, accreting coast with both strong wave-driven sediment flux and tidal currents. Mapping of the study area with an interferometric sonar system, which collects coincident swath bathymetry and acoustic backscatter imagery, is ongoing. Interferometric sonar increases bathymetric swath width to depth ratios, in comparison to multibeam systems, and expedites data collection by reducing costs, vessel-time and hazards associated with navigating shallow waters. In addition, sediment grab samples and a series of seismic reflection profiles will also be collected in the area to ground-truth acoustic imagery and provide a subsurface framework for the features, respectively. These datasets will allow investigators to better document bottom conditions, estimate flow velocities needed to create these features and improve our understanding of sediment transport processes and pathways in the area.

  10. A high-frequency sonar for profiling small-scale subaqueous bedforms

    USGS Publications Warehouse

    Dingler, J.R.; Boylls, J.C.; Lowe, R.L.

    1977-01-01

    A high-resolution ultrasonic profiler has been developed which permits both laboratory and field studies of small-scale subaqueous bedforms. The device uses a 2.5-cm diameter piezoelectric ceramic crystal pulsed at a frequency of 4.5 MHz to obtain vertical accuracy and resolution of at least 1 mm. Compared to other small-scale profiling methods, this ultrasonic technique profiles the bottom more accurately and more rapidly without disturbing the bedforms. These characteristics are vital in wave-dominated nearshore zones where oscillatory flow and low visibility for the most part have stymied detailed bedform studies. In the laboratory the transducer is mounted directly to an instrument carriage. For field work the transducer housing is mounted in a 2 m long aluminum frame which is situated and operated by scuba divers. Observations using the device include ripple geometry and migration, the suspension height of sand during sheet flow, and long-term erosion/deposition at a point. ?? 1977.

  11. The fusion of large scale classified side-scan sonar image mosaics.

    PubMed

    Reed, Scott; Tena, Ruiz Ioseba; Capus, Chris; Petillot, Yvan

    2006-07-01

    This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.

  12. Spectral analysis using the CCD Chirp Z-transform

    NASA Technical Reports Server (NTRS)

    Eversole, W. L.; Mayer, D. J.; Bosshart, P. W.; Dewit, M.; Howes, C. R.; Buss, D. D.

    1978-01-01

    The charge coupled device (CCD) Chirp Z transformation (CZT) spectral analysis techniques were reviewed and results on state-of-the-art CCD CZT technology are presented. The CZT algorithm was examined and the advantages of CCD implementation are discussed. The sliding CZT which is useful in many spectral analysis applications is described, and the performance limitations of the CZT are studied.

  13. Sidescan-sonar imagery, multibeam bathymetry, and surficial geologic interpretations of the sea floor in Rhode Island Sound, off Sakonnet Point, Rhode Island

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Twomey, Erin R.; Danforth, William W.; Haupt, Todd A.; Crocker, James M.

    2007-01-01

    The U.S. Geological Survey (USGS) is working with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries and sounds along the northeastern coast of the United States. This report interprets the area covered by NOAA Survey H11320, about 72 km² of sea floor in eastern Rhode Island Sound (RIS), located about 8 km south of Sakonnet Point, Rhode Island (fig. 1). Previous work in RIS includes studies of both sea-floor processes and subsurface geologic framework. McMaster (1960) mapped surficial sediment samples in Narragansett Bay and RIS and McMaster and others (1968) conducted a seismic-reflection survey in Block Island Sound and RIS. O'Hara and Oldale (1980) collected seismic-reflection profiles, sidescan-sonar data, and vibracores in eastern RIS (fig. 2). They interpreted the geologic history, assessed sand and gravel resources, and evaluated the mining impact of these resources. McMaster's (1960) interpretation of the surficial sediment within this study area consisted of sand with several isolated areas of gravel. Several other sediment samples were previously obtained within the study area: three National Oceanographic Data Center (NODC) dredge samples from 1942 consisted of sand and one National Ocean Service (NOS) sample from 1939 was rocky (fig. 2; Poppe and others, 2003). The purpose of this report is to define the sea-floor morphology and sedimentary environments and interpret processes occurring on the sea floor using sidescan-sonar imagery, multibeam bathymetry, and historic seismic-reflection profiles.

  14. Generating nonlinear FM chirp radar signals by multiple integrations

    DOEpatents

    Doerry, Armin W [Albuquerque, NM

    2011-02-01

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.

  15. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, J.; Wang, B.; Parra, A.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  16. Acoustic analysis of oropharyngeal swallowing using Sonar Doppler.

    PubMed

    Soria, Franciele Savaris; Silva, Roberta Gonçalves da; Furkim, Ana Maria

    2016-01-01

    During the aging process, one of the functions that changes is swallowing. These alterations in oropharyngeal swallowing may be diagnosed by methods that allow both the diagnosis and biofeedback monitoring by the patient. One of the methods recently described in the literature for the evaluation of swallowing is the Sonar Doppler. To compare the acoustic parameters of oropharyngeal swallowing between different age groups. This was a field, quantitative, study. Examination with Sonar Doppler was performed in 75 elderly and 72 non-elderly adult subjects. The following acoustic parameters were established: initial frequency, first peak frequency, second peak frequency; initial intensity, final intensity; and time for the swallowing of saliva, liquid, nectar, honey, and pudding, with 5- and 10-mL free drinks. Objective, measurable data were obtained; most acoustic parameters studied between adult and elderly groups with respect to consistency and volume were significant. When comparing elderly with non-elderly adult subjects, there is a modification of the acoustic pattern of swallowing, regarding both consistency and food bolus volume. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  17. Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Dodd, Stirling Scott

    1995-01-01

    Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.

  18. Archive of Digital Boomer and CHIRP Seismic Reflection Data Collected During USGS Field Activity 08LCA03 in Lake Panasoffkee, Florida, May 2008

    USGS Publications Warehouse

    Harrison, Arnell S.; Dadisman, Shawn V.; McBride, W. Scott; Flocks, James G.; Wiese, Dana S.

    2009-01-01

    In May of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys in Lake Panasoffkee, located in central Florida, as part of the USGS Lakes and Coastal Aquifers (LCA) study. This report serves as an archive of unprocessed digital boomer and Compressed High Intensity Radar Pulse (CHIRP)* seismic reflection data, trackline maps, navigation files, Field Activity Collection System (FACS) logs, Geographic Information System (GIS) files, and formal Federal Geographic Data Committee (FGDC) metadata. Filtered and gained (a relative increase in signal amplitude) digital images of the seismic profiles and geospatially corrected interactive profiles are also provided. Refer to the Acronyms page for expansions of acronyms and abbreviations used in this report. *Due to poor data acquisition conditions associated with the lake bottom sediments, only two CHIRP tracklines were collected during this field activity. The archived trace data are in standard Society of Exploration Geophysicists (SEG) SEG-Y format (Barry and others, 1975) and may be downloaded and processed with commercial or public domain software such as Seismic Unix (SU). Example SU processing scripts and USGS software for viewing the SEG-Y files (Zihlman, 1992) are provided. The USGS Florida Integrated Science Center (FISC) - St. Petersburg assigns a unique identifier to each cruise or field activity. For example, 08LCA03 tells us the data were collected in 2008 for the Lakes and Coastal Aquifers (LCA) study and the data were collected during the third field activity for that study in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. The naming convention used for each seismic line is as follows: yye##a, where 'yy' are the last two digits of the year in which the data were collected, 'e' is a 1-letter abbreviation for the equipment type (for example, b for boomer and c

  19. Dose-response relationships for the onset of avoidance of sonar by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Antunes, Ricardo N; Wensveen, Paul J; Samarra, Filipa I P; Alves, Ana Catarina; Tyack, Peter L; Kvadsheim, Petter H; Kleivane, Lars; Lam, Frans-Peter A; Ainslie, Michael A; Thomas, Len

    2014-02-01

    Eight experimentally controlled exposures to 1-2 kHz or 6-7 kHz sonar signals were conducted with four killer whale groups. The source level and proximity of the source were increased during each exposure in order to reveal response thresholds. Detailed inspection of movements during each exposure session revealed sustained changes in speed and travel direction judged to be avoidance responses during six of eight sessions. Following methods developed for Phase-I clinical trials in human medicine, response thresholds ranging from 94 to 164 dB re 1 μPa received sound pressure level (SPL) were fitted to Bayesian dose-response functions. Thresholds did not consistently differ by sonar frequency or whether a group had previously been exposed, with a mean SPL response threshold of 142 ± 15 dB (mean ± s.d.). High levels of between- and within-individual variability were identified, indicating that thresholds depended upon other undefined contextual variables. The dose-response functions indicate that some killer whales started to avoid sonar at received SPL below thresholds assumed by the U.S. Navy. The predicted extent of habitat over which avoidance reactions occur depends upon whether whales responded to proximity or received SPL of the sonar or both, but was large enough to raise concerns about biological consequences to the whales.

  20. Archive of side scan sonar and swath bathymetry data collected during USGS cruise 10CCT01 offshore of Cat Island, Gulf Islands National Seashore, Mississippi, March 2010

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Pfeiffer, William R.; Wiese, Dana S.

    2010-01-01

    activity for that project in that calendar year. Refer to http://walrus.wr.usgs.gov/infobank/programs/html/definition/activity.html for a detailed description of the method used to assign the field activity ID. Data were collected using a 26-foot (ft) Glacier Bay Catamaran. Side scan sonar and interferometric swath bathymetry data were collected simultaneously along the tracklines. The side scan sonar towfish was towed off the port side just slightly behind the vessel, close to the seafloor. The interferometric swath transducer was sled-mounted on a rail attached between the catamaran hulls. During the survey the sled is secured into position. Navigation was acquired with a CodaOctopus Octopus F190 Precision Attitude and Positioning System and differentially corrected with OmniSTAR. See the digital FACS equipment log for details about the acquisition equipment used. Both raw datasets were stored digitally and processed using CARIS HIPS and SIPS software at the USGS St. Petersburg Coastal and Marine Science Center. For more information on processing refer to the Equipment and Processing page. Post-processing of the swath dataset revealed a motion artifact that is attributed to movement of the pole that the swath transducers are attached to in relation to the boat. The survey took place in the winter months, in which strong winds and rough waves contributed to a reduction in data quality. The rough seas contributed to both the movement of the pole and the very high noise base seen in the raw amplitude data of the side scan sonar. Chirp data were also collected during this survey and are archived separately.

  1. Composite-Unit Accelerated Life Testing (CUALT) of Sonar Transducers

    DTIC Science & Technology

    1979-09-01

    Developed and technically defended the Texas Research Institute CUALT plan, Helped prepare sections 5 and 7. Edward Hobaica and Ray Haworth - Developed...le2--Te- TT-Sonar 3R. A. Larmi, E. C. Hobaica , Failure Modes & Effects Analysis for the DT-308’ (now called the DT-605) Hydrophone, EB Div Report No.: U

  2. a Low-Cost Chirped-Pulse Fourier Transform Microwave Spectrometer for Undergraduate Physical Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Carroll, Brandon; Finneran, Ian; Blake, Geoffrey

    2014-06-01

    We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.

  3. Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier.

    PubMed

    Tavella, Franz; Nomura, Yutaka; Veisz, Laszlo; Pervak, Vladimir; Marcinkevicius, Andrius; Krausz, Ferenc

    2007-08-01

    We report the amplification of three-cycle, 8.5 fs optical pulses in a near-infrared noncollinear optical parametric chirped-pulse amplifier (OPCPA) up to energies of 80 mJ. Improved dispersion management in the amplifier by means of a combination of reflection grisms and a chirped-mirror stretcher allowed us to recompress the amplified pulses to within 6% of their Fourier limit. The novel ultrabroad, ultraprecise dispersion control technology presented in this work opens the way to scaling multiterawatt technology to even shorter pulses by optimizing the OPCPA bandwidth.

  4. Behavior of captive herring exposed to naval sonar transmissions (1.0-1.6 kHz) throughout a yearly cycle.

    PubMed

    Doksæter, Lise; Handegard, Nils Olav; Godø, Olav Rune; Kvadsheim, Petter H; Nordlund, Nina

    2012-02-01

    Atlantic herring, Clupea harengus, is a hearing specialist, and several studies have demonstrated strong responses to man-made noise, for example, from an approaching vessel. To avoid negative impacts from naval sonar operations, a set of studies of reaction patters of herring to low-frequency (1.0-1.5 kHz) naval sonar signals has been undertaken. This paper presents herring reactions to sonar signals and other stimuli when kept in captivity under detailed acoustic and video monitoring. Throughout the experiment, spanning three seasons of a year, the fish did not react significantly to sonar signals from a passing frigate, at received root-mean-square sound-pressure level (SPL) up to 168 dB re 1 μPa. In contrast, the fish did exhibit a significant diving reaction when exposed to other sounds, with a much lower SPL, e.g., from a two-stroke engine. This shows that the experimental setup is sensitive to herring reactions when occurring. The lack of herring reaction to sonar signals is consistent with earlier in situ behavioral studies. The complexity of the behavioral reactions in captivity underline the need for better understanding of the causal relationship between stimuli and reaction patterns of fish. © 2012 Acoustical Society of America

  5. Detection of buried mines with seismic sonar

    NASA Astrophysics Data System (ADS)

    Muir, Thomas G.; Baker, Steven R.; Gaghan, Frederick E.; Fitzpatrick, Sean M.; Hall, Patrick W.; Sheetz, Kraig E.; Guy, Jeremie

    2003-10-01

    Prior research on seismo-acoustic sonar for detection of buried targets [J. Acoust. Soc. Am. 103, 2333-2343 (1998)] has continued with examination of the target strengths of buried test targets as well as targets of interest, and has also examined detection and confirmatory classification of these, all using arrays of seismic sources and receivers as well as signal processing techniques to enhance target recognition. The target strengths of two test targets (one a steel gas bottle, the other an aluminum powder keg), buried in a sand beach, were examined as a function of internal mass load, to evaluate theory developed for seismic sonar target strength [J. Acoust. Soc. Am. 103, 2344-2353 (1998)]. The detection of buried naval and military targets of interest was achieved with an array of 7 shaker sources and 5, three-axis seismometers, at a range of 5 m. Vector polarization filtering was the main signal processing technique for detection. It capitalizes on the fact that the vertical and horizontal components in Rayleigh wave echoes are 90 deg out of phase, enabling complex variable processing to obtain the imaginary component of the signal power versus time, which is unique to Rayleigh waves. Gabor matrix processing of this signal component was the main technique used to determine whether the target was man-made or just a natural target in the environment. [Work sponsored by ONR.

  6. Modeling effectiveness of gradual increases in source level to mitigate effects of sonar on marine mammals.

    PubMed

    Von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A

    2014-02-01

    Ramp-up or soft-start procedures (i.e., gradual increase in the source level) are used to mitigate the effect of sonar sound on marine mammals, although no one to date has tested whether ramp-up procedures are effective at reducing the effect of sound on marine mammals. We investigated the effectiveness of ramp-up procedures in reducing the area within which changes in hearing thresholds can occur. We modeled the level of sound killer whales (Orcinus orca) were exposed to from a generic sonar operation preceded by different ramp-up schemes. In our model, ramp-up procedures reduced the risk of killer whales receiving sounds of sufficient intensity to affect their hearing. The effectiveness of the ramp-up procedure depended strongly on the assumed response threshold and differed with ramp-up duration, although extending the duration of the ramp up beyond 5 min did not add much to its predicted mitigating effect. The main factors that limited effectiveness of ramp up in a typical antisubmarine warfare scenario were high source level, rapid moving sonar source, and long silences between consecutive sonar transmissions. Our exposure modeling approach can be used to evaluate and optimize mitigation procedures. © 2013 Society for Conservation Biology.

  7. Prospects for using sonar for underwater archeology on the Yenisei: surveying a 19th century shipwreck

    NASA Astrophysics Data System (ADS)

    Goncharov, A. E.; Mednikov, D. M.; Karelin, N. M.; Nasyrov, I. R.

    2016-11-01

    Current progress in underwater archeology is based on a rich arsenal of high-tech appliances, among which sonar technology plays a key role; it enables scientists not only to detect submerged archeological objects, but to examine them in high definition without having to conduct diving operations or use expensive underwater unmanned vehicles. While the majority of sensational scientific discoveries using sonar have been made in saltwater environments, freshwater ones, rivers in particular, have seen limited activity. The river Yenisei in central Siberia contains an unrecorded number of shipwrecks that await being discovered and studied. In this article we focus on the peculiarities of using sonar for detecting archeological sites on the Yenisei. This article is based on the results of the 2016 expedition, which has determined the location of Thames, a 19th century British steam schooner which was wrecked on the Yenisei.

  8. Recreational-Grade Sidescan Sonar: Transforming a Low-Cost Leisure Gadget into a High Resolution Riverbed Remote Sensing Tool

    NASA Astrophysics Data System (ADS)

    Hamill, D. D.; Buscombe, D.; Wheaton, J. M.; Wilcock, P. R.

    2016-12-01

    The size and spatial organization of bed material, bed texture, is a fundamental physical attribute of lotic ecosystems. Traditional methods to map bed texture (such as physical samples and underwater video) are limited by low spatial coverage, and poor precision in positioning. Recreational grade sidescan sonar systems now offer the possibility of imaging submerged riverbed sediments at coverages and resolutions sufficient to identify subtle changes in bed texture, in any navigable body of water, with minimal cost, expertise in sonar, or logistical effort, thereby facilitating the democratization of acoustic imaging of benthic environments, to support ecohydrological studies in shallow water, not subject to the rigors of hydrographic standards, nor the preserve of hydroacoustic expertise and proprietary hydrographic industry software. We investigate the possibility of using recreational grade sidescan sonar for sedimentary change detection using a case study of repeat sidescan imaging of mixed sand-gravel-rock riverbeds in a debris-fan dominated canyon river, at a coverage and resolution that meets the objectives of studies of the effects of changing bed substrates on salmonid spawning. A repeat substrate mapping analysis on data collected between 2012 and 2015 on the Colorado River in Glen, Marble, and Grand Canyons will be presented. A detailed method has been developed to interpret and analyze non-survey-grade sidescan sonar data, encoded within an open source software tool developed by the authors. An automated technique to quantify bed texture directly from sidescan sonar imagery is tested against bed sediment observations from underwater video and multibeam sonar. Predictive relationships between known bed sediment observations and bed texture metrics could provide an objective means to quantify bed textures and to relate changes in bed texture to biological components of an aquatic ecosystem, at high temporal frequency, and with minimal logistical effort

  9. Controlled Sonar Exposure Experiments on Cetaceans in Norwegian Waters: Overview of the 3S-Project.

    PubMed

    Lam, Frans-Peter A; Kvadsheim, Petter H; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A; Curé, Charlotte; Kleivane, Lars; Sivle, Lise Doksæter; van Ijsselmuide, Sander P; Visser, Fleur; von Benda-Beckmann, Alexander M; Wensveen, Paul J; Dekeling, René P A

    2016-01-01

    In mitigating the risk of sonar operations, the behavioral response of cetaceans is one of the major knowledge gaps that needs to be addressed. The 3S-Project has conducted a number of controlled exposure experiments with a realistic sonar source in Norwegian waters from 2006 to 2013. In total, the following six target species have been studied: killer, long-finned pilot, sperm, humpback, minke, and northern bottlenose whales. A total of 38 controlled sonar exposures have been conducted on these species. Responses from controlled and repeated exposure runs have been recorded using acoustic and visual observations as well as with electronic tags on the target animal. So far, the first dose-response curves as well as an overview of the scored severity of responses have been revealed. In this paper, an overview is presented of the approach for the study, including the results so far as well as the current status of the ongoing analysis.

  10. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    PubMed

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

  11. Chirped quantum cascade laser induced rapid passage signatures in an optically thick gas

    NASA Astrophysics Data System (ADS)

    Northern, J. H.; Ritchie, G. A. D.; Smakman, E. P.; van Helden, J. H.; Walker, R. J.; Duxbury, G.

    2011-01-01

    We report observations of rapid passage signals induced in samples of N2O and CH4 present in a multipass cell with an optical path length of 5 m. The effect of laser power and chirp rate upon the signals has been studied by utilising two different chirped quantum cascade lasers operating around 8 μm. The rapid passage signals exhibit an increasing delay in the switch from absorption to emission as a function of increased gas pressure (up to 8 Torr of gas). By comparing a selection of transitions in N2O and CH4, we show that, unlike ammonia, this `pressure shift' is independent of the transition dipole moment, spectroscopic branch probed and laser chirp rate. As the transition dipole moment is much larger in nitrous oxide than methane, we believe that this indicates that N2O-N2O collisions are more efficient at removing coherence from the polarised sample than CH4-CH4 collisions. We have also observed this pressure shift in a short path length of 40 cm, although with a much reduced value, indicating that propagation effects are important in this optically thick minimally damped system.

  12. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  13. Mechanical charactization of sonar window materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeTeresa, S.J.; Groves, S.E.; Harwood, P.J.

    1996-03-25

    The three-dimensional mechanical behavior of thick Spectra/epoxy sonar window materials containing various special materials is summarized in this report. Three different materials, which were fabricated by two companies known as `A` and `B` were received from the Naval Warfare Center. The three materials designated `A with microspheres (A micron),` `A without microspheres (A),` and `B` were measured for all properties. The total number of tests was reduced through the assumption that the two orthogonal, in-place directions were identical. Consequently, these materials should have only six independent elastic variables. The measured constants and strengths are given.

  14. Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors

    NASA Astrophysics Data System (ADS)

    Lanham, Steven J.; Kushner, Mark J.

    2017-08-01

    The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.

  15. Sperm whales reduce foraging effort during exposure to 1-2 kHz sonar and killer whale sounds.

    PubMed

    Isojunno, Saana; Cure, Charlotte; Kvadsheim, Petter Helgevold; Lam, Frans-Peter Alexander; Tyack, Peter Lloyd; Wensveen, Paul Jacobus; Miller, Patrick James O'Malley

    2016-01-01

    The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.

  16. Automatic Detection of Sand Ripple Features in Sidescan Sonar Imagery

    DTIC Science & Technology

    2014-07-09

    Among the features used in forensic scientific fingerprint analysis are terminations or bifurcations of print ridges. Sidescan sonar imagery of ripple...always be pathological cases. The size of the blocks of pixels used in determining the ripple wavelength is evident in the output images on the right in

  17. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging

    PubMed Central

    He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data. PMID:29112151

  18. Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging.

    PubMed

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-11-07

    This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data.

  19. Broad-spectrum neodymium-doped laser glasses for high-energy chirped-pulse amplification.

    PubMed

    Hays, Greg R; Gaul, Erhard W; Martinez, Mikael D; Ditmire, Todd

    2007-07-20

    We have investigated two novel laser glasses in an effort to generate high-energy, broad-spectrum pulses from a chirped-pulse amplification Nd:glass laser. Both glasses have significantly broader spectra (>38 nm FWHM) than currently available Nd:phosphate and Nd:silicate glasses. We present calculations for small signal pulse amplification to simulate spectral gain narrowing. The technique of spectral shaping using mixed-glass architecture with an optical parametric chirped-pulse amplification front end is evaluated. Our modeling shows that amplified pulses with energies exceeding 10 kJ with sufficient bandwidth to achieve 120 fs pulsewidths are achievable with the use of the new laser glasses. With further development of current technologies, a laser system could be scaled to generate one exawatt in peak power.

  20. Chirped femtosecond pulses in the higher-order nonlinear Schrödinger equation with non-Kerr nonlinear terms and cubic-quintic-septic nonlinearities

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Biswas, Anjan; Milović, Daniela; Belić, Milivoj

    2016-05-01

    We consider a high-order nonlinear Schrödinger equation with competing cubic-quintic-septic nonlinearities, non-Kerr quintic nonlinearity, self-steepening, and self-frequency shift. The model describes the propagation of ultrashort (femtosecond) optical pulses in highly nonlinear optical fibers. A new ansatz is adopted to obtain nonlinear chirp associated with the propagating femtosecond soliton pulses. It is shown that the resultant elliptic equation of the problem is of high order, contains several new terms and is more general than the earlier reported results, thus providing a systematic way to find exact chirped soliton solutions of the septic model. Novel soliton solutions, including chirped bright, dark, kink and fractional-transform soliton solutions are obtained for special choices of parameters. Furthermore, we present the parameter domains in which these optical solitons exist. The nonlinear chirp associated with each of the solitonic solutions is also determined. It is shown that the chirping is proportional to the intensity of the wave and depends on higher-order nonlinearities. Of special interest is the soliton solution of the bright and dark type, determined for the general case when all coefficients in the equation have nonzero values. These results can be useful for possible chirped-soliton-based applications of highly nonlinear optical fiber systems.

  1. Low-chirp high-extinction-ratio modulator based on graphene-silicon waveguide.

    PubMed

    Yang, Longzhi; Hu, Ting; Hao, Ran; Qiu, Chen; Xu, Chao; Yu, Hui; Xu, Yang; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2013-07-15

    We present a hybrid graphene-silicon waveguide, which consists of a lateral slot waveguide with three layers of graphene flakes inside. Through a theoretical analysis, an effective index variation for about 0.05 is found in the waveguide by applying a voltage on the graphene. We designed a Mach-Zehnder modulator based on this waveguide and demonstrated it can process signals nearly chirp-free. The calculation shows that the driving voltage is only 1 V even if the length of the arm is shortened to be 43.54 μm. An extinction up to 34.7 dB and a minimum chirp parameter of -0.006 are obtained. Its insertion loss is roughly -1.37 dB. This modulator consumes low power and has a small footprint. It can potentially be ultrafast as well as CMOS compatible.

  2. Multi-resonance peaks fiber Bragg gratings based on largely-chirped structure

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Zhang, Xuan-Yu; Wei, Wei-Hua; Chen, Yong-Yi; Qin, Li; Ning, Yong-Qiang; Yu, Yong-Sen

    2018-04-01

    A composite fiber Bragg grating (FBG) with multi-resonance peaks (MRPs) has been realized by using femtosecond (fs) laser point-by-point inscription in single-mode fiber. This device contains a segment of largely-chirped gratings with the ultrahigh chirp coefficients and a segment of uniform high-order gratings. The observed MRPs are distributed in an ultra-broadband wavelength range from 1200 nm to 1700 nm in the form of quasi-period or multi-peak-group. For the 8th-order MRPs-FBG, we studied the axial strain and high-temperature sensing characteristics of different resonance peaks experimentally. Moreover, we have demonstrated a multi-wavelength fiber lasers with three-wavelength stable output by using a 9th-order MRPs-FBG as the wavelength selector. This work is significant for the fabrication and functionalization of FBGs with complicated spectra characteristics.

  3. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  4. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus.

    PubMed

    Chiu, Chen; Reddy, Puduru Viswanadha; Xian, Wei; Krishnaprasad, Perinkulam S; Moss, Cynthia F

    2010-10-01

    Foraging and flight behavior of echolocating bats were quantitatively analyzed in this study. Paired big brown bats, Eptesicus fuscus, competed for a single food item in a large laboratory flight room. Their sonar beam patterns and flight paths were recorded by a microphone array and two high-speed cameras, respectively. Bats often remained in nearly classical pursuit (CP) states when one bat is following another bat. A follower can detect and anticipate the movement of the leader, while the leader has the advantage of gaining access to the prey first. Bats in the trailing position throughout the trial were more successful in accessing the prey. In this study, bats also used their sonar beam to monitor the conspecific's movement and to track the prey. Each bat tended to use its sonar beam to track the prey when it was closer to the worm than to another bat. The trailing bat often directed its sonar beam toward the leading bat in following flight. When two bats flew towards each other, they tended to direct their sonar beam axes away from each other, presumably to avoid signal jamming. This study provides a new perspective on how echolocating bats use their biosonar system to coordinate their flight with conspecifics in a group and how they compete for the same food source with conspecifics.

  5. Shallow Water Imaging Sonar System for Environmental Surveying Final Report CRADA No. TC-1130-95

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, L. C.; Rosenbaum, H.

    The scope of this research is to develop a shallow water sonar system designed to detect and map the location of objects such as hazardous wastes or discarded ordnance in coastal waters. The system will use high frequency wide-bandwidth imaging sonar, mounted on a moving platform towed behind a boat, to detect and identify objects on the sea bottom. Resolved images can be obtained even if the targets are buried in an overlayer of silt. Reference 1 ( also attached) summarized the statement of work and the scope of collaboration.

  6. Experiments in Coherent Change Detection for Synthetic Aperture Sonar

    DTIC Science & Technology

    2010-06-01

    data from synthetic aperture sonars mounted on autonomous undersea ve- hicles and actively navigated tow bodies. A noncoherent example carried out...III of this paper describe approaches for au- tomatic change detection and introduces CCD. Section IV pro- vides an example of noncoherent change...registration insufficiently robust to support correlation-based change detection (whether cohe- rent or noncoherent ). Fig. 6. Baseline (a) and

  7. Biomarkers to Assess Possible Biological Effects on Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars

    DTIC Science & Technology

    2012-09-30

    Reproductive Potential, Immune Function, and Energetic Fitness of Bottlenose Dolphins Exposed to Sounds Consistent with Naval Sonars Dana L. Wetzel...biomarkers to examine whether significant sublethal responses to sonar-type sounds occur in bottlenose dolphins exposed to such sounds. The...investigate samples collected from trained dolphins before exposure to simulated mid-frequency sonar signals, immediately after exposure, and one week post

  8. Few-cycle Optical Parametric Chirped Pulse Amplification

    DTIC Science & Technology

    2007-01-08

    silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the

  9. A Robust and Fast Method for Sidescan Sonar Image Segmentation Using Nonlocal Despeckling and Active Contour Model.

    PubMed

    Huo, Guanying; Yang, Simon X; Li, Qingwu; Zhou, Yan

    2017-04-01

    Sidescan sonar image segmentation is a very important issue in underwater object detection and recognition. In this paper, a robust and fast method for sidescan sonar image segmentation is proposed, which deals with both speckle noise and intensity inhomogeneity that may cause considerable difficulties in image segmentation. The proposed method integrates the nonlocal means-based speckle filtering (NLMSF), coarse segmentation using k -means clustering, and fine segmentation using an improved region-scalable fitting (RSF) model. The NLMSF is used before the segmentation to effectively remove speckle noise while preserving meaningful details such as edges and fine features, which can make the segmentation easier and more accurate. After despeckling, a coarse segmentation is obtained by using k -means clustering, which can reduce the number of iterations. In the fine segmentation, to better deal with possible intensity inhomogeneity, an edge-driven constraint is combined with the RSF model, which can not only accelerate the convergence speed but also avoid trapping into local minima. The proposed method has been successfully applied to both noisy and inhomogeneous sonar images. Experimental and comparative results on real and synthetic sonar images demonstrate that the proposed method is robust against noise and intensity inhomogeneity, and is also fast and accurate.

  10. Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating.

    PubMed

    He, Xiaoying; Liu, Zhi-bo; Wang, D N

    2012-06-15

    We demonstrate a wavelength-tunable, passively mode-locked erbium-doped fiber laser based on graphene and chirped fiber Bragg grating. The saturable absorber used to enable passive mode-locking in the fiber laser is a section of microfiber covered by graphene film, which allows light-graphene interaction via the evanescent field of the microfiber. The wavelength of the laser can be continuously tuned by adjusting the chirped fiber Bragg grating, while maintaining mode-locking stability. Such a system has high potential in tuning the mode-locked laser pulses across a wide wavelength range.

  11. Influence of two-electrode montages on the level-specific (LS) CE-Chirp auditory brainstem response (ABR) at multiple intensity levels.

    PubMed

    Dzulkarnain, Ahmad Aidil Arafat; Noor Ibrahim, Siti Hajra Mu'minah; Anuar, Nur Farah Aida; Abdullah, Siti Aisyah; Tengku Zam Zam, Tengku Zulaila Hasma; Rahmat, Sarah; Mohd Ruzai, Muhammad Amar

    2017-10-01

    To investigate the influence of two different electrode montages (ipsilateral: reference to mastoid and vertical: reference to nape of neck) to the ABR results recorded using a level-specific (LS)-CE-Chirp® in normally hearing subjects at multiple intensities levels. Quasi-experimental and repeated measure study designs were applied in this study. Two different stopping criteria were used, (1) a fixed-signal averaging 4000 sweeps and, (2) a minimum quality indicator of Fmp = 3.1 with a minimum of 800 sweeps. Twenty-nine normally hearing adults (18 females, 11 male) participated. Wave V amplitudes were significantly larger in the LS CE-Chirp® recorded from the vertical montage than the ipsilateral montage. Waves I and III amplitudes were significantly larger from the ipsilateral LS CE-Chirp® than from the other montages and stimulus combinations. The differences in the quality of the ABR recording between the vertical and ipsilateral montages were marginal. Overall, the result suggested that the vertical LS CE-Chirp® ABR had a high potential for a threshold-seeking application, because it produced a higher wave V amplitude. The Ipsilateral LS CE-Chirp® ABR, on the other hand, might also have a high potential for the site of lesion application, because it produced larger waves I and III amplitudes.

  12. Theoretical analysis of chirp excitation of contrast agents

    NASA Astrophysics Data System (ADS)

    Barlow, Euan; Mulholland, Anthony J.; Nordon, Alison; Gachagan, Anthony

    2010-01-01

    Analytic expressions are found for the amplitude of the first and second harmonics of the Ultrasound Contrast Agent's (UCA's) dynamics when excited by a chirp. The dependency of the second harmonic amplitude on the system parameters, the UCA shell parameters, and the insonifying signal parameters is then investigated. It is shown that optimal parameter values exist which give rise to a clear increase in the second harmonic component of the UCA's motion.

  13. Intercontinental Multi-Domain Monitoring for LHC with perfSONAR

    NASA Astrophysics Data System (ADS)

    Vicinanza, D.

    2012-12-01

    The Large Hadron Collider (LHC) is currently running at CERN in Geneva, Switzerland. Physicists are using LHC to recreate the conditions just after the Big Bang, by colliding two beams of particles and heavy ions head-on at very high energy. The project is generating more than 15 TB of raw data per year, plus 10 TB of “event summary data”. This data is sent out from CERN to eleven Tier 1 research centres in Europe, Asia, and North America using a multi-gigabits Optical Private Network (OPN), the LHCOPN. Tier 1 sites are then connected to 100+ academic and research institutions in the world (the Tier 2s) through a Multipoint to Multipoint network, the LHC Open Network Environment (LHCONE). Network monitoring on such complex network architecture to ensure robust and reliable operation is of crucial importance. The chosen approach for monitoring the OPN and ONE is based on the perfSONAR framework, which is designed for multi-domain monitoring environments. perfSONAR (www.perfsonar.net) is an infrastructure for performance monitoring data exchange between networks, making it easier to solve performance problems occurring between network measurement points interconnected through several network domains.

  14. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  15. High-order dispersion in chirped-pulse oscillators.

    PubMed

    Kalashnikov, Vladimir L; Fernández, Alma; Apolonski, Alexander

    2008-03-17

    The effects of high-order dispersion on a chirped-pulse oscillator operating in the positive dispersion regime were studied both theoretically and experimentally. It was found that odd and negative even high-order dispersions impair the oscillator stability owing to resonance with the dispersion waves, but can broaden the spectrum as in the case of continuum generation in the fibers. Positive fourth-order dispersion enhances the stability and shifts the stability range into negative dispersion. The destabilization mechanism was found to be a parametrical instability which causes noisy mode locking around zero dispersion.

  16. Investigation of measureable parameters that correlate with automatic target recognition performance in synthetic aperture sonar

    NASA Astrophysics Data System (ADS)

    Gazagnaire, Julia; Cobb, J. T.; Isaacs, Jason

    2015-05-01

    There is a desire in the Mine Counter Measure community to develop a systematic method to predict and/or estimate the performance of Automatic Target Recognition (ATR) algorithms that are detecting and classifying mine-like objects within sonar data. Ideally, parameters exist that can be measured directly from the sonar data that correlate with ATR performance. In this effort, two metrics were analyzed for their predictive potential using high frequency synthetic aperture sonar (SAS) images. The first parameter is a measure of contrast. It is essentially the variance in pixel intensity over a fixed partition of relatively small size. An analysis was performed to determine the optimum block size for this contrast calculation. These blocks were then overlapped in the horizontal and vertical direction over the entire image. The second parameter is the one-dimensional K-shape parameter. The K-distribution is commonly used to describe sonar backscatter return from range cells that contain a finite number of scatterers. An Ada-Boosted Decision Tree classifier was used to calculate the probability of classification (Pc) and false alarm rate (FAR) for several types of targets in SAS images from three different data sets. ROC curves as a function of the measured parameters were generated and the correlation between the measured parameters in the vicinity of each of the contacts and the ATR performance was investigated. The contrast and K-shape parameters were considered separately. Additionally, the contrast and K-shape parameter were associated with background texture types using previously labeled high frequency SAS images.

  17. Concurrent validation of CHIRP, a new instrument for measuring healthcare student attitudes towards interdisciplinary teamwork.

    PubMed

    Hollar, David; Hobgood, Cherri; Foster, Beverly; Aleman, Marco; Sawning, Susan

    2012-01-01

    Positive attitudes towards teamwork among health care professionals are critical to patient safety. The purpose of this study is to describe the development and concurrent validation of a new instrument to measure attitudes towards healthcare teamwork that is generalizable across various populations of healthcare students. The Collaborative Healthcare Interdisciplinary Planning (CHIRP) scale was validated against the Readiness for Inter-Professional Learning Scale (RIPLS). Analyses included student (n = 266) demographics, ANOVA, internal consistency, factor analysis, and Rasch analysis. The two instruments correlated at r = .582. The CHIRP showed a multifactorial structure having excellent internal consistency (alpha = .850), with 25 of the 36 scale items loading onto a single Teamwork Attitudes factor. The RIPLS likewise had strong internal consistency (alpha = .796) and a three-factor structure, supporting previous studies of the instrument. However, Rasch analyses showed 14 (38.9%) of the 36 CHIRP items, but only four (21.1%) of the 19 RIPLS items remaining within the satisfactory standardized OUTFIT zone of 2.0 standard deviation units. We propose the 14 fitting items as a new, validated teamwork attitudes scale.

  18. Chirp and temperature effects in parametric down conversion from crystals pumped at 800 nm

    NASA Astrophysics Data System (ADS)

    Sánchez-Lozano, X.; Wiechers, C.; Lucio, J. L.

    2018-04-01

    We consider spontaneous parametric down conversion from aperiodic poled crystals pumped at 800 nm. Our analyses account the effect of internal and external parameters, where, in the former, we include the crystal chirp and length, while in the latter temperature, also the pump chirp and other beam properties. The typical distribution produced is a pop-tab like structure in frequency-momentum space, and our results show that this system is a versatile light source, appropriated to manipulate the frequency and transverse momentum properties of the light produced. We briefly comment on the potential usefulness of the types of telecom wavelength light produced, in particular for quantum information applications.

  19. Detecting submerged objects: the application of side scan sonar to forensic contexts.

    PubMed

    Schultz, John J; Healy, Carrie A; Parker, Kenneth; Lowers, Bim

    2013-09-10

    Forensic personnel must deal with numerous challenges when searching for submerged objects. While traditional water search methods have generally involved using dive teams, remotely operated vehicles (ROVs), and water scent dogs for cases involving submerged objects and bodies, law enforcement is increasingly integrating multiple methods that include geophysical technologies. There are numerous advantages for integrating geophysical technologies, such as side scan sonar and ground penetrating radar (GPR), with more traditional search methods. Overall, these methods decrease the time involved searching, in addition to increasing area searched. However, as with other search methods, there are advantages and disadvantages when using each method. For example, in instances with excessive aquatic vegetation or irregular bottom terrain, it may not be possible to discern a submersed body with side scan sonar. As a result, forensic personnel will have the highest rate of success during searches for submerged objects when integrating multiple search methods, including deploying multiple geophysical technologies. The goal of this paper is to discuss the methodology of various search methods that are employed for submerged objects and how these various methods can be integrated as part of a comprehensive protocol for water searches depending upon the type of underwater terrain. In addition, two successful case studies involving the search and recovery of a submerged human body using side scan sonar are presented to illustrate the successful application of integrating a geophysical technology with divers when searching for a submerged object. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Behavioral responses of herring (Clupea harengus) to 1-2 and 6-7 kHz sonar signals and killer whale feeding sounds.

    PubMed

    Doksaeter, Lise; Rune Godo, Olav; Olav Handegard, Nils; Kvadsheim, Petter H; Lam, Frans-Peter A; Donovan, Carl; Miller, Patrick J O

    2009-01-01

    Military antisubmarine sonars produce intense sounds within the hearing range of most clupeid fish. The behavioral reactions of overwintering herring (Clupea harengus) to sonar signals of two different frequency ranges (1-2 and 6-7 kHz), and to playback of killer whale feeding sounds, were tested in controlled exposure experiments in Vestfjorden, Norway, November 2006. The behavior of free ranging herring was monitored by two upward-looking echosounders. A vessel towing an operational naval sonar source approached and passed over one of them in a block design setup. No significant escape reactions, either vertically or horizontally, were detected in response to sonar transmissions. Killer whale feeding sounds induced vertical and horizontal movements of herring. The results indicate that neither transmission of 1-2 kHz nor 6-7 kHz have significant negative influence on herring on the received sound pressure level tested (127-197 and 139-209 dB(rms) re 1 microPa, respectively). Military sonars of such frequencies and source levels may thus be operated in areas of overwintering herring without substantially affecting herring behavior or herring fishery. The avoidance during playback of killer whale sounds demonstrates the nature of an avoidance reaction and the ability of the experimental design to reveal it.

  1. Sidescan sonar as a tool for detection of demersal fish habitats

    USGS Publications Warehouse

    Able, Kenneth W.; Twichell, David C.; Grimes, Churchill B.; Jones, R. S.

    1987-01-01

    Sidescan sonar can be an effective tool for the determination of the habitat distribution of commercially important species.  This technique has the advantage of rapidly mapping large areas of the seafloor.  Sidescan images (sonographs) may also help to identify appropriate fishing gears for different types of seafloor or areas to be avoided with certain types of gears.  During the early stages of exploration, verification of sidescan sonar sonographs is critical to successful identification of important habitats.  Tilefishes (Lopholatilus and Caulolatilus) are especially good target species because the construct large burrows in the seafloor or live around boulders, both of which are easily detectable on sonographs.  In some special circumstances the estimates of tilefish burrow densities from sonographs can be used to estimate standing stock. In many localities the burrow and boulder habitats of tilefish are shared with other commercially important species such as American lobsters, Homarus americanus; cusk, Brosme brosme; and ocean pout, Macrozoarces americanus.

  2. Capacity Building with CHIRPS Amidst a Station-Recording Crisis

    NASA Astrophysics Data System (ADS)

    Peterson, P.

    2016-12-01

    Station data are essential for improving the accuracy of satellite-derived rainfall products. However we face a severe reporting crisis as the number of available stations observations has declined precipitously. For example there were 2400 monthly stations available in Africa (excluding South Africa) in the 1980's, while at present there are about 500 stations (Figure 1). In this talk we describe how partnerships with regional and national collaborators can improve our collective ability to monitor food production and inform decision making. A high quality, long-term, high-resolution precipitation dataset is key for supporting agricultural drought monitoring, food security and early warning. Here we present the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS) v2.0, developed by scientists at the University of California, Santa Barbara and the U.S. Geological Survey Earth Resources Observation and Science Center under the direction of Famine Early Warning Systems Network (FEWS NET). This quasi-global precipitation product is available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. The Climate Hazards Group (CHG) has developed an extensive database of in situ daily, pentadal, and monthly precipitation totals with over a billion daily observations worldwide. Under support from the USAID FEWS NET, CHG/USGS has developed a two way strategy for incorporating contributed station data while providing web-based visualization tools to partners in developing nations. For example, we are currently working with partners in Mexico (Conagua), Southern Africa (SASSCAL), Colombia (IDEAM), Somalia (SWALIM) and Ethiopia (NMA). These institutions provide in situ observations which enhance the CHIRPS. The CHIRPS is then placed in a web accessible geospatial database. Partners in these countries can then access and display this information using web based mapping tools. This provides a win

  3. Clutter suppression and classification using twin inverted pulse sonar in ship wakes.

    PubMed

    Leighton, T G; Finfer, D C; Chua, G H; White, P R; Dix, J K

    2011-11-01

    Twin inverted pulse sonar (TWIPS) is here deployed in the wake of a moored rigid inflatable boat (RIB) with propeller turning, and then in the wake of a moving tanker of 4580 dry weight tonnage (the Whitchallenger). This is done first to test its ability to distinguish between scatter from the wake and scatter from the seabed, and second to test its ability to improve detectability of the seabed through the wake, compared to conventional sonar processing techniques. TWIPS does this by distinguishing between linear and nonlinear scatterers and has the further property of distinguishing those nonlinear targets which scatter energy at the even-powered harmonics from those which scatter in the odd-powered harmonics. TWIPS can also, in some manifestations, require no range correction (and therefore does not require the a priori environment knowledge necessary for most remote detection technologies).

  4. Side-scan sonar and submersible observations: New techniques for gleaning more information from sea-floor outcrops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendall, J.; Hams, J.E.; Buck, S.P.

    1990-05-01

    Advances in high resolution side-scan sonar imaging technology are so effective at imaging sea-floor geology that they have greatly improved the efficiency of a bottom sampling program The traditional sea-floor geology methodology of shooting a high-resolution seismic survey and sampling along the seismic grid was considered successful if outcrops were sampled on 20% of the attempts. A submersible was used sparingly because of the inability to consistently locate sea-floor outcrops. Side-scan sonar images have increased the sampling success ratio to 70-95% and allow the cost-effective use of a submersible even in areas of sparse sea-floor outcrops. In offshore basins thismore » new technology has been used in consolidated and semiconsolidated rock terranes. When combined with observations from a two-man submersible, SCUBA traverses, seismic data, and traditional sea-floor bottom sampling techniques, enough data are provided to develop an integrated sea-floor geologic interpretation. On individual prospects, side-scan sonar has aided the establishment of critical dip in poor seismic data areas, located seeps and tar mounds, and determined erosional breaching of a prospect. Over a mature producing field, side-scan sonar has influenced the search for field extension by documenting the orientation and location of critical trapping cross faults. These relatively inexpensive techniques can provide critical data in any marine basin where rocks crop out on the sea floor.« less

  5. Design and performance evaluation of a dispersion compensation unit using several chirping functions in a tanh apodized FBG and comparison with dispersion compensation fiber.

    PubMed

    Mohammed, Nazmi A; Solaiman, Mohammad; Aly, Moustafa H

    2014-10-10

    In this work, various dispersion compensation methods are designed and evaluated to search for a cost-effective technique with remarkable dispersion compensation and a good pulse shape. The techniques consist of different chirp functions applied to a tanh fiber Bragg grating (FBG), a dispersion compensation fiber (DCF), and a DCF merged with an optimized linearly chirped tanh FBG (joint technique). The techniques are evaluated using a standard 10 Gb/s optical link over a 100 km long haul. The linear chirp function is the most appropriate choice of chirping function, with a pulse width reduction percentage (PWRP) of 75.15%, lower price, and poor pulse shape. The DCF yields an enhanced PWRP of 93.34% with a better pulse quality; however, it is the most costly of the evaluated techniques. Finally, the joint technique achieved the optimum PWRP (96.36%) among all the evaluated techniques and exhibited a remarkable pulse shape; it is less costly than the DCF, but more expensive than the chirped tanh FBG.

  6. Controllable Sonar Lenses and Prisms Based on ERFs

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart; Chang, Zensheu; Bao, Xiaoqi; Paustian, Iris; Lopes, Joseph; Folds, Donald

    2004-01-01

    Sonar-beam-steering devices of the proposed type would contain no moving parts and would be considerably smaller and less power-hungry, relative to conventional multiple-beam sonar arrays. The proposed devices are under consideration for installation on future small autonomous underwater vehicles because the sizes and power demands of conventional multiple-beam arrays are excessive, and motors used in single-beam mechanically scanned systems are also not reliable. The proposed devices would include a variety of electrically controllable acoustic prisms, lenses, and prism/lens combinations both simple and compound. These devices would contain electrorheological fluids (ERFs) between electrodes. An ERF typically consists of dielectric particles floating in a dielectric fluid. When an electric field is applied to the fluid, the particles become grouped into fibrils aligned in rows, with a consequent increase in the viscosity of the fluid and a corresponding increase in the speed of sound in the fluid. The change in the speed of sound increases with an increase in the applied electric field. By thus varying the speed of sound, one varies the acoustic index of refraction, analogously to varying the index of refraction of an optical lens or prism. In the proposed acoustic devices, this effect would be exploited to control the angles of refraction of acoustic beams, thereby steering the beams and, in the case of lenses, controlling focal lengths.

  7. Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Bischoff, Martin; Stenzel, Olaf; Gäbler, Dieter; Kaiser, Norbert

    2005-09-01

    Nowadays, chirped dielectric mirrors for ultrafast optics and laser applications are usually manufactured by sputtering techniques. The suitability of Advanced Plasma Source (APS) assisted electron beam evaporation with respect to such coatings is still under investigation. The purpose of this presentation is to show our first results of the deposition of chirped layers produced by plasma ion assisted electron beam evaporation and of the investigation of their properties. The aim was to design and prepare a NIR-mirror for the spectral range of 700 nm to 900 nm. It has been attempted to find a design that is robust with respect to errors of thickness and refractive index. The mirror consists of more than 26 layers composed of alternating high- (Nb2O5) and low-refractive index (SiO2) material. The deposited coatings were tested in terms of their group delay dispersion (GDD) and their reflectivity. We show, that in the wavelength range between 720 nm and 890 nm the GDD exhibits a value of about -50 fs2, whereas the reflectivity is above 99%. However, the subsequent reverse engineering operations show a relatively large thickness error of more than 1% - 2% regarding the particular layers. Nevertheless the effect on the GDD and the reflectivity is tolerable. Furthermore, we present our first experiments concerning the design and fabrication of a chirped mirror, which allows controlling the third order dispersion (TOD), whereas the relative thickness error of the particular layers should not exceed 1%.

  8. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  9. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  10. Acetylene measurement in flames by chirp-based quantum cascade laser spectrometry.

    PubMed

    Quine, Zachary R; McNesby, Kevin L

    2009-06-01

    We have designed and characterized a mid-IR spectrometer built around a pulsed distributed-feedback quantum cascade laser using the characteristic frequency down-chirp to scan through the spectral region 6.5 cm(-1) spectral region. The behavior of this chirp is extensively measured. The accuracy and detection limits of the system as an absorption spectrometer are demonstrated first by measuring spectra of acetylene through a single pass 16 cm absorption cell in real time at low concentrations and atmospheric pressure. The smallest detectable peak is measured to be approximately 1.5 x 10(-4) absorbance units, yielding a minimum detectable concentration length product of 2.4 parts per million meter at standard temperature and pressure. This system is then used to detect acetylene within an ethylene-air opposed flow flame. Measurements of acetylene content as a function of height above the fuel source are presented, as well as measurements of acetylene produced in fuel breakdown as a function of preinjection fuel temperature.

  11. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates.

    PubMed

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region near the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Moreover, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.

  12. Multibeam sonar (DIDSON) assessment of American shad (Alosa sapidissima) approaching a hydroelectric dam

    USGS Publications Warehouse

    Grote, Ann B.; Bailey, Michael M.; Zydlewski, Joseph D.; Hightower, Joseph E.

    2014-01-01

    We investigated the fish community approaching the Veazie Dam on the Penobscot River, Maine, prior to implementation of a major dam removal and river restoration project. Multibeam sonar (dual-frequency identification sonar, DIDSON) surveys were conducted continuously at the fishway entrance from May to July in 2011. A 5% subsample of DIDSON data contained 43 793 fish targets, the majority of which were of Excellent (15.7%) or Good (73.01%) observation quality. Excellent quality DIDSON targets (n = 6876) were apportioned by species using a Bayesian mixture model based on four known fork length distributions (river herring (alewife,Alosa psuedoharengus, and blueback herring, Alosa aestivalis), American shad, Alosa sapidissima) and two size classes (one sea-winter and multi-sea-winter) of Atlantic salmon (Salmo salar). 76.2% of targets were assigned to the American shad distribution; Atlantic salmon accounted for 15.64%, and river herring 8.16% of observed targets. Shad-sized (99.0%) and salmon-sized (99.3%) targets approached the fishway almost exclusively during the day, whereas river herring-sized targets were observed both during the day (51.1%) and at night (48.9%). This approach demonstrates how multibeam sonar imaging can be used to evaluate community composition and species-specific movement patterns in systems where there is little overlap in the length distributions of target species.

  13. Ultrahigh contrast from a frequency-doubled chirped-pulse-amplification beamline.

    PubMed

    Hillier, David; Danson, Colin; Duffield, Stuart; Egan, David; Elsmere, Stephen; Girling, Mark; Harvey, Ewan; Hopps, Nicholas; Norman, Michael; Parker, Stefan; Treadwell, Paul; Winter, David; Bett, Thomas

    2013-06-20

    This paper describes frequency-doubled operation of a high-energy chirped-pulse-amplification beamline. Efficient type-I second-harmonic generation was achieved using a 3 mm thick 320 mm aperture KDP crystal. Shots were fired at a range of energies achieving more than 100 J in a subpicosecond, 527 nm laser pulse with a power contrast of 10(14).

  14. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm.

    PubMed

    Wang, Xingmei; Liu, Shu; Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.

  15. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

    PubMed Central

    Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266

  16. Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California

    USGS Publications Warehouse

    Cochrane, Guy R.; Lafferty, Kevin D.

    2002-01-01

    Highly reflective seafloor features imaged by sidescan sonar in nearshore waters off the Northern Channel Islands (California, USA) have been observed in subsequent submersible dives to be areas of thin sand covering bedrock. Adjacent areas of rocky seafloor, suitable as habitat for endangered species of abalone and rockfish, and encrusting organisms, cannot be differentiated from the areas of thin sand on the basis of acoustic backscatter (i.e. grey level) alone. We found second-order textural analysis of sidescan sonar data useful to differentiate the bottom types where data is not degraded by near-range distortion (caused by slant-range and ground-range corrections), and where data is not degraded by far-range signal attenuation. Hand editing based on submersible observations is necessary to completely convert the sidescan sonar image to a bottom character classification map suitable for habitat mapping.

  17. Flattop wideband wavelength converters based on cascaded sum and difference-frequency generation using step-chirped gratings

    NASA Astrophysics Data System (ADS)

    Tehranchi, Amirhossein; Kashyap, Raman

    2011-03-01

    We investigate the role of step-chirped gratings (SCG) for flattening of conversion efficiency response and enhancing the pump bandwidth in cascaded sum and difference frequency generation (SFG + DFG) with a large pump wavelength difference. To obtain a flat response with maximum efficiency, using SCG instead of uniform grating with the same length, the appropriate critical period shifts are presented for the reasonable number of sections and chirp steps feasible for fabrication. Furthermore, it is shown that adding the section numbers for SCG structure increases the pump bandwidth.

  18. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.

    PubMed

    Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi

    2016-08-01

    NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.

  19. Integration and Field Trials of a High-Resolution Multi-beam Sonar on the Remote Mine hunting Vehicle Dorado

    DTIC Science & Technology

    2003-12-01

    Minehunting System (RMS), is a semi-submersible, remotely controlled drone designed to tow an actively stabilized sidescan sonar towfish. The multi... comparativement aux véhicules sous-marins autonomes, ils offrent le positionnement DGPS, la commande en temps réel et la télémesure, en plus...minehunting vehicle. The Reson 8125 multi-beam bathymetric sonar is designed to acquire high-resolution (of order cm) bathymetry in a 240- beam swath 120

  20. Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20–60 MHz phantom and ex vivo results

    PubMed Central

    Park, Jinhyoung; Li, Xiang; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    The application of chirp coded excitation to pulse inversion tissue harmonic imaging can increase signal to noise ratio. On the other hand, the elevation of range side lobe level, caused by leakages of the fundamental signal, has been problematic in mechanical scanners which are still the most prevalent in high frequency intravascular ultrasound imaging. Fundamental chirp coded excitation imaging can achieve range side lobe levels lower than –60 dB with Hanning window, but it yields higher side lobes level than pulse inversion chirp coded tissue harmonic imaging (PI-CTHI). Therefore, in this paper a combined pulse inversion chirp coded tissue harmonic and fundamental imaging mode (CPI-CTHI) is proposed to retain the advantages of both chirp coded harmonic and fundamental imaging modes by demonstrating 20–60 MHz phantom and ex vivo results. A simulation study shows that the range side lobe level of CPI-CTHI is 16 dB lower than PI-CTHI, assuming that the transducer translates incident positions by 50 μm when two beamlines of pulse inversion pair are acquired. CPI-CTHI is implemented for a proto-typed intravascular ultrasound scanner capable of combined data acquisition in real-time. A wire phantom study shows that CPI-CTHI has a 12 dB lower range side lobe level and a 7 dB higher echo signal to noise ratio than PI-CTHI, while the lateral resolution and side lobe level are 50 μm finer and –3 dB less than fundamental chirp coded excitation imaging respectively. Ex vivo scanning of a rabbit trachea demonstrates that CPI-CTHI is capable of visualizing blood vessels as small as 200 μm in diameter with 6 dB better tissue contrast than either PI-CTHI or fundamental chirp coded excitation imaging. These results clearly indicate that CPI-CTHI may enhance tissue contrast with less range side lobe level than PI-CTHI. PMID:22871273

  1. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOEpatents

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  2. Single-channel seismic-reflection profiles and sidescan-sonar records collected by the R/V Neecho, cruise NE 79-06, on the inner shelf east of Cape Cod, Massachusetts

    USGS Publications Warehouse

    Twichell, David C.

    1981-01-01

    Cruise NE 79-06 of the R/V NEECHO was conducted by the U.S. Geological Survey during September 27-0ctober 3, 1979, in the nearshore zone (3-30 m water depth) seaward of Coast Guard Beach and the northern part of Orleans Beach, east of Cape Cod, Massachusetts. The purpose of the study was to map the types and extent of nearshore bed forms and to define the late Pleistocene and Holocene history of the area.The equipment used on this cruise consisted of an EG&G Uniboom, Raytheon echo sounder, and Edo Western sidescan-sonar system. The Uniboom data were mostly filtered to 400-4000 Hz and were recorded at a 1/4-s sweep rate. The 60-kHz echo-sounding data were recorded on a 6-in strip chart on which the depth was calibrated in feet. The sidescan sonar had an operating frequency of 100 kHz and was set to scan 50 m or 100 m to each side of the towed fish. All three data types were collected along 153 km of trackline.Navigation during the survey was by Loran-C and Motorola miniranger systems. Two shore stations were set up for the miniranger system and fixes were collected at either 1- or 2-min intervals. This system malfunctioned during parts of the survey, and during these times navigation was by Loran-C using a Northstar system.The original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the subbottom, echo-sounding, and sidescan-sonar records can be purchased only from the National Geophysical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broadway, Boulder, CO 80303, (303-497-6338).

  3. Building a 3d Reference Model for Canal Tunnel Surveying Using Sonar and Laser Scanning

    NASA Astrophysics Data System (ADS)

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.

    2015-04-01

    Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security issue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater data recording) and LASER data (for the above-water parts). Although both scanning devices produce point clouds, their properties are rather different. In particular, SONAR data are very noisy and their processing raises several issues related to the device capacities, the acquisition setup and the tubular shape of the tunnel. The proposed methodology relies on a denoising step by meshing, followed by the registration of SONAR data with the geo-referenced LASER data. Since there is no overlap between point clouds, a 3-step procedure is proposed to robustly estimate the registration parameters. In this paper, we report a first experimental survey, which concerned the entrance of a canal tunnel. The obtained results are promising and the analysis of the method raises several improvement directions that will help obtaining more accurate models, in a more automated fashion, in the limits of the involved technology.

  4. 28. SONAR CONTROL ROOM FORWARD LOOKING AFT SHOWING AN/SQS23G ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. SONAR CONTROL ROOM - FORWARD LOOKING AFT SHOWING AN/SQS-23G DETECTING-RANGING SET, MARK & CONTROL PANEL, CAN-55134 RECORDER, SPEED INDICATOR, VARIOUS ALARMS AND INTERNAL COMMUNICATION CIRCUITS. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  5. Validation of a side-scan sonar method for quantifying walleye spawning habitat availability in the littoral zone of northern Wisconsin Lakes

    USGS Publications Warehouse

    Richter, Jacob T.; Sloss, Brian L.; Isermann, Daniel A.

    2016-01-01

    Previous research has generally ignored the potential effects of spawning habitat availability and quality on recruitment of Walleye Sander vitreus, largely because information on spawning habitat is lacking for many lakes. Furthermore, traditional transect-based methods used to describe habitat are time and labor intensive. Our objectives were to determine if side-scan sonar could be used to accurately classify Walleye spawning habitat in the nearshore littoral zone and provide lakewide estimates of spawning habitat availability similar to estimates obtained from a transect–quadrat-based method. Based on assessments completed on 16 northern Wisconsin lakes, interpretation of side-scan sonar images resulted in correct identification of substrate size-class for 93% (177 of 191) of selected locations and all incorrect classifications were within ± 1 class of the correct substrate size-class. Gravel, cobble, and rubble substrates were incorrectly identified from side-scan images in only two instances (1% misclassification), suggesting that side-scan sonar can be used to accurately identify preferred Walleye spawning substrates. Additionally, we detected no significant differences in estimates of lakewide littoral zone substrate compositions estimated using side-scan sonar and a traditional transect–quadrat-based method. Our results indicate that side-scan sonar offers a practical, accurate, and efficient technique for assessing substrate composition and quantifying potential Walleye spawning habitat in the nearshore littoral zone of north temperate lakes.

  6. Detection of thermal gradients through fiber-optic Chirped Fiber Bragg Grating (CFBG): Medical thermal ablation scenario

    NASA Astrophysics Data System (ADS)

    Korganbayev, Sanzhar; Orazayev, Yerzhan; Sovetov, Sultan; Bazyl, Ali; Schena, Emiliano; Massaroni, Carlo; Gassino, Riccardo; Vallan, Alberto; Perrone, Guido; Saccomandi, Paola; Arturo Caponero, Michele; Palumbo, Giovanna; Campopiano, Stefania; Iadicicco, Agostino; Tosi, Daniele

    2018-03-01

    In this paper, we describe a novel method for spatially distributed temperature measurement with Chirped Fiber Bragg Grating (CFBG) fiber-optic sensors. The proposed method determines the thermal profile in the CFBG region from demodulation of the CFBG optical spectrum. The method is based on an iterative optimization that aims at minimizing the mismatch between the measured CFBG spectrum and a CFBG model based on coupled-mode theory (CMT), perturbed by a temperature gradient. In the demodulation part, we simulate different temperature distribution patterns with Monte-Carlo approach on simulated CFBG spectra. Afterwards, we obtain cost function that minimizes difference between measured and simulated spectra, and results in final temperature profile. Experiments and simulations have been carried out first with a linear gradient, demonstrating a correct operation (error 2.9 °C); then, a setup has been arranged to measure the temperature pattern on a 5-cm long section exposed to medical laser thermal ablation. Overall, the proposed method can operate as a real-time detection technique for thermal gradients over 1.5-5 cm regions, and turns as a key asset for the estimation of thermal gradients at the micro-scale in biomedical applications.

  7. Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems.

    PubMed

    Wei, Chia-Chien

    2012-11-05

    This work theoretically studies the transmission performance of a DML-based OFDM system by small-signal approximation, and the model considers both the transient and adiabatic chirps. The dispersion-induced distortion is modeled as subcarrier-to-subcarrier intermixing interference (SSII), and the theoretical SSII agrees with the distortion obtained from large-signal simulation statistically and deterministically. The analysis shows that the presence of the adiabatic chirp will ease power fading or even provide gain, but will increase the SSII to deteriorate OFDM signals after dispersive transmission. Furthermore, this work also proposes a novel iterative equalization to eliminate the SSII. From the simulation, the distortion could be effectively mitigated by the proposed equalization such that the maximum transmission distance of the DML-based OFDM signal is significantly improved. For instance, the transmission distance of a 30-Gbps DML-based OFDM signal can be extended from 10 km to more than 100 km. Besides, since the dispersion-induced distortion could be effectively mitigated by the equalization, negative power penalties are observed at some distances due to chirp-induced power gain.

  8. On the conditions for the onset of nonlinear chirping structures in NSTX

    NASA Astrophysics Data System (ADS)

    Duarte, Vinicius; Podesta, Mario; Berk, Herbert; Gorelenkov, Nikolai

    2015-11-01

    The nonlinear dynamics of phase space structures is a topic of interest in tokamak physics in connection with fast ion loss mechanisms. The onset of phase-space holes and clumps has been theoretically shown to be associated with an explosive solution of an integro-differential, nonlocal cubic equation that governs the early mode amplitude evolution in the weakly nonlinear regime. The existence and stability of the solutions of the cubic equation have been theoretically studied as a function of Fokker-Planck coefficients for the idealized case of a single resonant point of a localized mode. From realistic computations of NSTX mode structures and resonant surfaces, we calculate effective pitch angle scattering and slowing-down (drag) collisional coefficients and analyze NSTX discharges for different cases with respect to chirping experimental observation. Those results are confronted to the theory that predicts the parameters region that allow for chirping to take place.

  9. Complete chirp analysis of a gain-switched pulse using an interferometric two-photon absorption autocorrelation.

    PubMed

    Chin, Sang Hoon; Kim, Young Jae; Song, Ho Seong; Kim, Dug Young

    2006-10-10

    We propose a simple but powerful scheme for the complete analysis of the frequency chirp of a gain-switched optical pulse using a fringe-resolved interferometric two-photon absorption autocorrelator. A frequency chirp imposed on the gain-switched pulse from a laser diode was retrieved from both the intensity autocorrelation trace and the envelope of the second-harmonic interference fringe pattern. To verify the accuracy of the proposed phase retrieval method, we have performed an optical pulse compression experiment by using dispersion-compensating fibers with different lengths. We have obtained close agreement by less than a 1% error between the compressed pulse widths and numerically calculated pulse widths.

  10. Suppression of emission rates improves sonar performance by flying bats.

    PubMed

    Adams, Amanda M; Davis, Kaylee; Smotherman, Michael

    2017-01-31

    Echolocating bats face the challenge of actively sensing their environment through their own emissions, while also hearing calls and echoes of nearby conspecifics. How bats mitigate interference is a long-standing question that has both ecological and technological implications, as biosonar systems continue to outperform man-made sonar systems in noisy, cluttered environments. We recently showed that perched bats decreased calling rates in groups, displaying a behavioral strategy resembling the back-off algorithms used in artificial communication networks to optimize information throughput at the group level. We tested whether free-tailed bats (Tadarida brasiliensis) would employ such a coordinated strategy while performing challenging flight maneuvers, and report here that bats navigating obstacles lowered emission rates when hearing artificial playback of another bat's calls. We measured the impact of acoustic interference on navigation performance and show that the calculated reductions in interference rates are sufficient to reduce interference and improve obstacle avoidance. When bats flew in pairs, each bat responded to the presence of the other as an obstacle by increasing emissions, but hearing the sonar emissions of the nearby bat partially suppressed this response. This behavior supports social cohesion by providing a key mechanism for minimizing mutual interference.

  11. Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp.

    PubMed

    Chen, Hui-Wen; Peters, Jonathan D; Bowers, John E

    2011-01-17

    We demonstrate a hybrid silicon modulator operating up to 40 Gb/s with 11.4 dB extinction ratio. The modulator has voltage-length product of 2.4 V-mm and chirp of -0.75 over the entire bias range. As a switch, it has a switching time less than 20 ps.

  12. Extraction of Seabed/Subsurface Features in a Potential CO2 Sequestration Site in the Southern Baltic Sea, Using Wavelet Transform of High-resolution Sub-Bottom Profiler Data

    NASA Astrophysics Data System (ADS)

    Tegowski, J.; Zajfert, G.

    2014-12-01

    Carbon Capture & Storage (CCS) efficiently prevents the release of anthropogenic CO2 into the atmosphere. We investigate a potential site in the Polish Sector of the Baltic Sea (B3 field site), consisting in a depleted oil and gas reservoir. An area ca. 30 x 8 km was surveyed along 138 acoustic transects, realised from R/V St. Barbara in 2012 and combining multibeam echosounder, sidescan sonar and sub-bottom profiler. Preparation of CCS sites requires accurate knowledge of the subsurface structure of the seafloor, in particular deposit compactness. Gas leaks in the water column were monitored, along with the structure of upper sediment layers. Our analyses show the shallow sub-seabed is layered, and quantified the spatial distribution of gas diffusion chimneys and seabed effusion craters. Remote detection of gas-containing surface sediments can be rather complex if bubbles are not emitted directly into the overlying water and thus detectable acoustically. The heterogeneity of gassy sediments makes conventional bottom sampling methods inefficient. Therefore, we propose a new approach to identification, mapping, and monitoring of potentially gassy surface sediments, based on wavelet analysis of echo signal envelopes of a chirp sub-bottom profiler (EdgeTech SB-0512). Each echo envelope was subjected to wavelet transformation, whose coefficients were used to calculate wavelet energies. The set of echo envelope parameters was input to fuzzy logic and c-means algorithms. The resulting classification highlights seafloor areas with different subsurface morphological features, which can indicate gassy sediments. This work has been conducted under EC FP7-CP-IP project No. 265847: Sub-seabed CO2 Storage: Impact on Marine Ecosystems (ECO2).

  13. Combined Yb/Nd driver for optical parametric chirped pulse amplifiers.

    PubMed

    Michailovas, Kirilas; Baltuska, Andrius; Pugzlys, Audrius; Smilgevicius, Valerijus; Michailovas, Andrejus; Zaukevicius, Audrius; Danilevicius, Rokas; Frankinas, Saulius; Rusteika, Nerijus

    2016-09-19

    We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

  14. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    PubMed Central

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-01-01

    We present an approach for both efficient generation and amplification of 4–12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8–4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4–12 μm pulses with an available large-aperture ZGP. Furthermore, the 4–12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4–4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4–12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser. PMID:28367966

  15. Static analysis of a sonar dome rubber window

    NASA Technical Reports Server (NTRS)

    Lai, J. L.

    1978-01-01

    The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.

  16. Research on the frequency hopping bistatic sonar system

    NASA Astrophysics Data System (ADS)

    Liang, Guo-long; Zhang, Yao; Zhang, Guang-pu; Liu, Kai

    2011-10-01

    A new model for bistatic sonar system is established, in which frequency hopping (FH) signals are used for targets detection according to some rules. This model can decrease the time between adjacent signals and obtain more information in a unit time. The receiving system will receive and process the signals of different frequency respectively, according the FH pattern, for detecting and locating targets. This method can helps yield more stable and accurate outputs, using the characteristic of the FH signals, increase the ability of anti-detection and anti partial-band jamming.

  17. Avoidance responses of minke whales to 1-4kHz naval sonar.

    PubMed

    Kvadsheim, Petter H; DeRuiter, Stacy; Sivle, Lise D; Goldbogen, Jeremy; Roland-Hansen, Rune; Miller, Patrick J O; Lam, Frans-Peter A; Calambokidis, John; Friedlaender, Ari; Visser, Fleur; Tyack, Peter L; Kleivane, Lars; Southall, Brandon

    2017-08-15

    Minke whales are difficult to study and little information exists regarding their responses to anthropogenic sound. This study pools data from behavioural response studies off California and Norway. Data are derived from four tagged animals, of which one from each location was exposed to naval sonar signals. Statistical analyses were conducted using Mahalanobis distance to compare overall changes in parameters summarising dive behaviour, avoidance behaviour, and potential energetic costs of disturbance. Our quantitative analysis showed that both animals initiated avoidance behaviour, but responses were not associated with unusual dive behaviour. In one exposed animal the avoidance of the sonar source included a 5-fold increase in horizontal speed away from the source, implying a significant increase in metabolic rate. Despite the different environmental settings and exposure contexts, clear changes in behaviour were observed providing the first insights into the nature of responses to human noise for this wide-ranging species. Copyright © 2017. Published by Elsevier Ltd.

  18. Fast direct fourier reconstruction of radial and PROPELLER MRI data using the chirp transform algorithm on graphics hardware.

    PubMed

    Feng, Yanqiu; Song, Yanli; Wang, Cong; Xin, Xuegang; Feng, Qianjin; Chen, Wufan

    2013-10-01

    To develop and test a new algorithm for fast direct Fourier transform (DrFT) reconstruction of MR data on non-Cartesian trajectories composed of lines with equally spaced points. The DrFT, which is normally used as a reference in evaluating the accuracy of other reconstruction methods, can reconstruct images directly from non-Cartesian MR data without interpolation. However, DrFT reconstruction involves substantially intensive computation, which makes the DrFT impractical for clinical routine applications. In this article, the Chirp transform algorithm was introduced to accelerate the DrFT reconstruction of radial and Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) MRI data located on the trajectories that are composed of lines with equally spaced points. The performance of the proposed Chirp transform algorithm-DrFT algorithm was evaluated by using simulation and in vivo MRI data. After implementing the algorithm on a graphics processing unit, the proposed Chirp transform algorithm-DrFT algorithm achieved an acceleration of approximately one order of magnitude, and the speed-up factor was further increased to approximately three orders of magnitude compared with the traditional single-thread DrFT reconstruction. Implementation the Chirp transform algorithm-DrFT algorithm on the graphics processing unit can efficiently calculate the DrFT reconstruction of the radial and PROPELLER MRI data. Copyright © 2012 Wiley Periodicals, Inc.

  19. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Zhenhua; Yu, Lingyu

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less

  20. Rainbow trapping of ultrasonic guided waves in chirped phononic crystal plates

    DOE PAGES

    Tian, Zhenhua; Yu, Lingyu

    2017-01-05

    The rainbow trapping effect has been demonstrated in electromagnetic and acoustic waves. In this study, rainbow trapping of ultrasonic guided waves is achieved in chirped phononic crystal plates that spatially modulate the dispersion, group velocity, and stopband. The rainbow trapping is related to the progressively slowing group velocity, and the extremely low group velocity near the lower boundary of a stopband that gradually varies in chirped phononic crystal plates. As guided waves propagate along the phononic crystal plate, waves gradually slow down and finally stop forward propagating. The energy of guided waves is concentrated at the low velocity region nearmore » the stopband. Moreover, the guided wave energy of different frequencies is concentrated at different locations, which manifests as rainbow guided waves. We believe implementing the rainbow trapping will open new paradigms for guiding and focusing of guided waves. Furthermore, the rainbow guided waves with energy concentration and spatial separation of frequencies may have potential applications in nondestructive evaluation, spatial wave filtering, energy harvesting, and acoustofluidics.« less