Lollies, A; Hartmann, S; Schneider, M; Bracht, T; Weiß, A L; Arnolds, J; Klein-Hitpass, L; Sitek, B; Hansmann, M-L; Küppers, R; Weniger, M A
2018-01-01
Classical Hodgkin lymphoma (cHL) and anaplastic large cell lymphoma (ALCL) feature high expression of activator protein-1 (AP-1) transcription factors, which regulate various physiological processes but also promote lymphomagenesis. The AP-1 factor basic leucine zipper transcription factor, ATF-like 3 (BATF3), is highly transcribed in cHL and ALCL; however, its functional importance in lymphomagenesis is unknown. Here we show that proto-typical CD30 + lymphomas, namely cHL (21/30) and primary mediastinal B-cell lymphoma (8/9), but also CD30 + diffuse large B-cell lymphoma (15/20) frequently express BATF3 protein. Mass spectrometry and co-immunoprecipitation established interactions of BATF3 with JUN and JUNB in cHL and ALCL lines. BATF3 knockdown using short hairpin RNAs was toxic for cHL and ALCL lines, reducing their proliferation and survival. We identified MYC as a critical BATF3 target and confirmed binding of BATF3 to the MYC promoter. JAK/STAT signaling regulated BATF3 expression, as chemical JAK2 inhibition reduced and interleukin 13 stimulation induced BATF3 expression in cHL lines. Chromatin immunoprecipitation substantiated a direct regulation of BATF3 by STAT proteins in cHL and ALCL lines. In conclusion, we identified STAT-mediated BATF3 expression that is essential for lymphoma cell survival and promoted MYC activity in cHL and ALCL, hence we recognized a new oncogenic axis in these lymphomas.
miR-182 targets CHL1 and controls tumor growth and invasion in papillary thyroid carcinoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hongling; Fang, Jin; Zhang, Jichen
2014-07-18
Highlights: • miR-182 and CHL1 expression patterns are negatively correlated. • CHL1 is a direct target of miR-182 in PTC cells. • miR-182 suppression inhibits PTC cell growth and invasion. • CHL1 is involved in miR-182-mediated cell behavior. - Abstract: In this study, we investigated the role and underlying mechanism of action of miR-182 in papillary thyroid carcinoma (PTC). Bioinformatics analysis revealed close homolog of LI (CHL1) as a potential target of miR-182. Upregulation of miR-182 was significantly correlated with CHL1 downregulation in human PTC tissues and cell lines. miR-182 suppressed the expression of CHL1 mRNA through direct targeting ofmore » the 3′-untranslated region (3′-UTR). Downregulation of miR-182 suppressed growth and invasion of PTC cells. Silencing of CHL1 counteracted the effects of miR-182 suppression, while its overexpression mimicked these effects. Our data collectively indicate that miR-182 in PTC promotes cell proliferation and invasion through direct suppression of CHL1, supporting the potential utility of miR-182 inhibition as a novel therapeutic strategy against PTC.« less
Complex Immune Evasion Strategies in Classical Hodgkin Lymphoma.
Wein, Frederik; Weniger, Marc A; Höing, Benedikt; Arnolds, Judith; Hüttmann, Andreas; Hansmann, Martin-Leo; Hartmann, Sylvia; Küppers, Ralf
2017-12-01
The cellular microenvironment in classical Hodgkin lymphoma (cHL) is dominated by a mixed infiltrate of inflammatory cells with typically only about 1% Hodgkin and Reed/Sternberg (HRS) tumor cells. T cells are usually the largest population of cells in the cHL microenvironment, encompassing T helper (Th) cells, regulatory T cells (Tregs), and cytotoxic T cells. Th cells and Tregs presumably provide essential survival signals for HRS cells. Tregs are also involved in rescuing HRS cells from antitumor immune responses. An understanding of the immune evasion strategies of HRS cells is not only relevant for a characterization of the pathophysiology of cHL but is also clinically relevant, given the current treatment approaches targeting checkpoint inhibitors. Here, we characterized the cHL-specific CD4 + T-cell infiltrate regarding its role in immune evasion. Global gene expression analysis of CD4 + Th cells and Tregs isolated from cHL lymph nodes and reactive tonsils revealed that Treg signatures were enriched in CD4 + Th cells of cHL. Hence, HRS cells may induce Treg differentiation in Th cells, a conclusion supported by in vitro studies with Th cells and cHL cell lines. We also found evidence for immune-suppressive purinergic signaling and a role of the inhibitory receptor-ligand pairs B- and T-cell lymphocyte attenuator-herpesvirus entry mediator and CD200R-CD200 in promoting immune evasion. Taken together, this study highlights the relevance of Treg induction and reveals new immune checkpoint-driven immune evasion strategies in cHL. Cancer Immunol Res; 5(12); 1122-32. ©2017 AACR . ©2017 American Association for Cancer Research.
Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells
Clear, Andrew; Owen, Andrew; Iqbal, Sameena; Lee, Abigail; Matthews, Janet; Wilson, Andrew; Calaminici, Maria; Gribben, John G.
2013-01-01
CD4+ T-helper cells (THs) dominate the classical Hodgkin lymphoma (CHL) microenvironment, but their role is poorly understood. Advances in flow cytometry and immunohistochemistry permit more detailed investigation of this aspect of CHL pathophysiology. To address the hypothesis that the TH-infiltrate, rather than being TH2-enriched, senescent and hypofunctional, is TH1 and activation marker-rich, cytokine-secretory and proliferative, we applied comprehensive flow cytometric immunophenotyping and functional assays of cytokine secretion/proliferation to TH cells from 18 CHL-derived single-cell suspensions (SCSs) compared to reactive lymph nodes (RLNs). CHL-derived TH cells express TH1-associated CXCR3/CCR5 and TNFα/IFNγ/interleukin-2 (IL-2) and less TH2-associated CCR3/CCR4, with no IL-4/IL-13. They lack exhaustion-/suppression-associated PD1, CD57 and terminally differentiated effector memory cells, with more central memory cells, activation-associated partners of Hodgkin Reed Sternberg (HRS) cell-expressed CD30/OX40-L/ICOS-L, and other activation markers. TH cell lines established from CHL and RLN-derived SCSs remain cytokine-secretory. We confirmed and extended these studies using tissue microarray immunohistochemistry (TMA-IHC) from a large CHL tissue bank (n = 122) and demonstrate TH1-associated TBET is abundant in CHL, and TH2-associated CMAF/GATA3 and exhaustion-associated PD1 expressed at significantly lower levels. These molecular insights into the CHL-associated TH offer potential diagnostic, prognostic and pharmacologically modifiable therapeutic targets and do not support the established view of a TH2-enriched, senescent/exhausted, hypofunctional, hypoproliferative infiltrate. PMID:24004665
Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells.
Greaves, Paul; Clear, Andrew; Owen, Andrew; Iqbal, Sameena; Lee, Abigail; Matthews, Janet; Wilson, Andrew; Calaminici, Maria; Gribben, John G
2013-10-17
CD4(+) T-helper cells (THs) dominate the classical Hodgkin lymphoma (CHL) microenvironment, but their role is poorly understood. Advances in flow cytometry and immunohistochemistry permit more detailed investigation of this aspect of CHL pathophysiology. To address the hypothesis that the TH-infiltrate, rather than being TH2-enriched, senescent and hypofunctional, is TH1 and activation marker-rich, cytokine-secretory and proliferative, we applied comprehensive flow cytometric immunophenotyping and functional assays of cytokine secretion/proliferation to TH cells from 18 CHL-derived single-cell suspensions (SCSs) compared to reactive lymph nodes (RLNs). CHL-derived TH cells express TH1-associated CXCR3/CCR5 and TNFα/IFNγ/interleukin-2 (IL-2) and less TH2-associated CCR3/CCR4, with no IL-4/IL-13. They lack exhaustion-/suppression-associated PD1, CD57 and terminally differentiated effector memory cells, with more central memory cells, activation-associated partners of Hodgkin Reed Sternberg (HRS) cell-expressed CD30/OX40-L/ICOS-L, and other activation markers. TH cell lines established from CHL and RLN-derived SCSs remain cytokine-secretory. We confirmed and extended these studies using tissue microarray immunohistochemistry (TMA-IHC) from a large CHL tissue bank (n = 122) and demonstrate TH1-associated TBET is abundant in CHL, and TH2-associated CMAF/GATA3 and exhaustion-associated PD1 expressed at significantly lower levels. These molecular insights into the CHL-associated TH offer potential diagnostic, prognostic and pharmacologically modifiable therapeutic targets and do not support the established view of a TH2-enriched, senescent/exhausted, hypofunctional, hypoproliferative infiltrate.
MicroRNA-Mediated Regulation of ITGB3 and CHL1 Is Implicated in SSRI Action
Oved, Keren; Farberov, Luba; Gilam, Avial; Israel, Ifat; Haguel, Danielle; Gurwitz, David; Shomron, Noam
2017-01-01
Background: Selective serotonin reuptake inhibitor (SSRI) antidepressant drugs are the first-line of treatment for major depressive disorder (MDD) but are effective in <70% of patients. Our earlier genome-wide studies indicated that two genes encoding for cell adhesion proteins, close homolog of L1 (CHL1) and integrin beta-3 (ITGB3), and microRNAs, miR-151a-3p and miR-221/222, are implicated in the variable sensitivity and response of human lymphoblastoid cell lines (LCL) from unrelated individuals to SSRI drugs. Methods: The microRNAs miR-221, miR-222, and miR-151-a-3p, along with their target gene binding sites, were explored in silico using miRBase, TargetScan, microRNAviewer, and the UCSC Genome Browser. Luciferase reporter assays were conducted for demonstrating the direct functional regulation of ITGB3 and CHL1 expression by miR-221/222 and miR-151a-3p, respectively. A human LCL exhibiting low sensitivity to paroxetine was utilized for studying the phenotypic effect of CHL1 regulation by miR-151a-3p on SSRI response. Results: By showing direct regulation of CHL1 and ITGB3 by miR-151a-3p and miR-221/222, respectively, we link these microRNAs and genes with cellular SSRI sensitivity phenotypes. We report that miR-151a-3p increases cell sensitivity to paroxetine via down-regulating CHL1 expression. Conclusions: miR-151a-3p, miR-221/222 and their (here confirmed) respective target-genes, CHL1 and ITGB3, are implicated in SSRI responsiveness, and possibly in the clinical response to antidepressant drugs. PMID:29163031
Probst-Schendzielorz, Kristina; Scholl, Catharina; Efimkina, Olga; Ersfeld, Eva; Viviani, Roberto; Serretti, Alessandro; Fabbri, Chiara; Gurwitz, David; Lucae, Susanne; Ising, Marcus; Paul, Anna Maria; Lehmann, Marie-Louise; Steffens, Michael; Crisafulli, Concetta; Calabrò, Marco; Holsboer, Florian; Stingl, Julia
2015-01-01
The identification of antidepressant drugs (ADs) response biomarkers in depression is of high clinical importance. We explored CHL1 and ITGB3 expression as tentative response biomarkers. In vitro sensitivity to ADs, as well as gene expression and genetic variants of the candidate genes CHL1, ITGB3 and SLC6A4 were measured in lymphoblastoid cell lines (LCLs) of 58 depressed patients. An association between the clinical remission of depression and the basal expression of CHL1 and ITGB3 was discovered. Individuals whose LCLs expressed higher levels of CHL1 or ITGB3 showed a significantly better remission upon AD treatment. In addition individuals with the CHL1 rs1516338 TT genotype showed a significantly better remission after 5 weeks AD treatment than those carrying a CC genotype. No association between the in vitro sensitivity of LCLs toward AD and the clinical remission could be detected. CHL1 expression in patient-derived LCLs correlated with the clinical outcome. Thus, it could be a valid biomarker to predict the success of an antidepressant therapy. Original submitted 8 December 2014; Revision submitted 2 March 2015.
Vari, Frank; Arpon, David; Keane, Colm; Hertzberg, Mark S.; Talaulikar, Dipti; Jain, Sanjiv; Cui, Qingyan; Han, Erica; Tobin, Josh; Bird, Robert; Cross, Donna; Hernandez, Annette; Gould, Clare; Birch, Simone
2018-01-01
Much focus has been on the interaction of programmed cell death ligand 1 (PD-L1) on malignant B cells with programmed cell death 1 (PD-1) on effector T cells in inhibiting antilymphoma immunity. We sought to establish the contribution of natural killer (NK) cells and inhibitory CD163+ monocytes/macrophages in Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL). Levels of PD-1 on NK cells were elevated in cHL relative to DLBCL. Notably, CD3−CD56hiCD16-ve NK cells had substantially higher PD-1 expression relative to CD3−CD56dimCD16+ cells and were expanded in blood and tissue, more marked in patients with cHL than patients with DLBCL. There was also a raised population of PD-L1-expressing CD163+ monocytes that was more marked in patients with cHL compared with patients with DLBCL. The phenotype of NK cells and monocytes reverted back to normal once therapy (ABVD [doxorubicin 25 mg/m2, bleomycin 10 000 IU/m2, vinblastine 6 mg/m2, dacarbazine 375 mg/m2, all given days 1 and 15, repeated every 28 days] or R-CHOP [rituximab 375 mg/m2, cyclophosphamide 750 mg/m2 IV, doxorubicin 50 mg/m2 IV, vincristine 1.4 mg/m2 (2 mg maximum) IV, prednisone 100 mg/day by mouth days 1-5, pegfilgrastim 6 mg subcutaneously day 4, on a 14-day cycle]) had commenced. Tumor-associated macrophages (TAMs) expressed high levels of PD-L1/PD-L2 within diseased lymph nodes. Consistent with this, CD163/PD-L1/PD-L2 gene expression was also elevated in cHL relative to DLBCL tissues. An in vitro functional model of TAM-like monocytes suppressed activation of PD-1hi NK cells, which was reversed by PD-1 blockade. In line with these findings, depletion of circulating monocytes from the blood of pretherapy patients with cHL and patients with DLBCL enhanced CD3−CD56hiCD16-ve NK-cell activation. We describe a hitherto unrecognized immune evasion strategy mediated via skewing toward an exhausted PD-1-enriched CD3−CD56hiCD16-ve NK-cell phenotype. In addition to direct inhibition of NK cells by the malignant B cell, suppression of NK cells can occur indirectly by PD-L1/PD-L2-expressing TAMs. The mechanism is more prominent in cHL than DLBCL, which may contribute to the clinical sensitivity of cHL to PD-1 blockade. PMID:29449276
Knecht, Hans; Mai, Sabine
2017-06-27
Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is expressed in germinal-center-derived, mononuclear Hodgkin (H) and multinuclear, diagnostic Reed-Sternberg (RS) cells in classical EBV-positive Hodgkin's lymphoma (cHL). LMP1 expression in EBV-negative H-cell lines results in a significantly increased number of RS cells. In a conditional, germinal-center-derived B-cell in vitro system, LMP1 reversibly down-regulates the shelterin proteins, telomeric repeat binding factor (TRF)1, TRF2, and protection of telomeres (POT)1. This down-regulation is associated with progressive 3D shelterin disruption, resulting in telomere dysfunction, progression of complex chromosomal rearrangements, and multinuclearity. TRF2 appears to be the key player. Thus, we hypothesize that the 3D interaction of telomeres and TRF2 is disrupted in H cells, and directly associated with the formation of H and RS cells. Using quantitative 3D co-immuno-TRF2-telomere fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) applied to monolayers of primary H and RS cells, we demonstrate TRF2-telomere dysfunction in EBV-positive cHL. However, in EBV-negative cHL a second molecular mechanism characterized by massive up-regulation of TRF2, but attrition of telomere signals, is also identified. These facts point towards a shelterin-related pathogenesis of cHL, where two molecularly disparate mechanisms converge at the level of 3D Telomere-TRF2 interactions, leading to the formation of RS cells.
Myers, Regina M; Hill, Brian T; Shaw, Bronwen E; Kim, Soyoung; Millard, Heather R; Battiwalla, Minoo; Majhail, Navneet S; Buchbinder, David; Lazarus, Hillard M; Savani, Bipin N; Flowers, Mary E D; D'Souza, Anita; Ehrhardt, Matthew J; Langston, Amelia; Yared, Jean A; Hayashi, Robert J; Daly, Andrew; Olsson, Richard F; Inamoto, Yoshihiro; Malone, Adriana K; DeFilipp, Zachariah; Margossian, Steven P; Warwick, Anne B; Jaglowski, Samantha; Beitinjaneh, Amer; Fung, Henry; Kasow, Kimberly A; Marks, David I; Reynolds, Jana; Stockerl-Goldstein, Keith; Wirk, Baldeep; Wood, William A; Hamadani, Mehdi; Satwani, Prakash
2018-02-15
Autologous hematopoietic cell transplantation (auto-HCT) is a standard therapy for relapsed classic Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL); however, long-term outcomes are not well described. This study analyzed survival, nonrelapse mortality, late effects, and subsequent malignant neoplasms (SMNs) in 1617 patients who survived progression-free for ≥2 years after auto-HCT for cHL or DLBCL between 1990 and 2008. The median age at auto-HCT was 40 years; the median follow-up was 10.6 years. The 5-year overall survival rate was 90% (95% confidence interval [CI], 87%-92%) for patients with cHL and 89% (95% CI, 87%-91%) for patients with DLBCL. The risk of late mortality in comparison with the general population was 9.6-fold higher for patients with cHL (standardized mortality ratio [SMR], 9.6) and 3.4-fold higher for patients with DLBCL (SMR, 3.4). Relapse accounted for 44% of late deaths. At least 1 late effect was reported for 9% of the patients. A total of 105 SMNs were confirmed: 44 in the cHL group and 61 in the DLBCL group. According to a multivariate analysis, older age, male sex, a Karnofsky score < 90, total body irradiation (TBI) exposure, and a higher number of lines of chemotherapy before auto-HCT were risk factors for overall mortality in cHL. Risk factors in DLBCL were older age and TBI exposure. A subanalysis of 798 adolescent and young adult patients mirrored the outcomes of the overall study population. Despite generally favorable outcomes, 2-year survivors of auto-HCT for cHL or DLBCL have an excess late-mortality risk in comparison with the general population and experience an assortment of late complications. Cancer 2018;124:816-25. © 2017 American Cancer Society. © 2017 American Cancer Society.
Laurenti, Luca; Vannata, Barbara; Innocenti, Idanna; Autore, Francesco; Santini, Francesco; Piccirillo, Nicola; Za, Tommaso; Bellesi, Silvia; Marietti, Sara; Sica, Simona; Efremov, Dimitar G.; Leone, Giuseppe
2013-01-01
The current standard first line therapy for fit patients with B-CLL/SLL is based on combination of fludarabine-cyclophosphamide and rituximab. However, elderly patients or patients with comorbidities poorly tolerate purine analogue-based chemotherapy and they are often treated with Chlorambucil (Chl) only. However, complete response (CR) and overall response (OR) rates with Chl are relatively low. We now investigated whether the addition of Rituximab to Chl will improve the efficacy without impairing the tolerability in elderly and unfit patients. We included in our study 27 elderly or unfit patients that had not received prior therapy. All patients were treated with Chl (1mg/Kg per 28-day cycle for 8 cycles) plus Rituximab (375 mg/m2 for the first course and 500 mg/m2 for subsequent cycles until the 6th cycle). We obtained an OR rate of 74%. The most frequent adverse effect was grade 3–4 neutropenia, which occurred in 18.5% of the patients. Infections or grade 3–4 extra-hematological side effects were not recorded. None of the patients required reduction of dose, delay of therapy or hospitalization. Overall, these data suggest that Chl-R is an effective and well tolerated regimen in elderly/unfit patients with CLL. PMID:23667729
Corrêa, Stephany; Du Rocher, Bárbara; Krsticevic, Flavia; Arce, Debora; Sternberg, Cinthya; Abdelhay, Eliana
2018-01-01
Classical Hodgkin lymphoma (cHL) cells overexpress heat-shock protein 90 (HSP90), an important intracellular signaling hub regulating cell survival, which is emerging as a promising therapeutic target. Here, we report the antitumor effect of celastrol, an anti-inflammatory compound and a recognized HSP90 inhibitor, in Hodgkin and Reed–Sternberg cell lines. Two disparate responses were recorded. In KM-H2 cells, celastrol inhibited cell proliferation, induced G0/G1 arrest, and triggered apoptosis through the activation of caspase-3/7. Conversely, L428 cells exhibited resistance to the compound. A proteomic screening identified a total of 262 differentially expressed proteins in sensitive KM-H2 cells and revealed that celastrol’s toxicity involved the suppression of the MAPK/ERK (extracellular signal regulated kinase/mitogen activated protein kinase) pathway. The apoptotic effects were preceded by a decrease in RAS (proto-oncogene protein Ras), p-ERK1/2 (phospho-extracellular signal-regulated Kinase-1/2), and c-Fos (proto-oncogene protein c-Fos) protein levels, as validated by immunoblot analysis. The L428 resistant cells exhibited a marked induction of HSP27 mRNA and protein after celastrol treatment. Our results provide the first evidence that celastrol has antitumor effects in cHL cells through the suppression of the MAPK/ERK pathway. Resistance to celastrol has rarely been described, and our results suggest that in cHL it may be mediated by the upregulation of HSP27. The antitumor properties of celastrol against cHL and whether the disparate responses observed in vitro have clinical correlates deserve further research. PMID:29534015
Segges, Priscilla; Corrêa, Stephany; Du Rocher, Bárbara; Vera-Lozada, Gabriela; Krsticevic, Flavia; Arce, Debora; Sternberg, Cinthya; Abdelhay, Eliana; Hassan, Rocio
2018-03-13
Classical Hodgkin lymphoma (cHL) cells overexpress heat-shock protein 90 (HSP90), an important intracellular signaling hub regulating cell survival, which is emerging as a promising therapeutic target. Here, we report the antitumor effect of celastrol, an anti-inflammatory compound and a recognized HSP90 inhibitor, in Hodgkin and Reed-Sternberg cell lines. Two disparate responses were recorded. In KM-H2 cells, celastrol inhibited cell proliferation, induced G0/G1 arrest, and triggered apoptosis through the activation of caspase-3/7. Conversely, L428 cells exhibited resistance to the compound. A proteomic screening identified a total of 262 differentially expressed proteins in sensitive KM-H2 cells and revealed that celastrol's toxicity involved the suppression of the MAPK/ERK (extracellular signal regulated kinase/mitogen activated protein kinase) pathway. The apoptotic effects were preceded by a decrease in RAS (proto-oncogene protein Ras), p-ERK1/2 (phospho-extracellular signal-regulated Kinase-1/2), and c-Fos (proto-oncogene protein c-Fos) protein levels, as validated by immunoblot analysis. The L428 resistant cells exhibited a marked induction of HSP27 mRNA and protein after celastrol treatment. Our results provide the first evidence that celastrol has antitumor effects in cHL cells through the suppression of the MAPK/ERK pathway. Resistance to celastrol has rarely been described, and our results suggest that in cHL it may be mediated by the upregulation of HSP27. The antitumor properties of celastrol against cHL and whether the disparate responses observed in vitro have clinical correlates deserve further research.
Katic, Jelena; Loers, Gabriele; Tosic, Jelena; Schachner, Melitta; Kleene, Ralf
2017-08-01
The immunoglobulin superfamily adhesion molecule close homolog of L1 (CHL1) plays important roles during nervous system development. Here, we identified the hedgehog receptor patched-1 (PTCH1) as a novel CHL1-binding protein and showed that CHL1 interacts with the first extracellular loop of PTCH1 via its extracellular domain. Colocalization and co-immunoprecipitation of CHL1 with PTCH1 suggest an association of CHL1 with this major component of the hedgehog signaling pathway. The trans -interaction of CHL1 with PTCH1 promotes neuronal survival in cultures of dissociated cerebellar granule cells and of organotypic cerebellar slices. An inhibitor of the PTCH1-regulated hedgehog signal transducer, smoothened (SMO), and inhibitors of RhoA and Rho-associated kinase (ROCK) 1 and 2 prevent CHL1-dependent survival of cultured cerebellar granule cells and survival of cerebellar granule and Purkinje cells in organotypic cultures. In histological sections from 10- and 14-day-old CHL1-deficient mice, enhanced apoptosis of granule, but not Purkinje, cells was observed. The results of the present study indicate that CHL1 triggers PTCH1-, SMO-, RhoA- and ROCK-dependent signal transduction pathways to promote neuronal survival after cessation of the major morphogenetic events during mouse cerebellar development. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, J
2016-06-15
Purpose: Cavernous hemangioma of the liver (CHL) is the most common benign solid tumor of the liver. In this study, we quantitative assessment the different degrees of CHL from microscopic viewpoint by using in-line phase-contrast imaging CT (ILPCI-CT). Methods: The experiments were performed at x-ray imaging and biomedical application beamline (BL13W1) of Shanghai Synchrotron Radiation Facility (SSRF) in China. Three typical specimens at different stages, i.e., mild, moderate and severe human CHL were imaged using ILPCI-CT at 16keV without contrast agents. The 3D visualization of different degrees of CHL samples were presented using ILPCI-CT. Additionally, quantitative evaluation of the CHLmore » features, such as the range of hepatic sinusoid equivalent diameters in different degrees of CHL samples, the ratio of the hepatic sinusoid to the CHL tissue, were measured. Results: The planar image clearly displayed the dilated hepatic sinusoids in microns. There was no normal hepatic vascular found in the all CHL samples. Different stages of CHL samples were presented with vivid shapes and stereoscopic effects by using 3D visualization. The equivalent diameters of hepatic sinusoids in three degrees CHL were different. The equivalent diameters of the hepatic sinusoids in mild CHL, range from 60 to 120 µm. The equivalent diameters of the hepatic sinusoids in moderate CHL, range from 65 to 190 µm. The equivalent diameters of the hepatic sinusoids in severe CHL, range from 95 to 215 µm. The ratio of the hepatic sinusoid to the mild, moderate and severe CHL tissue were 3%, 16% and 21%, respectively. Conclusion: The results show that the high degree of sensitivity of the ILPCI-CT technique and demonstrate the feasibility of accurate visualization of different stage human CHL. ILPCI-CT may offers a potential use in non-invasive study and analysis of CHL.« less
Chl1 DNA helicase and Scc2 function in chromosome condensation through cohesin deposition.
Shen, Donglai; Skibbens, Robert V
2017-01-01
Chl1 DNA helicase promotes sister chromatid cohesion and associates with both the cohesion establishment acetyltransferase Eco1/Ctf7 and the DNA polymerase processivity factor PCNA that supports Eco1/Ctf7 function. Mutation in CHL1 results in precocious sister chromatid separation and cell aneuploidy, defects that arise through reduced levels of chromatin-bound cohesins which normally tether together sister chromatids (trans tethering). Mutation of Chl1 family members (BACH1/BRIP/FANCJ and DDX11/ChlR1) also exhibit genotoxic sensitivities, consistent with a role for Chl1 in trans tethering which is required for efficient DNA repair. Chl1 promotes the recruitment of Scc2 to DNA which is required for cohesin deposition onto DNA. There is limited evidence, however, that Scc2 also directs the deposition onto DNA of condensins which promote tethering in cis (intramolecular DNA links). Here, we test the ability of Chl1 to promote cis tethering and the role of both Chl1 and Scc2 to promote condensin recruitment to DNA. The results reveal that chl1 mutant cells exhibit significant condensation defects both within the rDNA locus and genome-wide. Importantly, chl1 mutant cell condensation defects do not result from reduced chromatin binding of condensin, but instead through reduced chromatin binding of cohesin. We tested scc2-4 mutant cells and similarly found no evidence of reduced condensin recruitment to chromatin. Consistent with a role for Scc2 specifically in cohesin deposition, scc2-4 mutant cell condensation defects are irreversible. We thus term Chl1 a novel regulator of both chromatin condensation and sister chromatid cohesion through cohesin-based mechanisms. These results reveal an exciting interface between DNA structure and the highly conserved cohesin complex.
Chl1 DNA helicase and Scc2 function in chromosome condensation through cohesin deposition
Shen, Donglai
2017-01-01
Chl1 DNA helicase promotes sister chromatid cohesion and associates with both the cohesion establishment acetyltransferase Eco1/Ctf7 and the DNA polymerase processivity factor PCNA that supports Eco1/Ctf7 function. Mutation in CHL1 results in precocious sister chromatid separation and cell aneuploidy, defects that arise through reduced levels of chromatin-bound cohesins which normally tether together sister chromatids (trans tethering). Mutation of Chl1 family members (BACH1/BRIP/FANCJ and DDX11/ChlR1) also exhibit genotoxic sensitivities, consistent with a role for Chl1 in trans tethering which is required for efficient DNA repair. Chl1 promotes the recruitment of Scc2 to DNA which is required for cohesin deposition onto DNA. There is limited evidence, however, that Scc2 also directs the deposition onto DNA of condensins which promote tethering in cis (intramolecular DNA links). Here, we test the ability of Chl1 to promote cis tethering and the role of both Chl1 and Scc2 to promote condensin recruitment to DNA. The results reveal that chl1 mutant cells exhibit significant condensation defects both within the rDNA locus and genome-wide. Importantly, chl1 mutant cell condensation defects do not result from reduced chromatin binding of condensin, but instead through reduced chromatin binding of cohesin. We tested scc2-4 mutant cells and similarly found no evidence of reduced condensin recruitment to chromatin. Consistent with a role for Scc2 specifically in cohesin deposition, scc2-4 mutant cell condensation defects are irreversible. We thus term Chl1 a novel regulator of both chromatin condensation and sister chromatid cohesion through cohesin-based mechanisms. These results reveal an exciting interface between DNA structure and the highly conserved cohesin complex. PMID:29186203
Nakamura, A; Watanabe, T
2001-04-01
Reversed-phase HPLC conditions for separation of chlorophyll (Chl) a, Chl a' (the C132-epimer of Chl a), pheophytin (Pheo) a (the primary electron acceptor of photosystem (PS) II), and phylloquinone (PhQ) (the secondary electron acceptor of PS 1), have been developed. Pigment extraction conditions were optimized in terms of pigment alteration and extraction efficiency. Pigment composition analysis of light-harvesting complex II, which would not contain Chl a' nor Pheo a, showed the Chl a'/Chl a ratio of 3-4 x 10(-4) and the Pheo a/Chl a ratio of 4-5 x 10(-4), showing that the conditions developed here were sufficiently inert for Chl analysis. Preliminary analysis of thylakoid membranes with this analytical system gave the PhQ/Chl a' ratio of 0.58 +/- 0.03 (n = 4), in line with the stoichiometry of one molecule of Chl a' per PS I.
Chiu, Lawrence C-M; Kong, Carrie K-L; Ooi, Vincent E-C
2005-10-01
Targeting the mitogen-activated protein kinases (MAPKs) has been suggested as a novel strategy to treat cancer. Chlorophyllin (CHL) is the sodium-copper salt of chlorophyll derivative and is a commonly used food dye for green coloration; CHL was found previously to retard growth of the human breast carcinoma MCF-7 cells. Extracellular signal-regulated kinases (ERKs) constitute a subfamily of MAPKs, participating in cell survival, proliferation and differentiation. We report here the first evidence that CHL deactivates ERKs to inhibit the breast cancer cell proliferation. The results from flow cytometry showed that 200 microg/ml CHL reduced the phosphorylated and activated ERK-positive cells in different cell cycle phases from the control of >96 to <38% at 24 h of incubation; the ERK deactivations occurred in both dose- and time-dependent manner, so that nearly all ERKs were de-activated by 400 microg/ml CHL at 72 h of treatment. Immunoblot studies, however, illustrated that the levels of total ERKs were not significantly affected by the CHL treatments, suggesting that the phytochemical retards the enzyme activation rather than its expression. Cyclin D1, but not its enzyme Cdk6, was also depleted after the CHL treatments; the depletions were associated with elevations of G0/G1 cells. Apoptosis occurred time-dependently with the ERK deactivations by 400 microg/ml CHL; the apoptotic cells elevated from 2.7-fold of the control level at 24 h, to 4.7-fold at 48 h and to 16.6-fold at 72 h of treatment. Bcl-2 was also depleted at 72 h when there was the most prominent elevation of the apoptotic cells, suggesting that it participates during the exacerbation rather than the initiation phases of the CHL-induced apoptosis. Results from this study support further research on CHL for preventing and treating those tumors with deregulated ERK activations.
Synthesis of zinc chlorophyll materials for dye-sensitized solar cell applications
NASA Astrophysics Data System (ADS)
Erten-Ela, Sule; Vakuliuk, Olena; Tarnowska, Anna; Ocakoglu, Kasim; Gryko, Daniel T.
2015-01-01
To design sensitizers for dye sensitized solar cells (DSSCs), a series of zinc chlorins with different substituents were synthesized. Novel zinc methyl 3-devinyl-3-hydroxymethyl-20-phenylacetylenylpyropheophorbide-a (ZnChl-1), zinc methyl 20-bromo-3-devinyl-3-hydroxymethylpyropheophorbide-a (ZnChl-2), zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-3), zinc propyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (ZnChl-4) were synthesized and their photovoltaic performances were evaluated in dye-sensitized solar cells. Photoelectrodes with a 7 μm thick nanoporous layer and a 5 μm thick light-scattering layer were used to fabricate dye sensitized solar cells. The best efficiency was obtained with ZnChl-2 sensitizer. ZnChl-2 gave a Jsc of 3.5 mA/cm2, Voc of 412 mV, FF of 0.56 and an overall conversion efficiency of 0.81 at full sun (1000 W m-2).
Raia, Valentina; Schilling, Marcel; Böhm, Martin; Hahn, Bettina; Kowarsch, Andreas; Raue, Andreas; Sticht, Carsten; Bohl, Sebastian; Saile, Maria; Möller, Peter; Gretz, Norbert; Timmer, Jens; Theis, Fabian; Lehmann, Wolf-Dieter; Lichter, Peter; Klingmüller, Ursula
2011-02-01
Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) share a frequent constitutive activation of JAK (Janus kinase)/STAT signaling pathway. Because of complex, nonlinear relations within the pathway, key dynamic properties remained to be identified to predict possible strategies for intervention. We report the development of dynamic pathway models based on quantitative data collected on signaling components of JAK/STAT pathway in two lymphoma-derived cell lines, MedB-1 and L1236, representative of PMBL and cHL, respectively. We show that the amounts of STAT5 and STAT6 are higher whereas those of SHP1 are lower in the two lymphoma cell lines than in normal B cells. Distinctively, L1236 cells harbor more JAK2 and less SHP1 molecules per cell than MedB-1 or control cells. In both lymphoma cell lines, we observe interleukin-13 (IL13)-induced activation of IL4 receptor α, JAK2, and STAT5, but not of STAT6. Genome-wide, 11 early and 16 sustained genes are upregulated by IL13 in both lymphoma cell lines. Specifically, the known STAT-inducible negative regulators CISH and SOCS3 are upregulated within 2 hours in MedB-1 but not in L1236 cells. On the basis of this detailed quantitative information, we established two mathematical models, MedB-1 and L1236 model, able to describe the respective experimental data. Most of the model parameters are identifiable and therefore the models are predictive. Sensitivity analysis of the model identifies six possible therapeutic targets able to reduce gene expression levels in L1236 cells and three in MedB-1. We experimentally confirm reduction in target gene expression in response to inhibition of STAT5 phosphorylation, thereby validating one of the predicted targets.
CHL1 gene acts as a tumor suppressor in human neuroblastoma.
Ognibene, Marzia; Pagnan, Gabriella; Marimpietri, Danilo; Cangelosi, Davide; Cilli, Michele; Benedetti, Maria Chiara; Boldrini, Renata; Garaventa, Alberto; Frassoni, Francesco; Eva, Alessandra; Varesio, Luigi; Pistoia, Vito; Pezzolo, Annalisa
2018-05-25
Neuroblastoma is an aggressive, relapse-prone childhood tumor of the sympathetic nervous system that accounts for 15% of pediatric cancer deaths. A distal portion of human chromosome 3p is often deleted in neuroblastoma, this region may contain one or more putative tumor suppressor genes. A 2.54 Mb region at 3p26.3 encompassing the smallest region of deletion pinpointed CHL1 gene, the locus for neuronal cell adhesion molecule close homolog of L1. We found that low CHL1 expression predicted poor outcome in neuroblastoma patients. Here we have used two inducible cell models to analyze the impact of CHL1 on neuroblastoma biology. Over-expression of CHL1 induced neurite-like outgrowth and markers of neuronal differentiation in neuroblastoma cells, halted tumor progression, inhibited anchorage-independent colony formation, and suppressed the growth of human tumor xenografts. Conversely, knock-down of CHL1 induced neurite retraction and activation of Rho GTPases, enhanced cell proliferation and migration, triggered colony formation and anchorage-independent growth, accelerated growth in orthotopic xenografts mouse model. Our findings demonstrate unambiguously that CHL1 acts as a regulator of proliferation and differentiation of neuroblastoma cells through inhibition of the MAPKs and Akt pathways. CHL1 is a novel candidate tumor suppressor in neuroblastoma, and its associated pathways may represent a promising target for future therapeutic interventions.
Yamamoto, Haruki; Kusumi, Junko; Yamakawa, Hisanori; Fujita, Yuichi
2017-05-24
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a key enzyme to produce chlorophyll in the dark. Among photosynthetic eukaryotes, all three subunits chlL, chlN, and chlB are encoded by plastid genomes. In some gymnosperms, two codons of chlB mRNA are changed by RNA editing to codons encoding evolutionarily conserved amino acid residues. However, the effect of these substitutions on DPOR activity remains unknown. We first prepared cyanobacterial ChlB variants with amino acid substitution(s) to mimic ChlB translated from pre-edited mRNA. Their activities were evaluated by measuring chlorophyll content of dark-grown transformants of a chlB-lacking mutant of the cyanobacterium Leptolyngbya boryana that was complemented with pre-edited mimic chlB variants. The chlorophyll content of the transformant cells expressing the ChlB variant from the fully pre-edited mRNA was only one-fourth of the control cells. Co-purification experiments of ChlB with Strep-ChlN suggested that a stable complex with ChlN is greatly impaired in the substituted ChlB variant. We then confirmed that RNA editing efficiency was markedly greater in the dark than in the light in cotyledons of the black pine Pinus thunbergii. These results indicate that RNA editing on chlB mRNA is important to maintain appropriate DPOR activity in black pine chloroplasts.
Takagi, M; Tsuchiya, T; Ishimoto, M
1981-01-01
Proton translocation coupled to trimethylamine N-oxide reduction was studied in Escherichia coli grown anaerobically in the presence of trimethylamine N-oxide. Rapid acidification of the medium was observed when trimethylamine N-oxide was added to anaerobic cell suspensions of E. coli K-10. Acidification was sensitive to the proton conductor 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847). No pH change was shown in a strain deficient in trimethylamine N-oxide reductase activity. The apparent H+/trimethylamine N-oxide ratio in cells oxidizing endogenous substrates was 3 to 4 g-ions of H+ translocated per mol of trimethylamine N-oxide added. The addition of trimethylamine N-oxide and formate to ethylenediaminetetraacetic acid-treated cell suspension caused fluorescence quenching of 3,3'-dipropylthiacarbocyanine [diS-C3-(5)], indicating the generation of membrane potential. These results indicate that the reduction of trimethylamine N-oxide in E. coli is catalyzed by an anaerobic electron transfer system, resulting in formation of a proton motive force. Trimethylamine N-oxide reductase activity and proton extrusion were also examined in chlorate-resistant mutants. Reduction of trimethylamine N-oxide occurred in chlC, chlG, and chlE mutants, whereas chlA, chlB, and chlD mutants, which are deficient in the molybdenum cofactor, could not reduce it. Protons were extruded in chlC and chlG mutants, but not in chlA, chlB, and chlD mutants. Trimethylamine N-oxide reductase activity in a chlD mutant was restored to the wild-type level by the addition of 100 microM molybdate to the growth medium, indicating that the same molybdenum cofactor as used by nitrate reductase is required for the trimethylamine N-oxide reductase system. PMID:7031034
NASA Astrophysics Data System (ADS)
Li, Yue; Sasaki, Shin-ichi; Tamiaki, Hitoshi; Liu, Cheng-Liang; Song, Jiaxing; Tian, Wenjing; Zheng, Enqiang; Wei, Yingjin; Chen, Gang; Fu, Xueqi; Wang, Xiao-Feng
2015-11-01
The intriguing properties of extremely efficient delocalization and migration of excitons in chlorophyll (Chl) J-type aggregates have inspired intense research activities toward their structural understanding, functional interpretation and mimicry synthesis. Herein, we demonstrated the J-aggregates of zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide a (ZnChl-1) generated by spin-coating method for the application as a hole transporter in titania-based solar cells using methyl trans-32-carboxypyropheophorbide a (H2Chl-2) or its zinc complex (ZnChl-2) as the sensitizer. The effective carrier mobility of the J-aggregates films was determined by the organic field-effect transistor to be 6.2 × 10-4 cm2 V-1 s-1. Solar cells sharing the architecture of FTO/H2Chl-2 or ZnChl-2 on TiO2/(ZnChl-1)n/Ag were fabricated and the factors that presumably determine their photovoltaic performances were discussed. The photovoltaic devices studied herein employing inexpensive and pollution-free biomaterials provide a unique solution of utilizing solar energy with a care of the important environmental issue.
Stamatakis, K; Ladas, N P; Alygizaki-Zorba, A; Papageorgiou, G C
1999-10-15
Freshwater species of the cyanobacterial genus Synechococcus import NaCl passively, and export Na(+) actively, by means of primary and secondary extrusion mechanisms. As a result of the ion and water fluxes, cell volumes are enlarged. We show in this paper that the NaCl-induced volume enlargement of Synechococcus sp. PCC 7942 cells is attended by a rapid (k = 0.39 s(-1)) increase in chlorophyll (Chl) a fluorescence. The cell turgor threshold (measured by osmotic titration of Chl a fluorescence) was lower in the absence of NaCl (0.195 Osm kg(-1)) than in the presence of 0.4 M NaCl (0.248 Osm kg(-1)) indicating NaCl uptake by the cells. Turgor thresholds of cells suspended in NaCl-containing medium were enlarged further by protonophoric uncouplers, P-type ATPase inhibitors, and light starvation, conditions that are known to interfere with the active extrusion of Na(+) ions. Cell swelling exerts probably a regulation on the distribution of phycobilisome (PBS) excitation between photosystem II (fluorescent Chl a) and photosystem I (nonfluorescent Chl a), since it affects PBS-sensitized Chl a fluorescence, but not directly excited Chl a fluorescence. The dependence of the Chl a fluorescence of cyanobacteria on cell volumes allows probing of bioenergetic phenomena that are related to dynamic osmotic volume changes, transmembrane solute and water fluxes, plasma membrane permeabilities, and internal osmotic conditions of cyanobacterial cells. Thus, cyanobacteria may serve as quite convenient models of aquatic microorganisms in experimental studies directed toward the elucidation of perception mechanisms and defense mechanisms of water and solute stresses. Copyright 1999 Academic Press.
Moore, Erika M; Swerdlow, Steven H; Gibson, Sarah E
2017-10-01
Although most classical Hodgkin lymphomas (CHLs) are easily distinguished from nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and primary mediastinal large B-cell lymphoma (PMBL), cases with significant CD20 expression cause diagnostic confusion. Although the absence of OCT-2 and BOB.1 are useful in these circumstances, a variable proportion of CHLs are positive for these antigens. We investigated the utility of J chain and myocyte enhancer factor 2B (MEF2B) in the diagnosis of CHL; NLPHL; PMBL; T-cell/histiocyte-rich large B-cell lymphoma (TCRLBL); and B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, compared with OCT-2 and BOB.1. J chain and MEF2B highlighted lymphocyte predominant (LP) cells in 20/20 (100%) NLPHLs and were negative in 43/43 (100%) CHLs. Fourteen of 15 (93%) PMBLs and 4/4 (100%) TCRLBLs were MEF2B positive, whereas 67% of PMBLs and 50% of TCRLBLs were J chain positive. Three of 3 B-cell lymphomas, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and CHL, were negative for J chain and MEF2B. J chain and MEF2B were 100% sensitive and specific for NLPHL versus CHL. MEF2B was 100% sensitive and 98% specific for PMBL versus CHL. Whereas loss of OCT-2 and/or BOB.1 expression had a sensitivity of only 86% and specificity of 100% for CHL versus NLPHL, PMBL, and TCRLBL, lack of both J chain and MEF2B expression was 100% sensitive and 97% specific. J chain and MEF2B are highly sensitive and specific markers of NLPHL versus CHL; are particularly useful in highlighting LP cells; and, with rare exception, are of greater utility than OCT-2 and BOB.1 in differentiating CHL from NLPHL and other large B-cell lymphomas. Copyright © 2017 Elsevier Inc. All rights reserved.
Kanna, Anila; Agrawal, Swati; Jayant, Kumar; Kumar Pala, Varun; Altujjar, Mohammad; Hadid, Tarik; Khurram, Muhammad
2015-01-01
B cell lymphoma, unclassifiable, with features of diffuse large B cell lymphoma and classical Hodgkin's lymphoma (BCLu-DLBCL/CHL) is more commonly known as gray zone lymphoma. These cases more often present with mediastinal disease. In this report, we present a very rare case of BCLu-DLBCL/CHL without mediastinal involvement, transformed from follicular lymphoma (FL) to BCLu-DLBCL/CHL. This patient initially presented with a mass in the right neck; biopsy of the lymph node showed predominantly nodular, follicular pattern. Immunohistochemical (IHC) staining of tumor cells expressed positivity for mature B cell markers CD20, CD19, CD10, CD23, CD45, and CD38 but negative for CD5,11c. Hence, diagnosed with FL, he was given rituximab, cyclophosphamide, vincristine, and prednisone (RCVP) regimen, followed by maintenance rituximab. He showed good response. After 2 years, he presented again with a mass in the right side of the neck. Although the needle core biopsy of this mass was suggestive of B cell lymphoma, excisional biopsy showed morphological features of DLBCL as well as foci of histological pattern of CHL. IHC staining expressed positivity for CD20, CD79a, PAX5, and CD15 and CD30 consistent with DLBCL and CHL. He was diagnosed with BCLu-DLBCL/CHL. The patient received “ACVBP” (doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone) followed by radiation. BCLu-DLBCL/CHL is clinically an aggressive tumor with poorer outcomes, but our case showed complete response to ACVBP regimen with tumor regression. PMID:26380128
Kanna, Anila; Agrawal, Swati; Jayant, Kumar; Kumar Pala, Varun; Altujjar, Mohammad; Hadid, Tarik; Khurram, Muhammad
2015-01-01
B cell lymphoma, unclassifiable, with features of diffuse large B cell lymphoma and classical Hodgkin's lymphoma (BCLu-DLBCL/CHL) is more commonly known as gray zone lymphoma. These cases more often present with mediastinal disease. In this report, we present a very rare case of BCLu-DLBCL/CHL without mediastinal involvement, transformed from follicular lymphoma (FL) to BCLu-DLBCL/CHL. This patient initially presented with a mass in the right neck; biopsy of the lymph node showed predominantly nodular, follicular pattern. Immunohistochemical (IHC) staining of tumor cells expressed positivity for mature B cell markers CD20, CD19, CD10, CD23, CD45, and CD38 but negative for CD5,11c. Hence, diagnosed with FL, he was given rituximab, cyclophosphamide, vincristine, and prednisone (RCVP) regimen, followed by maintenance rituximab. He showed good response. After 2 years, he presented again with a mass in the right side of the neck. Although the needle core biopsy of this mass was suggestive of B cell lymphoma, excisional biopsy showed morphological features of DLBCL as well as foci of histological pattern of CHL. IHC staining expressed positivity for CD20, CD79a, PAX5, and CD15 and CD30 consistent with DLBCL and CHL. He was diagnosed with BCLu-DLBCL/CHL. The patient received "ACVBP" (doxorubicin, cyclophosphamide, vindesine, bleomycin, and prednisone) followed by radiation. BCLu-DLBCL/CHL is clinically an aggressive tumor with poorer outcomes, but our case showed complete response to ACVBP regimen with tumor regression.
Bhaskar, Jane T; Tripathy, S C; Sabu, P; Laluraj, C M; Rajan, S
2016-04-01
Phytoplankton species distribution and composition were determined by using microscopy and pigment ratios in the Kongsfjorden during early autumn 2012. Variation in sea surface temperature (SST) was minimal and matched well with satellite-derived SST. Nutrients were generally limited. Surface phytoplankton abundance ranged from 0.21 × 10(3) to 10.28 × 10(3) cells L(-1). Phytoplankton abundance decreased with depth and did not show any significant correlation with chlorophyll a (chl a). Column-integrated phytoplankton cell counts (PCC) ranged from 94.3 × 10(6) cells m(-2) (Kf4) to 13.7 × 10(6) cells m(-2) (Kf5), while chl a was lowest at inner part of the fjord (6.3 mg m(-2)) and highest towards the mouth (24.83 mg m(-2)). Biomass from prymnesiophytes and raphidophytes dominated at surface and 10 m, respectively. The contribution of Bacillariophyceae to biomass was low. Generally, heterotrophic dinoflagellates were great in abundance (12.82 %) and ubiquitous in nature and were major contributors to biomass. Various chl pigments (chl b, chl c, phaeopigments (phaeo)) were measured to obtain pigment/chl a ratios to ascertain phytoplankton composition. Phaeo were observed only in inner fjord. Chl b:a ratios and microscopic observations indicated dominance of Chlorophyceae at greater depths than surface. Furthermore, microscopic observations confirmed dominance of chl c containing algae throughout the fjord. The study indicates that pigment ratios can be used as a tool for preliminary identification of major phytoplankton groups. However, under the presence of a large number of heterotrophic dinoflagellates such as Gymnodinium sp. and Gyrodinium sp., pigment signatures need to be supplemented by microscopic observations.
Levin, Lynn I; Breen, Elizabeth C; Birmann, Brenda M; Batista, Julie L; Magpantay, Larry I; Li, Yuanzhang; Ambinder, Richard F; Mueller, Nancy E; Martínez-Maza, Otoniel
2017-07-01
Background: We investigated whether an immune system environment characterized by elevated serum levels of B-cell activation molecules was associated with the subsequent development of classical Hodgkin lymphoma (cHL). Methods: We measured serum levels of B-cell-stimulatory cytokines, IL6 and IL10, soluble CD30 (sCD30), and total IgE prior to cHL diagnosis in 103 cases and 206 matched controls with archived specimens in the DoD Serum Repository. Results: Prediagnosis serum sCD30 and IL6 levels had strong positive associations with risk of a cHL diagnosis 0 to 1 year prior to diagnosis [sCD30 OR = 5.5; 95% confidence interval (CI), 3.4-9.0; IL6 OR = 4.6; 95% CI, 2.9-7.5] and >1 year to 2 years pre-cHL diagnosis (sCD30 OR = 3.3; 95% CI, 1.6-6.7; IL6 OR = 2.9; 95% CI, 1.3-6.5). We observed similar, albeit not consistently significant positive associations, over 4 or more years preceding diagnosis. We did not observe a clear association with IgE levels. Of note, detectable IL10 levels were significantly associated with Epstein-Barr virus (EBV)-positive cHL cases compared with EBV-negative cases. Conclusion: In this prospective analysis, elevated sCD30 and IL6 levels and detectable IL10 preceded cHL diagnosis. Impact: The associations of these cytokines with cHL risk may reflect the production of these molecules by proliferating nascent cHL tumor cells, or by immune cells responding to their presence, prior to clinical detection. The stable elevation in cHL risk, 4 or more years prediagnosis, also suggests that a B-cell-stimulatory immune system milieu precedes, and may promote, lymphomagenesis. Cancer Epidemiol Biomarkers Prev; 26(7); 1114-23. ©2017 AACR . ©2017 American Association for Cancer Research.
Mikkilineni, Lekha; Whitaker-Menezes, Diana; Domingo-Vidal, Marina; Sprandio, John; Avena, Paola; Cotzia, Paolo; Dulau-Florea, Alina; Gong, Jerald; Uppal, Guldeep; Zhan, Tingting; Leiby, Benjamin; Lin, Zhao; Pro, Barbara; Sotgia, Federica; Lisanti, Michael P; Martinez-Outschoorn, Ubaldo
2017-06-01
Twenty percent of patients with classical Hodgkin Lymphoma (cHL) have aggressive disease defined as relapsed or refractory disease to initial therapy. At present we cannot identify these patients pre-treatment. The microenvironment is very important in cHL because non-cancer cells constitute the majority of the cells in these tumors. Non-cancer intra-tumoral cells, such as tumor-associated macrophages (TAMs) have been shown to promote tumor growth in cHL via crosstalk with the cancer cells. Metabolic heterogeneity is defined as high mitochondrial metabolism in some tumor cells and glycolysis in others. We hypothesized that there are metabolic differences between cancer cells and non-cancer tumor cells, such as TAMs and tumor-infiltrating lymphocytes in cHL and that greater metabolic differences between cancer cells and TAMs are associated with poor outcomes. A case-control study was conducted with 22 tissue samples of cHL at diagnosis from a single institution. The case samples were from 11 patients with aggressive cHL who had relapsed after standard treatment with adriamycin, bleomycin, vinblastine, and dacarbazine (ABVD) or were refractory to this treatment. The control samples were from 11 patients with cHL who achieved a remission and never relapsed after ABVD. Reactive non-cancerous lymph nodes from four subjects served as additional controls. Samples were stained by immunohistochemistry for three metabolic markers: translocase of the outer mitochondrial membrane 20 (TOMM20), monocarboxylate transporter 1 (MCT1), and monocarboxylate transporter 4 (MCT4). TOMM20 is a marker of mitochondrial oxidative phosphorylation (OXPHOS) metabolism. Monocarboxylate transporter 1 (MCT1) is the main importer of lactate into cells and is a marker of OXPHOS. Monocarboxylate transporter 4 (MCT4) is the main lactate exporter out of cells and is a marker of glycolysis. The immunoreactivity for TOMM20, MCT1, and MCT4 was scored based on staining intensity and percentage of positive cells, as follows: 0 for no detectable staining in > 50% of cells; 1+ for faint to moderate staining in > 50% of cells, and 2+ for high or strong staining in > 50% of cells. TOMM20, MCT1, and MCT4 expression was significantly different in Hodgkin and Reed Sternberg (HRS) cells, which are the cancerous cells in cHL compared with TAMs and tumor-associated lymphocytes. HRS have high expression of TOMM20 and MCT1, while TAMs have absent expression of TOMM20 and MCT1 in all but two cases. Tumor-infiltrating lymphocytes have low TOMM20 expression and absent MCT1 expression. Conversely, high MCT4 expression was found in TAMs, but absent in HRS cells in all but one case. Tumor-infiltrating lymphocytes had absent MCT4 expression. Reactive lymph nodes in contrast to cHL tumors had low TOMM20, MCT1, and MCT4 expression in lymphocytes and macrophages. High TOMM20 and MCT1 expression in cancer cells with high MCT4 expression in TAMs is a signature of high metabolic heterogeneity between cancer cells and the tumor microenvironment. A high metabolic heterogeneity signature was associated with relapsed or refractory cHL with a hazard ratio of 5.87 (1.16-29.71; two-sided P < .05) compared with the low metabolic heterogeneity signature. Aggressive cHL exhibits features of metabolic heterogeneity with high mitochondrial metabolism in cancer cells and high glycolysis in TAMs, which is not seen in reactive lymph nodes. Future studies will need to confirm the value of these markers as prognostic and predictive biomarkers in clinical practice. Treatment intensity may be tailored in the future to the metabolic profile of the tumor microenvironment and drugs that target metabolic heterogeneity may be valuable in this disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji
2015-01-01
This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530
Loo, Eric Y; Medeiros, L Jeffrey; Aladily, Tariq N; Hoehn, Daniela; Kanagal-Shamanna, Rashmi; Young, Ken H; Lin, Pei; Bueso-Ramos, Carlos E; Manning, John T; Patel, Keyur; Thomazy, Vilmos; Brynes, Russell K; Goswami, Maitrayee; Fayad, Luis E; Miranda, Roberto N
2013-08-01
Iatrogenic immunodeficiency-associated lymphoproliferative disorders are rare. A small subset of these lesions resembles classical Hodgkin lymphoma (CHL), but there are few data in the literature about these lesions. We describe 10 patients with autoimmune diseases treated with immunomodulator therapeutic agents who developed CHL. The autoimmune diseases included rheumatoid arthritis (n=5), systemic lupus erythematosus (n=2), dermatomyositis (n=1), autoimmune hepatitis (n=1), and Crohn disease (n=1), and the immunomodulatory therapies were methotrexate, azathioprine, tumor necrosis factor-α inhibitors, and thalidomide alone or in various combinations. The study group included 9 women and 1 man with a median age of 50 years (range, 25 to 77 y). The histologic features supported CHL in all cases with Reed-Sternberg (RS) and Hodgkin (H) cells in an inflammatory cell background, although the neoplasm could only be subclassified in 3 patients: 2 nodular sclerosis and 1 mixed cellularity. Immunohistochemical analysis supported the diagnosis of CHL. In all cases the RS-H cells were CD30. Nine of 10 cases were CD15, whereas CD20 was expressed variably in 4/10 cases. CD45/LCA was negative in 8 cases assessed. In situ hybridization for Epstein-Barr virus-encoded RNA was positive in the RS-H cells in 8/10 cases. The microenvironment of these lesions depicted a predominance of T-regulatory cells and M2 histiocytes. Clinical follow-up data were available for 7 patients, with a median posttreatment period of 27 months (range, 12 mo to 7 y). In all 7 patients immunomodulatory drug therapy was discontinued, and chemotherapy for CHL was administered; 2 patients also received local radiation. All 7 patients achieved complete remission and are alive. We conclude that iatrogenic immunodeficiency-associated CHL is highly associated with Epstein-Barr virus infection, and patients usually have a good outcome after discontinuation of immunomodulatory agents and chemotherapy for CHL.
Campos, Antonio Hugo; Vassallo, Jose; Soares, Fernando Augusto
2013-01-01
Previous studies have investigated the prognostic relevance of MMP9 in classical Hodgkin lymphoma (cHL), with negative results. However, we have found that MMP9 immunoistochemical expression by Hodgkin-Reed-Sternberg cells is associated with reduced overall survival in a subset of young adult Brazilian patients diagnosed with cHL. Additionally, we have observed that MMP9 expression by neoplastic cells in cHL is associated with EBV positivity. These results may support a rational basis for additional studies on the role of this metalloproteinase as a target for therapy in classical Hodgkin lymphoma.
Fowler, Paul; Whitwell, James; Jeffrey, Laura; Young, Jamie; Smith, Katie; Kirkland, David
2010-10-29
The following genotoxic chemicals were tested in the in vitro micronucleus assay, at Covance Laboratories, Harrogate, UK in the Chinese hamster lung cell line CHL. Etoposide (a topoisomerase inhibitor), colchicine (an aneugen), mitomycin C (a DNA cross linking agent) and cyclophosphamide (an alkylating agent requiring metabolic activation) were treated with and without cytokinesis block (by addition of cytochalasin B). This work formed part of a collaborative evaluation of the toxicity measures recommended in the draft OECD Test Guideline 487 for the in vitro micronucleus test. The toxicity measures used, detecting both cytostasis and cell death, were relative population doubling, relative increase in cell counts and relative cell counts for treatments in the absence of cytokinesis block, and replication index or cytokinesis blocked proliferation index in the presence of cytokinesis block. All of the chemicals tested gave significant increases in the percentage of micronucleated cells with and without cytokinesis block at concentrations giving approximately 60% toxicity (cytostasis and cell death) or less by all of the toxicity measures used. The outcomes from this series of tests support the use of relative increase in cell counts and relative population doubling, as well as relative cell counts, as appropriate measures of cytotoxicity for the non-cytokinesis blocked in vitro micronucleus assay. Copyright © 2010 Elsevier B.V. All rights reserved.
Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.
Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon
2018-03-01
Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Mengzhen; Li, Yue; Sasaki, Shin-Ichi; Song, Jiaxing; Wang, Chen; Tamiaki, Hitoshi; Tian, Wenjing; Chen, Gang; Miyasaka, Tsutomu; Wang, Xiao-Feng
2016-10-06
Chlorophylls (Chls) are abundant, naturally occurring pigments that play key roles in light-harvesting and electron/energy transfer in natural photosynthetic apparatus. To demonstrate the idea that Chls are suitable hole transporters, we employed two Chl derivatives, Chl-1 and Chl-2, which self-assembled readily into π-stacking aggregates through a simple spincasting process, in perovskite solar cells (PSCs). The Chl aggregate films exhibit an ultra-smooth film surface, high hole mobility, appropriate energy levels, and efficient hole injection efficiencies that are all key characteristics for efficient hole transporters in PSCs. CH 3 NH 3 PbI 3-x Cl x -based PSCs with these Chls as hole transporters were fabricated and compared with P3HT as a standard hole transporter. PSCs based on Chl-1 and Chl-2 without the use of typical additives, such as 4-tert-butylpyridine and lithium bis(trifluoromethanesulfinyl)imide, gave power conversion efficiencies of 11.44 and 8.06 %, respectively. This research provides a unique way to incorporate low-cost and environmentally friendly natural photosynthetic materials in the development of highly efficient photovoltaic devices. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoneda, Aki; Wittmann, Bruce J; King, Jeremy D; Blankenship, Robert E; Dantas, Gautam
2016-08-01
Acaryochloris species are a genus of cyanobacteria that utilize chlorophyll (chl) d as their primary chlorophyll molecule during oxygenic photosynthesis. Chl d allows Acaryochloris to harvest red-shifted light, which gives them the ability to live in filtered light environments that are depleted in visible light. Although genomes of multiple Acaryochloris species have been sequenced, their analysis has not revealed how chl d is synthesized. Here, we demonstrate that Acaryochloris sp. CCMEE 5410 cells undergo chlorosis by nitrogen depletion and exhibit robust regeneration of chl d by nitrogen repletion. We performed a time course RNA-Seq experiment to quantify global transcriptomic changes during chlorophyll recovery. We observed upregulation of numerous known chl biosynthesis genes and also identified an oxygenase gene with a similar transcriptional profile as these chl biosynthesis genes, suggesting its possible involvement in chl d biosynthesis. Moreover, our data suggest that multiple prochlorophyte chlorophyll-binding homologs are important during chlorophyll recovery, and light-independent chl synthesis genes are more dominant than the light-dependent gene at the transcription level. Transcriptomic characterization of this organism provides crucial clues toward mechanistic elucidation of chl d biosynthesis.
Tetrahydrothiophene 1-oxide as an electron acceptor for Escherichia coli.
Meganathan, R; Schrementi, J
1987-01-01
Escherichia coli used tetrahydrothiophene 1-oxide (THTO) as an electron acceptor for anaerobic growth with glycerol as a carbon source; the THTO was reduced to tetrahydrothiophene. Cell extracts also reduced THTO to tetrahydrothiophene in the presence of a variety of electron donors. Chlorate-resistant (chl) mutants (chlA, chlB, chlD, and chlE) were unable to grow with THTO as the electron acceptor. However, growth and THTO reduction by the chlD mutant were restored by high concentrations of molybdate. Similarly, mutants of E. coli that are blocked in the menaquinone (vitamin K2) biosynthetic pathway, i.e., menB, menC, and menD mutants, did not grow with THTO as an electron acceptor. Growth and THTO reduction were restored in these mutants by the presence of appropriate intermediates of the vitamin K biosynthetic pathway. PMID:3294808
Differential Expression of CHL1 Gene during Development of Major Human Cancers
Senchenko, Vera N.; Krasnov, George S.; Dmitriev, Alexey A.; Kudryavtseva, Anna V.; Anedchenko, Ekaterina A.; Braga, Eleonora A.; Pronina, Irina V.; Kondratieva, Tatiana T.; Ivanov, Sergey V.; Zabarovsky, Eugene R.; Lerman, Michael I.
2011-01-01
Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer. PMID:21408220
Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang
2017-04-01
Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.
Interaction between DISC1 and CHL1 in regulation of neurite outgrowth.
Ren, Jun; Zhao, Tian; Xu, Yiliang; Ye, Haihong
2016-10-01
Disrupted-in-schizophrenia 1 (DISC1), a gene susceptible for major mental illnesses, including schizophrenia, plays multiple roles in neural development, including neuronal proliferation, maturation, migration and neurite outgrowth. DISC1 regulates neurite length via interaction with several intracellular proteins, such as NDEL1, FEZ1 and dysbindin. However, the signal transduction mechanism upstream of DISC1 in regulating neurite outgrowth remains to be elucidated. Here we show that DISC1 interacts with the intracellular domain of close homolog of L1 (CHL1), a member of the L1 family of neural cell adhesion molecules. DISC1 and CHL1 proteins co-localize in growth cones of cortical neurons. Moreover, in neurite outgrowth assay, CHL1 rescues the inhibitory effect of DISC1 on the initial phase of neurite outgrowth. Considering the fact that CHL1 also plays crucial roles in neural development, and its coding gene is associated with schizophrenia, our findings indicate that DISC1 and CHL1 may engage in physical and functional interaction in neural development, supporting the notion that DISC1 regulates neurite outgrowth with a receptor belonging to the neural cell adhesion molecules, and disruption of such interaction may contribute to increased risk for schizophrenia. Copyright © 2016. Published by Elsevier B.V.
Domijan, Ana-Marija; Gajski, Goran; Novak Jovanović, Ivana; Gerić, Marko; Garaj-Vrhovac, Vera
2015-03-01
The aim of this study was to investigate the possible protective effect of sodium copper chlorophyllin (CHL) against cytotoxicity and DNA damage induced by mycotoxins ochratoxin A (OTA) and fumonisin B1 (FB1). CHL (0.1-100 μg/ml) alone had no impact on cell viability and genome damage in the primary human peripheral blood lymphocytes (HPBLs) and exhibited free radical scavenging activity in the DPPH assay. Both mycotoxins, OTA (4 μmol/l) and FB1 (20 μg/ml), induced DNA damage in HPBLs already after 1 h exposure. When the HPBLs were co-exposed to CHL (10 and 100 μg/ml) and OTA (4 μmol/l) or FB1 (20 μg/ml) for 1 h, CHL protected against cell and DNA damage induced by both mycotoxins, implying that OTA and FB1 cytogenotoxicity mechanisms function at least partially through oxidative stress. Therefore, CHL could be a perfect candidate for possible use as an antioxidant. Copyright © 2014 Elsevier Ltd. All rights reserved.
Duffield, Amy S.; Ascierto, Maria Libera; Anders, Robert A.; Taube, Janis M.; Meeker, Alan K.; Chen, Shuming; McMiller, Tracee L.; Phillips, Neil A.; Xu, Haiying; Ogurtsova, Aleksandra; Berger, Alan E.; Pardoll, Drew M.; Ambinder, Richard F.
2017-01-01
Classical Hodgkin lymphoma (CHL) is a neoplasm characterized by robust inflammatory infiltrates and heightened expression of the immunosuppressive PD-1/PD-L1 pathway. Although anti-PD-1 therapy can be effective in >60% of patients with refractory CHL, improved treatment options are needed for CHLs which are resistant to anti-PD-1 or relapse after this form of immunotherapy. A deeper understanding of immunologic factors in the CHL microenvironment might support the design of more effective treatment combinations based on anti-PD-1. In addition, because the Epstein-Barr virus (EBV) residing in some CHL tumors is strongly immunogenic, we hypothesized that characteristics of the tumor immune microenvironment in EBV+ CHL would be distinct from EBV− CHL, with specific implications for designing combination treatment regimens. Employing immunohistochemistry for immune cell subsets and checkpoint molecules, as well as gene expression profiling, we characterized 32 CHLs from the Johns Hopkins archives, including 12 EBV+ and 20 EBV− tumors. Our results revealed a dichotomous cellular and cytokine immune milieu in EBV+ vs EBV− CHL. EBV+ tumors displayed a T helper 1 (Th1) profile typical of effective antitumor immunity, with increased infiltration of CD8+ T cells and coordinate expression of the canonical Th1 transcription factor Tbet (TBX21), interferon-γ (IFNG), and the IFN-γ–inducible immunosuppressive enzyme indoleamine 2,3-dioxygenase. In contrast, EBV− tumors manifested a pathogenic Th17 profile and ongoing engagement of the interleukin-23 (IL-23)/IL-17 axis, with heightened phosphorylated signal transducer and activator of transcription 3 expression in infiltrating lymphocytes. These findings suggest that drugs blocking the IL-23/IL-17 axis, which are already in the clinic for treating certain autoimmune disorders, may enhance the therapeutic impact of anti-PD-1 therapy in EBV− CHL. PMID:29296775
Shindiapina, Polina; Alinari, Lapo
2018-04-01
Immune evasion is a critical mechanism of malignant cell survival, and relies in part on molecular signaling through the programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) axis that contributes to T cell exhaustion. Immune modulatory therapy with monoclonal antibodies against PD-1 designed to enhance antitumor immune response have shown promise in the treatment of advanced solid tumors and hematologic malignancies. Classical Hodgkin's lymphoma (cHL), a unique B cell malignancy characterized by an extensive but ineffective immune cell infiltrate surrounding a small number of tumor cells, has shown significant response to anti-PD-1 directed therapy. The anti-PD-1 monoclonal antibodies nivolumab and pembrolizumab have shown similarly remarkable activity in relapsed/refractory cHL and have been approved by the Food and Drug Administration for treatment of this disease. In this article we review the rationale of targeting the PD-1/PD-L1 axis in cHL and the pharmacology of pembrolizumab, and summarize the data on activity and safety profile of this agent in the treatment of relapsed/refractory cHL. We also discuss the potential benefits and pitfalls of using PD-1 blockade in the setting of allogeneic stem-cell transplantation, and summarize ongoing prospective trials of single-agent pembrolizumab and combination strategies as well as future directions.
Shindiapina, Polina; Alinari, Lapo
2018-01-01
Immune evasion is a critical mechanism of malignant cell survival, and relies in part on molecular signaling through the programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) axis that contributes to T cell exhaustion. Immune modulatory therapy with monoclonal antibodies against PD-1 designed to enhance antitumor immune response have shown promise in the treatment of advanced solid tumors and hematologic malignancies. Classical Hodgkin’s lymphoma (cHL), a unique B cell malignancy characterized by an extensive but ineffective immune cell infiltrate surrounding a small number of tumor cells, has shown significant response to anti-PD-1 directed therapy. The anti-PD-1 monoclonal antibodies nivolumab and pembrolizumab have shown similarly remarkable activity in relapsed/refractory cHL and have been approved by the Food and Drug Administration for treatment of this disease. In this article we review the rationale of targeting the PD-1/PD-L1 axis in cHL and the pharmacology of pembrolizumab, and summarize the data on activity and safety profile of this agent in the treatment of relapsed/refractory cHL. We also discuss the potential benefits and pitfalls of using PD-1 blockade in the setting of allogeneic stem-cell transplantation, and summarize ongoing prospective trials of single-agent pembrolizumab and combination strategies as well as future directions. PMID:29623180
Larkum, Anthony W D; Chen, Min; Li, Yaqiong; Schliep, Martin; Trampe, Erik; West, John; Salih, Anya; Kühl, Michael
2012-12-01
A new habitat and a new chlorophyll (Chl) d-containing cyanobacterium belonging to the genus Acaryochloris are reported in this study. Hyperspectral microscopy showed the presence of Chl d-containing microorganisms in epiphytic biofilms on a red alga (Gelidium caulacantheum) colonizing the pneumato-phores of a temperate mangrove (Avicennia marina). The presence of Chl d was further proven by high performance liquid chromatography (HPLC)-based pigment analysis and by confocal imaging of cultured cells. Enrichment of mangrove biofilm samples under near-infrared radiation (NIR) yielded the new Acaryochloris sp. MPGRS1, which was closely related in terms of 16S rRNA gene sequence to an isolate from the hypertrophic Salton Sea, USA. The new isolate used Chl d as its major photopigment; Chl d and Chl a contents were ~98% and 1%-2% of total cellular chlorophyll, respectively. These findings expand the variety of ecological niches known to harbor Chl d-containing cyanobacteria and support our working hypothesis that such oxyphototrophs may be ubiquitous in habitats depleted of visible light, but with sufficient NIR exposure. © 2012 Phycological Society of America.
Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine
2017-07-01
In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.
Stamatoullas, A; Brice, P; Gueye, M S; Mareschal, S; Chevallier, P; Bouabdallah, R; Nguyenquoc, S; Francois, S; Turlure, P; Ceballos, P; Monjanel, H; Bourhis, J-H; Guillerm, G; Mohty, M; Biron, P; Cornillon, J; Belhadj, K; Bonmati, C; Dilhuydy, M-S; Huynh, A; Bernard, M; Chrétien, M-L; Peffault de Latour, R; Tilly, H
2016-07-01
This report retrospectively analyzed the outcome of 91 patients aged 60 years or older with refractory/relapsed (R/R) classical Hodgkin's lymphoma (cHL) who underwent autologous stem cell transplantation (ASCT) between 1992 and 2013 and were reported to the French Society of Bone Marrow Transplantation and Cell Therapies registry. The median age at transplant was 63 years. The majority of patients exhibited disease chemosensitivity to salvage treatment (57 complete responses, 30 partial responses, 1 progressive disease and 3 unknown). The most frequent conditioning regimen consisted of BCNU, cytarabine, etoposide, melphalan (BEAM) chemotherapy (93%). With a median follow-up of 54 months, 5-year estimates of overall survival (OS) and progression free survival (PFS) for the entire group were 67 and 54%, respectively. Despite the missing data, in univariate analysis, the number of salvage chemotherapy lines (1-2 versus ⩾3) significantly influenced the OS, unlike the other prognostic factors (stage III-IV at relapse, disease status before ASCT and negative positron emission tomography (PET) scan) encountered in younger patients. In spite of its limitations, this retrospective study with a long-term follow-up suggests that ASCT is a valid treatment option for chemosensitive R/R cHL in selected elderly patients, with an acceptable rate of toxicity.
The C21-formyl group in chlorophyll f originates from molecular oxygen.
Garg, Harsh; Loughlin, Patrick C; Willows, Robert D; Chen, Min
2017-11-24
Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C2 1 -formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique ( 18 O and 2 H) to determine the origin of the C2 1 -formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H 2 18 O or 18 O 2 , the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C2 1 -formyl group originates from molecular oxygen and not from H 2 O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D 2 O-seawater medium under different light conditions. When cells were shifted from white light D 2 O-seawater medium to far-red light H 2 O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Luksiene, Z; Buchovec, I; Paskeviciute, E
2010-11-01
This study was focused on the possibility to inactivate food-borne pathogen Bacillus cereus by Na-chlorophyllin (Na-Chl)-based photosensitization in vitro and after attachment to the surface of packaging material. Bacillus cereus in vitro or attached to the packaging was incubated with Na-Chl (7·5×10(-8) to 7·5×10(-5) mol l(-1) ) for 2-60min in phosphate buffer saline. Photosensitization was performed by illuminating cells under a light with a λ of 400nm and an energy density of 20mW cm(-2) . The illumination time varied 0-5min and subsequently the total energy dose was 0-6J cm(-2) . The results show that B. cereus vegetative cells in vitro or attached to the surface of packaging after incubation with 7·5×10(-7) mol l(-1) Na-Chl and following illumination were inactivated by 7log. The photoinactivation of B. cereus spores in vitro by 4log required higher (7·5×10(-6) mol l(-1) ) Na-Chl concentration. Decontamination of packaging material from attached spores by photosensitization reached 5log at 7·5×10(-5) mol l(-1) Na-Chl concentration. Comparative analysis of different packaging decontamination treatments indicates that washing with water can diminish pathogen population on the surface by <1log, 100ppm Na-hypochlorite reduces the pathogens about 1·7log and 200ppm Na-hypochlorite by 2·2log. Meanwhile, Na-Chl-based photosensitization reduces bacteria on the surface by 4·2 orders of magnitude. Food-borne pathogen B. cereus could be effectively inactivated (7log) by Na-Chl-based photosensitization in vitro and on the surface of packaging material. Spores are more resistant than vegetative cells to photosensitization-based inactivation. Comparison of different surface decontamination treatments indicates that Na-Chl-based photosensitization is much more effective antibacterial tool than washing with water or 200ppm Na-hypochlorite. Our data support the idea that Na-Chl-based photosensitization has great potential for future application as an environment-friendly, nonthermal surface decontamination technique. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2017-12-01
Neon flying squid, Ommastrephes bartramii, is a squid species of the North Pacific Ocean, which plays an important economical role in the international fishery. Logbook data for Chinese squid-jigging fishery over 2004-2011 were used to evaluate the relationship between the fishing grounds of the squid and the convergent frontal areas, which were defined by the contour lines of specific sea surface temperature (SST) and chlorophyll- a (Chl- a) concentration. Our results indicate that the SST in the range of 15 to 19°C and the Chl- a concentration in the range of 0.1 to 0.4 mg m-3 are the favorable conditions for the aggregation of the squid. Additionally, we deduced that the SST at 17.5°C and the Chl- a concentration at 0.25 mg m-3 are the optimal environmental conditions for the aggregation of O. bartramii. In August, the annual CPUE is positively correlated with the proportion of the fishing grounds with favorable SST and Chl- a concentration, as well as the combination of the two variables, implying that the abundance of the squid annually is largely depending on the presence of the favorable environmental conditions for fishery in August. Minor spatial difference between mean latitudinal location of the 17.5°C SST and 0.25 mg m-3 Chl- a fronts can increase the CPUEs of O. bartramii. Furthermore, the monthly latitudinal gravity centers of the CPUE closely followed the mean latitudinal position of the contour lines of the 17.5°C SST and the 0.25 mg m-3 Chl- a concentration. Our findings suggest the convergent oceanographic features (fronts) play significant roles in regulating the distribution and abundance of the western stock of the winter-spring cohort of O. bartramii, which can help people to improve their ability to discover the O. bartramii fishing grounds with higher productivity.
2012-02-01
were calculated using n-2 degrees of freedom. 2.2 Nutrient and chlorophyll data Nitrate and Chl a levels were obtained from archived CalCOFI data...a later increase in photosynthetic biomass in the fall. However, Chl a levels were actually low during the period when bioluminescence was high and...for 1994-1995 which may suggest that as Chl a levels increased, so did bioluminescence cell-1 (Figure 7c). These field measurements support previous
Assessment of remotely sensed chlorophyll-a concentration in Guanabara Bay, Brazil
NASA Astrophysics Data System (ADS)
Oliveira, Eduardo N.; Fernandes, Alexandre M.; Kampel, Milton; Cordeiro, Renato C.; Brandini, Nilva; Vinzon, Susana B.; Grassi, Renata M.; Pinto, Fernando N.; Fillipo, Alessandro M.; Paranhos, Rodolfo
2016-04-01
The Guanabara Bay (GB) is an estuarine system in the metropolitan region of Rio de Janeiro (Brazil), with a surface area of ˜346 km2 threatened by anthropogenic pressure. Remote sensing can provide frequent data for studies and monitoring of water quality parameters, such as chlorophyll-a concentration (Chl-a). Different combination of Medium Resolution Imaging Spectrometer (MERIS) remote sensing reflectance band ratios were used to estimate Chl-a. Standard algorithms such as Ocean Color 3-band, Ocean Color-4 band, fluorescence line height, and maximum chlorophyll index were also tested. The MERIS Chl-a estimates were statistically compared with a dataset of in situ Chl-a (2002 to 2012). Good correlations were obtained with the use of green, red, and near-infrared bands. The best performing algorithm was based on the red (665 nm) and green (560 nm) band ratio, named "RG3" algorithm (r2=0.71, chl-a=62,565*x1.6118). The RG3 was applied to a time series of MERIS images (2003- to 2012). The GB has a high temporal and spatial variability of Chl-a, with highest values found in the wet season (October to March) and in some of the most internal regions of the estuary. Lowest concentrations are found in the central circulation channel due to the flushing of ocean water masses promoted by pumping tide.
Cross-Resistance to Short Residual Sulfonylurea Herbicides in Transgenic Tobacco Plants 1
Gabard, Jerome M.; Charest, Pierre J.; Iyer, V. N.; Miki, Brian L.
1989-01-01
Transgenic Nicotiana tabacum plants, produced by Agrobacterium tumefaciens-mediated transformation with a mutant gene (csr1-1) coding for acetohydroxyacid synthase (AHAS) from a chlorsulfuron resistant Arabidopsis thaliana line GH50 (GW Haughn et al. [1988] Mol Gen Genet 211: 266-271; GW Haughn, C Somerville [1986] Mol Gen Genet 204: 430-434), were selected directly on 80 micrograms per liter (225 nanomolar) chlorsulfuron. The expression of csr-1 in two separate transgenic lines CHL-1 and CHL-2 was confirmed by biochemical and genetic analyses. The AHAS activity of GH50 and the equivalent component of AHAS activity in CHL-2 was resistant to three short residual sulfonylurea herbicides, DPX-M6316, DPX-A7881, and DPX-L5300, in addition to chlorsulfuron but not to the sulfonylurea CGA 131′036. Cross-resistance to the imidazolinones AC 263, 499, AC 252, 214, and AC 243,997 was not observed. Parallel observations were made on the inhibition of seedling growth in soil or on culture medium. The relevance of these findings for the application of transgenic plants in agriculture is discussed. Images Figure 1 PMID:16667071
Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake
2013-07-01
In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.
Vera-Lozada, Gabriela; Segges, Priscilla; Stefanoff, Claudio Gustavo; Barros, Mário Henrique M; Niedobitek, Gerald; Hassan, Rocio
2018-06-14
The search for clinically relevant molecular markers in classical Hodgkin lymphoma (cHL) is hampered by the histopathological complexity of the disease, resulting from the admixture of a small number of neoplastic Hodgkin and Reed-Sternberg (H-RS) cells with an abundant and heterogeneous microenvironment. In this study, we evaluated gene expression profiles of 11 selected genes previously proposed as a molecular score for adult cHL, aiming to validate its application in the pediatric setting. Assays were performed by RT-qPCR from formalin-fixed paraffin-embedded (FFPE) lymph nodes in 80 patients with cHL. Selected genes were associated with cell cycle (CENPF, CDK1, CCNA2, CCNE2, and HMMR), apoptosis (BCL2, BCL2L1, and CASP3), and monocytes/macrophages (LYZ and STAT1). Despite using controlled preanalytical and analytical strategies, we were not able to validate the 11-gene score to be applied in pediatric cHL. Principal component analysis (PCA) disclosed 3 components that accounted for 65.7% of the total variability. The second PC included microenvironment and apoptosis genes, from which CASP3 expression was associated with a short time of progression-free survival, which impact was maintained in the unfavorable risk group, Epstein-Barr virus-negative cases, and multivariate analysis (P < .05). Because this is a counterintuitive association, CASP3 active expression was assessed at the protein level in H-RS cells by double immunohistochemistry. In contrast to the association of mRNA levels with a poor therapeutic response, a high number of cleaved CASP3+ cells were associated with longer progression-free survival (P = .03) and overall survival (P = .002). Our results demonstrate the feasibility of using FFPE samples as RNA source for molecular prognostication, but argue against the concept of direct and wide applicability of molecular scores in cHL. We reinforce the potential of CASP3 as an interesting target to be explored in adult and pediatric cHL, and alert for its dual biological role in H-RS cells and tumor microenvironment. Copyright © 2018 John Wiley & Sons, Ltd.
CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA CHL004
In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 (Vesper et al 1996) has been found to concentrated Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of the washed lyophilized cells grown in the presence of lea...
Glaser, J. H.; DeMoss, J. A.
1971-01-01
ChlD mutants of Escherichia coli are pleiotropic, lacking formate-nitrate reductase activity as well as formate-hydrogenlyase activity. Whole-chain formate-nitrate reductase activity, assayed with formate as the electron donor and measuring the amount of nitrite produced, was restored to wild-type levels in the mutants by addition of 10−4m molybdate to the growth medium. Under these conditions, the activity of each of the components of the membrane-bound nitrate reductase chain increased after molybdate supplementation. In the absence of nitrate, the activities of the formate-hydrogenlyase system were also restored by molybdate. Strains deleted for the chlD gene responded in a similar way to molybdate supplementation. The concentration of molybdenum in the chlD mutant cells did not differ significantly from that in the wild-type cells at either low or high concentrations of molybdate in the medium. However, the distribution of molybdenum between the soluble protein and membrane fractions differed significantly from wild type. We conclude that the chlD gene product cannot be a structural component of the formate-hydrogenlyase pathway or the formate-nitrate reductase pathway, but that it must have an indirect role in processing molybdate to a form necessary for both electron transport systems. PMID:4942767
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, David J.; Lohr, Christiane V.; Fischer, Kay A.
2009-02-01
The carcinogenic potential of dibenzo[a,l]pyrene (DBP) has been well characterized in numerous animal models. We have previously documented that a single dose of 15 mg/Kg DBP to pregnant mice late in gestation (GD 17) produces an aggressive T-cell lymphoma as well as lung and liver cancer in offspring. The current study examines the chemopreventative properties of chlorophyllin (CHL) and chlorophyll (Chl) in this transplacental carcinogenesis model. Pregnant B6129SF1 females, bred to 129S1/SvIm males, received purified diets incorporated with either 2000 ppm CHL, 2000 ppm Chl, or 10% freeze-dried spinach beginning at gestation day 9. Lymphoma-dependent mortality was not significantly alteredmore » by maternal consumption of any of the diet and little effect on lung tumor burden in mice surviving to 10 months of age was observed. However, co-administration of CHL at 380 mg/Kg with DBP by gavage (molar ratio of 10:1, CHL:DBP) provided significant protection against DBP initiated carcinogenesis. Offspring born to dams receiving CHL co-gavaged with DBP exhibited markedly fewer lymphoma-dependent mortalities (p< 0.001). The degree of protection by CHL, compared to controls dosed with DBP in tricaprylin (TCP) as the vehicle, were less marked, but still significant. Co-administration of CHL (TCP as vehicle) also reduced lung tumor multiplicity in mice by approximately 50% and this was observed throughout the study (p< 0.005). This is the first demonstration that CHL can provide potent chemoprotection in a transplacental carcinogenesis model and supports a mechanism involving complex-mediated reduction of carcinogen uptake.« less
Zhang, Huanxin; Tang, Xuexi; Shang, Jiagen; Zhao, Xinyu; Qu, Tongfei; Wang, Ying
2018-05-11
Naphthenic acids (NAs) account for 1-2% of crude oil and represent its main acidic component. However, the aquatoxic effects of NAs on marine phytoplankton and their ecological risks have remained largely unknown. Using the marine microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis as the target, we studied the effects of NAs on their growth, cell morphology and physiological characteristics. The cell density decreased as the concentrations of NAs increased, indicating that they had an adverse effect on growth of the investigated algae in a concentration-dependent manner. Moreover, scanning electron microscopy revealed NAs exposure caused damage such as deformed cells, shrunken surface and ruptured cell structures. Exposure to NAs at higher concentrations for 48 h significantly increased the content of chlorophyll (Chl) a and b in P. tricornutum, but decreased their levels in P. helgolandica var. tsingtaoensis. NAs with concentrations no higher than 4 mg/L gradually enhanced the Chl fluorescence (ChlF) parameters and decreased the ChlF parameters at higher concentrations for the two marine microalgae. Additionally, NAs induced hormesis on photosynthetic efficiency of the two microalgae and also have the species difference in their aquatic toxicity. Overall, the results of this study provide a better understanding of the physiological responses of phytoplankton and will enable better risk assessments of NAs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Membrane cytochromes of Escherichia coli chl mutants.
Hackett, N R; Bragg, P D
1983-01-01
The cytochromes present in the membranes of Escherichia coli cells having defects in the formate dehydrogenase-nitrate reductase system have been analyzed by spectroscopic, redox titration, and enzyme fractionation techniques. Four phenotypic classes differing in cytochrome composition were recognized. Class I is represented by strains with defects in the synthesis or insertion of molybdenum cofactor. Cytochromes of the formate dehydrogenase-nitrate reductase pathway are present. Class II strains map in the chlC-chlI region. The cytochrome associated with nitrate reductase (cytochrome bnr) is absent in these strains, whereas that associated with formate dehydrogenase (cytochrome bfdh) is the major cytochrome in the membranes. Class III strains lack both cytochromes bfdh and bnr but overproduce cytochrome d of the aerobic pathway even under anaerobic conditions in the presence of nitrate. Class III strains have defects in the regulation of cytochrome synthesis. An fdhA mutant produced cytochrome bnr but lacked cytochrome bfdh. These results support the view that chlI (narI) is the structural gene for cytochrome bnr and that chlC (narG) and chlI(narI) are in the same operon, and they provide evidence of the complexity of the regulation of cytochrome synthesis. PMID:6302081
Partensky, F.; Hoepffner, N.; Li, WKW.; Ulloa, O.; Vaulot, D.
1993-01-01
Two Atlantic (SARG and NATL1) strains and one Mediterranean (MED) strain of Prochlorococcus sp., a recently discovered marine, free-living prochlorophyte, were grown over a range of "white" irradiances (lg) and under low blue light to examine their photoacclimation capacity. All three strains contained divinyl (DV) chlorophylls (Chl) a and b, both distinguishable from "normal" Chls by their red-shifted blue absorption maximum, a Chl c-like pigment at low concentration, zeaxanthin, and [alpha]-carotene. The presence of two phaeophytin b peaks in acidified extracts from both Atlantic strains grown at high lg suggests that these strains also had a normal Chl b-like pigment. In these strains, the total Chl b to DV-Chl a molar ratio decreased from about 1 at 7.5 [mu]mol quanta m-2 s-1 to 0.4 to 0.5 at 133 [mu]mol quanta m-2 s-1. In contrast, the MED strain always had a low DV-Chl b to DV-Chl a molar ratio, ranging between 0.13 at low lg and 0.08 at high lg. The discrepancies between the Atlantic and MED strains could result from differences either in the number of light-harvesting complexes (LHC) II per photosystem II or in the Chl b-binding capacity of the apoproteins constituting LHC II. Photosynthesis was saturated at approximately 5 fg C(fg Chl)-1 h-1 or 6 fg C cell-1 h-1, and growth was saturated at approximately 0.45 d-1 for both MED and SARG strains at 18[deg]C, but saturating irradiances differed between strains. Atlantic strains exhibited increased light-saturated rates and quantum yield for carbon fixation under blue light. PMID:12231684
Chlorophyll-a Photosynthesis and Mg Isotope Fractionation
NASA Astrophysics Data System (ADS)
Black, J.; Yin, Q.; Casey, B. H.
2006-12-01
Mg is the metal center of all the chlorophyll pigments and therefore at the center of the process of photosynthesis. Chlorophyll (Chl) is often used as a biomarker of photosynthesis and is an enormous contributor to the global carbon cycle. Biosynthetic processes fractionate isotopes of light elements and this led us to examine the isotopic composition of Mg in Chl, as another potential biomarker. Here we detail the Mg isotopic composition of Chl-a, extracted from cultures of Synechococcus elongatus, and the culture medium (Black et al., 2006). After Chl extraction, the Mg was liberated from Chl and purified on cation-exchange columns, with a final yield of 100 ± 5%. ^{26}Mg/^{24}Mg and ^{25}Mg/^{24}Mg, were measured relative to Cambridge 1 and DSM3 standards by a standard-sample-bracketing technique on an MC-ICP-MS (Nu Instruments Ltd). We have measured the average isotopic fractionation of Mg from six samples of Chl-a from early growth phase and 4 samples from late growth phase, 9 samples of the culture medium and the Cambridge 1 Std, all relative to the DSM3 Std. We demonstrate for the first time that there is a clearly resolved depletion in the heavy isotopes of Mg in Chl-a relative to the culture medium (Δ^{26}Mg =-0.61‰; Δ^{25}Mg =-0.30‰). The heavy isotope depletion observed may be caused by chelation effects during the biosynthesis of Chl-a. We are now evaluating two hypotheses about the cause of the fractionation. One hypothesis is that the insertion step induces a fractionation via the Mg- chelatase enzyme. The second is that transport into the cell, such as via an ion channel, causes the fractionation. In either case, no difference between Chl-a and Chl-b is anticipated. Experiments and field studies are underway to examine these ideas. References Black, J., Yin, Q.-Z., Casey, W.H., 2006. Geochim. Cosmochim. Acta, 70, 4072-4079.
2016-01-01
Abstract Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572
Non-viral RNA chimeric antigen receptor modified T cells in patients with Hodgkin lymphoma.
Svoboda, Jakub; Rheingold, Susan R; Gill, Saar I; Grupp, Stephan A; Lacey, Simon F; Kulikovskaya, Irina; Suhoski, Megan M; Melenhorst, J Joseph; Loudon, Brandon; Mato, Anthony R; Nasta, Sunita Dwivedy; Landsburg, Daniel J; Youngman, Matthew R; Levine, Bruce L; Porter, David L; June, Carl H; Schuster, Stephen J
2018-06-20
Chimeric antigen receptor (CAR) modified T cells are being investigated in many settings including classical Hodgkin lymphoma (cHL). The unique biology of cHL, characterized by scant Hodgkin and Reed-Sternberg (HRS) cells within an immunosuppressive tumor microenvironment (TME), may pose challenges for cellular therapies directly targeting antigens expressed on HRS. We hypothesized that eradicating CD19 positive (+) B cells within the TME and the putative circulating CD19+ HRS clonotypic cells using anti-CD19 directed CAR modified T cells (CART19) may indirectly affect HRS cells, which do not express CD19. Here we describe our pilot trial using CART19 in patients with relapsed and refractory cHL. To limit potential toxicities, we used non-viral RNA CART19 cells which are expected to express CAR protein only a few days, as opposed to CART19 generated by viral vector transduction, which expand in vivo and retain CAR expression. All 5 enrolled patients underwent successful manufacturing of non-viral RNA CART19 and 4 were infused with protocol specified cell dose. There were no severe toxicities. Responses were seen, but these were transient. To our knowledge, this is the first CART19 clinical trial to use non-viral RNA gene delivery. This trial was registered at www.clinicaltrials.gov as NCT02277522 (adult) and NCT02624258 (pediatric). Copyright © 2018 American Society of Hematology.
NASA Astrophysics Data System (ADS)
Aneeshkumar, N.; Sujatha, C. H.
2012-03-01
Sedimentary biomarker pigments around Cochin estuary situated in the southwest coast of India were determined by HPLC. Fucoxanthin, an indicator of diatom was observed to be the most abundant carotenoid pigment in the estuary. Dinoflagellate derived carotenoid pigment peridinin was confined in the southern part of estuary and zeaxanthin pigment indicative of cyanobacteria were more found in sites influenced by anthropogenic activities. One compound having close similarity to fucoxanthin was also detected. Alloxanthin (cryptophyceae), chl b (green algae), canthaxanthin, neoxanthin, lutein and peridinin isomer were also detected by spectra and corresponding algal class were identified. The highest concentration of chl a (11.01 μg g-1) found near to the anthropogenic affected area while the lowest chl a (0.65 μg g-1) was recorded in industrial area. Degradation products of chl a, such as pheophorbide and pheophytin were observed and principal mode of mechanism of degradation were derived. Higher pheopigments content than chl a, reflects a density trapping of dead cells and early degradation of phytopigments from grazing activities.
HLA class I associations with EBV+ post-transplant lymphoproliferative disorder.
Jones, Kimberley; Wockner, Leesa; Thornton, Alycia; Gottlieb, David; Ritchie, David S; Seymour, John F; Kumarasinghe, Gayathri; Gandhi, Maher K
2015-03-01
Epstein-Barr virus (EBV) is frequently associated with post-transplant lymphoproliferative disorders (EBV(+) PTLD). In these cases, impaired Epstein-Barr virus (EBV)-specific CD8(+) T-cell immunity is strongly implicated and antigen presentation within the malignant B-cell is intact. Interestingly, several studies have reported HLA class I alleles with protective or susceptibility associations. However, results are conflicting, likely influenced by methodology including inconsistent use of multiple hypothesis testing. By contrast, HLA class I associations have been repeatedly reported for classical Hodgkin Lymphoma (cHL), in which EBV is also implicated in a proportion of cases. In contrast to EBV(+) PTLD which expresses the immunodominant EBV latency III EBNA3A/B/C proteins, EBV(+) cHL is restricted to the subdominant EBNA1/LMP1/LMP2 proteins. Herein, we report a study of HLA class I associations in EBV(+) PTLD, with 263 patients with lymphoma (cHL or PTLD) evaluated. Two Australian population cohorts, n = 23,736 and n = 891 were used for comparison. Contrary to previous reports, no HLA class I associations with EBV(+) PTLD were found, whereas for cHL known HLA class I associations were confirmed, with HLA-A*02 homozygous individuals having the lowest odds of developing EBV(+) cHL. Our results suggest that HLA class I does not influence susceptibility to the viral latency III expressing lymphoma, EBV(+) PTLD. Further studies are required for definitive confirmation. Copyright © 2015. Published by Elsevier B.V.
Bohn, Olga; Maeda, Takahiro; Filatov, Alexander; Lunardi, Andrea; Pandolfi, Pier Paolo; Teruya-Feldstein, Julie
2014-01-01
Classical Hodgkin lymphoma (CHL) and nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) are considered separate entities with different prognosis and treatment. However, morphologic features can be similar and immunohistochemical studies are essential in the distinction; thus, determination of additional biomarkers is of utmost importance. LRF/Pokemon is a protooncogene, an interacting partner co-expressed with BCL6 in germinal centers and highly expressed in diffuse large B-cell lymphoma and follicular lymphoma. Conversely, loss of the LRF gene in mouse hematopoietic stem cells results in complete block of early B cell development with concomitant Notch derepression, indicating its critical role in B versus T cell fate decision at the hematopoietic stem cell stage. For the first time, we show that LRF/Pokemon is predominantly expressed in NLPHL cases as is BCL6 with low to absent NOTCH1 protein expression; while Hodgkin Reed-Sternberg (HRS) cells in CHL show low to absent BCL6 and LRF/Pokemon expression with higher NOTCH1 expression. We illustrate a potential functional interaction between LRF and BCL6 in NLPHL pathogenesis, and differential expression of LRF/Pokemon and NOTCH1 proteins in CHL thus showing differential expression, making for an additional diagnostic marker and therapeutic target. PMID:24326827
Bohn, Olga; Maeda, Takahiro; Filatov, Alexander; Lunardi, Andrea; Pandolfi, Pier Paolo; Teruya-Feldstein, Julie
2014-02-01
Classical Hodgkin lymphoma (CHL) and nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) are considered separate entities with different prognosis and treatment. However, morphologic features can be similar and immunohistochemical studies are essential in the distinction; thus, determination of additional biomarkers is of utmost importance. LRF/Pokemon is a proto-oncogene, an interacting partner co-expressed with BCL6 in germinal centers and highly expressed in diffuse large B-cell lymphoma and follicular lymphoma. Conversely, loss of the LRF gene in mouse hematopoietic stem cells results in complete block of early B cell development with concomitant Notch de-repression, indicating its critical role in B versus T cell fate decision at the hematopoietic stem cell stage. For the first time, we show that LRF/Pokemon is predominantly expressed in NLPHL cases as is BCL6 with low to absent NOTCH1 protein expression; while Hodgkin Reed-Sternberg (HRS) cells in CHL show low to absent BCL6 and LRF/Pokemon expression with higher NOTCH1 expression. We illustrate a potential functional interaction between LRF and BCL6 in NLPHL pathogenesis, and differential expression of LRF/Pokemon and NOTCH1 proteins in CHL thus showing differential expression, making for an additional diagnostic marker and therapeutic target.
NASA Astrophysics Data System (ADS)
Churilova, T.; Suslin, V.; Berseneva, G.; Georgieva, L.
At present time for the analysis and prediction of marine ecosystem state Chlorophyll and Primary production models based on optical satellite data are widely used. However, the SeaWiFS algorithms providing the transformation of color images to chlorophyll maps give inaccurate estimation of chlorophyll "a" (Chl "a") concentration in the Black Sea - an overestimation approximately two times in summer and an underestimation - ~1,5 times during the large diatom bloom in winter-spring. A development of the regional Chl "a" algorithm requires an estimation of spectral characteristics of all light absorbing components and their relationships with Chl "a" concentration. With this aim bio-optical monitoring was organized in two fixed stations in deep-water central western part of the Black Sea and in shelf waters near the Crimea. The weekly monitoring in deep-waters region allowed to determine phytoplankton community succession: seasonal dynamics of size and taxonomic structure, development of large diatoms blooming in March and coccolithophores - in June. The significant variability in pigment concentration and species content of phytoplankton is accompanied by high variability in shape of the phytoplankton absorption spectra and in values of chl a-specific absorption coefficients. This variability had seasonal character depending mostly on the optical status of phytoplankton cells and partly on taxonomic structure of phytoplankton. The pigment packaging parameter fluctuated from 0.64-0.68 (October-December) to 0.95-0.97 (April-May). The package effect depended on intracellular pigment concentration and the size and geometry of cells, which change significantly over the year, because of extremely different environmental conditions. The relationships between phytoplankton specific absorption coefficients (at 412, 443, 490, 510, 555, 678 nm) and Chl "a" concentration have been described by power functions. The contribution of detritus to total particulate absorption significantly varied and correlated with Chl "a" concentration. The main light-absorbing component in the Black Sea is colored dissolved organic matter (CDOM), its absorption at 443 nm is 50-70 % to total particulate and CDOM absorption. Special attention should be given to shelf regions. The comparison of bio-optical data for the open part with those for the shelf region showed pronounced differences: a) the relationships between phytoplankton specific absorption coefficients and Chl "a" concentrations (at 412, 443, 490, 510, 555 nm) are different; b) in the shelf waters relative absorption by detritus was higher and weakly correlated with Chl "a" in comparison with deep-water part of the Sea. Obtained relationships have been used for development of regional algorithms to estimate Chl "a" concentration. The new regional algorithm allowed to get more correct values of Chl "a" in comparison with standard SeaWiFS algorithm.
Rengstl, Benjamin; Kim, Sooji; Döring, Claudia; Weiser, Christian; Bein, Julia; Bankov, Katrin; Herling, Marco; Newrzela, Sebastian; Hansmann, Martin-Leo; Hartmann, Sylvia
2017-01-01
The hallmark of classical Hodgkin lymphoma (cHL) is the presence of giant, mostly multinucleated Hodgkin-Reed-Sternberg (HRS) cells. Whereas it has recently been shown that giant HRS cells evolve from small Hodgkin cells by incomplete cytokinesis and re-fusion of tethered sister cells, it remains unsolved why this phenomenon particularly takes place in this lymphoma and what the differences between these cell types of variable sizes are. The aim of the present study was to characterize microdissected small and giant HRS cells by gene expression profiling and to assess differences of clonal growth behavior as well as susceptibility toward cytotoxic intervention between these different cell types to provide more insight into their distinct cellular potential. Applying stringent filter criteria, only two differentially expressed genes between small and giant HRS cells, SHFM1 and LDHB, were identified. With looser filter criteria, 13 genes were identified to be differentially overexpressed in small compared to giant HRS cells. These were mainly related to energy metabolism and protein synthesis, further suggesting that small Hodgkin cells resemble the proliferative compartment of cHL. SHFM1, which is known to be involved in the generation of giant cells, was downregulated in giant RS cells at the RNA level. However, reduced mRNA levels of SHFM1, LDHB and HSPA8 did not translate into decreased protein levels in giant HRS cells. In cell culture experiments it was observed that the fraction of small and big HRS cells was adjusted to the basic level several days after enrichment of these populations via cell sorting, indicating that small and big HRS cells can reconstitute the full spectrum of cells usually observed in the culture. However, assessment of clonal growth of HRS cells indicated a significantly reduced potential of big HRS cells to form single cell colonies. Taken together, our findings pinpoint to strong similarities but also some differences between small and big HRS cells.
Nivolumab for relapsed or refractory Hodgkin lymphoma: real-life experience.
Beköz, H; Karadurmus, N; Paydas, S; Türker, A; Toptas, T; Firatli Tuglular, T; Sönmez, M; Gülbas, Z; Tekgündüz, E; Kaya, A H; Özbalak, M; Tastemir, N; Kaynar, L; Yildirim, R; Karadogan, I; Arat, M; Pepedil Tanrikulu, F; Özkocaman, V; Abali, H; Turgut, M; Kurt Yüksel, M; Özcan, M; Dogu, M H; Kabukçu Hacioglu, S; Barista, I; Demirkaya, M; Köseoglu, F D; Toprak, S K; Yilmaz, M; Demirkürek, H C; Demirkol, O; Ferhanoglu, B
2017-10-01
Reed-Sternberg cells of classical Hodgkin's lymphoma (cHL) are characterized by genetic alterations at the 9p24.1 locus, leading to over-expression of programmed death-ligand 1 and 2. In a phase 1b study, nivolumab, a PD-1-blocking antibody, produced a high response in patients with relapsed or refractory cHL, with an acceptable safety profile. We present a retrospective analysis of 82 patients (median age: 30 years; range: 18-75) with relapsed/refractory HL treated with nivolumab in a named patient program from 24 centers throughout Turkey. The median follow-up was 7 months, and the patients had a median of 5 (2-11) previous lines of therapy. Fifty-seven (70%) and 63 (77%) had been treated by stem-cell transplantation and brentuximab vedotin, respectively. Among 75 patients evaluated after 12 weeks of nivolumab treatment, the objective response rate was 64%, with 16 complete responses (CR; 22%); after 16 weeks, it was 60%, with 16 (26%) patients achieving CR. Twenty patients underwent subsequent transplantation. Among 11 patients receiving allogeneic stem-cell transplantation, 5 had CR at the time of transplantation and are currently alive with ongoing response. At the time of analysis, 41 patients remained on nivolumab treatment. Among the patients who discontinued nivolumab, the main reason was disease progression (n = 19). The safety profile was acceptable, with only four patients requiring cessation of nivolumab due to serious adverse events (autoimmune encephalitis, pulmonary adverse event, and two cases of graft-versus-host disease aggravation). The 6-month overall and progression-free survival rates were 91.2% (95% confidence interval: 0.83-0.96) and 77.3% (0.66-0.85), respectively. Ten patients died during the follow-up; one of these was judged to be treatment-related. Nivolumab represents a novel option for patients with cHL refractory to brentuximab vedotin, and may serve as a bridge to transplantation; however, it may be associated with increased toxicity. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kozin, S V; Shkarin, P; Gerweck, L E
2001-06-15
The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h -1 ) and contaminated with metals, mainly U (from 25 to 48 mg L -1 ) and zinc (from 17 to 87 mg L -1 ). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae , but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g -1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g -1 DB, close to the theoretical maximum response (≈7.9 mg U g -1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g -1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L -1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection.
Baselga-Cervera, Beatriz; Romero-López, Julia; García-Balboa, Camino; Costas, Eduardo; López-Rodas, Victoria
2018-01-01
The extraction and processing of uranium (U) have polluted large areas worldwide, rendering anthropogenic extreme environments inhospitable to most species. Noticeably, these sites are of great interest for taxonomical and applied bioprospection of extremotolerant species successfully adapted to U tailings contamination. As an example, in this work we have studied a microalgae species that inhabits extreme U tailings ponds at the Saelices mining site (Salamanca, Spain), characterized as acidic (pH between 3 and 4), radioactive (around 4 μSv h−1) and contaminated with metals, mainly U (from 25 to 48 mg L−1) and zinc (from 17 to 87 mg L−1). After isolation of the extremotolerant ChlSP strain, morphological characterization and internal transcribed spacer (ITS)-5.8S gene sequences placed it in the Chlamydomonadaceae, but BLAST analyses identity values, against the nucleotide datasets at the NCBI database, were very low (<92%). We subjected the ChlSP strain to an artificial selection protocol to increase the U uptake and investigated its response to selection. The ancestral strain ChlSP showed a U-uptake capacity of ≈4.30 mg U g−1 of dry biomass (DB). However, the artificially selected strain ChlSG was able to take up a total of ≈6.34 mg U g−1 DB, close to the theoretical maximum response (≈7.9 mg U g−1 DB). The selected ChlSG strain showed two possible U-uptake mechanisms: the greatest proportion by biosorption onto cell walls (ca. 90%), and only a very small quantity, ~0.46 mg g−1 DB, irreversibly bound by bioaccumulation. Additionally, the kinetics of the U-uptake process were characterized during a microalgae growth curve; ChlSG cells removed close to 4 mg L−1 of U in 24 days. These findings open up promising prospects for sustainable management of U tailings waters based on newly evolved extremotolerants and outline the potential of artificial selection in the improvement of desired features in microalgae by experimental adaptation and selection. PMID:29662476
Utilizing Landsat 8 to measure kelp physiological health in the Santa Barbara Channel
NASA Astrophysics Data System (ADS)
Taylor, N.; Bausell, J.; Bell, T. W.; Kudela, R. M.; Scuderi, L. A.
2017-12-01
Giant Kelp (Macrocystis pyrifera) is an important primary producer and ecosystem engineer along the west coast of North America. While satellite sensors can easily quantify canopy area of kelp, gauging the physiological health of these macroalgae has proven more difficult. Bell et al. (2015) devised an algorithm that effectively estimated the chlorophyll to carbon ratio (Chl:C)—a proxy for kelp health—using AVIRIS imagery. However while AVIRIS shows great potential in mapping kelp forest health, as an airborne sensor its availability is inconsistent over time, making it less ideal for continuous kelp forest monitoring. We therefore extend this method of determining Chl:C based on reflectance values to Landsat 8 satellite imagery. Landsat 8 Level 2 reflectance was confined to within one standard deviation of the best fit line to exclude outliers, and used to generate an equation for estimating Chl:C. The construction of a Landsat time series using this algorithm spanning 2013-2015 displays a predictable seasonal cycle of physiological health. These seasonal shifts in Chl:C suggest that kelp physiology is closely linked to environmental conditions and total biomass. Similarly, the lower Chl:C of Isla Vista observed in 2015 could be caused by environmental stressors associated with El Niño such as increased sea surface temperature, decreased nutrient availability, and disturbance. The added implementation of Landsat to estimate health greatly increases the potential for understanding long and short-term variability in photosynthetic ability and growth rates of kelp forests.
Buchovec, Irina; Lukseviciute, Viktorija; Marsalka, Arunas; Reklaitis, Ignas; Luksiene, Zivile
2016-04-01
This study is focused on the novel approaches to enhance the inactivation of the Gram (-) food pathogen Salmonella enterica and harmful molds in vitro and on the surface of strawberries using the chlorophyllin-chitosan complex. Salmonella enterica (∼1 × 10(7) CFU mL(-1)) was incubated with chlorophyllin 1.5 × 10(-5) M (Chl, food additive), chitosan 0.1% (CHS, food supplement) or the chlorophyllin-chitosan complex (1.5 × 10(-5) M Chl-0.1% CHS) and illuminated with visible light (λ = 405 nm, light dose 38 J cm(-2)) in vitro. Chlorophyllin (Chl)-based photosensitization inactivated Salmonella just by 1.8 log. Chitosan (CHS) alone incubated for 2 h with Salmonella reduced viability 2.15 log, whereas photoactivated Chl-CHS diminished bacterial viability by 7 log. SEM images indicate that the Chl-CHS complex under these experimental conditions covered the entire bacterial surface. Significant cell membrane disintegration was the main lethal injury induced in Gram (-) bacteria by this treatment. Analysis of strawberry decontamination from surface-inoculated Salmonella indicated that photoactivated Chl-CHS (1.5 × 10(-5) M Chl-0.1% CHS, 30 min incubation, light dose 38 J cm(-2)) coatings diminished the pathogen population on the surface of strawberries by 2.2 log. Decontamination of strawberries from naturally distributed yeasts/molds revealed that chitosan alone reduced the population of yeasts/molds just by 0.4 log, Chl-based photosensitization just by 0.9 log, whereas photoactivated Chl-CHS coatings reduced yeasts/molds on the surface of strawberries by 1.4 log. Electron paramagnetic resonance spectroscopy confirmed that no additional photosensitization-induced free radicals have been found in the strawberry matrix. Visual quality (color, texture) of the treated strawberries was not affected either. In conclusion, photoactive Chl-CHS exhibited strong antimicrobial action against more resistant to photosensitization Gram (-) Salmonella enterica in comparison with Gram (+) bacteria in vitro. It reduced significantly the viability of strawberry surface-attached yeasts/molds and inoculated Salmonella without any negative impact on the visual quality of berries. Experimental data support the idea that photoactivated Chl-CHS can be a useful tool for the future development of edible photoactive antimicrobial coatings which can preserve strawberries and prolong their shelf-life according to requirements of "clean green technology".
Field Research Facility Data Integration Framework Data Management Plan: Survey Lines Dataset
2016-08-01
CHL and its District partners. The beach morphology surveys on which this report focuses provide quantitative measures of the dynamic nature of...topography • volume change 1.4 Data description The morphology surveys are conducted over a series of 26 shore- perpendicular profile lines spaced 50...dataset input data and products. Table 1. FRF survey lines dataset input data and products. Input Data FDIF Product Description ASCII LARC survey text
Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang
2017-12-01
Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Castillo-Castrejon, Marisol; Meraz-Cruz, Noemí; Gomez-Lopez, Nardhy; Flores-Pliego, Arturo; Beltrán-Montoya, Jorge; Viveros-Alcaráz, Martín; Vadillo-Ortega, Felipe
2014-01-01
Problem Human parturition is associated with an intrauterine pro-inflammatory environment in the choriodecidua. Evidence that some mediators of this signaling cascade also elicit responses leading to labor prompted us to characterize the cellular sources of these mediators in the human choriodecidua. Method of study Leukocyte-enriched preparations from human choriodecidua (ChL) and intervillous placental blood leukocytes (PL) were maintained in culture. Secretions of inflammatory cytokines, chemokines and MMP-9 were documented. Leukocyte phenotype of ChL and PL was determined by flow cytometry using specific fluorochrome-conjugated antibodies. Results and Conclusions ChL showed a distinct pro-inflammatory secretion pattern of cytokines and chemokines when compared with PL, including higher amounts of TNF-α and IL-6, and decreased secretions of IL-4 and IL-1ra. ChL also secreted more MIP-1α and MCP-1 and MMP-9 than PL. No significant differences were found in leukocytes subsets between compartments. Based on our findings, we propose that ChL isolated from fetal membranes at term are functionally different from PL and may collaborate to modulate the microenvironment linked to induction and progression of human labor. PMID:24286217
Monitoring Functional Traits of Alpine Vegetation using Remote Sensing
NASA Astrophysics Data System (ADS)
Li, C.; Wulf, H.; Schaepman, M. E.; Schmid, B.
2016-12-01
Plant functional traits can be used to study the interactions between plants and ecosystem functioning as well as the response of plants to various environmental pressures. Continuous monitoring of plant functional traits dynamics on a large spatial scale is important to understand the mechanisms of ecosystem function degradation, especially on the Qinghai-Tibet Plateau. In this study, we investigated spatiotemporal trends of functional traits (i.e., chlorophyll content, phenology, leaf area index proxy of leaf size and above ground biomass proxy of leaf mass) in the eastern part of the Qinghai-Tibet Plateau based on the combined analysis of multi-sensor satellite data and field observations at three spatial scales (ground-truth data at 1 m, Landsat at 30 m, MODIS at 500 m), and analyzed potential factors contribute to their spatiotemporal trends. Chlorophyll content (Chl) and biomass was retrieved based on 94 field plots measurements. LAI was analyzed using MCD15A3H product and estimated values using digital hemispherical photographs in the field. Plant phenology will be processed based on MODIS NDVI time series and hourly Phenocam observations. The preliminary results show that (1) Chl, LAI and biomass show high spatial heterogeneity trends and increase in 2001 - 2015. (2) Elevation played an important role in the spatial pattern of LAI and Chl variation in 15 years. A dividing line of approximately 3800 m exists and shows that below this line, LAI and Chl changes more complicated, showing significantly positive and negative linear trend. While above this altitude, the change rate of two variables keeps relatively stable. Vegetation in low elevation is exposed to high habitat diversity by showing high Chl, LAI and biomass spatial heterogeneity. The vegetation in high habitat diversity may be more sensitive to climatic variables and human activities than higher elevation since warming contribute to the positive trend of traits while human factors like urbanization might be explain negative trend in relative low altitude (below 3800 m). (3) Temperature contribute to the above functional traits variation than precipitation, especially temperature is more correlated to the functional traits of widely distributed vegetation type than narrow-ranging vegetation type.
Behrendt, Lars; Schrameyer, Verena; Qvortrup, Klaus; Lundin, Luisa; Sørensen, Søren J.; Larkum, Anthony W. D.
2012-01-01
The cyanobacterium Acaryochloris marina is the only known phototroph harboring chlorophyll (Chl) d. It is easy to cultivate it in a planktonic growth mode, and A. marina cultures have been subject to detailed biochemical and biophysical characterization. In natural situations, A. marina is mainly found associated with surfaces, but this growth mode has not been studied yet. Here, we show that the A. marina type strain MBIC11017 inoculated into alginate beads forms dense biofilm-like cell clusters, as in natural A. marina biofilms, characterized by strong O2 concentration gradients that change with irradiance. Biofilm growth under both visible radiation (VIS, 400 to 700 nm) and near-infrared radiation (NIR, ∼700 to 730 nm) yielded maximal cell-specific growth rates of 0.38 per day and 0.64 per day, respectively. The population doubling times were 1.09 and 1.82 days for NIR and visible light, respectively. The photosynthesis versus irradiance curves showed saturation at a photon irradiance of Ek (saturating irradiance) >250 μmol photons m−2 s−1 for blue light but no clear saturation at 365 μmol photons m−2 s−1 for NIR. The maximal gross photosynthesis rates in the aggregates were ∼1,272 μmol O2 mg Chl d−1 h−1 (NIR) and ∼1,128 μmol O2 mg Chl d−1 h−1 (VIS). The photosynthetic efficiency (α) values were higher in NIR-irradiated cells [(268 ± 0.29) × 10−6 m2 mg Chl d−1 (mean ± standard deviation)] than under blue light [(231 ± 0.22) × 10−6 m2 mg Chl d−1]. A. marina is well adapted to a biofilm growth mode under both visible and NIR irradiance and under O2 conditions ranging from anoxia to hyperoxia, explaining its presence in natural niches with similar environmental conditions. PMID:22467501
Constitutional 3p26.3 terminal microdeletion in an adolescent with neuroblastoma.
Pezzolo, Annalisa; Sementa, Angela Rita; Lerone, Margherita; Morini, Martina; Ognibene, Marzia; Defferrari, Raffaella; Mazzocco, Katia; Conte, Massimo; Gigliotti, Anna Rita; Garaventa, Alberto; Pistoia, Vito; Varesio, Luigi
2017-05-04
Neuroblastoma (NB) is a common and often lethal cancer of early childhood that accounts for 10% of pediatric cancer mortality. Incidence peaks in infancy and then rapidly declines, with less than 5% of cases diagnosed in children and adolescents ≥ 10 y. There is increasing evidence that NB has unique biology and an chronic disease course in older children and adolescents, but ultimately dismal survival. We describe a rare constitutional 3p26.3 terminal microdeletion which occurred in an adolescent with NB, with apparently normal phenotype without neurocognitive defects. We evaluated the association of expression of genes involved in the microdeletion with NB patient outcomes using R2 platform. We screened NB patient's tumor cells for CHL1 protein expression using immunofluorescence. Constitutional and tumor DNA were tested by array-comparative genomic hybridization and single nucleotide-polymorphism-array analyses. Peripheral blood mononuclear cells from the patient showed a 2.54 Mb sub-microscopic constitutional terminal 3p deletion that extended to band p26.3. The microdeletion 3p disrupted the CNTN4 gene and the neighboring CNTN6 and CHL1 genes were hemizygously deleted, each of these genes encode neuronal cell adhesion molecules. Low expression of CNTN6 and CNTN4 genes did not stratify NB patients, whereas low CHL1 expression characterized 417 NB patients having worse overall survival. CHL1 protein expression on tumor cells from the patient was weaker than positive control. This is the first report of a constitutional 3p26.3 deletion in a NB patient. Since larger deletions of 3p, indicative of the presence of one or more tumor suppressor genes in this region, occur frequently in neuroblastoma, our results pave the way to the identification of one putative NB suppressor genes mapping in 3p26.3.
The Management of Classical Hodgkin's Lymphoma: Past, Present, and Future.
Richardson, S E; McNamara, C
2011-01-01
The management of classical Hodgkin's lymphoma (CHL) is a success story of modern multi-agent haemato-oncology. Prior to the middle of the twentieth century CHL was fatal in the majority of cases. Introduction of single agent radiotherapy (RT) demonstrated for the first time that these patients could be cured. Developments in chemotherapy including the mechlorethamine, vincristine, procarbazine and prednisolone (MOPP) and Adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) regimens have resulted in cure rates of over 80%. Even in relapse, CHL patients can be salvaged with high dose chemotherapy and autologous haematopoietic stem cell transplantation (ASCT). Challenges remain, however, in finding new strategies to manage the small number of patients who continue to relapse or progress. In addition, the young age of many Hodgkin's patients forces difficult decisions in balancing the benefit of early disease control against the survival disadvantage of late toxicity. In this article we aim to summarise past trials, define the current standard of care and appraise future developments in the management of CHL.
Epstein–Barr virus and Hodgkin’s lymphoma in Cairo, Egypt
Audouin, Josée; Nathwani, Bharat; Ishak, Elia; MacLennan, Kenneth; Mueller-Hermelink, Hans Konrad; Armitage, James O.; Weisenburger, Dennis D.
2010-01-01
Fifty-five consecutive cases of Hodgkin’s lymphoma (HL), collected between 1996 and 1998 from Cairo, Egypt, were histologically subtyped, phenotyped, and then studied for the presence of Epstein–Barr virus (EBV). We used immunohistochemical stains for EBV latent membrane protein 1 (LMP-1) and in situ hybridization stains for EBV-encoded small RNA (EBER-1) transcripts. Forty-five cases (82%) had classic HL (cHL), and ten cases (18%) had nodular lymphocyte predominant HL (NLPHL), with each group expressing its typical phenotype. LMP-1 stains were positive in 63% and 0% of cHL and NLPHL cases, respectively. EBER-positive Reed–Sternberg cells and variants were also present in 62% and 0% of each group, respectively. The cHL cases showed variable EBER positivity: nodular sclerosis, 58%; mixed cellularity, 100%; lymphocyte depletion, 100%; and unclassifiable, 67%. Our findings are similar to those from other developing countries and point towards a pathogenic role of EBV in cHL. PMID:21625283
Ultrasound-triggered drug delivery using acoustic droplet vaporization
NASA Astrophysics Data System (ADS)
Fabiilli, Mario Leonardo
The goal of targeted drug delivery is the spatial and temporal localization of a therapeutic agent and its associated bioeffects. One method of drug localization is acoustic droplet vaporization (ADV), whereby drug-laden perfluorocarbon (PFC) emulsions are vaporized into gas bubbles using ultrasound, thereby releasing drug locally. Transpulmonary droplets are converted into bubbles that occlude capillaries, sequestering the released drug within an organ or tumor. This research investigates the relationship between the ADV and inertial cavitation (IC) thresholds---relevant for drug delivery due to the bioffects generated by IC---and explores the delivery of lipophilic and hydrophilic compounds using PFC double emulsions. IC can positively and negatively affect ultrasound mediated drug delivery. The ADV and IC thresholds were determined for various bulk fluid, droplet, and acoustic parameters. At 3.5 MHz, the ADV threshold occurred at a lower rarefactional pressure than the IC threshold. The results suggest that ADV is a distinct phenomenon from IC, the ADV nucleus is internal to the droplet, and the IC nucleus is the bubble generated by ADV. The ADV triggered release of a lipophilic chemotherapeutic agent, chlorambucil (CHL), from a PFC-in-oil-in-water emulsion was explored using plated cells. Cells exposed to a CHL-loaded emulsion, without ADV, displayed 44% less growth inhibition than cells exposed to an equal concentration of CHL in solution. Upon ADV of the CHL-loaded emulsion, the growth inhibition increased to the same level as cells exposed to CHL in solution. A triblock copolymer was synthesized which enabled the formulation of stable water-in-PFC-in-water (W1/PFC/W2) emulsions. The encapsulation of fluorescein in the W1 phase significantly decreased the mass flux of fluorescein; ADV was shown to completely release the fluorescein from the emulsions. ADV was also shown to release thrombin, dissolved in the W1 phase, which could be used in vivo to extend synergistically the duration of ADV-generated, microbubble-based embolizations. Overall, the results suggest that PFC double emulsions can be used as an ultrasound-triggered drug delivery system. Compared to traditional drug delivery systems, ADV could be used to increase the therapeutic efficacy and decrease the systemic toxicity of drug therapy.
Peterson, Richard B; Oja, Vello; Eichelmann, Hillar; Bichele, Irina; Dall'Osto, Luca; Laisk, Agu
2014-10-01
This work addresses the question of occurrence and function of photosystem II (PSII) in bundle sheath (BS) cells of leaves possessing NADP-malic enzyme-type C4 photosynthesis (Zea mays). Although no requirement for PSII activity in the BS has been established, several component proteins of PSII have been detected in BS cells of developing maize leaves exhibiting O2-insensitive photosynthesis. We used the basal fluorescence emissions of PSI (F 0I) and PSII (F 0II) as quantitative indicators of the respective relative photosystem densities. Chl fluorescence induction was measured simultaneously at 680 and 750 nm. In mature leaves, the F m(680)/F 0(680) ratio was 10.5 but less in immature leaves. We propose that the lower ratio was caused by the presence of a distinct non-variable component, F c, emitting at 680 and 750 nm. After F c was subtracted, the fluorescence of PSI (F 0I) was detected as a non-variable component at 750 nm and was undetectably low at 680 nm. Contents of Chls a and b were measured in addition to Chl fluorescence. The Chl b/(a + b) was relatively stable in developing sunflower leaves (0.25-0.26), but in maize it increased from 0.09 to 0.21 with leaf tissue age. In sunflower, the F 0I/(F 0I + F 0II) was 0.39 ± 0.01 independent of leaf age, but in maize, this parameter was 0.65 in young tissue of very low Chl content (20-50 mg m(-2)) falling to a stable level of 0.53 ± 0.01 at Chl contents >100 mg m(-2). The values of F 0I/(F 0I + F 0II) showed that in sunflower, excitation was partitioned between PSII and PSI in a ratio of 2:1, but the same ratio was 1:1 in the C4 plant. The latter is consistent with a PSII:PSI ratio of 2:1 in maize mesophyll cells and PSI only in BS cells (2:1:1 distribution). We suggest, moreover, that redox mediation of Chl synthesis, rather than protein accumulation, regulates photosystem assembly to ensure optimum excitation balance between functional PSII and PSI. Indeed, the apparent necessity for two Chls (a and b) may reside in their targeted functions in influencing accumulation of PSI and PSII, respectively, as opposed to their spectral differences.
Mutagenic activities of heterocyclic amines in Chinese hamster lung cells in culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terada, M.; Nagao, M.; Nakayasu, M.
1986-01-01
A mutation assay system with Chinese hamster lung cells (CHL) using diphtheria toxin resistance as a selective marker has been established. The mutagenic activities of heterocyclic amines, originally isolated from pyrolyzates of amino acids and proteins, broiled fish and fried beef were assayed in cultured CHL cells in the absence and presence of a metabolic activation system, with diphtheria toxin resistance as a marker. All the heterocyclic amines tested except 3-amino-1,4-dimethyl-5H-pyrido (4,3-b)indole (Trp-P-1) required the presence of a metabolic activation system for mutagenicity on CHL cells. 3-Amino-1-methyl-5H-pyrido(4,3-b)indole (Trp-P-2) was the most mutagenic among the heterocyclic amines tested. Other compounds weremore » also mutagenic in the following order of decreasing potency: Trp-P-1, 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ), 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), 2-amino-9H-pyrido(2,3-b)indole (A..cap alpha..C), 2-amino-3,8-dimethylimidazo(4,5-f)quinoxaline (MeIQx), 2-amino-6-methyldipyrido(1,2-a:3',2'-d)imidazole (Glu-P-1) and 2-aminodipyrido(1,2--a:3',2'-d)imidazole (Glu-P-2).« less
Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a.
Xu, Meiyun; Kinoshita, Yusuke; Matsubara, Shogo; Tamiaki, Hitoshi
2016-03-01
Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.
NASA Astrophysics Data System (ADS)
Trahanovsky, K.; Whitledge, T. E.
2016-02-01
We examined nutrient and chlorophyll-a (chl) concentrations from bottle samples collected from 0-50 m depth in the Northern Gulf of Alaska along the Seward Line transect on 56 cruises from 1998-2010. We computed monthly average concentrations of macronutrients (N, P, and Si) and chlorophyll-a by depth at four major stations along the transect to describe the regular seasonal progression of the nutricline and typical water column distributions of chlorophyll-a in this seasonally productive, downwelling coastal zone. The across-shelf transect displayed two different patterns of seasonal progression clearly associated with the Alaska Coastal Current (ACC) and Alaskan Stream (AS) current systems. The annual cycle of nutrient drawdown and replenishment is remarkably consistent from year to year within each system and is well correlated with chl measurements. The spring bloom begins earlier and nutrient depletion is sustained longer in the near-shore ACC then in the AS system centered over the shelf break. Chlorophyll-a concentrations frequently peak at 10-20m depth in both systems during July through October, as nutrients remain depleted in the top 10m. Subsurface nutrients (20 - 50 m depth) begin to recover between July and August and then experience a secondary drawdown between August and October, consistent with higher chl levels observed during the fall bloom. Interannual variability in the progression of the nutricline and the relative contribution of subsurface chl to total chl is presented. Physical data demonstrate increasing stratification in this region due to climate change; the implications for nutrient dynamics and primary production are discussed.
Herbeck, Rosemarie; Teodorescu Brînzeu, D; Giubelan, Marioara; Lazăr, Elena; Dema, Alis; Ioniţă, Hortensia
2011-01-01
In some instances, the overlap in morphologic features and antigen expression between nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and classical Hodgkin lymphoma (cHL) can cause confusion in the diagnosis. In these cases, the transcription factors (TFs) B-cell specific activator protein (BSAP)/Pax-5, octamer binding protein-2 (Oct-2), B-lymphocyte-specific co-activator BOB.1/OBF.1, Bcl-6 protein and multiple myeloma-1/interferon regulatory factor-4 (MUM1/IRF-4) may aid in clarifying the diagnosis. Twenty-two cases of NLPHL were studied for the immunohistochemical expression of Pax-5, Oct-2, BOB.1, Bcl-6 protein and MUM1/IRF-4. Our results sustain the usefulness of the selected set of TFs to diagnose and distinguish NLPHL from cHL since Pax-5, Oct-2, BOB.1 and Bcl-6 are consistently expressed by lymphocyte predominant (LP) cells and reported by others to be often unexpressed in Hodgkin and Reed-Sternberg cells. By contrast, MUM1/IRF-4 protein scored negative in the majority of LP cells, but is reported to be expressed in almost all cases of cHL. Thus, although the expression of transcription factors is very heterogeneous, their simultaneous implementation for positive and differential diagnosis may be useful.
Tsuchiya, Tohru; Mizoguchi, Tadashi; Akimoto, Seiji; Tomo, Tatsuya; Tamiaki, Hitoshi; Mimuro, Mamoru
2012-03-01
In oxygenic photosynthetic organisms, the properties of photosynthetic reaction systems primarily depend on the Chl species used. Acquisition of new Chl species with unique optical properties may have enabled photosynthetic organisms to adapt to various light environments. The artificial production of a new Chl species in an existing photosynthetic organism by metabolic engineering provides a model system to investigate how an organism responds to a newly acquired pigment. In the current study, we established a transformation system for a Chl d-dominated cyanobacterium, Acaryochloris marina, for the first time. The expression vector (constructed from a broad-host-range plasmid) was introduced into A. marina by conjugal gene transfer. The introduction of a gene for chlorophyllide a oxygenase, which is responsible for Chl b biosynthesis, into A. marina resulted in a transformant that synthesized a novel Chl species instead of Chl b. The content of the novel Chl in the transformant was approximately 10% of the total Chl, but the level of Chl a, another Chl in A. marina, did not change. The chemical structure of the novel Chl was determined to be [7-formyl]-Chl d(P) by mass spectrometry and nuclear magnetic resonance spectroscopy. [7-Formyl]-Chl d(P) is hypothesized to be produced by the combined action of chlorophyllide a oxygenase and enzyme(s) involved in Chl d biosynthesis. These results demonstrate the flexibility of the Chl biosynthetic pathway for the production of novel Chl species, indicating that a new organism with a novel Chl might be discovered in the future.
A physiological perspective on the origin and evolution of photosynthesis
Martin, William F; Bryant, Donald A; Beatty, J Thomas
2017-01-01
Abstract The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy—the cyanobacterial lineage. PMID:29177446
Wesonga, S M; Muluvi, G M; Okemo, P O; Kariuki, S
2010-05-01
To characterise and investigate antimicrobial resistance of Esherichia coli and salmonella strains isolated from indigenous Gallus gallus in a leading slaughterhouse/market outlet in Nairobi-Kenya. A repeated cross sectional study and based on random sampling was used. The study was carried out in a leading market outlet in Nairobi, Kenya. A hundred and four indigenous chicken rectal swabs were analysed, of which 67.3% were contaminated with Escherichia coli and 12.5% with Salmonella typhimurium. Seventy Escherichia coli isolates showed resistance phenotypes to one, two or more antibiotics. The most common antimicrobial resistance pattern was the single resistance to Tet (21.43%), followed by Amp Cot Tet (14%), Aug Amp Cot Tet (4.29%), Aug Amp Cot Tet Kan Chl (2.86%), Amp Cot Tet Chl, Cot Tet (2.86%) and Crx Amp Cot Tet Chl, Crx Amp Cot Chi, Amp Cot, Aug Amp, (1.43%) respectively. The highest rate of resistance was against Tet (55.7%), followed by Cot (40%). Third in line of resistance was Amp 32.86%, followed by Aug (11.43%), low or moderate resistance was against Chl (8.57%), Kan (4.29%), and Crx (2.86%) (P<0.0002). Salmonella typhimurium recovered displayed single resistance pattern to Tet (16.67%), Gen Cot Tet (8.33%), Amp Cot Tet (8.33%), Aug Amp Cot Tet (8.33%) and Amp Cot Tet Chl (16.67%). The highest resistance was against Tet (58.3%), Cot (41.7%), Amp (33.3%), Chl (16.7%), Aug and Gen (8.3%) respectively (P<0.0001). 3.0kb and 5.6kb plasmids isolated were not transferable by conjugation. Routine surveillance at slaughter/market outlets of Escherichia coli and Salmonella enterica should be done to identify infected flocks as a regulatory procedure for food safety and security programme.
Zhu, Mingyue; Li, Wei; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Guo, Junli; Li, Mengsen
2017-03-15
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis. © 2016 UICC.
Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse.
Richter, Carol A; Amin, Susan; Linden, Jennifer; Dixon, Jill; Dixon, Michael J; Tucker, Abigail S
2010-04-15
Conductive hearing loss (CHL) is one of the most common forms of human deafness. Despite this observation, a surprising gap in our understanding of the mechanisms underlying CHL remains, particularly with respect to the molecular mechanisms underlying middle ear development and disease. Treacher Collins syndrome (TCS) is an autosomal dominant disorder of facial development that results from mutations in the gene TCOF1. CHL is a common feature of TCS but the causes of the hearing defect have not been studied. In this study, we have utilized Tcof1 mutant mice to dissect the developmental mechanisms underlying CHL. Our results demonstrate that effective cavitation of the middle ear is intimately linked to growth of the auditory bulla, the neural crest cell-derived structure that encapsulates all middle ear components, and that defects in these processes have a profoundly detrimental effect on hearing. This research provides important insights into a poorly characterized cause of human deafness, and provides the first mouse model for the study of middle ear cavity defects, while also being of direct relevance to a human genetic disorder.
Zhang, Daoxi; Lavender, Samantha; Muller, Jan-Peter; Walton, David; Karlson, Bengt; Kronsell, Johan
2017-12-01
A novel approach, termed Summed Positive Peaks (SPP), is proposed for determining phytoplankton abundances (Chlorophyll-a or Chl-a) and surface phytoplankton bloom extent in the optically complex Baltic Sea. The SPP approach is established on the basis of a baseline subtraction method using Rayleigh corrected top-of-atmosphere data from the Medium Resolution Imaging Spectrometer (MERIS) measurements. It calculates the reflectance differences between phytoplankton related signals observed in the MERIS red and near infrared (NIR) bands, such as sun-induced chlorophyll fluorescence (SICF) and the backscattering at 709nm, and considers the summation of the positive line heights for estimating Chl-a concentrations. The SPP algorithm is calibrated against near coincident in situ data collected from three types of phytoplankton dominant waters encountered in the Baltic Sea during 2010 (N=379). The validation results show that the algorithm is capable of retrieving Chl-a concentrations ranging from 0.5 to 3mgm -3 , with an RMSE of 0.24mgm -3 (R 2 =0.69, N=264). Additionally, the comparison results with several Chl-a algorithms demonstrates the robustness of the SPP approach and its sensitivity to low to medium biomass waters. Based on the red and NIR reflectance features, a flagging method is also proposed to distinguish intensive surface phytoplankton blooms from the background water. Copyright © 2017 Elsevier B.V. All rights reserved.
Romero-Oliva, Claudia Suseth; Contardo-Jara, Valeska; Pflugmacher, Stephan
2015-06-01
Microcystins (MCs) produced by cyanobacteria in natural environments are a potential risk to the integrity of ecosystems. In this study, the effects of cyanobacterial cell-free crude extracts from a Microcystis aeruginosa bloom containing three MC-congeners MC-LR, -RR, and -YR at environmental relevant concentrations of 49.3±2.9, 49.8±5.9, and 6.9±3.8μg/L, respectively, were evaluated on Ceratophyllum demersum (L.), Egeria densa (Planch.), and Hydrilla verticillata (L.f.). Effects on photosynthetic pigments (total chlorophyll (chl), chl a, chl b, and carotenoids), enzymatic defense led by catalase (CAT), peroxidase (POD) and glutathione reductase (GR), and biotransformation enzyme glutathione S-transferase (GST) were measured after 1, 4, and 8h and after 1, 3, 7, and 14 days of exposure. Results show that in all exposed macrophytes, photosynthetic pigments were negatively affected. While chl a and total chl decreased with increasing exposure time, a parallel increase in chl b was observed after 8h. Concomitant increase of ∼5, 16, and 34% of antioxidant carotenoid concentration in exposed C. demersum, E. densa, and H. verticillata, respectively, was also displayed. Enzymatic antioxidant defense systems in all exposed macrophytes were initiated within the first hour of exposure. In exposed E. densa, highest values of CAT and GR activities were observed after 4 and 8h, respectively, while in exposed H. verticillata highest value of POD activity was observed after 8h. An early induction with a significant increase of biotransformation enzyme GST was observed in E. densa after 4h and in C. demersum and H. verticillata after 8h. These results are the first to show rapid induction of stress and further possible MC biotransformation (based on the activation of GST enzymatic activity included in MC metabolization during the biotransformation mechanism) in macrophytes exposed to crude extract containing a mixture of MCs. Copyright © 2015 Elsevier B.V. All rights reserved.
Lima, J V; Lobato, A K S
2017-01-01
Water deficit is considered the main abiotic stress that limits agricultural production worldwide. Brassinosteroids (BRs) are natural substances that play roles in plant tolerance against abiotic stresses, including water deficit. This research aims to determine whether BRs can mitigate the negative effects caused by water deficiency, revealing how BRs act and their possible contribution to increased tolerance of cowpea plants to water deficit. The experiment was a factorial design with the factors completely randomised, with two water conditions (control and water deficit) and three levels of brassinosteroids (0, 50 and 100 nM 24-epibrassinolide; EBR is an active BRs). Plants sprayed with 100 nM EBR under the water deficit presented significant increases in Φ PSII , q P and ETR compared with plants subjected to the water deficit without EBR. With respect to gas exchange, P N , E and g s exhibited significant reductions after water deficit, but application of 100 nM EBR caused increases in these variables of 96, 24 and 33%, respectively, compared to the water deficit + 0 nM EBR treatment. To antioxidant enzymes, EBR resulted in increases in SOD, CAT, APX and POX, indicating that EBR acts on the antioxidant system, reducing cell damage. The water deficit caused significant reductions in Chl a , Chl b and total Chl, while plants sprayed with 100 nM EBR showed significant increases of 26, 58 and 33% in Chl a , Chl b and total Chl, respectively. This study revealed that EBR improves photosystem II efficiency, inducing increases in Φ PSII , q P and ETR. This substance also mitigated the negative effects on gas exchange and growth induced by the water deficit. Increases in SOD, CAT, APX and POX of plants treated with EBR indicate that this steroid clearly increased the tolerance to the water deficit, reducing reactive oxygen species, cell damage, and maintaining the photosynthetic pigments. Additionally, 100 nM EBR resulted in a better dose-response of cowpea plants exposed to the water deficit.
Christ, Bastien; Schelbert, Silvia; Aubry, Sylvain; Süssenbacher, Iris; Müller, Thomas; Kräutler, Bernhard; Hörtensteiner, Stefan
2012-01-01
During leaf senescence, chlorophyll (Chl) is broken down to nonfluorescent chlorophyll catabolites (NCCs). These arise from intermediary fluorescent chlorophyll catabolites (FCCs) by an acid-catalyzed isomerization inside the vacuole. The chemical structures of NCCs from Arabidopsis (Arabidopsis thaliana) indicate the presence of an enzyme activity that demethylates the C132-carboxymethyl group present at the isocyclic ring of Chl. Here, we identified this activity as methylesterase family member 16 (MES16; At4g16690). During senescence, mes16 leaves exhibited a strong ultraviolet-excitable fluorescence, which resulted from large amounts of different FCCs accumulating in the mutants. As confirmed by mass spectrometry, these FCCs had an intact carboxymethyl group, which slowed down their isomerization to respective NCCs. Like a homologous protein cloned from radish (Raphanus sativus) and named pheophorbidase, MES16 catalyzed the demethylation of pheophorbide, an early intermediate of Chl breakdown, in vitro, but MES16 also demethylated an FCC. To determine the in vivo substrate of MES16, we analyzed pheophorbide a oxygenase1 (pao1), which is deficient in pheophorbide catabolism and accumulates pheophorbide in the chloroplast, and a mes16pao1 double mutant. In the pao1 background, we additionally mistargeted MES16 to the chloroplast. Normally, MES16 localizes to the cytosol, as shown by analysis of a MES16-green fluorescent protein fusion. Analysis of the accumulating pigments in these lines revealed that pheophorbide is only accessible for demethylation when MES16 is targeted to the chloroplast. Together, these data demonstrate that MES16 is an integral component of Chl breakdown in Arabidopsis and specifically demethylates Chl catabolites at the level of FCCs in the cytosol. PMID:22147518
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walla, P.J.; Yom, J.; Krueger, B.P.
2000-05-18
The two-photon excitation (TPE) spectrum of light-harvesting complex II (LHC II) has been measured in the spectral region of 1,000--1,600 nm, corresponding to one-photon wavelengths of 500--800 nm. The authors observed a band with an origin at {approximately}2 x 660 nm (ca. 15,100 {+-} 300 cm{sup {minus}1}) and a maximum at {approximately}2 x 600 nm. The line shape and origin of this band strongly suggest that the observed signal is due to the two-photon-allowed S{sub 1} state of the energy-transferring carotenoids (Car ) in LHC II. The authors also report the time dependence of the upconverted chlorophyll (Chl) fluorescence aftermore » TPE at the maximum of the observed band. Surprisingly, a fast rise of 250 {+-} 50 fs followed by a multiexponential decay on the picosecond time scale was observed. This result provides strong indication that there is a fast energy transfer even from the dipole-forbidden Car S{sub 1} state to the Chl's. The sub picosecond energy transfer from the Car S{sub 1} state is likely a consequence of the large number of energy-accepting Chls in van der Waals contact with the central Car's in LHC II. They also present upconversion data of the Car S{sub 2}, Chl a, and Chl b fluorescence observed after one-photon excitation into the dipole-allowed Car S{sub 2} state. The lifetime of the Car S{sub 2} state is {approximately}120 {+-} 30 fs. With the observed time constants they are able to calculate quantum yields for the different possible pathways contributing to the overall Car to Chl energy transfer in LHC II.« less
Dhanapal, Arun Prabhu; Ray, Jeffery D; Singh, Shardendu K; Hoyos-Villegas, Valerio; Smith, James R; Purcell, Larry C; Fritschi, Felix B
2016-08-04
Chlorophyll is a major component of chloroplasts and a better understanding of the genetic basis of chlorophyll in soybean [Glycine max (L.) Merr.] might contribute to improving photosynthetic capacity and yield in regions with adverse environmental conditions. A collection of 332 diverse soybean genotypes were grown in 2 years (2009 and 2010) and chlorophyll a (eChl_A), chlorophyll b (eChl_B), and total chlorophyll (eChl_T) content as well as chlorophyll a/b ratio (eChl_R) in leaf tissues were determined by extraction and spectrometric determination. Total chlorophyll was also derived from canopy spectral reflectance measurements using a model of wavelet transformed spectra (tChl_T) as well as with a spectral reflectance index (iChl_T). A genome-wide associating mapping approach was employed using 31,253 single nucleotide polymorphisms (SNPs) to identify loci associated with the extract based eChl_A, eChl_B, eChl_R and eChl_T measurements and the two canopy spectral reflectance-based methods (tChl_T and iChl_T). A total of 23 (14 loci), 15 (7 loci) and 14 SNPs (10 loci) showed significant association with eChl_A, eChl_B and eChl_R respectively. A total of 52 unique SNPs were significantly associated with total chlorophyll content based on at least one of the three approaches (eChl_T, tChl_T and iChl_T) and likely tagged 27 putative loci for total chlorophyll content, four of which were indicated by all three approaches. Results presented here show that markers for chlorophyll traits can be identified in soybean using both extract-based and canopy spectral reflectance-based phenotypes, and confirm that high-throughput phenotyping-amenable canopy spectral reflectance measurements can be used for association mapping.
NASA Astrophysics Data System (ADS)
Laiolo, Leonardo; Matear, Richard; Baird, Mark E.; Soja-Woźniak, Monika; Doblin, Martina A.
2018-07-01
Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment.
Signaling pathways and immune evasion mechanisms in classical Hodgkin lymphoma.
Liu, W Robert; Shipp, Margaret A
2017-11-23
Classical Hodgkin lymphoma (cHL) is an unusual B-cell-derived malignancy in which rare malignant Hodgkin and Reed-Sternberg (HRS) cells are surrounded by an extensive but ineffective inflammatory/immune cell infiltrate. This striking feature suggests that malignant HRS cells escape immunosurveillance and interact with immune cells in the cancer microenvironment for survival and growth. We previously found that cHLs have a genetic basis for immune evasion: near-uniform copy number alterations of chromosome 9p24.1 and the associated PD-1 ligand loci, CD274/PD-L1 and PDCD1LG2/PD-L2, and copy number-dependent increased expression of these ligands. HRS cells expressing PD-1 ligands are thought to engage PD-1 receptor-positive immune effectors in the tumor microenvironment and induce PD-1 signaling and associated immune evasion. The genetic bases of enhanced PD-1 signaling in cHL make these tumors uniquely sensitive to PD-1 blockade. © 2017 by The American Society of Hematology.
Skandrani, Ines; Boubaker, Jihed; Bhouri, Wissem; Limem, Ilef; Kilani, Soumaya; Ben Sghaier, Mohamed; Neffati, Aicha; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila
2010-01-01
The in vitro antiproliferative, apoptotic, and antioxidant activities from leaf extracts of Moricandia arvensis, which are used in traditional cooking and medicines, were investigated. The MTT assay revealed that only TOF (total oligomer flavonoids), ethyl acetate (EA), chloroform (Chl), and petroleum ether (PE) extracts inhibited the proliferation of K562 cells. Apoptosis plays a very important role in the treatment of cancer by promoting the apoptosis of cancer cells and limiting the concurrent death of normal cells. Thus, the possible effects of M. arvensis extracts on the induction of apoptosis in human leukemic cells (K562 cells) were investigated. The electrophoretic analysis of DNA fragmentation confirms that TOF, Chl, PE, and EA extracts provoke DNA fragmentation. Using the lipid peroxidation inhibitory assay, the antioxidant capacity of M. arvensis extracts was evaluated by the ability of each extract to inhibit malondialdehyde formation. It was revealed that EA and TOF extracts are the most active in scavenging the hydroxyl radicals.
Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V
2017-08-30
Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.
Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms.
Trampe, Erik; Kühl, Michael
2016-12-01
Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent. © 2016 Phycological Society of America.
Khellouf, A; Benhenia, K; Fatami, S; Iguer-Ouada, M
During cryopreservation sperm cells suffer from two major deleterious impacts: oxidative stress and cold shock. To investigate in bovine species the benefit of cholesterol and vitamin E, both loaded in cyclodextrins, as a double protection against oxidative stress and cold shock. Semen was collected from nine mature bulls using an artificial vagina and each ejaculate was split into four equal aliquots. The control aliquot was diluted with Fraction A (Tris+citric acid+fructose+penicillin) without further supplementation; the treated samples were diluted in Fraction A supplemented with cholesterol-loaded cyclodextrins (CD-CHL), vitamin E-loaded cyclodextrins (CD-Vit E) or CD-CHL in association with CD-Vit E (CD-CHL-VitE). After incubation at 22°C for 15 min and addition of Fraction B (Fraction A+egg yolk+glycerol), all aliquots were frozen in 0.25 ml straws. Straws were then thawed individually at 37C for 30 seconds in a water bath and immediately analyzed for motility, using Computer Aided Semen Analysis (CASA), membrane integrity and oxidative stress status. The results showed that samples treated with CD-CHL and CD-Vit E were protected against the deleterious impact of freezing thawing process. However, the optimal protection was observed when the two complexes CD-CHL and CD-Vit E were simultaneously used. All analysed semen parameters including motility, membrane integrity and oxidative stress status were significantly improved in CD-CHL-Vit E compared to all other treatments. Cholesterol and vitamin E, both preloaded in cyclodextrins to increase their solubility, appeared as a powerful protection in cryopreserved bovine semen to fight simultaneously cold shock and oxidative stress.
Del L Yácono, María; Farran, Inmaculada; Becher, Melina L; Sander, Valeria; Sánchez, Vanesa R; Martín, Valentina; Veramendi, Jon; Clemente, Marina
2012-12-01
The parasitic protozoan Toxoplasma gondii, the causal agent of toxoplasmosis, can infect most mammals and birds. In human medicine, T. gondii can cause complications in pregnant women and immunodeficient individuals, while in veterinary medicine, T. gondii infection has economic importance due to abortion and neonatal loss in livestock. Thus, the development of an effective anti-Toxoplasma vaccine would be of great value. In this study, we analysed the expression of T. gondii GRA4 antigen by chloroplast transformation (chlGRA4) in tobacco plants and evaluated the humoral and cellular responses and the grade of protection after oral administration of chlGRA4 in a murine model. The Western blot analysis revealed a specific 34-kDa band mainly present in the insoluble fractions. The chlGRA4 accumulation levels were approximately 6 μg/g of fresh weight (equivalent to 0.2% of total protein). Oral immunization with chlGRA4 resulted in a decrease of 59% in the brain cyst load of mice compared to control mice. ChlGRA4 immunization elicited both a mucosal immune response characterized by the production of specific IgA, and IFN-γ, IL-4 and IL-10 secretion by mesenteric lymph node cells, and a systemic response in terms of GRA4-specific serum antibodies and secretion of IFN-γ, IL-4 and IL-10 by splenocytes. Our results indicate that oral administration of chlGRA4 promotes the elicitation of both mucosal and systemic balanced Th1/Th2 responses that control Toxoplasma infection, reducing parasite loads. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Kirst, Henning; Garcia-Cerdan, Jose Gines; Zurbriggen, Andreas; Ruehle, Thilo; Melis, Anastasios
2012-01-01
The truncated light-harvesting antenna size3 (tla3) DNA insertional transformant of Chlamydomonas reinhardtii is a chlorophyll-deficient mutant with a lighter green phenotype, a lower chlorophyll (Chl) per cell content, and higher Chl a/b ratio than corresponding wild-type strains. Functional analyses revealed a higher intensity for the saturation of photosynthesis and greater light-saturated photosynthetic activity in the tla3 mutant than in the wild type and a Chl antenna size of the photosystems that was only about 40% of that in the wild type. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western-blot analyses showed that the tla3 strain was deficient in the Chl a/b light-harvesting complex. Molecular and genetic analyses revealed a single plasmid insertion in chromosome 4 of the tla3 nuclear genome, causing deletion of predicted gene g5047 and plasmid insertion within the fourth intron of downstream-predicted gene g5046. Complementation studies defined that gene g5047 alone was necessary and sufficient to rescue the tla3 mutation. Gene g5047 encodes a C. reinhardtii homolog of the chloroplast-localized SRP43 signal recognition particle, whose occurrence and function in green microalgae has not hitherto been investigated. Biochemical analysis showed that the nucleus-encoded and chloroplast-localized CrCpSRP43 protein specifically operates in the assembly of the peripheral components of the Chl a/b light-harvesting antenna. This work demonstrates that cpsrp43 deletion in green microalgae can be employed to generate tla mutants with a substantially diminished Chl antenna size. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions. PMID:23043081
Plasma EBV microRNAs in paediatric renal transplant recipients.
Hassan, Jaythoon; Dean, Jonathan; De Gascun, Cillian F; Riordan, Michael; Sweeney, Clodagh; Connell, Jeff; Awan, Atif
2018-06-01
Epstein-Barr virus (EBV) was the first human virus identified to express microRNA (miRNA). To date, 44 mature miRNAs are encoded for within the EBV genome. EBV miRNAs have not been profiled in paediatric renal transplant recipients. In this study, we investigated circulating EBV miRNA profiles as novel biomarkers in paediatric renal transplant patients. Forty-two microRNAs encoded within 2 EBV open reading frames (BART and BHRF) were examined in renal transplant recipients who resolved EBV infection (REI) or maintained chronic high viral loads (CHL), and in non-transplant patients with acute infectious mononucleosis (IM). Plasma EBV-miR-BART2-5p was present in higher numbers of IM (7/8) and CHL (7/10) compared to REI (7/12) patients. A trend was observed between the numbers of plasma EBV miRNAs expressed and EBV viral load (p < 0.07). Several EBV-miRs including BART7-3p, 15, 9-3p, 11-3p, 1-3p and 3-3p were detected in IM and CHL patients only. The lytic EBV-miRs, BHRF1-2-3p and 1-1, indicating active viral replication, were detected in IM patients only. One CHL patient developed post-transplant lymphoproliferative disease (PTLD) after several years and analysis of 10 samples over a 30-month period showed an average 24-fold higher change in plasma EBV-miR-BART2-5p compared to the CHL group and 110-fold higher change compared to the REI group. Our results suggest that EBV-miR-BART2-5p, which targets the stress-induced immune ligand MICB to escape recognition and elimination by NK cells, may have a role in sustaining high EBV viral loads in CHL paediatric kidney transplant recipients.
Wang, Peng; Grimm, Bernhard
2015-12-01
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
NASA Astrophysics Data System (ADS)
Anderson, E. E.; Wilson, C.; Villareal, T. A.
2016-12-01
Satellite ocean color data regularly reveals the existence of large (103 km2) phytoplankton blooms in the North Pacific Ocean that can persist for weeks to months and are often associated with N2 fixing diatom symbioses. The basin size and inability to accurately forecast these blooms makes sampling these events difficult outside of the time series at Station ALOHA. We used an autonomous Wave Glider surface vehicle (Honey Badger) to conduct a large regional survey well north of HI to examine bloom composition and key species distribution. Honey Badger was equipped with a gpCTD, downward looking camera, 2 C3 fluorometers, wind and wave sensors, a Turner Designs' Phytoflash, and a Sequoia Scientific LISST-Holo for imaging cells. Most of the data collected was available in near-real time through NOAA's ERDDAP data server. The 159 day mission began 1 June 2015 and covered 6800 km. From 1 July 2015 to 31 August 2015, Honey Badger transited from low levels of chlorophyll-a (chl) (0.06±0.01 mg m-3), through a mesoscale bloom, and then into a broad regional chl increase (0.08±0.01 mg m-3) as noted by the AQUA MODIS satellite. Phytoplankton cell counts (> 14,000 Hemiaulus cells L-1) and increased nocturnal Fv:Fm yields (maximum > 0.61) were concurrent with the 0.1 µg Chl L-1 bloom. A separate bloom of the Rhizosolenia-Richelia symbiosis was noted (> 3,000 Rhizosolenia-Richelia cells L-1) within a smaller, short-lived bloom with a biovolume 2.1 times higher than the rest of the southern transect. The broad regional chl increase in the southern leg of the transit was concurrent with a sustained Hemiaulus increase to 102 cells L-1. Diel patterns in Fv:Fm did not suggest Fe limitation anywhere in the transect. Elevated yields were found only in the diatom increases. Honey Badger and the instruments it carried were useful tools for the investigation of remote bloom dynamics in the Eastern North Pacific Subtropical Gyre.
2010-01-01
Multiple Sclerosis (MS) patients present a decrease of antioxidants and neuroprotective and immunoregulatory vitamins and an increase of total homocysteine (tHcy), cholesterol (CHL), HDL-cholesterol, and of cellular stress markers, variably associated with the different phases of the disease. We compared the blood levels of uric acid, folic acid, vitamins B12, A, and E, tHcy, CHL, HDL-cholesterol, and triglycerides in forty MS patients during a phase of clinical inactivity with those of eighty healthy controls, matched for age and sex. We found higher levels of tHcy (p = 0.032) and of HDL-cholesterol (p = 0.001) and lower levels of vitamin E (p = 0.001) and the ratio vitamin E/CHL (p = 0.001) in MS patients. In conclusion, modifications of some biochemical markers of cell damage were detected in MS patients during a phase of clinical inactivity. PMID:20163740
Action Spectra for Nitrate and Nitrite Assimilation in Blue-Green Algae 1
Serrano, Aurelio; Losada, Manuel
1988-01-01
Action spectra for the assimilation of nitrate and nitrite have been obtained for several blue-green algae (cyanobacteria) with different accessory pigment composition. The action spectra for both nitrate and nitrite utilization by nitrate-grown Anacystis nidulans L-1402-1 cells exhibited a clear peak at about 620 nanometers, corresponding to photosystem II (PSII) C-phycocyanin absorption, the contribution of chlorophyll a (Chl a) being barely detectable. The action spectrum for nitrate reduction by a nitrite reductase mutant of A. nidulans R2 was very similar. All these action spectra resemble the fluorescence excitation spectrum of cell suspensions of the microalgae monitored at 685 nanometers—the fluorescence band of Chl a in PSII. In contrast, the action spectrum for nitrite utilization by nitrogen-starved A. nidulans cells, which are depleted of C-phycocyanin, showed a maximum near 680 nanometers, attributable to Chl a absorption. The action spectrum for nitrite utilization by Calothrix sp. PCC 7601 cells, which contain both C-phycoerythrin and C-phycocyanin as PSII accessory pigments, presented a plateau in the region from 550 to 630 nanometers. In this case, there was also a clear parallelism between the action spectrum and the fluorescence excitation spectrum, which showed two overlapped peaks with maxima at 562 and 633 nanometers. The correlation observed between the action spectra for both nitrate and nitrite assimilation and the light-harvesting pigment content of the blue-green algae studied strongly suggests that phycobiliproteins perform a direct and active role in these photosynthetic processes. PMID:16666041
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Margolis, Hank A.; Drolet, Guillaume G.; Barr, Alan A.; Black, T. Andrew
2009-01-01
Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes.
Greaves, Paul; Clear, Andrew; Coutinho, Rita; Wilson, Andrew; Matthews, Janet; Owen, Andrew; Shanyinde, Milensu; Lister, T. Andrew; Calaminici, Maria; Gribben, John G.
2013-01-01
Purpose The immune microenvironment is key to the pathophysiology of classical Hodgkin lymphoma (CHL). Twenty percent of patients experience failure of their initial treatment, and others receive excessively toxic treatment. Prognostic scores and biomarkers have yet to influence outcomes significantly. Previous biomarker studies have been limited by the extent of tissue analyzed, statistical inconsistencies, and failure to validate findings. We aimed to overcome these limitations by validating recently identified microenvironment biomarkers (CD68, FOXP3, and CD20) in a new patient cohort with a greater extent of tissue and by using rigorous statistical methodology. Patients and Methods Diagnostic tissue from 122 patients with CHL was microarrayed and stained, and positive cells were counted across 10 to 20 high-powered fields per patient by using an automated system. Two statistical analyses were performed: a categorical analysis with test/validation set-defined cut points and Kaplan-Meier estimated outcome measures of 5-year overall survival (OS), disease-specific survival (DSS), and freedom from first-line treatment failure (FFTF) and an independent multivariate analysis of absolute uncategorized counts. Results Increased CD20 expression confers superior OS. Increased FOXP3 expression confers superior OS, and increased CD68 confers inferior FFTF and OS. FOXP3 varies independently of CD68 expression and retains significance when analyzed as a continuous variable in multivariate analysis. A simple score combining FOXP3 and CD68 discriminates three groups: FFTF 93%, 62%, and 47% (P < .001), DSS 93%, 82%, and 63% (P = .03), and OS 93%, 82%, and 59% (P = .002). Conclusion We have independently validated CD68, FOXP3, and CD20 as prognostic biomarkers in CHL, and we demonstrate, to the best of our knowledge for the first time, that combining FOXP3 and CD68 may further improve prognostic stratification. PMID:23045593
The photochemistry in Photosystem II at 5 K is different in visible and far-red light.
Mokvist, Fredrik; Sjöholm, Johannes; Mamedov, Fikret; Styring, Stenbjörn
2014-07-08
We have earlier shown that all electron transfer reactions in Photosystem II are operational up to 800 nm at room temperature [Thapper, A., et al. (2009) Plant Cell 21, 2391-2401]. This led us to suggest an alternative charge separation pathway for far-red excitation. Here we extend these studies to a very low temperature (5 K). Illumination of Photosystem II (PS II) with visible light at 5 K is known to result in oxidation of almost similar amounts of YZ and the Cyt b559/ChlZ/CarD2 pathway. This is reproduced here using laser flashes at 532 nm, and we find the partition ratio between the two pathways to be 1:0.8 at 5 K [the partition ratio is here defined as (yield of YZ/CaMn4 oxidation):(yield of Cyt b559/ChlZ/CarD2 oxidation)]. The result using far-red laser flashes is very different. We find partition ratios of 1.8 at 730 nm, 2.7 at 740 nm, and >2.7 at 750 nm. No photochemistry involving these pathways is observed above 750 nm at this temperature. Thus, far-red illumination preferentially oxidizes YZ, while the Cyt b559/ChlZ/CarD2 pathway is hardly touched. We propose that the difference in the partition ratio between visible and far-red light at 5 K reflects the formation of a different first stable charge pair. In visible light, the first stable charge pair is considered to be PD1+QA-. In contrast, we propose that the electron hole is residing on the ChlD1 molecule after illumination by far-red light at 5 K, resulting in the first stable charge pair being ChlD1+QA-. ChlD1 is much closer to YZ (11.3 Å) than to any component in the Cyt b559/ChlZ/CarD2 pathway (shortest ChlD1-CarD2 distance of 28.8 Å). This would then explain that far-red illumination preferentially drives efficient electron transfer from YZ. We also discuss mechanisms for accounting for the absorption of the far-red light and the existence of hitherto unobserved charge transfer states. The involvement of two or more of the porphyrin molecules in the core of the Photosystem II reaction center is proposed.
Pingali, Sai Ravi; Jewell, Sarah W; Havlat, Luiza; Bast, Martin A; Thompson, Jonathan R; Eastwood, Daniel C; Bartlett, Nancy L; Armitage, James O; Wagner-Johnston, Nina D; Vose, Julie M; Fenske, Timothy S
2014-07-15
The objective of this study was to compare the outcomes of patients with classical Hodgkin lymphoma (cHL) who achieved complete remission with frontline therapy and then underwent either clinical surveillance or routine surveillance imaging. In total, 241 patients who were newly diagnosed with cHL between January 2000 and December 2010 at 3 participating tertiary care centers and achieved complete remission after first-line therapy were retrospectively analyzed. Of these, there were 174 patients in the routine surveillance imaging group and 67 patients in the clinical surveillance group, based on the intended mode of surveillance. In the routine surveillance imaging group, the intended plan of surveillance included computed tomography and/or positron emission tomography scans; whereas, in the clinical surveillance group, the intended plan of surveillance was clinical examination and laboratory studies, and scans were obtained only to evaluate concerning signs or symptoms. Baseline patient characteristics, prognostic features, treatment records, and outcomes were collected. The primary objective was to compare overall survival for patients in both groups. For secondary objectives, we compared the success of second-line therapy and estimated the costs of imaging for each group. After 5 years of follow-up, the overall survival rate was 97% (95% confidence interval, 92%-99%) in the routine surveillance imaging group and 96% (95% confidence interval, 87%-99%) in the clinical surveillance group (P = .41). There were few relapses in each group, and all patients who relapsed in both groups achieved complete remission with second-line therapy. The charges associated with routine surveillance imaging were significantly higher than those for the clinical surveillance strategy, with no apparent clinical benefit. Clinical surveillance was not inferior to routine surveillance imaging in patients with cHL who achieved complete remission with frontline therapy. Routine surveillance imaging was associated with significantly increased estimated imaging charges. © 2014 American Cancer Society.
NASA Astrophysics Data System (ADS)
Sonek, G. J.; Liu, Y.; Iturriaga, R. H.
1995-11-01
We describe the application of infrared optical tweezers to the in situ microparticle analysis of marine phytoplankton cells. A Nd:YAG laser (lambda=3D 1064 nm) trap is used to confine and manipulate single Nannochloris and Synechococcus cells in an enriched seawater medium while spectral fluorescence and Lorenz-Mie backscatter signals are simultaneously acquired under a variety of excitation and trapping conditions. Variations in the measured fluorescence intensities of chlorophyll a (Chl a) and phycoerythrin pigments in phytoplankton cells are observed. These variations are related, in part, to basic intrasample variability, but they also indicate that increasing ultraviolet-exposure time and infrared trapping power may have short-term effects on cellular physiology that are related to Chl a photobleaching and laser-induced heating, respectively. The use of optical tweezers to study the factors that affect marine cell physiology and the processes of absorption, scattering, and attenuation by individual cells, organisms, and particulate matter that contribute to optical closure on a microscopic scale are also described. (c)1995 Optical Society of America
Falbel, T G; Meehl, J B; Staehelin, L A
1996-10-01
Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature.
Falbel, T G; Meehl, J B; Staehelin, L A
1996-01-01
Analyses of a series of allelic chlorina mutants of wheat (Triticum aestivum L.), which have partial blocks in chlorophyll (Chl) synthesis and, therefore, a limited Chl supply, reinforce the principle that Chl is required for the stable accumulation of Chl-binding proteins and that only reaction centers accumulate when the supply of Chl is severely limited. Depending on the rate of Chl accumulation (determined by the severity of the mutation) and on the rate of turnover of Chl and its precursors (determined by the environment in which the plant is grown), the mutants each reach an equilibrium of Chl synthesis and degradation. Together these mutants generate a spectrum of phenotypes. Under the harshest conditions (high illumination), plants with moderate blocks in Chl synthesis have membranes with very little Chl and Chl-proteins and membrane stacks resembling the thylakoids of the lethal xantha mutants of barely grown at low to medium light intensities (which have more severe blocks). In contrast, when grown under low-light conditions the same plants with moderate blocks have thylakoids resembling those of the wild type. The wide range of phenotypes of Chl b-deficient mutants has historically produced more confusion than enlightenment, but incomparable growth conditions can now explain the discrepancies reported in the literature. PMID:8883392
NASA Astrophysics Data System (ADS)
Sabolis, A. W.; Meskhidze, N.; Kamykowski, D.; Reed, R. E.
2010-12-01
Marine biogenic volatile organic compounds (BVOCs) have been suggested to contribute significant portion of the organic carbon present in ocean atmosphere. In this study emission rates of 40 different hydrocarbons are quantified for lab-grown non-axenic phytoplankton monocultures and ambient samples from the Pamlico-Neuse Estuary, NC. The outcome of environmental conditions on production of BVOCs was examined for different light and temperature conditions. These different regimes are considered proxies for physiological stress-induced effects observed in natural ecosystems. The samples were incubated in a climate controlled room; they were then transferred to smaller volumes (200 ml) for analysis. BVOCs accumulated in the water and headspace above the water were measured by bubbling hydrocarbon-free gas mixture through the sample and passing the gas stream through a gas chromatography/mass spectrometry system equipped with a sample pre-concentrator. Inside the pre-concentrator, the compounds were trapped on a sorbent material, heated, and flushed into the GC-MS column. The pre-concentrator/GC-MS system gave at least 1000 times magnification of the sample concentrations, allowing detection of low ppt levels of hydrocarbons. Here we report results for lab-grown diatoms Thalassiosira weissflogii and Thalassiosira pseudonana, prymnesiophyte Pleurochrysis carterae, and dinoflagellates Karina brevis and Procentrum minimum, as well as field samples. To make results widely usable, all the emissions are normalized to Chlorophyll-a (Chl-a) concentration and cell counts. Our results show that diatoms had the highest isoprene production rate of 2.8 μmol (g Chl-a)-1 h-1 with ranges between 1.4 and 3.6 μmol (g Chl-a)-1 h-1 at light levels between 90 and 900 μE m-2 s-1, respectively. The prymnesiophyte and dinoflagellate species had isoprene production rates of 1.3±0.4 μmol (g Chl-a)-1 h-1 with a similar light dependency as diatoms. Field samples had comparable isoprene production rate of 3.5 μmol (g Chl-a)-1 h-1 with ranges between 0.6 and 4.1 μmol (g Chl-a)-1 h-1 for similar light levels and temperatures between 18 to 30°C. Three monoterpenes detected were α-pinene, camphene, and d-limonene. Diatoms had the highest α-pinene and d-limonene production rates of 0.045 μmol (g Chl-a)-1 h-1 and 0.015 μmol (g Chl-a)-1 h-1, respectively. The prymnesiophyte species had the highest camphene production of 0.021 μmol (g Chl-a)-1 h-1. Production rates of d-limonene and camphene did not show a well-defined light dependency, but both isoprene and α-pinene showed an increase in terpene production with increasing light intensities. Field samples show α-pinene, d-limonene, and camphene production rates of 0.05 μmol (g Chl-a)-1 h-1, 0.02 μmol (g Chl-a)-1 h-1 and 0.018 μmol (g Chl-a)-1 h-1, respectively. Field samples acclimated at 26°C had the highest terpene production rates. This study tabulates a large number of BVOC emission rates for various phytoplankton species under diverse environmental conditions.
Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN
Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.
2018-01-01
The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904
NASA Astrophysics Data System (ADS)
Zou, Li; Yao, Xiao; Yamaguchi, Hitomi; Guo, Xinyu; Gao, Huiwang; Wang, Kai; Sun, Mingyi
2018-04-01
In order to examine the seasonal and spatial distributions of benthic animals in the intertidal mudflat of the southern Yellow River Delta, field investigations were carried out in 2007 and 2008 and multiple methods were applied. Results showed that, the biomass of macro benthos ranged at 0.75-1151.00 g wet m-2 and averaged at 156.31 g wet m-2, in which Mactra veneriformis accounted for 75.6%-93.4% of the total macro benthic biomass. More than 90% of macro benthos inhabited in the middle and low tide lines, and higher biomass occurred in early summer and lower in winter. Statistical analysis showed that: 1) M. veneriformis growth was primarily favored at higher temperature and lower salinity; 2) after long time interaction, benthic bivalve grazers led to patching distributions of Chlorophyll a (Chl a); 3) macro benthic biomass positively related with Chl a when the concentration of Chl a was low, but they were negatively related when Chl a concentration was high; and 4) furthermore, the biomass of benthic bivalves peaked in the sediment with median grain size about 0.55 mm, but decreased gradually in coarse or fine sediments. The secondary productivity ranged at 0.37-283.68 g m-2yr-1 and averaged at 47.88 g m-2 yr-1, in which 69.7% was contributed by M. veneriformis It was estimated that primary production was transformed to secondary production at a rate of 6.87% approximately, which implies that there is a local sustainability of high bivalve production.
Adams, Nathan B. P.; Vasilev, Cvetelin; Brindley, Amanda A.; ...
2016-04-30
In chlorophyll biosynthesis, the magnesium chelatase enzyme complex catalyzes the insertion of a Mg 2+ ion into protoporphyrin IX. Prior to this event, two of the three subunits, the AAA + proteins ChlI and ChlD, form a ChlID–MgATP complex. We used microscale thermophoresis to directly determine dissociation constants for the I-D subunits from Synechocystis, and to show that the formation of a ChlID–MgADP complex, mediated by the arginine finger and the sensor II domain on ChlD, is necessary for the assembly of the catalytically active ChlHID–MgATP complex. The N-terminal AAA + domain of ChlD is essential for complex formation, butmore » some stability is preserved in the absence of the C-terminal integrin domain of ChlD, particularly if the intervening polyproline linker region is retained. Single molecule force spectroscopy (SMFS) was used to determine the factors that stabilize formation of the ChlID–MgADP complex at the single molecule level; ChlD was attached to an atomic force microscope (AFM) probe in two different orientations, and the ChlI subunits were tethered to a silica surface; the probability of subunits interacting more than doubled in the presence of MgADP, and we show that the N-terminal AAA + domain of ChlD mediates this process, in agreement with the microscale thermophoresis data. Analysis of the unbinding data revealed a most probable interaction force of around 109 pN for formation of single ChlID–MgADP complexes. Finally, these experiments provide a quantitative basis for understanding the assembly and function of the Mg chelatase complex.« less
Light Assisted IN-VIVO Microwave Sensing for Electrical Characterization of Prokaryotes
NASA Astrophysics Data System (ADS)
Sharma, Rajveer; Daya, K. S.; Tirumalai, Prem Saran
2012-11-01
This paper reports an in vivo characterization technique to characterize dielectric properties of living tissues and bio-molecules at microwave frequency using cavity perturbation technique, where a slot ring resonant sensor has been used, that works at 8 GHz and has been designed to enumerate the effective dielectric constant of Spirulina platensis and chlorophyll molecule. Observed value of the dielectric constant of Spirulina platensis was 8 ± 0.04 in the absence of light and 14.575 ± 0.145 in the presence of light. Molecular polarizability of chl a molecule was 5.07 ± 0.05 × 104 Å3. Experimentally calculated local electric field actually experienced by chl a molecule was 14.197 ± 0.003 V/m for applied field of 9.79 V/m across the slot ring, dipole moment of chl a molecule was 2.175 ± 0.005 × 105 Debye and total polarisation produced due to these molecules was 1.545 ± 0.005 C/m2. Observed relaxation time of chl a molecule was 8.09 ± 0.18 × 10-9s. The proposed sensing method can be an alternate to spectral characterisation technique, generally used to characterize light sensitive bio-molecules and can also be extended to characterize light sensitive bio-molecules in plant cells.
Dimethyl sulfoxide reductase activity by anaerobically grown Escherichia coli HB101.
Bilous, P T; Weiner, J H
1985-01-01
Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene. PMID:3888958
Modelling ocean-colour-derived chlorophyll a
NASA Astrophysics Data System (ADS)
Dutkiewicz, Stephanie; Hickman, Anna E.; Jahn, Oliver
2018-01-01
This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a) product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model) water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a
in this paper). We compare the derived Chl a to the actual
model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter). The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation and peak of the spring bloom in the derived Chl a lags the actual Chl a by days and sometimes weeks. These results indicate that care should also be taken when studying phenology through satellite-derived products of Chl a. This study also reemphasizes that ocean-colour-derived Chl a is not the same as the real in situ Chl a. In fact the model derived Chl a compares better to real-world satellite-derived Chl a than the model actual Chl a. Modellers should keep this is mind when evaluating model output with ocean colour Chl a and in particular when assimilating this product. Our goal is to illustrate the use of a numerical laboratory that (a) helps users of ocean colour, particularly modellers, gain further understanding of the products they use and (b) helps the ocean colour community to explore other ocean colour products, their biases and uncertainties, as well as to aid in future algorithm development.
Liu, X Q; Xu, H; Huang, C
1993-10-01
Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.
Kapke, Jonathan T; Epperla, Narendranath; Shah, Namrata; Richardson, Kristin; Carrum, George; Hari, Parameswaran N; Pingali, Sai R; Hamadani, Mehdi; Karmali, Reem; Fenske, Timothy S
2017-07-01
Patients with relapsed and refractory classical Hodgkin lymphoma (cHL) are often treated with autologous hematopoietic cell transplantation (auto-HCT). After auto-HCT, most transplant centers implement routine surveillance imaging to monitor for disease relapse; however, there is limited evidence to support this practice. In this multicenter, retrospective study, we identified cHL patients (n = 128) who received auto-HCT, achieved complete remission (CR) after transplantation, and then were followed with routine surveillance imaging. Of these, 29 (23%) relapsed after day 100 after auto-HCT. Relapse was detected clinically in 14 patients and with routine surveillance imaging in 15 patients. When clinically detected relapse was compared with to radiographically detected relapse respectively, the median overall survival (2084 days [range, 225-4161] vs. 2737 days [range, 172-2750]; P = .51), the median time to relapse (247 days [range, 141-3974] vs. 814 days [range, 96-1682]; P = .30) and the median postrelapse survival (674 days [range, 13-1883] vs. 1146 days [range, 4-2548]; P = .52) were not statistically different. In patients who never relapsed after auto-HCT, a median of 4 (range, 1-25) surveillance imaging studies were performed over a median follow-up period of 3.5 years. A minority of patients with cHL who achieve CR after auto-HCT will ultimately relapse. Surveillance imaging detected approximately half of relapses; however, outcomes were similar for those whose relapse was detected using routine surveillance imaging versus detected clinically in between surveillance imaging studies. There appears to be limited utility for routine surveillance imaging in cHL patients who achieve CR after auto-HCT. Copyright © 2017 Elsevier Inc. All rights reserved.
Miller, J B; Amy, N K
1983-01-01
We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982
Kong, Weiping; Huang, Wenjiang; Casa, Raffaele; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying
2017-11-23
Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R² of 0.84-0.69, and RMSE of 5.37-5.56 µg/cm² from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data.
Kopetz, Karen J; Kolossov, Vladimir L; Rebeiz, Constantin A
2004-06-15
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination and regulation of the chlorophyll (Chl) and thylakoid apoprotein biosynthetic pathways. As a working hypothesis we have recently proposed three different Chl-thylakoid apoprotein biosynthesis models: a single-branched Chl biosynthetic pathway (SBP)-single location model, a SBP-multilocation model, and a multibranched Chl biosynthetic pathway (MBP)-sublocation model. The detection of resonance excitation energy transfer between tetrapyrrole precursors of Chl, and several Chl-protein complexes, has made it possible to test the validity of the proposed Chl-thylakoid apoprotein biosynthesis models by resonance excitation energy transfer determinations. In this work, resonance excitation energy transfer techniques that allow the determination of distances separating tetrapyrrole donors from Chl-protein acceptors in green plants by using readily available electronic spectroscopic instrumentation are developed. It is concluded that the calculated distances are compatible with the MBP-sublocation model and incompatible with the operation of the SBP-single location Chl-protein biosynthesis model.
NASA Astrophysics Data System (ADS)
Lee, Sang Heon; Ryu, Jongseong; Park, Jung-woo; Lee, Dabin; Kwon, Jae-Il; Zhao, Jingping; Son, SeungHyun
2018-03-01
The Bering and Chukchi seas are an important conduit to the Arctic Ocean and are reported to be one of the most productive regions in the world's oceans in terms of high primary productivity that sustains large numbers of fishes, marine mammals, and sea birds as well as benthic animals. Climate-induced changes in primary production and production at higher trophic levels also have been observed in the northern Bering and Chukchi seas. Satellite ocean color observations could enable the monitoring of relatively long term patterns in chlorophyll-a (Chl-a) concentrations that would serve as an indicator of phytoplankton biomass. The performance of existing global and regional Chl-a algorithms for satellite ocean color data was investigated in the northeastern Bering Sea and southern Chukchi Sea using in situ optical measurements from the Healy 2007 cruise. The model-derived Chl-a data using the previous Chl-a algorithms present striking uncertainties regarding Chl-a concentrations-for example, overestimation in lower Chl-a concentrations or systematic overestimation in the northeastern Bering Sea and southern Chukchi Sea. Accordingly, a simple two band ratio (R rs(443)/R rs(555)) algorithm of Chl-a for the satellite ocean color data was devised for the northeastern Bering Sea and southern Chukchi Sea. The MODIS-derived Chl-a data from July 2002 to December 2014 were produced using the new Chl-a algorithm to investigate the seasonal and interannual variations of Chl-a in the northern Bering Sea and the southern Chukchi Sea. The seasonal distribution of Chl-a shows that the highest (spring bloom) Chl-a concentrations are in May and the lowest are in July in the overall area. Chl-a concentrations relatively decreased in June, particularly in the open ocean waters of the Bering Sea. The Chl-a concentrations start to increase again in August and become quite high in September. In October, Chl-a concentrations decreased in the western area of the Study area and the Alaskan coastal waters. Strong interannual variations are shown in Chl-a concentrations in all areas. There is a slightly increasing trend in Chl-a concentrations in the northern Bering Strait (SECS). This increasing trend may be related to recent increases in the extent and duration of open waters due to the early break up of sea ice and the late formation of sea ice in the Chukchi Sea.
Eggink, Laura L; LoBrutto, Russell; Brune, Daniel C; Brusslan, Judy; Yamasato, Akihiro; Tanaka, Ayumi; Hoober, J Kenneth
2004-01-01
Background Assembly of stable light-harvesting complexes (LHCs) in the chloroplast of green algae and plants requires synthesis of chlorophyll (Chl) b, a reaction that involves oxygenation of the 7-methyl group of Chl a to a formyl group. This reaction uses molecular oxygen and is catalyzed by chlorophyllide a oxygenase (CAO). The amino acid sequence of CAO predicts mononuclear iron and Rieske iron-sulfur centers in the protein. The mechanism of synthesis of Chl b and localization of this reaction in the chloroplast are essential steps toward understanding LHC assembly. Results Fluorescence of a CAO-GFP fusion protein, transiently expressed in young pea leaves, was found at the periphery of mature chloroplasts and on thylakoid membranes by confocal fluorescence microscopy. However, when membranes from partially degreened cells of Chlamydomonas reinhardtii cw15 were resolved on sucrose gradients, full-length CAO was detected by immunoblot analysis only on the chloroplast envelope inner membrane. The electron paramagnetic resonance spectrum of CAO included a resonance at g = 4.3, assigned to the predicted mononuclear iron center. Instead of a spectrum of the predicted Rieske iron-sulfur center, a nearly symmetrical, approximately 100 Gauss peak-to-trough signal was observed at g = 2.057, with a sensitivity to temperature characteristic of an iron-sulfur center. A remarkably stable radical in the protein was revealed by an isotropic, 9 Gauss peak-to-trough signal at g = 2.0042. Fragmentation of the protein after incorporation of 125I- identified a conserved tyrosine residue (Tyr-422 in Chlamydomonas and Tyr-518 in Arabidopsis) as the radical species. The radical was quenched by chlorophyll a, an indication that it may be involved in the enzymatic reaction. Conclusion CAO was found on the chloroplast envelope and thylakoid membranes in mature chloroplasts but only on the envelope inner membrane in dark-grown C. reinhardtii cells. Such localization provides further support for the envelope membranes as the initial site of Chl b synthesis and assembly of LHCs during chloroplast development. Identification of a tyrosine radical in the protein provides insight into the mechanism of Chl b synthesis. PMID:15086960
Zhu, Xiaoyan; Guo, Shuang; Wang, Zhongwei; Du, Qing; Xing, Yadi; Zhang, Tianquan; Shen, Wenqiang; Sang, Xianchun; Ling, Yinghua; He, Guanghua
2016-06-13
As the indispensable part of plant, leaf blade mainly functions as the production workshops where organic substance is produced by photosynthesis. Leaf colour mutation is a genetic phenomenon that has a high frequency and is easily identified. The mutations always exhibit negative impact on the development of plants in any of the different stages of growth. Up to now, numerous genes involved in leaf colour mutations have been cloned. In this study, a yellow-green leaf mutant, yellow-green leaf 8 (ygl8), with stable genetic phenotype, has been screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by EMS. The levels of Chl a, Chl b and total chlorophyll were significantly lower in ygl8 than those in the WT throughout the whole growth period, while no clear change was noted in the Chl a/b ratio. Transmission electron microscopy demonstrated that the lamellae were clearly intumescent and intricately stacked in ygl8. Furthermore, compared with those of the WT, the stomatal conductance, intercellular CO2 concentration, photosynthetic rate and transpiration rate of ylg8 were all significantly lower. Map-based cloning results showed that Loc_Os01g73450, encoding a chloroplast-targeted UMP kinase, corresponded to Ygl8 and played an important role in regulating leaf colour in rice (Oryza sativa). Complementation of ygl8 with the WT DNA sequence of Loc_Os01g73450 led to restoration of the normal phenotype, and transgenic RNA interference plants showed a yellow-green colour. Analysis of the spatial and temporal expression of Ygl8 indicated that it was highly expressed in leaf blades and weakly expressed in other tissues. qRT-PCR also showed that the expression levels of the major Photosystem I core subunits plastome-encoded PsaA, PsaB and PsbC were significantly reduced in ygl8. The expression levels of nuclear-encoded gene involved in Chl biosynthesis HEMC, HEME, and PORA were also decreased when compared with the wild-type. Independent of Chl biosynthesis and photosystem, YGL8 may affect the structure and function of chloroplasts grana lamellae by regulating plastid genome encoded thylakoid membrane constitutive gene expression and indirectly influences Chl biosynthesis.
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Corp, L. A.; Daughtry, C. S. T.; Campbell, P. K. Entcheva
2006-01-01
A two-year experiment was performed on corn (Zea mays L.) crops under nitrogen (N) fertilization regimes to examine the use of hyperspectral canopy reflectance information for estimating chlorophyll fluorescence (ChlF) and vegetation production. Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll ChlF peaks centered at 685V10 nm and 735V5 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops, as part of an ongoing multi-year experiment at the USDA/Agriculture Research Service in Beltsville, MD. A spectroradiometer (ASD-FR Fieldspec Pro, Analytical Spectral Devices, Inc., Boulder, CO) was used to measure canopy radiances 1 m above plant canopies with a 22deg field of view and a 0deg nadir view zenith angle. Canopy and plant measurements were made at the R3 grain fill reproductive stage on 3-4 replicate N application plots provided seasonal inputs of 280, 140, 70, and 28 kg N/ha. Leaf level measurements were also made which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and N contents). Crop yields were determined at harvest. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrowband regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red S F ratio derived from these field reflectance spectra successfully discriminated foliar pigment levels (e.g., total chlorophyll, Chl) associated with N application rates in both corn crops. This canopy-level spectral ratio was also positively correlated to the foliar C/N ratio (r = 0.89, n = go), as was a leaf-level steady state fluorescence ratio (Fs/Chl, r = 0.92). The latter ratio was inversely correlated with crop grain yield (Kg 1 ha) (r = 0.9). This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.
Sakakibara, Ayako; Kohno, Kei; Eladl, Ahmed E; Klaisuwan, Teerada; Ishikawa, Eri; Suzuki, Yuka; Shimada, Satoko; Nakaguro, Masato; Shimoyama, Yoshie; Takahara, Taishi; Kato, Seiichi; Asano, Naoko; Nakamura, Shigeo; Satou, Akira
2018-06-01
The programmed death 1 (PD1)/PD1 ligand (PD-L1) axis plays an important role in tumour cells escape from immune control. PD-L1 immunohistochemistry is a useful predictor of immunotherapy response, but is still not used widely in the diagnostic setting. Here we describe results using PD-L1 immunohistochemistry during routine diagnostics in lymphoma. Ninety-one lymphoproliferative disease cases sharing tumour and non-malignant Hodgkin-Reed-Sternberg (HRS)-like cells with and without Epstein-Barr virus (EBV) association were investigated by immunohistochemistry for PD-L1 (clone SP142). PD-L1 expression was present in more than 5% of tumour or non-malignant HRS-like cells in 100% of EBV + classical (C) Hodgkin lymphoma (HL) (n = 10) and EBV-negative nodular sclerosis CHL (n = 8); 40% of EBV + diffuse large B cell lymphoma, not otherwise specified (DLBCL-NOS) (n = 20); and 4% of nodal peripheral T cell lymphoma of follicular helper T cell type (PTCL-TFH) (n = 22). In contrast, nodular lymphocyte-predominant HL (n = 4), lymphocyte-rich CHL (n = 6), EBV + hyperplasia (n = 8), plasmablastic lymphoma (n = 3) and anaplastic lymphoma kinase-negative anaplastic large cell lymphoma (n = 5) seldom exhibited PD-L1 in their large cells. Assessing PD-L1 positivity in tumour and non-malignant large cells was helpful in differentiating between CHL versus nodal PTCL-TFH (P < 0.0001) or EBV + DLBCL-NOS (P = 0.0052) and between EBV + DLBCL-NOS versus nodal PTCL-TFH (P = 0.0052), with PD-L1 expression indicating the first diagnosis in each of those sets. Immunohistochemical evaluation of PD-L1 expression in tumour and non-malignant HRS-like large cells may be useful for assessing either immune escape or immunodeficiency in their pathogenesis. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao
2016-06-01
Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.
Li, Xue-Ying; Li, Bin; Sun, Xing-Li
2014-04-15
The effects of a thermal discharge from a coastal power plant on phytoplankton were determined in Zhanjiang Bay. Monthly cruises were undertaken at four tide times during April-October 2011. There were significant differences for dominant species among seven sampling months and four sampling tides. Species diversity (H') and Evenness showed a distinct increasing gradient from the heated water source to the control zone and fluctuated during four tides with no visible patterns. Species richness, cell count and Chl a at mixed and control zones were significantly higher than heated zones, and showed tidal changes with no obvious patterns. The threshold temperature of phytoplankton species can be regarded as that of phytoplankton community at ebb slack. The average threshold temperature over phytoplankton species, cell count and Chl a, and the threshold temperature of cell count can be regarded as that of phytoplankton community at flood slack during spring and neap respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kolossov, Vladimir L; Kopetz, Karen J; Rebeiz, Constantin A
2003-08-01
The thorough understanding of photosynthetic membrane assembly requires a deeper knowledge of the coordination of chlorophyll (Chl) and thylakoid apoprotein biosynthesis. As a working model for future investigations, we have proposed three Chl-thylakoid apoprotein biosynthesis models, namely, a single-branched Chl biosynthetic pathway (SBP) single-location model, an SBP multilocation model and a multibranched Chl biosynthetic pathway (MBP) sublocation model. Rejection or validation of these models can be probed by determination of resonance excitation energy transfer between various tetrapyrrole intermediates of the Chl biosynthetic pathway and various thylakoid Chl-protein complexes. In this study we describe the detection of resonance energy transfer between protoporphyrin IX (Proto), Mg-Proto and its monomethyl ester (Mp(e)) and divinyl and monovinyl protochlorophyllide a (Pchlide a) and several Chl-protein complexes. Induction of various amounts of tetrapyrrole accumulation in green photoperiodically grown cucumber cotyledons and barley leaves was achieved by dark incubation of excised tissues with delta-aminolevulinic acid (ALA) and various concentrations of 2,2'-dipyridyl for various periods of time. Controls were incubated in distilled water. After plastid isolation, treated and control plastids were diluted in buffered glycerol to the same Chl concentration. Excitation spectra were then recorded at 77 K at emission maxima of about 686, 694 and 738 nm. Resonance excitation energy transfer from Proto, Mp(e) and Pchlide a to Chl-protein complexes emitting at 686, 694 and 738 nm was observed by calculation of treated minus control difference excitation spectra. The occurrence of resonance excitation energy transfer between anabolic tetrapyrroles and Chl-protein complexes appeared as well-defined excitation bands with excitation maxima corresponding to those of Proto, Mp(e) and Pchlide a. Furthermore, it appeared that resonance excitation energy transfer from multiple short-wavelength, medium-wavelength and long-wavelength Proto, Mp(e) and Chlide a sites to various Chl-protein complexes took place. Because resonance excitation transfer from donors to acceptors cannot take place at distances larger than 100 A, it is proposed that the observed resonance excitation energy transfers are not compatible with the SBP single-location Chl biosynthesis thylakoid membrane biogenesis model. The latter assumes that a single-branched Chl biosynthetic pathway located in the center of a 450 x 130 A photosynthetic unit generates all of the Chl needed for the assembly of all Chl-protein complexes.
Huang, Wenjiang; Zhou, Xianfeng; Ye, Huichun; Dong, Yingying
2017-01-01
Monitoring the vertical profile of leaf chlorophyll (Chl) content within winter wheat canopies is of significant importance for revealing the real nutritional status of the crop. Information on the vertical profile of Chl content is not accessible to nadir-viewing remote or proximal sensing. Off-nadir or multi-angle sensing would provide effective means to detect leaf Chl content in different vertical layers. However, adequate information on the selection of sensitive spectral bands and spectral index formulas for vertical leaf Chl content estimation is not yet available. In this study, all possible two-band and three-band combinations over spectral bands in normalized difference vegetation index (NDVI)-, simple ratio (SR)- and chlorophyll index (CI)-like types of indices at different viewing angles were calculated and assessed for their capability of estimating leaf Chl for three vertical layers of wheat canopies. The vertical profiles of Chl showed top-down declining trends and the patterns of band combinations sensitive to leaf Chl content varied among different vertical layers. Results indicated that the combinations of green band (520 nm) with NIR bands were efficient in estimating upper leaf Chl content, whereas the red edge (695 nm) paired with NIR bands were dominant in quantifying leaf Chl in the lower layers. Correlations between published spectral indices and all NDVI-, SR- and CI-like types of indices and vertical distribution of Chl content showed that reflectance measured from 50°, 30° and 20° backscattering viewing angles were the most promising to obtain information on leaf Chl in the upper-, middle-, and bottom-layer, respectively. Three types of optimized spectral indices improved the accuracy for vertical leaf Chl content estimation. The optimized three-band CI-like index performed the best in the estimation of vertical distribution of leaf Chl content, with R2 of 0.84–0.69, and RMSE of 5.37–5.56 µg/cm2 from the top to the bottom layers, while the optimized SR-like index was recommended for the bottom Chl estimation due to its simple and universal form. We suggest that it is necessary to take into account the penetration characteristic of the light inside the canopy for different Chl absorption regions of the spectrum and the formula used to derive spectral index when estimating the vertical profile of leaf Chl content using off-nadir hyperspectral data. PMID:29168757
Silveira, Henrique; Ramos, Susana; Abrantes, Patrícia; Lopes, Luís Filipe; do Rosario, Virgílio E; Abrahamsen, Mitchell S
2007-01-01
Background The anti-malarial chloroquine can modulate the outcome of infection during the Plasmodium sporogonic development, interfering with Plasmodium gene expression and subsequently, with transmission. The present study sets to identify Plasmodium genes that might be regulated by chloroquine in the mosquito vector. Methods Differential display RT-PCR (DDRT-PCR) was used to identify genes expressed during the sporogonic cycle that are regulated by exposure to chloroquine. Anopheles stephensi mosquitoes were fed on Plasmodium yoelii nigeriensis-infected mice. Three days post-infection, mosquitoes were fed a non-infectious blood meal from mice treated orally with 50 mg/kg chloroquine. Two differentially expressed Plasmodium transcripts (Pyn_chl091 and Pyn_chl055) were further characterized by DNA sequencing and real-time PCR analysis. Results Both transcripts were represented in Plasmodium EST databases, but displayed no homology with any known genes. Pyn_chl091 was upregulated by day 18 post infection when the mosquito had a second blood meal. However, when the effect of chloroquine on that transcript was investigated during the erythrocytic cycle, no significant differences were observed. Although slightly upregulated by chloroquine exposure the expression of Pyn_chl055 was more affected by development, increasing towards the end of the sporogonic cycle. Transcript abundance of Pyn_chl055 was reduced when erythrocytic stages were treated with chloroquine. Conclusion Chloroquine increased parasite load in mosquito salivary glands and interferes with the expression of at least two Plasmodium genes. The transcripts identified contain putative signal peptides and transmembrane domains suggesting that these proteins, due to their location, are targets of chloroquine (not as an antimalarial) probably through cell trafficking and recycling. PMID:17605769
Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources.
Zamyadi, A; McQuaid, N; Prévost, M; Dorner, S
2012-02-01
Toxic cyanobacteria threaten the water quality of drinking water sources across the globe. Two such water bodies in Canada (a reservoir on the Yamaska River and a bay of Lake Champlain in Québec) were monitored using a YSI 6600 V2-4 (YSI, Yellow Springs, Ohio, USA) submersible multi-probe measuring in vivo phycocyanin (PC) and chlorophyll-a (Chl-a) fluorescence, pH, dissolved oxygen, conductivity, temperature, and turbidity in parallel. The linearity of the in vivo fluorescence PC and Chl-a probe measurements were validated in the laboratory with Microcystis aeruginosa (r(2) = 0.96 and r(2) = 0.82 respectively). Under environmental conditions, in vivo PC fluorescence was strongly correlated with extracted PC (r = 0.79) while in vivo Chl-a fluorescence had a weaker relationship with extracted Chl-a (r = 0.23). Multiple regression analysis revealed significant correlations between extracted Chl-a, extracted PC and cyanobacterial biovolume and in vivo fluorescence parameters measured by the sensors (i.e. turbidity and pH). This information will help water authorities select the in vivo parameters that are the most useful indicators for monitoring cyanobacteria. Despite highly toxic cyanobacterial bloom development 10 m from the drinking water treatment plant's (DWTP) intake on several sampling dates, low in vivo PC fluorescence, cyanobacterial biovolume, and microcystin concentrations were detected in the plant's untreated water. The reservoir's hydrodynamics appear to have prevented the transport of toxins and cells into the DWTP which would have deteriorated the water quality. The multi-probe readings and toxin analyses provided critical evidence that the DWTP's untreated water was unaffected by the toxic cyanobacterial blooms present in its source water.
Holm, J; Hillenbrand, R; Steuber, V; Bartsch, U; Moos, M; Lübbert, H; Montag, D; Schachner, M
1996-08-01
We have identified a close homologue of L1 (CHL1) in the mouse. CHL1 comprises an N-terminal signal sequence, six immunoglobulin (Ig)-like domains, 4.5 fibronectin type III (FN)-like repeats, a transmembrane domain and a C-terminal, most likely intracellular domain of approximately 100 amino acids. CHL1 is most similar in its extracellular domain to chicken Ng-CAM (approximately 40% amino acid identity), followed by mouse L1, chicken neurofascin, chicken Nr-CAM, Drosophila neuroglian and zebrafish L1.1 (37-28% amino acid identity), and mouse F3, rat TAG-1 and rat BIG-1 (approximately 27% amino acid identity). The similarity with other members of the Ig superfamily [e.g. neural cell adhesion molecule (N-CAM), DCC, HLAR, rse] is 16-11%. The intracellular domain is most similar to mouse and chicken Nr-CAM, mouse and rat neurofascin (approximately 60% amino acid identity) followed by chicken neurofascin and Ng-CAM, Drosophila neuroglian and zebrafish L1.1 and L1.2 (approximately 40% amino acid identity). Besides the high overall homology and conserved modular structure among previously recognized members of the L1 family (mouse/human L1/rat NILE; chicken Ng-CAM; chicken/mouse Nr-CAM; Drosophila neuroglian; zebrafish L1.1 and L1.2; chicken/mouse neurofascin/rat ankyrin-binding glycoprotein), criteria characteristic of L1 were identified with regard to the number of amino acids between positions of conserved amino acid residues defining distances within and between two adjacent Ig-like domains and FN-like repeats. These show a collinearity in the six Ig-like domains and four adjacent FN-like repeats that is remarkably conserved between L1 and molecules containing these modules (designated the L1 family cassette), including the GPI-linked forms of the F3 subgroup (mouse F3/chicken F11/human CNTN1; rat BIG-1/mouse PANG; rat TAG-1/mouse TAX-1/chicken axonin-1). The colorectal cancer molecule (DCC), previously introduced as an N-CAM-like molecule, conforms to the L1 family cassette. Other structural features of CHL 1 shared between members of the L1 family are a high degree of N-glycosidically linked carbohydrates (approximately 20% of its molecular mass), which include the HNK-1 carbohydrate structure, and a pattern of protein fragments comprising a major 185 kDa band and smaller fragments of 165 and 125 kDa. As for the other L1 family members, predominant expression of CHL1 is observed in the nervous system and at later developmental stages. In the central nervous system CHL1 is expressed by neurons, but, in contrast to L1, also by glial cells. Our findings suggest a common ancestral L1-like molecule which evolved via gene duplication to generate a diversity of structurally and functionally distinct yet similar molecules.
Flynn, Kevin J; Hansen, Per Juel
2013-11-01
In strict photoautotrophs, and in many mixotrophic protists, growth at low light stimulates the increased content of photopigment. This photoacclimation further elevates cellular Chl:C content through positive feedback (self-shading), until cellular Chl:C attains a maximum (ChlC(max)). This process, driven by the "selfish gene", enhances the fitness of the individual but decreases total population growth potential through community self-shading. However, some mixotrophic protists (generalist non-constitutives; GNC-mixotrophs) acquire their photosystems ready-made from phototrophic prey but they have no regulatory control on the acquired photosystems. When light is limiting, such organisms cannot photoacclimate; their total Chl:C ratio falls as their acquired photosystems are divided amongst daughter cells and also as the photosystems fail. We show that during that process, and with the removal (consumption) of their individually more efficient phototrophic prey, there is potential for populations of GNC-mixotrophs to become more efficient at light harvesting. Through this process these organisms may retain a critical additional period of photosynthetic capacity. Together with the fact that the acquired photosystem biomass can be potentially almost entirely converted into mixotroph biomass (while chloroplasts must remain an important component of biomass in constitutive mixotrophs, with an associated investment), this may help explain the success of GNC-mixotrophs. Copyright © 2013 Elsevier GmbH. All rights reserved.
Pyropheophorbide und a as a catabolite of ethylene-induced chlorophyll und a degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimokawa, Keishi; Hashizume, Akihito; Shioi, Yuzo
1990-05-01
An enzyme extract prepared from ethylene-induced degreening Citrus fruits contains chlorophyll (Chl) degrading enzymes. The fate of Chl carbons during an enzymatic degradation was investigated using Chl {und a}-{sup 14}C. Accompanying the disappearance of labelled Chl {und a}, pheophorbide {und a} and pyropheophorbide {und a} appeared and accumulation of pyropheophorbide {und a} was observed. HydroxyChl {und a} was also detected, but this is thought to be an artifact during chromatography. Unlike ethylene-induced Citrus fruits (in vivo), further degradation of pyropheophorbide {und a} did not occur in vitro enzyme system. This suggests that there is a lack of enzyme(s) and/or cofactor(s)more » for further degradation. It is concluded that Chl {und a} degraded enzymatically by the following order: Chl {und a}, chlorophyllide {und a}, pheophorbide {und a} and pyropheophorbide {und a}.« less
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-05-20
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months.
Wang, Ying; Jiang, Hong; Jin, Jiaxin; Zhang, Xiuying; Lu, Xuehe; Wang, Yueqi
2015-01-01
Carrying abundant nutrition, terrigenous freshwater has a great impact on the spatial and temporal heterogeneity of phytoplankton in coastal waters. The present study analyzed the spatial-temporal variations of Chlorophyll-a (Chl-a) concentration under the influence of discharge from the Yangtze River, based on remotely sensed Chl-a concentrations. The study area was initially zoned to quantitatively investigate the spatial variation patterns of Chl-a. Then, the temporal variation of Chl-a in each zone was simulated by a sinusoidal curve model. The results showed that in the inshore waters, the terrigenous discharge was the predominant driving force determining the pattern of Chl-a, which brings the risk of red tide disasters; while in the open sea areas, Chl-a was mainly affected by meteorological factors. Furthermore, a diversity of spatial and temporal variations of Chl-a existed based on the degree of influences from discharge. The diluted water extended from inshore to the east of Jeju Island. This process affected the Chl-a concentration flowing through the area, and had a potential impact on the marine environment. The Chl-a from September to November showed an obvious response to the discharge from July to September with a lag of 1 to 2 months. PMID:26006121
Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China
Shao, Jinchao; Han, Guoqi; Yang, Dezhou
2015-01-01
Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing. PMID:26407324
NASA Astrophysics Data System (ADS)
Shtraikhert, E. A.; Zakharkov, S. P.
2016-12-01
Chlorophyll- a concentration ( C chl) variations in the cross section within and outside the Peter the Great Bay shelf during different stages of the winter-spring phytoplankton bloom in 2003-2005 has been considered based on a ship (obtained during the R/V Akademik M.A. Lavrent'ev voyage of February 26 to March 9, 2003) and MODIS-Aqua spectroradiometer and the SeaWiFS color-scanner satellite data. A comparison of the C chl variability obtained from the ship and satellite data indicates that these data are inconsistent. According to satellite data obtained at the MUMM atmospheric correction, the C chl variability is distorted less than the NIR-correction data. Studying the variations in the coefficients of light absorption by the detritus and yellow substance ( a dg) and light backscattering by suspended particles ( b bp), C chl, chlorophyll- a fluorescence ( F chl) according to the satellite data allow us to state that the variations in the discrepancy between the satellite and ship C chl values are mainly caused by the variations in the content of the detritus and yellow substance in water. Based on the satellite data, it has been revealed that the a dg values increase with increasing wind mixing after the phytoplankton bloom (about 2-5 km areas where the a dg, C chl, F chl, and bbp values abruptly increased in 2005, apparently due to eddy formation). It has been indicated that the F chl characteristic, which is close to C chl, increases when the favorable conditions for the phytoplankton bloom deteriorate. Therefore, this characteristic cannot be used to identify C chl under the indicated conditions.
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Franks, P. J. S.; Johnson, K. S.; Girton, J. B.
2016-02-01
The Southern Ocean is under the influence of strong atmospheric synoptic activity and contains some of the oceans deepest mixed layers. Deep mixed layers can transport phytoplankton below the euphotic zone, and phytoplankton growth is hypothesized to be co-limited by iron and light. Atmospheric forcing drives changes in the mixed-layer depth (MLD) that influence light levels and nutrient input to the euphotic zone. In summer, when the MLD is shallow and close to the euphotic depth, high satellite Chl-a correlate with high winds, consistent with wind-driven entrainment that can potentially increase nutrient concentrations in the euphotic zone. However, correlations between Chl-a and diurnal winds are largest at zero time lag. High winds can inject nutrients on short timescales (< 1 day), but in situ incubation experiments after iron addition indicate phytoplankton growth on slightly longer timescales (> 3-4 days), suggesting that the correlations are not a result of growth. High winds can also entrain Chl-a from a subsurface Chl-a maximum. Novel bio-optical sensors mounted on elephant seals and autonomous floats allow us to examine the vertical structure of Chl-a in the Southern Ocean. In this study, we investigate the occurrence of subsurface Chl-a maxima. We find that surface Chl-a is a relatively good proxy for depth-integrated Chl-a within the euphotic zone but gives an inadequate representation of biomass within the mixed layer, particularly in the summer. Subsurface Chl-a maxima are not uncommon and may occur in all seasons. Chl-a maxima that correlate with particle backscattering in summer and fall are found near the base of the mixed layer, closer to the nutrient maximum than the light maximum, suggesting that nutrient limitation (i.e., essentially iron) can play a greater role than light limitation in governing productivity, and that high winds potentially entrain a subsurface Chl-a maximum into the summer mixed layer.
NASA Astrophysics Data System (ADS)
Pitarch, J.; Volpe, G.; Colella, S.; Krasemann, H.; Santoleri, R.
2015-09-01
Fifteen-year (1997-2012) time series of chlorophyll a (CHL) in the Baltic Sea, based on merged multisensor satellite data provided by the European projects Globcolour and ESA-OC-CCI were analysed. Several available CHL algorithms were sea-truthed against a large in situ CHL dataset consisting of data by Seadatanet, HELCOM and NOAA. Matchups were calculated for three separate areas (1) Skagerrak and Kattegat, (2) Baltic Proper plus gulfs of Riga and Finland, called here "Central Baltic", (3) Gulf of Bothnia, and for the three areas as a whole. Statistics showed low linearity. The OC4v6 algorithm (R2 = 0.46, BIAS = +60 %, RMS = 79 % for the whole dataset) was linearly transformed by using the best linear fit (OC4corr). By construction, the bias was corrected, but RMS was increased instead. Despite this shortcoming, we demonstrated that errors between OC4corr and in situ data were log-normally distributed and centred at zero. Consequently, unbiased estimators of the horizontally-averaged CHL could be obtained, the error of which tends to zero when a large amount of pixels is averaged. From the basin-wide time series, the climatology and the annual anomalies were separated. The climatologies revealed completely different CHL dynamics among regions: in Skagerrak and Kattegat, CHL strongly peaks in late winter, with a minimum in summer and a secondary peak in spring. In the Central Baltic, CHL follows a dynamics of a spring CHL peak, followed by a much stronger summer bloom, with decreasing CHL towards winter. The Gulf of Bothnia shows a similar CHL dynamics as the central Baltic, although the summer bloom is absent. Across years, CHL showed great variability. Supported by auxiliary satellite sea-surface temperature (SST) data, we found that phytoplankton growth was inhibited in the central Baltic Sea in the years of colder summers or when the SST happened to increase later in the season. Extremely high CHL in spring 2008 was detected and linked to an exceptionally warm preceding winter. Sharp SST changes were found to induce CHL changes in the same direction. This phenomenon was appreciated best by overlaying the time series of the CHL and SST anomalies.
Assessment of chlorophyll variability along the northwestern coast of Iberian Peninsula
NASA Astrophysics Data System (ADS)
Picado, A.; Alvarez, I.; Vaz, N.; Varela, R.; Gomez-Gesteira, M.; Dias, J. M.
2014-10-01
The northwestern coast of the Iberian Peninsula is characterized by a high primary production mainly supported by coastal upwelling, creating an extraordinary commercial interest for fisheries and aquaculture. Considering chlorophyll-a (Chl-a) as an indicator of primary production, its spatio-temporal variability was researched in this study in the surface water of this upwelling region from 1998 to 2007. Satellite derived Chl-a, Sea Surface Temperature (SST) and Ekman transport data as well as the inflow of the main rivers discharging into the study area were used to investigate the origin of the Chl-a concentration. Empirical Orthogonal Function (EOF) analysis of weekly Chl-a images was performed, as well as correlation analysis between Chl-a concentration, Ekman transport and river discharge. EOF results suggest that the highest Chl-a concentration occurs near the coast up to 60 km offshore. The interannual variability of Chl-a, SST and Ekman transport was also studied considering summer and winter months. Generally, 2005, 2006 and 2007 were the most productive years during the summer months with high Chl-a concentrations along the coast associated to the strong upwelling conditions observed. Otherwise, 1998 seemed to be the most productive year during winter. The absence of upwelling favorable conditions together with localized low SST and considerable discharges, suggests that the high Chl-a concentrations observed during this period are mainly due to the entrance of nutrients through river runoff. However, in winter, high concentrations of colored dissolved organic matter (CDOM), associated with river runoff, are present in the ocean surface, leading to an erroneous strong signal of the satellite. During winter correlations of 0.58 and 0.49 were found between Chl-a concentration and Douro and Minho discharges, respectively, evidencing that high Chl-a concentration was related with river runoff. Otherwise, during summer, Chl-a and Ekman transport exhibited a correlation of - 0.38 indicating that high Chl-a is associated to upwelling events. In summary, it was found that the spatio-temporal variability of Chl-a along the northwestern coast of Iberian Peninsula exhibited the clear influence of upwelling events during summer. Conversely, the variability during winter was mainly due to entrance of nutrients through the rivers discharge which flow into the area.
NASA Technical Reports Server (NTRS)
Zhang, Qingyuan; Middleton, Elizabeth M.; Cheng, Yen-Ben; Huemmrich, K. Fred; Cook, Bruce D.; Corp, Lawrence A.; Kustas, William P.; Russ, Andrew L.; Prueger, John H.; Yao, Tian
2016-01-01
The concept of light use efficiency (Epsilon) and the concept of fraction of photosynthetically active ration (PAR) absorbed for vegetation photosynthesis (PSN), i.e., fAPAR (sub PSN), have been widely utilized to estimate vegetation gross primary productivity (GPP). It has been demonstrated that the photochemical reflectance index (PRI) is empirically related to e. An experimental US Department of Agriculture (USDA) cornfield in Maryland was selected as our study field. We explored the potential of integrating fAPAR(sub chl) (defined as the fraction of PAR absorbed by chlorophyll) and nadir PRI (PRI(sub nadir)) to predict cornfield daily GPP. We acquired nadir or near-nadir EO-1/Hyperion satellite images that covered the cornfield and took nadir in-situ field spectral measurements. Those data were used to derive the PRI(sub nadir) and fAPAR (sub chl). The fAPAR (sub chl) is retrieved with the advanced radiative transfer model PROSAIL2 and the Metropolis approach, a type of Markov Chain Monte Carlo (MCMC) estimation procedure. We define chlorophyll light use efficiency Epsilon (sub chl) as the ratio of vegetation GPP as measured by eddy covariance techniques to PAR absorbed by chlorophyll (Epsilon(sub chl) = GPP/APAR (sub chl). Daily Epsilon (sub chl) retrieved with the EO-1 Hyperion images was regressed with a linear equation of PRI (sub nadir) Epsilon (sub chl) = Alpha × PRI (sub nadir) + Beta). The satellite Epsilon(sub chl- PRI (sub nadir) linear relationship for the cornfield was implemented to develop an integrated daily GPP model [GPP = (Alpha × PRI(sub nadir) + Beta) × fAPAR (sub chl) × PAR], which was evaluated with fAPAR (sub chl) and PRI (sub nadir) retrieved from field measurements. Daily GPP estimated with this fAPAR (sub chl-) PRI (nadir) integration model was strongly correlated with the observed tower in-situ daily GPP (R(sup 2) = 0.93); with a root mean square error (RMSE) of 1.71 g C mol-(sup -1) PPFD and coefficient of variation (CV) of 16.57%. Both seasonal Epsilon (sub chl) and PRI (sub nadir) were strongly correlated with fAPAR (sub chl ) retrieved from field measurements, which indicates that chlorophyll content strongly affects seasonal epsilon (sub chl) and PRI (sub nadir). We demonstrate the potential capacity to monitor GPP with space-based visible through shortwave infrared (VSWIR) imaging spectrometers such as NASA's soon to be decommissioned EO- 1/Hyperion and the future Hyperspectral Infrared Imager (HyspIRI).
Chlorophyll Proteins of Photosystem I 1
Mullet, John E.; Burke, John J.; Arntzen, Charles J.
1980-01-01
Data are presented which suggest the existence of a light-harvesting pigment-protein complex which is functionally and structurally associated with photosystem I (PSI) reaction centers. These observations are based on techniques which allow isolation of PSI using minimal concentrations of Triton X-100. Properties of density and self aggregation allowed purification of a “native” PSI complex. The isolated PSI particles appear as 106 Å spherical subunits when viewed by freeze fracture microscopy. When incorporated into phosphatidyl choline vesicles, the particles lose self-aggregation properties and disperse uniformly within the lipid membrane. The isolated PSI preparation contains 100 ± 10 chlorophylls/P700 (Chl a/b ratio greater than 18); this represents a recovery of 27% of the original chloroplast membrane Chl. These particles were enriched in Chl a forms absorbing at 701 to 710 nm. Chl fluorescence at room temperature exhibited a maximum at 690 nm with a pronounced shoulder at 710 nm. At 77 K, peak fluorescence emission was at 736 nm; in the presence of dithionite an additional fluorescence maximum at 695 nm was obtained at 77 K. This dual fluorescence emission peak for the PSI particles is evidence for at least two Chl populations within the PSI membrane subunit. The fluorescence emission observed at 695 nm was identified as arising from the core of PSI which contains 40 Chl/P700 (PSI-40). This core complex, derived from native PSI particles, was enriched in Chl a absorbing at 680 and 690 nm and fluorescing with maximal emission at 694 nm at 77 K. PSI particles consisting of the PSI core complex plus 20 to 25 Chl antennae (65 Chl/P700) could also be derived from native PSI complexes. These preparations were enriched in Chl a forms absorbing at 697 nm and exhibited a 77 K fluorescence emission maximum at 722 nm. A comparison of native PSI particles which contain 110 Chl/P700 (PSI-110) and PSI particles containing 65 Chl/P700 (PSI-65) provides evidence for the existence of a peripheral Chl-protein complex tightly associated in the native PSI complex. The native PSI subunits contain polypeptides of 22,500 to 24,500 daltons which are not found in the PSI-65 or PSI-40 subfractions. It is suggested that these polypeptides function to bind 40 to 45 Chl per structural complex, including the Chl which emits fluorescence at 736 nm. A model for the organization of Chl forms is presented in which the native PSI membrane subunit consists of a reaction center core complex plus two regions of associated light-harvesting antennae. The presence of energy “sinks” within the antennae is discussed. Images PMID:16661288
Induction of reactive oxygen species in marine phytoplankton under crude oil exposure.
Ozhan, Koray; Zahraeifard, Sara; Smith, Aaron P; Bargu, Sibel
2015-12-01
Exposure of phytoplankton to the water-accommodated fraction of crude oil can elicit a number of stress responses, but the mechanisms that drive these responses are unclear. South Louisiana crude oil was selected to investigate its effects on population growth, chlorophyll a (Chl a) content, antioxidative defense, and lipid peroxidation, for the marine diatom, Ditylum brightwellii, and the dinoflagellate, Heterocapsa triquetra, in laboratory-based microcosm experiments. The transcript levels of several possible stress-responsive genes in D. brightwellii were also measured. The microalgae were exposed to crude oil for up to 96 h, and Chl a content, superoxide dismutase (SOD), the glutathione pool (GSH and GSSG), and lipid peroxidation content were analyzed. The cell growth of both phytoplankton species was inhibited with increasing crude oil concentrations. Crude oil exposure did not affect Chl a content significantly in cells. SOD activities showed similar responses in both species, being enhanced at 4- and 8-mg/L crude oil exposure. Only H. triquetra demonstrated enhanced activity in GSSG pool and lipid peroxidation at 8-mg/L crude oil exposure, suggesting that phytoplankton species have distinct physiological responses and tolerance levels to crude oil exposure. This study indicated the activation of reactive oxygen species (ROS) in phytoplankton under crude oil exposure; however, the progressive damage in cells is still unknown. Thus, ROS-related damage in nucleic acid, lipids, proteins, and DNA, due to crude oil exposure could be a worthwhile subject of study to better understand crude oil toxicity at the base of the food web.
Potential controls of isoprene in the surface ocean
NASA Astrophysics Data System (ADS)
Hackenberg, S. C.; Andrews, S. J.; Airs, R.; Arnold, S. R.; Bouman, H. A.; Brewin, R. J. W.; Chance, R. J.; Cummings, D.; Dall'Olmo, G.; Lewis, A. C.; Minaeian, J. K.; Reifel, K. M.; Small, A.; Tarran, G. A.; Tilstone, G. H.; Carpenter, L. J.
2017-04-01
Isoprene surface ocean concentrations and vertical distribution, atmospheric mixing ratios, and calculated sea-to-air fluxes spanning approximately 125° of latitude (80°N-45°S) over the Arctic and Atlantic Oceans are reported. Oceanic isoprene concentrations were associated with a number of concurrently monitored biological variables including chlorophyll a (Chl a), photoprotective pigments, integrated primary production (intPP), and cyanobacterial cell counts, with higher isoprene concentrations relative to all respective variables found at sea surface temperatures greater than 20°C. The correlation between isoprene and the sum of photoprotective carotenoids, which is reported here for the first time, was the most consistent across all cruises. Parameterizations based on linear regression analyses of these relationships perform well for Arctic and Atlantic data, producing a better fit to observations than an existing Chl a-based parameterization. Global extrapolation of isoprene surface water concentrations using satellite-derived Chl a and intPP reproduced general trends in the in situ data and absolute values within a factor of 2 between 60% and 85%, depending on the data set and algorithm used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang, E-mail: howesiang@ntu.edu.sg
2015-06-07
The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysismore » of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.« less
Conrads-Strauch, J; Dow, J M; Milligan, D E; Parra, R; Daniels, M J
1990-05-01
Inoculation of mature leaves of turnip (Brassica campestris) with the incompatible Xanthomonas campestris pv vitians resulted in the induction of beta-1,3-glucanase and chitinase/lysozyme (CHL) activity. No increase in the basal activity of beta-1,3-glucanase was observed after inoculation of leaves with heat- or rifampicin-killed X. c. vitians, Escherichia coli, or sterile water. Inoculation with the compatible X. campestris pv campestris resulted in a slower induction of glucanase than that seen with X. c. vitians. In contrast, all bacteria caused an induction of CHL activity. One major beta-1,3-glucanase (molecular mass 36.5 kilodaltons, isoelectric point [pl] ~8.5) was purified from both inoculated and untreated leaves by ion-exchange chromatography. The enzyme degraded laminarin by an endo-glycolytic mechanism. Two major CHL isozymes (CHL 1 and CHL 2, molecular mass 30 kilodaltons and pl 9.4 and 10.2, respectively) were purified from X. c. vitians inoculated leaves by affinity chromatography on a chitin column followed by ion-exchange chromatography. Both enzymes degraded chitin by an endo-glycolytic mechanism although the ratio of lysozyme to chitinase specific activities for CHL 1 and CHL2 were different. The induction of CHL 1 was associated with the hypersensitive reaction caused by X. c. vitians whereas all other treatments induced largely CHL 2.
This method provides a procedure for determination of chlorophylls a (chl a), b (chl b), c + c 1 2 (chl c + c ) and pheopigments of chlorophyll a (pheo a) 1 2 found in marine and freshwater phytoplankton. Chlorophyllide a is determined as chl a. Visible wavelength spectrophotomet...
Origin of chlorophyll fluorescence in plants at 55-75 degrees C.
Ilík, Petr; Kouril, Roman; Kruk, Jerzy; Myśliwa-Kurdziel, Beata; Popelková, Hana; Strzałka, Kazimierz; Naus, Jan
2003-01-01
The origin of heat-induced chlorophyll fluorescence rise that appears at about 55-60 degrees C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a) molecules released from chlorophyll-containing protein complexes denaturing at 55-60 degrees C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a/lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55-60 degrees C and the decreasing fluorescence course at 60-75 degrees C, which are observable during linear heating of plant material with a high Chl a/lipid ratio (e.g. green leaves, grana thylakoids, isolated PSII particles).
Yamada, Takako; Iida, Tetsuo; Takamine, Satoshi; Hayashi, Noriko; Okuma, Kazuhiro
2015-01-01
The safety of rare sugar syrup obtained from high-fructose corn syrup under slightly alkaline conditions was studied. Mutagenicity of rare sugar syrup was assessed by a reverse mutation assay using Salmonella typhimurium and Escherichia coli, and an in vitro chromosomal aberration assay using Chinese hamster lung cell line (CHL/IU). No mutagenicity of rare sugar syrup was detected under these experimental conditions. Oral administration of single dose (15,000 mg/kg) of rare sugar syrup to rats caused no abnormalities, suggesting no adverse effect of rare sugar syrup. In humans, the acute non-effect level of rare sugar syrup for causing diarrhea was estimated as 0.9 g/kg body weight as dry solid base in both males and females.
Contribution of Chlorophyll Fluorescence to the Reflectance of Corn Foliage
NASA Technical Reports Server (NTRS)
Campbell, Petya K. Entcheva; Middleton, Elizabeth M.; Corp, L. A.; McMurtrey, J. E.; Kim, M. S.; Chappelle, E. W.; Butcher, L. M.; Ranson, K. Jon (Technical Monitor)
2002-01-01
To assess the contribution of chlorophyll fluorescence (ChlF) to apparent reflectance (Ra) in the red/far-red, spectra were collected on a C4 agricultural species (corn, Zea Mays L.) under conditions ranging from nitrogen deficiency to excess. A significant contribution of ChlF to Ra was observed, with on average 10-25% at 685nm and 2-6% at 740nm of Ra being due to ChlF. Higher ChlF was consistently measured from the abaxial leaf surface as compared to the adaxial. Using 350-665nm excitation, the study confirms the trends in three ChlF ratios established previously by active F technology, suggesting that the ChlF utility this technology has developed for monitoring vegetation physiological status is likely applicable also under natural solar illumination.
Salverda, Jante M; Vengris, Mikas; Krueger, Brent P; Scholes, Gregory D; Czarnoleski, Adam R; Novoderezhkin, Vladimir; van Amerongen, Herbert; van Grondelle, Rienk
2003-01-01
Three pulse echo peak shift and transient grating (TG) measurements on the plant light-harvesting complexes LHCII and CP29 are reported. The LHCII complex is by far the most abundant light-harvesting complex in higher plants and fulfills several important physiological functions such as light-harvesting and photoprotection. Our study is focused on the light-harvesting function of LHCII and the very similar CP29 complex and reveals hitherto unresolved excitation energy transfer processes. All measurements were performed at room temperature using detergent isolated complexes from spinach leaves. Both complexes were excited in their Chl b band at 650 nm and in the blue shoulder of the Chl a band at 670 nm. Exponential fits to the TG and three pulse echo peak shift decay curves were used to estimate the timescales of the observed energy transfer processes. At 650 nm, the TG decay can be described with time constants of 130 fs and 2.2 ps for CP29, and 300 fs and 2.8 ps for LHCII. At 670 nm, the TG shows decay components of 230 fs and 6 ps for LHCII, and 300 fs and 5 ps for CP29. These time constants correspond to well-known energy transfer processes, from Chl b to Chl a for the 650 nm TG and from blue (670 nm) Chl a to red (680 nm) Chl a for the 670 nm TG. The peak shift decay times are entirely different. At 650 nm we find times of 150 fs and 0.5-1 ps for LHCII, and 360 fs and 3 ps for CP29, which we can associate mainly with Chl b <--> Chl b energy transfer. At 670 nm we find times of 140 fs and 3 ps for LHCII, and 3 ps for CP29, which we can associate with fast (only in LHCII) and slow transfer between relatively blue Chls a or Chl a states. From the occurrence of both fast Chl b <--> Chl b and fast Chl b --> Chl a transfer in CP29, we conclude that at least two mixed binding sites are present in this complex. A detailed comparison of our observed rates with exciton calculations on both CP29 and LHCII provides us with more insight in the location of these mixed sites. Most importantly, for CP29, we find that a Chl b pair must be present in some, but not all, complexes, on sites A(3) and B(3). For LHCII, the observed rates can best be understood if the same pair, A(3) and B(3), is involved in both fast Chl b <--> Chl b and fast Chl a <--> Chl a transfer. Hence, it is likely that mixed sites also occur in the native LHCII complex. Such flexibility in chlorophyll binding would agree with the general flexibility in aggregation form and xanthophyll binding of the LHCII complex and could be of use for optimizing the role of LHCII under specific circumstances, for example under high-light conditions. Our study is the first to provide spectroscopic evidence for mixed binding sites, as well as the first to show their existence in native complexes.
NASA Astrophysics Data System (ADS)
Liu, Dongyan; Wang, Yueqi
2013-09-01
The spatial and temporal variability of sea surface chlorophyll-a (Chl-a) concentrations in the Bohai and Yellow Seas were analyzed, using satellite-derived Chl-a products from SeaWiFS and MODIS sensors over the period of September 1997-September 2011. A set of monthly and cloud-free Chl-a data was produced by the Data Interpolating Empirical Orthogonal Function (DINEOF) method. The results indicate that there are different Chl-a seasonal patterns existing in the Yangtze River mouth, coastal and offshore waters, respectively. In the Yangtze River mouth, a long-lasting Chl-a peak (May-September) is seen in summer. In coastal waters, two significant Chl-a maxima occur in winter-spring and late summer, respectively. In offshore waters, only one significant spring (March-April) Chl-a maximum is evident with a time lag of 1-3 months to coastal waters and the signal of autumn maximum is very weak. In coastal waters, wind-tide-thermohaline circulations and East Asia summer rainy monsoon may important physical factors to impact the seasonal pattern of Chl-a, but increased human activity (e.g., eutrophication, dam) could significantly enhance this process. In offshore waters, the impact on the circulation of the YSWC in winter and YSCW in summer in the central Yellow Sea could be important physical factor in explaining the variability of Chl-a in seasonal patterns. The decadal trends of Chl-a and sea surface temperature are decreasing in coastal waters, with a significantly positive correlation. In offshore waters, the decadal trends of Chl-a is increasing but a slight decreasing sea surface temperature trend is seen, and they indicate a negative correlation. The highest Chl-a values (3.0-5.0 mg m-3) and the lowest variability (STD < 0.3 mg m-3) are observed in coastal waters, in the adjacent sea area of the Yangtze River and Yellow River mouths where the water depth is less than 20 m. Compared with coastal waters and the sea adjacent to the large river mouths, the central Bohai Sea and the offshore waters of the Yellow Sea with the water depth of 20-40 m have lower Chl-a concentrations (1.5-3.5 mg m-3) but higher variability (STD = 0.4-0.6 mg m-3). In contrast to (1) and (2), the lowest Chl-a values (0.5-2.0 mg m-3, with most of values below 1 mg m-3) and the highest variability (STD > 0.8 mg m-3) occurred in the center Yellow Sea where the water depth with a range of 40-120 m. Linear statistical analysis further verifies the relationship between Chl-a and water depth (Fig. 5). Chl-a concentrations and water depths display a significant negative correlation (R = -0.87, P < 0.0001) (Fig. 5a), and there is a significant positive correlation (R = 0.69, P < 0.0001) between STD and water depths (Fig. 5b). These results indicated a significant spatial correlation between water depth and Chl-a concentrations.
NASA Technical Reports Server (NTRS)
Limbacher, James A.; Kahn, Ralph A.
2017-01-01
As aerosol amount and type are key factors in the 'atmospheric correction' required for remote-sensing chlorophyll alpha concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chl(sub in situ) less than 1.5 mg m(exp -3), the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov- Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p greater than 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl less than 1.5 mg m(exp -3), MISR and MODIS show very good agreement: r = 0.96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.
Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A
2017-01-11
Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior. Copyright © 2017 the authors 0270-6474/17/370323-10$15.00/0.
Chlorophyll-a retrieval in the Philippine waters
NASA Astrophysics Data System (ADS)
Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.
2017-12-01
Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This results to a significant improvement on calculated RMSE of satellite-derived Chl-a values. Meanwhile, it was observed that the blue-green band ratio has low Chl-a predictive capability in turbid waters. A more accurate estimation was found using the NIR and red band ratios for turbid waters with covarying Chl-a concentration and low sediment load.
Yu, Xiuxia; He, Yi; Jiang, Jie; Cui, Hua
2014-02-17
Chloramphenicol (CHL) as a broad-spectrum antibiotic has a broad action spectrum against Gram-positive and Gram-negative bacteria, as well as anaerobes. The use of CHL is strictly restricted in poultry because of its toxic effect. However, CHL is still illegally used in animal farming because of its accessibility and low cost. Therefore, sensitive methods are highly desired for the determination of CHL in foodstuffs. The immunoassays based on labeling as an important tool have been reported for the detection of CHL residues in food-producing animals. However, most of the labeling procedures require multi-step reactions and purifications and thus they are complicated and time-consuming. Recently, in our previous work, luminol functionalized silver nanoparticles have been successfully synthesized, which exhibits higher CL efficiency than luminol functionalized gold nanoparticles. In this work, the new luminol functionalized silver nanoparticles have been used for the labeling of small molecules CHL for the first time and a competitive chemiluminescent immunoassay has been developed for the detection of CHL. Owing to the amplification of silver nanoparticles, high sensitivity for CHL could be achieved with a low detection limit of 7.6×10(-9) g mL(-1) and a wide linear dynamic range of 1.0×10(-8)-1.0×10(-6) g mL(-1). This method has also been successfully applied to determine CHL in milk and honey samples with a good recoveries (92% and 102%, 99% and 107% respectively), indicating that the method is feasible for the determination of CHL in real milk and honey samples. The labeling procedure is simple, convenient and fast, superior to previously reported labeling procedures. The immunoassay is also simple, fast, sensitive and selective. It is of application potential for the determination of CHL in foodstuffs. Copyright © 2014 Elsevier B.V. All rights reserved.
Mizoguchi, Tadashi; Kimura, Yuki; Yoshitomi, Taichi; Tamiaki, Hitoshi
2011-11-01
Chlorophyll(Chl)-c pigments in algae, diatoms and some prokaryotes are characterized by the fully conjugated porphyrin π-system as well as the acrylate residue at the 17-position. The precise structural characterization of Chl-c(3) from the haptophyte Emiliania huxleyi was performed. The conformations of the π-conjugated peripheral substituents, the 3-/8-vinyl, 7-methoxycarbonyl and 17-acrylate moieties were evaluated, in a solution, using nuclear Overhauser enhancement correlations and molecular modeling calculations. The rotation of the 17-acrylate residue was considerably restricted, whereas the other three substituents readily rotated at ambient temperature. Moreover, the stereochemistry at the 13²-position was determined by combination of chiral high-performance liquid chromatography (HPLC) with circular dichroism (CD) spectroscopy. Compared with the CD spectra of the structurally related, synthetic (13²R)- and (13²S)-protochlorophyllide(PChlide)-a, naturally occurring Chl-c₃ had exclusively the (13²R)-configuration. To elucidate this natural selection of a single enantiomer, we analyzed the three major Chl-c pigments (Chl-c₁, c₂ and c₃) in four phylogenetically distinct classes of Chl-c containing algae, i.e., heterokontophyta, dinophyta, cryptophyta and haptophyta using chiral HPLC. All the photosynthetic organisms contained only the (13²R)-enantiomerically pure Chls-c, and lacked the corresponding enantiomeric (13²S)-forms. Additionally, Chl-c₂ was found in all the organisms as the common Chl-c. These results throw a light on the biosynthesis as well as photosynthetic function of Chl-c pigments: Chl-c₂ is derived from 8-vinyl-PChlide-a by dehydrogenation of the 17-propionate to acrylate residues as generally proposed, and the (13²R)-enantiomers of Chls-c function as photosynthetically active, light-harvesting pigments together with the principal Chl-a and carotenoids. 2011 Elsevier B.V. All rights reserved.
Slattery, Rebecca A; VanLoocke, Andy; Bernacchi, Carl J; Zhu, Xin-Guang; Ort, Donald R
2017-01-01
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9 , in comparison to the wild-type (WT) "Clark" cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production.
Dietary Pattern and Risk of Hodgkin Lymphoma in a Population-Based Case-Control Study
Epstein, Mara M.; Chang, Ellen T.; Zhang, Yawei; Fung, Teresa T.; Batista, Julie L.; Ambinder, Richard F.; Zheng, Tongzhang; Mueller, Nancy E.; Birmann, Brenda M.
2015-01-01
Classic Hodgkin lymphoma (cHL) has few known modifiable risk factors, and the relationship between diet and cHL risk is unclear. We performed the first investigation of an association between dietary pattern and cHL risk in 435 cHL cases and 563 population-based controls from Massachusetts and Connecticut (1997–2000) who completed baseline diet questionnaires. We identified 4 major dietary patterns (“vegetable,” “high meat,” “fruit/low-fat dairy,” “desserts/sweets”) using principal components analysis. We computed multivariable odds ratios and 95% confidence intervals for associations of dietary pattern score (quartiles) with younger-adult (age <50 years), older-adult (age ≥50 years), and overall cHL risk. Secondary analyses examined associations by histological subtype and tumor Epstein-Barr virus (EBV) status. A diet high in desserts/sweets was associated with younger-adult (odds ratio(quartile 4 vs. quartile 1) = 1.60, 95% confidence interval: 1.05, 2.45; Ptrend = 0.008) and EBV-negative, younger-adult (odds ratio = 2.11, 95% confidence interval: 1.31, 3.41; Ptrend = 0.007) cHL risk. A high meat diet was associated with older-adult (odds ratio = 3.34, 95% confidence interval: 1.02, 10.91; Ptrend = 0.04) and EBV-negative, older-adult (odds ratio = 4.64, 95% confidence interval: 1.03, 20.86; Ptrend = 0.04) cHL risk. Other dietary patterns were not clearly associated with cHL. We report the first evidence for a role of dietary pattern in cHL etiology. Diets featuring high intake of meat or desserts and sweets may increase cHL risk. PMID:26182945
Dietary pattern and risk of hodgkin lymphoma in a population-based case-control study.
Epstein, Mara M; Chang, Ellen T; Zhang, Yawei; Fung, Teresa T; Batista, Julie L; Ambinder, Richard F; Zheng, Tongzhang; Mueller, Nancy E; Birmann, Brenda M
2015-09-01
Classic Hodgkin lymphoma (cHL) has few known modifiable risk factors, and the relationship between diet and cHL risk is unclear. We performed the first investigation of an association between dietary pattern and cHL risk in 435 cHL cases and 563 population-based controls from Massachusetts and Connecticut (1997-2000) who completed baseline diet questionnaires. We identified 4 major dietary patterns ("vegetable," "high meat," "fruit/low-fat dairy," "desserts/sweets") using principal components analysis. We computed multivariable odds ratios and 95% confidence intervals for associations of dietary pattern score (quartiles) with younger-adult (age <50 years), older-adult (age ≥50 years), and overall cHL risk. Secondary analyses examined associations by histological subtype and tumor Epstein-Barr virus (EBV) status. A diet high in desserts/sweets was associated with younger-adult (odds ratio(quartile 4 vs. quartile 1) = 1.60, 95% confidence interval: 1.05, 2.45; Ptrend = 0.008) and EBV-negative, younger-adult (odds ratio = 2.11, 95% confidence interval: 1.31, 3.41; Ptrend = 0.007) cHL risk. A high meat diet was associated with older-adult (odds ratio = 3.34, 95% confidence interval: 1.02, 10.91; Ptrend = 0.04) and EBV-negative, older-adult (odds ratio = 4.64, 95% confidence interval: 1.03, 20.86; Ptrend = 0.04) cHL risk. Other dietary patterns were not clearly associated with cHL. We report the first evidence for a role of dietary pattern in cHL etiology. Diets featuring high intake of meat or desserts and sweets may increase cHL risk. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Slattery, Rebecca A.; VanLoocke, Andy; Bernacchi, Carl J.; Zhu, Xin-Guang; Ort, Donald R.
2017-01-01
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed photosynthetically active radiation into biomass and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. The effects of reduced chl on leaf and canopy photosynthesis and photosynthetic efficiency were studied in two reportedly robust reduced-chl soybean mutants, Y11y11 and y9y9, in comparison to the wild-type (WT) “Clark” cultivar. Both mutants were characterized during the 2012 growing season whereas only the Y11y11 mutant was characterized during the 2013 growing season. Chl deficiency led to greater rates of leaf-level photosynthesis per absorbed photon early in the growing season when mutant chl content was ∼35% of the WT, but there was no effect on photosynthesis later in the season when mutant leaf chl approached 50% of the WT. Transient benefits of reduced chl at the leaf level did not translate to improvements in canopy-level processes. Reduced pigmentation in these mutants was linked to lower water use efficiency, which may have dampened any photosynthetic benefits of reduced chl, especially since both growing seasons experienced significant drought conditions. These results, while not confirming our hypothesis or an earlier published study in which the Y11y11 mutant significantly outyielded the WT, do demonstrate that soybean significantly overinvests in chl. Despite a >50% chl reduction, there was little negative impact on biomass accumulation or yield, and the small negative effects present were likely due to pleiotropic effects of the mutation. This outcome points to an opportunity to reinvest nitrogen and energy resources that would otherwise be used in pigment-proteins into increasing biochemical photosynthetic capacity, thereby improving canopy photosynthesis and biomass production. PMID:28458677
Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway.
Sato, Yutaka; Morita, Ryouhei; Nishimura, Minoru; Yamaguchi, Hiroyasu; Kusaba, Makoto
2007-08-28
Mutants that retain greenness of leaves during senescence are known as "stay-green" mutants. The most famous stay-green mutant is Mendel's green cotyledon pea, one of the mutants used in determining the law of genetics. Pea plants homozygous for this recessive mutation (known as i at present) retain greenness of the cotyledon during seed maturation and of leaves during senescence. We found tight linkage between the I locus and stay-green gene originally found in rice, SGR. Molecular analysis of three i alleles including one with no SGR expression confirmed that the I gene encodes SGR in pea. Functional analysis of sgr mutants in pea and rice further revealed that leaf functionality is lowered despite a high chlorophyll a (Chl a) and chlorophyll b (Chl b) content in the late stage of senescence, suggesting that SGR is primarily involved in Chl degradation. Consistent with this observation, a wide range of Chl-protein complexes, but not the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, were shown to be more stable in sgr than wild-type plants. The expression of OsCHL and NYC1, which encode the first enzymes in the degrading pathways of Chl a and Chl b, respectively, was not affected by sgr in rice. The results suggest that SGR might be involved in activation of the Chl-degrading pathway during leaf senescence through translational or posttranslational regulation of Chl-degrading enzymes.
NASA Astrophysics Data System (ADS)
Huang, Jie; Xu, Fanghua; Zhou, Kuanbo; Xiu, Peng; Lin, Yanluan
2017-08-01
Temporal evolution of near-surface chlorophyll (CHL) associated with mesoscale eddies over entire eddy lifespan is complicated. Based on satellite measurements and a reanalysis data set, we identify and quantify major temporal and spatial CHL responses in cyclonic eddies in the southeastern Pacific, and explore the associated mechanisms. Only few temporal CHL variations can be directly linked to the four primary mechanisms: "eddy pumping," "eddy trapping," "eddy stirring," and "eddy-induced Ekman pumping." About 80% of the temporal CHL variations are too complex to be explained by a single mechanism. Five characteristic CHL responses, including classic dipoles (CD), positive-dominant dipoles (PD), negative-dominant dipoles (ND), positive monopoles (PM), and negative monopoles (NM) are identified using the self-organizing map (SOM). CD, a dominant response induced primarily by "eddy stirring," has a continued increasing of frequency of occurrence with time, although its contribution to the total CHL variability remains low. As the secondary prominent response, NM has two peaks of frequency of occurrence at eddy formation and maturation stages, mainly accounted by "eddy trapping" after eddy breakup and "eddy-induced Ekman pumping," respectively. The sum of frequency of occurrence of PD and PM are comparable to that of NM. The initial positive CHL at eddy formation stage is associated with "eddy trapping." The significant positive CHL increase from the eddy intensification to early decay stage is mainly attributed to "eddy pumping." Although the frequency of occurrence of ND is the smallest, its contribution to negative CHL anomalies is unnegligible.
Wideband Aural Acoustic Absorbance Predicts Conductive Hearing Loss in Children
Keefe, Douglas H.; Sanford, Chris A.; Ellison, John C.; Fitzpatrick, Denis F.; Gorga, Michael P.
2013-01-01
Objective This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Design Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25 and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Study Sample Absorbance and conventional 226-Hz tympanograms were measured in children of age 3 to 8 years with CHL and with normal hearing. Results Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 226-Hz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Conclusions Absorbance accurately predicted CHL in children and was more accurate than conventional 226-Hz tympanometry. PMID:23072655
NASA Astrophysics Data System (ADS)
Tsujimoto, K.; Kato, T.; Hirano, T.; Saitoh, T. M.; Nagai, S.; Akitsu, T.; Nasahara, K. N.
2015-12-01
Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.Chlorophyll fluorescence (ChlF) is emitted from chlorophyll a and b to release the excess sun-light energy. Recently, ChlF has been utilized to represent the ecosystem photosynthetic activity, i.e. gross primary production (GPP), by the satellite remote-sensing studies (e.g. Frankenberg et al., 2011). Despite its high expectation, small number of ecosystem-level ChlF observation at the ground reduces its availability. The aim of this study is to clarify the relationships between ChlF, and photosynthesis and light use efficiency (LUE) by the ground based measurement in the forest. The observations were carried out in the evergreen coniferous forest in Takayama, Japan, from March 2008 to February 2009. Downward and upward spectral radiances were measured with hemispherical spectroradiometer (MS-700, Eko Instruments, Japan) mounted at 30m-high above the ground surface. We calculated Sun-Induced fluorescence (FS) around the O2-A band (760 nm) from the spectral data with the Fraunhofer Line Depth method. The GPP was calculated from the carbon fluxes measured with eddy covariance at the top of the tower. FS showed the strong correlation to GPP linearly in the diurnal course (sunny day (8 August, 2008): r2 = 0.81, cloudy day (28 July, 2008): r2 = 0.87). In addition, GPP was fitted against FS by rectangular hyperbolic curve. (r2 = 0.87 (daily)). We also investigated the relationship between FS and LUE in daily averages. The FS-LUE relationship could be regressed by logarithm curve for each month (r2 = 0.46 ˜0.95). The seasonal changes in the regression coefficients for FS-GPP and FS-LUE curves were thought to be induced by the seasonal variation in the temperature-dependency of photosynthesis and the phenology. We conclude that FS can be utilized to estimate GPP and LUE in evergreen forest, and that relationship between FS and GPP is influenced by environmental factors such as PAR and air temperature.
Leaf Level Chlorophyll Fluorescence Emission Spectra: Narrow Band versus Full 650-800 nm Retrievals
NASA Astrophysics Data System (ADS)
Middleton, E.; Zhang, Q.; Campbell, P. K.; Huemmrich, K. F.; Corp, L.; Cheng, Y.
2012-12-01
Recently, chlorophyll fluorescence (ChlF) retrievals in narrow spectral regions (< 1 nm, between 750-770 nm) of the near infrared (NIR) region of Earth's reflected radiation have been achieved from satellites, including the Japanese GOSAT and the European Space Agency's Sciamachy/Envisat. However, these retrievals sample the total full-spectrum ChlF and are made at non-optimal wavelengths since they are not located at the peak fluorescence emission features. We wish to estimate the total full-spectrum ChlF based on emissions obtained at selected wavelengths. For this, we drew upon leaf emission spectra measured on corn leaves obtained from a USDA experimental cornfield in MD (USA). These emission spectra were determined for the adaxial and abaxial (i.e., top and underside) surfaces of leaves measured throughout the 2008 and 2011 growing seasons (n>400) using a laboratory instrument (Fluorolog-3, Horiba Scientific, USA), recorded in either 1 nm or 5 nm increments with monochromatic excitation wavelengths of either 532 or 420 nm. The total ChlF signal was computed as the area under the continuous spectral emission curves, summing the emission intensities (counts per second) per waveband. The individual narrow (1 or 5 nm) waveband emission intensities were linearly related to full emission values, with variable success across the spectrum. Equations were developed to estimate total ChlF from these individual wavebands. Here, we report the results for the average adaxial/abaxial emissions. Very strong relationships were achieved for the relatively high fluorescence intensities at the red chlorophyll peak, centered at 685 nm (r2= 0.98, RMSE = 5.53 x 107 photons/s) and in the nearby O2-B atmospheric absorption feature centered at 688 nm (r2 = 0.94, RMSE = 4.04 x 107), as well as in the far-red peak centered at 740 nm (r2=0.94, RMSE = 5.98 x107). Very good retrieval success occurred for the O2-A atmospheric absorption feature on the declining NIR shoulder centered at 760 nm (r2 = 0.88, RMSE = 7.54 x 107). When perfect retrievals were assumed (0% noise), retrievals remained good in the low emission regions on either side of the peaks-- those associated with the H alpha line at 655 nm (r2 = 0.83, RMSE =8.87 x 107) and the far-NIR wavelengths recently utilized for satellite retrievals: a K line at 770 nm (r2 = 0.85, RMSE = 8.36 x 107) and the 750-770 nm interval (r2 = 0.88, RMSE = 6.92 x 107). However, the atmosphere and satellite observations are expected to add noise to retrievals. Adding 5% random error to these relationships did not seriously impair the retrieval successes in the red and far-red peaks (r2 ~ 0.85, RMSEs = 6.31 x 107). A greater impact occurred (reducing retrieval success by ~10%) when adding 5% noise for the far-NIR narrow band at 770 nm (r2 ~ 0.70, RMSE ~ 8.5 x 107). When a 10% random error was added, the retrieval successes fell to ~68 ± 7% for all retrieval wavebands, and RMSEs increased by a factor of 10. This laboratory approach will be critical to calibrate space borne retrievals, but additional information across plant species is needed. Furthermore, this experiment indicates that ChlF retrievals from space should include information from the red and far-red peak emission regions, since the true total fluorescence signal is the desired parameter for Earth carbon and energy budgets.
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...
2018-04-03
Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian
Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less
Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels
NASA Astrophysics Data System (ADS)
Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D.
2013-12-01
Leaf and canopy nitrogen (N) status relates strongly to leaf and canopy chlorophyll (Chl) content. Remote sensing is a tool that has the potential to assess N content at leaf, plant, field, regional and global scales. In this study, remote sensing techniques were applied to estimate N and Chl contents of irrigated maize (Zea mays L.) fertilized at five N rates. Leaf N and Chl contents were determined using the red-edge chlorophyll index with R2 of 0.74 and 0.94, respectively. Results showed that at the canopy level, Chl and N contents can be accurately retrieved using green and red-edge Chl indices using near infrared (780-800 nm) and either green (540-560 nm) or red-edge (730-750 nm) spectral bands. Spectral bands that were found optimal for Chl and N estimations coincide well with the red-edge band of the MSI sensor onboard the near future Sentinel-2 satellite. The coefficient of determination for the relationships between the red-edge chlorophyll index, simulated in Sentinel-2 bands, and Chl and N content was 0.90 and 0.87, respectively.
NASA Technical Reports Server (NTRS)
Mielke, S. P.; Kiang, N. Y.; Blankenship, R. E.; Gunner, M. R.; Mauzerall, D.
2011-01-01
The cyanobacterium Acaryochloris marina uses chlorophyll d to carry out oxygenic photosynthesis in environments depleted in visible and enhanced in lower-energy, far-red light. However, the extent to which low photon energies limit the efficiency of oxygenic photochemistry in A. marina is not known. Here, we report the first direct measurements of the energy-storage efficiency of the photosynthetic light reactions in A. marina whole cells,and find it is comparable to or higher than that in typical, chlorophyll a-utilizing oxygenic species. This finding indicates that oxygenic photosynthesis is not fundamentally limited at the photon energies employed by A. marina, and therefore is potentially viable in even longer-wavelength light environments.
Painter, Dan; Smith, Alexandra; de Tute, Ruth; Crouch, Simon; Roman, Eve; Jack, Andrew
2015-07-01
This study investigates the value of performing a staging bone marrow in patients with diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and classical hodgkin lymphoma (CHL). The results of 3112 staging bone marrow examinations were assessed for impact on prognostic assessment and critical treatment decisions. The detection of marrow involvement altered the disease-specific prognostic index for 4·3% of DLBCL, 6·2% of FL and 0·6% of CHL but marrow involvement in DLBCL was an independent prognostic factor. Knowing the marrow status potentially changed treatment in 92 patients, detection of these patients would have required 854 examinations to be performed. © 2015 John Wiley & Sons Ltd.
Sau, Soumitra; Sutradhar, Sabyasachi; Paul, Raja; Sinha, Pratima
2014-01-01
In the budding yeast, centromeres stay clustered near the spindle pole bodies (SPBs) through most of the cell cycle. This SPB-centromere proximity requires microtubules and functional kinetochores, which are protein complexes formed on the centromeres and capable of binding microtubules. The clustering is suggested by earlier studies to depend also on protein-protein interactions between SPB and kinetochore components. Previously it has been shown that the absence of non-essential kinetochore proteins of the Ctf19 complex weakens kinetochore-microtubule interaction, but whether this compromised interaction affects centromere/kinetochore positioning inside the nucleus is unknown. We found that in G1 and in late anaphase, SPB-centromere proximity was disturbed in mutant cells lacking Ctf19 complex members,Chl4p and/or Ctf19p, whose centromeres lay further away from their SPBs than those of the wild-type cells. We unequivocally show that the SPB-centromere proximity and distances are not dependent on physical interactions between SPB and kinetochore components, but involve microtubule-dependent forces only. Further insight on the positional difference between wild-type and mutant kinetochores was gained by generating computational models governed by (1) independently regulated, but constant kinetochore microtubule (kMT) dynamics, (2) poleward tension on kinetochore and the antagonistic polar ejection force and (3) length and force dependent kMT dynamics. Numerical data obtained from the third model concurs with experimental results and suggests that the absence of Chl4p and/or Ctf19p increases the penetration depth of a growing kMT inside the kinetochore and increases the rescue frequency of a depolymerizing kMT. Both the processes result in increased distance between SPB and centromere. PMID:25003500
The 24 hour recovery kinetics from n starvation in Phaeodactylum tricornutum and Emiliania huxleyi.
Zhao, Yan; Wang, You; Quigg, Antonietta
2015-08-01
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv /Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross-section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv /Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N-limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure. © 2015 Phycological Society of America.
A niche for cyanobacteria producing chlorophyll f within a microbial mat.
Ohkubo, Satoshi; Miyashita, Hideaki
2017-10-01
Acquisition of additional photosynthetic pigments enables photosynthetic organisms to survive in particular niches. To reveal the ecological significance of chlorophyll (Chl) f, we investigated the distribution of Chl and cyanobacteria within two microbial mats. In a 7-mm-thick microbial mat beneath the running water of the Nakabusa hot spring, Japan, Chl f was only distributed 4.0-6.5 mm below the surface, where the intensity of far-red light (FR) was higher than that of photosynthetically active radiation (PAR). In the same mat, two ecotypes of Synechococcus and two ecotypes of Chl f-producing Leptolyngbya were detected in the upper and deeper layers, respectively. Only the Leptolyngbya strains could grow when FR was the sole light source. These results suggest that the deeper layer of the microbial mat was a habitat for Chl f-producing cyanobacteria, and Chl f enabled them to survive in a habitat with little PAR.
Montes-Hugo, Martin; Doney, Scott C; Ducklow, Hugh W; Fraser, William; Martinson, Douglas; Stammerjohn, Sharon E; Schofield, Oscar
2009-03-13
The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a approximately 63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases equatorward of 63 degrees S and with substantial increases in Chl a occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.
Mode of Action Studies on Nitrodiphenyl Ether Herbicides 1
Bowyer, John R.; Hallahan, Beverly J.; Camilleri, Patrick; Howard, Joy
1989-01-01
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-o-(acetic acid, methyl ester) (DPEI) induces light- and O2-dependent lipid peroxidation and chlorophyll (Chl) bleaching in the green alga Scenedesmus obliquus. Under conditions of O2-limitation, these effects are diminished by prometyne and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), both inhibitors of photosynthetic electron transport. Mutants in which photosynthetic electron transport is blocked are also resistant to DPEI under conditions of O2-limitation. Light- and O2-dependent lipid peroxidation and Chl bleaching are also induced by 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methoxyphthalide (DPEII), a diphenyl ether whose redox properties preclude reduction by photosystem I. However, these effects of DPEII are also inhibited by DCMU. Under conditions of high aeration, DCMU does not protect Scenedesmus cells from Chl bleaching induced by DPEI, but does protect against paraquat. DPEI, but not paraquat, induces tetrapyrrole formation in treated cells in the dark. This is also observed in a mutant lacking photosystem I but is suppressed under conditions likely to lead to O2 limitation. Our results indicate that, in contrast to paraquat, the role of photosynthetic electron transport in diphenyl ether toxicity in Scenedesmus is not to reduce the herbicide to a radical species which initiates lipid peroxidation. Its role is probably to maintain a sufficiently high O2 concentration, through water-splitting, in the algal suspension. PMID:16666600
NASA Astrophysics Data System (ADS)
Limbacher, James A.; Kahn, Ralph A.
2017-04-01
As aerosol amount and type are key factors in the atmospheric correction
required for remote-sensing chlorophyll a concentration (Chl) retrievals, the Multi-angle Imaging SpectroRadiometer (MISR) can contribute to ocean color analysis despite a lack of spectral channels optimized for this application. Conversely, an improved ocean surface constraint should also improve MISR aerosol-type products, especially spectral single-scattering albedo (SSA) retrievals. We introduce a coupled, self-consistent retrieval of Chl together with aerosol over dark water. There are time-varying MISR radiometric calibration errors that significantly affect key spectral reflectance ratios used in the retrievals. Therefore, we also develop and apply new calibration corrections to the MISR top-of-atmosphere (TOA) reflectance data, based on comparisons with coincident MODIS (Moderate Resolution Imaging Spectroradiometer) observations and trend analysis of the MISR TOA bidirectional reflectance factors (BRFs) over three pseudo-invariant desert sites. We run the MISR research retrieval algorithm (RA) with the corrected MISR reflectances to generate MISR-retrieved Chl and compare the MISR Chl values to a set of 49 coincident SeaBASS (SeaWiFS Bio-optical Archive and Storage System) in situ observations. Where Chlin situ < 1.5 mg m-3, the results from our Chl model are expected to be of highest quality, due to algorithmic assumption validity. Comparing MISR RA Chl to the 49 coincident SeaBASS observations, we report a correlation coefficient (r) of 0.86, a root-mean-square error (RMSE) of 0.25, and a median absolute error (MAE) of 0.10. Statistically, a two-sample Kolmogorov-Smirnov test indicates that it is not possible to distinguish between MISR Chl and available SeaBASS in situ Chl values (p > 0.1). We also compare MODIS-Terra and MISR RA Chl statistically, over much broader regions. With about 1.5 million MISR-MODIS collocations having MODIS Chl < 1.5 mg m-3, MISR and MODIS show very good agreement: r = 0. 96, MAE = 0.09, and RMSE = 0.15. The new dark water aerosol/Chl RA can retrieve Chl in low-Chl, case I waters, independent of other imagers such as MODIS, via a largely physical algorithm, compared to the commonly applied statistical ones. At a minimum, MISR's multi-angle data should help reduce uncertainties in the MODIS-Terra ocean color retrieval where coincident measurements are made, while also allowing for a more robust retrieval of particle properties such as spectral single-scattering albedo.
Kang, Jung-Hoon; Kim, Woong-Seo; Chang, Kyung-Il
2008-04-01
Factors affecting mesozooplankton distributions in the northeastern tropical Pacific Ocean were investigated using data obtained along a meridian line (5 degrees -12 degrees N, 131.5 degrees W) in the summers of 1998, 1999, and 2003. The survey periods corresponded to a sharp transition between the 1997-1998 El Niño and 1998-1999 La Niña events, the 1999 La Niña event, and near-normal conditions after the moderate 2002-2003 El Niño in the equatorial Pacific. A strong upwelling in the divergence zone from 10.5 degrees to 11 degrees N caused a shoaling of the thermocline depth (approximately 30 m), resulting in increases in nitrate and phytoplankton chlorophyll a (chl-a) concentrations, and, in turn, mesozooplankton abundance during the La Niña in 1999. In contrast, in 1998, remnants of El Niño characteristics, deeper thermocline depth (60-150 m) and warm surface water (>28 degrees C), led to low concentrations of nitrate, chl-a and low mesozooplankton abundance, except in the convergence zone around 7 degrees N. The thermocline depth and nitrate concentration obtained during the near-normal period in 2003 corresponded to intermediate values as compared to those obtained during El Niño and La Niña conditions. Interannual changes in the position and strength of ecotones, such as divergence and convergence zones, affected mesozooplankton community structure and cyclopoid-to-calanoid ratios along the 131.5 degrees W meridian line. The clustering pattern of the mesozooplankton community was mostly characterized by calanoid (mainly Clausocalanus sp.) and cyclopoid (mainly Oncaea sp.) copepods, accounting for most of the observed differences among groups during the study period. Cyclopoids and calanoids were more abundant in 1999 than in 1998 or 2003, with a sharp increase to the north, while they were less abundant to the north in 1998 and 2003. The cyclopoid-to-calanoid ratio peaked in the convergence zone in 1998 and the divergence zones in 1999 and 2003, apparently due to the strength and location of the ecotones. Principal component analysis (PCA) with environmental factors and dominant mesozooplankton groups showed that dominant groups were affected by nitrate and chl-a concentrations in 1998, by sigma-t (water density), nitrate and chl-a concentrations in 1999, and by sigma-t, salinity and chl-a concentration (except siphonophores) in 2003. Latitudinal distribution of thermocline depth before and after the 1998/99 La Niña event showed a distinct interannual difference. The abundance of mesozooplankton in the divergence zone in 1999 was distinctively higher than abundances found in the convergence and divergence zones in 1998 and 2003, which resulted from the shallow thermocline depth due to an intensified upwelling during the strong 1998-1999 La Niña event.
NASA Astrophysics Data System (ADS)
Burt, William J.; Westberry, Toby K.; Behrenfeld, Michael J.; Zeng, Chen; Izett, Robert W.; Tortell, Philippe D.
2018-02-01
We present optically derived estimates of phytoplankton carbon (Cphyto) and chlorophyll a concentration (Chl) across a wide range of productivity and hydrographic regimes in the Subarctic Pacific Ocean. Our high-frequency measurements capture changes in Cphyto and Chl across regional gradients in macronutrient and micronutrient limitations and submesoscale hydrographic frontal zones. Throughout the majority of our survey region, carbon to chlorophyll ratios (Cphyto:Chl) ranged between 50 and 100. Lower values (10-20) were constrained to the highly productive coastal upwelling system along Vancouver Island, whereas higher estimated values (>200) were found directly off the southern British Columbia continental shelf. Further offshore, Cphyto:Chl was less variable, ranging from 50 to 80 in high nutrient low Chl waters in June and from 80 to 120 in the Gulf of Alaska in July. Much of the variability in Cphyto:Chl throughout the study region could be explained by mixed-layer light levels (i.e., photoacclimation), with additional variability attributed to nutrient-controlled changes in phytoplankton growth rates in some regions. Elevated Cphyto:Chl ratios resulting from apparent nutrient stress were found in areas of low macronutrient concentrations. In contrast, iron-limited waters exhibited Cphyto:Chl ratios lower than predicted from the photoacclimation model. Applying the carbon-based production model, we derived Cphyto and Chl-based estimates of net primary productivity, which showed good coherence with independent 14C uptake measurements. Our results highlight the utility of ship-board optical data to examine phytoplankton physiological ecology and productivity in surface marine waters.
Fujita, Yuichi; Tsujimoto, Ryoma; Aoki, Rina
2015-01-01
Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes. PMID:25830590
NASA Astrophysics Data System (ADS)
Wolfe, Gordon V.; Levasseur, Maurice; Cantin, Guy; Michaud, Sonia
2000-12-01
We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2-1 d -1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.
2001-09-30
acidification with a Turner 10-000R fluorometer. For phycoerythrin and phycocyanin analysis, the sediments were extracted repeatedly with a phosphate...concentrations varied around 20-fold, phycocyanin varied approximately 70-fold. The highest levels of chlorophylls a and c, and phycocyanin were found in...reflected in the wide range of pigment ratios: 46 for chl c/chl a; 94 for phycoerythrin/chl a; and 27 for phycocyanin /chl a. First derivatives of
Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts
Eggink, Laura L.; Chen, Min
2007-01-01
Chlorophyll (Chl) b serves an essential function in accumulation of light-harvesting complexes (LHCs) in plants. In this article, this role of Chl b is explored by considering the properties of Chls and the ligands with which they interact in the complexes. The overall properties of the Chls, not only their spectral features, are altered as consequences of chemical modifications on the periphery of the molecules. Important modifications are introduction of oxygen atoms at specific locations and reduction or desaturation of sidechains. These modifications influence formation of coordination bonds by which the central Mg atom, the Lewis acid, of Chl molecules interacts with amino acid sidechains, as the Lewis base, in proteins. Chl a is a versatile Lewis acid and interacts principally with imidazole groups but also with sidechain amides and water. The 7-formyl group on Chl b withdraws electron density toward the periphery of the molecule and consequently the positive Mg is less shielded by the molecular electron cloud than in Chl a. Chl b thus tends to form electrostatic bonds with Lewis bases with a fixed dipole, such as water and, in particular, peptide backbone carbonyl groups. The coordination bonds are enhanced by H-bonds between the protein and the 7-formyl group. These additional strong interactions with Chl b are necessary to achieve assembly of stable LHCs. PMID:17505910
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, NaÏma Ben; Latouche, Gwendal
2012-01-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm–2, as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. PMID:22568678
Cerovic, Zoran G; Masdoumier, Guillaume; Ghozlen, Naïma Ben; Latouche, Gwendal
2012-11-01
We have characterized a new commercial chlorophyll (Chl) and flavonoid (Flav) meter called Dualex 4 Scientific (Dx4). We compared this device to two other Chl meters, the SPAD-502 and the CCM-200. In addition, Dx4 was compared to the leaf-clip Dualex 3 that measures only epidermal Flav. Dx4 is factory-calibrated to provide a linear response to increasing leaf Chl content in units of µg cm(-2), as opposed to both SPAD-502 and CCM-200 that have a non-linear response to leaf Chl content. Our comparative calibration by Chl extraction confirmed these responses. It seems that the linear response of Dx4 derives from the use of 710 nm as the sampling wavelength for transmittance. The major advantage of Dx4 is its simultaneous assessment of Chl and Flav on the same leaf spot. This allows the generation of the nitrogen balance index (NBI) used for crop surveys and nitrogen nutrition management. The Dx4 leaf clip, that incorporates a GPS receiver, can be useful for non-destructive estimation of leaf Chl and Flav contents for ecophysiological research and ground truthing of remote sensing of vegetation. In this work, we also propose a consensus equation for the transformation of SPAD units into leaf Chl content, for general use. Copyright © Physiologia Plantarum 2012.
Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo
2017-02-15
We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sutula, Martha; Kudela, Raphael; Hagy, James D.; Harding, Lawrence W.; Senn, David; Cloern, James E.; Bricker, Suzanne; Berg, Gry Mine; Beck, Marcus
2017-10-01
San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: significant increases of chlorophyll-a (chl-a) and decreases of dissolved oxygen (DO), common occurrences of phytoplankton taxa that can form Harmful Algal Blooms (HAB), and algal toxins in water and mussels reaching levels of concern. As a result, managers now ask: what levels of chl-a in SFB constitute tipping points of phytoplankton biomass beyond which water quality will become degraded, requiring significant nutrient reductions to avoid impairments? We analyzed data for DO, phytoplankton species composition, chl-a, and algal toxins to derive quantitative relationships between three indicators (HAB abundance, toxin concentrations, DO) and chl-a. Quantile regressions relating HAB abundance and DO to chl-a were significant, indicating SFB is at increased risk of adverse HAB and low DO levels if chl-a continues to increase. Conditional probability analysis (CPA) showed chl-a of 13 mg m-3 as a "protective" threshold below which probabilities for exceeding alert levels for HAB abundance and toxins were reduced. This threshold was similar to chl-a of 13-16 mg m-3 that would meet a SFB-wide 80% saturation Water Quality Criterion (WQC) for DO. Higher "at risk" chl-a thresholds from 25 to 40 mg m-3 corresponded to 0.5 probability of exceeding alert levels for HAB abundance, and for DO below a WQC of 5.0 mg L-1 designated for lower South Bay (LSB) and South Bay (SB). We submit these thresholds as a basis to assess eutrophication status of SFB and to inform nutrient management actions. This approach is transferrable to other estuaries to derive chl-a thresholds protective against eutrophication.
Short-Chain Chitin Oligomers: Promoters of Plant Growth
Winkler, Alexander J.; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta
2017-01-01
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields. PMID:28212295
Short-Chain Chitin Oligomers: Promoters of Plant Growth.
Winkler, Alexander J; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta
2017-02-15
Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.
Nutrient Pumping/Advection by Propagating Rossby Waves in the Kuroshio Extension
2010-01-01
sea-elevation changes or SLA variance levels are a maximum as eddies and meanders cross a mean route. This boundary in terms of Chl- a levels (lower...and elevated Chl- a levels ) is south of the KE jet. Kuroshio Extension meanders and rings carry different water types across a mean Kuroshio Extension...Fig. 5A). The ring or eddy currents may also redistribute the surface Chl- a levels , drawing out plumes of locally increased Chl-a from regions of
Singh, Moushmi; Mealing, Stuart; Baculea, Simona; Cote, Sarah; Whelan, Jo
2017-10-01
Chronic lymphocytic leukemia (CLL) is an orphan disease that primarily affects the elderly. The majority of symptomatic patients eligible for frontline treatment are unfit for fludarabine based chemoimmunotherapy. Historical treatment includes chlorambucil (Chl), bendamustine/rituximab (BR), and chlorambucil/rituximab/ChlR combination. Clinical guidelines now recommend the use of novel agents, such as ibrutinib (Ibr), in both frontline and relapse settings and other novel agents, such as idelalisib (with rituximab), in relapse settings. Despite compelling clinical results for novel agents, follow-up in clinical trials is relatively short and, thus, the comparative long-term benefits are still unknown. The authors developed a simulation model to generate treatment specific lifetime estimates of Overall Survival (OS) and Quality Adjusted Life Years (QALYs) for treatment with BR, Chl, ChlR, and Ibr. Two potential clinical scenarios were modelled: with and without novel agents for treating CLL. The model was based on health states relating to first- and second-line progression-free survival (PFS), post-progression survival, and death. Where novel agents were assumed unavailable, mean OS ranged from 5.4-8.5 years and QALYs from 3.5-6.1. Where novel agents were available, the mean OS increased to 10.0 years, with a corresponding increase in QALYs to 7.6. Frontline Ibr use followed by Physician's Choice, including novel agents at relapse, resulted in projected increase in OS of between 18% (1.5 years) and 85% (4.6 years), corresponding to a 25-117% increase in QALYs, compared with currently available traditional therapies. The limitations of this analysis include immature OS data and the assumption of equivalent efficacy across all novel agents in terms of their impact on PFS and OS. The use of novel agents is predicted to yield substantive gains in predicted lifetime OS and QALY improvements compared to traditional therapies in CLL patients who are ineligible for fludarabine-based chemoimmunotherapy.
Role of chlorophyllase in chlorophyll homeostasis and post-harvest breakdown in Piper betle L. leaf.
Gupta, Supriya; Gupta, Sanjay Mohan; Kumar, Nikhil
2011-10-01
Piper betle L., a dioecious shade-loving perennial climber is one of the important Pan-Asiatic plants. More than hundred landraces having marked variation in leaf chlorophyll (Chl) content are in cultivation in India. In this study, role of chlorophyllase (Chlase) in Chl homeostasis and post-harvest breakdown was investigated in two contrasting P. betle landraces Kapoori Vellaikodi (KV) with light green and Khasi Shillong (KS) with dark green leaves. The two landraces showed negative correlation between Chl content and Chlase activity in fresh as well as stored leaves. Accumulation of chlorophyllide a (Chlid a) was correlated with the level of Chlase activity, which was higher in KV than KS. The overall response of abscisic acid (ABA) and benzylaminopurine (BAP) was similar in KV and KS, however, the time-course was different. ABA-induced Chl loss was accompanied by rise in Chlase activity in KV and KS and the delay in Chl loss by BAP was accompanied by reduction in Chlase activity. While there were significant differences in Chlase activity in KV and KS, only minor differences were observed in the enzyme properties like pH and temperature optima, Km and Vmax. No landrace-related differences were observed on the effect of metal ions and functional group reagents/amino acid effectors on Chlase activity. These results showed that despite significant differences in Chl content and Chlase activity between landraces KV and KS, the properties of Chlase were similar. The findings show that in P. betle Chlase is involved in Chl homeostasis and also in Chl degradation during post-harvest storage and responds to hormonal regulations. These findings might be useful in predicting the stability of Chl during post-harvest storage and also the shelf-life in other P. betle landraces.
NASA Astrophysics Data System (ADS)
Ahmed, M. H.; Abdul-Aziz, O. I.
2017-12-01
Chlorophyll-a (Chl-a) is a key indicator for stream water quality and ecological health. The characterization of interplay between Chl-a and its numerous hydroclimatic and biogeochemical drivers is complex, and often involves multicollinear datasets. A systematic data analytics methodology was employed to determine the relative linkages of stream Chl-a with its dynamic environmental drivers at 50 stream water quality monitoring stations across the continental U.S. Multivariate statistical techniques of principal component analysis (PCA) and factor analysis (FA), in concert with Pearson correlation analysis, were applied to evaluate interrelationships among hydroclimatic, biogeochemical, and biological variables. Power-law based partial least square regression (PLSR) models were developed with a bootstrap Monte Carlo procedure (1000 iterations) to reliably estimate the comparative linkages of Chl-a by resolving multicollinearity in the data matrices (Nash-Sutcliff efficiency = 0.50-87). The data analytics suggested four environmental regimes of stream Chl-a, as dominated by nutrient, climate, redox, and hydro-atmospheric contributions, respectively. Total phosphorous (TP) was the most dominant driver of stream Chl-a in the nutrient controlled regime. Water temperature demonstrated the strongest control of Chl-a in the climate-dominated regime. Furthermore, pH and stream flow were found to be the most important drivers of Chl-a in the redox and hydro-atmospheric component dominated regimes, respectively. The research led to a significant reduction of dimensionality in the large data matrices, providing quantitative and qualitative insights on the dynamics of stream Chl-a. The findings would be useful to manage stream water quality and ecosystem health in the continental U.S. and around the world under a changing climate and environment.
Materová, Zuzana; Sobotka, Roman; Zdvihalová, Barbora; Oravec, Michal; Nezval, Jakub; Karlický, Václav; Vrábl, Daniel; Štroch, Michal; Špunda, Vladimír
2017-07-01
Light quality is an important environmental factor affecting the biosynthesis of photosynthetic pigments whose production seems to be affected not only quantitatively but also qualitatively. In this work, we set out to identify unusual pigment detected in leaves of barley (Hordeum vulgare L.) and explain its presence in plants grown under monochromatic green light (GL; 500-590 nm). The chromatographic analysis (HPLC-DAD) revealed that a peak belonging to this unknown pigment is eluted between chlorophyll (Chl) a and b. This pigment exhibited the same absorption spectrum and fluorescence excitation and emission spectra as Chl a. It was negligible in control plants cultivated under white light of the same irradiance (photosynthetic photon flux density of 240 μmol m -2 s -1 ). Mass spectrometry analysis of this pigment (ions m/z = 889 [M-H] - ; m/z = 949 [M+acetic acid-H] - ) indicates that it is Chl a with a tetrahydrogengeranylgeraniol side chain (containing two double bonds in a phytyl side chain; Chl a THGG ), which is an intermediate in Chl a synthesis. In plants grown under GL, the proportion of Chl a THGG to total Chl content rose to approximately 8% and 16% after 7 and 14 days of cultivation, respectively. Surprisingly, plants cultivated under GL exhibited drastically increased concentration of the enzyme geranylgeranyl reductase, which is responsible for the reduction of phytyl chain double bonds in the Chl synthesis pathway. This indicates impaired activity of this enzyme in GL-grown plants. A similar effect of GL on Chl synthesis was observed for distinct higher plant species. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeNardo, S.J.; Zhong, G.R.; Miers, L.A.
1994-05-01
Chimeric L6 MoAb (ChL6) as I-131 ChL6 has shown therapeutic promise for radioimmunotherapy in breast cancer patients. In order to enhance this therapeutic potential, we have developed an yttrium-90 (Y-90) ChL6 radiopharmaceutical by conjugating Y-90 DOTA peptide to ChL6 using DOTA-Gly-3L(p-isothiocyanato)-Phe-NH2. This DOTA peptide forms neutral complexes with trivalent metals allowing excess chelating agents and divalent metal complexes to be removed by ion exchange chromatography prior to conjugation, thus yielding a high Y-90/DOTA ratio on the final immune conjugate. Groups of 9-10 nude mice bearing subcutaneous 40-200 mg HBT 3477 xenographs were given 150,250,350,400,450 or 500 {mu}Ci of Y-90 DOTAmore » peptide ChL6 (specific activity 1.1-3.5 {mu}Ci/{mu}g). Live cell immunoreactivity was 73-80% and 100% Y-90 moved with ChL6 on SEC3000 HPLC and TLC. Peripheral blood counts, weight, tumor size, blood and body clearance of Y-90 were monitored for 10 weeks. Whole body autoradiography was performed at 1,3 and 5 days post injection at the 250 and 450 {mu}Ci dose levels. No mouse that received less than 450 {mu}Ci of Y-90 died. The LD50/30 was 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post 479 {mu}Ci. The nadirs of RBC, WBC and platelets were 10-20 days post injection. The depth of the nadir was dose dependent but occured in all groups. In the lowest dose group having substantial tumor response (350{mu}Ci) mean tumor volume decreased by >50% and 5 of 19 tumors completely regressed over the 10 week follow-up. This is the greatest LD50/30 for Y-90 immunoconjugate reported in nude mice to date. These results confirm the significance of the biodistribution and autoradiographic studies demonstrating tumor uptake of 18 {plus_minus} 8% ID/gm with 3/1 tumor to liver and 8/1 tumor to bone ratios 1, 3, and 5 days post injection.« less
Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun
2016-05-01
Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment.
RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)
Zhao, Chi; Gan, Fei; Shen, Gaozhong; ...
2015-11-25
Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less
RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chi; Gan, Fei; Shen, Gaozhong
Terrestrial cyanobacteria often occur in niches tha tare strongly enriched in far-redlight (FRL; λ > 700nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRLphotoacclimation(FaRLiP).During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS)I, PSII,and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d.Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB,and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203.The resulting mutants were no longer able to modify their photosynthetic apparatus to absorbmore » FRL, were no longer able to synthesize Chl f, in appropriately synthesized Chl d in white light,and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less
RfpA, RfpB, and RfpC are the Master Control Elements of Far-Red Light Photoacclimation (FaRLiP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chi; Gan, Fei; Shen, Gaozhong
Terrestrial cyanobacteria often occur in niches that are strongly enriched in far-red light (FRL; λ > 700 nm). Some cyanobacteria exhibit a complex and extensive photoacclimation response, known as FRL photoacclimation (FaRLiP). During the FaRLiP response, specialized paralogous proteins replace 17 core subunits of the three major photosynthetic complexes: Photosystem (PS) I, PS II, and the phycobilisome. Additionally, the cells synthesize both chlorophyll (Chl) f and Chl d. Using biparental mating from Escherichia coli, we constructed null mutants of three genes, rfpA, rfpB, and rfpC, in the cyanobacteria Chlorogloeopsis fritschii PCC 9212 and Chroococcidiopsis thermalis PCC 7203. The resulting mutantsmore » were no longer able to modify their photosynthetic apparatus to absorb FRL, were no longer able to synthesize Chl f, inappropriately synthesized Chl d in white light, and were unable to transcribe genes of the FaRLiP gene cluster. We conclude that RfpA, RfpB, and RfpC constitute a FRL-activated signal transduction cascade that is the master control switch for the FaRLiP response. FRL is proposed to activate (or inactivate) the histidine kinase activity of RfpA, which leads to formation of the active state of RfpB, the key response regulator and transcription activator. RfpC may act as a phosphate shuttle between RfpA and RfpB. Our results show that reverse genetics via conjugation will be a powerful approach in detailed studies of the FaRLiP response.« less
Mendel's green cotyledon gene encodes a positive regulator of the chlorophyll-degrading pathway
Sato, Yutaka; Morita, Ryouhei; Nishimura, Minoru; Yamaguchi, Hiroyasu; Kusaba, Makoto
2007-01-01
Mutants that retain greenness of leaves during senescence are known as “stay-green” mutants. The most famous stay-green mutant is Mendel's green cotyledon pea, one of the mutants used in determining the law of genetics. Pea plants homozygous for this recessive mutation (known as i at present) retain greenness of the cotyledon during seed maturation and of leaves during senescence. We found tight linkage between the I locus and stay-green gene originally found in rice, SGR. Molecular analysis of three i alleles including one with no SGR expression confirmed that the I gene encodes SGR in pea. Functional analysis of sgr mutants in pea and rice further revealed that leaf functionality is lowered despite a high chlorophyll a (Chl a) and chlorophyll b (Chl b) content in the late stage of senescence, suggesting that SGR is primarily involved in Chl degradation. Consistent with this observation, a wide range of Chl–protein complexes, but not the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit, were shown to be more stable in sgr than wild-type plants. The expression of OsCHL and NYC1, which encode the first enzymes in the degrading pathways of Chl a and Chl b, respectively, was not affected by sgr in rice. The results suggest that SGR might be involved in activation of the Chl-degrading pathway during leaf senescence through translational or posttranslational regulation of Chl-degrading enzymes. PMID:17709752
Liu, K H; Huang, C Y; Tsay, Y F
1999-01-01
Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affinity concentration) were only 18 to 30% of those of wild-type plants. In these mutants, both the inducible phase and the constitutive phase of high-affinity nitrate uptake activities were reduced, with the inducible phase being severely reduced. Expressing a CHL1 cDNA driven by the cauliflower mosaic virus 35S promoter in a transgenic chl1 plant effectively recovered the defect in high-affinity uptake for the constitutive phase but not for the induced phase, which is consistent with the constitutive level of CHL1 expression in the transgenic plant. Kinetic analysis of nitrate uptake by CHL1-injected Xenopus oocytes displayed a biphasic pattern with a Michaelis-Menten Km value of approximately 50 microM for the high-affinity phase and approximately 4 mM for the low-affinity phase. These results indicate that in addition to being a low-affinity nitrate transporter, as previously recognized, CHL1 is also involved in both the inducible and constitutive phases of high-affinity nitrate uptake in Arabidopsis. PMID:10330471
Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs
NASA Astrophysics Data System (ADS)
Aksoy, A.; Yuzugullu, O.
2017-12-01
Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.
NASA Astrophysics Data System (ADS)
Kahru, Mati; Mitchell, B. Greg
2001-02-01
Time series of surface chlorophyll a concentration (Chl) and colored dissolved organic matter (CDOM) derived from the Ocean Color and Temperature Sensor and Sea-Viewing Wide Field-of-View Sensor were evaluated for the California Current area using regional algorithms. Satellite data composited for 8-day periods provide the ability to describe large-scale changes in surface parameters. These changes are difficult to detect based on in situ observations alone that suffer from undersampling the large temporal and spatial variability, especially in Chl. We detected no significant bias in satellite Chl estimates compared with ship-based measurements. The variability in CDOM concentration was significantly smaller than that in Chl, both spatially and temporally. While being subject to large interannual and short-term variations, offshore waters (100-1000 km from the shore) have an annual cycle of Chl and CDOM with a maximum in winter-spring (December-March) and a minimum in late summer. For inshore waters the maximum is more likely in spring (April-May). We detect significant increase in both Chl and CDOM off central and southern California during the La Niña year of 1999. The trend of increasing Chl and CDOM from October 1996 to June 2000 is statistically significant in many areas.
Baek, Sora; Lee, Kyu Jin; Kim, Keewon; Han, Seung-Ho; Lee, U-Young; Lee, Kun-Jai; Chung, Sun Gun
2016-10-01
The coracohumeral ligament (CHL) is a thick capsular structure and markedly thickened when affected by adhesive capsulitis. Therapeutic stretching is the most commonly applied treatment for adhesive capsulitis, but optimal stretching postures for maximal therapeutic effects on the CHL have not been fully investigated. To investigate the most effective stretching direction for the CHL by measuring the stretching intensity in 5 different directions and to determine whether the stretching intervention resulted in loosening of the ligament by comparing the changes of CHL tightness before and after stretching. Biomechanical cadaver study. Academic institution cadaver laboratory. Nine fresh frozen cadaveric shoulders. A high-pressure balloon catheter inserted under the CHL and intraballoon pressure was measured, to evaluate CHL tightness without ligament damage as well as to augment and monitor stretching intensity. To find the optimal stretching direction, the glenohumeral joint was stretched from the neutral position into 5 directions sequentially under pressure-monitoring: flexion, extension [EX], external rotation [ER], EX+ER, and EX+ER+adduction [AD] directions. CHL tightness was determined by a surrogate parameter, the additional pressure created by the overlying CHL. The pressure increase (ΔP str ) by a specific directional stretch was considered as the stretching intensity. ΔP str by the 5 directions were mean (standard deviation) values of 0.03 ± 0.07 atm, 0.87 ± 1.31 atm, 1.13 ± 1.36 atm, 1.49 ± 1.32 atm, and 2.10 ± 1.70 atm, respectively, revealing the highest ΔP str by the EX+ER+AD stretch (P < .05). The balloon pressure by the overlying CHL was decreased from 0.45 ± 0.35 atm to 0.18 ± 0.14 atm (P = .012) before and after the stretching manipulation. EX+ER+AD of the glenohumeral joint resulted in the greatest increase in balloon pressure, implying that it could be the most effective stretching direction. A series of stretching manipulations assisted with an underlying pressure balloon were capable of decreasing CHL tightness. With further development and modification, high-pressure balloon-assisted stretching can be a potential therapeutic option to release tight CHL, including the advantage of augmenting and monitoring stretching intensity. II. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
1980-01-01
A highly purified chlorophyll a/b light-harvesting complex (chl a/b LHC; chl a/b ratio 1.2) was obtained from Triton-solubilized chloroplast membranes of pea and barley according to the method of Burke et al. (1978, Arch. Biochem. Biophys. 187: 252--263). Gel electrophoresis of the cation-precipitated chl a/b LHC from peas reveals the presence of four polypeptides in the 23- to 28-kdalton size range. Three of these peptides appear to be identical to those derived from re-electrophoresed CPII and CPII* bands. In freeze-fracture replicas, the cation-precipitated chl a/b LHC appears as a semicrystalline aggregate of membranous sheets containing closely spaced granules. Upon removal of the cations by dialysis, the aggregates break up into their constituent membranous sheets without changing their granular substructure. These membranous sheets can be resolubilized in 1.5% Triton X-100, and the chl a/b LHC particles then reconstituted into soybean lecithin liposomes. Freeze-fracture micrographs of the reconstituted chl a/b LHC vesicles suspended in a low salt medium reveal randomly dispersed approximately 80-A particles on both concave and convex fracture faces as well as some crystalline particle arrays, presumably resulting from incompletely solubilized fragments of the membranous sheets. Based on the approximately 80-A diameter of the particles, and on the assumption that one freeze- fracture particle represents the structural unit of one chl a/b LHC aggregate, a theoretical mol wt of approximately 200 kdalton has been calculated for the chl a/b LHC. Deep-etching and negative-staining techniques reveal that the chl a/b LHC particles are also exposed on the surface of the bilayer membranes. Addition of greater than or equal to 2 mM MgCl2 or greater than or equal to 60 mM NaCl to the reconstituted vesicles leads to their aggregation and, with divalent cations, to the formation of extensive membrane stacks. At the same time, the chl a/b LHC particles become clustered into the adhering membrane regions. Under these conditions the particles in adjacent membranes usually become precisely aligned. Evidence is presented to aupport the hypothesis that adhesion between the chl a/b LHC particles is mediated by hydrophobic interactions, and that the cations are needed to neutralize surface charges on the particles. PMID:7350170
Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K
2000-06-01
Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed.
Stamatoullas, Aspasia; Brice, Pauline; Bouabdallah, Reda; Mareschal, Sylvain; Camus, Vincent; Rahal, Ilhem; Franchi, Patricia; Lanic, Hélène; Tilly, Hervé
2015-07-01
There is no standard of care in elderly classical Hodgkin lymphoma (cHL) patients. ABVD (doxorubicin, bleomycin, vinblastine, dacarbazine), the standard chemotherapy for younger patients, is also used in elderly patients but little is known about toxicity and efficacy. We retrospectively analysed 147 patients aged 60 years and over treated with ABVD in three French haematological centres. Treatment regimen modification was applied in 56 patients for toxicity or HL progression. Bleomycin was removed or reduced in 53 patients, mainly for pulmonary toxicity. Neither initial characteristics nor treatment characteristics were found to correlate with lung toxicity. One hundred and seventeen patients achieved a complete remission, 6 a partial remission, 16 had refractory disease and 8 were non-evaluable. Five-year overall survival was estimated at 67%. With a median follow-up of 58 months, 51 patients died and 14% of deaths were related to lung toxicity. Our study confirms the efficacy of ABVD in elderly patients even if results are inferior to those obtained in younger patients with the same regimen. ABVD can be proposed as front-line chemotherapy in selected elderly cHL patients. The frequency of pulmonary events leads us to propose to either reduce the dose of bleomycin or to remove it from the regimen. © 2015 John Wiley & Sons Ltd.
Deletion of the TNFAIP3/A20 gene detected by FICTION analysis in classical Hodgkin lymphoma
2012-01-01
Background The TNFAIP3 gene, which encodes a ubiquitin-modifying enzyme (A20) involved in the negative regulation of NF-κB signaling, is frequently inactivated by gene deletions/mutations in a variety of B-cell malignancies. However, the detection of this in primary Hodgkin lymphoma (HL) specimens is hampered by the scarcity of Hodgkin Reed-Sternberg (HR-S) cells even after enrichment by micro-dissection. Methods We used anti-CD30 immunofluorescence with fluorescence in-situ hybridization (FISH) to evaluate the relative number of TNFAIP3/CEP6 double-positive signals in CD30-positive cells. Results From a total of 47 primary classical Hodgkin lymphoma (cHL) specimens, 44 were evaluable. We found that the relative numbers of TNFAIP3/CD30 cells were distributed among three groups, corresponding to those having homozygous (11%), heterozygous (32%), and no (57%) deletions in TNFAIP3. This shows that TNFAIP3 deletions could be sensitively detected using our chosen methods. Conclusions Comparing the results with mutation analysis, TNFAIP3 inactivation was shown to have escaped detection in many samples with homozygous deletions. This suggests that TNFAIP3 inactivation in primary cHL specimens might be more frequent than previously reported. PMID:23039325
NASA Astrophysics Data System (ADS)
Sakshaug, Egil; Johnsen, Geir; Andresen, Kjersti; Vernet, Maria
1991-04-01
The models by SAKSHAUGet al (1989, Limnology and Oceanography, 34, 198-205) and WEBBet al. (1974, Oecologia, 17, 281-291), for prediction of the gross growth rate of phytoplankton and short-term photosynthesis, respectively, have been modified on the basis of experiments with cultures of the centric diatoms Thalassiosira nordenskioeldii and Chaetoceros furcellatus grown at 0.5°C at combinations of two irradiances (25 and 400μmol m -2s -1) and two day-lengths (12 and 24 h). The models have one spectrum, °σ, which represents chlorophyll a (Chl a) specific absorption of photosynthetically usable light, and introduces a factor q which represents Chla per PSU, functionally defined. The models describe phytoplankton growth in terms of physiologically relevant coefficients. A properly scaled fluorescence excitation spectrum (° F) represents a more appropriate estimate for °σ than the Chl a-specific absorption spectrum ° ac judging from calculations of Φmax (= αB/° σ). On the basis of ° F, Φmax is 0.04 g-at C(mol photons) -1 for gross growth and about 0.05-0.08 for short-term carbon uptake (unfiltered samples). Calculations based on ° ac yield values for Φmax which on average are 44% lower. P vs I (photosynthesis vs irradiance) parameters are relatively independent of day-length and highly dependent on growth irradiance. The product of q [mg Chl a (mol PSU) -1] and τ (the minimum turnover time of the photosynthetic unit, h) increases 2-3-fold from high to low irradiance, thus PmB (= Φmax/ qτ) and Ik(=1/ qτ° σ)decreased. ° F decreases from high to low irradiance. Carbon-specific dark respiration rates are <0.09 day -1. Pigment ratios vary inversely with irradiance and day-length. The Chl a:C ratio is particularly low under high, strong continuous light; Chl c: Cha a ratios are higher for shalde- than for light-adapted cells, while the converse is true for the ratio of the sum of the photoprotective pigments diadinoxanthin and diatoxanthin to Chl a. The fucoxanthin: Chl a ratio is virtually independent of the light regime. The two species are similar with respect to variations in growth rate (0.09-0.33 day -1 and Ik (31-36 vs 49-100 μmol m -2 s -1 at low and high irradiance, respectively). PmB and aB for growth as well as ° F are systematically higher for C. furcellatus than for T. nordenskioeldii, while the product qτ is lower. C. furcellatus is considerably more plastic than T. nordenskioeldii with respect to pigment composition.
Sutula, Martha; Kudela, Raphael; Hagy, James D.; Harding, Lawrence W.; Senn, David; Cloern, James E.; Bricker, Suzanne B.; Beck, Marcus W.; Berg, Gry Mine
2017-01-01
San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: significant increases of chlorophyll-a (chl-a) and decreases of dissolved oxygen (DO), common occurrences of phytoplankton taxa that can form Harmful Algal Blooms (HAB), and algal toxins in water and mussels reaching levels of concern. As a result, managers now ask: what levels of chl-a in SFB constitute tipping points of phytoplankton biomass beyond which water quality will become degraded, requiring significant nutrient reductions to avoid impairments? We analyzed data for DO, phytoplankton species composition, chl-a, and algal toxins to derive quantitative relationships between three indicators (HAB abundance, toxin concentrations, DO) and chl-a. Quantile regressions relating HAB abundance and DO to chl-a were significant, indicating SFB is at increased risk of adverse HAB and low DO levels if chl-a continues to increase. Conditional probability analysis (CPA) showed chl-a of 13 mg m−3 as a “protective” threshold below which probabilities for exceeding alert levels for HAB abundance and toxins were reduced. This threshold was similar to chl-a of 13–16 mg m−3 that would meet a SFB-wide 80% saturation Water Quality Criterion (WQC) for DO. Higher “at risk” chl-a thresholds from 25 to 40 mg m−3 corresponded to 0.5 probability of exceeding alert levels for HAB abundance, and for DO below a WQC of 5.0 mg L−1 designated for lower South Bay (LSB) and South Bay (SB). We submit these thresholds as a basis to assess eutrophication status of SFB and to inform nutrient management actions. This approach is transferrable to other estuaries to derive chl-a thresholds protective against eutrophication.
2017-01-01
Toxoplasma gondii is one of the most successful parasites on Earth, infecting a wide array of mammals including one third of the global human population. The obligate intracellular protozoon is not capable of synthesizing cholesterol (Chl), and thus depends on uptake of host Chl for its own development. To explore the genetic regulation of previously observed lipid metabolism alterations during acute murine T. gondii infection, we here assessed total Chl and its fractions in serum and selected tissues at the pathophysiological and molecular level, and integrated the observed gene expression of selected molecules relevant for Chl metabolism, including its biosynthetic and export KEGG pathways, with the results of published transcriptomes obtained in similar murine models of T. gondii infection. The serum lipid status as well as the transcript levels of relevant genes in the brain and the liver were assessed in experimental models of acute and chronic toxoplasmosis in wild-type mice. The results showed that acute infection was associated with a decrease in Chl content in both the liver and periphery (brain, peripheral lymphocytes), and a decrease in Chl reverse transport. In contrast, in chronic infection, a return to normal levels of Chl metabolism has been noted. These changes corresponded to the brain and liver gene expression results as well as to data obtained via mining. We propose that the observed changes in Chl metabolism are part of the host defense response. Further insight into the lipid metabolism in T. gondii infection may provide novel targets for therapeutic agents. PMID:28459857
NASA Astrophysics Data System (ADS)
Balraj, C.; Ganesh, K.; Elango, K. P.
2011-07-01
Spectroscopic and spectrofluorimetric techniques have been employed to investigate the structure of the charge transfer (CT) complexes of Trimethoprim (TMP) and Cimitidine (CTD) drugs with 2,3,5,6-tetrachloro-1,4-benzoquinone ( p-chloranil, p-CHL). The stoichiometry of the complexes was found to be 1:2 for TMP- p-CHL system and 1:1 for CTD- p-CHL system. The thermodynamic results indicated that the formation of molecular complex between the donors and the acceptor is spontaneous and endothermic. The results of electronic spectral studies indicated that the formation constant for CTD- p-CHL system is found to be higher than that for TMP- p-CHL system. The observation is well supported by the results of fluorescence quenching studies and the association constants calculated for CTD- p-CHL system is 36.2 × 10 3 mol L -1 and that for TMP- p-CHL system is 2.6 × 10 3 mol L -1. The kinetic results, in both the cases, indicated that the interaction is first order each with respect to the concentration of the donor and the acceptor. The physico-chemical parameters viz. oscillator strength, dipole moment, ionization potential and dissociation energy of the complexes were also determined and discussed. Structural characterization of the complexes were done using FT-IR and 1H NMR spectral techniques and the results indicated that, in TMP, the free NH 2 group while in CTD the pyrazole N sbnd H moiety involves in complexation with the acceptor, p-CHL.
Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli
2013-01-01
Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.
Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales
Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler
2016-01-01
The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a positive effect such that a unit increase in water color resulted in a 2 μg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 μg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP–CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color–CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals.
Spatial Variation in Nutrient and Water Color Effects on Lake Chlorophyll at Macroscales
Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler
2016-01-01
The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a positive effect such that a unit increase in water color resulted in a 2 μg/L increase in CHL and other locations where it had a negative effect such that a unit increase in water color resulted in a 2 μg/L decrease in CHL. In addition, the spatial scales that captured variation in TP and water color effects were different for our study lakes. Variation in TP–CHL relationships was observed at intermediate distances (~20 km) compared to variation in water color–CHL relationships that was observed at regional distances (~200 km). These results demonstrate that there are lake-to-lake differences in the effects of TP and water color on lake CHL and that this variation is spatially structured. Quantifying spatial structure in these relationships furthers our understanding of the variability in these relationships at macroscales and would improve model prediction of chlorophyll a to better meet lake management goals. PMID:27736962
15N photo-CIDNP MAS NMR analysis of reaction centers of Chloracidobacterium thermophilum.
Zill, Jeremias C; He, Zhihui; Tank, Marcus; Ferlez, Bryan H; Canniffe, Daniel P; Lahav, Yigal; Bellstedt, Peter; Alia, A; Schapiro, Igor; Golbeck, John H; Bryant, Donald A; Matysik, Jörg
2018-03-30
Photochemically induced dynamic nuclear polarization (photo-CIDNP) has been observed in the homodimeric, type-1 photochemical reaction centers (RCs) of the acidobacterium, Chloracidobacterium (Cab.) thermophilum, by 15 N magic-angle spinning (MAS) solid-state NMR under continuous white-light illumination. Three light-induced emissive (negative) signals are detected. In the RCs of Cab. thermophilum, three types of (bacterio)chlorophylls have previously been identified: bacteriochlorophyll a (BChl a), chlorophyll a (Chl a), and Zn-bacteriochlorophyll a' (Zn-BChl a') (Tsukatani et al. in J Biol Chem 287:5720-5732, 2012). Based upon experimental and quantum chemical 15 N NMR data, we assign the observed signals to a Chl a cofactor. We exclude Zn-BChl because of its measured spectroscopic properties. We conclude that Chl a is the primary electron acceptor, which implies that the primary donor is most likely Zn-BChl a'. Chl a and 8 1 -OH Chl a have been shown to be the primary electron acceptors in green sulfur bacteria and heliobacteria, respectively, and thus a Chl a molecule serves this role in all known homodimeric type-1 RCs.
Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).
Roiser, Matthias H; Müller, Thomas; Kräutler, Bernhard
2015-02-11
Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two "nonfluorescent" Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,19-dioxobilin-type "nonfluorescent" Chl-catabolite (DNCC), named Bo-DNCC. Analysis by nuclear magnetic resonance spectroscopy and mass spectrometry of these three linear tetrapyrroles revealed their structures. In combination with a comparison of their HPL-chromatographic properties, this allowed their identification with three known catabolites from two other brassicacea, namely two NCCs from oil seed rape (Brassica napus) and a DNCC from degreened leaves of Arabidopsis thaliana.
Mandalakis, Manolis; Stravinskaitė, Austėja; Lagaria, Anna; Psarra, Stella; Polymenakou, Paraskevi
2017-07-01
Chlorophyll a (Chl a) is the predominant pigment in every single photosynthesizing organism including phytoplankton and one of the most commonly measured water quality parameters. Various methods are available for Chl a analysis, but the majority of them are of limited throughput and require considerable effort and time from the operator. The present study describes a high-throughput, microplate-based fluorometric assay for rapid quantification of Chl a in phytoplankton extracts. Microplate sealing combined with ice cooling was proved an effective means for diminishing solvent evaporation during sample loading and minimized the analytical errors involved in Chl a measurements with a fluorescence microplate reader. A set of operating parameters (settling time, detector gain, sample volume) were also optimized to further improve the intensity and reproducibility of Chl a fluorescence signal. A quadratic regression model provided the best fit (r 2 = 0.9998) across the entire calibration range (0.05-240 pg μL -1 ). The method offered excellent intra- and interday precision (% RSD 2.2 to 11.2%) and accuracy (% relative error -3.8 to 13.8%), while it presented particularly low limits of detection (0.044 pg μL -1 ) and quantification (0.132 pg μL -1 ). The present assay was successfully applied on marine phytoplankton extracts, and the overall results were consistent (average % relative error -14.8%) with Chl a concentrations (including divinyl Chl a) measured by high-performance liquid chromatography (HPLC). More importantly, the microplate-based method allowed the analysis of 96 samples/standards within a few minutes, instead of hours or days, when using a traditional cuvette-based fluorometer or an HPLC system. Graphical abstract TChl a concentrations (i.e. sum of Chl a and divinyl Chl a in ng L -1 ) measured in seawater samples by HPLC and fluorescence microplate reader.
NASA Astrophysics Data System (ADS)
Larsen, Poul S.; Lüskow, Florian; Riisgård, Hans Ulrik
2018-04-01
Growth of the blue mussel (Mytilus edulis) is closely related to the biomass of phytoplankton (expressed as concentration of chlorophyll a, Chl a), but the effect of too much food in eutrophicated areas has so far been overlooked. The hypothesis addressed in the present study suggests that high Chl a concentrations (> about 8 μg Chl a l-1) result in reduced growth because mussels are not evolutionarily adapted to utilize such high phytoplankton concentrations and to physiologically regulate the amount of ingested food in such a way that the growth rate remains high and constant. We first make a comparison of literature values for actually measured weight-specific growth rates (μ, % d-1) of small (20 to 25 mm) M. edulis, either grown in controlled laboratory experiments or in net bags in Danish waters, as a function of Chl a. A linear increase up to about μ = 8.3% d-1 at 8.1 μg Chl a l-1 fits the "standard BEG-model" after which a marked decrease takes place, and this supports the hypothesis. A "high Chl a BEG-model", applicable to newly settled post-metamorphic and small juvenile (non-spawning) mussels in eutrophicated Danish and other temperate waters, is developed and tested, and new data from a case study in which the growth of mussels in net bags was measured along a Chl a gradient are presented. Finally, we discuss the phenomenon of reduced growth of mussels in eutrophicated areas versus a possible impact of low salinity. It is concluded that it is difficult to separate the effect of salinity from the effect of Chl a, but the present study shows that too much food may cause reduced growth of mussels in eutrophicated marine areas regardless of high or moderate salinity above about 10 psu.
Visualization Center Dedicated
2003-10-17
The dedication ceremony of the University of Southern Mississippi Center of Higher Learning (CHL) High-Performance Visualization Center at SSC was held Oct. 17. The center's RAVE II 3-D visualization system, available to both on- and off-site scientists, turns data into a fully immersive environment for the user. Cutting the ribbon are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; Jim Meredith, former director of the CHL; USM President Dr. Shelby Thames; Lt. Gov. Amy Tuck; Dr. Peter Ranelli, director of the CHL; Dewey Herring, chairman of the policy board for the CHL; and former Sen. Cecil Burge.
Visualization Center Dedicated
NASA Technical Reports Server (NTRS)
2003-01-01
The dedication ceremony of the University of Southern Mississippi Center of Higher Learning (CHL) High-Performance Visualization Center at SSC was held Oct. 17. The center's RAVE II 3-D visualization system, available to both on- and off-site scientists, turns data into a fully immersive environment for the user. Cutting the ribbon are, from left, Rear Adm. Thomas Donaldson, commander of the Naval Meteorology and Oceanography Command; Jim Meredith, former director of the CHL; USM President Dr. Shelby Thames; Lt. Gov. Amy Tuck; Dr. Peter Ranelli, director of the CHL; Dewey Herring, chairman of the policy board for the CHL; and former Sen. Cecil Burge.
Mittelberger, Cecilia; Yalcinkaya, Hacer; Pichler, Christa; Gasser, Johanna; Scherzer, Gerhard; Erhart, Theresia; Schumacher, Sandra; Holzner, Barbara; Janik, Katrin; Robatscher, Peter; Müller, Thomas; Kräutler, Bernhard; Oberhuber, Michael
2017-04-05
Phytoplasmoses such as apple proliferation (AP) and European stone fruit yellows (ESFY) cause severe economic losses in fruit production. A common symptom of both phytoplasma diseases is early yellowing or leaf chlorosis. Even though chlorosis is a well-studied symptom of biotic and abiotic stresses, its biochemical pathways are hardly known. In particular, in this context, a potential role of the senescence-related pheophorbide a oxygenase/phyllobilin (PaO/PB) pathway is elusive, which degrades chlorophyll (Chl) to phyllobilins (PBs), most notably to colorless nonfluorescent Chl catabolites (NCCs). In this work, we identified the Chl catabolites in extracts of healthy senescent apple and apricot leaves. In extracts of apple tree leaves, a total of 12 Chl catabolites were detected, and in extracts of leaves of the apricot tree 16 Chl catabolites were found. The seven major NCC fractions in the leaves of both fruit tree species were identical and displayed known structures. All of the major Chl catabolites were also found in leaf extracts from AP- or ESFY-infected trees, providing the first evidence that the PaO/PB pathway is relevant also for pathogen-induced chlorosis. This work supports the hypothesis that Chl breakdown in senescence and phytoplasma infection proceeds via a common pathway in some members of the Rosaceae family.
NASA Astrophysics Data System (ADS)
Zeng, Chen; Rosengard, Sarah Z.; Burt, William; Peña, M. Angelica; Nemcek, Nina; Zeng, Tao; Arrigo, Kevin R.; Tortell, Philippe D.
2018-06-01
We evaluate several algorithms for the estimation of phytoplankton size class (PSC) and functional type (PFT) biomass from ship-based optical measurements in the Subarctic Northeast Pacific Ocean. Using underway measurements of particulate absorption and backscatter in surface waters, we derived estimates of PSC/PFT based on chlorophyll-a concentrations (Chl-a), particulate absorption spectra and the wavelength dependence of particulate backscatter. Optically-derived [Chl-a] and phytoplankton absorption measurements were validated against discrete calibration samples, while the derived PSC/PFT estimates were validated using size-fractionated Chl-a measurements and HPLC analysis of diagnostic photosynthetic pigments (DPA). Our results showflo that PSC/PFT algorithms based on [Chl-a] and particulate absorption spectra performed significantly better than the backscatter slope approach. These two more successful algorithms yielded estimates of phytoplankton size classes that agreed well with HPLC-derived DPA estimates (RMSE = 12.9%, and 16.6%, respectively) across a range of hydrographic and productivity regimes. Moreover, the [Chl-a] algorithm produced PSC estimates that agreed well with size-fractionated [Chl-a] measurements, and estimates of the biomass of specific phytoplankton groups that were consistent with values derived from HPLC. Based on these results, we suggest that simple [Chl-a] measurements should be more fully exploited to improve the classification of phytoplankton assemblages in the Northeast Pacific Ocean.
Ogawa, Takako; Sonoike, Kintake
2016-03-01
Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Zhang, Haomin; Koda, Keiko
2018-01-01
This study explored the role of vocabulary knowledge and morphological awareness in reading comprehension ability of Chinese as a heritage language (CHL) learners. One hundred ninety five CHL students participated in this study and completed a series of measures including two sets of vocabulary knowledge (one consisting of items pertaining to…
Post-transplant lymphoproliferative disorders.
Singavi, Arun K; Harrington, Alexandra M; Fenske, Timothy S
2015-01-01
Post-transplant lymphoproliferative disorders (PTLD) are a serious complication after solid organ or allogeneic hematopoietic stem cell transplantation and include a range of diseases from benign proliferations to malignant lymphomas. Risk factors for developing PTLD include Epstein-Barr virus (EBV) infection, recipient age, transplanted organ, type of immunosuppression, and genetics. Uncontrolled proliferation of EBV-infected B cells is implicated in EBV-positive PTLD, whereas the pathogenesis of EBV-negative PTLD may be similar to non-Hodgkin's lymphoma in the general population. The World Health Organization (WHO) classifies PTLD into four categories: early lesions, polymorphic PTLD, monomorphic PTLD, and classical Hodgkin's lymphoma (cHL). Treatment is aimed at cure of PTLD, while maintaining transplanted organ function. However, there are no established guidelines for the treatment of PTLD. Immune suppression reduction (ISR) is the first line of treatment in most cases, with more recent data suggesting early use of rituximab. In more aggressive forms of PTLD, upfront chemotherapy may offer a better and more durable response. Sequential therapy using rituximab followed by chemotherapy has demonstrated promising results and may establish a standard of care. Novel therapies including anti-viral agents, adoptive immunotherapy, and monoclonal antibodies targeting cytokines require further study in the prevention and treatment of PTLD.
Biological Impact of Senescence Induction in Prostate Cancer
2010-01-01
with decreasing compound concentrations. Data showing chlorhexidine, bithionol, cytarabine and crassin acetate effectively inhibited proliferation...senescence with 25 nM doxorubicin were included as a positive control. Of the candi- date compounds, methotrexate, cytarabine , chlorhexidine, and IC261...then normalized to expression in untreated cells. Candidate compounds: methotrexate (MET), chlorhexadine (CHL), crassin acetate (CRA), cytarabine
Kang, Yoonja; Tang, Ying-Zhong; Taylor, Gordon T; Gobler, Christopher J
2017-02-01
To date, the life stages of pelagophytes have been poorly described. This study describes the ability of Aureoumbra lagunensis to enter a resting stage in response to environmental stressors including high temperature, nutrient depletion, and darkness as well as their ability to revert from resting cells back to vegetative cells after exposure to optimal light, temperature, and nutrient conditions. Resting cells became round in shape and larger in size, filled with red accumulation bodies, had smaller and fewer plastids, more vacuolar space, contained lower concentrations of chl a and RNA, displayed reduced photosynthetic efficiency, and lower respiration rates relative to vegetative cells. Analysis of vegetative and resting cells using Raman microspectrometry indicated resting cells were enriched in sterols within red accumulation bodies and were depleted in pigments relative to vegetative cells. Upon reverting to vegetative cells, cells increased their chl a content, photosynthetic efficiency, respiration rate, and growth rate and lost accumulation bodies as they became smaller. The time required for resting cells to resume vegetative growth was proportional to both the duration and temperature of dark storage, possibly due to higher metabolic demands on stored energy (sterols) reserves during longer period of storage and/or storage at higher temperature (20°C vs. 10°C). Resting cells kept in the dark at 10°C for 7 months readily reverted back to vegetative cells when transferred to optimal conditions. Thus, the ability of Aureoumbra to form a resting stage likely enables them to form annual blooms within subtropic ecosystems, resist temperature extremes, and may facilitate geographic expansion via anthropogenic transport. © 2016 Phycological Society of America.
NASA Astrophysics Data System (ADS)
Mirkhalili, Seyedhamzeh
2016-07-01
Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.
NASA Astrophysics Data System (ADS)
Son, Young-Sun; Kim, Hyun-cheol
2018-05-01
Chlorophyll (Chl) concentration is one of the key indicators identifying changes in the Arctic marine ecosystem. However, current Chl algorithms are not accurate in the Arctic Ocean due to different bio-optical properties from those in the lower latitude oceans. In this study, we evaluated the current Chl algorithms and analyzed the cause of the error in the western coastal waters of Svalbard, which are known to be sensitive to climate change. The NASA standard algorithms showed to overestimate the Chl concentration in the region. This was due to the high non-algal particles (NAP) absorption and colored dissolved organic matter (CDOM) variability at the blue wavelength. In addition, at lower Chl concentrations (0.1-0.3 mg m-3), chlorophyll-specific absorption coefficients were ∼2.3 times higher than those of other Arctic oceans. This was another reason for the overestimation of Chl concentration. OC4 algorithm-based regionally tuned-Svalbard Chl (SC4) algorithm for retrieving more accurate Chl estimates reduced the mean absolute percentage difference (APD) error from 215% to 49%, the mean relative percentage difference (RPD) error from 212% to 16%, and the normalized root mean square (RMS) error from 211% to 68%. This region has abundant suspended matter due to the melting of tidal glaciers. We evaluated the performance of total suspended matter (TSM) algorithms. Previous published TSM algorithms generally overestimated the TSM concentration in this region. The Svalbard TSM-single band algorithm for low TSM range (ST-SB-L) decreased the APD and RPD errors by 52% and 14%, respectively, but the RMS error still remained high (105%).
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy; ...
2017-03-02
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Yi; Nguy-Robertson, Anthony; Arkebauer, Timothy
Here, canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in threemore » irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2.« less
The experimental and theoretical QM/MM study of interaction of chloridazon herbicide with ds-DNA
NASA Astrophysics Data System (ADS)
Ahmadi, F.; Jamali, N.; Jahangard-Yekta, S.; Jafari, B.; Nouri, S.; Najafi, F.; Rahimi-Nasrabadi, M.
2011-09-01
We report a multispectroscopic, voltammetric and theoretical hybrid of QM/MM study of the interaction between double-stranded DNA containing both adenine-thymine and guanine-cytosine alternating sequences and chloridazon (CHL) herbicide. The electrochemical behavior of CHL was studied by cyclic voltammetry on HMDE, and the interaction of ds-DNA with CHL was investigated by both cathodic differential pulse voltammetry (CDPV) at a hanging mercury drop electrode (HMDE) and anodic differential pulse voltammetry (ADPV) at a glassy carbon electrode (GCE). The constant bonding of CHL-DNA complex that was obtained by UV/vis, CDPV and ADPV was 2.1 × 10 4, 5.1 × 10 4 and 2.6 × 10 4, respectively. The competition fluorescence studies revealed that the CHL quenches the fluorescence of DNA-ethidium bromide complex significantly and the apparent Stern-Volmer quenching constant has been estimated to be 1.71 × 10 4. Thermal denaturation study of DNA with CHL revealed the Δ Tm of 8.0 ± 0.2 °C. Thermodynamic parameters, i.e., enthalpy (Δ H), entropy (Δ S°), and Gibbs free energy (Δ G) were 98.45 kJ mol -1, 406.3 J mol -1 and -22.627 kJ mol -1, respectively. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G(d,p)/UFF) methodology, was also performed using Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and the CHL has more interaction with ds-DNA via the GC base sequence. The results revealed that CHL may have an interaction with ds-DNA via the intercalation mode.
Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya
2016-06-01
Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.
Porcar-Castell, Albert; Tyystjärvi, Esa; Atherton, Jon; van der Tol, Christiaan; Flexas, Jaume; Pfündel, Erhard E; Moreno, Jose; Frankenberg, Christian; Berry, Joseph A
2014-08-01
Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context of the new applications is dramatically different compared with most of the available ChlF literature, which raises a number of important considerations. Although we have a good mechanistic understanding of the processes that control the ChlF signal over the short term, the seasonal link between ChlF and photosynthesis remains obscure. Additionally, while the current understanding of in vivo ChlF is based on pulse amplitude-modulated (PAM) measurements, remote sensing applications are based on the measurement of the passive solar-induced chlorophyll fluorescence (SIF), which entails important differences and new challenges that remain to be solved. In this review we introduce and revisit the physical, physiological, and methodological factors that control the leaf-level ChlF signal in the context of the new remote sensing applications. Specifically, we present the basis of photosynthetic acclimation and its optical signals, we introduce the physical and physiological basis of ChlF from the molecular to the leaf level and beyond, and we introduce and compare PAM and SIF methodology. Finally, we evaluate and identify the challenges that still remain to be answered in order to consolidate our mechanistic understanding of the remotely sensed SIF signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Wind modulation of upwelling at the shelf-break front off Patagonia: Observational evidence
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Piola, A. R.; Charo, M.; Romero, S. I.
2017-03-01
The South-Atlantic Patagonian shelf is the largest chlorophyll-a (Chl-a) hot spot in Southern Ocean color images. While a persistent 1500 km long band of high Chl-a along the shelf-break front (SBF) is indicative of upwelling, the mechanisms that drive it are not entirely known. Along-front wind oscillations can enhance upwelling and provide a nutrient pumping mechanism at shelf-break fronts of western boundary currents. Here we assess wind-induced upwelling at the SBF off Patagonia from daily satellite Chl-a and winds, historical hydrographic observations, cross-shelf Chl-a fluorescence transects from two cruises, and in situ winds and water column structure from a mooring site. Satellite Chl-a composites segregated by along-front wind direction indicate that surface Chl-a is enhanced at the SBF with southerly winds and suppressed with northerly winds. Northerly winds also result in enhanced Chl-a further offshore (˜25-50 km). Synoptic transects as well as mean hydrographic sections segregated by along-front winds show isopycnals tilted upward for southerly winds. Spring observations from the mooring also suggest that southerly winds destratify the water column and northerly winds restratify, in agreement with Ekman transport interacting with the front. Moreover, changes in water column temperature lag along-front wind forcing by 2-4 days. Our results suggest that oscillations in along-front winds, on timescales typical of atmospheric storms (2-10 days), can significantly modulate the upwelling and Chl-a concentrations at the SBF off Patagonia, revealing the importance of wind-induced upwelling for shelf-slope exchange at shelf-break fronts of western boundary currents.
Liu, Xiaojun; Zhang, Ke; Zhang, Zeyu; Cao, Qiang; Lv, Zunfu; Yuan, Zhaofeng; Tian, Yongchao; Cao, Weixing; Zhu, Yan
2017-01-01
Canopy chlorophyll density (Chl) has a pivotal role in diagnosing crop growth and nutrition status. The purpose of this study was to develop Chl based models for estimating N status and predicting grain yield of rice (Oryza sativa L.) with Leaf area index (LAI) and Chlorophyll concentration of the upper leaves. Six field experiments were conducted in Jiangsu Province of East China during 2007, 2008, 2009, 2013, and 2014. Different N rates were applied to generate contrasting conditions of N availability in six Japonica cultivars (9915, 27123, Wuxiangjing 14, Wuyunjing 19, Yongyou 8, and Wuyunjing 24) and two Indica cultivars (Liangyoupei 9, YLiangyou 1). The SPAD values of the four uppermost leaves and LAI were measured from tillering to flowering growth stages. Two N indicators, leaf N accumulation (LNA) and plant N accumulation (PNA) were measured. The LAI estimated by LAI-2000 and LI-3050C were compared and calibrated with a conversion equation. A linear regression analysis showed significant relationships between Chl value and N indicators, the equations were as follows: PNA = (0.092 × Chl) − 1.179 (R2 = 0.94, P < 0.001, relative root mean square error (RRMSE) = 0.196), LNA = (0.052 × Chl) − 0.269 (R2 = 0.93, P < 0.001, RRMSE = 0.185). Standardized method was used to quantity the correlation between Chl value and grain yield, normalized yield = (0.601 × normalized Chl) + 0.400 (R2 = 0.81, P < 0.001, RRMSE = 0.078). Independent experimental data also validated the use of Chl value to accurately estimate rice N status and predict grain yield. PMID:29163568
Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean
NASA Astrophysics Data System (ADS)
Westberry, Toby K.; Schultz, Patrick; Behrenfeld, Michael J.; Dunne, John P.; Hiscock, Michael R.; Maritorena, Stephane; Sarmiento, Jorge L.; Siegel, David A.
2016-02-01
High-latitude phytoplankton blooms support productive fisheries and play an important role in oceanic uptake of atmospheric carbon dioxide. In the subarctic North Atlantic Ocean, blooms are a recurrent feature each year, while in the eastern subarctic Pacific only small changes in chlorophyll (Chl) are seen over the annual cycle. Here we show that when evaluated using phytoplankton carbon biomass (Cphyto) rather than Chl, an annual bloom in the North Pacific is evident and can even rival blooms observed in the North Atlantic. The annual increase in subarctic Pacific phytoplankton biomass is not readily observed in the Chl record because it is paralleled by light- and nutrient-driven decreases in cellular pigment levels (Cphyto:Chl). Specifically, photoacclimation and iron stress effects on Cphyto:Chl oppose the biomass increase, leading to only modest changes in bulk Chl. The magnitude of the photoacclimation effect is quantified using descriptors of the near-surface light environment and a photophysiological model. Iron stress effects are diagnosed from satellite chlorophyll fluorescence data. Lastly, we show that biomass accumulation in the Pacific is slower than that in the Atlantic but is closely tied to similar levels of seasonal nutrient uptake in both basins. Annual cycles of satellite-derived Chl and Cphyto are reproduced by in situ autonomous profiling floats. These results contradict the long-standing paradigm that environmental conditions prevent phytoplankton accumulation in the subarctic Northeast Pacific and suggest a greater seasonal decoupling between phytoplankton growth and losses than traditionally implied. Further, our results highlight the role of physiological processes in shaping bulk properties, such as Chl, and their interpretation in studies of ocean ecosystem dynamics and climate change.
Barrington, Dani J; Ghadouani, Anas
2008-12-01
Phytoplankton blooms containing elevated levels of cyanobacteria are common in wastewatertreatment plants. Microcystis aeruginosa, the most common freshwater cyanobacterial species, produces the hepatotoxin microcystin, which is a threat to human and environmental health. Blooms also affect the viability of treating and reusing water and cause problems when detritus accumulates in pipe and pumping delivery infrastructure. We proposed the application of hydrogen peroxide (H2O2) to induce cyanobacterial cell death. Spectral fingerprinting of phytoplankton into four groups (cyanobacteria, chlorophyta, diatoms, and cryptophyta) allowed for determination of equivalent chlorophyll-a (chl-a) concentrations contributed by photosynthetic pigments, an indicative measure of the photosynthetic activity of each phytoplankton group. This was used to establish the effect of H2O2 addition on phytoplankton in wastewater samples. The lowest H2O2 dose that caused statistically significant exponential decay of phytoplankton groups was approximately 3.0 x 10(-3) g H2O2/microg phytoplankton chl-a. At this dose, cyanobacteria and total phytoplankton exhibited a half-life of 2.3 and 4.5 h, respectively. Cyanobacteria decayed at a rate approximately twice that of chlorophyta and diatoms, and the combined chl-a of all phytoplankton groups decreased to negligible levels within 48 h of H202 application.
Optical characterization of an eddy-induced diatom bloom west of the island of Hawaii
NASA Astrophysics Data System (ADS)
Nencioli, F.; Chang, G.; Twardowski, M.; Dickey, T. D.
2009-08-01
Optical properties are used to characterize the biogeochemistry of cyclonic eddy Opal in the lee of Hawaii. The eddy featured an intense diatom bloom. Our results show that the ratio of chlorophyll concentration to particulate beam attenuation coefficient, [chl]/cp, is not a good indicator of the changes in particle composition through the water column. The ratio is controlled primarily by the variation in chlorophyll concentration per cell with depth (photoadaptation), so that its values increase throughout the Deep Chlorophyll Maximum Layer (DCML). Below the DCML, high values of [chl]/cp suggest that remineralization might be another important controlling factor. On the other hand, the backscattering ratio (particle backscattering to particle scattering ratio, b~bp) clearly indicates a shift from a small phytoplankton to a diatom dominated community. Below an upper layer characterized by constant values, the b~bp ratio showed a rapid decrease to a broad minimum within the DCML. The higher values below the DCML are consistent with enhanced remineralization below the eddy-induced bloom. The DCML was characterized by a layer of "healthy" diatoms underlying a layer of "senescent" diatoms. These two layers are characterized by similar optical properties, indicating some possible limitations in using optical measurements to fully characterize the composition of suspended material in the water column. An inverse relationship between b~bp and [chl]/cp, also reported by others, is observed as deep as the DCML. There, [chl]/cp increases whereas b~bp remains similar to values found in the empty frustule layer. This is a further indication that [chl]/cp might not be a good alternative to the backscattering ratio for investigating changes in particle composition with depth in Case I waters.
Toxic Effects of Prodigiosin Secreted by Hahella sp. KA22 on Harmful Alga Phaeocystis globosa
Zhang, Huajun; Wang, Hui; Zheng, Wei; Yao, Zhiyuan; Peng, Yun; Zhang, Su; Hu, Zhong; Tao, Zhen; Zheng, Tianling
2017-01-01
Application of algicidal compounds secreted by bacteria is a promising and environmentally friendly strategy to control harmful algal blooms (HABs). Years ago prodigiosin was described as an efficient algicidal compound, but the details about the effect of prodigiosin on algal cells are still elusive. Prodigiosin shows high algicidal activity on Phaeocystis globosa, making it a potential algicide in HAB control. When P. globosa were treated with prodigiosin at 5 μg/mL, algae cells showed cytoplasmic hypervacuolization, chloroplast and nucleus rupture, flagella missing, and cell fracture, when observed by scanning electron microscope and transmission electron microscopy. Prodigiosin induced a reactive oxygen species (ROS) burst in P. globosa at 2 h, which could result in severe oxidative damage to algal cells. Chlorophyll a (Chl a) fluorescence decreased significantly after prodigiosin treatment; about 45.3 and 90.0% of algal cells lost Chl a fluorescence at 24 and 48 h. The Fv/Fm value, reflecting the status of the photosystem II electron flow also decreased after prodigiosin treatment. Quantitative polymerase chain reaction (PCR) analysis psbA and rbcS expression indicated that photosynthesis process was remarkably inhibited by prodigiosin. The results indicated that the inhibition of photosynthesis may produce excessive ROS causing cell necrosis. This study is the first report about algal lysis mechanism of prodigiosin on harmful algae. Our results could increase our knowledge on the interaction between algicidal compounds and harmful algae, which could lead to further studies in the microcosm. PMID:28634473
Bajusz, S; Janaky, T; Csernus, V J; Bokser, L; Fekete, M; Srkalovic, G; Redding, T W; Schally, A V
1989-01-01
The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Of the peptides prepared, [D-Mel6]LH-RH (SB-05) and [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Pal(3)3,Arg5,D-Mel6,D-Ala10++ +]LH-RH [SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine] possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel6 analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells. PMID:2548207
Bajusz, S; Janaky, T; Csernus, V J; Bokser, L; Fekete, M; Srkalovic, G; Redding, T W; Schally, A V
1989-08-01
The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Of the peptides prepared, [D-Mel6]LH-RH (SB-05) and [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Pal(3)3,Arg5,D-Mel6,D-Ala10++ +]LH-RH [SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine] possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel6 analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells.
Guo, Yahong; Tsuruga, Ayako; Yamaguchi, Shigeharu; Oba, Koji; Iwai, Kasumi; Sekita, Setsuko; Mizukami, Hajime
2006-06-01
Chloroplast chlB gene encoding subunit B of light-independent protochlorophyllide reductase was amplified from herbarium and crude drug specimens of Ephedra sinica, E. intermedia, E. equisetina, and E. przewalskii. Sequence comparison of the chlB gene indicated that all the E. sinica specimens have the same sequence type (Type S) distinctive from other species, while there are two sequence types (Type E1 and Type E2) in E. equisetina. E. intermedia and E. prezewalskii revealed an identical sequence type (Type IP). E. sinica was also identified by digesting the chlB fragment with Bcl I. A novel method for DNA authentication of Ephedra Herb based on the sequences of the chloroplast chlB gene and internal transcribed spacer of nuclear rRNA genes was developed and successfully applied for identification of the crude drugs obtained in the Chinese market.
Colorless Chlorophyll Catabolites in Senescent Florets of Broccoli (Brassica oleracea var. italica)
2015-01-01
Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two “nonfluorescent” Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,19-dioxobilin-type “nonfluorescent” Chl-catabolite (DNCC), named Bo-DNCC. Analysis by nuclear magnetic resonance spectroscopy and mass spectrometry of these three linear tetrapyrroles revealed their structures. In combination with a comparison of their HPL-chromatographic properties, this allowed their identification with three known catabolites from two other brassicacea, namely two NCCs from oil seed rape (Brassica napus) and a DNCC from degreened leaves of Arabidopsis thaliana. PMID:25620234
Hansen, Hinrich P.; Trad, Ahmad; Dams, Maria; Zigrino, Paola; Moss, Marcia; Tator, Maximilian; Schön, Gisela; Grenzi, Patricia C; Bachurski, Daniel; Aquino, Bruno; Dürkop, Horst; Reiners, Katrin S; von Bergwelt-Baildon, Michael; Hallek, Michael; Grötzinger, Joachim; Engert, Andreas; Leme, Adriana F Paes; von Strandmann, Elke Pogge
2016-01-01
The goal of targeted immunotherapy in cancer is to damage both malignant and tumor-supporting cells of the microenvironment but spare unaffected tissue. The malignant cells in classical Hodgkin lymphoma (cHL) selectively express CD30. They release this receptor on extracellular vesicles (EVs) for the tumor-supporting communication with CD30 ligand (CD30L)-positive bystander cells. Here, we investigated how CD30-positive EVs influence the efficacy of the CD30 antibody drug conjugate (ADC) Brentuximab Vedotin (SGN-35). The malignant cells and the EVs expressed the active sheddase ADAM10. ADAM10 cleaved and released the CD30 ectodomain (sCD30), causing a gradual depletion of SGN-35 binding sites on EVs and creating a soluble competitor of the ADC therapy. In a 3D semi-solid tumor microenvironment model, the EVs were retained in the matrix whereas sCD30 penetrated readily into the surrounding culture medium. This resulted in a lowered ratio of EV-associated CD30 (CD30EV) to sCD30 in the surrounding medium in comparison to non-embedded cultures. A low percentage of CD30EV was also detected in the plasma of cHL patients, supporting the clinical relevance of the model. The adherence of CD30EV but not sCD30 to CD30−/CD30L+ mast cells and eosinophils allowed the indirect binding of SGN-35. Moreover, SGN-35 damaged CD30-negative cells, provided they were loaded with CD30+ EVs. PMID:27105521
Nardelli, Schuyler C; Twardowski, Michael S
2016-10-31
The relationship between absorption at 676 nm normalized to chlorophyll-a, i.e., specific absorption aph*(676), and various optical and environmental properties is examined in extensive data sets from Case I and Case II waters found globally to assess drivers of variability such as pigment packaging. A better understanding of this variability could lead to more accurate estimates of chlorophyll concentrations from in situ optical measurements that may be made autonomously. Values of aph*(676) ranged from 0.00006 to 0.0944 m2/mg Chl a across all sites studied, but converged on median and mean values (n = 563) of 0.0108 and 0.0139 m2/mg Chl a respectively, with no apparent relationship with various optical properties, latitude, coastal or open ocean environment, depth, temperature, salinity, photoadaptation, ecosystem health, or albedo. Relative consistency in aph* across such diverse water types and the full range in chlorophyll concentration suggests a single aph* may be used to estimate chlorophyll concentration from absorption measurements with better accuracy than currently thought.
ERIC Educational Resources Information Center
Schnitzer, Cheryl S.; Reim, Candace Lawson; Sirois, John J.; House, Paul G.
2010-01-01
Advanced chemistry students are introduced to surface-enhanced resonance Raman scattering (SERRS) by studying how sodium copper chlorophyllin (CuChl) adsorbs onto silver colloids (CuChl/Ag) as a function of pH. Using both SERRS and visible extinction spectroscopy, the extent of CuChl adsorption and colloidal aggregation are monitored. Initially at…
Chapter 3: Isolation of Photosystem II Reaction Center Complexes from Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, M.; Picorel, R.
2011-01-01
Methods to isolate and purify 6- and 5-Chl D1/D2/Cyt b559 photosystem II (PSII) reaction center (RC) complexes from plants are presented, and the advantages and disadvantages of each procedure are discussed. One of the simpler 6-Chl procedures and a procedure for isolating 5-Chl complexes are described in detail. Furthermore, a rapid procedure that produces relatively large amounts of less pure 6-Chl material (i.e., more nonpigmented protein) is also described. Criteria to assess the purity of PSII RC preparations are presented, and problems associated with each of the isolation procedures are discussed.
Anaerobic treatment of coconut husk liquor for biogas production.
Leitão, R C; Araújo, A M; Freitas-Neto, M A; Rosa, M F; Santaella, S T
2009-01-01
The market for coconut water causes environmental problems as it is one of the major agro-industrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m3.d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m3 of biogas or 130 KWh per m3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity.
Mao, Guangzhi; Ma, Qiang; Wei, Hengling; Su, Junji; Wang, Hantao; Ma, Qifeng; Fan, Shuli; Song, Meizhen; Zhang, Xianlong; Yu, Shuxun
2018-02-01
The young leaves of virescent mutants are yellowish and gradually turn green as the plants reach maturity. Understanding the genetic basis of virescent mutants can aid research of the regulatory mechanisms underlying chloroplast development and chlorophyll biosynthesis, as well as contribute to the application of virescent traits in crop breeding. In this study, fine mapping was employed, and a recessive gene (v 1 ) from a virescent mutant of Upland cotton was narrowed to an 84.1-Kb region containing ten candidate genes. The GhChlI gene encodes the cotton Mg-chelatase I subunit (CHLI) and was identified as the candidate gene for the virescent mutation using gene annotation. BLAST analysis showed that the GhChlI gene has two copies, Gh_A10G0282 and Gh_D10G0283. Sequence analysis indicated that the coding region (CDS) of GhChlI is 1269 bp in length, with three predicted exons and one non-synonymous nucleotide mutation (G1082A) in the third exon of Gh_D10G0283, with an amino acid (AA) substitution of arginine (R) to lysine (K). GhChlI-silenced TM-1 plants exhibited a lower GhChlI expression level, a lower chlorophyll content, and the virescent phenotype. Analysis of upstream regulatory elements and expression levels of GhChlI showed that the expression quantity of GhChlI may be normal, and with the development of the true leaf, the increase in the Gh_A10G0282 dosage may partially make up for the deficiency of Gh_D10G0283 in the v 1 mutant. Phylogenetic analysis and sequence alignment revealed that the protein sequence encoded by the third exon of GhChlI is highly conserved across diverse plant species, in which AA substitutions among the completely conserved residues frequently result in changes in leaf color in various species. These results suggest that the mutation (G1082A) within the GhChlI gene may cause a functional defect of the GhCHLI subunit and thus the virescent phenotype in the v 1 mutant. The GhChlI mutation not only provides a tool for understanding the associations of CHLI protein function and the chlorophyll biosynthesis pathway but also has implications for cotton breeding.
Minnicelli, Carolina; Segges, Priscilla; Stefanoff, Gustavo; Kristcevic, Flavia; Ezpeleta, Joaquin; Tapia, Elizabeth; Niedobitek, Gerald; Barros, Mário Henrique M.
2018-01-01
ABSTRACT Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs −1082 and −592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that −1082AA/AG; −592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in −1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in −592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the −592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2–0.86; P = 0.018, and HR: 3.06 95% CI 1.03–9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with −1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;−1082GG/−592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm2, respectively; P< 0.05); while ATA haplotype (high expression) associated with high numbers of MAF+ cells (P = 0.005). Specifically, −1082GG patients exhibited low percentages of CD68+MAF+ (M2-like) intratumoral macrophages (15.04% vs. 47.26%, P = 0.017). Considering ours as an independent validation cohort, our results give support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic response. PMID:29721365
Vera-Lozada, Gabriela; Minnicelli, Carolina; Segges, Priscilla; Stefanoff, Gustavo; Kristcevic, Flavia; Ezpeleta, Joaquin; Tapia, Elizabeth; Niedobitek, Gerald; Barros, Mário Henrique M; Hassan, Rocio
2018-01-01
Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs -1082 and -592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that -1082AA/AG; -592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in -1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in -592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the -592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2-0.86; P = 0.018, and HR: 3.06 95% CI 1.03-9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with -1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;-1082GG/-592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm 2 , respectively; P< 0.05); while ATA haplotype (high expression) associated with high numbers of MAF+ cells (P = 0.005). Specifically, -1082GG patients exhibited low percentages of CD68+MAF+ (M2-like) intratumoral macrophages (15.04% vs. 47.26%, P = 0.017). Considering ours as an independent validation cohort, our results give support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic response.
Pilichowska, Monika; Pittaluga, Stefania; Ferry, Judith A; Hemminger, Jessica; Chang, Hong; Kanakry, Jennifer A; Sehn, Laurie H; Feldman, Tatyana; Abramson, Jeremy S; Kritharis, Athena; Hernandez-Ilizaliturri, Francisco J; Lossos, Izidore S; Press, Oliver W; Fenske, Timothy S; Friedberg, Jonathan W; Vose, Julie M; Blum, Kristie A; Jagadeesh, Deepa; Woda, Bruce; Gupta, Gaurav K; Gascoyne, Randy D; Jaffe, Elaine S; Evens, Andrew M
2017-12-12
Gray zone lymphoma (GZL) is described as sharing features with classical Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL). However, there remains complexity in establishing diagnosis, delineating prognosis, and determining optimum therapy. Sixty-eight cases diagnosed as GZL across 15 North American academic centers were evaluated by central pathology review to achieve consensus. Of these, only 26 (38%) were confirmed as GZL. Morphology was critical to GZL consensus diagnosis (eg, tumor cell richness); immunohistochemistry showed universal B-cell derivation, frequent CD30 expression, and rare Epstein-Barr virus (EBV) positivity (CD20 + , 83%; PAX5 + , 100%; BCL6 + , 20%; MUM1 + , 100%; CD30 + , 92%; EBV + , 4%). Forty-two cases were reclassified: nodular sclerosis (NS) cHL, n = 27 (including n = 10 NS grade 2); lymphocyte predominant HL, n = 4; DLBCL, n = 4; EBV + DLBCL, n = 3; primary mediastinal large BCL n = 2; lymphocyte-rich cHL and BCL-not otherwise specified, n = 1 each. GZL consensus-confirmed vs reclassified cases, respectively, more often had mediastinal disease (69% vs 41%; P = .038) and less likely more than 1 extranodal site (0% vs 25%; P = .019). With a 44-month median follow-up, 3-year progression-free survival (PFS) and overall survival for patients with confirmed GZL were 39% and 95%, respectively, vs 58% and 85%, respectively, for reclassified cases ( P = .19 and P = .15, respectively). Interestingly, NS grade 2 reclassified patients had similar PFS as GZL consensus-confirmed cases. For prognostication of GZL cases, hypoalbuminemia was a negative factor (3-year PFS, 12% vs 64%; P = .01), whereas frontline cyclophosphamide, doxorubicin, vincristine, and prednisone ± rituximab (CHOP±R) was associated with improved 3-year PFS (70% vs 20%; P = .03); both factors remained significant on multivariate analysis. Altogether, accurate diagnosis of GZL remains challenging, and improved therapeutic strategies are needed.
Pilichowska, Monika; Pittaluga, Stefania; Ferry, Judith A.; Hemminger, Jessica; Chang, Hong; Kanakry, Jennifer A.; Sehn, Laurie H.; Feldman, Tatyana; Abramson, Jeremy S.; Kritharis, Athena; Hernandez-Ilizaliturri, Francisco J.; Lossos, Izidore S.; Press, Oliver W.; Fenske, Timothy S.; Friedberg, Jonathan W.; Vose, Julie M.; Blum, Kristie A.; Jagadeesh, Deepa; Woda, Bruce; Gupta, Gaurav K.; Gascoyne, Randy D.; Jaffe, Elaine S.
2017-01-01
Gray zone lymphoma (GZL) is described as sharing features with classical Hodgkin lymphoma (cHL) and diffuse large B-cell lymphoma (DLBCL). However, there remains complexity in establishing diagnosis, delineating prognosis, and determining optimum therapy. Sixty-eight cases diagnosed as GZL across 15 North American academic centers were evaluated by central pathology review to achieve consensus. Of these, only 26 (38%) were confirmed as GZL. Morphology was critical to GZL consensus diagnosis (eg, tumor cell richness); immunohistochemistry showed universal B-cell derivation, frequent CD30 expression, and rare Epstein-Barr virus (EBV) positivity (CD20+, 83%; PAX5+, 100%; BCL6+, 20%; MUM1+, 100%; CD30+, 92%; EBV+, 4%). Forty-two cases were reclassified: nodular sclerosis (NS) cHL, n = 27 (including n = 10 NS grade 2); lymphocyte predominant HL, n = 4; DLBCL, n = 4; EBV+ DLBCL, n = 3; primary mediastinal large BCL n = 2; lymphocyte-rich cHL and BCL–not otherwise specified, n = 1 each. GZL consensus-confirmed vs reclassified cases, respectively, more often had mediastinal disease (69% vs 41%; P = .038) and less likely more than 1 extranodal site (0% vs 25%; P = .019). With a 44-month median follow-up, 3-year progression-free survival (PFS) and overall survival for patients with confirmed GZL were 39% and 95%, respectively, vs 58% and 85%, respectively, for reclassified cases (P = .19 and P = .15, respectively). Interestingly, NS grade 2 reclassified patients had similar PFS as GZL consensus-confirmed cases. For prognostication of GZL cases, hypoalbuminemia was a negative factor (3-year PFS, 12% vs 64%; P = .01), whereas frontline cyclophosphamide, doxorubicin, vincristine, and prednisone ± rituximab (CHOP±R) was associated with improved 3-year PFS (70% vs 20%; P = .03); both factors remained significant on multivariate analysis. Altogether, accurate diagnosis of GZL remains challenging, and improved therapeutic strategies are needed. PMID:29296913
Chen, Junhui; Wei, Dong; Pohnert, Georg
2017-07-19
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis . The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis . The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry.
Chen, Junhui; Pohnert, Georg
2017-01-01
The green microalga Chromochloris zofingiensis can accumulate significant amounts of valuable carotenoids, mainly natural astaxanthin, a product with applications in functional food, cosmetics, nutraceuticals, and with potential therapeutic value in cardiovascular and neurological diseases. To optimize the production of astaxanthin, it is essential to monitor the content of astaxanthin in algal cells during cultivation. The widely used HPLC (high-performance liquid chromatography) method for quantitative astaxanthin determination is time-consuming and laborious. In the present work, we present a method using flow cytometry (FCM) for in vivo determination of the astaxanthin content and the carotenoid-to-chlorophyll ratio (Car/Chl) in mixotrophic C. zofingiensis. The method is based on the assessment of fluorescent characteristics of cellular pigments. The mean fluorescence intensity (MFI) of living cells was determined by FCM to monitor pigment formation based on the correlation between MFI detected in particular channels (FL1: 533 ± 15 nm; FL2: 585 ± 20 nm; FL3: >670 nm) and pigment content in algal cells. Through correlation and regression analysis, a linear relationship was observed between MFI in FL2 (band-pass filter, emission at 585 nm in FCM) and astaxanthin content (in HPLC) and applied for predicting astaxanthin content. With similar procedures, the relationships between MFI in different channels and Car/Chl ratio in mixotrophic C. zofingiensis were also determined. Car/Chl ratios could be estimated by the ratios of MFI (FL1/FL3, FL2/FL3). FCM is thus a highly efficient and feasible method for rapid estimation of astaxanthin content in the green microalga C. zofingiensis. The rapid FCM method is complementary to the current HPLC method, especially for rapid evaluation and prediction of astaxanthin formation as it is required during the high-throughput culture in the laboratory and mass cultivation in industry. PMID:28753934
[Research on the threshold of Chl-a in Lake Taihu based on microcystins].
Wei, Dai-chun; Su, Jing; Ji, Dan-feng; Fu, Xiao-yong; Wang, Ji; Huo, Shou-liang; Cui, Chi-fei; Tang, Jun; Xi, Bei-dou
2014-12-01
Water samples were collected in Lake Taihu from June to October in 2013 in order to investigate the threshold of chlorophyll a (Chl-a). The concentrations of three microcystins isomers (MC-LR, MC-RR, MC-YR) were detected by means of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry. The correlations between various MCs and eutrophication factors, for instance of total nitrogen (TN), total phosphorus (TP), chlorophyll a, permanganate index etc were analyzed. The threshold of Chl-a was studied based on the relationships between MC-LR, MCs and Chl-a. The results showed that Lake Taihu was severely polluted by MCs and its spatial distribution could be described as follows: the concentration in Meiliang Bay was the highest, followed by Gonghu Bay and Western Lake, and Lake Center; the least polluted areas were in Lake Xuhu and Southern Lake. The concentration of MC-LR was the highest among the 3 MCs. The correlation analysis indicated that MC-LR, MC-RR, MC-YR and MCs had very positive correlation with permanganate index, TN, TP and Chl-a (P < 0.01). The threshold value of Chl-a was 12.26 mg x m(-3) according to the standard thresholds of MC-LR and MCs in drinking water. The threshold value of Chl-a in Lake Taihu was very close to the standard in the State of North Carolina, which demonstrated that the threshold value provided in this study was reasonable.
Subtropical Gyre Variability as Seen from Satellites
NASA Technical Reports Server (NTRS)
Signorini, Sergio R.; McClain, Charles R.
2011-01-01
A satellite multi-sensor approach is used to analyse the biological response of open ocean regions of the subtropical gyres to changes in physical forcing. Thirteen years (1998-2010) of SeaWiFS chlorophyll a (Chl-a), combined with concurrent satellite records of sea-surface temperature (SST) and sea level height, were analysed to investigate the seasonal and interannual variability of Chl-a concentration within these immense so-called ocean deserts. The seasonal variability of Chl-a within the gyres is driven mostly by the warming/cooling of surface waters. Summer warming promotes shallower mixed layers and lower Chl-a due to a reduction of vertical mixing and consequently a decrease in nutrient supply. The opposite happens during the winter cooling period. Therefore, long-term trends in SST have the potential to cause an impact on the interannual variability of Chl-a. Our analyses show that, during the 13 whole years of SeaWiFS data record, the North Pacific, Indian Ocean, and North Atlantic gyres experienced a decrease in Chl-a of 9%, 12%, and 11%, respectively, with corresponding SST increases of 0.27 C, 0.42 C, and 0.32 C. The South Pacific and South Atlantic gyres also showed warming trends but with weak positive trends in Chl-a that are not statistically significant. We hypothesize that the warming of surface waters in these two gyres are counterbalanced by other interacting physical and biological driving mechanisms, as indicated in previous studies.
Du, Shaoting; Zhang, Peng; Zhang, Ranran; Lu, Qi; Liu, Lin; Bao, Xiaowei; Liu, Huijun
2016-12-01
Increased use of graphene materials might ultimately lead to their release into the environment. However, only a few studies have investigated the impact of graphene-based materials on green plants. In this study, the impact of reduced graphene oxide (RGO) on the microalgae Scenedesmus obliquus was evaluated to determine its phytotoxicity. Treatment with RGO suppressed the growth of the microalgae. The 72-h IC 50 values of RGO evaluated using the logistic and Gompertz models were 148 and 151 mg L -1 , respectively. RGO significantly inhibited Chl a and Chl a/b levels in the algal cells. Chlorophyll a fluorescence analysis showed that RGO significantly down-regulated photosystem II activity. The mechanism of how RGO inhibited algal growth and photosynthetic performance was determined by analyzing the alterations in ultrastructural morphology. RGO adhered to the algal cell surface as a semitranslucent coating. Cell wall damage and membrane integrity loss occurred in the treated cells. Moreover, nuclear chromatin clumping and starch grain number increase were noted. These changes might be attributed to the increase in malondialdehyde and reactive oxygen species levels, which might have exceeded the scavenging ability of antioxidant enzymes (including peroxidase and superoxide dismutase). RGO impaired the extra- and intra-cellular morphology and increased oxidative stress and thus inhibited algal growth and photosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mikaelyan, Alexander S.; Chasovnikov, Valeriy K.; Kubryakov, Arseny A.; Stanichny, Sergey V.
2017-02-01
The phenology of the winter-spring phytoplankton bloom in the Black Sea was investigated on the basis of the satellite-derived chlorophyll concentration (Chl) for the recent 18-year period. Data for the 8-day Chl were analysed, together with changes in the nutrient concentration, sea surface temperature (SST), photosynthetically available radiation, wind velocity and duration. Based on Sverdrup's Critical Depth hypothesis and its recent refinements, the Pulsing-Bloom hypothesis was proposed for the highly stratified waters of the Black Sea. This hypothesis relates the biological response to physical forcing and chemical fluxes to the photic zone and predicts the pulsing growth of phytoplankton and different patterns of phytoplankton changes in the upper layer in winter-spring during cold and regular years. The hypothesis was supported by Chl dynamics and several Chl peaks were observed during winter-spring. Normally, the highest Chl occurred in winter and a spring peak was absent, whereas in cold years, a relatively low Chl in winter was followed by a spring bloom. These events were observed only in 15% of cases and the magnitude of the bloom was associated with the intensity of winter convection that was revealed by the negative inter-annual correlation between the March Chl and the February SST. In contrast, the February Chl was positively correlated with the SST. The proposed hypothesis provides an explanation of this phenomenon on the basis of an alternation between the low-turbulence and deep-mixing regimes. This mechanism was confirmed by the positive relationships between Chl and the duration of light wind during the current period and strong wind in the previous period. Inorganic nitrogen was depleted disproportionately during the winter-spring, whereas the phosphate concentration remained relatively high. Following a cold winter, the highest phosphate concentration and extremely low nitrogen-to-phosphorus molar ratios (2) were observed in the upper 25-m layer in late spring. The regular absence of spring blooms might represent one of the consequences of the regional climate change.
NASA Astrophysics Data System (ADS)
Orvain, Francis; De Crignis, Margot; Guizien, Katell; Lefebvre, Sébastien; Mallet, Clarisse; Takahashi, Eri; Dupuy, Christine
2014-09-01
Relationships between bacteria, microphytobenthos and extracellular polymeric substances (EPS) that make up microbial biofilms over bare mudflats were investigated at an hourly frequency during two 14-day spring-neap cycles in winter and summer 2008. Bacterial abundance and total chl a concentration were lower in summer (0.78 × 108 ± SD 0.39 × 108 cell.m- 2 and 59.0 ± SD 10.42 mgchla.m- 2) than in winter (3.7 × 108 ± SD 1.9 × 108 cell.m- 2 and 106.64 ± SD 11.29 mgchla.m- 2), coinciding with a high abundance of the gastropod Peringia ulvae in summer, which subsequently impacted 1st-cm chl a concentration by intense grazing. Bound and colloidal EPS carbohydrate temporal patterns were similar in winter (5.71 ± SD 3.95 and 4.67 ± SD 3.45 μg.g- 1, respectively) but were different in summer (14.9 ± SD 4.05 and 5.60 ± SD 4.50 μg.g- 1, respectively). Carbohydrate colloidal EPS appeared to be related to light and salinity, while 1st-mm chl a concentration was negatively affected by strong salinities and predation pressure by P. ulvae. The fluctuations of colloidal carbohydrates were remarkably similar in the two seasons with peaks just after spring tides when the highest irradiance was received by microphytobenthic cells. Apparently, colloidal EPS carbohydrates can protect cells against the high salinity values ranging from 32.3 to 50.4 PSU. The presence of bound EPS carbohydrates may be linked to sediment colonization and resistance of biofilm activity. Proteins in EPS were absent in winter and represented a small proportion in summer (10%), but they appeared to be a good indicator of potential synergistic effects between MPB and bacteria in summer. Conversely, bound EPS carbohydrates reached high levels in winter, while the number of bacteria decreased simultaneously, suggesting a negative effect on bacterial growth in the absence of proteins in EPS. There was a lower proportion (31%) of low molecular weight EPS in summer than in winter (83%), possibly in relation to desiccation.
Eddy Mediated Nutrient Pattern in the North Eastern Arabian Sea
NASA Astrophysics Data System (ADS)
Thachaparambil, M.; Moolakkal Antony, R.; B R, S.; V N, S.; N, C.; M, S.
2016-02-01
A Cold Core Eddy (CCE) mediated nutrient pattern in the North Eastern Arabian Sea (NEAS) is explained based on in situ measurments during March 2013 onboard FORV Sagar Sampada which was not reported earlier in the area. Samples for physical, chemical and biological parameters were collected in 5 stations along the diameter of the eddy and following standard protocols. The core of the CCE is identified at 21°20.38'N; 66°30.68'E with a diameter of 120Km. Earlier studies explaining the process and the forcing mechanism of the particular eddy records that, the eddy is short term (1-3 months) and is regular during the season. Surface waters were well oxygenated (>4.8 ml L-1) in the core. Surface value of nutrients viz., Nitrate, Nitrite, Silicate and phosphate in the core regions was 0.9µM, 0.01 µM, 0.5 µM and 0.7 µM respectively indicating upwelling in the core. Spring intermonsoon (SIM) is generally termed as a transition period between the active winter and summer seasons and as per earlier studies, high biological production and the regularly occurring Noctilica bloom is supported by the nutrient loading due to convective mixing during winter as well as regenerated production. However, present observations shows that, nutrient pumping due to the upwelling associated with the CCE also contributes for sustaining high biological production and are evident in the Chl a and mesozooplankton biovolume which records values of 4.35mg/m3 and 1.09ml/m3 respectively in the core. An intense Noctiluca blooms observed in the western flank of the eddy (Chl a 13.25 mg/m3; cell density 5.8×106 cells/litre), where Nitrate concentration records 1.04µM explains the role of such mesoscale processes in the sustenance of the HAB events. While eastern flank of the CCE showed typical open ocean condition of the season showing Nitrate 0.08µM; Chl a 0.23mg/m3; and phytoplankton cell density as 421 cells/litre. Keywords: Cold core eddy, nutrients, NEAS, SIM, biological production
Modulation in light utilization by a microalga Asteracys sp. under mixotrophic growth regimes.
Agarwal, Akanksha; Patil, Smita; Gharat, Krushna; Pandit, Reena A; Lali, Arvind M
2018-06-02
This study is the first to explore the influence of incident light intensity on the photosynthetic responses under mixotrophic growth of microalga Asteracys sp. When grown mixotrophically, there was an enhanced regulation of non-photochemical quenching (NPQ) of the excited state of chlorophyll (Chl) a within the cells in response to white cool fluorescent high light (HL; 600 µmol photons m -2 s -1 ). Simultaneous measurement of reactive oxygen species (ROS) production as malondialdehyde (MDA) and ascorbate peroxidase (APX), an ROS scavenger, showed improved management of stress within mixotrophic cells under HL. Despite the observed decrease in quantum yield of photosynthesis measured through the Chl a fluorescence transient, no reduction in biomass accumulation was observed under HL for mixotrophy. However, biomass loss owing to photoinhibition was observed in cells grown phototrophically under the same irradiance. The measurements of dark recovery of NPQ suggested that "state transitions" may be partly responsible for regulating overall photosynthesis in Asteracys sp. The partitioning of photochemical and non-photochemical processes to sustain HL stress was analysed. Collectively, this study proposes that mixotrophy using glucose leads to a change in the photosynthetic abilities of Asteracys sp. while enhancing the adaptability of the alga to high irradiances.
NASA Astrophysics Data System (ADS)
Morel, A.; Claustre, H.; Gentili, B.
2010-10-01
The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998-2007) of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA). Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m-3, whereas the ay(443) average (the absorption coefficient due to CDOM at 443 nm) is between 0.0033 and 0.0072 m-1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands), a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum). Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical transport of unbleached CDOM from the subthermocline layers is the main process enhancing the CDOM concentration within the upper layer in winter. In summer, the CDOM experiences its minimum which is delayed with respect to the [Chl] minimum; apparently, the solar photo-bleaching of CDOM is a slower process than the post-bloom algal Chl decay. Where they exist, the seasonal cycles are repeated without notable change from year to year. Long term (10 y) trends have not been detected in these zones. These oligotrophic gyres can conveniently be used for in-flight calibration and comparison of ocean color sensors, provided that their marked seasonal variations are accounted for.
NASA Astrophysics Data System (ADS)
Morel, A.; Claustre, H.; Gentili, B.
2010-07-01
The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998-2007) of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA). Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m-3, whereas the ay(443) average (the absorption coefficient due to CDOM at 443 nm) is comprised between 0.0033 and 0.0072 m-1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands), a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum). Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical transport of unbleached CDOM from the subthermocline layers is the main process enhancing the CDOM concentration within the upper layer in winter. In summer, the CDOM experiences its minimum which is delayed with respect to the [Chl] minimum; apparently, the solar photo-bleaching of CDOM is a slower process than the post-bloom algal Chl decay. Where they exist, the seasonal cycles are repeated without notable change from year to year; long term (10 years) trends have not been detected in these zones. These oligotrophic gyres can conveniently be used for in-flight calibration and comparison of ocean color sensors, provided that their marked seasonal variations are accounted for.
NASA Astrophysics Data System (ADS)
Persson, Daniel; Volpato, Roberto
2018-04-01
We define a very general class of CHL-models associated with any string theory S (bosonic or supersymmetric) compactified on an internal CFT C× Td . We take the orbifold by a pair (g, δ) , where g is a (possibly non-geometric) symmetry of C and δ is a translation along T n . We analyze the T-dualities of these models and show that in general they contain Atkin–Lehner type symmetries. This generalizes our previous work on N=4 CHL-models based on heterotic string theory on T 6 or type II on K3× T2 , as well as the ‘monstrous’ CHL-models based on a compactification of heterotic string theory on the Frenkel–Lepowsky–Meurman CFT V\
NASA Astrophysics Data System (ADS)
Guajardo, R.; Paerl, H. W.; Hall, N.; Whipple, A.; Luettich, R.
2007-12-01
In North Carolina's Neuse River Estuary (NRE)-Pamlico Sound (PS) System, nitrogen (N)-driven eutrophication, water quality and habitat decline have prompted the State and US EPA to mandate watershed-based N load reductions, including a total maximum daily allowable N load (TMDL). Chlorophyll a (chl-a), the indicator of algal biomass, is the measure for the efficacy of N reductions, with "acceptable" values being <40 μg chl- a L-1. However, algal blooms are patchy in time and space, making exceedances of 40 μ g L-1 difficult to track. The North Carolina ferry-based water quality monitoring program, FerryMon (www.ferrymon.org) addresses this and other environmental monitoring needs in the NRE-PS. FerryMon uses NC DOT ferries to provide continuous, space-time intensive, accurate measurements of chl-a and other key water quality criteria, using sensors placed in a flow-through system and discrete sampling of nutrients, organics, diagnostic photopigment and molecular indicators of major algal groups in a near real-time manner. Complementing FerryMon are automated vertical profilers (AVPs), which produce chl-a and other water quality indicator depth profiles with very high time and vertical resolution. In-line spectral fluorometers (Algae Online Analyzers (AOAs)) will be installed starting in late 2007, providing rapid early warning detection and quantification of algal blooms. FerryMon permits spatial characterization of trends in water quality conditions over a range of relevant physical, chemical and biological time scales. This enhanced capability is timely, given a protracted period of increased tropical storm and hurricane activity that, in combination with anthropogenic nutrient enrichment, affects water quality in unpredictable, yet significant ways. FerryMon also serves as a data source for calibrating and verifying remotely sensed indicators of water quality (photopigments, turbidity), nutrient-productivity and hydrologic modeling. Data management and communication links allow FerryMon to integrate with complementary watershed, estuarine and coastal observational programs . FerryMon's technology is readily transferable to other estuarine, large lake and coastal ecosystems served by ferries and other "ships of opportunity".
Insights into colour-tuning of chlorophyll optical response in green plants.
Jornet-Somoza, Joaquim; Alberdi-Rodriguez, Joseba; Milne, Bruce F; Andrade, Xavier; Marques, Miguel A L; Nogueira, Fernando; Oliveira, Micael J T; Stewart, James J P; Rubio, Angel
2015-10-28
First-principles calculations within the framework of real-space time-dependent density functional theory have been performed for the complete chlorophyll (Chl) network of the light-harvesting complex from green plants, LHC-II. A local-dipole analysis method developed for this work has made possible the studies of the optical response of individual Chl molecules subjected to the influence of the remainder of the chromophore network. The spectra calculated using our real-space TDDFT method agree with previous suggestions that weak interaction with the protein microenvironment should produce only minor changes in the absorption spectrum of Chl chromophores in LHC-II. In addition, relative shifting of Chl absorption energies leads the stromal and lumenal sides of LHC-II to absorb in slightly different parts of the visible spectrum providing greater coverage of the available light frequencies. The site-specific alterations in Chl excitation energies support the existence of intrinsic energy transfer pathways within the LHC-II complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas
2015-06-07
Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{submore » y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.« less
Insights into colour-tuning of chlorophyll optical response in green plants
Jornet-Somoza, Joaquim; Alberdi-Rodriguez, Joseba; Milne, Bruce F.; ...
2015-07-17
Here, we performed first-principles calculations within the framework of real-space time-dependent density functional theory for the complete chlorophyll (Chl) network of the light-harvesting complex from green plants, LHC-II. A local-dipole analysis method developed for this work has made possible the studies of the optical response of individual Chl molecules subjected to the influence of the remainder of the chromophore network. The spectra calculated using our real-space TDDFT method agree with previous suggestions that weak interaction with the protein microenvironment should produce only minor changes in the absorption spectrum of Chl chromophores in LHC-II. In addition, relative shifting of Chl absorptionmore » energies leads the stromal and lumenal sides of LHC-II to absorb in slightly different parts of the visible spectrum providing greater coverage of the available light frequencies. The site-specific alterations in Chl excitation energies support the existence of intrinsic energy transfer pathways within the LHC-II complex.« less
Georlette, O; Gordon, J M
1994-07-01
Generalized nonimaging compound elliptical luminaires (CEL's) and compound hyperbolic luminaires (CHL's) are developed for pair-overlap illumination applications. A comprehensive analysis of CEL's and CHL's is presented. This includes the possibility of reflector truncation, as well as the extreme direction that spans the full range from positive to negative. Negative extreme direction devices have been overlooked in earlier studies and are shown to be well suited to illumination problems for which large cutoff angles are required. Flux maps can be calculated analytically without the need for computer ray tracing. It is demonstrated that, for a broad range of cutoff angles, adjacent pairs of CEL's and CHL's can generate highly uniform far-field illuminance while maintaining maximal lighting efficiency and excellent glare control. The trade-off between luminaire compactness and flux homogeneity is also illustrated. For V troughs, being a special case of CHL's and being well suited to simple, inexpensive fabri ation, we identify geometries that closely approach the performance characteristics of the optimized CEL's and CHL's.
Yang, Yaolong; Xu, Jie; Huang, Lichao; Leng, Yujia; Dai, Liping; Rao, Yuchun; Chen, Long; Wang, Yuqiong; Tu, Zhengjun; Hu, Jiang; Ren, Deyong; Zhang, Guangheng; Zhu, Li; Guo, Longbiao; Qian, Qian; Zeng, Dali
2016-03-01
Chlorophyll (Chl) b is a ubiquitous accessory pigment in land plants, green algae, and prochlorophytes. This pigment is synthesized from Chl a by chlorophyllide a oxygenase and plays a key role in adaptation to various environments. This study characterizes a rice mutant, pale green leaf (pgl), and isolates the gene PGL by using a map-based cloning approach. PGL, encoding chlorophyllide a oxygenase 1, is mainly expressed in the chlorenchyma and activated in the light-dependent Chl synthesis process. Compared with wild-type plants, pgl exhibits a lower Chl content with a reduced and disorderly thylakoid ultrastructure, which decreases the photosynthesis rate and results in reduced grain yield and quality. In addition, pgl exhibits premature senescence in both natural and dark-induced conditions and more severe Chl degradation and reactive oxygen species accumulation than does the wild-type. Moreover, pgl is sensitive to heat stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Effect of ENSO on the variability of SST and Chlorophyll-a in Java Sea
NASA Astrophysics Data System (ADS)
Wirasatriya, Anindya; Prasetyawan, Indra B.; Triyono, Chandra D.; Muslim; Maslukah, Lilik
2018-02-01
Sea surface temperature (SST) and chlorophyll-a (Chl-a) are two parameters often used for identifying the marine productivity. Located at the maritime continent, the variability of SST and Chl-a in the Indonesian seas is influenced by El Niño Southern Oscillation (ENSO). The previous studies showed that the effect of El Niño tend to decrease SST and increase Chl-a in the areas within the Indonesian seas. Using long time observation of satellite data (2003-2016), it was found different result in Java Sea. Since Java Sea has strong seasonal variability influenced by monsoon wind, the effect of ENSO depend on the season. During southeast monsoon season, El Niño (La Niña) tend to increase (decrease) the speed of southeasterly wind cause the decrease or increase of SST. On the contrary, during northwest monsoon season, El Niño (La Niña) tend to decrease (increase) the speed of northwesterly wind cause the increase (decrease) of SST. The dependence of Chl-a on wind speed is only observed in the off shore which exhibit the strong seasonal variation. However, the effect of ENSO on the variability of Chl-a is not robust since the effected amplitude is less than the RMSE of Chl-a data.
Gao, Yang; Xiong, Wei; He, Ming J; Tang, Li; Xiang, Jin Y; Wu, Qing Y
2009-01-01
Both light-dependent and light-independent (dark) protochlorophyllide (Pchlide) reductase account for catalyzing the reduction of Pchlide to chlorophyllide during the biosynthesis of Mg-tetrapyrrole pigments in cyanobacteria. To gain more insight into the interaction between the wavelength of the light and these two chlorophyll synthetic pathways in Synechocystis sp. PCC 6803, the spectral effectiveness of the formation of chlorophyll a was investigated during the regreening process in chlL(-) and chlN(-) mutants, which could not synthesize chlorophyll during growth in the dark. The action spectra showed obvious maxima around 450 nm and 650 nm, similar to those of higher plants except that the intensities of two peaks are reversed. The mRNA levels of chlL and chlN and chlorophyll a content under different wavelengths of light in the wild-type strain were also measured. The RT-PCR analysis revealed that the transcripts of chlL and chlN were up-regulated in red light but simultaneously down-regulated in green light which resulted in corresponding changes of the chlorophyll content. This fact indicates that the regulation of dark-operative protochlorophyllide oxidoreductase (DPOR) in the transcriptional level is essential for cyanobacteria to synthesize appropriate chlorophyll for acclimating in various light colour environments.
Magnesium K-Edge NEXAFS Spectroscopy of Chlorophyll a in Solution.
Witte, Katharina; Streeck, Cornelia; Mantouvalou, Ioanna; Suchkova, Svetlana A; Lokstein, Heiko; Grötzsch, Daniel; Martyanov, Wjatscheslav; Weser, Jan; Kanngießer, Birgit; Beckhoff, Burkhard; Stiel, Holger
2016-11-17
The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10 -2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.
NASA Astrophysics Data System (ADS)
Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.
2018-03-01
We estimated monthly air-sea CO2 fluxes in the Arctic Ocean and its adjacent seas north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), sea surface temperature, sea surface salinity, sea ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM process enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.
Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R.
2017-01-01
Abstract Canopy photosynthesis (Ac) describes photosynthesis of an entire crop field and the daily and seasonal integrals of Ac positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater Ac and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in Ac and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both Ac and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in Ac, biomass production, and crop yields. PMID:28755407
Commercial host (dram shop) liability: current status and trends.
Mosher, James F; Cohen, Elena N; Jernigan, David H
2013-09-01
Commercial host liability (CHL, also called dram shop liability) holds alcohol retailers liable for alcohol-attributable harm caused by serving alcohol, illegally, to a patron who is already intoxicated (adult liability) or underage (underage liability). The Community Preventive Services Task Force, based on a systematic research literature review, concluded that CHL is an effective strategy for reducing excessive alcohol consumption. The current article describes the key components of CHL, its grounding in American jurisprudence, its adoption in the 50 states, and changes since 1989, when a similar assessment of these policies was conducted. The current paper focuses on three legislatively enacted restrictions: (1) increased evidentiary requirements; (2) limitations on damage awards; and (3) limitations on who may be sued. Data were collected in 2011 and analyzed in 2012 and 2013. There has been substantial erosion of CHL during the past 2 decades. Fewer states recognized CHL in 2011 than in 1989, and more statutory restrictions were imposed during the study period among states that did recognize CHL; states are more likely to recognize underage than adult liability; and six states recognized a Responsible Beverage Services Practices affirmative defense in both 1989 and 2011. Implications of these findings for public health practitioners are discussed. Copyright © 2013 American Journal of Preventive Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Yuwei; Cheng, Chunping; Wang, Jun; Jin, Xudong; Liu, Bin; Wang, Zhiqiu; Gao, Jingqun; Kang, Pingli
2011-09-01
In order to examine the mechanism and process of sonodynamic reaction, the chlorophyllin magnesium (Chl-Mg) acting as a sonosensitizer was irradiated by ultrasound, and the generation of reactive oxygen species (ROS) were detected by the method of oxidation-extraction spectrometry (OES). That is, under ultrasonic irradiation in the presence of Chl-Mg, the 1,5-diphenyl carbazide (DPCI) is oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed organic solvent and display a obvious visible absorption at 563 nm wavelength. Besides, the generation conditions of ROS were also reviewed. The results demonstrated that the quantities of generated ROS increased with the increase of ultrasonic irradiation time, Chl-Mg concentration and DPCI concentration. Finally, several radical scavengers (l-Histidine (His), 2,6-Di-tert-butyl-methylphenol (BHT) and Vitamin C (VC)) were used to determine the kind of the generated ROS. It was found that at least the hydroxyl radical (OH) and singlet oxygen ( 1O 2) were generated in the presence of Chl-Mg under ultrasonic irradiation. It is wish that this paper might offer some valuable references for the study on the mechanism of SDT and the application of Chl-Mg in tumor treatment.
Developmental hearing loss impedes auditory task learning and performance in gerbils
von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N.; Sanes, Dan H.
2016-01-01
The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. PMID:27746215
A new method to generate a high-resolution global distribution map of lake chlorophyll
Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.
2015-01-01
A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.
Brentrup, Jennifer A.; Williamson, Craig E.; Colom-Montero, William; Eckert, Werner; de Eyto, Elvira; Grossart, Hans-Peter; Huot, Yannick; Isles, Peter D. F.; Knoll, Lesley B.; Leach, Taylor H.; McBride, Christopher G.; Pierson, Don; Pomati, Francesco; Read, Jordan S.; Rose, Kevin C.; Samal, Nihar R.; Staehr, Peter A.; Winslow, Luke A.
2016-01-01
The use of high-frequency sensors on profiling buoys to investigate physical, chemical, and biological processes in lakes is increasing rapidly. Profiling buoys with automated winches and sensors that collect high-frequency chlorophyll fluorescence (ChlF) profiles in 11 lakes in the Global Lake Ecological Observatory Network (GLEON) allowed the study of the vertical and temporal distribution of ChlF, including the formation of subsurface chlorophyll maxima (SSCM). The effectiveness of 3 methods for sampling phytoplankton distributions in lakes, including (1) manual profiles, (2) single-depth buoys, and (3) profiling buoys were assessed. High-frequency ChlF surface data and profiles were compared to predictions from the Plankton Ecology Group (PEG) model. The depth-integrated ChlF dynamics measured by the profiling buoy data revealed a greater complexity that neither conventional sampling nor the generalized PEG model captured. Conventional sampling techniques would have missed SSCM in 7 of 11 study lakes. Although surface-only ChlF data underestimated average water column ChlF, at times by nearly 2-fold in 4 of the lakes, overall there was a remarkable similarity between surface and mean water column data. Contrary to the PEG model’s proposed negligible role for physical control of phytoplankton during the growing season, thermal structure and light availability were closely associated with ChlF seasonal depth distribution. Thus, an extension of the PEG model is proposed, with a new conceptual framework that explicitly includes physical metrics to better predict SSCM formation in lakes and highlight when profiling buoys are especially informative.
Woelmer, Whitney; Kao, Yu-Chun; Bunnell, David B.; Deines, Andrew M.; Bennion, David; Rogers, Mark W.; Brooks, Colin N.; Sayers, Michael J.; Banach, David M.; Grimm, Amanda G.; Shuchman, Robert A.
2016-01-01
Prediction of primary production of lentic water bodies (i.e., lakes and reservoirs) is valuable to researchers and resource managers alike, but is very rarely done at the global scale. With the development of remote sensing technologies, it is now feasible to gather large amounts of data across the world, including understudied and remote regions. To determine which factors were most important in explaining the variation of chlorophyll a (Chl-a), an indicator of primary production in water bodies, at global and regional scales, we first developed a geospatial database of 227 water bodies and watersheds with corresponding Chl-a, nutrient, hydrogeomorphic, and climate data. Then we used a generalized additive modeling approach and developed model selection criteria to select models that most parsimoniously related Chl-a to predictor variables for all 227 water bodies and for 51 lakes in the Laurentian Great Lakes region in the data set. Our best global model contained two hydrogeomorphic variables (water body surface area and the ratio of watershed to water body surface area) and a climate variable (average temperature in the warmest model selection criteria to select models that most parsimoniously related Chl-a to predictor variables quarter) and explained ~ 30% of variation in Chl-a. Our regional model contained one hydrogeomorphic variable (flow accumulation) and the same climate variable, but explained substantially more variation (58%). Our results indicate that a regional approach to watershed modeling may be more informative to predicting Chl-a, and that nearly a third of global variability in Chl-a may be explained using hydrogeomorphic and climate variables.
Effect of conductive hearing loss on central auditory function.
Bayat, Arash; Farhadi, Mohammad; Emamdjomeh, Hesam; Saki, Nader; Mirmomeni, Golshan; Rahim, Fakher
It has been demonstrated that long-term Conductive Hearing Loss (CHL) may influence the precise detection of the temporal features of acoustic signals or Auditory Temporal Processing (ATP). It can be argued that ATP may be the underlying component of many central auditory processing capabilities such as speech comprehension or sound localization. Little is known about the consequences of CHL on temporal aspects of central auditory processing. This study was designed to assess auditory temporal processing ability in individuals with chronic CHL. During this analytical cross-sectional study, 52 patients with mild to moderate chronic CHL and 52 normal-hearing listeners (control), aged between 18 and 45 year-old, were recruited. In order to evaluate auditory temporal processing, the Gaps-in-Noise (GIN) test was used. The results obtained for each ear were analyzed based on the gap perception threshold and the percentage of correct responses. The average of GIN thresholds was significantly smaller for the control group than for the CHL group for both ears (right: p=0.004; left: p<0.001). Individuals with CHL had significantly lower correct responses than individuals with normal hearing for both sides (p<0.001). No correlation was found between GIN performance and degree of hearing loss in either group (p>0.05). The results suggest reduced auditory temporal processing ability in adults with CHL compared to normal hearing subjects. Therefore, developing a clinical protocol to evaluate auditory temporal processing in this population is recommended. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.
Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash
2015-04-01
In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.
2013-01-01
Background High risk, unfavorable classical Hodgkin lymphoma (cHL) includes those patients with primary refractory or early relapse, and progressive disease. To improve the availability of biomarkers for this group of patients, we investigated both tumor biopsies and peripheral blood leukocytes (PBL) of untreated (chemo-naïve, CN) Nodular Sclerosis Classic Hodgkin Lymphoma (NS-cHL) patients for consistent biomarkers that can predict the outcome prior to frontline treatment. Methods and materials Bioinformatics data mining was used to generate 151 candidate biomarkers, which were screened against a library of 10 HL cell lines. Expression of FGF2 and SDC1 by CD30+ cells from HL patient samples representing good and poor outcomes were analyzed by qRT-PCR, immunohistochemical (IHC), and immunofluorescence analyses. Results To identify predictive HL-specific biomarkers, potential marker genes selected using bioinformatics approaches were screened against HL cell lines and HL patient samples. Fibroblast Growth Factor-2 (FGF2) and Syndecan-1 (SDC1) were overexpressed in all HL cell lines, and the overexpression was HL-specific when compared to 116 non-Hodgkin lymphoma tissues. In the analysis of stratified NS-cHL patient samples, expression of FGF2 and SDC1 were 245 fold and 91 fold higher, respectively, in the poor outcome (PO) group than in the good outcome (GO) group. The PO group exhibited higher expression of the HL marker CD30, the macrophage marker CD68, and metastatic markers TGFβ1 and MMP9 compared to the GO group. This expression signature was confirmed by qualitative immunohistochemical and immunofluorescent data. A Kaplan-Meier analysis indicated that samples in which the CD30+ cells carried an FGF2+/SDC1+ immunophenotype showed shortened survival. Analysis of chemo-naive HL blood samples suggested that in the PO group a subset of CD30+ HL cells had entered the circulation. These cells significantly overexpressed FGF2 and SDC1 compared to the GO group. The PO group showed significant down-regulation of markers for monocytes, T-cells, and B-cells. These expression signatures were eliminated in heavily pretreated patients. Conclusion The results suggest that small subsets of circulating CD30+/CD15+ cells expressing FGF2 and SDC1 represent biomarkers that identify NS-cHL patients who will experience a poor outcome (primary refractory and early relapsing). PMID:23988031
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2015-01-01
A challenge for the theory of optical spectra of pigment-protein complexes is the equal strength of the pigment-pigment and the pigment-protein couplings. Treating both on an equal footing so far can only be managed by numerically costly approaches. Here, we exploit recent results on a normal mode analysis derived spectral density that revealed the dominance of the diagonal matrix elements of the exciton-vibrational coupling in the exciton state representation. We use a cumulant expansion technique that treats the diagonal parts exactly, includes an infinite summation of the off-diagonal parts in secular and Markov approximations, and provides a systematic perturbative way to include non-secular and non-Markov corrections. The theory is applied to a model dimer and to chlorophyll (Chl) a and Chl b homodimers of the reconstituted water-soluble chlorophyll-binding protein (WSCP) from cauliflower. The model calculations reveal that the non-secular/non-Markov effects redistribute oscillator strength from the strong to the weak exciton transition in absorbance and they diminish the rotational strength of the exciton transitions in circular dichroism. The magnitude of these corrections is in a few percent range of the overall signal, providing a quantitative explanation of the success of time-local convolution-less density matrix theory applied earlier. A close examination of the optical spectra of Chl a and Chl b homodimers in WSCP suggests that the opening angle between Qy transition dipole moments in Chl b homodimers is larger by about 9∘ than for Chl a homodimers for which a crystal structure of a related WSCP complex exists. It remains to be investigated whether this change is due to a different mutual geometry of the pigments or due to the different electronic structures of Chl a and Chl b.
Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India
NASA Astrophysics Data System (ADS)
Harithsa, Shashank; Raghukumar, Chandralata; Dalal, S. G.
2005-11-01
Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/ c, phaeopigments and MI contributed to the variance between health conditions.
Lange, Benjamin A; Michel, Christine; Beckers, Justin F; Casey, J Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian
2015-01-01
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.
Accumulation of soluble sugars in peel at high temperature leads to stay-green ripe banana fruit.
Yang, Xiaotang; Pang, Xuequn; Xu, Lanying; Fang, Ruiqiu; Huang, Xuemei; Guan, Peijian; Lu, Wangjin; Zhang, Zhaoqi
2009-01-01
Bananas (Musa acuminata, AAA group) fail to develop a yellow peel and stay green when ripening at temperatures >24 degrees C. The identification of the mechanisms leading to the development of stay-green ripe bananas has practical value and is helpful in revealing pathways involved in the regulation of chlorophyll (Chl) degradation. In the present study, the Chl degradation pathway was characterized and the progress of ripening and senescence was assessed in banana peel at 30 degrees C versus 20 degrees C, by monitoring relevant gene expression and ripening and senescence parameters. A marked reduction in the expression levels of the genes for Chl b reductase, SGR (Stay-green protein), and pheophorbide a oxygenase was detected for the fruit ripening at 30 degrees C, when compared with fruit at 20 degrees C, indicating that Chl degradation was repressed at 30 degrees C at various steps along the Chl catabolic pathway. The repressed Chl degradation was not due to delayed ripening and senescence, since the fruit at 30 degrees C displayed faster onset of various ripening and senescence symptoms, suggesting that the stay-green ripe bananas are of similar phenotype to type C stay-green mutants. Faster accumulation of high levels of fructose and glucose in the peel at 30 degrees C prompted investigation of the roles of soluble sugars in Chl degradation. In vitro incubation of detached pieces of banana peel showed that the pieces of peel stayed green when incubated with 150 mM glucose or fructose, but turned completely yellow in the absence of sugars or with 150 mM mannitol, at either 20 degrees C or 30 degrees C. The results suggest that accumulation of sugars in the peel induced by a temperature of 30 degrees C may be a major factor regulating Chl degradation independently of fruit senescence.
Lange, Benjamin A.; Michel, Christine; Beckers, Justin F.; Casey, J. Alec; Flores, Hauke; Hatam, Ido; Meisterhans, Guillaume; Niemi, Andrea; Haas, Christian
2015-01-01
With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice–associated production than generally assumed. PMID:25901605
NASA Astrophysics Data System (ADS)
Millie, David F.; Weckman, Gary R.; Young, William A.; Ivey, James E.; Fries, David P.; Ardjmand, Ehsan; Fahnenstiel, Gary L.
2013-07-01
Coastal monitoring has become reliant upon automated sensors for data acquisition. Such a technical commitment comes with a cost; particularly, the generation of large, high-dimensional data streams ('Big Data') that personnel must search through to identify data structures. Nature-inspired computation, inclusive of artificial neural networks (ANNs), affords the unearthing of complex, recurring patterns within sizable data volumes. In 2009, select meteorological and hydrological data were acquired via autonomous instruments in Sarasota Bay, Florida (USA). ANNs estimated continuous chlorophyll (CHL) a concentrations from abiotic predictors, with correlations between measured:modeled concentrations >0.90 and model efficiencies ranging from 0.80 to 0.90. Salinity and water temperature were the principal influences for modeled CHL within the Bay; concentrations steadily increased at temperatures >28° C and were greatest at salinities <36 (maximizing at ca. 35.3). Categorical ANNs modeled CHL classes of 6.1 and 11 μg CHL L-1 (representative of local and state-imposed constraint thresholds, respectively), with an accuracy of ca. 83% and class precision ranging from 0.79 to 0.91. The occurrence likelihood of concentrations > 6.1 μg CHL L-1 maximized at a salinity of ca. 36.3 and a temperature of ca. 29.5 °C. A 10th-order Chebyshev bivariate polynomial equation was fit (adj. r2 = 0.99, p < 0.001) to a three-dimensional response surface portraying modeled CHL concentrations, conditional to the temperature-salinity interaction. The TREPAN algorithm queried a continuous ANN to extract a decision tree for delineation of CHL classes; turbidity, temperature, and salinity (and to lesser degrees, wind speed, wind/current direction, irradiance, and urea-nitrogen) were key variables for quantitative rules in tree formalisms. Taken together, computations enabled knowledge provision for and quantifiable representations of the non-linear relationships between environmental variables and CHL a.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajusz, S.; Janaky, T.; Csernus, V.J.
The nitrogen mustard derivatives of 4-phenylbutyric acid and L-phenylalanine, called chlorambucil (Chl) and melphalan (Mel), respectively, have been incorporated into several peptide hormones, including luteinizing hormone-releasing hormone (LH-RH). The alkylating analogues of LH-RH were prepared by linking Chl, as an N-acyl moiety, to the complete amino acid sequence of agonistic and antagonistic analogues. These compounds, in particular the antagonistic analogues, showed much lower potency than their congeners carrying other acyl groups. To obtain highly potent alkylating analogues of LH-RH, the D enantiomer of Mel was incorporated into position 6 of the native hormone and some of its antagonistic analogues. Ofmore » the peptides prepared, (D-Mel{sup 6})LH-RH (SB-05) and (Ac-D-Nal(2){sup 1},D-Phe(pCl){sup 2},D-Pal(3){sup 3},Arg{sup 5},D-Mel{sup 6},D-Ala{sup 10})LH-RH (SB-86, where Nal(2) is 3-(2-naphthyl)alanine and Pal(3) is 3-(3-pyridyl)alanine) possessed the expected high agonistic and antagonistic activities, respectively, and also showed high affinities for the membrane receptors of rat pituitary cells, human breast cancer cells, human prostate cancer cells, and rat Dunning R-3327 prostate tumor cells. These two analogues exerted cytotoxic effects on human and rat mammary cancer cells in vitro. Thus these two D-Mel{sup 6} analogues seem to be particularly suitable for the study of how alkylating analogues of LH-RH could interfere with intracellular events in certain cancer cells.« less
Zhang, Fei; Zhang, Pan; Zhang, Yu; Wang, Shouchuang; Qu, Lianghuan; Liu, Xianqing; Luo, Jie
2016-09-01
Chlorophyll plays remarkable and critical roles in photosynthetic light-harvesting, energy transduction and plant development. In this study, we identified a rice Chl-deficient mutant, ygdl-1 (yellow green and droopy leaf-1), which showed yellow-green leaves throughout plant development with decreased content of Chls and carotene and an increased Chl a/b ratio. The ygdl-1 mutant also exhibited severe defects in chloroplast development, including disorganized grana stacks. Sequence analysis revealed that the mutant contained a T-DNA insertion within the promoter of a fructose-1,6-bisphosphate aldolase (OsAld-Y), which dramatically reduced the OsAld-Y mRNA level, and its identity was verified by transgenic complementation. Real-time PCR analysis showed that the expression levels of genes associated with chlorophyll biosynthesis and chloroplast development were concurrently altered in the ygdl-1 mutant. The expression of OsAld-Y-GFP fusion protein in tobacco epidermal cells showed that OsAld-Y was localized to the peroxisome. In addition, the analysis of primary carbon metabolites revealed the significantly reduced levels of sucrose and fructose in the mutant leaves, while the glucose content was similar to wild-type plants. Our results suggest that the OsAld-Y participates in Chl accumulation, chloroplast development and plant growth by influencing the photosynthetic rate of leaves and the sugar metabolism of rice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji
2011-06-01
Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms.
Tada, Yuya; Taniguchi, Akito; Nagao, Ippei; Miki, Takeshi; Uematsu, Mitsuo; Tsuda, Atsushi; Hamasaki, Koji
2011-01-01
Growth and productivity of phytoplankton substantially change organic matter characteristics, which affect bacterial abundance, productivity, and community structure in aquatic ecosystems. We analyzed bacterial community structures and measured activities inside and outside phytoplankton blooms in the western North Pacific Ocean by using bromodeoxyuridine immunocytochemistry and fluorescence in situ hybridization (BIC-FISH). Roseobacter/Rhodobacter, SAR11, Betaproteobacteria, Alteromonas, SAR86, and Bacteroidetes responded differently to changes in organic matter supply. Roseobacter/Rhodobacter bacteria remained widespread, active, and proliferating despite large fluctuations in organic matter and chlorophyll a (Chl-a) concentrations. The relative contribution of Bacteroidetes to total bacterial production was consistently high. Furthermore, we documented the unexpectedly large contribution of Alteromonas to total bacterial production in the bloom. Bacterial abundance, productivity, and growth potential (the proportion of growing cells in a population) were significantly correlated with Chl-a and particulate organic carbon concentrations. Canonical correspondence analysis showed that organic matter supply was critical for determining bacterial community structures. The growth potential of each bacterial group as a function of Chl-a concentration showed a bell-shaped distribution, indicating an optimal organic matter concentration to promote growth. The growth of Alteromonas and Betaproteobacteria was especially strongly correlated with organic matter supply. These data elucidate the distinctive ecological role of major bacterial taxa in organic matter cycling during open ocean phytoplankton blooms. PMID:21515719
NASA Astrophysics Data System (ADS)
Middleton, Elizabeth M.; Corp, Lawrence A.; Daughtry, Craig S.; Entcheva Campbell, Petya K.; Butcher, L. Maryn
2005-11-01
Fluorescence of foliage in the laboratory has proven more rigorous than reflectance for correlation to plant physiology. Especially useful are emissions produced from two stable red and far-red chlorophyll fluorescence (ChlF) peaks centered at 685 nm and 735 nm. Methods have been developed elsewhere to extract steady state solar induced fluorescence (SIF) from apparent reflectance of vegetation canopies/landscapes using the Fraunhofer Line Depth (FLD) principal. Our study utilized these methods in conjunction with field-acquired high spectral resolution canopy reflectance spectra obtained in 2004 and 2005 over corn crops and small tree plots of three deciduous species (red maple, tulip poplar, sweet gum). Leaf level measurements were also made of foliage which included ChlF, photosynthesis, and leaf constituents (photosynthetic pigment, carbon (C), and nitrogen (N) contents). As part of ongoing experiments, measurements were made on N application plots within corn (280, 140, 70, and 0 kg N/ha) and tree (0, 37.5, 75, 112.5, 150 kg N /ha) sites at the USDA/Agriculture Research Service in Beltsville, MD. SIF intensities for ChlF were derived directly from canopy reflectance spectra in specific narrow- band regions associated with atmospheric oxygen absorption features centered at 688 and 760 nm. The red/far-red SIF ratio (SIFratio) derived from these field reflectance spectra successfully discriminated foliar pigment ratios altered by N application rates in both corn crops. This ratio was also positively correlated to the C/N ratio at leaf and canopy levels, for the available corn data (e.g., 2004). No consistent N treatment or species differences in SIF were detected in the tree foliage, but additional 2005 data are forthcoming. This study has relevance to future passive satellite remote sensing approaches to monitoring C dynamics from space.
Foot length--a new and potentially useful measurement in the neonate.
James, D K; Dryburgh, E H; Chiswick, M L
1979-03-01
The foot length, occipito-frontal head circumference (OFC), crown-rump, and crown-heel length (CHL) of 123 neonates of gestational ages 26-42 weeks, were measured between 12 hours and 5 days. A gauge, designed and constructed at St Mary's Hospital, Manchester, was used to measure foot length. In term babies (37-42 weeks) who were of weights appropriate for gestational age (AGA) the scatter about the mean of foot length measurements was small (coefficient of variation = 4.5%) compared with birthweight (coefficient of variation = 12.0%). The wide range of foot length measurements in babies of different gestational ages prevented maturity being accurately estimated. The mean birthweight of term light-for-dates (LFD) babies was 30.9% lower than term AGA babies, whereas the mean foot length, OFC, and body length of LFD babies was reduced by only 4.2-8.8%. There was a positive linear correlation between foot length and other indices of body size in LFD and AGA babies of all gestational ages. However, in premature babies (less than 37 weeks) the correlation between foot length and birthweight (r = 0.95) and foot length and CHL (r = 0.96) was pronounced. The 95% confidence limits of the regression lines were +/- 327 g and +/- 2.3 cm respectively. Birthweight and CHL of premature babies can therefore be estimated from a measurement of foot length that is performed simply and rapidly. Measurements of foot length are valuable in premature babies who are too ill at birth for conventional anthropometric measurements to be made, and in whom such measurements cannot be carried out subsequently because of the encumbrance of the incubator and intensive care apparatus. Drug dosages and intravenous fluid requirements based on body weight or surface area can be indirectly calculated from a measurement of foot length.
[Growth effect of exogenous nitric oxide on Platymonas subcordiformis and spectrum study].
Liu, Chun-ying; Zhang, Zheng-bin; Li, Pei-feng; Huang, Hua-wei
2006-06-01
Experiments on the effects of nitric oxide (NO) on the growth of marine green algae Platymonas subcordiformis were conducted, under the condition of different NO concentrations and illumination intensity respectively. The chlorophyll-a (Chl-a) and carotenoid contents of algae were measured, and the absorption spectrum and fluorescence spectrum under the room temperature were also determined. The results are as follows: The growth of Platymonas subcordiformis was obviously promoted or inhibited when different concentrations of NO was added only once or twice a day during the cultivation. So there are NO threshold concentrations for algae growth. Under the different illumination, the influence of different NO concentrations on the algae growth are identical. Exogenous NO can make up the algae growth degraded by low illumination. The influence of NO on the photosynthesis pigments content is consistent with that on algae density. The compound proteins constitute of Chl-a did not emerge marked change when NO were added, but the contents of photosynthesis pigments and their relative compose were affected. NO can improve the transfer efficiency of cell exploding energy, and enhance the photosynthesis speed, so the algae cell growths are quickened, and the algae biomass are increased.
NASA Astrophysics Data System (ADS)
Melesse, Assefa; Hajigholizadeh, Mohammad; Blakey, Tara
2017-04-01
In this study, Landsat 8 and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) sensors were used to model the spatiotemporal changes of four water quality parameters: Landsat 8 (turbidity, chlorophyll-a (chl-a), total phosphate, and total nitrogen) and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS) (algal blooms). The study was conducted in Florda bay, south Florida and model outputs were compared with in-situ observed data. The Landsat 8 based study found that, the predictive models to estimate chl-a and turbidity concentrations, developed through the use of stepwise multiple linear regression (MLR), gave high coefficients of determination in dry season (wet season) (R2 = 0.86(0.66) for chl-a and R2 = 0.84(0.63) for turbidity). Total phosphate and TN were estimated using best-fit multiple linear regression models as a function of Landsat TM and OLI,127 and ground data and showed a high coefficient of determination in dry season (wet season) (R2 = 0.74(0.69) for total phosphate and R2 = 0.82(0.82) for TN). Similarly, the ability of SeaWIFS for chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels' benthic class was evaluated. Benthic class was determined through satellite image-based classification methods. It was found that benthic class based chl-a modeling algorithm was better than the existing regionally-tuned approach. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Key words: Landsat, SeaWIFS, water quality, Florida bay, Chl-a, turbidity
Harris, Theodore D.; Graham, Jennifer L.
2015-01-01
The bbe-Moldaenke BenthoTorch (BT) is an in vivo fluorometer designed to quantify algal biomass and community composition in benthic environments. The BT quantifies total algal biomass via chlorophyll a (Chl-a) concentration and may differentiate among cyanobacteria, green algae, and diatoms based on pigment fluorescence. To evaluate how BT measurements of periphytic algal biomass (as Chl-a) compared with an ethanol extraction laboratory analysis, we collected BT- and laboratory-measured Chl-a data from 6 stream sites in the Indian Creek basin, Johnson County, Kansas, during August and September 2012. BT-measured Chl-a concentrations were positively related to laboratory-measured concentrations (R2 = 0.47); sites with abundant filamentous algae had weaker relations (R2 = 0.27). Additionally, on a single sample date, we used the BT to determine periphyton biomass and community composition upstream and downstream from 2 wastewater treatment facilities (WWTF) that discharge into Indian Creek. We found that algal biomass increased immediately downstream from the WWTF discharge then slowly decreased as distance from the WWTF increased. Changes in periphyton community structure also occurred; however, there were discrepancies between BT- and laboratory-measured community composition data. Most notably, cyanobacteria were present at all sites based on BT measurements but were present at only one site based on laboratory-analyzed samples. Overall, we found that the BT compared reasonably well with laboratory methods for relative patterns in Chl-a but not as well with absolute Chl-aconcentrations. Future studies need to test the BT over a wider range of Chl-aconcentrations, in colored waters, and across various periphyton assemblages.
NASA Technical Reports Server (NTRS)
Mielke, Steven P.; Kiang, Nancy Y.; Blankenship, Robert E.; Mauzerall, David
2012-01-01
Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted approx. 40 nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40+/-1% at 735 nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35+/-1% at 690 nm). The efficiency at peak absorption wavelength is also higher in A. marina (36+/-1% at 710 nm vs. 31+/-1% at 670 nm). In both species, the trap efficiencies are approx. 40% (PSI) and approx. 30% (PSII). The PSI trap in A. marina is found to lie at 740+/-5 nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723+/-3 nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (ChlD1) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.
Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang
2015-01-01
Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.
Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.
Palm, Daniel M; Agostini, Alessandro; Tenzer, Stefan; Gloeckle, Barbara M; Werwie, Mara; Carbonera, Donatella; Paulsen, Harald
2017-03-28
Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.
Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay
NASA Astrophysics Data System (ADS)
Harding, Lawrence W., Jr.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.
2016-03-01
Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.
Developmental hearing loss impedes auditory task learning and performance in gerbils.
von Trapp, Gardiner; Aloni, Ishita; Young, Stephen; Semple, Malcolm N; Sanes, Dan H
2017-04-01
The consequences of developmental hearing loss have been reported to include both sensory and cognitive deficits. To investigate these issues in a non-human model, auditory learning and asymptotic psychometric performance were compared between normal hearing (NH) adult gerbils and those reared with conductive hearing loss (CHL). At postnatal day 10, before ear canal opening, gerbil pups underwent bilateral malleus removal to induce a permanent CHL. Both CHL and control animals were trained to approach a water spout upon presentation of a target (Go stimuli), and withhold for foils (Nogo stimuli). To assess the rate of task acquisition and asymptotic performance, animals were tested on an amplitude modulation (AM) rate discrimination task. Behavioral performance was calculated using a signal detection theory framework. Animals reared with developmental CHL displayed a slower rate of task acquisition for AM discrimination task. Slower acquisition was explained by an impaired ability to generalize to newly introduced stimuli, as compared to controls. Measurement of discrimination thresholds across consecutive testing blocks revealed that CHL animals required a greater number of testing sessions to reach asymptotic threshold values, as compared to controls. However, with sufficient training, CHL animals approached control performance. These results indicate that a sensory impediment can delay auditory learning, and increase the risk of poor performance on a temporal task. Copyright © 2016 Elsevier B.V. All rights reserved.
Nishiuchi, Shunsaku; Liu, Shenkui; Takano, Tetsuo
2007-08-01
Chloris virgata Swartz (C. virgata) is a gramineous wild plant that is found in alkaline soil areas in northeast China and is highly tolerant to carbonate stress. We constructed a cDNA library from C. virgata seedlings treated with NaHCO(3), and isolated a type 1 metallothionein (MT1) gene (ChlMT1: AB294238) from the library. The amino acid sequence of ChlMT1 contained 12 cysteine residues that constituted the Cys-X-Cys (X = amino acid except Cys) motifs in the N- and C-terminal regions. Northern hybridization showed that expression of ChlMT1 was induced by several abiotic stresses, from salts (NaCl and NaHCO(3)), a ROS inducer (paraquat), and metals (CuSO(4), ZnSO(4), and CoCl(2)). ChlMT1 expression in leaf was induced by 200 mM NaCl and 100 mM NaHCO(3). About 5 microM Paraquat, 500 microM Zn(2+), and 500 microM Co(2+) also induced expression of ChlMT1 in leaf after 6 h, and 100 microM Cu(2+) induced it after 24 h. Saccharomyces cerevisiae when transformed with the ChlMT1 gene had dramatically increased tolerances to salts (NaCl and NaHCO(3)) and ROS.
Pollastrini, Martina; Holland, Vera; Brüggemann, Wolfgang; Bruelheide, Helge; Dănilă, Iulian; Jaroszewicz, Bogdan; Valladares, Fernando; Bussotti, Filippo
2016-10-01
The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay.
Harding, Lawrence W; Mallonee, Michael E; Perry, Elgin S; Miller, W David; Adolf, Jason E; Gallegos, Charles L; Paerl, Hans W
2016-03-30
Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km(2) watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945-1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981-2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries.
Variable climatic conditions dominate recent phytoplankton dynamics in Chesapeake Bay
Harding, Jr., Lawrence W.; Mallonee, Michael E.; Perry, Elgin S.; Miller, W. David; Adolf, Jason E.; Gallegos, Charles L.; Paerl, Hans W.
2016-01-01
Variable climatic conditions strongly influence phytoplankton dynamics in estuaries globally. Our study area is Chesapeake Bay, a highly productive ecosystem providing natural resources, transportation, and recreation for nearly 16 million people inhabiting a 165,000-km2 watershed. Since World War II, nutrient over-enrichment has led to multiple ecosystem impairments caused by increased phytoplankton biomass as chlorophyll-a (chl-a). Doubled nitrogen (N) loadings from 1945–1980 led to increased chl-a, reduced water clarity, and low dissolved oxygen (DO), while decreased N loadings from 1981–2012 suggest modest improvement. The recent 30+ years are characterized by high inter-annual variability of chl-a, coinciding with irregular dry and wet periods, complicating the detection of long-term trends. Here, we synthesize time-series data for historical and recent N loadings (TN, NO2 + NO3), chl-a, floral composition, and net primary productivity (NPP) to distinguish secular changes caused by nutrient over-enrichment from spatio-temporal variability imposed by climatic conditions. Wet years showed higher chl-a, higher diatom abundance, and increased NPP, while dry years showed lower chl-a, lower diatom abundance, and decreased NPP. Our findings support a conceptual model wherein variable climatic conditions dominate recent phytoplankton dynamics against a backdrop of nutrient over-enrichment, emphasizing the need to separate these effects to gauge progress toward improving water quality in estuaries. PMID:27026279
Chen, XiaoBo; Zhao, XiaoHui; Zhang, JianPing; Li, LiangBi; Kuang, TingYun
2007-08-01
The singlet excited state lifetime of the chlorophyll a (Chl a) in cytochrome b(6)f (Cyt b(6)f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b(6)f complexes from different sources ( approximately 200 and approximately 600 ps are the two measured results). The present study demonstrated that the singlet excited state lifetime is associated with the detergents n-dodecyl-beta-D-maltoside (DDM) and n-octyl-beta-D-glucopyranoside (beta-OG), but has nothing to do with the different sources of Cyt b(6)f complexes. Compared with the Cyt b(6)f dissolved in beta-OG, the Cyt b(6)f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, approximately 200 ps, of the Chl a in Cyt b(6)f complex in DDM is closer to the true in vivo.
Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen
2015-01-01
Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA) analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ. PMID:25689050
Artificial leaf device for solar fuel production.
Amao, Yutaka; Shuto, Naho; Furuno, Kana; Obata, Asami; Fuchino, Yoshiko; Uemura, Keiko; Kajino, Tsutomu; Sekito, Takeshi; Iwai, Satoshi; Miyamoto, Yasushi; Matsuda, Masatoshi
2012-01-01
Solar fuels, such as hydrogen gas produced from water and methanol produced from carbon dioxide reduction by artificial photosynthesis, have received considerable attention. In natural leaves the photosynthetic proteins are well-organized in the thylakoid membrane. To develop an artificial leaf device for solar low-carbon fuel production from CO2, a chlorophyll derivative chlorin-e6 (Chl-e6; photosensitizer), 1-carboxylundecanoyl-1'-methyl-4,4'-bipyrizinium bromide, iodide (CH3V(CH2)9COOH; the electron carrier) and formate dehydrogenase (FDH) (the catalyst) immobilised onto a silica-gel-based thin layer chromatography plate (the Chl-V-FDH device) was investigated. From luminescence spectroscopy measurements, the photoexcited triplet state of Chl-e6 was quenched by the CH3V(CH2)9COOH moiety on the device, indicating the photoinduced electron transfer from the photoexcited triplet state of Chl-e6 to the CH3V(CH2)9COOH moiety. When the CO2-saturated sample solution containing NADPH (the electron donor) was flowed onto the Chl-V-FDH device under visible light irradiation, the formic acid concentration increased with increasing irradiation time.
Frequently asked questions about in vivo chlorophyll fluorescence: practical issues.
Kalaji, Hazem M; Schansker, Gert; Ladle, Richard J; Goltsev, Vasilij; Bosa, Karolina; Allakhverdiev, Suleyman I; Brestic, Marian; Bussotti, Filippo; Calatayud, Angeles; Dąbrowski, Piotr; Elsheery, Nabil I; Ferroni, Lorenzo; Guidi, Lucia; Hogewoning, Sander W; Jajoo, Anjana; Misra, Amarendra N; Nebauer, Sergio G; Pancaldi, Simonetta; Penella, Consuelo; Poli, DorothyBelle; Pollastrini, Martina; Romanowska-Duda, Zdzislawa B; Rutkowska, Beata; Serôdio, João; Suresh, Kancherla; Szulc, Wiesław; Tambussi, Eduardo; Yanniccari, Marcos; Zivcak, Marek
2014-11-01
The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.
NASA Astrophysics Data System (ADS)
Werner, Petra; Köhler, Jan
2005-02-01
We studied chlorophyll a (chl. a), biovolume and species composition of benthic algae and phytoplankton in the eutrophic lower River Spree in 1996. The chl. a concentration was estimated as 3.5 (2.7-4.5) μg/cm2 for epipsammon, 9.4 (7.4-11.9) μg/cm2 for epipelon and 6.7 (5.7-7.8) μg/cm2 for the epilithon (median and 95% C. L.). The mean total biomass of benthic algae was significantly higher (6.0 μg chl. a/cm2) than the areal chl. a content of the pelagic zone (1.6 μg chl. a/cm2). Although certain phytoplankton taxa were abundant in the periphyton, benthic taxa generally dominated the assemblages. Seasonal dynamics of benthic algae were probably controlled by light and nitrate supply (sand), discharge fluctuations (sand, mud) and invertebrate grazing (stones). This paper shows the importance of benthic algae even in phytoplankton-rich lowland rivers with sandy or muddy sediments.
Lifetime of the Excited State In Vivo
Mar, T.; Govindjee; Singhal, G. S.; Merkelo, H.
1972-01-01
Using a mode-locked laser (λ, 632.8 nm), fluorescence decay of chlorophyll (Chl) a in the green alga Chlorella pyrenoidosa, the red alga Porphyridium cruentum, and the blue-green alga Anacystis nidulans was measured by the phase-shift method under conditions when photosynthesis was not operative (3-(3,4-dichlorophenyl)-1,1-dimethylurea [DCMU] poisoning, or cooling to 77°K). In the presence of 10-5 M DCMU, the lifetime of Chl a fluorescence (τ) at room temperature is about 1.7 nsec in Chlorella, 1.0 nsec in Porphyridium, and 0.7 nsec in Anacystis. At 77°K, τ is 1.4 nsec (for fluorescence at about 685 nm, F-685) and 2.3 nsec (for F-730) in Chlorella, 0.9 nsec (F-685) and 1.2 nsec (F-730) in Porphyridium, and 0.8 nsec (F-685 and F-730) in Anacystis. From the above measurement, and the assumption that τ0 (the intrinsic fluorescence lifetime) for Chl a in all three algae is 15.2 nsec, we have calculated the rate constants of radiationless transition (that includes energy transfer to weakly fluorescent system I) processes competing with fluorescence at room temperature to be about 5 × 108 sec-1 in Chlorella, 9 × 108 sec-1 in Porphyridium, and 13 × 108 sec-1 in Anacystis. At 77°K, this rate constant for Chl a that fluoresces at 685 nm remains, in the first approximation, the same as at room temperature. From the τ data, the rate constant for the trapping of excitation energy is calculated to be about 1.2 × 109 sec-1 for Chlorella, 2 × 109 sec-1 for Porphyridium, and 2 × 109 sec-1 for Anacystis. The efficiency of trapping is calculated to be about 66% (Chlorella), 68% (Porphyridium), and 60% (Anacystis). (It is recognized that variations in the above values are to be expected if algae grown under different conditions are used for experimentation.) The maximum quantum yield of Chl a fluorescence for system II (λ, 632.8 nm), calculated from τ measurements, is about 10% in Chlorella, 6-7% in Porhyridium, and 5% in Anacystis under conditions when photosynthesis is not operative; the values at 77°K appear to be very close to those with DCMU added at room temperature. ø for F-730 at 77°K, however, is somewhat higher than for F-685. The predicted quantum yields of fluorescence for Chl a in intact cells (both systems I and II) at low intensities of 632.8 nm light are about 2-3, 1-2, and 1% for Chlorella, Porphyridium, and Anacystis, respectively. PMID:4624832
NASA Astrophysics Data System (ADS)
Pan, X.; Wong, G. T.; Tai, J.; Ho, T.
2013-12-01
By using the observations from multiple satellite sensors, the climatology of the oceanography, including the surface wind vector, sea surface temperature (SST), surface chlorophyll a concentration (Chl_a), and vertically integrated net primary production (PPeu), in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters is evaluated. Regional and sub-regional mechanisms in driving the coastal processes, which influence the spatial and temporal distributional patterns in water component, are assessed. Seasonal vertical convective mixing by wind and surface heating/cooling is the primary force in driving the annual changes in SST and Chl_a in the open South China Sea (SCS), in which highly negative correlation coefficients between Chl_a and SST and moderately positive correlation coefficients between Chl_a and wind speed are found. Together, the seasonal variations in SST and wind speed account for about 80% of the seasonal variation in Chl_a. In the NoSoCS as a whole, however, the contribution is reduced to about 40%, primarily due to the effect of the Pearl River plume. A tongue of water extending eastward from the mouth of the River into the middle shelf with positive correlation coefficients between Chl_a and SST and around zero or slightly negative correlation coefficients between Chl_a and wind is the most striking feature in the NoSoCS. The westward and eastward propagations of the Pearl River plume are both very small during the northeast monsoonal season, driven primarily by the Coriolis effect. The abrupt increase in the areal coverage of the River plume, which is much more pronounced in the eastward propagation, between June and August can be attributed to the prevailing southwest monsoon as well as the annual peak of the river flow. Coastal upwelling is another sub-regional phenomenon in the NoSoCS. The upwelling at the shelf edge off the Taiwan Bank may be characterized by its elevated Chl_a. Its areal coverage and average Chl_a do not vary greatly from month to month. The upwelling off the Hainan Island during the southwest monsoonal season may be characterized by its depression in SST. Its areal coverage reaches the maximum in July. Quantitatively characterizing the upwelling off Dongshan during the southwest monsoonal season is difficult and is not attempted here. The sub-regional phenomenon, activities of internal waves off the shelf break, is also assessed. Internal waves can reach the entire outer shelf- upper slope of the NoSoCS where they undergo transformation and even destruction, resulting in the depression in SST and the enhancement in Chl_a. The effect is more pronounced north of the Dongsha Atoll.
Jiang, Tao; Chen, Feiyu; Yu, Zonghe; Lu, Lin; Wang, Zhaohui
2016-12-01
In this study, we conducted a 14-month investigation in Daya Bay, southern China to understand the effects of oyster farming on phytoplankton community and biomass by using size-fractionated phytopigments. Results proved the filtering effects of oysters on phytoplankton biomass. During the oyster culture period, the average concentration of total chlorophyll a (sum of size-fractionated Chl a) within the farming area was approximately 60% lower than that at the reference site. Phytoplankton depletion in the aquaculture zone mainly occurred in micro-sized fractions (>20 μm) of Chl a, fucoxanthin, and peridinin. The influence of oyster filtration on nano-sized (2.7-20 μm) pigments seemed less than that on micro-sized ones. The depletion of peridinin and 19'-hex-fucoxanthin in aquaculture zone was higher than those of the other pigments, which indicated that flagellated cells might be selectively filtered by oysters and could be more easily influenced by oyster aquaculture. The pico-sized Chl a (<2.7 μm) comprised 24% of total Chl a on the average in the aquaculture zone during the cultural period compared to 6% in the reference site. Picoeukaryote abundance, which was determined via flow cytometry, was significantly higher in the aquaculture zone than in the non-aquaculture areas. The abundance of picoeukaryote is significantly and positively correlated with the concentrations of pico-sized prasinoxanthin, violaxanthin, and neoxanthin, indicating that picoeukaryote is dominated by those in prasinophyte. The results suggest that oyster aquaculture might stimulate the growth of prasinophyte, although the seasonal variations are mainly controlled by the water temperature in the study area. This research highlights the successful use of size-fractionated phytopigments to estimate size-specific phytoplankton biomass and community, which can be applied as a routine method to monitor the environmental effect and food resources of bivalve aquaculture. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)
1982-01-01
Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.
Yamazaki, Shoji; Nomata, Jiro; Fujita, Yuichi
2006-01-01
Most oxygenic phototrophs, including cyanobacteria, have two structurally unrelated protochlorophyllide (Pchlide) reductases in the penultimate step of chlorophyll biosynthesis. One is light-dependent Pchlide reductase (LPOR) and the other is dark-operative Pchlide reductase (DPOR), a nitrogenase-like enzyme assumed to be sensitive to oxygen. Very few studies have been conducted on how oxygen-sensitive DPOR operates in oxygenic phototrophic cells. Here, we report that anaerobic conditions are required for DPOR to compensate for the loss of LPOR in cyanobacterial cells. An LPOR-lacking mutant of the cyanobacterium Leptolyngbya boryana (formerly Plectonema boryanum) failed to grow in high light conditions and this phenotype was overcome by cultivating it under anaerobic conditions (2% CO2/N2). The critical oxygen level enabling the mutant to grow in high light was determined to be 3% (v/v). Oxygen-sensitive Pchlide reduction activity was successfully detected as DPOR activity in cell-free extracts of anaerobically grown mutants, whereas activity was undetectable in the wild type. The content of two DPOR subunits, ChlL and ChlN, was significantly increased in mutant cells compared with wild type. This suggests that the increase in subunits stimulates the DPOR activity that is protected efficiently from oxygen by anaerobic environments, resulting in complementation of the loss of LPOR. These results provide important concepts for understanding how dual Pchlide reductases operate differentially in oxygenic photosynthetic cells grown under natural environments where oxygen levels undergo dynamic changes. The evolutionary implications of the coexistence of two Pchlide reductases are discussed. PMID:17028153
Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data
NASA Astrophysics Data System (ADS)
Dahanayaka, D. D. G. L.; Wijeyaratne, M. J. S.; Tonooka, H.; Minato, A.; Ozawa, S.; Perera, B. D. C.
2014-10-01
This study focused on determining the past changes and predicting the future trends in eutrophication of the Bolgoda North lake, Sri Lanka using in situ Chlorophyll-a (Chl-a) measurements and Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) satellite data. This Lake is located in a mixed land use area with industries, some agricultural lands, middle income and high income housing, tourist hotels and low income housing. From March to October 2013, water samples from five sampling sites were collected once a month parallel to ASTER overpass and Chl-a, nitrate and phosphate contents of each sample were measured using standard laboratory methods. Cloud-free ASTER scenes over the lake during the 2000-2013 periods were acquired for Chl-a estimation and trend analysis. All ASTER images were atmospherically corrected using FLAASH software and in-situ Chl-a data were regressed with atmospherically corrected three ASTER VNIR band ratios of the same date. The regression equation of the band ratio and Chl-a content with the highest correlation, which was the green/red band ratio was used to develop algorithm for generation of 15-m resolution Chl-a distribution maps. According to the ASTER based Chl-a distribution maps it was evident that eutrophication of this lake has gradually increased from 2008-2011. Results also indicated that there had been significantly high eutrophic conditions throughout the year 2013 in several regions, especially in water stagnant areas and adjacent to freshwater outlets. Field observations showed that this lake is receiving various discharges from factories. Unplanned urbanization and inadequacy of proper facilities in the nearby industries for waste management have resulted in the eutrophication of the water body. If the present trends of waste disposal and unplanned urbanization continue, enormous environmental problems would be resulted in future. Results of the present study showed that information from satellite remote sensing can play a useful role in the development of time series Chl-a distribution maps. Such information is important for the future predictions, development and management of this area as well as in the conservation of this water body.
The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake
NASA Astrophysics Data System (ADS)
Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.
2017-12-01
Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; p<0.001) and croplands (R2 = 0.42; p<000.1). With all PFTs considered together, the overall validation against measured data was strong (R2 = 0.50; p<0.001). The incorporation of chlorophyll within a light-use efficiency GPP modelling approach and a Terrestrial Biosphere Model demonstrated that neglecting to account for seasonality in leaf physiology resulted in over-estimations in GPP at the start/end of a deciduous growing season, due to a divergence in canopy structure and leaf function. Across nine PFTs, Fluxnet eddy-covariance data was used to validate TBM GPP estimates using ChlLeaf-constrained Vcmax; reducing the seasonal bias and explaining 13%-49% of daily variations in GPP. This work demonstrates the importance of considering leaf pigment status in modelling photosynthetic carbon uptake. We anticipate that the global ChlLeaf product will make an important step towards improving the accuracy of global carbon budgets.
NASA Astrophysics Data System (ADS)
Zhang, Q.; Yao, T.
2017-12-01
Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible impact of APARchl on SIFyield from physiological stress response, and find that integrating three bio-parameters fAPARchl, PRI and SIFyield can explain >=87% variation in seasonal GPP . Therefore, quantifying fAPARchl, PRI and SIF has the best potential to monitor vegetation function and physiology.
Cytochemical and Cytofluorometric Evidence for Guard Cell Photosystems 1
Vaughn, Kevin C.; Outlaw, William H.
1983-01-01
Evidence for photosynthetic linear electron transport in guard cells was obtained with two sensitive methods of high spacial resolution. Light-dependent diaminobenzidine oxidation (an indicator of PSI) and DCMU-sensitive, light-dependent thiocarbamyl nitroblue tetrazolium reduction (an indicator of PSII) were observed in guard cell plastids of Hordeum vulgare L. cv Himalaya using electron microscopic cytochemical procedures. DCMU-sensitive Chl a fluorescence induction (an indicator of PSII) was detected in individual guard cell pairs of Vicia faba L. cv Longpod using an ultramicrofluorometer. At least for these species, we conclude these results are proof for the presence of PSII in guard cell chloroplasts, which until now has been somewhat controversial. Images Fig. 2 Fig. 1 PMID:16662840
Geodynamic model for the development of the Cameroon Hot Line (Equatorial Africa)
NASA Astrophysics Data System (ADS)
Nkono, Collin; Féménias, Olivier; Demaiffe, Daniel
2014-12-01
This work proposes a new geodynamic model for the development of the Cameroon Hot Line (CHL) in Equatorial Africa. It is based on the analysis of the distribution of lineaments and of magmatic bodies (Paleogene anorogenic ring-complexes and Neogene volcanic centres). Two successive geodynamic models are proposed to explain the distribution of the Cainozoic to recent magmatic activity. They are both sinistral. The first one, during the Paleogene, developed around the N ∼ 70°E direction while the second one (Neogene) is oriented around the N ∼ 130°E direction. The two periods are separated by a short transition. The emplacement follows the local reactivation of pre-existing (Pan-African) faults in relation to the collision between the Afro-Arabian and Eurasian plates, during the Alpine history.
NASA Astrophysics Data System (ADS)
Carreto, José I.; Montoya, Nora G.; Carignan, Mario O.; Akselman, Rut; Acha, E. Marcelo; Derisio, Carla
2016-08-01
The aim of this study was to investigate the biotic and abiotic factors controlling the spring phytoplankton blooms at the Patagonian shelf-break front (PSBF). Using a CHEMTAX analysis of HPLC pigment data and other methods, the biomass and spatial variability of plankton communities were studied in four sections (39-48°S) across the PSBF during October 2005. Environmental factors and the biomass and composition of plankton communities exhibited a marked spatial heterogeneity. The latitudinal and cross-shelf progression in the timing of the spring bloom initiation and the nutritive properties of the water masses (Subantarctic Shelf Waters and Malvinas Current Waters) seemed to be the key factors. Three plankton regions were distinguished: (a) Outer shelf (OS), (b) Shelf-break front (SBF) and (c) Malvinas Current (MC). At the highly stratified OS region, the post-bloom community showed low-biomasshigh-phytoplankton diversity formed mainly by small cells (haptophytes 30-62%, diatoms 17-49%, chlorophytes 0-34%, and prasinophytes 0-21% of total Chl a). High amounts of degraded fucoxanthin were found associated with the heterotrophic dinoflagellate, Protoperidinium capurroi. Grazing by this microheterotroph on the diatom population seemed to be the most important factor for the spring bloom decay at the OS. A remarkable quasi monospecific bloom (∼90%) of a nanodiatom (Thalassiosira bioculata var. raripora) associated with high Chl a (up to 20 mg m-3) occurred along (∼1000 km) the SBF and in the most northern extension of the MC. In the southern region, the bloom was developed under absent or incipient density stratification, increasing solar irradiance, high nitrate and phosphate availability, and low numbers of phytoplankton grazers. The average mixedlayer PAR irradiance (<2.0 mol quanta PAR m-2 d-1) and Si:N ratios (<0.2) were low, suggesting a diatom population limited by light and under progressive silicate limitation. The more stratified northern region of the SBF showed a later stage of the bloom development, but the large population of diatoms under Si limitation was not in senescence and losses from microzooplankton grazing were minor. The observed high proportion of Chl a below a shallow upper mixed layer (up to 85%) could directly reach the bed, favoring the development of epibenthic communities and the formation of seed diatom banks and organic iron-rich sediments. The upwelling along the SBF provides a large source of macronutrients and probably the dissolved iron needed to sustain the intense diatom bloom, but also diatom resting stages that could act as seeds for the next spring bloom. The macronutrient-rich MC region showed low chlorophyll (Chl a < 0.8 mg m-3) and a highly diverse phytoplankton community, mainly composed of small cells (diatoms 20-70%, haptophytes 20-40%, chlorophytes 2-25%, prasinophytes 2-18%, and cryptophytes 3-12% of total Chl a).
NASA Astrophysics Data System (ADS)
Halpern, D.; Franz, B. A.; Kuring, N. A.
2016-12-01
The Ocean Biology Processing Group at NASA's GSFC recently reprocessed satellite ocean color measurements (SeaWiFS, MODIS-A and VIIRS) to improve accuracy and enhance time-series interoperability and consistency between multi-mission datasets. We chose the 1°S-1°N region along the equator to examine the behavior of Chl-a in El Niño and La Niña events because this latitudinal width represented the scale of Ekman upwelling, which is hypothesized to be a primary mechanism of Chl-a variations along the equator. An El Niño (La Niña) event has five consecutive 3-month-average sea surface temperature anomalies (SSTAs) greater (less) than 0.5°C in the 5°S-5°N, 170°W-120°W region and a super El Niño event occurs when SSTA is greater than 2.0°C. The September 1997 (onset of SeaWiFS data) to July 2016 period contained two super El Niño events, four typical El Niño events and four La Niña events. In the equatorial Pacific Ocean from 135°E (longitude of the westernmost data) to 150°E, the average typical El Niño and La Niña values were approximately the same (0.13 mg m-3). From 150°E to 165°W, the approximate bowl-shaped longitudinal pattern of Chl-a data in the average typical El Niño reached minimum (0.08 mg m-3) at 170°E and then increased to a relatively uniform value of 0.20 mg m-3 from 160°W to the Galapagos, where Chl-a reached 0.45 mg m-3. Eastward from 150°E, Chl-a values in the average typical La Niña increased approximately linearly to 0.21 mg m-3 at 170°E, where Chl-a was 175% larger than that in the average typical El Niño. Chl-a values in the average typical La Niña were approximately 0.22 mg m-3 until the Galapagos, where values reached 0.55 mg m-3. Average Chl-a values in the super El Niño event in 2015-2016 were similar to those associated with the average typical El Niño, but the bottom of the bowl-shaped pattern was shallower and wider. However, the longitudinal pattern of Chl-a in the super El Niño of 1997-1998 differed significantly from the patterns of the average typical El Niño and super El Niño of 2015-2016. Also, Chl-a distributions in the Atlantic and Indian oceans will be described. Correlations between satellite surface wind vector measurements and Chl-a in El Niño and La Niña were not always consistent with the hypothesis of the important contribution of Ekman upwelling and will be discussed.
Chlorophyll-a thin layers in the Magellan fjord system: The role of the water column stratification
NASA Astrophysics Data System (ADS)
Ríos, Francisco; Kilian, Rolf; Mutschke, Erika
2016-08-01
Fjord systems represent hotspots of primary productivity and organic carbon burial. However, the factors which control the primary production in mid-latitude fjords are poorly understood. In this context, results from the first fine-scale measurements of bio-oceanographic features in the water column of fjords associated with the Strait of Magellan are presented. A submersible fluorescence probe (FP) was used to measure the Chlorophyll-a (Chl-a) concentration in situ, along with conductivity, temperature, hydrostatic pressure (depth) and dissolved oxygen (CTD-O2) of the water column. The Austral spring results of 14 FP-CTD-O2 profiles were used to define the vertical and horizontal patches of the fluorescent pigment distribution and their spatial relations with respect to the observed hydrographic features. Three zones with distinct water structures were defined. In all zones, the 'brown' spectral group (diatoms and dinoflagellates) predominated accounting for >80 wt% of the phytoplankton community. Thin layers with high Chl-a concentration were detected in 50% of the profiles. These layers harbored a substantial amount (30-65 wt%) of the phytoplankton biomass. Stratification was positively correlated to the occurrence of Chl-a thin layers. In stable and highly stratified water columns the integrated Chl-a concentration was higher and frequently located within thin layers whereas well mixed water columns displayed lower values and more homogeneous vertical distribution of Chl-a. These results indicate that mixing/stability processes are important factors accounting to the vertical distribution of Chl-a in Magellan fjords.
Mourelatos, Constantinos; Nikolaropoulos, Sotiris; Fousteris, Manolis; Pairas, Georgios; Argyraki, Maria; Kareli, Dimitra; Dafa, Evaggelia; Mourelatos, Dionisios; Lialiaris, Theodore
2012-06-01
We studied the effect of five newly synthesized steroidal derivatives of nitrogen mustards. These derivatives have as alkylators either P-N, N-bis(2-chloroethyl)aminophenyl-butyrate (CHL) or P-N, N-bis(2-chloroethyl)aminophenyl-acetate (PHE) groups esterified with different modified steroidal nuclei. We examined them alone or in combination, on sister chromatid exchange rates and on human lymphocyte proliferation kinetics. The antitumor activity of these compounds, alone or in combination, was also tested on Leukemia P388-bearing mice. A pronounced cytogenetic and antineoplastic action was demonstrated by the compounds that contain either PHE or CHL as alkylators and are esterified with a steroidal nucleus having added a cholestene group in the 17 position of the D-ring. The exocyclical insertion of an -NHCO- group in the D-ring of the steroidal nucleus esterified with PHE (amide ester of PHE) yielded a compound demonstrating a distinct cytogenetic and antineoplastic effect. In contrast, the ketone group in the D-ring being inserted endocyclically in the steroidal nucleus (androstene) esterified with either CHL or with PHE gave negative cytogenetic and antineoplastic effects. However, the combined action of cholestene esterified with either CHL or with PHE in combination with either the androstene ester of PHE or with the androstene ester of CHL, respectively, gave synergistic cytogenetic and antineoplastic effects. Also the amide ester of PHE in combination with the androstene ester of CHL gave distinct cytogenetic and antineoplastic effects in a synergistic manner.
Initialization and Setup of the Coastal Model Test Bed: STWAVE
2017-01-01
Laboratory (CHL) Field Research Facility (FRF) in Duck , NC. The improved evaluation methodology will promote rapid enhancement of model capability and focus...Blanton 2008) study . This regional digital elevation model (DEM), with a cell size of 10 m, was generated from numerous datasets collected at different...INFORMATION: For additional information, contact Spicer Bak, Coastal Observation and Analysis Branch, Coastal and Hydraulics Laboratory, 1261 Duck Road
NASA Astrophysics Data System (ADS)
Page, Benjamin P.; Kumar, Abhishek; Mishra, Deepak R.
2018-04-01
As the frequency of cyanobacterial harmful algal blooms (CyanoHABs) become more common in recreational lakes and water supply reservoirs, demand for rapid detection and temporal monitoring will be imminent for effective management. The goal of this study was to demonstrate a novel and potentially operational cross-satellite based protocol for synoptic monitoring of rapidly evolving and increasingly common CyanoHABs in inland waters. The analysis involved a novel way to cross-calibrate a chlorophyll-a (Chl-a) detection model for the Landsat-8 OLI sensor from the relationship between the normalized difference chlorophyll index and the floating algal index derived from Sentinel-2A on a coinciding overpass date during the summer CyanoHAB bloom in Utah Lake. This aided in the construction of a time-series phenology of the Utah Lake CyanoHAB event. Spatio-temporal cyanobacterial density maps from both Sentinel-2A and Landsat-8 sensors revealed that the bloom started in the first week of July 2016 (July 3rd, mean cell count: 9163 cells/mL), reached peak in mid-July (July 15th, mean cell count: 108176 cells/mL), and reduced in August (August 24th, mean cell count: 9145 cells/mL). Analysis of physical and meteorological factors suggested a complex interaction between landscape processes (high surface runoff), climatic conditions (high temperature, high rainfall followed by negligible rainfall, stable wind), and water quality (low water level, high Chl-a) which created a supportive environment for triggering these blooms in Utah Lake. This cross satellite-based monitoring methods can be a great tool for regular monitoring and will reduce the budget cost for monitoring and predicting CyanoHABs in large lakes.
Coral Pigments: Quantification Using HPLC and Detection by Remote Sensing
NASA Technical Reports Server (NTRS)
Cottone, Mary C.
1995-01-01
Widespread coral bleaching (loss of pigments of symbiotic dinoflagellates), and the corresponding decline in coral reef health worldwide, mandates the monitoring of coral pigmentation. Samples of the corals Porites compressa and P. lobata were collected from a healthy reef at Puako, Hawaii, and chlorophyll (chl) a, peridinin, and Beta-carotene (Beta-car) were quantified using reverse-phase high performance liquid chromatography (HPLC). Detailed procedures are presented for the extraction of the coral pigments in 90% acetone, and the separation, identification, and quantification of the major zooxanthellar pigments using spectrophotometry and a modification of the HPLC system described by Mantoura and Llewellyn (1983). Beta-apo-8-carotenal was found to be inadequate as in internal standard, due to coelution with chl b and/or chl a allomer in the sample extracts. Improvements are suggested, which may result in better resolution of the major pigments and greater accuracy in quantification. Average concentrations of peridinin, chl a, and Beta-car in corals on the reef were 5.01, 8.59, and 0.29, micro-grams/cm(exp 2), respectively. Average concentrations of peridinin and Beta-car did not differ significantly between the two coral species sampled; however, the mean chl a concentration in P. compressa specimens (7.81 ,micro-grams/cm(exp 2) was significantly lower than that in P. lobata specimens (9.96 11g/cm2). Chl a concentrations determined spectrophotometrically were significantly higher than those generated through HPLC, suggesting that spectrophotometry overestimates chl a concentrations. The average ratio of chl a-to-peridinin concentrations was 1.90, with a large (53%) coefficient of variation and a significant difference between the two species sampled. Additional data are needed before conclusions can be drawn regarding average pigment concentrations in healthy corals and the consistency of the chl a/peridinin ratio. The HPLC pigment concentration values contribute to the limited database of pigment concentrations in healthy corals, from which quantitative definitions of 'healthy' vs. 'bleached' coral may emerge. They also serve as ground-truth, corresponding to fluorescence data collected from the reef at Puako using airborne remote sensing of laser induced fluorescence. Fluorescence spectra from several overflights using the NASA AOL (airborne oceanographic lidar) system show consistent chlorphyll fluorescence peaks around 685 nm, as well as consistence peaks in the 400-600 nm range which may emanate from granules in the coral tissue. These data, along with results from previous studies of coral fluorescence, suggest that remote sensing of laser-induced fluorescence may become a rapid and efficient means of monitoring coral pigmentation and coral reef bleaching.
Nieter, Annabel; Kelle, Sebastian; Takenberg, Meike; Linke, Diana; Bunzel, Mirko; Popper, Lutz; Berger, Ralf G
2016-10-15
Ustilago maydis, an edible mushroom growing on maize (Zea mays), is consumed as the food delicacy huitlacoche in Mexico. A chlorogenic acid esterase from this basidiomycete was expressed in good yields cultivating the heterologous host Pichia pastoris on the 5L bioreactor scale (reUmChlE; 45.9UL(-1)). In contrast to previously described chlorogenic acid esterases, the reUmChlE was also active towards feruloylated saccharides. The enzyme preferred substrates with the ferulic acid esterified to the O-5 position of arabinose residues, typical of graminaceous monocots, over the O-2 position of arabinose or the O-6 position of galactose residues. Determination of kcat/Km showed that the reUmChlE hydrolyzed chlorogenic acid 18-fold more efficiently than methyl ferulate, p-coumarate or caffeate. Phenolic acids were released by reUmChlE from natural substrates, such as destarched wheat bran, sugar beet pectin and coffee pulp. Treatment of wheat dough using reUmChlE resulted in a noticeable softening indicating a potential application of the enzyme in bakery and confectionery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ultrafast dynamics of the photo-excited hemes b and cn in the cytochrome b6f complex.
Agarwal, Rachna; Chauvet, Adrien A P
2017-01-25
The dynamics of hemes b and c n within the cytochrome b 6 f complex are investigated by means of ultrafast broad-band transient absorption spectroscopy. On the one hand, the data reveal that, subsequent to visible light excitation, part of the b hemes undergoes pulse-limited photo-oxidation, with the liberated electron supposedly being transferred to one of the adjacent aromatic amino acids. Photo-oxidation is followed by charge recombination in about 8.2 ps. Subsequent to charge recombination, heme b is promoted to a vibrationally excited ground state that relaxes in about 4.6 ps. On the other hand, heme c n undergoes ultrafast ground state recovery in about 140 fs. Interestingly, the data also show that, in contrast to previous beliefs, Chl a is involved in the photochemistry of hemes. Indeed, subsequent to heme excitation, Chl a bleaches and recovers to its ground state in 90 fs and 650 fs, respectively. Chl a bleaching allegedly corresponds to the formation of a short lived Chl a anion. Beyond the previously suggested structural role, this study provides unique evidence that Chl a is directly involved in the photochemistry of the hemes.
Dynamic changes of inorganic nitrogen and astaxanthin accumulation in Haematococcus pluvialis
NASA Astrophysics Data System (ADS)
Liu, Jian-Guo; Yin, Ming-Yan; Zhang, Jing-Pu; Liu, Wei; Meng, Zhao-Cai
2002-12-01
This study on dynamic changes of culture color, astaxanthin and chlorophylls, inorganic N including N-NO{3/-}, N-NO{2/-} and N-NH{4/+} in batch culture of Haematococcus pluvialis exposed to different additive nitrate concentration showed (1) ast/chl ratio was over 0.8 for brown and red algae, but was usually less than 0.5 for green and yellow algae; (2) N-NO{3/-}, in general, was unstable and decreased, except for a small unexpected increase in nitrate enriched treatment groups; (3) measurable amounts of N-NO{2/-}, and N-NH{4/+} were observed respectively with three change modes although no external nitrite and ammonia were added into the culture; (4) a non-linear correlation between ast/chl ratio (or color) changes and the levels of N-NO{3/-}, N-NO{2/-}, N-NH{4/+} in H. pluvialis culture; (5) up and down variation of the ast/chl ratio occurred simultaneously with a perceptible color change from yellow to brown (or red) when N-NO{3/-}, N-NO{2/-} and N-NH{4/+} fluctuated around 30, 5, 5, μmol/L respectively; (6) existence of three dynamic modes of N-NO{3/-}, N-NO{2/-} and N-NH{4/+} changes, obviously associated with initial external nitrate; (7) the key level of total inorganic N concentration regulating the above physiological changes during indoor cultivation was about 50 μmol/L; and (8) 0.5 10 mmol/L of nitrate was theoretically conducive to cell growth in batch culture.
Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio
2009-09-01
chl.erdc.usace.army.mil/sms). Cross-sections from a ERDC/CHL TR-09-17 7 HEC - RAS model provided by the district, along with aerial photographs for proper alignment...ER D C/ CH L TR -0 9 -1 7 Numerical Model Study of the Tuscarawas River below Dover Dam, Ohio Richard L. Stockstill and Jane M. Vaughan...September 2009 C oa st al a n d H yd ra u lic s La b or at or y Approved for public release; distribution is unlimited. ERDC/CHL TR-09
Wagner, Tyler; Soranno, Patricia A.; Webster, Katherine E.; Cheruvelil, Kendra Spence
2011-01-01
1. For north temperate lakes, the well-studied empirical relationship between phosphorus (as measured by total phosphorus, TP), the most commonly limiting nutrient and algal biomass (as measured by chlorophyll a, CHL) has been found to vary across a wide range of landscape settings. Variation in the parameters of these TP–CHL regressions has been attributed to such lake variables as nitrogen/phosphorus ratios, organic carbon and alkalinity, all of which are strongly related to catchment characteristics (e.g. natural land cover and human land use). Although this suggests that landscape setting can help to explain much of the variation in ecoregional TP–CHL regression parameters, few studies have attempted to quantify relationships at an ecoregional spatial scale.2. We tested the hypothesis that lake algal biomass and its predicted response to changes in phosphorus are related to both local-scale features (e.g. lake and catchment) and ecoregional-scale features, all of which affect the availability and transport of covarying solutes such as nitrogen, organic carbon and alkalinity. Specifically, we expected that land use and cover, acting at both local and ecoregional scales, would partially explain the spatial pattern in parameters of the TP–CHL regression.3. We used a multilevel modelling framework and data from 2105 inland lakes spanning 35 ecoregions in six US states to test our hypothesis and identify specific local and ecoregional features that explain spatial heterogeneity in TP–CHL relationships. We include variables such as lake depth, natural land cover (for instance, wetland cover in the catchment of lakes and in the ecoregions) and human land use (for instance, agricultural land use in the catchment of lakes and in the ecoregions).4. There was substantial heterogeneity in TP–CHL relationships across the 35 ecoregions. At the local scale, CHL was negatively and positively related to lake mean depth and percentage of wooded wetlands in the catchment, respectively. At the ecoregional scale, the slope parameter was positively related to the percentage of pasture in an ecoregion, indicating that CHL tends to respond more rapidly to changes in TP where there are high levels of agricultural pasture than where there is little. The intercept (i.e. the ecoregion-average CHL) was negatively related to the percentage of wooded wetlands in the ecoregion.5. By explicitly accounting for the hierarchical nature of lake–landscape interactions, we quantified the effects of landscape characteristics on the response of CHL to TP at two spatial scales. We provide new insight into ecoregional drivers of the rate at which algal biomass responds to changes in nutrient concentrations. Our results also indicate that the direction and magnitude of the effects of certain land use and cover characteristics on lake nutrient dynamics may be scale dependent and thus likely to represent different underlying mechanisms regulating lake productivity.
Red raspberry (Rubus idaeus L.) intake decreases oxidative stress in obese diabetic (db/db) mice.
Noratto, Giuliana D; Chew, Boon P; Atienza, Liezl M
2017-07-15
Red raspberry fruit intake was investigated on obese diabetic (db/db) mice for 8weeks. Animals fed isocaloric diets (5.3% freeze-dried raspberry, or control) were assessed for obesity-diabetes-disease risk biomarkers. Results showed that raspberry intake improved antioxidant status and lessened plasma interleukin (IL)-6 (0.3-fold of control, p<0.1); most likely through enhancing glutathione peroxidase (GPx) activity in liver (4.3-fold of control), and in blood (2.1-fold of control). Other disease-risk biomarkers were similar between groups (p>0.05). Plasma levels of total cholesterol (T-CHL), low density lipoprotein-cholesterol (LDL-CHL), and resistin were higher in the raspberry group. Overall, the enhanced detoxifying cell defenses exerted by raspberry intake might be due to its polyphenolics and fibre. This study demonstrates in vivo that raspberry intake, at a dose that can be achieved by human consumption, might protect against diabetes-induced oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Markou, Giorgos; Muylaert, Koenraad
2016-09-01
Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari
2016-03-01
The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Durán-Campos, Elizabeth; Salas-de-León, David Alberto; Monreal-Gómez, María Adela; Coria-Monter, Erik
2017-05-01
The chlorophyll-a (Chl-a) distribution in Campeche Canyon and Campeche Bank, at the Southern Gulf of Mexico, as well as its relationship with hydrographic structure were analyzed. The results show the existence of the Gulf Common Water (GCW), the Caribbean Tropical Surface Water (CTSW) and the Caribbean Subtropical Underwater (CSUW) in the 120 m upper layer at the Campeche Canyon. While at the Campeche Bank only the Caribbean Tropical Surface Water (CTSW) was found. The 15 °C and 18.5 °C isotherms topography depict the presence of a mesoscale anticyclone-cyclone dipole. The nutrient pumping mechanism fertilizes the eutrophic zone promoted by the cyclonic eddy. Submesoscale processes in the border of an anticyclone and a cyclone results in maximum of nitrate concentration and vertically integrated Chl-a at the frontal zone. Two Chl-a vertical distribution patterns were found, a deep maximum at the base of the euphotic layer not associated to the thermocline over the Campeche Canyon and a peak associated to the thermocline related to the shallow bottom at the Campeche Bank. Oligotrophic conditions were observed in the 50 m upper layer and mesotrophic conditions were found below this layer. The differences between the Campeche Bank and Campeche Canyon are that: in the canyon, the nutrient and Chl-a peaks were linked with the cyclone, and the submesoscale processes in the border of an anticyclone and a cyclone, respectively. In the vertical the maximum Chl-a was associated to the base of the euphotic layer and dominated by coccolithophores. In the Campeche Bank the nutrient and Chl-a peaks were influenced by the shelf break in the vertical the maximum Chl-a was associated with the thermocline and the silicoflagellate was identified as the dominant species.
Conductive Hearing Loss Caused by Third-Window Lesions of the Inner Ear
Merchant, Saumil N.; Rosowski, John J.
2008-01-01
Background Various authors have described conductive hearing loss (CHL), defined as an air-bone gap on audiometry, in patients without obvious middle ear pathologic findings. Recent investigations have suggested that many of these cases are due to disorders of the inner ear, resulting in pathologic third windows. Objective To provide an overview of lesions of the inner ear resulting in a CHL due to a third-window mechanism. The mechanism of the CHL is explained along with a classification scheme for these disorders. We also discuss methods for diagnosis of these disorders. Data Sources The data were compiled from a review of the literature and recent published research on middle and inner ear mechanics from our laboratory. Conclusion A number of disparate disorders affecting the labyrinth can produce CHL by acting as a pathologic third window in the inner ear. The common denominator is that these conditions result in a mobile window on the scala vestibuli side of the cochlear partition. The CHL results by the dual mechanism of worsening of air conduction thresholds and improvement of bone conduction thresholds. Such lesions may be anatomically discrete or diffuse. Anatomically discrete lesions may be classified by location: semicircular canals (superior, lateral, or posterior canal dehiscence), bony vestibule (large vestibular aqueduct syndrome, other inner ear malformations), or the cochlea (carotid-cochlear dehiscence, X-linked deafness with stapes gusher, etc.). An example of an anatomically diffuse lesion is Paget disease, which may behave as a distributed or diffuse third window. Third-window lesions should be considered in the differential diagnosis of CHL in patients with an intact tympanic membrane and an aerated, otherwise healthy, middle ear. Clues to suspect such a lesion include a low-frequency air-bone gap with supranormal thresholds for bone conduction, and presence of acoustic reflexes, vestibular evoked myogenic responses, or otoacoustic emission responses despite the CHL. Imaging studies can help confirm the diagnosis. PMID:18223508
Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.
Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W
2017-11-01
Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.
Boldt, Lynda; Yellowlees, David; Leggat, William
2012-01-01
The superfamily of light-harvesting complex (LHC) proteins is comprised of proteins with diverse functions in light-harvesting and photoprotection. LHC proteins bind chlorophyll (Chl) and carotenoids and include a family of LHCs that bind Chl a and c. Dinophytes (dinoflagellates) are predominantly Chl c binding algal taxa, bind peridinin or fucoxanthin as the primary carotenoid, and can possess a number of LHC subfamilies. Here we report 11 LHC sequences for the chlorophyll a-chlorophyll c 2-peridinin protein complex (acpPC) subfamily isolated from Symbiodinium sp. C3, an ecologically important peridinin binding dinoflagellate taxa. Phylogenetic analysis of these proteins suggests the acpPC subfamily forms at least three clades within the Chl a/c binding LHC family; Clade 1 clusters with rhodophyte, cryptophyte and peridinin binding dinoflagellate sequences, Clade 2 with peridinin binding dinoflagellate sequences only and Clades 3 with heterokontophytes, fucoxanthin and peridinin binding dinoflagellate sequences. PMID:23112815
NASA Astrophysics Data System (ADS)
Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San
2018-06-01
In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.
Iuchi, S; Lin, E C
1987-01-01
In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812
NASA Technical Reports Server (NTRS)
Adrian, Gabriele; Blumenstock, Thomas; Fischer, Herbert; Frank, Eckard; Gerhardt, Lothar; Gulde, Thomas; Maucher, Guido; Oelhaf, Hermann; Thomas, Peter; Trieschmann, Olaf
1994-01-01
Two FTIR spectrometers were employed in the late winters 1990 and 1991 in Esrange, North Sweden, and in Ny Aalesund, Spitsbergen to detect zenith column amounts of several trace gases. Time series of column amounts of the trace gases O3, N2O, CH4, HNO3, NO2, CHl, and HF have been derived from the measured spectra. Additionally, some information on the vertical distribution of HCl could be obtained by analyzing the spectral line shapes. The results are interpreted in terms of dynamical and chemical processes.
NASA Astrophysics Data System (ADS)
Pitarch, Jaime; Volpe, Gianluca; Colella, Simone; Krasemann, Hajo; Santoleri, Rosalia
2016-03-01
A 15-year (1997-2012) time series of chlorophyll a (Chl a) in the Baltic Sea, based on merged multi-sensor satellite data was analysed. Several available Chl a algorithms were sea-truthed against the largest in situ publicly available Chl a data set ever used for calibration and validation over the Baltic region. To account for the known biogeochemical heterogeneity of the Baltic, matchups were calculated for three separate areas: (1) the Skagerrak and Kattegat, (2) the central Baltic, including the Baltic Proper and the gulfs of Riga and Finland, and (3) the Gulf of Bothnia. Similarly, within the operational context of the Copernicus Marine Environment Monitoring Service (CMEMS) the three areas were also considered as a whole in the analysis. In general, statistics showed low linearity. However, a bootstrapping-like assessment did provide the means for removing the bias from the satellite observations, which were then used to compute basin average time series. Resulting climatologies confirmed that the three regions display completely different Chl a seasonal dynamics. The Gulf of Bothnia displays a single Chl a peak during spring, whereas in the Skagerrak and Kattegat the dynamics are less regular and composed of highs and lows during winter, progressing towards a small bloom in spring and a minimum in summer. In the central Baltic, Chl a follows a dynamics of a mild spring bloom followed by a much stronger bloom in summer. Surface temperature data are able to explain a variable fraction of the intensity of the summer bloom in the central Baltic.<
Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu
2017-07-01
Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2 = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P < 0.0001). We developed a model to estimate GPP from the tower-based measurement of SIF and leaf-level ChlF parameters. The estimation of GPP from this model agreed well with flux tower observations of GPP (R 2 = 0.68; P < 0.0001), demonstrating the potential of SIF for modeling GPP. At the leaf scale, we found that leaf F q '/F m ', the fraction of absorbed photons that are used for photochemistry for a light-adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopy SIF yield (SIF/APAR, R 2 = 0.79; P < 0.0001). We also found that canopy SIF and SIF-derived GPP (GPP SIF ) were strongly correlated to leaf-level biochemistry and canopy structure, including chlorophyll content (R 2 = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2 = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2 = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.
Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H
2016-10-01
There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
El Alem, A.; Chokmani, K.; Laurion, I.; El Adlouni, S.
2013-12-01
Occurrence and extent of Harmful Algal Bloom (HAB) has increased in inland water bodies around the world. The appearance of these blooms reflects the advanced state of eutrophication of several aquatic systems caused by urban, agricultural, and industrial development. Algal blooms, especially those cyanobacterial origins, are capable to produce and release toxins, threatening human and animal health, quality of drinking water, and recreational water bodies. Conventional monitoring networks, based on infrequent sampling in a few fixed monitoring stations, cannot provide the information needed as HABs are spatially and temporally heterogeneous. Remote sensing represents an interesting alternative to provide the required spatial and temporal coverage. The usefulness of air-borne and satellite remote sensing data to detect HABs was demonstrated since three decades ago, and since several empirical and semi-empirical models, using satellite imagery, were developed to estimate chlorophyll-a concentration [Chl-a] as a proxy to detect bloom proliferations. However, most of those models presented several weaknesses that are generally linked to the range of [Chl-a] to be estimated. Indeed, models originally calibrated for high [Chl-a] fail to estimate low concentrations and vice versa. In this study, an adaptive model to estimate [Chl-a], spread over a wide range of concentrations, is developed for optically complex inland water bodies based on combination of water spectral response classification and three developed semi-empirical algorithms using a multivariate regression. Three distinct water types (low, medium, and high [Chl-a]) are first identified using the Classification and Regression Tree (CART) method performed on remote sensing reflectance over a dataset of 44 [Chl-a] samples collected from Lakes over Quebec province. Based on the water classification, a specific multivariate model to each water type is developed using the same dataset and the MODIS data at 250-m spatial resolution. By pre-clustering inland water bodies, the results were very interesting as the determination coefficients as well as the relative RMSE of the cross-validation were of 0.99, 0.98 and 0.95 and of 0.5%, 8% and 17% for high, medium, and low [Chl-a], respectively. On the other hand, the adaptive model reached a global success rate of 92% using an independent, semi-qualitative, [Chl-a] samples collected over more than twenty inland water bodies for the years 2009 and 2010 over the Quebec province.
NASA Astrophysics Data System (ADS)
El-Mezayen, M. M.; Rueda-Roa, D. T.; Muller-Karger, F. E.; Otis, D. B.
2016-12-01
The Eastern Mediterranean is a semi-enclosed sea, considered oligotrophic except for the Levantine basin (LB) (30°-38° N, 28°-36° E) where the Nile River plays an important role in its water budget and biogeochemical properties. We studied the seasonality of the Nile River plume using ocean color satellite imagery. We analyzed 1 km resolution satellite chlorophyll-a (Chl-a) and Colored Dissolved Organic Matter (CDOM) concentration estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS, 2002-2015). We used a threshold of 0.2 mg m-3 of Chl-a and 0.03 m-1 of CDOM as a proxy to mask out and calculate the extension of the Nile plume. The plume was always constrained to the coastal region of SE Mediterranean Sea over the 13-year period examined. The annual average surface area of the Nile plume estimated with Chl-a and CDOM was similar (26,245 and 21,195 Km2, respectively). The minimum Nile plume area occurred between April and December (21,329 and 19,177 Km2, for Chl-a and CDOM respectively). Maximum area extension was observed between January-March for both Chl-a and CDOM (40,993 and 27,251 Km2, respectively). There was a conspicuous difference in the maximum surface area of the Nile plume measured with the Chl-a product during February (54,053 Km2) relative to the CDOM proxy (30,749 Km2). During January-March the area of the Nile discharge measured with Chl-a was 1.3-1.8 larger than with the CDOM product, while they were similar the rest of the year. Correlation between Chl-a and CDOM results was high during April-December (R2=0.93, n=122, p<0.001) but somewhat low during January-March (R2=0.65, n=39, p<0.001). This indicates that there is a larger phytoplankton bloom during January-March, due to higher nutrient discharge by Nile water. Both satellite proxies are good indicators of the extent of the Nile plume. We will present further research on the seasonal extension of the Nile plume along the coast and in the LB.
Sakuraba, Yasuhito; Lee, Sang-Hwa; Kim, Ye-Sol; Park, Ohkmae K.; Hörtensteiner, Stefan; Paek, Nam-Chon
2014-01-01
Plant autophagy, one of the essential proteolysis systems, balances proteome and nutrient levels in cells of the whole plant. Autophagy has been studied by analysing Arabidopsis thaliana autophagy-defective atg mutants, but the relationship between autophagy and chlorophyll (Chl) breakdown during stress-induced leaf yellowing remains unclear. During natural senescence or under abiotic-stress conditions, extensive cell death and early yellowing occurs in the leaves of atg mutants. A new finding is revealed that atg5 and atg7 mutants exhibit a functional stay-green phenotype under mild abiotic-stress conditions, but leaf yellowing proceeds normally in wild-type leaves under these conditions. Under mild salt stress, atg5 leaves retained high levels of Chls and all photosystem proteins and maintained a normal chloroplast structure. Furthermore, a double mutant of atg5 and non-functional stay-green nonyellowing1-1 (atg5 nye1-1) showed a much stronger stay-green phenotype than either single mutant. Taking these results together, it is proposed that autophagy functions in the non-selective catabolism of Chls and photosynthetic proteins during stress-induced leaf yellowing, in addition to the selective degradation of Chl–apoprotein complexes in the chloroplasts through the senescence-induced STAY-GREEN1/NYE1 and Chl catabolic enzymes. PMID:24510943
Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun
2015-09-01
Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions.
NASA Astrophysics Data System (ADS)
Menzel, Manuel; Garrido, Carlos J.; López Sánchez Vizcaíno, Vicente; Marchesi, Claudio; Hidas, Károly
2017-04-01
Subduction zone processes play a key role in determining the time and length-scales of long-term element cycles like the deep carbon cycle. Recent improvements in thermodynamic modelling of fluid properties at high pressure and new experiments have underlined the importance of carbonate dissolution by subduction fluids from dehydration reactions for the transfer of carbon out of the subducting slab. However, natural case studies are scarce, in particular regarding the impact of fluids generated by serpentinite dehydration, which are considered as a major dissolution agent for carbon due to the high temperature of antigorite breakdown (about 650°C) and the potentially large volumes of hydrated peridotites occurring in the upper part of the subducting oceanic mantle lithosphere. Here we report the occurrence of meta-ophicarbonate lenses within prograde Chl-harzburgites in the Almirez ultramafic massif (Betic Cordillera, S. Spain). The presence of these lenses indicates that carbonate minerals were preserved beyond the stability conditions of antigorite and were not dissolved by deserpentinization fluids. The largest meta-ophicarbonate lens in the Almirez Chl-harzburgites measures 8 x 160 m and is composed of a high-grade assemblage of olivine, Ti-clinohumite, diopside, chlorite, dolomite, calcite and Cr-bearing magnetite with a granofelsic to banded appearance. In this assemblage we identified, for the first time in the Betic Cordillera, aragonite inclusions in olivine and diopside using coupled EBSD and chemical mapping. Calcite-dolomite thermometry and thermodynamic equilibrium modelling constrain the peak metamorphic conditions to 1.7 - 1.9 GPa and 680 °C at very low XCO2. These conditions compare well with P-T-estimates for the surrounding Chl-harzburgites. There is strong evidence that the protolith of the carbonate rocks within Chl-harzburgites was an ophicarbonate zone: bulk rock contents of Ni and Cr are similarly high in the carbonate rocks as in Atg-serpentinites and Chl-harzburgites of the Almirez massif, and their major element compositions plot on the CaCO3-antigorite mixing line. As the meta-ophicarbonates are enclosed within prograde Chl-harzburgites, they have experienced a high fluid flux triggered by the antigorite breakdown in surrounding serpentinites at about 660 °C, with a high potential to dissolve carbonates. However, these carbonate lenses retain high amounts of dolomite and calcite (40 - 45 vol%), and their phase assemblages and stable isotope compositions of carbonate (δ18O = 13-17 ‰ V-SMOW and δ13C = -0.5-1 ‰ V-PDB) do not indicate a major fluid-induced decarbonation. The survival of carbonate may be due to the fact that antigorite dehydration occurred at up to 50 - 70 °C lower temperatures in the presence of CaCO3 than in pure serpentinites. This could lead to the formation of a relatively impermeable shell of carbonate-bearing olivine-diopside fels around the meta-ophicarbonates prior to the main serpentinite dehydration, thus protecting the carbonate-richer assemblages from dissolution. The example of the meta-ophicarbonates at Almirez suggests that this mechanism may lead to recycling of substantial amounts of carbon into the deep mantle via subduction of carbonate-bearing serpentinites. Funding: We acknowledge funding from the People programme (Marie Curie Actions - ITN) of the European Union FP7 under REA Grant Agreement n°608001.
Validation Test Report for the BioCast Optical Forecast Model Version 1.0
2015-04-09
can generate such as: total absorption (a), backscattering (bb), chlorophyll (chl), sea surface temperature (SST), diver visibility, etc. The...optical backscattering coefficient BSP - Battle Space Profiler CHARTS - Compact Hydrographic Airborne Rapid Total Survey Chl - Chlorophyll EO
Kjær, Christina; Stockett, Mark H; Pedersen, Bjarke M; Nielsen, Steen Brøndsted
2016-12-01
The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here, on the basis of photodissociation action spectroscopy, we establish that the redshift of the Soret absorption band due to binding of a negatively charged carboxylate (as present in aspartic acid and glutamic acid residues) is 0.1-0.2 eV for Chl a and b. This effect is almost enough to reproduce the well-known green color of plants and can account for the strong spectral variation between Chl's. The experimental data serve to benchmark future high-level calculations of excited-state energies. Finally, we demonstrate that complexes between Chl a and histidine, tagged by a quaternary ammonium ion, can be made in the gas phase by electrospray ionization, but more work is needed to produce enough ions for gas-phase spectroscopy.
Assessing plant nitrogen concentration in winter oilseed rape using hyperspectral measurements
NASA Astrophysics Data System (ADS)
Li, Lu; Liu, Shishi; Wang, Shanqing; Lu, Jianwei; Li, Lantao; Ma, Yi; Ming, Jin
2016-07-01
This study aims to find the optimal vegetation indices (VIs) to remotely estimate plant nitrogen concentration (PNC) in winter oilseed rape across different growth stages. Since remote sensing cannot "sense" N in live leaves, remote estimation of PNC should be based on understanding the relationships between PNC and chlorophyll (Chl), carotenoid concentration (Car), Car/Chl, dry mass (DM), and leaf area index (LAI). The experiments with eight nitrogen fertilization treatments were conducted in 2014 to 2015 and 2015 to 2016, and measurements were acquired at six-leaf, eight-leaf, and ten-leaf stages. We found that at each stage, Chl, Car, DM, and LAI were all strongly related to PNC. However, across different growth stages, semipartial correlation and linear regression analysis showed that Chl and Car had consistently significant relationships with PNC, whereas LAI and DM were either weakly or barely correlated with PNC. Therefore, the most suitable VIs should be sensitive to the change in Chl and Car while insensitive to the change in DM. We found that anthocyanin reflectance index and the simple ratio of the red band to blue band fit the requirements. The validation with the 2015 to 2016 dataset showed that the selected VIs could provide accurate estimates of PNC in winter oilseed rape.
Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching
Wilk, Laura; Grunwald, Matthias; Liao, Pen-Nan; Walla, Peter Jomo; Kühlbrandt, Werner
2013-01-01
The photosystem II (PSII) subunit S (PsbS) plays a key role in nonphotochemical quenching, a photoprotective mechanism for dissipation of excess excitation energy in plants. The precise function of PsbS in nonphotochemical quenching is unknown. By reconstituting PsbS together with the major light-harvesting complex of PSII (LHC-II) and the xanthophyll zeaxanthin (Zea) into proteoliposomes, we have tested the individual contributions of PSII complexes and Zea to chlorophyll (Chl) fluorescence quenching in a membrane environment. We demonstrate that PsbS is stable in the absence of pigments in vitro. Significant Chl fluorescence quenching of reconstituted LHC-II was observed in the presence of PsbS and Zea, although neither Zea nor PsbS alone was sufficient to induce the same quenching. Coreconstitution with PsbS resulted in the formation of LHC-II/PsbS heterodimers, indicating their direct interaction in the lipid bilayer. Two-photon excitation measurements on liposomes containing LHC-II, PsbS, and Zea showed an increase of electronic interactions between carotenoid S1 and Chl states, , that correlated directly with Chl fluorescence quenching. These findings are in agreement with a carotenoid-dependent Chl fluorescence quenching by direct interactions of LHCs of PSII with PsbS monomers. PMID:23509270
Vergara-Domínguez, Honorio; Roca, María; Gandul-Rojas, Beatriz
2013-08-15
The oxidation of chlorophyll a (chl a) catalysed by peroxidase (POD) from mesocarp of the olive fruit (Olea europaea L., cv Hojiblanca) in the presence of H2O2 and 2,4-dichlorophenol (2,4-DCP), is characterised via the individualised quantification of the products of the enzymatic reaction using a new methodology of HPLC-UV spectrometry. This innovation has allowed the discovery that, in addition to 13(2) OH chl a and 15(1) OH lactone chl a, which are the first products of POD on chl a, the reaction process sequentially creates another series of oxidised chlorophyll derivatives which have not been previously described. Their origins have been linked to POD activity in the presence of 2,4-DCP. Likewise, a study of the effect of the concentration of the various cosubstrates on the POD reaction rate demonstrated that the correct establishment of the relative concentrations of the same ([H2O2]/[2,4-DCP]/[Chl]=1:3:0.02) is crucial to explaining inhibition effects by substrates and carrying out optimum measurements. Therefore, new essential parameters for the determination of POD activity on a chlorophyll substrate are established. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shulman, Igor; Gould, Richard W.; Frolov, Sergey; McCarthy, Sean; Penta, Brad; Anderson, Stephanie; Sakalaukus, Peter
2018-03-01
An ensemble-based approach to specify observational error covariance in the data assimilation of satellite bio-optical properties is proposed. The observational error covariance is derived from statistical properties of the generated ensemble of satellite MODIS-Aqua chlorophyll (Chl) images. The proposed observational error covariance is used in the Optimal Interpolation scheme for the assimilation of MODIS-Aqua Chl observations. The forecast error covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical orthogonal functions (EOFs) estimated from a month-long model run. The assimilation of surface MODIS-Aqua Chl improved surface and subsurface model Chl predictions. Comparisons with surface and subsurface water samples demonstrate that data assimilation run with the proposed observational error covariance has higher RMSE than the data assimilation run with "optimistic" assumption about observational errors (10% of the ensemble mean), but has smaller or comparable RMSE than data assimilation run with an assumption that observational errors equal to 35% of the ensemble mean (the target error for satellite data product for chlorophyll). Also, with the assimilation of the MODIS-Aqua Chl data, the RMSE between observed and model-predicted fractions of diatoms to the total phytoplankton is reduced by a factor of two in comparison to the nonassimilative run.
Bisphenol A effects on the chlorophyll contents in soybean at different growth stages.
Jiao, Liya; Ding, Hezhou; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2017-04-01
Bisphenol A (BPA), a suspected endocrine disruptor, can modify normal plant growth and development. Photosynthesis provides material and energy for the growth and development of plants, in which chlorophyll (Chl) plays a significant role. Many studies have shown that the growth and metabolism of plants vary at different growth stages. Thus the sensitivity of plant's responses to environmental pollution is correspondingly different. We studied the effects of BPA on the Chl contents of soybean (Glycine Max L.) at different growth stages (seedling, flowering and podding, seed-filling and maturation) by measuring the contents of essential intermediates (5-aminolevulinic acid, porphobilinogen, protoporphyrin IX, magnesium protoporphyrin and protochlorophyll) and the activities of key enzymes (5-aminolaevulinic acid dehydratase, porphobilinogen deaminase, uroporphyrinogen III synthase, magnesium chelatase) in chlorophyll synthesis. Low-dose (1.5 mg/L) BPA exposure increased the activities of key enzymes in addition to the contents of intermediates in Chl synthesis at different growth stages, resulting in increases in Chl contents and net photosynthetic rate. In contrast, medium and high-dose (17.2, 50.0 mg/L) BPA exposure produced inhibitory effects on the indices. Following the withdrawal of BPA exposure, the indices recovered to a degree that was related to the plant growth stage. The effect level (high to low) of BPA on these indices at different growth stages was: seedling stage > maturation stage > flowering and podding stage > seed-filling stage. The reverse effect was observed following the withdrawal of BPA exposure. The responses of key enzymes in plant Chl synthesis to BPA illustrate how BPA affects Chl contents. The effects of BPA show clear differences at different plant growth stages. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Larsen, Poul S.; Filgueira, Ramón; Riisgård, Hans Ulrik
2014-04-01
Prediction of somatic growth of blue mussels, Mytilus edulis, based on the data from 2 field-growth studies of mussels in suspended net-bags in Danish waters was made by 3 models: the bioenergetic growth (BEG), the dynamic energy budget (DEB), and the scope for growth (SFG). Here, the standard BEG model has been expanded to include the temperature dependence of filtration rate and respiration and an ad hoc modification to ensure a smooth transition to zero ingestion as chlorophyll a (chl a) concentration approaches zero, both guided by published data. The first 21-day field study was conducted at nearly constant environmental conditions with a mean chl a concentration of C = 2.7 μg L- 1, and the observed monotonous growth in the dry weight of soft parts was best predicted by DEB while BEG and SFG models produced lower growth. The second 165-day field study was affected by large variations in chl a and temperature, and the observed growth varied accordingly, but nevertheless, DEB and SFG predicted monotonous growth in good agreement with the mean pattern while BEG mimicked the field data in response to observed changes in chl a concentration and temperature. The general features of the models were that DEB produced the best average predictions, SFG mostly underestimated growth, whereas only BEG was sensitive to variations in chl a concentration and temperature. DEB and SFG models rely on the calibration of the half-saturation coefficient to optimize the food ingestion function term to that of observed growth, and BEG is independent of observed actual growth as its predictions solely rely on the time history of the local chl a concentration and temperature.
NASA Technical Reports Server (NTRS)
Hu, Chuanmin; Lee, Zhongping; Franz, Bryan
2011-01-01
A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in the global ocean for Chl less than or equal to 0.25 milligrams per cubic meters (approximately 77% of the global ocean area). The algorithm is based on a color index (CI), defined as the difference between remote sensing reflectance (R(sub rs), sr(sup -1) in the green and a reference formed linearly between R(sub rs) in the blue and red. For low Chl waters, in situ data showed a tighter (and therefore better) relationship between CI and Chl than between traditional band-ratios and Chl, which was further validated using global data collected concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed similarly for different relative contributions of non-phytoplankton absorption. Simulations using existing atmospheric correction approaches further demonstrated that the CIA was much less sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect atmospheric correction (including sun glint and whitecap corrections). Image and time-series analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of reduced image noise, more coherent spatial and temporal patterns, and consistency between the two sensors. The reduction in noise and other errors is particularly useful to improve the detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data indicate that the new approach should be generally applicable to all existing and future ocean color instruments.
Interannual variability in the magnitude and timing of the spring bloom in the Oyashio region
NASA Astrophysics Data System (ADS)
Okamoto, Suguru; Hirawake, Toru; Saitoh, Sei-Ichi
2010-09-01
Inter-annual variability in the magnitude and timing of the spring bloom was investigated for the Oyashio region (40 °-48 °N, 143 °E-152 °E) using 10 years (from 1998 to 2007) of satellite ocean-color data. Geostrophic currents were examined using satellite altimeter data. Early spring blooms (>1.5 mg m -3) occurred in early April 2001 and late March 2002. The 2001 bloom continued for one month. Late blooms occurred from mid-May 1999, early June 2004 and late April 2006, continuing for about 1 month, 8 days and 16 days, respectively. A strong bloom (4.7 mg m -3) also occurred in mid-April 1998; however, it terminated in early May. We classified the Oyashio region based on the pattern of temporal variation of Chl- a concentr ation from March to June. The spatio-temporal variability in Chl- a concentr ation during spring was different among years. The area where Chl- a concentr ation was highest in April was more extensive in 2001, 2002 and 2006 than usual. In 1999, the area where Chl- a concentr ation was highest in May was the widest among the 10 years. Mesoscale eddies and currents with high velocity were frequently observed in the area of high Chl- a concentr ation east of Hokkaido, propagating Coastal Oyashio Water of low salinity and low density into the oceanic region. That strengthened stratification in the surface layer. We suggest that this seaward transfer of coastal water could be one of the important factors for phytoplankton distribution in two ways: (1) horizontal advection of water with high Chl- a concentr ation and (2) enhancement of stratification in the oceanic region.
Govindjee; Munday, John C; Papageorgiou, George C
2017-06-01
We present here a Tribute to Frederick Yi-Tung Cho (1939-2011), an innovative and ingenious biophysicist and an entrepreneur. He was one of the 4 earliest PhD students [see: Cederstrand (1965)-Carl Nelson Cederstrand; coadvisor: Eugene Rabinowitch; Papageorgiou (1968)-George C. Papageorgiou (coauthor of this paper); and Munday (1968)-John C. Munday Jr. (also a coauthor of this paper)] of one of us (Govindjee) in Biophysics at the University of Illinois at Urbana-Champaign (UIUC) during the late 1960s (1963-1968). Fred was best known, in the photosynthesis circle for his pioneering work on low temperature (down to liquid helium temperature, 4 K) absorption and fluorescence spectroscopy of photosynthetic systems; he showed temperature independence of excitation energy transfer from (i) chlorophyll (Chl) b to Chl a and (ii) from Chl a 670 to Chl a 678; and temperature dependence of energy transfer from the phycobilins to Chl a and from Chl a 678 to its suggested trap. After doing research in biophysics of photosynthesis, Fred shifted to do research in solid-state physics/engineering in the Government Electronics Division (Group) of the Motorola Company, Scottsdale, Arizona, from where he published research papers in that area and had several patents granted. We focus mainly on his days at the UIUC in context of the laboratory in which he worked. We also list some of his papers and most of his patents in engineering physics. His friends and colleagues have correctly described him as an innovator and an ingenious scientist of the highest order. On the personal side, he was a very easy-going and amiable individual.
Critical health literacy in American deaf college students.
Kushalnagar, Poorna; Ryan, Claire; Smith, Scott; Kushalnagar, Raja
2017-05-24
This study investigates the relationship between critical health literacy (CHL) and discussion of health information among college deaf students who use American Sign Language. CHL is crucial in making appropriate health-related decisions for oneself and aiding others in making good health-choices. Research on general youth population shows that frequent health-related discussions with both friends and family is associated with higher health literacy. However, for our sample of deaf college-aged students who might have had less access to communication at home, we hypothesize that health-related discussions with same-age peers may be more important for critical health literacy. We asked two questions to assess the frequency of health-related discussions with friends and families: "How often do you discuss health-related information with your friends" and "How often do you discuss your family medical history with your family?". Participants rated their experience on a scale from 1-5 (1=never, 5=always). To assess CHL, 38 deaf and 38 hearing participants were shown a short scenario that showed a woman confiding in her friend after finding a lump in her breast. Participants were then asked what the friend should say. Responses were scored by a team of 3 raters using a CHL rubric. As predicted, results showed a strong relationship between discussion of health-related information with friends and CHL in both deaf and hearing samples. Discussion with family was linked to CHL only for hearing participants, but not deaf participants in our study. These findings underscore the importance of socializing with health-literate, accessible peers to improve the health literacy and health outcomes of all deaf people. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Fialkowski, Marie Kainoa; DeBaryshe, Barbara; Bersamin, Andrea; Nigg, Claudio; Leon Guerrero, Rachael; Rojas, Gena; Areta, Aufa'i Apulu Ropeti; Vargo, Agnes; Belyeu-Camacho, Tayna; Castro, Rose; Luick, Bret; Novotny, Rachel
2014-12-01
Underserved minority populations in the US Affiliated Pacific Islands (USAPI), Hawaii, and Alaska display disproportionate rates of childhood obesity. The region's unique circumstance should be taken into account when designing obesity prevention interventions. The purpose of this paper is to (a), describe the community engagement process (CEP) used by the Children's Healthy Living (CHL) Program for remote underserved minority populations in the USAPI, Hawaii, and Alaska (b) report community-identified priorities for an environmental intervention addressing early childhood (ages 2-8 years) obesity, and (c) share lessons learned in the CEP. Four communities in each of five CHL jurisdictions (Alaska, American Samoa, Commonwealth of the Northern Mariana Islands, Guam, Hawai'i) were selected to participate in the community-randomized matched-pair trial. Over 900 community members including parents, teachers, and community leaders participated in the CEP over a 14 month period. The CEP was used to identify environmental intervention priorities to address six behavioral outcomes: increasing fruit/vegetable consumption, water intake, physical activity and sleep; and decreasing screen time and intake of sugar sweetened beverages. Community members were engaged through Local Advisory Committees, key informant interviews and participatory community meetings. Community-identified priorities centered on policy development; role modeling; enhancing access to healthy food, clean water, and physical activity venues; and healthy living education. Through the CEP, CHL identified culturally appropriate priorities for intervention that were also consistent with the literature on effective obesity prevention practices. Results of the CEP will guide the CHL intervention design and implementation. The CHL CEP may serve as a model for other underserved minority island populations.
Optical Reflectance and Fluorescence for Detecting Nitrogen Needs in Zea mays L.
NASA Technical Reports Server (NTRS)
McMurtrey, J. E.; Middleton, E. M.; Corp. L. A.; Campbell, P. K. Entcheva; Butcher, L. M.; Daughtry, C. S. T.
2003-01-01
Nitrogen (N) status in field grown corn (Zea mays L.) was assessed using spectral techniques. Passive reflectance remote sensing and, both passive and active fluorescence sensing methods were investigated. Reflectance and fluorescence methods are reported to detect changes in the primary plant pigments (chlorophylls a and b; carotenoids) in higher plant species. As a general rule, foliar chlorophyll a (Chl a) and chlorophyll b (Chl b) usually exist in approx.3:l ratio. In plants under stress, Chl b content is affected before Chl a reductions occur. For reflectance, a version of the chlorophyll absorption in reflectance index (CARI) method was tested with narrow bands from the Airborne Imaging Spectroradiometer for Applications (ASIA). CARI minimizes the effects of soil background on the signal from green canopies. A modified CARI (MCARI) was used to track total Chl a levels in the red dip of the spectrum from the corn canopy. A second MCARI was used to track the auxiliary plant pigments (Chl b and the carotenoids) in the yellow/orange/red edge part of the reflectance spectrum. The difference between these two MCARI indices detected variations in N levels across the field plot canopies using ASIA data. At the leaf level, ratios of fluorescence emissions in the blue, green, red and far-red wavelengths sensed responses that were associated with the plant pigments, and were indicative of energy transfer in the photosynthetic process. N stressed corn stands could be distinguish from those with optimally applied N with fluorescence emission spectra obtained from individual corn leaves. Both reflectance and fluorescence methods are sensitive in detecting corn N needs and may be especially powerful in monitoring crop conditions if both types of information can be combined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jubert, C; Mata, J; Bench, G
Chlorophyll (Chla) and chlorophyllin (CHL) were shown previously to reduce carcinogen bioavailability, biomarker damage, and tumorigenicity in trout and rats. These findings were partially extended to humans (Proc Natl Acad Sci USA 98, 14601-14606 (2001)), where CHL reduced excretion of aflatoxin B{sub 1} (AFB{sub 1})-DNA repair products in Chinese unavoidably exposed to dietary AFB{sub 1}. However, neither AFB{sub 1} pharmacokinetics nor Chla effects were examined. We conducted a small unblinded crossover study to establish AFB{sub 1} pharmacokinetic parameters in human volunteers, and to explore possible effects of CHL or Chla co-treatment on those parameters. For protocol 1, fasted subjects receivedmore » an IRB-approved dose of 14C-AFB{sub 1} (30 ng, 5 nCi) by capsule with 100 ml water, followed by normal eating and drinking after hr 2. Blood and cumulative urine samples were collected over 72 hr, and {sup 14}C-AFB{sub 1} equivalents were determined by Accelerator Mass Spectrometry. Protocols 2 and 3 were similar except capsules also contained 150 mg of purified Chla, or CHL, respectively. All protocols were repeated 3 times for each of three volunteers. The study revealed rapid human AFB{sub 1} uptake (plasma ka 5.05 {+-} 1.10 hr-1, Tmax 1.0 hr) and urinary elimination (95% complete by 24 hr) kinetics. Chla and CHL treatment each significantly impeded AFB{sub 1} absorption and reduced Cmax and AUC's (plasma and urine) in one or more subjects. These initial results provide AFB{sub 1} pharmacokinetic parameters previously unavailable for humans, and suggest that Chla or CHL co-consumption may limit the bioavailability of ingested aflatoxin in humans, as they do in animal models.« less
Strategy of photo-protection in phytoplankton assemblages in the Kongsfjorden, Svalbard, Arctic
NASA Astrophysics Data System (ADS)
Ha, Sun-Yong; Lee, Doo Byoul; Kang, Sung-Ho; Shin, Kyung-Hoon
2016-01-01
Photo-protective functions were investigated in phytoplankton assemblages at Kongsfjorden, Svalbard in spring, using their UV-absorbing compounds (mycosporine-like amino acids (MAAs)), xanthophyll pigments (diadinoxanthin (DD) and diatoxanthin (DT)) and < beta >- dimethylsulphoniopropionate (< beta >-DMSP). The dominant phytoplankton species in the inner bay were dominated by Phaeocystis spp. and nanoflagellates, while the offshore waters were dominated by Thalassiosira spp. In the inner bay, UVabsorbing compounds and xanthophyll pigments exhibited higher ratios of MAA to chlorophyll a (MAA:chl a ratio), and both DD and DT to chlorophyll a (DD:chl a ratio and DT:chl a ratio), respectively. Thus, the photoprotective-pigments such as DD and DT appear to complement MAAs in the natural phytoplankton assemblage. However, the ratio of < beta >-DMSP to chlorophyll a (< beta >-DMSP:chl a ratio) did not show a distinct spatial distribution according to environmental factors or interspecies differences. In this study, we found that photoprotective compounds occurred in a manner dependent on the phytoplankton species composition in Kongsfjorden Bay, where Phaeocystis is the dominant species.
Introduction to Phase-Resolving Wave Modeling with FUNWAVE
2015-07-01
Boussinesq wave models have become a useful tool for modeling surface wave transformation from deep water to the swash zone, as well as wave-induced...overlapping area of ghost cells, three rows deep , as required by the fourth-order MUSCL-TVD scheme. The MPI with nonblocking communication was used to...implemented ERDC/CHL CHETN-I-87 July 2015 12 SPONGE LAYER SPONGE_ON Sponge_west_width Sponge_east_width Sponge_south_width
NASA Astrophysics Data System (ADS)
Kang, Jae Joong; Joo, HuiTae; Lee, Jae Hyung; Lee, Jang Han; Lee, Ho Won; Lee, Dabin; Kang, Chang Keun; Yun, Mi Sun; Lee, Sang Heon
2017-09-01
The East/Japan Sea (EJS) where is surrounded by the Korean peninsula, the Japanese islands, and the Russian coast has been experiencing a large change in physicochemical properties. Based on biochemical composition analysis (carbohydrates, proteins, and lipids), the current qualitative status of phytoplankton was identified in the northern EJS from two different sampling seasons (fall and spring in 2012 and 2015, respectively). The average chlorophyll-a (chl-a) concentration integrated from the euphotic depths was significantly higher in 2015 (99.3 ± 69.2 mg m-2) than 2012 (21.5 ± 6.7 mg m-2). Large phytoplankton (> 2 μm) were predominant in 2015 accounting for 64.5 ± 19.7% whereas small-size phytoplankton (0.7-2 μm) were dominant (49.1 ± 17.5%) in 2012. The biochemical compositions of phytoplankton were predominated by lipids (42.6 ± 7.8%) in 2012 whereas carbohydrate composition largely contributed (53.2 ± 11.7%) to the total biochemical composition in 2015, which is mainly due to different nutrient availabilities and growth stages. Interestingly, the averaged FM concentrations and calorific values for phytoplankton based on the biochemical compositions had similar values between the two years, although the integrated chl-a concentrations were substantially different between 2012 and 2015. In terms of different cell sizes of phytoplankton, we found that small phytoplankton assimilate more FM and calorific energy per unit of chl-a concentration than total phytoplankton. Our results are meaningful for the understanding of future marine ecosystems where small phytoplankton will become dominant at a scenario of ongoing warmer oceans.
Antibiotic resistances of intestinal lactobacilli isolated from wild boars.
Klose, Viviana; Bayer, Katharina; Kern, Corinna; Goelß, Florian; Fibi, Silvia; Wegl, Gertrude
2014-01-10
Acquired antibiotic resistances have been reported in lactobacilli of various animal and food sources, but there are no data from wild boar. The objective was a preliminary examination of the antibiotic resistance prevalence of intrinsically vancomycin-resistant lactobacilli isolated from wild boar intestines and analysis of the genetic determinants implicated. Out of three wild boars, 121 lactobacilli were recovered and grouped according to their whole cell protein patterns. Initial phenotypic screening revealed that all were susceptible to erythromycin (2 μg/ml), but 30 were resistant to tetracycline (32 μg/ml). Based on Randomly Amplified Polymorphic DNA-PCR clustering, 64 strains were selected as representative genotypes for identification and minimum inhibitory concentration (MIC) determination. Partial 16S rRNA gene sequencing identified four species: (i) L. mucosae (n=57), (ii) L. reuteri (n=47), (iii) L. fermentum (n=12), and (iv) L. murinus (n=5). Most heterofermentative strains displayed low MICs for ampicillin (AMP), chloramphenicol (CHL), streptomycin (STR), kanamycin (KAN), gentamicin (GEN), erythromycin (ERY), quinupristin/dalfopristin (Q/D), and clindamycin (CLI). Atypical MICs were found mainly in L. mucosae and L. reuteri for TET, KAN, STR, AMP and CHL, but except the TET MICs of L. mucosae mostly at low level. L. murinus strains revealed atypical MICs for aminoglycosides, and/or CHL, AMP, CLI. PCR screening detected tet(W) in 12 and tet(M) in one of heterofermentative strains, as well as the aph(3')-III kanamycin gene in L. murinus. This is the first report showing acquired antibiotic resistance determinants in intestinal lactobacilli of wild boar origin. Copyright © 2013 Elsevier B.V. All rights reserved.
Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan
2015-12-01
Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Landsat Spectral Indices Applied to Chl-a Monitoring in Finnish Lakes
NASA Astrophysics Data System (ADS)
Maeda, E. E.; Lisboa, F. B.; Brotas, V.; Kuikka, S.; Kaikkonen, L.
2017-12-01
With the launch of a new generation of multispectral space borne sensors, remote sensing of lakes has seen large progress in recent years. However, estimating the spatial and temporal distribution of chlorophyll-a (chl-a) across different environmental conditions remains challenging. In particular, constructing long time series of chl-a concentrations is hindered by the relatively recent use of ocean color satellites. The Landsat (LT) archive currently provides over three decades of images with suitable spatial resolution, and previous studies demonstrated good relationships between in situ measurements and LT reflectance bands. However, the estimation of limnological phytoplankton biomass based on LT data remains elusive, given its coarse spectral and temporal resolutions. In this paper, we analyze the relationship between chl-a concentrations, taken from in situ measurements, and LT spectral indices across 19 Finnish lakes. Image gathering and analysis of remotely sensed data were carried out using Google Earth Engine, allowing the assessment of the entire LT 5 and 7 archives. The boundaries of lakes' surfaces were defined using the permanent water regions of the Global Surface Water data set. We developed algorithms to iteratively derive models for chl-a estimation in all 19 lakes, resulting in a data set of correlation coefficients and statistical significances, from which we identified the best models for each lake. We evaluated models driven by single bands, band ratios, and multivariate fittings. Additionally, we included a variable time-window for matching up our imagery with the in situ data. Our results showed that the correlation between LT data and in-situ chl-a varies strongly among lakes. In some cases, a strong correlation can be found over specific bands or reflectance indices: Pyhäjärvi, multivariable model, R2 = 0.9, p-values = {0.04, 0.03} and Köyliönjärvi, R2 = 0.6, p-value = 0.009. Further studies will evaluate the reasons for discrepancies between lakes, as well as the chl-a threshold detection level among lakes with different trophic states.
Delineation of marine ecosystem zones in the northern Arabian Sea during winter
NASA Astrophysics Data System (ADS)
Shalin, Saleem; Samuelsen, Annette; Korosov, Anton; Menon, Nandini; Backeberg, Björn C.; Pettersson, Lasse H.
2018-03-01
The spatial and temporal variability of marine autotrophic abundance, expressed as chlorophyll concentration, is monitored from space and used to delineate the surface signature of marine ecosystem zones with distinct optical characteristics. An objective zoning method is presented and applied to satellite-derived Chlorophyll a (Chl a) data from the northern Arabian Sea (50-75° E and 15-30° N) during the winter months (November-March). Principal component analysis (PCA) and cluster analysis (CA) were used to statistically delineate the Chl a into zones with similar surface distribution patterns and temporal variability. The PCA identifies principal components of variability and the CA splits these into zones based on similar characteristics. Based on the temporal variability of the Chl a pattern within the study area, the statistical clustering revealed six distinct ecological zones. The obtained zones are related to the Longhurst provinces to evaluate how these compared to established ecological provinces. The Chl a variability within each zone was then compared with the variability of oceanic and atmospheric properties viz. mixed-layer depth (MLD), wind speed, sea-surface temperature (SST), photosynthetically active radiation (PAR), nitrate and dust optical thickness (DOT) as an indication of atmospheric input of iron to the ocean. The analysis showed that in all zones, peak values of Chl a coincided with low SST and deep MLD. The rate of decrease in SST and the deepening of MLD are observed to trigger the algae bloom events in the first four zones. Lagged cross-correlation analysis shows that peak Chl a follows peak MLD and SST minima. The MLD time lag is shorter than the SST lag by 8 days, indicating that the cool surface conditions might have enhanced mixing, leading to increased primary production in the study area. An analysis of monthly climatological nitrate values showed increased concentrations associated with the deepening of the mixed layer. The input of iron seems to be important in both the open-ocean and coastal areas of the northern and north-western parts of the northern Arabian Sea, where the seasonal variability of the Chl a pattern closely follows the variability of iron deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, Naamit K.; Atoria, Coral L.; Elkin, Elena B.
Purpose: Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is rare, comprising approximately 5% of all Hodgkin lymphoma (HL) cases. Patients with NLPHL tend to have better prognoses than those with classical HL (CHL). Our goal was to assess differences in survival between NLPHL and CHL patients, controlling for differences in patient and disease characteristics. Methods and Materials: Using data from the population-based Surveillance, Epidemiology and End Results (SEER) cancer registry program, we identified patients diagnosed with pathologically confirmed HL between 1988 and 2010. Results: We identified 1,162 patients with NLPHL and 29,083 patients with CHL. With a median follow-up of 7 years, 5- andmore » 10-year overall survival (OS) rates were 91% and 83% for NLPHL, respectively, and 81% and 74% for CHL, respectively. After adjusting for all available characteristics, NLPHL (vs CHL) was associated with higher OS (hazard ratio [HR]: 0.62, P<.01) and disease-specific survival (DSS; HR: 0.48, P<.01). The male predominance of NLPHL, compared to CHL, as well as the more favorable prognostic features in NLPHL patients are most pronounced in NLPHL patients <20 years old. Among all NLPHL patients, younger patients were less likely to receive radiation, and radiation use has declined by 40% for all patients from 1988 to 2010. Receipt of radiation was associated with better OS (HR: 0.64, P=.03) and DSS (HR: 0.45, P=.01) in NLPHL patients after controlling for available baseline characteristics. Other factors associated with OS and DSS in NLPHL patients are younger age and early stage. Conclusions: Our results in a large population dataset demonstrated that NLPHL patients have improved prognosis compared to CHL patients, even after accounting for stage and baseline characteristics. Use of radiation is declining among NLPHL patients despite an association in this series between radiation and better DSS and OS. Unique treatment strategies for NLPHL are warranted in both early and advanced stage disease.« less
NASA Astrophysics Data System (ADS)
Porcar-Castell, A.; Atherton, J.; Rajewicz, P. A.; Riikonen, A.; Gebre, S.; Liu, W.; Aalto, J.; Bendoula, R.; Burkart, A.; Chen, H.; Erkkilä, K. M.; Feret, J. B.; Fernández-Marín, B.; García-Plazaola, J. I.; Hakala, T.; Hartikainen, S.; Honkavaara, E.; Ihalainen, J.; Julitta, T.; Kolari, P.; Kooijmans, L.; Levula, J.; Loponen, M.; Mac Arthur, A.; Magney, T.; Maseyk, K. S.; Mottus, M.; Neimane, S.; Oksa, E.; Osterman, G. B.; Robinson, I.; Robson, M. T.; Sabater, N.; Solanki, T.; Tikkanen, M.; Mäkipää, R.; Aro, E. M.; Rascher, U.; Frankenberg, C.; Kulmala, M. T.; Vesala, T.; Back, J. K.
2017-12-01
The use of solar-induced chlorophyll fluorescence (ChlF) as a tracer of photosynthesis is rapidly expanding with increasing numbers of measurements from towers, drones, aircrafts, or satellites. But how to integrate all the informative potential of these multiscale datasets? The connection between ChlF and photosynthesis takes place via multiple mechansisms that depend on the scale. At the leaf level, diurnal variations in ChlF may indicate changes in photochemical or non-photochemical quenching processes, whereas seasonal variations may indicate changes in the protein structure or pigment composition of the photosynthetic apparatus. At the canopy level, variations in ChlF may also reflect changes in total leaf area, canopy structure, species composition, changes in illumination or sun-target-sensor geometry, background properties, etc. At the pixel level, the dynamics of the atmosphere are also important. It is therefore essential to characterize the impact of factors that control ChlF and photosynthesis at each scale. A combination of multiscale and continuous experimentation and modelling is probably the best option to close the remaining knowledge gaps. The goal of the FAST campaign was to characterize the processes that control the ChlF signal dynamics at each scale, establishing a comprehensive dataset for multiscale hypothesis and model validation. The campaign took place in Hyytiälä (Southern Finland) and lasted for 6 months. Measurements expanded from the molecular to the satellite pixel level and from the picosecond to the seasonal scale, including multiple species, and providing a unique optical and phenomenological record of the multiscale spring recovery of photosynthesis in a boreal forest. Amongst others we measured and registered: leaf ChlF spectra, OJIP kinetics, PSI and PSII activity, photosynthetic gas exchange, carbonyl sulphide (COS), volatile organic compounds (VOCs), total leaf absorption, pigment concentrations, photosynthetic proteins, fluorescence lifetime, canopy SIF, CO2, water, COS, and VOC fluxes, as well as vertical profiles of forest SIF using a drone and target OCO-2 observations at 1x2km pixel resolution. We here present preliminary results from the FAST campaign which emphasize the variability and role of different controls across scales.
Factors influencing particulate lipid production in the East Atlantic Ocean
NASA Astrophysics Data System (ADS)
Gašparović, B.; Frka, S.; Koch, B. P.; Zhu, Z. Y.; Bracher, A.; Lechtenfeld, O. J.; Neogi, S. B.; Lara, R. J.; Kattner, G.
2014-07-01
Extensive analyses of particulate lipids and lipid classes were conducted to gain insight into lipid production and related factors along the biogeochemical provinces of the Eastern Atlantic Ocean. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a), phaeopigments, Chl a concentrations and carbon content of eukaryotic micro-, nano- and picophytoplankton, including cell abundances for the latter two and for cyanobacteria and prokaryotic heterotrophs. We focused on the productive ocean surface (2 m depth and deep Chl a maximum (DCM). Samples from the deep ocean provided information about the relative reactivity and preservation potential of particular lipid classes. Surface and DCM particulate lipid concentrations (3.5-29.4 μg L-1) were higher than in samples from deep waters (3.2-9.3 μg L-1) where an increased contribution to the POC pool was observed. The highest lipid concentrations were measured in high latitude temperate waters and in the North Atlantic Tropical Gyral Province (13-25°N). Factors responsible for the enhanced lipid synthesis in the eastern Atlantic appeared to be phytoplankton size (micro, nano, pico) and the low nutrient status with microphytoplankton having the most expressed influence in the surface and eukaryotic nano- and picophytoplankton in the DCM layer. Higher lipid to Chl a ratios suggest enhanced lipid biosynthesis in the nutrient poorer regions. The various lipid classes pointed to possible mechanisms of phytoplankton adaptation to the nutritional conditions. Thus, it is likely that adaptation comprises the replacement of membrane phospholipids by non-phosphorus containing glycolipids under low phosphorus conditions. The qualitative and quantitative lipid compositions revealed that phospholipids were the most degradable lipids, and their occurrence decreased with increasing depth. In contrast, wax esters, possibly originating from zooplankton, survived downward transport probably due to the fast sinking rate of particles (fecal pellets). The important contribution of glycolipids in deep waters reflected their relatively stable nature and degradation resistance. A lipid-based proxy for the lipid degradative state (Lipolysis Index) suggests that many lipid classes were quite resistant to degradation even in the deep ocean.
NASA Astrophysics Data System (ADS)
Craig, J. D.; Strutton, P. G.; Evans, W.
2008-12-01
A database of chlorophyll fluorescence, particulate backscatter and beam attenuation was constructed from 17 cruises spanning the equatorial Pacific between August 2005 and February 2008. These optical measurements serve at least two important purposes. First, they can be used to document changes in phytoplankton abundance and physiology in a globally significant ecosystem. Second, they represent an important validation database for satellite observations that form the core of emerging primary productivity models. The data consist of CTD profiles from the surface to 1000m at least every degree of latitude between 8N and 8S, from near the Galapagos to beyond the date line. The optical data were calibrated with in situ samples of chlorophyll and particulate organic carbon (POC) from 4 of the 17 cruises. Chlorophyll concentration was derived from a multiple linear regression of chlorophyll fluorescence, time of day and depth, to account for photoinhibition of the fluorescence signal near the surface during the day. POC was derived from both particulate backscatter and beam attenuation. The optical data were then used to produce maps and latitude-depth sections of chlorophyll and POC for cruises where no in situ samples exist. In the eastern and central equatorial Pacific, phytoplankton chlorophyll to carbon ratios decreased by 30 to 50 percent during the weak El Nino conditions of 2006-2007. This change was due mostly to a decrease in chlorophyll, while POC remained relatively constant. In the western Pacific, the decrease in chl:C was absent, but an increase occurred in early 2008 when the system recovered from El Nino. Changes in chl:C, mostly indicative of photoadaptation, were also observed with depth and latitude as upwelled waters from the equator move poleward. Satellite-based maps of chlorophyll, phytoplankton C and chl:C were also produced and compared with the in situ optical measurements, with mostly good agreement.
Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...
NASA Astrophysics Data System (ADS)
Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.
2014-07-01
Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01661k
Norstrom, R.J.; Belikov, Stanislav; Born, E.W.; Garner, G.W.; Malone, B.; Olpinski, S.; Ramsay, M.A.; Schliebe, S.; Stirling, I.; Sitshov, M.S.; Taylor, M.K.; Wiig, Øystein
1998-01-01
Adipose tissue samples from polar bears (Ursus maritimus) were obtained by necropsy or biopsy between the spring of 1989 to the spring of 1993 from Wrangel Island in Russia, most of the range of the bear in North America, eastern Greenland, and Svalbard. Samples were divided into 16 regions corresponding as much as possible to known stocks or management zones. Concentrations of dieldrin (DIEL), 4,4'-DDE (DDE), sum of 16 polychlorinated biphenyl congeners (sigma PCB), and sum of 11 chlordane-related compounds and metabolites (sigma CHL) were determined. In order to minimize the effect of age, only data for adults (320 bears age 5 years and older) was used to compare concentrations among regions. Concentrations of sigma PCB were 46% higher in adult males than females, and there was no significant trend with age. Concentrations of sigma CHL were 30% lower in adult males than females. Concentrations of sigma PCB, sigma CHL, and DDE in individual adult female bears were standardized to adult males using factors derived from the least-square means of each sex category, and geometric means of the standardized concentrations on a lipid weight basis were compared among regions. Median geometric mean standardized concentrations (lipid weight basis) and ranges among regions were as follows: sigma PCB, 5,942 (2,763-24,316) micrograms/kg; sigma CHL, 1,952 (727-4,632) micrograms/kg; DDE, 219 (52-560) micrograms/kg; DIEL, 157 (31-335) micrograms/kg. Geometric mean sigma PCB concentrations in bears from Svalbard, East Greenland, and the Arctic Ocean near Prince Patrick Island in Canada were similar (20,256-24,316 micrograms/kg) and significantly higher than most other areas. Atmospheric, oceanic, and ice transport, as well as ecological factors may contribute to these high concentrations of sigma PCB. sigma CHL was more uniformly distributed among regions than the other CHCs. Highest sigma CHL concentrations were found in southeastern Hudson Bay, which also had the highest DDE and DIEL concentrations. In general, concentrations of sigma CHL, DDE, and DIEL were higher in eastern than western regions, suggesting an influence of North American sources. Average sigma PCB concentrations in bears from the Canadian Arctic were similar to those in 1982-84, while average sigma CHL and DDE concentrations were 35-44% lower and DIEL was 90% lower. However, the significance of these temporal trends during the 1980s is not conclusive because of the problems of comparability of data.
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-07-13
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean.
[Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].
Duan, Hong-Tao; Ma, Rong-Hua; Zhang, Yuan-Zhi; Zhang, Bai
2009-01-01
Hyperspectral remote sensing offers the potential to detect water quality variables such as Chl-a by using narrow spectral channels of less than 10 nm, which could otherwise be masked by broadband satellites such as Landsat TM. Fluorescence peak of the red region is very important for the remote sensing of inland and coastal waters, which is unique to phytoplankton Chl-a that takes place in this region. Based on in situ water sampling and field spectral measurement from 2004 to 2006 in Nanhu Lake, the features of the spectral reflectance were analyzed in detail with peak position shift. The results showed: An exponential fitting model, peak position = a(Chl-a)b, was developed between chlorophyll-a concentration and fluorescence peak shift, where a varies between 686.11 and 686.29, while b between 0.0062 and 0.0065. It was found that the better the spectral resolution, the higher the precision of the model. Except that, the average of peak shift showed a high correlation with the average of different Chl-a grades, and the determination coefficient (R2) was higher than 0.81. It contributed significantly to the increase in the accuracy of the derivation of chlorophyll values from remote sensing data in Nanhu Lake. There is satisfactory correspondence between hyperspectral models and chl-a concentration, therefore, it is possible to monitor the water quality of Nanhu lake throngh the hyperspetral remote sensing data.
Hritcu, Lucian; Ionita, Radu; Motei, Diana Elena; Babii, Cornelia; Stefan, Marius; Mihasan, Marius
2017-02-01
6-Hydroxy-l-nicotine (6HLN), a nicotine derivative from nicotine degradation by Arthrobacter nicotinovorans pAO1 strain was found to improve behavioral deficits and to reverse oxidative stress in the rat hippocampus. Rats were given CHL (10mg/kg, i.p.) were used as an Alzheimer's disease-like model. The nicotine (0.3mg/kg) and 6HLN (0.3mg/kg) were administered alone or in combination in the CHL-treated rats. Memory-related behaviors were evaluated using Y-maze and radial arm-maze tests. The antioxidant enzymes activity and the levels of the biomarkers of oxidative stress were measured in the hippocampus. Statistical analyses were performed using two-way ANOVA and Tukey's post hoc test. F values for which p<0.05 were regarded as statistically significant. CHL-caused memory deficits and oxidative stress enhancing were observed. Both nicotine and 6HLN administration attenuated the cognitive deficits and recovered the antioxidant capacity in the rat hippocampus of the CHL rat model. Our results suggest that 6HLN versus nicotine confers anti-amnesic properties in the CHL-induced a rat model of memory impairment via reversing cholinergic function and decreasing brain oxidative stress, suggesting the use of this compound as an alternative agent in AD treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Subjective Fatigue in Children With Hearing Loss Assessed Using Self- and Parent-Proxy Report
Gustafson, Samantha J.; Lancaster, Hope; Cho, Sun-Joo; Camarata, Stephen; Bess, Fred H.
2017-01-01
Purpose The primary purposes of this study were to examine the effects of hearing loss and respondent type (self- vs. parent-proxy report) on subjective fatigue in children. We also examined associations between child-specific factors and fatigue ratings. Method Subjective fatigue was assessed using the Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (PedsQL-MFS; Varni, Burwinkle, Katz, Meeske, & Dickinson, 2002). We compared self- and parent-proxy ratings from 60 children with hearing loss (CHL) and 43 children with normal hearing (CNH). The children ranged in age from 6 to 12 years. Results School-age CHL experienced more overall and cognitive fatigue than CNH, although the differences were smaller than previously reported. Parent-proxy report was not strongly associated with child self-report, and parents tended to underestimate their child's fatigue, particularly sleep/rest fatigue. Language ability was also associated with subjective fatigue. For CHL and CNH, as language abilities increased, cognitive fatigue decreased. Conclusions School-age CHL experience more subjective fatigue than CNH. The poor association between parent-proxy and child reports suggests that the parent-proxy version of the PedsQL-MFS should not be used in isolation when assessing fatigue in school-age children. Future research should examine how language abilities may modulate fatigue and its potential academic consequences in CHL. PMID:29049623
Wang, Peng; Liang, Fu-Cheng; Wittmann, Daniel; Siegel, Alex; Shan, Shu-Ou; Grimm, Bernhard
2018-04-10
Assembly of light-harvesting complexes requires synchronization of chlorophyll (Chl) biosynthesis with biogenesis of light-harvesting Chl a/b-binding proteins (LHCPs). The chloroplast signal recognition particle (cpSRP) pathway is responsible for transport of nucleus-encoded LHCPs in the stroma of the plastid and their integration into the thylakoid membranes. Correct folding and assembly of LHCPs require the incorporation of Chls, whose biosynthesis must therefore be precisely coordinated with membrane insertion of LHCPs. How the spatiotemporal coordination between the cpSRP machinery and Chl biosynthesis is achieved is poorly understood. In this work, we demonstrate a direct interaction between cpSRP43, the chaperone that mediates LHCP targeting and insertion, and glutamyl-tRNA reductase (GluTR), a rate-limiting enzyme in tetrapyrrole biosynthesis. Concurrent deficiency for cpSRP43 and the GluTR-binding protein (GBP) additively reduces GluTR levels, indicating that cpSRP43 and GBP act nonredundantly to stabilize GluTR. The substrate-binding domain of cpSRP43 binds to the N-terminal region of GluTR, which harbors aggregation-prone motifs, and the chaperone activity of cpSRP43 efficiently prevents aggregation of these regions. Our work thus reveals a function of cpSRP43 in Chl biosynthesis and suggests a striking mechanism for posttranslational coordination of LHCP insertion with Chl biosynthesis.
Hunter, Lisa L; Keefe, Douglas H; Feeney, M Patrick; Brown, David K; Meinzen-Derr, Jareen; Elsayed, Alaaeldin M; Amann, Julia M; Manickam, Vairavan; Fitzpatrick, Denis; Shott, Sally R
2017-09-01
The purpose of this study was to evaluate pressurised wideband acoustic immittance (WAI) tests in children with Down syndrome (DS) and in typically developing children (TD) for prediction of conductive hearing loss (CHL) and patency of pressure equalising tubes (PETs). Audiologic diagnosis was determined by audiometry in combination with distortion-product otoacoustic emissions, 0.226 kHz tympanometry and otoscopy. WAI results were compared for ears within diagnostic categories (Normal, CHL and PET) and between groups (TD and DS). Children with DS (n = 40; mean age 6.4 years), and TD children (n = 48; mean age 5.1 years) were included. Wideband absorbance was significantly lower at 1-4 kHz in ears with CHL compared to NH for both TD and DS groups. In ears with patent PETs, wideband absorbance and group delay (GD) were larger than in ears without PETs between 0.25 and 1.5 kHz. Wideband absorbance tests were performed similarly for prediction of CHL and patent PETs in TD and DS groups. Wideband absorbance and GD revealed specific patterns in both TD children and those with DS that can assist in detection of the presence of significant CHL, assess the patency of PETs, and provide frequency-specific information in the audiometric range.
Hunter, Lisa L.; Keefe, Douglas H.; Feeney, M. Patrick; Brown, David K.; Meinzen-Derr, Jareen; Elsayed, Alaaeldin M.; Amann, Julia M.; Manickam, Vairavan; Fitzpatrick, Denis; Shott, Sally R.
2017-01-01
Objective The purpose of this study was to evaluate pressurized wideband acoustic immittance (WAI) tests in children with Down syndrome (DS) and in typically developing children (TD) for prediction of conductive hearing loss (CHL) and patency of pressure equalizing tubes (PETs). Design Audiologic diagnosis was determined by audiometry in combination with distortion-product otoacoustic emissions, 226-Hz tympanometry and otoscopy. WAI results were compared for ears within diagnostic categories (Normal, CHL and PET) and between groups (TD and DS). Study Sample Children with DS (n=40; mean age 6.4 yrs.), and TD children (n=48; mean age 5.1 yrs.) were included. Results Wideband absorbance was significantly lower at 1–4 kHz in ears with CHL compared to NH for both TD and DS groups. In ears with patent PETs, wideband absorbance and group delay (GD) were larger than in ears without PETs between 0.25–1.5 kHz. Wideband absorbance tests performed similarly for prediction of CHL and patent PETs in TD and DS groups. Conclusions Wideband absorbance and group delay revealed specific patterns in both TD children and those with DS that can assist in detection of the presence of significant CHL, assess the patency of PETs, and provide frequency-specific information in the audiometric range. PMID:28434272
Fuel cell applied research: Electrocatalysis and materials
NASA Astrophysics Data System (ADS)
Srinivasan, S.; Isaacs, H.; McBreen, J.; Ogrady, W. E.; Olender, H.; Olmer, L. J.; Schouler, E. J. L.; Adzic, R. R.
1980-03-01
The effect of underpotential deposited metal layers on the electrocatalysis of fuel cell reactions is studied. The potential for developing organic compound/air fuel cells using underpotential deposited Pb adatoms to enhance the electrocatalysis of the fuel electrode is explored. The effects of adsorbed layers of Pb, Tl and Bi on formic acid and methanol oxidation on platinum in 85 percent H3PO4 were investigated. The effect of crystal orientation on formic acid oxidation on platinum in 1 M CHlO2 was investigated. The kinetics of the oxygen reduction and evolution reactions at the electrode (metal or oxide) solid electrolyte (yttria stabilized zirconia) interface were investigated using ac and dc techniques.
USDA-ARS?s Scientific Manuscript database
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed radiation into biomass (ec) and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. Modeling suggests that reducing chl content may also reduce leaf temperat...
USDA-ARS?s Scientific Manuscript database
Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, although the measurement principles of both techniques a...
MERCURY SEQUESTRATION IN CHL004 AND BACTERIA FROM AROUND THE WORLD
Mercury is a particularly toxic heavy metal which because of it's volatility easily impacts the globe and is partially responsible for loss of the ozone layer and thus global warming. The soil isolate Pseudomonas aeruginosa CHL004 has been found to concentrate Pb2+ and perhaps ot...
USDA-ARS?s Scientific Manuscript database
Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...
USDA-ARS?s Scientific Manuscript database
Light wavelengths preferentially absorbed by chlorophyll (chl) often display steep absorption gradients. This oversaturates photosynthesis in upper chloroplasts and deprives lower chloroplasts of blue and red light, causing a steep gradient in carbon fixation. Reducing chl content could create a mor...
CHARACTERIZATION OF PB2+ UPTAKE AND SEQUESTRATION IN PSEUDOMONAS AERUGINOSA, CHL004, LEAD
In laboratory studies, the soil isolate Pseudomonas aeruginosa CHL004 has been found to concentrate Pb2+ in the cytoplasm by formation of particles that contain Pb2+ and phosphorus. Upon examination of many particles using x-ray diffraction, we have found that the product formed ...
Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.
Winter, Christian; Payet, Jérôme P; Suttle, Curtis A
2012-01-01
One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.
Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean
Winter, Christian; Payet, Jérôme P.; Suttle, Curtis A.
2012-01-01
One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations. PMID:23285186
Gsponer, Natalia S; Rodríguez, María Claudia; Palacios, Rodrigo E; Chesta, Carlos A
2018-05-16
In this study, the phytoplankton structure of a freshwater reservoir located in central Argentina (Embalse Río Tercero) was analyzed using Beutler's method (Photosynthesis Research 72: 39-53, 2002), aiming to provide water quality control agencies with a reliable tool for early detection of algae blooms, particularly cyanobacteria. The method estimated the concentration of chlorophyll a (Chl a) contributed by individual algal groups in a real sample by fitting its fluorescence excitation spectrum to a linear combination of norm spectra of relevant algae groups. To this purpose, norm spectra for five algae genera usually found in Embalse Río Tercero, Microcystis, Chlorella, Cyclotella, Ceratium and Porphyridium, were constructed and posteriorly used to analyze samples collected in the reservoir in years 2014-2016. Results showed that the method worked well for the quick identification of the algae present in the samples, but it tended to overestimate its Chl a contents. This error was attributed to the large heterogeneity of the algal populations due to the aging of cells grown in environmental conditions. © 2018 The American Society of Photobiology.
Schwarz, Günter; Schulze, Jutta; Bittner, Florian; Eilers, Thomas; Kuper, Jochen; Bollmann, Gabriele; Nerlich, Andrea; Brinkmann, Henner; Mendel, Ralf R.
2000-01-01
Molybdenum (Mo) plays an essential role in the active site of all eukaryotic Mo-containing enzymes. In plants, Mo enzymes are important for nitrate assimilation, phytohormone synthesis, and purine catabolism. Mo is bound to a unique metal binding pterin (molybdopterin [MPT]), thereby forming the active Mo cofactor (Moco), which is highly conserved in eukaryotes, eubacteria, and archaebacteria. Here, we describe the function of the two-domain protein Cnx1 from Arabidopsis in the final step of Moco biosynthesis. Cnx1 is constitutively expressed in all organs and in plants grown on different nitrogen sources. Mo-repairable cnxA mutants from Nicotiana plumbaginifolia accumulate MPT and show altered Cnx1 expression. Transformation of cnxA mutants and the corresponding Arabidopsis chl-6 mutant with cnx1 cDNA resulted in functional reconstitution of their Moco deficiency. We also identified a point mutation in the Cnx1 E domain of Arabidopsis chl-6 that causes the molybdate-repairable phenotype. Recombinant Cnx1 protein is capable of synthesizing Moco. The G domain binds and activates MPT, whereas the E domain is essential for activating Mo. In addition, Cnx1 binds to the cytoskeleton in the same way that its mammalian homolog gephyrin does in neuronal cells, which suggests a hypothetical model for anchoring the Moco-synthetic machinery by Cnx1 in plant cells. PMID:11148290
USDA-ARS?s Scientific Manuscript database
Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...
THE DELTA UVRB MUTATIONS IN THE AMES STRAINS OF SALMONELLA SPAN 15-119 GENES
Abstract
The 4uvrB mutationesent in strains of Salmonella enterica Typhirnurium used commonly in the Salmonella (Ames) mutagenicity assay were isolated independently on separate occasions: chl-1005 (bio uvrBgal) for the hisG46-containing strains TA1535 and TA100; chl- 10...
NASA Astrophysics Data System (ADS)
Saulquin, Bertrand; Gohin, Francis; Garnesson, Philippe; Demaria, Julien; Mangin, Antoine; Fanton d'Andon, Odile
2016-08-01
The level-4 daily chl-a products are a combination of a water typed merge of chl-a estimates and an optimal interpolation based on the kriging method with regional anisotropic models [1, 2]. The Level 4 products basically pro- vide a global continuous (cloud free) estimation of the surface chl-a concentration at 4 km resolution over the world and 1 km resolution over the Europe. The level-4 products gather MODIS, MERIS, SeaWiFS, VIIRS and OLCI daily observations from 1998 to now.The Level 4 product avoids end users to consider typical lack of data as observed during cloudy conditions and the historical multiplicity of available algorithms such as involved by case 1 (oligotrophic) and case 2 (turbid) water issues in ocean colour. [3, 4].A total product uncertainty, i.e. a combination of the interpolation and the estimation error, is provided for each daily product. The L4 products are freely distributed in the frame of the Copernicus - Marine environment monitoring service.
Xavier, Ana C; Epperla, Narendranath; Taub, Jeffrey W; Costa, Luciano J
2018-02-01
Adolescents and young adults (AYA) surviving classical Hodgkin lymphoma (cHL) risk long term fatal treatment-related toxicities. We utilized the Surveillance, Epidemiology and End Results (SEER) program to compare excess mortality rate (EMR-observed minus expected mortality) for 10-year survivors of AYA cHL diagnosed in 1973-1992 and 1993-2003 eras. The 15-year EMR reduced from 4.88% to 2.19% while the 20-year EMR reduced from 9.46% to 4.07% between eras. Survivors of stages 1-2 had lower EMR than survivors of stages 3-4 cHL in the 1993-2003 but not in the 1973-1992 era. There was an overall decline in risk of death between 10 and 15 years from diagnosis, driven mostly by second neoplasms and cardiovascular mortality. Despite reduction in fatal second neoplasms and cardiovascular disease with more current therapy, long term survivors of AYA cHL still have a higher risk of death than the general population highlighting the need for safer therapies. © 2017 Wiley Periodicals, Inc.
Kavak, Mehmet Tahir; Karadogan, Sabri
2012-04-01
Present work investigated the relationship between Chlorophyll (Chl), of phytoplankton biomass, and sea surface temperature (SST) of the Black Sea, using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Advanced Very High Resolution Radiometer (AVHRR) satellite imagery. Satellite derived data could provide information on the amount of sea life present (Brown algae, called kelp, proliferate, supporting new species of sea life, including otters, fish, and various invertebrates) in a given area throughout the world. SST from AVHRR from 1993 to 2008 showed seasonal, annual and interannual variability of temperature, monthly variability Chl from SeaWiFS from 1997 to 2009 has also been investigated. Chl showed two high peaks for the year 1999 and 2008. The correlation between SST and Chl for the same time has been found to be 60%. Correlation was significant at p<0.05. The information could also be useful in connection with studies of global changes in temperature and what effect they could have on the total abundance of marine life.
Changes of the Components of Fresh Seaweed, Undaria pinnatifida, by Different Strage Conditions
NASA Astrophysics Data System (ADS)
Onodera, Munenaka; Yoshie-Stark, Yumiko; Suzuki, Takesh
This study was performed to keep the quality and to prolong the shelf life of fresh Undaria pinnatifida, by different storage conditions. Changes of the contents of chlorophyll a (Chl a) and its derivatives, β-carotene, pH, molecular weight of alginate and molecular weight distribution were determined during the storage of U. pinnatifida. The conditions of cold storage at -3 to 7°C with air or O2, storage in seawater, and storage in slurry ice made of seawater were tested. Chl a and β-carotene contents, and the pH of U. pinnatifida were decreased following the increment of storage days. Significant decrease of Chl a content and molecular weight of U. pinnatifida was detected under cold storage especially at 7°C. The storage by icing in slurry ice and by super chilling at -3°C inhibited the degradation of Chl a and β-carotene of U. pinnatifida. The content of pheophorbide a or pH were recognized as useful factors to evaluate the quality and freshness of U. pinnatifida.
Butel, Jean; Braun, Kathryn L; Novotny, Rachel; Acosta, Mark; Castro, Rose; Fleming, Travis; Powers, Julianne; Nigg, Claudio R
2015-12-01
Addressing complex chronic disease prevention, like childhood obesity, requires a multi-level, multi-component culturally relevant approach with broad reach. Models are lacking to guide fidelity monitoring across multiple levels, components, and sites engaged in such interventions. The aim of this study is to describe the fidelity-monitoring approach of The Children's Healthy Living (CHL) Program, a multi-level multi-component intervention in five Pacific jurisdictions. A fidelity-monitoring rubric was developed. About halfway during the intervention, community partners were randomly selected and interviewed independently by local CHL staff and by Coordinating Center representatives to assess treatment fidelity. Ratings were compared and discussed by local and Coordinating Center staff. There was good agreement between the teams (Kappa = 0.50, p < 0.001), and intervention improvement opportunities were identified through data review and group discussion. Fidelity for the multi-level, multi-component, multi-site CHL intervention was successfully assessed, identifying adaptations as well as ways to improve intervention delivery prior to the end of the intervention.
Eutrophication risk assessment in coastal embayments using simple statistical models.
Arhonditsis, G; Eleftheriadou, M; Karydis, M; Tsirtsis, G
2003-09-01
A statistical methodology is proposed for assessing the risk of eutrophication in marine coastal embayments. The procedure followed was the development of regression models relating the levels of chlorophyll a (Chl) with the concentration of the limiting nutrient--usually nitrogen--and the renewal rate of the systems. The method was applied in the Gulf of Gera, Island of Lesvos, Aegean Sea and a surrogate for renewal rate was created using the Canberra metric as a measure of the resemblance between the Gulf and the oligotrophic waters of the open sea in terms of their physical, chemical and biological properties. The Chl-total dissolved nitrogen-renewal rate regression model was the most significant, accounting for 60% of the variation observed in Chl. Predicted distributions of Chl for various combinations of the independent variables, based on Bayesian analysis of the models, enabled comparison of the outcomes of specific scenarios of interest as well as further analysis of the system dynamics. The present statistical approach can be used as a methodological tool for testing the resilience of coastal ecosystems under alternative managerial schemes and levels of exogenous nutrient loading.
Korbee, Nathalie; Carrillo, Presentación; Mata, M Teresa; Rosillo, Silvia; Medina-Sánchez, Juan Manuel; Figueroa, Félix L
2012-06-01
The combined effect of high solar ultraviolet radiation (UVR) and nutrient supply in a phytoplankton community of a high mountain lake is analyzed in a in situ experiment for 6 days with 2 × 2 factorial design. Interactive UVR × nutrient effects on structural and functional variables (algal biomass, chlorophyll a (chl a), primary production (PP), maximal electron transport rate (ETR(max)), and alkaline phosphatase activity (APA)), as well as stoichiometric ones (sestonic N per cell and N:P ratio) were found. Under non-nutrient enriched conditions, no deleterious effects of UVR on structural variables, PP, photosynthetic efficiency and ETR(max) were observed, whereas only particulate and total APA were affected by UVR. However, percentage excreted organic carbon (%EOC), dissolved APA and sestonic C and P per cell increased under UVR, leading to a decrease in algal C:P and N:P ratios. After nutrient enrichment, chl a, total algal biomass and PP were negatively affected by UVR whereas %EOC, ETR(max) and internal C, P and N content increased. We suggest that the mechanism of algal acclimation to UVR in this high UVR flux ecosystem seems to be related to the increase of internal algal P-content mediated by physiological mechanisms to save P and by a stimulatory UVR effect on dissolved extracellular APA. The mechanism involved in the unmasking effect of UVR after nutrient-enrichment may be the result of a greater sensitivity to UVR-induced cell damage, making the negative UVR effects more evident.
Adhikari, Neil D.; Froehlich, John E.; Strand, Deserah D.; Buck, Stephanie M.; Kramer, David M.; Larkin, Robert M.
2011-01-01
The GENOMES UNCOUPLED4 (GUN4) protein stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits protoporphyrin IX to chlorophyll biosynthesis. This stimulation depends on GUN4 binding the ChlH subunit of Mg-chelatase and the porphyrin substrate and product of Mg-chelatase. After binding porphyrins, GUN4 associates more stably with chloroplast membranes and was proposed to promote interactions between ChlH and chloroplast membranes—the site of Mg-chelatase activity. GUN4 was also proposed to attenuate the production of reactive oxygen species (ROS) by binding and shielding light-exposed porphyrins from collisions with O2. To test these proposals, we first engineered Arabidopsis thaliana plants that express only porphyrin binding–deficient forms of GUN4. Using these transgenic plants and particular mutants, we found that the porphyrin binding activity of GUN4 and Mg-chelatase contribute to the accumulation of chlorophyll, GUN4, and Mg-chelatase subunits. Also, we found that the porphyrin binding activity of GUN4 and Mg-chelatase affect the associations of GUN4 and ChlH with chloroplast membranes and have various effects on the expression of ROS-inducible genes. Based on our findings, we conclude that ChlH and GUN4 use distinct mechanisms to associate with chloroplast membranes and that mutant alleles of GUN4 and Mg-chelatase genes cause sensitivity to intense light by a mechanism that is potentially complex. PMID:21467578
NASA Astrophysics Data System (ADS)
Pitarch, Jaime; Ruiz-Verdú, Antonio; Sendra, María. D.; Santoleri, Rosalia
2017-02-01
We studied the performance of the MERIS maximum peak height (MPH) algorithm in the retrieval of chlorophyll-a concentration (CHL), using a matchup data set of Bottom-of-Rayleigh Reflectances (BRR) and CHL from a hypertrophic lake (Albufera de Valencia). The MPH algorithm produced a slight underestimation of CHL in the pixels classified as cyanobacteria (83% of the total) and a strong overestimation in those classified as eukaryotic phytoplankton (17%). In situ biomass data showed that the binary classification of MPH was not appropriate for mixed phytoplankton populations, producing also unrealistic discontinuities in the CHL maps. We recalibrated MPH using our matchup data set and found that a single calibration curve of third degree fitted equally well to all matchups regardless of how they were classified. As a modification to the former approach, we incorporated the Phycocyanin Index (PCI) in the formula, thus taking into account the gradient of phytoplankton composition, which reduced the CHL retrieval errors. By using in situ biomass data, we also proved that PCI was indeed an indicator of cyanobacterial dominance. We applied our recalibration of the MPH algorithm to the whole MERIS data set (2002-2012). Results highlight the usefulness of the MPH algorithm as a tool to monitor eutrophication. The relevance of this fact is higher since MPH does not require a complete atmospheric correction, which often fails over such waters. An adequate flagging or correction of sun glint is advisable though, since the MPH algorithm was sensitive to sun glint.
The effects of magnesium sulphate and EDTA in the hypercholesterolaemic rabbit.
Evans, D A; Tariq, M; Sujata, B; McCann, G; Sobki, S
2001-12-01
Numerous clinical reports suggest the beneficial effects of chelation therapy for the treatment of atherosclerosis. However, the results of these studies are inconclusive and controversial. The purpose of this present study was to examine the prophylactic and therapeutic effects of chelation liquid (CHL) in experimental atherosclerosis. Twenty New Zealand white rabbits were fed a 1% cholesterol-supplemented diet for 45 days. In the prophylactic phase of the study subcutaneous 300 mg EDTA + 500 mg magnesium sulphate (MgSO4) injections (five rabbits) and isotonic saline (five rabbits) were given to test and control groups, respectively, along with cholesterol rich diet. The CHL treatment ameliorated the rise of serum cholesterol and serum triglyceride concentrations, lowered serum calcium concentrations and reduced the aortic atheroma. In the therapeutic phase of the experiment the cholesterol diet was stopped and the remaining 10 animals were returned to normal diet. Five of these rabbits were given CHL injections and other five animals were given isotonic saline injections for 121 days. Although the level of cholesterol and triglyceride were not significantly different in the two groups, the serum calcium concentration and the percentage of the area of flate aortic specimen occupied by atheroma were significantly lower in the CHL treated rabbits as compared to controls. It is concluded that CHL injections have a definite prophylactic effect on atherogenesis in the cholesterol-fed rabbit, and may have some therapeutic value in the regression phase. Further confirmatory studies are suggested.
HIV-infection has no prognostic impact on advanced-stage Hodgkin lymphoma.
Sorigué, Marc; García, Olga; Tapia, Gustavo; Baptista, Maria-Joao; Moreno, Miriam; Mate, José-Luis; Sancho, Juan M; Feliu, Evarist; Ribera, Josep-Maria; Navarro, José-Tomás
2017-06-19
Classical Hodgkin lymphoma (cHL) is a non-AIDS-defining cancer with a good response to chemotherapy in the combined antiretroviral therapy (cART) era. The aim of the present study was to compare the characteristics, the response to treatment and the survival of advanced-stage cHL treated with adriamycin, bleomycin, vinblastine and dacarbazine (ABVD) between cART-treated HIV-positive and HIV-negative patients. We retrospectively analyzed advanced-stage cHL patients from a single institution, uniformly treated with ABVD. All HIV-positive patients received cART concomitantly with ABVD. A total of 69 patients were included in the study: 21 were HIV-positive and 48 were HIV-negative. HIV-positive patients had more aggressive features at cHL diagnosis, such as worse performance status, more frequent bone marrow involvement and mixed cellularity histologic subtype. There were no differences in complete response rate (89% in HIV-positive vs. 91% in HIV-negative), P = 1; disease-free survival (DFS) [10-year DFS probability (95% CI) 70% (41-99%) vs. 74% (57-91%)], P = 0.907 and overall survival (OS) [10-year OS probability (95% CI) 73% (52-94%) vs. 68% (51-85%)], P = 0.904. On multivariate analysis, HIV infection did not correlate with worse OS. Although HIV-positive patients with cHL had more aggressive baseline features in this series, there were no differences in response rate or survival between HIV-positive and HIV-negative patients.
Chalcones in bioactive Argentine propolis collected in arid environments.
Solórzano, Eliana; Vera, Nancy; Cuello, Soledad; Ordoñez, Roxana; Zampini, Catiana; Maldonado, Luis; Bedascarrasbure, Enrique; Isla, María I
2012-07-01
The aim of this study was to assess the chemical and biological profile of propolis samples collected in arid environments of north-western Argentina. The samples were from two phytogeographical regions (Prepuna and Monte de Catamarca Province). Propolis ethanolic extracts (PEE) and chloroform (CHL), hexane (HEX) and aqueous (AQ) sub-extracts of samples from three regions (CAT-I; CAT-II and CAT-III) were obtained. All PEE exhibited antioxidant activity in the DPPH radical scavenging assay (SC50 values between 28 and 43 microg DW/mL). The CHL extract was the most active (SC50 values between 10 and 37 microg DW/mL). The antioxidant activity in the beta-carotene bleaching assays was more effective for PEE and CHL (IC50 values between 2 and 9 microg DW/mL, respectively). A similar pattern was observed for antibacterial activity. The highest inhibitory effect on the growth of human Gram-positive bacteria was observed for CHL-III and CHL-I (Monte region) with minimal inhibitory concentration values (MIC100) of 50 to 100 microg DW/mL. Nine compounds were identified by HPLC-PAD. Two of them (2', 4'- dihydroxychalcone and 2',4'- dihydroxy 3'-methoxychalcone) were found only in propolis samples from the Monte phytogeographical region. We consider that the Argentine arid region is appropriate to place hives in order to obtain propolis of excellent quality because the dominant life forms in that environment are shrubby species that produce resinous exudates with a high content of chalcones, flavones and flavonols.
Sakuno, Yuji; Miño, Esteban R; Nakai, Satoshi; Mutsuda, Hidemi; Okuda, Tetsuji; Nishijima, Wataru; Castro, Rolando; García, Amarillis; Peña, Rosanna; Rodríguez, Marcos; Depratt, G Conrado
2014-07-01
This study aims to study the distribution of contaminants in rivers that flow into the Caribbean Sea using chlorophyll-a (Chl-a) and suspended sediment (SS) as markers and ALOS AVNIR-2 satellite sensor data. The Haina River (HN) and Ozama and Isabela Rivers (OZ-IS) that flow through the city of Santo Domingo, the capital of the Dominican Republic, were chosen. First, in situ spectral reflectance/Chl-a and SS datasets obtained from these rivers were acquired in March 2011 (case A: with no rain influence) and June 2011 (case B: with rain influence), and the estimation algorithm of Chl-a and SS using AVNIR-2 data was developed from the datasets. Moreover, the developed algorithm was applied to AVNIR-2 data in November 2010 for case A and August 2010 for case B. Results revealed that for Chl-a and SS estimations under cases A and B conditions, the reflectance ratio of AVNIR-2 band 4 and band 3 (AV4/AV3) and the reflectance of AVNIR-2 band 4 (AV4) were effective. The Chl-a and SS mapping results obtained using AVNIR-2 data corresponded with the field survey results. Finally, an outline of the distribution of contaminants at the mouth of the river that flows into the Caribbean Sea was obtained for both rivers in cases A and B.
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-01-01
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071
Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific
NASA Astrophysics Data System (ADS)
Toyoda, Takahiro; Okamoto, Suguru
2017-03-01
We investigated physical forcing of late summer chlorophyll a (chl a) blooms in the oligotrophic eastern North Pacific Ocean by using ocean reanalysis and satellite data. Relatively large chl a blooms as defined in this study occurred in August-October following sea surface temperature (SST) anomaly (SSTA) decreases, mixed layer deepening, and temperature and salinity increases at the bottom of the mixed layer. These physical conditions were apparently induced by the entrainment of subsurface water resulting from the destabilization of the surface layer caused by anomalous northward Ekman transport of subtropical waters of higher salinity. Salinity-normalized total alkalinity data provide supporting evidence for nutrient supply by the entrainment process. We next investigated the impact of including information about the entrainment on bloom identification. The results of analyses using reanalysis data and of those using only satellite data showed large SSTA decreases when the northward Ekman salinity transports were large, implying that the entrainment of subsurface water is well represented in both types of data. After surface-destabilizing conditions were established, relatively high surface chl a concentrations were observed. The use of SST information can further improve the detection of high chl a concentrations. Although the detection of high chl a concentrations would be enhanced by finer data resolution and the inclusion of biogeochemical parameters in the ocean reanalysis, our results obtained by using existing reanalysis data as well as recent satellite data are valuable for better understanding and prediction of lower trophic ecosystem variability.
Optimization of chlorphenesin emulgel formulation.
Mohamed, Magdy I
2004-10-11
This study was conducted to develop an emulgel formulation of chlorphenesin (CHL) using 2 types of gelling agents: hydroxypropylmethyl cellulose (HPMC) and Carbopol 934. The influence of the type of the gelling agent and the concentration of both the oil phase and emulsifying agent on the drug release from the prepared emulgels was investigated using a 2(3) factorial design. The prepared emulgels were evaluated for their physical appearance, rheological behavior, drug release, antifungal activity, and stability. Commercially available CHL topical powder was used for comparison. All the prepared emulgels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. They also exhibited higher drug release and antifungal activity than the CHL powder. It was found that the emulsifying agent concentration had the most pronounced effect on the drug release from the emulgels followed by the oil phase concentration and finally the type of the gelling agent. The drug release from all the emulgels was found to follow diffusion-controlled mechanism. Rheological studies revealed that the CHL emulgels exhibited a shear-thinning behavior with thixotropy. Stability studies showed that the physical appearance, rheological properties, drug release, and antifungal activity in all the prepared emulgels remained unchanged upon storage for 3 months. As a general conclusion, it was suggested that the CHL emulgel formulation prepared with HPMC with the oil phase concentration in its low level and emulsifying agent concentration in its high level was the formula of choice since it showed the highest drug release and antifungal activity.
NASA Astrophysics Data System (ADS)
Slawyk, Gerd; Coste, Bernard; Collos, Yves; Rodier, Martine
1997-01-01
Using measurements of 15N uptake and activities of nitrate reductase and glutamine synthetase, the utilization of nitrogenous nutrients by microplankton in the Portuguese upwelling area was investigated. During this cruise the euphotic zone of coastal waters was in most cases bisected by a nitracline forming two layers. Total inorganic nitrogen uptake rates (NH 4+ + NO 3-) in the upper mixed and nitrate-impoverished layer ranged from 0.1 to 0.8 nM h -1 and were primarily supported by regenerated (ammonium) nitrogen (62-97%), whereas they varied between 0.9 and 10.4 nM h -1 in the deep nitrate-rich layer and were mainly driven by new (nitrate) nitrogen (52-82%). Depth profiles of Chl a-specific uptake rates for ammonium and nitrate paralleled those of absolute uptake rates, i.e. values of VNH 4+Chl were highest (up to 16.1 nmol μg -1 h -1) in nitrate-poor surface waters while values of VNO 3-Chl were maximum (up to 8.4 nmol μg -1 h -1)within the nitracline. This latter vertical ordering of planktonic nitrogen nutrition was consistent with an aged upwelling situation. However, applying several indices of cell metabolism and nutritional status, such as 15N uptake/enzyme activity, surge uptake internally controlled uptake, and V maxChl/K t ratios, we were able to demonstrate that the phytoplankton assemblages inhabiting the nutrient-impoverished upper layer still bore the signature of physically mediated nitrogen (nitrate) supply generated by active upwelling that had occurred during the week before our visit to the area. This signature was the most evident in samples from the station furthest inshore and faded with distance from shore as a result of the deepening of the nitrate isopleths (weakening of upwelling activity), which showed the same offshore trend. The appearance of nitrate-rich waters at the surface, after a strong pulse of upwelling favourable winds just before the end of the cruise, led to a five-fold increase in average (over the euphotic zone) absolute and Chl a-specific nitrate uptake rates (10.4 nM h -1, 7.5 nmol μ -1 h -1) compared to the mean rates during weak upwelling (1.7 nM h -1, 1.5 nmol μ -1 h -1). From a comparison with the neighbouring Moroccan upwelling, it is assumed that new production in the Portuguese upwelling averages 50 nM h -1. Thus, this upwelling would rank with the northwest African upwelling system off Cape Blanc or with the Californian upwelling at Point Conception for the capacity of new production, but seems to be much less efficient (seven-fold) than the highly permanent Peru upwelling.
Sánchez-Osorio, José Luis; Macías-Zamora, José Vinicio; Ramírez-Álvarez, Nancy; Bidleman, Terry F
2017-04-01
The agricultural Mexicali and Yaqui valleys (MV, YV) in northwest Mexico were heavily treated with organochlorine pesticides in the past. Residential soils and agricultural drain sediments were sampled in 2008-2009 and analyzed for DDTs (o,p'- and p,p'- isomers of DDE, DDD and DDT); hexachlorocyclohexanes (α-, β-, γ- and δ-HCH) and chlordanes (trans-chlordane, cis-chlordane, heptachlor and heptachlor exo-epoxide). Geometric means (GMs) (ng g -1 dry weight) were: MV soils (n = 27) ΣDDT 22, ΣHCH 0.80, ΣCHL 0.88; YV soils (n = 25) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.67; MV sediments (n = 3) ΣDDT 5.0, ΣHCH 0.23, ΣCHL 0.53; YV sediments (n = 8) ΣDDT 2.6, ΣHCH 0.12, ΣCHL 0.090. GMs were significantly higher (p < 0.05) in MV than YV soils for ΣDDT and ΣHCH, but not for ΣCHL. Comparison to worldwide regulatory guideline values (RGVs) for residential soils showed all compounds below mean or GM RGVs, but above the lowest RGV in some cases. Low p,p'-DDT/(p,p'-DDT + p,p'-DDE) in most soils indicated aged residues. Lack of p,p'-DDT metabolism might account for its dominance in a few soils. HCH isomer profiles suggested aged technical HCH in the YV, and technical HCH + lindane in the MV. Heptachlor dominated the ΣCHL, probably from application of technical heptachlor as well as chlordane. Chiral compounds were nonracemic in soils and sediments and indicated enantioselective microbial degradation of (+)α-HCH, (-)trans-chlordane, (-)cis-chlordane and (+)o,p'-DDT. Depletion of (+)o,p'-DDT in soils may account for similar enantiomer signatures previously reported in air of northwest Mexico. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Lu; Pu, Hongbin; Sun, Da-Wen
2016-01-15
Chlorophyll a (Chl-a) is regarded as one of the important components to estimate water quality and sustainability of freshwater aquaculture operations. In the current study, a hyperspectral imaging (HSI) system was used to determine the effect of season models on the accuracy of Chl-a estimation in outdoor aquaculture ponds. A visible and near infrared hyperspectral imaging system (400-1000nm) was used to measure surface spectral reflectance (R) of water collected from outdoor ponds in four different seasons. Firstly, values of surface spectral reflectance (R) were amplified by a baseline correction (740nm). Two-band, three-band and four-band spectral reflectance were used to compute Chl-a concentration and a new cross band ratio algorithm with six wavelengths was proposed in the study. Results indicated that two-band model established based on reflectance ratio (R702/R666) had better performances for Chl-a prediction with determination coefficients (r(2)) of 0.908 than those by (R675(-1)-R691(-1))*R743 and (R675(-1)-R691(-1))/(R743(-1)-R691(-1)) models with r(2) of 0.902 and 0.896, respectively. Six optimal wavelengths (410, 682, 691, 966, 972, and 997) were identified using successive projections algorithm (SPA). The optimized regression model (R410(-1)-R966(-1))/(R682(-1)-R972(-1))/(R691(-1)-R997(-1)) showed best result with r(2) of 0.961 for Chl-a prediction. Model of cross band ratio algorithm with six wavelengths was mapped to each pixel in the image to display Chl-a component in outdoor ponds under four different seasons. The current study showed that it was feasible to use the HSI system for monitoring the influence of seasons for outdoor aquaculture water quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Eric Lupo, J; Koka, Kanthaiah; Thornton, Jennifer L; Tollin, Daniel J
2011-02-01
Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (±420 μs at 500 Hz, ±310 μs for 1-4 kHz) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10-38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. Copyright © 2010 Elsevier B.V. All rights reserved.
Lupo, J. Eric; Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.
2010-01-01
Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (± 420 µs at 500 Hz, ± 310 µs for 1–4 kHz ) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10–38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. PMID:21073935
Siefermann-Harms, Dorothea; Boxler-Baldoma, Carmen; von Wilpert, Klaus; Heumann, Hans-Günther
2004-04-01
Biochemical, physiological and ultrastructural changes of the chloroplasts were examined in the course of the rapid yellowing process of spruce (Picea abies (L.) Karst.) at a Mg-deficient and ozone polluted mountain site (Schöllkopf mountain, Central Black Forest, Germany, 840 m a.s.l.). While at an early stage of yellowing the chlorophyll (Chl) content of the needles decreased slowly, significant changes occurred in the chloroplasts: The lability of the light-harvesting Chl a/b protein complex LHC II increased; the thylakoid cross-sectional area of chloroplasts in the outer mesophyll of the needles decreased, and their Chl fluorescence showed typical changes like the decrease of Fv/Fm and the increase of the photoinhibitory Fv quenching. Later on, the Chl content decreased rapidly, the changes in the chloroplasts continued and the needles turned yellow. Lutein and the pigments of the xanthophyll cycle were enhanced in relation to Chl a. Light and dark reactions of the xanthophyll cycle were highly active indicating efficient proton pumping and NADPH formation. The ratio of nonappressed to appressed thylakoid membranes increased with decreasing Fv/Fm suggesting that structural and fluorescence properties of the chloroplasts were related. The response of the needles to defined shading and improved Mg supply was also examined. The combined effects of strong sun light, low levels of non-Chl-bound Mg (Mg(free)) and ozone concentrations exceeding 80 microg m(-3) are shown to be necessary to induce the rapid yellowing process. For needles with Mg(free) < 0.12 mg g(-1) needle dry matter, the lability of the LHC II was correlated with the ozone concentration suggesting that the destabilization of the LHC II plays a central role in the rapid yellowing process.
Summer diatom blooms in the North Pacific subtropical gyre: 2008-2009.
Villareal, Tracy A; Brown, Colbi G; Brzezinski, Mark A; Krause, Jeffrey W; Wilson, Cara
2012-01-01
The summertime North Pacific subtropical gyre has widespread phytoplankton blooms between Hawaii and the subtropical front (∼30°N) that appear as chlorophyll (chl) increases in satellite ocean color data. Nitrogen-fixing diatom symbioses (diatom-diazotroph associations: DDAs) often increase 10(2)-10(3) fold in these blooms and contribute to elevated export flux. In 2008 and 2009, two cruises targeted satellite chlorophyll blooms to examine DDA species abundance, chlorophyll concentration, biogenic silica concentration, and hydrography. Generalized observations that DDA blooms occur when the mixed layer depth is < 70 m are supported, but there is no consistent relationship between mixed layer depth, bloom intensity, or composition; regional blooms between 22-34°N occur within a broader temperature range (21-26°C) than previously reported. In both years, the Hemiaulus-Richelia and Rhizosolenia-Richelia DDAs increased 10(2)-10(3) over background concentrations within satellite-defined bloom features. The two years share a common trend of Hemiaulus dominance of the DDAs and substantial increases in the >10 µm chl a fraction (∼40-90+% of total chl a). Integrated diatom abundance varied 10-fold over <10 km. Biogenic silica concentration tracked diatom abundance, was dominated by the >10 µm size fraction, and increased up to 5-fold in the blooms. The two years differed in the magnitude of the surface chl a increase (2009>2008), the abundance of pennate diatoms within the bloom (2009>2008), and the substantially greater mixed layer depth in 2009. Only the 2009 bloom had sufficient chl a in the >10 µm fraction to produce the observed ocean color chl increase. Blooms had high spatial variability; ocean color images likely average over numerous small events over time and space scales that exceed the individual event scale. Summertime DDA export flux noted at the Hawaii time-series Sta. ALOHA is probably a generalized feature of the eastern N. Pacific north to the subtropical front.
Boucher, Jonah; Weathers, Kathleen C; Norouzi, Hamid; Steele, Bethel
2018-06-01
Predicting algal blooms has become a priority for scientists, municipalities, businesses, and citizens. Remote sensing offers solutions to the spatial and temporal challenges facing existing lake research and monitoring programs that rely primarily on high-investment, in situ measurements. Techniques to remotely measure chlorophyll a (chl a) as a proxy for algal biomass have been limited to specific large water bodies in particular seasons and narrow chl a ranges. Thus, a first step toward prediction of algal blooms is generating regionally robust algorithms using in situ and remote sensing data. This study explores the relationship between in-lake measured chl a data from Maine and New Hampshire, USA lakes and remotely sensed chl a retrieval algorithm outputs. Landsat 8 images were obtained and then processed after required atmospheric and radiometric corrections. Six previously developed algorithms were tested on a regional scale on 11 scenes from 2013 to 2015 covering 192 lakes. The best performing algorithm across data from both states had a 0.16 correlation coefficient (R 2 ) and P ≤ 0.05 when Landsat 8 images within 5 d, and improved to R 2 of 0.25 when data from Maine only were used. The strength of the correlation varied with the specificity of the time window in relation to the in-situ sampling date, explaining up to 27% of the variation in the data across several scenes. Two previously published algorithms using Landsat 8's Bands 1-4 were best correlated with chl a, and for particular late-summer scenes, they accounted for up to 69% of the variation in in-situ measurements. A sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite image increased uncertainty in the models, and an effect of the time of year on several indices was demonstrated. A regional model based on the best performing remote sensing algorithm was developed and was validated using independent in situ measurements and satellite images. These results suggest that, despite challenges including seasonal effects and low chl a thresholds, remote sensing could be an effective and accessible regional-scale tool for chl a monitoring programs in lakes. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
Drivers of the autumn phytoplankton development in the open Black Sea
NASA Astrophysics Data System (ADS)
Mikaelyan, Alexander S.; Shapiro, Georgy I.; Chasovnikov, Valeriy K.; Wobus, Fred; Zanacchi, Marcus
2017-10-01
The dynamics of the autumn development of phytoplankton in the Black Sea were investigated using satellite-derived chlorophyll-a concentration (Chl), which was estimated for two regions in the deep sea over a 20-year period. We analysed 8-day composite Chl images along with changes in: (i) nutrient concentration obtained from in-situ measurements, (ii) sea surface temperature (SST), (iii) photosynthetically available radiation (PAR) obtained from satellite imagery, (iv) wind speed from the re-analysis of meteodata and (v) the depth of the upper mixed layer (UML) calculated from a 3D numerical model of the Black Sea. The peak in Chl was identified most frequently in the first half of November. A positive correlation between the duration of strong wind events and phytoplankton development was revealed, which was associated with the deepening of the UML, and replenishment of the photic zone with nutrients. The impact on phytoplankton was significant when the cumulative duration of strong wind (> 8 m s- 1) exceeded 60 h over the preceding 8 days. In such cases, the frequency of the Chl peaks increased up to 30-50% with an average of 20%. Strong wind was shown to determine the timing of the autumn bloom, but not its strength. From a positive relationship between the maximum Chl and nitrate concentration we found instead that the intensity of the autumn bloom was mainly defined by nitrate replenishment in the photic zone. On average, the timing of the seasonal maximum of Chl in the first half of November coincided with the deepening of the UML to the bottom of the seasonal thermocline (ca 25 m). Elution of nitrate from deeper layers, where its concentration is substantially higher, mitigated the nutrient limitation of phytoplankton growth. At the same time, a sharp decrease in PAR after mid-November resulted in the limitation of light for phytoplankton growth. Inter-annual variations of Chl in spring and autumn were shown not to be correlated. For example, the basin-wide autumn blooms were observed in some years when the spring blooms were absent. As the bloom cannot be based on regenerated nitrate, the amount of 'new' nitrate in the photic zone should have a positive trend in autumn. However, the sources and mechanisms of the basin-wide increase of nitrate concentration in the upper layer in autumn are not clear.
Xu, Huan; Hu, Meina; Yu, Xiu; Li, Yan; Fu, Yuanshan; Zhou, Xiaoxia; Zhang, Di; Li, Jianying
2015-04-01
In this study, a novel material, poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate (PEtOz-CHEMS), was synthesized to construct pH-sensitive liposomes. The structure of PEtOz-CHEMS was confirmed by thin-layer chromatography, Fourier transform infrared spectroscopy, and (1)H NMR. Anticancer fluorescent drug doxorubicin (DOX) was encapsulated into the liposomes. Compared with conventional liposomes (CL), CHEMS modified liposomes (CH-L) and PEGylated liposomes (PEG-L), the PEtOzylated liposomes (PEtOz-L) showed an acidic pH-induced increase in particle size. At pH 6.4, the heme release of PEtOz-L group was close to that of the positive control group, whereas that of CL, CH-L and PEG-L was close to that of the negative control group. In vitro drug release studies demonstrated that DOX was released from PEtOz-L in a pH-dependent manner, and the release of DOX from conventional DOX liposomes (CL-DOX), DOX loaded CH-L (CH-DOX-L) and PEGylated DOX liposomes (PEG-DOX-L) had no pronounced differences under each pH medium. In vitro cellular uptake assays showed that PEtOz-DOX-L indicated a significant fluorescence intensity at pH 6.4 compared with at pH 7.4. CL-DOX, CH-DOX-L and PEG-DOX-L did not achieve any obvious diversity at different pH conditions. Confocal laser scanning microscopy images showed that PEtOz-DOX-L can fuse with the endosomal membrane under acidic conditions of endosome, release DOX into the cytoplasm, then gather into the nucleus. Therefore, PEtOz can help liposomes achieve "endosomal escape". The in vitro cytotoxicity experiment results on A375 cells showed that PEtOz-DOX-L resulted in lower cell viability than CL-DOX, CH-DOX-L and PEG-DOX-L under low pH conditions. These results confirm that the pH-responsive PEtOz was a promising material for intracellular targeted delivery system and might be used for overcoming the "PEG dilemma". Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Gao, Huiwang; Yao, Xiaohong; Shi, Zongbo; Shi, Jinhui; Yu, Yang; Meng, Ling; Guo, Xinyu
2018-02-01
In this study, five on-board microcosm experiments were performed in the subtropical gyre, the Kuroshio Extension region of the northwest Pacific Ocean (NWPO), and the Yellow Sea (YS) in order to investigate phytoplankton growth following the addition of artificially modified mineral dust (AM dust) and various nutrients (nitrogen (N), phosphorus (P), iron (Fe), N + P, and N + P + Fe). The two experiments carried out with AM-dust addition in the subtropical gyre showed a maximum chlorophyll a (Chl a) concentration increase of 1.7- and 2.8-fold, while the cell abundance of large-sized phytoplankton ( > 5 µm) showed a 1.8- and 3.9-fold increase, respectively, relative to the controls. However, in the Kuroshio Extension region and the YS, the increases in maximum Chl a and cell abundance of large-sized phytoplankton following AM-dust addition were at most 1.3-fold and 1.7-fold larger than those in the controls, respectively. A net conversion efficiency index (NCEI) newly proposed in this study, size-fractionated Chl a, and the abundance of large-sized phytoplankton were analysed to determine which nutrients contribute to supporting phytoplankton growth. Our results demonstrate that a combination of nutrients, N-P or N + P + Fe, is responsible for phytoplankton growth in the subtropical gyre following AM-dust addition. Single nutrient addition, i.e., N in the Kuroshio Extension region and P or N in the YS, controls the phytoplankton growth following AM-dust addition. In the AM-dust-addition experiments, in which the increased N-P or P was identified to determine phytoplankton growth, the dissolved inorganic P from AM dust (8.6 nmol L-1) was much lower than the theoretically estimated minimum P demand (˜ 20 nmol L-1) for phytoplankton growth. These observations suggest that additional supply augments the bioavailable P stock in incubated seawater with AM-dust addition, most likely due to an enhanced solubility of P from AM dust or the remineralization of the dissolved organic P.
Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean)
NASA Astrophysics Data System (ADS)
Ignatiades, L.; Psarra, S.; Zervakis, V.; Pagou, K.; Souvermezoglou, E.; Assimakopoulou, G.; Gotsis-Skretas, O.
2002-07-01
This study represents one component of the large MTP-II-MATER (MAST-III) multidisiplinary project in the Mediterranean supported by EU. Data were collected during three cruises performed in Spring and Autumn 1997 and Spring 1998 from six stations of the North and five stations of the South Aegean Sea. The work assessed the spatial, vertical and temporal variations of size fractionated chlorophyll α, primary production (in situ), photosynthetic parameters (in situ) and the taxonomic composition of phytoplankton. The population structure and dynamics were greatly influenced by the different hydrographic conditions prevailing in the Northern and Southern Aegean Sea due to the influence of Black Sea and Levantine Sea waters, respectively. The picoplankton fraction (0.2-1.2 μm) predominated and accounted for the 56% to 49% of total chl α and the 51% to 41% of total primary production in the N. and S. Aegean Sea, respectively. Throughout the sampling area, the levels of nano+microplankton (>3.0 μm) were next in abundance proportions of total chl α (21-31%) and primary production (20-33%) and the levels of the ultraplankton (1.2-3.0 μm) were the lowest, contributing the 18-22% of total chl α and the 20-23% of total primary production. There was a highly significant ( P≤0.005-0.01) spatial, vertical and temporal influence on the biomass and productivity of all size classes in the N. Aegean and of most of them in S. Aegean. Light utilization efficiency ( ɛ%) and quantum yield ( ϕmax) exhibited a temporal trend having higher values in Spring than in Autumn as well as a trend affected by cell size, being higher for picoplankton in relation to ultraplankton and nano+microplankton. Assimilation ratios ( PB) increased with cell size. Daily primary production in the N. Aegean (81.36 mg C m -2 day -1) was higher than that in the S. Aegean (38.88 mg C m -2 day -1) but both are characterized as the most oligotrophic areas of the eastern Mediterranean.
Development of antibody directed nanoparticles for cancer therapy
NASA Astrophysics Data System (ADS)
Ivkov, R.; DeNardo, S. J.; Meirs, L. A.; Natarajan, A.; DeNardo, G. L.; Gruettner, C.; Foreman, A. R.
2007-02-01
The pharmacokinetics, tumor uptake, and biologic effects of inductively heating 111In-chimeric L6 (ChL6) monoclonal antibody (mAb)-linked iron oxide nanoparticle (bioprobes) by externally applied alternating magnetic fields (AMF) were studied in athymic mice bearing human breast cancer HBT 3477 xenografts. In addition, response was correlated with calculated total deposited heat dose. Methods: Using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide HCl, 111In-7,10-tetraazacyclododecane-N, N',N'',N'''-tetraacetic acid-ChL6 was conjugated to the carboxylated polyethylene glycol on dextran-coated iron oxide 20-nm particles, one to two mAbs per nanoparticle. After magnetic purification and sterile filtration, pharmacokinetics, histopathology, and AMF/bioprobe therapy were done using 111In-ChL6 bioprobe doses (20 mcg/2.2 mg ChL6/ bioprobe), i.v. with 50 mcg ChL6 in athymic mice bearing HBT 3477; a 153 kHz AMF was given 72 hours postinjection for therapy with amplitudes of 1,300, 1,000, or 700 Oe. Weights, blood counts, and tumor size were monitored and compared with control mice receiving nothing, or AMF, or bioprobes alone. Results: 111In-ChL6 bioprobe binding in vitro to HBT 3477 cells was 50% to 70% of that of 111In-ChL6. At 48 hours, tumor, lung, kidney, and marrow uptakes of the 111In-ChL6 bioprobes were not different from that observed in prior studies of 111In-ChL6. Significant therapeutic responses from AMF/bioprobe therapy were shown compared with no treatment. In addition, greatest therapeutic benefit was observed for the 700 Oe treatment cohort. Toxicity was only seen in the 1,300 Oe AMF cohort, with 4 of 12 immediate deaths associated with skin erythema and petechiae. Conclusion: This study shows that mAb-conjugated nanoparticles (bioprobes), when given i.v., escape into the extravascular space and bind to cancer cell membrane antigen.Thus, bioprobes can be used in concert with externally applied AMF to deliver thermoablative cancer therapy. Therapeutic benefit was observed with increasing calculated heat dose deposited in tumors.
Raszewski, Grzegorz; Diner, Bruce A; Schlodder, Eberhard; Renger, Thomas
2008-07-01
Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., P(+)Pheo(-),P(+)Q(A)(-),(3)P) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His(198), the axial ligand of the special-pair chlorophyll P(D1), and D1-Thr(179), an amino-acid residue nearest to the accessory chlorophyll Chl(D1), on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns Chl(D1). Compared to isolated reaction centers, the site energy of Chl(D1) is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on Chl(D1) rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by approximately 10 nm than the low-energy exciton state of the two special-pair chlorophylls P(D1) and P(D2) which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for Chl(D1) and P(D1), reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are considerable contributions from all pigments to the equilibrated excited state P*. The contribution of Chl(D1) is twice that of P(D1) at ambient temperature, making it likely that the primary charge separation will be initiated by Chl(D1) under these conditions. The calculations of absorbance difference spectra provide independent evidence that after primary electron transfer the hole stabilizes at P(D1), and that the physiologically dangerous charge recombination triplets, which may form under light stress, equilibrate between Chl(D1) and P(D1).
NASA Astrophysics Data System (ADS)
Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.
2008-07-01
The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p < 0.001, N = 38), suggesting that BP was subject to bottom-up control by carbon supply. Integrated BP data showed three distinct periods: fall-winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.
NASA Astrophysics Data System (ADS)
de Mutsert, K.; Steenbeek, J.; Lewis, K.; Buszowski, J.; Cowan, J. H., Jr.; Christensen, V.
2016-02-01
The formation of an extensive hypoxic area off the Louisiana coast has been well publicized. However, determining the effects of this hypoxic zone on fish and fisheries has proven to be more difficult. The dual effect of nutrient loading on secondary production (positive effects of bottom-up fueling, and negative effects of reduced oxygen levels) impedes the quantification of hypoxia effects on fish and fisheries. The objective of this study was to develop an ecosystem model that is able to separate the two effects, and to evaluate net effects of hypoxia on fish biomass and fisheries landings. An Ecospace model was developed using Ecopath with Ecosim software with an added plug-in to include spatially and temporally dynamic Chlorophyll a (Chl a) and dissolved oxygen (DO) values derived from a coupled physical-biological hypoxia model. Effects of hypoxia were determined by simulating scenarios with DO and Chl a included separately and combined, and a scenario without fish response to Chl a or DO. Fishing fleets were included in the model as well; fleets move to cells with highest revenue following a gravitational model. Results of this model suggest that the increases in total fish biomass and fisheries landings as a result of an increase in primary production outweigh the decreases as a result of hypoxic conditions. However, the results also demonstrated that responses were species-specific, and some species such as red snapper (Lutjanus campechanus) did suffer a net loss in biomass. Scenario-analyses with this model could be used to determine the optimal nutrient load reduction from a fisheries perspective.
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Doney, Scott C.; Iannuzzi, Richard A.; Meredith, Michael P.; Martinson, Douglas G.; Ducklow, Hugh W.
2016-09-01
We analyzed 20 years (1993-2013) of observations of dissolved inorganic macronutrients (nitrate, N; phosphate, P; and silicate, Si) and chlorophyll a (Chl) at Palmer Station, Antarctica (64.8°S, 64.1°W) to elucidate how large-scale climate and local physical forcing affect the interannual variability in the seasonal phytoplankton bloom and associated drawdown of nutrients. The leading modes of nutrients (N, P, and Si empirical orthogonal functions 1, EOF1) represent overall negative anomalies throughout growing seasons, showing a mixed signal of variability in the initial levels and drawdown thereafter (low-frequency dynamics). The second most common seasonal patterns of nitrate and phosphate (N and P EOF2) capture prolonged drawdown events during December-March, which are correlated to Chl EOF1. Si EOF2 captures a drawdown event during November-December, which is correlated to Chl EOF2. These different drawdown patterns are shaped by different sets of physical and climate forcing mechanisms. N and P drawdown events during December-March are influenced by the winter and spring Southern Annular Mode (SAM) phase, where nutrient utilization is enhanced in a stabilized upper water column as a consequence of SAM-driven winter sea ice and spring wind dynamics. Si drawdown during November-December is influenced by early sea ice retreat, where ice breakup may induce abrupt water column stratification and a subsequent diatom bloom or release of diatom cells from within the sea ice. Our findings underscore that seasonal nutrient dynamics in the coastal WAP are coupled to large-scale climate forcing and related physics, understanding of which may enable improved projections of biogeochemical responses to climate change.
Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.
2012-01-01
VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589
2015-02-18
vi½k ¼ 0 (17) l½k ¼ vH½k vs ½k (18) s½kþ 1 ¼ vH½k vl½kþ 1 (19) From (17) we have i½k ¼ chl½kþ 1 2R0D k ¼ 0;1;…k1 1 (20) From (18), we...resistance R0 in model I. The batteries are Samsung EB575152 (four cells), Samsung EB504465 (four cells), Samsung AB463651 (two cells), Nokia BP-4L (four cells...commercial batteries. Make Model Cell# R0 (mU) R1 (mU) C1 (F) a Cbatt (Ah) Samsung EB575152 1 253 106 4581 0.997934 1.1875 Samsung EB575152 2 209 94 5203
Wordlikeness and Word Learning in Children with Hearing Loss
ERIC Educational Resources Information Center
Stiles, Derek J.; McGregor, Karla K.; Bentler, Ruth A.
2013-01-01
Background: The more a novel word conforms to the phonotactics of the language, the more wordlike it is and the easier it is to learn. It is unknown to what extent children with hearing loss (CHL) take advantage of phonotactic cues to support word learning. Aims: This study investigated whether CHL had similar sensitivities to wordlikeness during…
The Hyperspectral Imager for the Coastal Ocean (HICO) was used to derive chlorophyll-a (chl-a) based on the Normalized Difference Chlorophyll Index (NDCI) in two Gulf of Mexico coastal estuaries. Chl-a data were acquired from discrete in-situ water sample analysis and above-water...
ERIC Educational Resources Information Center
Smith, Garnett J.; McDougall, Dennis; Edelen-Smith, Patricia
2006-01-01
Cumulative-hierarchical learning (CHL) and behavior, a premise first introduced by Staats in 1975, describes how higher-level behavioral patterns and structures can emerge from interactions among a set of lower-level actions. Proponents of CHL emphasize the importance of pivotal response interventions, behavior repertoires, generative learning,…
How Hard Can It Be to Listen? Fatigue in School-Age Children with Hearing Loss
ERIC Educational Resources Information Center
Bess, Fred H.; Gustafson, Samantha J.; Hornsby, Benjamin W. Y.
2014-01-01
Teachers and parents have long believed that children with hearing loss (CHL) are at increased risk for fatigue. CHL may be physically and mentally "worn out" as a result of focusing so intently on a teacher's speech and on conversations with other students. Moreover, increased listening effort, stress, and subsequent fatigue could…
Generic Algorithms for Estimating Foliar Pigment Content
NASA Astrophysics Data System (ADS)
Gitelson, Anatoly; Solovchenko, Alexei
2017-09-01
Foliar pigment contents and composition are main factors governing absorbed photosynthetically active radiation, photosynthetic activity, and physiological status of vegetation. In this study the performance of nondestructive techniques based on leaf reflectance were tested for estimating chlorophyll (Chl) and anthocyanin (AnC) contents in species with widely variable leaf structure, pigment content, and composition. Only three spectral bands (green, red edge, and near-infrared) are required for nondestructive Chl and AnC estimation with normalized root-mean-square error (NRMSE) below 4.5% and 6.1%, respectively. The algorithms developed are generic, not requiring reparameterization for each species allowing for accurate nondestructive Chl and AnC estimation using simple handheld field/lab instrumentation. They also have potential in interpretation of airborne and satellite data.
Cloern, James E.; Grenz, Christian; Vidergar-Lucas, Lisa
1995-01-01
We present an empirical model that describes the ratio of phytoplankton chlorophyll a to carbon, Chl: C, as a function of temperature, daily irradiance, and nutrient-limited growth rate. Our model is based on 219 published measurements of algal cultures exposed to light-limited or nutrient-limited growth conditions. We illustrate an approach for using this estimator of Chl: C to calculate phytoplankton population growth rate from measured primary productivity. This adaptive Chl: C model gives rise to interactive light-nutrient effects in which growth efficiency increases with nutrient availability under low-light conditions. One implication of this interaction is the enhancement of phytoplankton growth efficiency, in addition to enhancement of biomass yield, as a response to eutrophication.
NASA Astrophysics Data System (ADS)
Cotroneo, Yuri; Aulicino, Giuseppe; Ruiz, Simón; Pascual, Ananda; Budillon, Giorgio; Fusco, Giannetta; Tintoré, Joaquin
2016-04-01
Despite of the extensive bibliography about the circulation of the Mediterranean Sea and its sub-basins, the debate on mesoscale dynamics and its impacts on biochemical processes is still open because of their intrinsic time scales and of the difficulties in sampling. In order to clarify some of these processes, the "Algerian BAsin Circulation Unmanned Survey - ABACUS" project was proposed and realized through access to JERICO Trans National Access (TNA) infrastructures between September and December 2014. In this framework, a deep glider cruise was carried out in the area between Balearic Islands and Algerian coasts to establish an endurance line for monitoring the basin circulation. During the mission, a mesoscale eddy, identified on satellite altimetry maps, was sampled at high-spatial horizontal resolution (4 km) along its main axes and from surface to 1000 m depth. Data were collected by a Slocum glider equipped with a pumped CTD and biochemical sensors that collected about 100 complete casts inside the eddy. In order to describe the structure of the eddy, in situ data were merged with new generation remotely sensed data as daily synoptic sea surface temperature (SST) and chlorophyll concentration (Chl-a) images from MODIS satellites as well as sea surface height and geostrophic velocities from AVISO. From its origin along the Algerian coast in the eastern part of the basin, the eddy propagated to north-west at a mean speed of about 4 km/day with a mean diameter of 112/130 km, a mean elevation of 15.7 cm and clearly distinguished by the surrounding waters thanks to its higher SST and Chl-a values. Temperature and salinity values along the water column confirm the origin of the eddy from the AC showing the presence of recent Atlantic water in the surface layer and Levantine Intermediate Water (LIW) in the deeper layer. Eddy footprint is clearly evident in the multiparametric vertical sections conducted along its main axes. Deepening of temperature, salinity and density isolines at the center of the eddy is associated with variations in the Chl-a, oxygen concentration and turbidity pattern. In particular at 50 m depth, along the eddy borders, Chl-a values are higher (1.1-5.2 μg/l) than in correspondence of the eddy center (0.5-0.7 μg/l) with maxima values registered in the southeastern sector of the eddy. Calculation of geostrophic velocities along transects and vertical quasi geostrophic velocities (QG-w) over a regular 5 km grid from glider data, helped in describing the mechanism and functioning of the eddy. QG-w presents an asymmetric pattern, with associated relatively strong downwelling in the western part of the eddy and upwelling in the southeastern part of it. This asymmetry in the vertical velocity pattern, bringing LIW in the euphotic layer, as well as eventual advection from the northeastern sector of the eddy may justify the observed increase in Chl-a values.
NASA Astrophysics Data System (ADS)
Jadko, Sergiy
Early increasing of reactive oxygen species (ROS) concentration, including H2O2, occur in plant cells under various impacts and these ROS can function as signaling molecules in starting of cell stress responses. Peroxiredoxins (Prx) and thioredoxins (Trx) are significant cell ROS/H2O2 sensors and transmitters. Prx besides its antioxidant activity, participate in creating of stress redox signals by destroying of H2O2 and reducing of Trx. Than these reduced Trx lead to activation of various redox sensitive proteins, transcription factors and MAP kinases. This study aimed to investigate early increasing of ROS and H2O2 contents and Prx and Trx activities in pea roots and arabidopsis tissue culture cells under hypergravity and oxidative stresses. Pea roots of 3-5 days old seedlings and 12 days old tissue culture of Arabidopsis thaliana from leaves were studied. Pea seedlings were grown on wet filter paper and the tissue culture was grown on MS medium in dark conditions under 24oC. Hypergravity stress was induced by centrifugation at 15 g. Chemiluminescence (ChL) intensity for ROS concentration, H2O2 content and Prx and Trx activities were determined. All experiments were repeated by 3-4 times. Early increasing of ChL intensity and H2O2 content in the pea roots and arabidopsis tissue culture cells took place under hypergravity and oxidative stresses and its were higher corresponding controls on average on 25, 21 and 17 percents to 30, 60 and 90 min. At the same time Prx and Trx activities increased on 7, 13 and 16 percents. Thus under hypergravity and oxidative stresses in both investigated plants take place early increasing of ROS and H2O2 contents which as second messengers can lead to ROS/H2O2-dependent increasing of Prx and Trx activities with creating of H2O2-Prx-Trx signaling pathway.
Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes
Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.
2014-01-01
The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.
Zainuddin, Mukti; Farhum, Aisjah; Safruddin, Safruddin; Selamat, Muhammad Banda; Sudirman, Sudirman; Nurdin, Nurjannah; Syamsuddin, Mega; Ridwan, Muhammad; Saitoh, Sei-Ichi
2017-01-01
Using remote sensing of sea surface temperature (SST), sea surface height anomaly (SSHA) and chlorophyll-a (Chl-a) together with catch data, we investigated the detection and persistence of important pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, Indonesia. We analyzed the data for the period between the northwest and southeast monsoon 2007-2011. A pelagic hotspot index was constructed from a model of multi-spectrum satellite-based oceanographic data in relation to skipjack fishing performance. Results showed that skipjack catch per unit efforts (CPUEs) increased significantly in areas of highest pelagic hotspot indices. The distribution and dynamics of habitat hotspots were detected by the synoptic measurements of SST, SSHA and Chl-a ranging from 29.5° to 31.5°C, from 2.5 to 12.5 cm and from 0.15 to 0.35 mg m-3, respectively. Total area of hotspots consistently peaked in May. Validation of skipjack CPUE predicted by our model against observed data from 2012 was highly significant. The key pelagic habitat corresponded with the Chl-a front, which could be related to the areas of relatively high prey abundance (enhanced feeding opportunity) for skipjack. We found that the area and persistence of the potential skipjack habitat hotspots for the 5 years were clearly identified by the 0.2 mg m-3 Chl-a isopleth, suggesting that the Chl-a front provides a key oceanographic indicator for global understanding on skipjack tuna habitat hotspots in the western tropical Pacific Ocean, especially within Coral Triangle tuna.
Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea
NASA Astrophysics Data System (ADS)
Zhao, Hui; Pan, Jiayi; Han, Guoqi; Devlin, Adam T.; Zhang, Shuwen; Hou, Yijun
2017-04-01
Tropical cyclones may augment nutrients in the ocean surface layer through mixing, entrainment, and upwelling, triggering phytoplankton blooms in oligotrophic waters such as the South China Sea (SCS). Previous studies focused mainly on responses of marine environments to strong or slow-moving typhoons in the SCS. In this study, we analyze variations of chlorophyll a (Chl a) and oceanic conditions in the continental shelf region east of Hainan Island during the fast-moving tropical storm Washi and investigate its influences on phytoplankton bloom and related dynamic mechanisms. Results indicate that there was significant variation of Chl a concentration in the continental shelf region, with low values (about 0.1 mg m-3) before the storm and a 30% increase after the storm. This increase was spatially variable, much larger nearshore than offshore. Power spectral analysis of Acoustic Doppler Current Profiler (ADCP) data at a shelf site near the study region reveals strong near-inertial oscillations (NIOs) in the upper layer, with a period of about 36 h, close to the local inertial period. The NIOs intensified mixing and modified the stratification of the upper layer, inducing uplift of nutrients and Chl a into the mixed layer from below, and leading to surface Chl a increase. The relatively shallow nutricline and thermocline in the continental shelf region before the storm were favorable for upwelling of nutrients and generation of NIOs. Advection of nutrients from enhanced runoff during and after the storm may be responsible for the larger increase of the Chl a nearshore.
A Developmental Study of Photosystem I Peripheral Chlorophyll Proteins 1
Mullet, John E.; Burke, John J.; Arntzen, Charles J.
1980-01-01
An isolated “native” photosystem I (PSI complex) contains three spectral populations of chlorophyll a antennae (Mullet, Burke, Arntzen 1980 Plant Physiol 65: 814-822). It was hypothesized that nearly one-half of these antennae (≃45 Chl/P700) are associated with polypeptides of 21,500 to 24,500 daltons. The present study utilizes two developmental systems to verify this association. Chloroplasts were isolated from a Chl b-less barley mutant and from partially-developed cucumber cotyledons (greened under intermittent illumination [ImL] chloroplasts) and were compared to control chloroplasts isolated from wild-type barley and mature cucumber. Both the mutant and ImL chloroplasts exhibited a long wavelength fluorescence maximum at 724 nanometers at 77 K as compared to 735 to 738 nanometers emission maximum in the respective controls. Both the mutant and ImL chloroplasts were deficient in polypeptides of 21,500 to 24,500 daltons which were present in control membranes and in PSI fractions isolated from control membranes. In light-induced maturation of the ImL cucumbers, the synthesis of polypeptides in the 21,500 to 24,500 molecular weight range paralleled the appearance of PSI Chl species fluorescing at long wavelength (≃735 nm). The PSI spectral properties of the control membranes were retained in isolated PSI particles containing 100 to 120 Chl/P700 (PSI-110). Detergent extraction of PSI-110 removed polypeptides of 21,500 to 24,500 daltons plus ≃ 45 Chl/P700. The antennae-depleted PSI particle mimics PSI properties exhibited by incompletely differentiated mutant or ImL chloroplasts. Images PMID:16661289
Hydrochemical controls on reservoir nutrient and phytoplankton dynamics under storms.
Chen, Nengwang; Mo, Qiongli; Kuo, Yi-Ming; Su, Yuping; Zhong, Yanping
2018-04-01
Eutrophication and undesired algal blooms in surface water are common and have been linked to increasing nutrient loading. Effects of extreme events such as storms on reservoir nutrient and phytoplankton remain unclear. Here we carried out continuous high-frequency measurements in a long and narrow dam reservoir in southeast China during a storm period in June-July 2015. Our results show a strong nutrient-phytoplankton relationship as well as a very rapid response to storm runoff. We observed an increase in total suspended matter (TSM), ammonium (NH 4 -N), and dissolved reactive phosphate (DRP), with a sharp decline in chlorophyll-a (Chl-a) in the high flow periods. Afterward, Chl-a, total phytoplankton abundance and Cyanophyta fraction elevated gradually. Nitrate was diluted at first with increasing discharge before concentration increased, likely following a delayed input of groundwater. Physiochemical parameters and Chl-a were evenly distributed in the water column during the flooding period. However, 10% of NH 4 -N and 25% of DRP were removed in surface water (0-1m) when an algal bloom (Chl-a>30μgL -1 ) occurred 10days after peak discharge. Conversely, total particulate P (TPP) of surface water was 58% higher than in the deeper water. Dynamic factor analysis (DFA) revealed that TSM, NH 4 -N, DRP, total P and discharge significantly explain Chl-a variations following storms (C eff =0.89). These findings highlight that the reservoir ecosystem was vulnerable to pulse input from storm runoff and the Cyanophyta bloom was likely fueled by phosphate and ammonium rather than nitrate. Copyright © 2017 Elsevier B.V. All rights reserved.
Xie, Ying; Zhou, Guifeng
2017-02-21
Lead (Pb) pollution is a serious public health problem all over the world, it especially plays severe damage role in children's health. Apart from reducing lead-induced damages, the decrease of lead accumulation is also critical. This study has been the first attempt to investigate effects of meso-2,3-dimercaptosuccinic acid (DMSA), potassium iodide (KI) and chlorophyll (Chl) on lead accumulation in male mice. Eighty healthy Kunming male mice were selected and divided randomly into 8 groups. They were treated with lead acetate (PbAc) intraperitoneally, individually and in combination with the DMSA, KI or Chl once daily for 5 days. Meanwhile, the control group was treated with normal saline during the whole exposure period. On 30th day, mice were sacrificed and lead concentrations were detected in the whole blood, livers, kidneys, and testicles of mice by means of the graphite furnace atomic absorption spectrometry. In comparison with the control group, lead concentrations increased in mice treated with the PbAc and DMSA, KI and Chl diminished lead accumulation in the whole blood, livers, and kidneys. Chl had specifically the same effects on lead concentrations in the testicles of male mice. Potassium iodide and Chl, as food additives, had the same effects as the DMSA to reduce lead accumulation in male mice effectively. Our results provided experimental evidence in vivo for the preventive measures of lead poisoning. Int J Occup Med Environ Health 2017;30(1):87-93. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Siefermann-Harms, Dorothea; Payer, Hans Dieter; Schramel, Peter; Lütz, Cornelius
2005-02-01
During two vegetation periods, young clonal spruce trees (Picea abies (L.) Karst.) with sufficient and poor magnesium (Mg) supply were exposed in the environmental chambers of the GSF phytotron to three levels of ozone (daily means: 18-22, 88-130, and 135-190 microg m(-3); 10% reduction at night). Previous year's needles were examined at 4-week intervals with respect to their contents of Mg, Ca, K, Mn, N, P, and chlorophyll (Chl), various parameters of Chl fluorescence, and the stability of the isolated light-harvesting Chl-a/b-protein complex LHC II. The needles of the two nutrition variants contained more than 0.53 or less than 0.27mg Mg g(-1) needle dry matter, respectively. The ratio of variable to maximal Chl-a fluorescence of the dark-adapted needles, Fv/Fm, and the photoinhibitory quenching of Fv after light treatment, SVi.v, were affected by the Mg content of the needles rather than the ozone levels. Changes of the Chl content and the behavior of the LHC II allowed differentiating between a slow process of needle yellowing occurring under Mg deficiency only, and a rapid process of needle yellowing occurring under the combined action of Mg deficiency and ozone pollution. Only the rapid yellowing process was accompanied by destabilization of the LHC II, and the degree of destabilization was correlated with the ozone concentration present in the days before sampling. The results are consistent with observations obtained at a research site in the Central Black Forest (J Plant Physiol 161 (2004) 423).
NASA Astrophysics Data System (ADS)
Saraceno, Martin; Provost, Christine; Piola, Alberto R.
2005-11-01
The time-space distribution of chlorophyll a in the southwestern Atlantic is examined using 6 years (1998-2003) of sea surface color images from Sea-viewing Wide Field of View Sensor (SeaWiFS). Chlorophyll a (chl a) distribution is confronted with sea surface temperature (SST) fronts retrieved from satellite imagery. Histogram analysis of the color, SST, and SST gradient data sets provides a simple procedure for pixel classification from which eight biophysical regions in the SWA are identified, including three new regions with regard to Longhurst (1998) work: Patagonian Shelf Break (PSB), Brazil Current Overshoot, and Zapiola Rise region. In the PSB region, coastal-trapped waves are suggested as a possible mechanism leading to the intraseasonal frequencies observed in SST and chl a. Mesoscale activity associated with the Brazil Current Front and, in particular, eddies drifting southward is probably responsible for the high chl a values observed throughout the Brazil Current Overshoot region. The Zapiola Rise is characterized by a local minimum in SST gradient magnitudes and shows chl a maximum values in February, 3 months later than the austral spring bloom of the surroundings. Significant interannual variability is present in the color imagery. In the PSB, springs and summers with high chl a concentrations seem associated with stronger local northerly wind speed, and possible mechanisms are discussed. Finally, the Brazil-Malvinas front is detected using both SST gradient and SeaWiFS images. The time-averaged position of the front at 54.2°W is estimated at 38.9°S and its alongshore migration of about 300 km.
Synthesis of a Biologically Active Oxazol-5-(4H)-One via an Erlenmeyer-Plo¨chl Reaction
ERIC Educational Resources Information Center
Rodrigues, Catarina A. B.; Martinho, Jose´ M. G.; Afonso, Carlos A. M.
2015-01-01
The synthesis of (Z)-4-(4-nitrobenzylidene)-2- phenyloxazol-5(4"H")-one, which is a potent immunomodulator and tyrosinase inhibitor, is described as an experiment for an upper-division undergraduate organic chemistry laboratory course. This compound is produced via an Erlenmeyer-Plo¨chl reaction in the absence of any additional solvents…
Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions
NASA Technical Reports Server (NTRS)
Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy
2009-01-01
The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.
Fricke S-duality in CHL models
Persson, Daniel; Volpato, Roberto
2015-12-23
In this study, we consider four dimensional CHL models with sixteen spacetime supersymmetries obtained from orbifolds of type IIA superstring on K3×T 2 by a Z N symmetry acting (possibly) non-geometrically on K3. We show that most of these models (in particular, for geometric symmetries) are self-dual under a weak-strong duality acting on the heterotic axio-dilaton modulus S by a “Fricke involution” S → -1/NS. This is a novel symmetry of CHL models that lies outside of the standard SL(2,Z)-symmetry of the parent theory, heterotic strings on T 6. For self-dual models this implies that the lattice of purely electricmore » charges is N-modular, i.e. isometric to its dual up to a rescaling of its quadratic form by N. We verify this prediction by determining the lattices of electric and magnetic charges in all relevant examples. We also calculate certain BPS-saturated couplings and verify that they are invariant under the Fricke S-duality. For CHL models that are not self-dual, the strong coupling limit is dual to type IIA compactified on T 6/Z N, for some Z N-symmetry preserving half of the spacetime supersymmetries.« less
Effects of Raman scattering on the water-leaving radiance
NASA Technical Reports Server (NTRS)
Waters, Kirk J.
1995-01-01
The contribution of Raman scattering to the water-leaving radiance is examined using Monte Carlo simulations. Exit angle information is retained, allowing a comparison of different satellite viewing directions. Chlorophyll values of 0.0, 0.01, 0.1, and 1.0 mg Chl/cu m are simulated. Little directional variability is found, with the exception of the direct solar backscatter direction. The wavelength variability is greatest for low chlorophyll concentrations and is negligible for 1.0 mg Chl/cu m. At 550 nm the Raman contribution ranges from approximately 18% of the total water-leaving radiance for pure water to 3% for 1.0 mg Chl/cu m. At 440 nm the range is from 6% to 2%, indicating that Raman scattering will impact radiance ratios for ocean color satellite algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timko, Michael P
2013-02-01
The biosynthesis of chlorophyll is a critical biochemical step in the development of photosynthetic vascular plants and green algae. From photosynthetic bacteria (cyanobacteria) to algae, non-vascular plants, gymnosperms and vascular plants, mechanisms have evolved for protochlorophyllide reduction a key step in chlorophyll synthesis. Protochlorophyllide reduction is carried out by both a light-dependent (POR) and light-independent (LIPOR) mechanisms. NADPH: protochlorophyllide oxidoreductase (EC 1.3.1.33, abbreviated POR) catalyzes the light-dependent reduction of protochlorophyllide (PChlide) to chlorophyllide (Chlide). In contrast, a light-independent protochlorophyllide reductase (LIPOR) involves three plastid gene products (chlL, chlN, and chlB) and several nuclear factors. Our work focused on characterization ofmore » both the POR and LIPOR catalyzed processes.« less
Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A
2012-02-01
Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, P<0.001). We show that if melanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (P<0.001), providing evidence for the dual roles of melanin. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tripathy, S. C.; Ishizaka, J.; Siswanto, E.; Shibata, T.; Mino, Y.
2012-01-01
The vertically generalized production model (VGPM), which was designed for open ocean waters ( Behrenfeld and Falkowski, 1997a; henceforth BF), was evaluated using in situ measurements of primary productivity (PP) in the characteristically turbid coastal waters of Ariake Bay, southwestern Japan, to develop a regionally modified version of the model. The euphotic depth ( Z eu)-integrated PP (IPP) calculated from the VGPM using in situ chlorophyll a (Chl a) and sea surface temperature (SST) was significantly overestimated (by factors of 2-3), but 52% of the observed variability was explained. The weak correlation could have partially resulted from overestimations by the sub-models embedded in the original VGPM model for estimation of Z eu ( Morel and Berthon, 1989; henceforth MB) and the optimal Chl a-normalized PP ( poptB). The sub-model estimates of poptB and Z eu with in situpoptB and Z eu showed significant improvement, accounting for 84% of the variability and causing less overestimation. Z eu was the most important parameter influencing the modeled IPP variation in Ariake Bay. Previous research suggested that the Z eu model, which was based on surface Chl a, overestimated in situ Z eu by a factor of 2-3, resulting in weak correlation between the modeled and in situ IPP. The Z eu sub-model was not accurate in the present study area because it was basically developed for clear (case 1) waters. A better estimation of Z eu could be obtained from the in situ remote sensing reflectance ( R rs) using a quasi-analytical algorithm (QAA) in this turbid water ecosystem. Among the parameters of PP models, poptB is conventionally considered the most important. However, in this study poptB was of secondary importance because the contribution of poptB to the variation in modeled IPP was less than the contribution of Z eu. The modeled and in situpoptB were weakly correlated with 50% of the data points that overestimated the in situ values. The estimation of Chl a was improved by optimizing the Chl a algorithm with in situ R rs data. Incorporating the QAA-based Z eu and the optimized Chl a and constant (median) poptB value led to improved performance of the VGPM for the study area. Thus, even though the VGPM is a global open ocean model, when coupled with turbid water algorithms for Z eu and Chl a and constant (median) poptB, it provided realistic estimates of IPP in the turbid water ecosystem of Ariake Bay.
Al Shehhi, Maryam R; Gherboudj, Imen; Ghedira, Hosni
2017-10-01
Mapping of Chlorophyll-a (Chl-a) over the coastal waters of the Arabian Gulf and the Sea of Oman using the satellite-based observations, such as MODIS (Moderate Resolution Imaging Spectro-radiometer), has shown inferior performance (Chl-a overestimation) than that of deep waters. Studies in the region have shown that this poor performance is due to three reasons: (i) water turbidity (sediments re-suspension), and the presence of colored dissolved organic matter (CDOM), (ii) bottom reflectance and (iii) incapability of the existing atmospheric correction models to reduce the effect of the aerosols from the water leaving radiance. Therefore, this work focuses on investigating the sensitivity of the in situ spectral signatures of these coastal waters to the algal (chlorophyll: Chl-a), non-algal (sediments and CDOM) and the bottom reflectance properties, in absence of contributions from the atmosphere. Consequently, the collected in situ spectral signatures will improve our understanding of Arabian Gulf and Sea of Oman water properties. For this purpose, comprehensive field measurements were carried out between 2013 and 2016, over Abu-Dhabi (Arabian Gulf) and Fujairah (Sea of Oman) where unique water quality data were collected. Based on the in situ water spectral analysis, the bottom reflectance (water depth<20m) are found to degrade the performance of the conventional ocean color algorithms more than the sediment-laden waters where these waters increase the R rs at the blue and red ranges. The increasing presence of CDOM markedly decreases the R rs in the blue range, which is conflicting with the effect of Chl-a. Given the inadequate performance of the widely used ocean-color algorithms (OC3: ocean color 3, OC2: ocean color 2) in retrieving Chl-a in these very shallow coastal waters, therefore, a new algorithm is proposed here based on a 3-bands ratio approach using [R rs (656) -1 -R rs (506) -1 ]×R rs (661). The selected optimum bands (656nm, 506nm, and 661nm) from this approach can be used to retrieve the Chl-a more accurately in these coastal Case II (turbid) waters which are close to the bands of the current missions such as Sentinel-3 OLCI (Ocean and Land Colour Instrument), MODIS, VIIRS (Visible Infrared Imaging Radiometer Suite) and LandSat 8. However, more uniformly distributed data over the Arabian Gulf is required to have a highly accurate regional model for Chl-a retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.
Mesoscale and sub-mesoscale variability in phytoplankton community composition in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Cotti-Rausch, Bridget E.; Lomas, Michael W.; Lachenmyer, Eric M.; Goldman, Emily A.; Bell, Douglas W.; Goldberg, Stacey R.; Richardson, Tammi L.
2016-04-01
The Sargasso Sea is a dynamic physical environment in which strong seasonal variability combines with forcing by mesoscale (~100 km) eddies. These drivers determine nutrient, light, and temperature regimes and, ultimately, the composition and productivity of the phytoplankton community. On four cruises (2011 and 2012; one eddy per cruise), we investigated links between water column structure and phytoplankton community composition in the Sargasso at a range of time and space scales. On all cruises, cyanobacteria (Prochlorococcus and Synechococcus) dominated the phytoplankton numerically, while haptophytes were the dominant eukaryotes (up to 60% of total chl-a). There were substantial effects of mesoscale and sub-mesoscale forcing on phytoplankton community composition in both spring and summer. Downwelling (in anticyclones) resulted in Prochlorococcus abundances that were 22-66% higher than at 'outside' stations. Upwelling (in cyclones) was associated with significantly higher abundances and POC biomass of nanoeukaryotes. In general, however, each eddy had its own unique characteristics. The center of anticyclone AC1 (spring 2011) had the lowest phytoplankton biomass (chl-a) of any eddy we studied and had lower nitrate+nitrite (N+N <5 mmol m-2) and eukaryote chl-a biomass as compared to its edge and to the Bermuda Atlantic Time-Series station (BATS). At the center of cyclone C1 (summer 2011), we observed uplift of the 26.5 kg m-3 isopycnal and high nutrient inventories (N+N=74±46 mmol m-2). We also observed significantly higher haptophyte chl-a (non-coccolithophores) and lower cyanobacterial chl-a at the center and edge of C1 as compared to outside the eddy at BATS. Cyclone C2 (spring 2012) exhibited a deep mixed layer, yet had relatively low nutrient concentrations. We observed a shift in the taxonomic composition of haptophytes between a coccolithophore-dominated community in C2 (98% of total haptophyte chl-a) and a non-coccolithophore community at BATS. In summer 2012, downwelling associated with anticyclone AC2 occurred at the edge of the eddy (not at the center), where AC2 interacted with a nearby cyclone. At the edge, we found significantly lower Synechococcus abundances and higher eukaryote chl-a compared to the center of AC2 and BATS. These along-transect nuances demonstrate the significance of small-scale perturbations that substantially alter phytoplankton community structure. Therefore, while seasonality in the North Atlantic is the primary driver of broad-scale trends in phytoplankton community composition, the effects of transient events must be considered when studying planktonic food webs and biogeochemical cycling in the Sargasso Sea.
Lamm, K; Lamm, C; Lamm, H; Schumann, K
1988-09-01
In 14 guinea pigs the pO2 in the perilymph of the scala tympani fell to 50%-80% of the original value during exposure to noise consisting of 4,000 Hz clicks with a repetition rate of 20/s, 100 dB CHL = 120 dB SPL p.e., repeated twice over a period of 24 minutes each time. For the measurements of the pO2 we used the thin 0.5 micron micro-coaxial needle electrode described by Baumgärtl and Luebbers, which was placed through the round-window membrane in the scala tympani to a depth of 600 micron. The simultaneously recorded CAP latency times were prolonged by 0.8 ms at a test loudness of 60 and 80 dB CHL. The amplitudes of the CM had declined by 60%-70% of the original values at a test loudness of 80 dB SPL p.e. The intra-arterial blood pressure in the common carotid artery of all animals remained constant. As the cortilymph spaces communicate with the perilymph of the scala tympani, our measured decline of pO2 in the perilymph could indicate a cortilymph hypoxia. During exposure to noise the oxygen-dependent Na+ and K+ pumps, which maintain the ion balance and function of the organ of Corti, can decompensate due to lack of oxygen. That would lead to a K+ contamination of the cortilymph and to an intracellular Na+ accumulation, which can cause microstructural damage (hair cell-cilia fusion, hair cell, synaptic and dendritic swelling, hair cell contraction and sustained depolarization), which would be reflected in the CMs and CAPs.
Climate effects on phytoplankton floral composition in Chesapeake Bay
NASA Astrophysics Data System (ADS)
Harding, L. W.; Adolf, J. E.; Mallonee, M. E.; Miller, W. D.; Gallegos, C. L.; Perry, E. S.; Johnson, J. M.; Sellner, K. G.; Paerl, H. W.
2015-09-01
Long-term data on floral composition of phytoplankton are presented to document seasonal and inter-annual variability in Chesapeake Bay related to climate effects on hydrology. Source data consist of the abundances of major taxonomic groups of phytoplankton derived from algal photopigments (1995-2004) and cell counts (1985-2007). Algal photopigments were measured by high-performance liquid chromatography (HPLC) and analyzed using the software CHEMTAX to determine the proportions of chlorophyll-a (chl-a) in major taxonomic groups. Cell counts determined microscopically provided species identifications, enumeration, and dimensions used to obtain proportions of cell volume (CV), plasma volume (PV), and carbon (C) in the same taxonomic groups. We drew upon these two independent data sets to take advantage of the unique strengths of each method, using comparable quantitative measures to express floral composition for the main stem bay. Spatial and temporal variability of floral composition was quantified using data aggregated by season, year, and salinity zone. Both time-series were sufficiently long to encompass the drought-flood cycle with commensurate effects on inputs of freshwater and solutes. Diatoms emerged as the predominant taxonomic group, with significant contributions by dinoflagellates, cryptophytes, and cyanobacteria, depending on salinity zone and season. Our analyses revealed increased abundance of diatoms in wet years compared to long-term average (LTA) or dry years. Results are presented in the context of long-term nutrient over-enrichment of the bay, punctuated by inter-annual variability of freshwater flow that strongly affects nutrient loading, chl-a, and floral composition. Statistical analyses generated flow-adjusted diatom abundance and showed significant trends late in the time series, suggesting current and future decreases of nutrient inputs may lead to a reduction of the proportion of biomass comprised by diatoms in an increasingly diverse flora.
NASA Astrophysics Data System (ADS)
O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto
2015-10-01
Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.
This method provides a procedure for determination of chlorophylls a (chl a) and b (chl b) found in marine and freshwater phytoplankton. Reversed phase high performance liquid chromatography (HPLC) with detection at 440 nm is used to separate the pigments from a complex pigment ...
Numerical Hydrodynamic Study of Hypothetical Levee Setback Scenarios
2018-01-01
ER D C /C HL T R- 18 -1 Flood and Coastal Systems Research and Development Program Numerical Hydrodynamic Study of Hypothetical Levee...default. Flood and Coastal Systems Research and Development Program ERDC/CHL TR-18-1 January 2018 Numerical Hydrodynamic Study of Hypothetical...Reduction” ERDC/CHL TR-18-1 ii Abstract A numerical hydrodynamic study was conducted to compare multiple levee setback alternatives to the base
The Role Culture Plays in China’s Illicit Drug/Chemical Foreign Policy
2008-03-20
trafficking of these chemicals that include acetic anhydride, ephedrine/ pseudoephedrine , and steroids. To better understand China’s lack of cooperation...ACKNOWLEDGEMENTS v INTRODUCTION 1 CHlNA AND THE INTERNATIONAL DRUG TRADE 2 ACETIC ANHYDRIDE PRODUCTION 3 CHlNESE EPHEDRINE AND PSEUDOEPHEDRINE EXPORTS... pseudoephedrine . Both drugs are used as precursors to manufacture methamphetamine. In addition to exported ephedrine/ pseudoephedrine , Chinese chemical companies
NASA Astrophysics Data System (ADS)
Song, Ho Jung; Kim, Kwanwoo; Lee, Jae Hyung; Ahn, So Hyun; Joo, Houng-Min; Jeong, Jin Young; Yang, Eun Jin; Kang, Sung-Ho; Yun, Mi Sun; Lee, Sang Heon
2018-03-01
Although the areal coverage of melt pond in the Arctic Ocean has recently increased, very few biological researches have been conducted. The objectives in this study were to ascertain the uptake rates of carbon and nitrogen in various melt ponds and to understand the major controlling factors for the rates. We obtained 22 melt pond samples at ice camp 1 (146.17°W, 77.38°N) and 11 melt pond samples at ice camp 2 (169.79°W, 76.52°N). The major nutrient concentrations varied largely among melt ponds at the ice camps 1 and 2. The chl-a concentrations averaged from the melt ponds at camps 1 and 2 were 0.02-0.56 mg chl-a m-3 (0.12 ± 0.12 mg chl-a m-3) and 0.08-0.30 mg chl-a m-3 (0.16 ± 0.08 mg chl-a m-3), respectively. The hourly carbon uptake rates at camps 1 and 2 were 0.001-0.080 mg C m-3 h-1 (0.025 ± 0.024 mg C m-3 h-1) and 0.022-0.210 mg C m-3 h-1 (0.077 ± 0.006 mg C m-3 h-1), respectively. In comparison, the nitrogen uptake rates at camps 1 and 2 were 0.001-0.030 mg N m-3 h-1 (0.011 ± 0.010 mg N m-3 h-1) and 0.002-0.022 mg N m-3 h-1 (0.010 ± 0.006 mg N m-3 h-1), respectively. The values obtained in this study are significantly lower than those reported previously. A large portion of algal biomass trapped in the new forming surface ice in melt ponds appears to be one of the main potential reasons for the lower chl-a concentration and subsequently lower carbon and nitrogen uptake rates revealed in this study. A long-term monitoring program on melt ponds is needed to understand the response of the Arctic marine ecosystem to ongoing environmental changes.
Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang
2014-01-01
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7. PMID:24932524
Deng, Xiao-juan; Zhang, Hai-qing; Wang, Yue; He, Feng; Liu, Jin-ling; Xiao, Xiao; Shu, Zhi-feng; Li, Wei; Wang, Guo-huai; Wang, Guo-liang
2014-01-01
Leaf-color is an effective marker to identify the hybridization of rice. Leaf-color related genes function in chloroplast development and the photosynthetic pigment biosynthesis of higher plants. The ygl7 (yellow-green leaf 7) is a mutant with spontaneous yellow-green leaf phenotype across the whole lifespan but with no change to its yield traits. We cloned gene Ygl7 (Os03g59640) which encodes a magnesium-chelatase ChlD protein. Expression of ygl7 turns green-leaves to yellow, whereas RNAi-mediated silence of Ygl7 causes a lethal phenotype of the transgenic plants. This indicates the importance of the gene for rice plant. On the other hand, it corroborates that ygl7 is a non-null mutants. The content of photosynthetic pigment is lower in Ygl7 than the wild type, but its light efficiency was comparatively high. All these results indicated that the mutational YGL7 protein does not cause a complete loss of original function but instead acts as a new protein performing a new function. This new function partially includes its preceding function and possesses an additional feature to promote photosynthesis. Chl1, Ygl98, and Ygl3 are three alleles of the OsChlD gene that have been documented previously. However, mutational sites of OsChlD mutant gene and their encoded protein products were different in the three mutants. The three mutants have suppressed grain output. In our experiment, plant materials of three mutants (ygl7, chl1, and ygl98) all exhibited mutational leaf-color during the whole growth period. This result was somewhat different from previous studies. We used ygl7 as female crossed with chl1 and ygl98, respectively. Both the F1 and F2 generation display yellow-green leaf phenotype with their chlorophyll and carotenoid content falling between the values of their parents. Moreover, we noted an important phenomenon: ygl7-NIL's leaf-color is yellow, not yellowy-green, and this is also true of all back-crossed offspring with ygl7.
Bull, Rebecca; Marschark, Marc; Nordmann, Emily; Sapere, Patricia; Skene, Wendy A
2018-06-01
Many children with hearing loss (CHL) show a delay in mathematical achievement compared to children with normal hearing (CNH). This study examined whether there are differences in acuity of the approximate number system (ANS) between CHL and CNH, and whether ANS acuity is related to math achievement. Working memory (WM), short-term memory (STM), and inhibition were considered as mediators of any relationship between ANS acuity and math achievement. Seventy-five CHL were compared with 75 age- and gender-matched CNH. ANS acuity, mathematical reasoning, WM, and STM of CHL were significantly poorer compared to CNH. Group differences in math ability were no longer significant when ANS acuity, WM, or STM was controlled. For CNH, WM and STM fully mediated the relationship of ANS acuity to math ability; for CHL, WM and STM only partially mediated this relationship. ANS acuity, WM, and STM are significant contributors to hearing status differences in math achievement, and to individual differences within the group of CHL. Statement of contribution What is already known on this subject? Children with hearing loss often perform poorly on measures of math achievement, although there have been few studies focusing on basic numerical cognition in these children. In typically developing children, the approximate number system predicts math skills concurrently and longitudinally, although there have been some contradictory findings. Recent studies suggest that domain-general skills, such as inhibition, may account for the relationship found between the approximate number system and math achievement. What does this study adds? This is the first robust examination of the approximate number system in children with hearing loss, and the findings suggest poorer acuity of the approximate number system in these children compared to hearing children. The study addresses recent issues regarding the contradictory findings of the relationship of the approximate number system to math ability by examining how this relationship varies across children with normal hearing and hearing loss, and by examining whether this relationship is mediated by domain-general skills (working memory, short-term memory, and inhibition). © 2017 The British Psychological Society.
Scartazza, Andrea; Di Baccio, Daniela; Bertolotto, Pierangelo; Gavrichkova, Olga; Matteucci, Giorgio
2016-09-01
Forest functionality and productivity are directly related to canopy light interception and can be affected by potential damage from high irradiance. However, the mechanisms by which leaves adapt to the variable light environments along the multilayer canopy profile are still poorly known. We explored the leaf morphophysiological and metabolic responses to the natural light gradient in a pure European beech (Fagus sylvatica L.) forest at three different canopy heights (top, middle and bottom). Structural adjustment through light-dependent modifications in leaf mass per area was the reason for most of the variations in photosynthetic capacity. The different leaf morphology along the canopy influenced nitrogen (N) partitioning, water- and photosynthetic N-use efficiency, chlorophyll (Chl) fluorescence and quali-quantitative contents of photosynthetic pigments. The Chl a to Chl b ratio and the pool of xanthophyll-cycle pigments (VAZ) increased at the highest irradiance, as well as lutein and β-carotene. The total pool of ascorbate and phenols was higher in leaves of the top and middle canopy layers when compared with the bottom layer, where the ascorbate peroxidase was relatively more activated. The non-photochemical quenching was strongly and positively related to the VAZ/(Chl a + b) ratio, while Chl a/Chl b was related to the photochemical efficiency of photosystem II. Along the multilayer canopy profile, the high energy dissipation capacity of leaves was correlated to an elevated redox potential of antioxidants. The middle layer gave the most relevant contribution to leaf area index and carboxylation capacity of the canopy. In conclusion, a complex interplay among structural, physiological and biochemical traits drives the dynamic leaf acclimation to the natural gradients of variable light environments along the tree canopy profile. The relevant differences observed in leaf traits within the canopy positions of the beech forest should be considered for improving estimation of carbon fluxes in multilayer canopy models of temperate forests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
New insights on glucosylated lipids: metabolism and functions.
Ishibashi, Yohei; Kohyama-Koganeya, Ayako; Hirabayashi, Yoshio
2013-09-01
Ceramide, cholesterol, and phosphatidic acid are major basic structures for cell membrane lipids. These lipids are modified with glucose to generate glucosylceramide (GlcCer), cholesterylglucoside (ChlGlc), and phosphatidylglucoside (PtdGlc), respectively. Glucosylation dramatically changes the functional properties of lipids. For instance, ceramide acts as a strong tumor suppressor that causes apoptosis and cell cycle arrest, while GlcCer has an opposite effect, downregulating ceramide activities. All glucosylated lipids are enriched in lipid rafts or microdomains and play fundamental roles in a variety of cellular processes. In this review, we discuss the biological functions and metabolism of these three glucosylated lipids. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Singh, Vineet; Pandey, Bhawna; Suthar, Surindra
2018-06-01
The increasing availability of antibiotics in wastewater has created a serious threat to non-target organisms in the environment. The aim of this study was to evaluate the potential toxicity of amoxicillin on duckweed Spirodela polyrhiza during a short-term exposure (7 d). The duckweed was exposed to a range of environmentally relevant (0.0001-0.01 mg L -1 ) and high (0.1 and 1 mg L -1 ) concentrations of amoxicillin. Subsequently, biomarkers of toxicity such as growth, pigments (Chl a, Chl b and carotenoids), antioxidative enzyme activity (catalase, CAT; superoxide dismutase, SOD; and ascorbate peroxidases, APX), and biochemical content (protein, lipid and starch) were analysed in their fronds. The high dose (1 mg L -1 ) of amoxicillin caused a significant (p < 0.05) decrease in photopigments, protein, starch and lipid content and an increase in carotenoids/total Chl and Chl a/Chl b ratios in fronds of Spirodela polyrhiza. The results showed a shift in biomarkers: a decrease in frond growth and relative growth rate (RGR) (16.2-53.8%) and an increase in the activities (mmol mg protein -1 ) of CAT (0.021-0.041), APX (0.84-2.49) and SOD (0.12-0.23) in fronds. The significantly (p < 0.05) greater reduction in amoxicillin content in duckweed setups (84.6-100%) than in the control (62.1-73%) suggested that phytodegradation is an important mechanism in removing antibiotics from water, apart from hydrolysis and photodegradation, which occur in control setups. Overall, the results suggested a toxic effect of amoxicillin on Spirodela polyrhiza, even at low concentrations, and nonetheless, the duckweed contributed directly to the degradation of antibiotics in the water and throughout the phytoremediation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relationship between subscapularis tears and injuries to the biceps pulley.
Godenèche, Arnaud; Nové-Josserand, Laurent; Audebert, Stéphane; Toussaint, Bruno; Denard, Patrick J; Lädermann, Alexandre
2017-07-01
The purpose of this study was to analyse the relationship between long head of the biceps brachii (LHBT) lesions and subscapularis tears. The hypothesis was that a bicipital pulley might remain intact, even in the case of a subscapularis tear. Between 2010 and 2011, all patients who had a primary arthroscopic repair of a subscapularis tear were potentially included in this prospective study. The outcome of interest was the prevalence and type of arthroscopic lesions of the LHBT and bicipital pulley. Furthermore, the supposed pathomechanics of injury and the treatment proposed (conservative, pulley repair, tenodesis, tenotomy, etc.) was recorded. The following baseline characteristics were assessed: age, sex, shoulder side, and limb dominance. Of the 218 patients, the superior glenohumeral ligament/coracohumeral ligament (SGHL/CHL) complex was normal in 54 patients (25%), stretched in 84 patients (39%), and absent in 77 patients (35%). Below the SGHL/CHL complex in the bicipital groove, the medial wall of the LHBT sheath was normal in 25%, partially torn in 39%, and completely torn in 35%. In 25 of the 218 patients (11%), a pathologic LHBT with an intact SGHL/CHL complex was observed. In these cases, the medial wall of the bicipital sheath was torn in 92%. The biceps pulley system, including the SGHL/CHL complex and subscapularis tendon, merits recognition as an important anatomical structure, and its lesions contribute to shoulder pathology. The subscapularis tendon is very important for the stability of the LHBT and should be included in the pulley system. In cases of a tear associated with a lesion of the SGHL/CHL complex, the LHBT is nearly always unstable and pathologic. II.
Caverzan, Andréia; Bonifacio, Aurenivia; Carvalho, Fabricio E L; Andrade, Claudia M B; Passaia, Gisele; Schünemann, Mariana; Maraschin, Felipe Dos Santos; Martins, Marcio O; Teixeira, Felipe K; Rauber, Rafael; Margis, Rogério; Silveira, Joaquim Albenisio Gomes; Margis-Pinheiro, Márcia
2014-01-01
The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Pick, Uri; Gounaris, Kleoniki; Barber, James
1987-01-01
A photosystem two (PSII) core complex consisting of five major polypeptides (47, 40, 32, 30, and 10 kilodaltons) and a light harvesting chlorophyll a/b complex (LHC-2) have been isolated from the halotolerant alga Dunaliella salina. The chlorophyll and polypeptide composition of both complexes were compared in illuminated and dark-adapted cultures. Dark adaptation is accompanied by a decrease in the chlorophyll a to chlorophyll b (Chl a/Chl b) ratio of intact thylakoids without any change in total chlorophyll. These changes occur with a half-time of 3 hours and are reversed upon reillumination. Analyses of PSII enriched membrane fragments suggest that the decrease in the Chl a/Chl b is due partly to an increase in the Chl b content of LHC-2 and partly to changes in the relative levels of the two complexes. Apparently during dark adaptation there is: (a) a net synthesis of chlorophyll b, (b) removal of PSII core complexes resulting in a 2-fold drop in the PSII cores to LHC-2 chlorophyll ratio. These changes should dramatically increase the light harvesting capacity of the remaining PSII reaction centers. Presumably this adjustment of antenna size and composition is a physiological mechanism necessary for responding to shade conditions. Also detected, using 32P, are light-induced phosphorylation of the LHC-2 (consistent with the ability to undergo State transitions) and of the 40 and 30 kilodalton subunits of the PSII core complex. These observations indicate that additional mechanisms may also exist to help optimize the interception of quanta during rapid changes in illumination conditions. Images Fig. 4 PMID:16665656
NASA Astrophysics Data System (ADS)
Naqvi, K. Razi; Melø, T. B.; Raju, B. Bangar; Jávorfi, Tamás; Simidjiev, Ilian; Garab, Gyözö
1997-12-01
Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/ b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (Δ A) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet-triplet absorption band (Δ A>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chl a) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chl a, is shown to cause a parallel decline in the triplet formation yield of Chl a; on the other hand, the efficiency (100%) of Chl a-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chl a by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.
Farhum, Aisjah; Safruddin, Safruddin; Selamat, Muhammad Banda; Sudirman, Sudirman; Nurdin, Nurjannah; Syamsuddin, Mega; Ridwan, Muhammad; Saitoh, Sei-Ichi
2017-01-01
Using remote sensing of sea surface temperature (SST), sea surface height anomaly (SSHA) and chlorophyll-a (Chl-a) together with catch data, we investigated the detection and persistence of important pelagic habitat hotspots for skipjack tuna in the Gulf of Bone-Flores Sea, Indonesia. We analyzed the data for the period between the northwest and southeast monsoon 2007–2011. A pelagic hotspot index was constructed from a model of multi-spectrum satellite-based oceanographic data in relation to skipjack fishing performance. Results showed that skipjack catch per unit efforts (CPUEs) increased significantly in areas of highest pelagic hotspot indices. The distribution and dynamics of habitat hotspots were detected by the synoptic measurements of SST, SSHA and Chl-a ranging from 29.5° to 31.5°C, from 2.5 to 12.5 cm and from 0.15 to 0.35 mg m-3, respectively. Total area of hotspots consistently peaked in May. Validation of skipjack CPUE predicted by our model against observed data from 2012 was highly significant. The key pelagic habitat corresponded with the Chl-a front, which could be related to the areas of relatively high prey abundance (enhanced feeding opportunity) for skipjack. We found that the area and persistence of the potential skipjack habitat hotspots for the 5 years were clearly identified by the 0.2 mg m-3 Chl-a isopleth, suggesting that the Chl-a front provides a key oceanographic indicator for global understanding on skipjack tuna habitat hotspots in the western tropical Pacific Ocean, especially within Coral Triangle tuna. PMID:28968405