Science.gov

Sample records for chlamydial lung infection

  1. Interleukin-22 Promotes T Helper 1 (Th1)/Th17 Immunity in Chlamydial Lung Infection

    PubMed Central

    Peng, Ying; Gao, Xiaoling; Yang, Jie; Shekhar, Sudhanshu; Wang, Shuhe; Fan, Yijun; Zhao, Weiming; Yang, Xi

    2014-01-01

    The role of interleukin-22 (IL-22) in intracellular bacterial infections is a controversial issue, although the contribution of this cytokine to host defense against extracellular bacterial pathogens has been well established. In this study, we focused on an intra-cellular bacterium, Chlamydia, and evaluated the production and function of IL-22 in host defense against chlamydial lung infection using a mouse model. We found that Chlamydia muridarum infection elicited quick IL-22 responses in the lung, which increased during infection and were reduced when bacterial loads decreased. More importantly, blockade of endogenous IL-22 using neutralizing anti-IL-22 monoclonal antibodies (mAb) resulted in more severe disease in the mice, leading to significantly higher weight loss and bacterial growth and much more severe pathological changes than treatment with isotype control antibody. Immunological analyses identified significantly lower T helper 1 (Th1) and Th17 responses in the IL-22–neutralized mice. In contrast, intranasal administration of exogenous IL-22 significantly enhanced protection following chlamydial lung infection, which was associated with a significant increase of Th17 response. The data demonstrate that IL-22 is a critical cytokine, mediating host defense against chlamydial lung infection and coordinating the function of distinct Th-cell subsets, particularly Th1 and Th17, in the process. PMID:24531835

  2. Natural killer cells regulate Th1/Treg and Th17/Treg balance in chlamydial lung infection.

    PubMed

    Li, Jing; Dong, Xiaojing; Zhao, Lei; Wang, Xiao; Wang, Yan; Yang, Xi; Wang, Hong; Zhao, Weiming

    2016-07-01

    Natural killer (NK) cell is an important component in innate immunity, playing a critical role in bridging innate and adaptive immunity by modulating the function of other immune cells including T cells. In this study, we focused on the role of NK cells in regulating Th1/Treg and Th17/Treg balance during chlamydial lung infection. We found that NK cell-depleted mice showed decreased Th1 and Th17 cells, which was correlated with reduced interferon-γ, interleukin (IL)-12, IL-17 and IL-22 production as well as T-bet and receptor-related orphan receptor gamma t expression compared with mice treated with the isotype control antibody. In contrast, NK cell depletion significantly increased Treg in cell number and related transcription factor (Foxp3) expression. The opposite trends of changes of Th1/Th17 and Treg led to significant reduction in the Th1/Treg and Th17/Treg ratios. The data implicate that NK cells play an important role in host defence against chlamydial lung infection, mainly through maintaining Th1/Treg and Th17/Treg balance.

  3. Inefficiency of C3H/HeN Mice to Control Chlamydial Lung Infection Correlates with Downregulation of Neutrophil Activation During the Late Stage of Infection

    PubMed Central

    Tang, Xiaofei; Bu, Xiaokun; Zhang, Naihong; Li, Xiaoxia; Huang, Huanjun; Bai, Hong; Yang, Xi

    2009-01-01

    We previously reported that massive infiltration of neutrophils in C3H/HeN (C3H) mice could not efficiently control Chlamydia muridarum (Cm) infection and might contribute to the high susceptibility of these mice to lung infection. To further define the nature of neutrophil responses in C3H mice during chlamydial infection, we examine the expression of adhesion molecules and CD11b related to neutrophils infiltration and activation, respectively, following intranasal Cm infection. The results showed that the expression of selectins (E-selectin, P-selectin and L-selectin), and intercellular cell adhesion molecule-1 (ICAM-1) in the lung of C3H mice increased more significantly than in C57BL/6 (B6) mice, the more resistant strain. These results correlated well with the massive neutrophils infiltration in C3H mice. In contrast, CD11b expression on peripheral blood and lung neutrophils in C3H mice exhibited a significant reduction compared with B6 mice during the late phage of infection (day 14). These findings suggest that the high-level expression of adhesion molecules in C3H mice may enhance neutrophils recruitment to the lung, but the decline of CD11b expression on neutrophils may attenuate neutrophil function. Therefore, CD11b down-regulation on neutrophils may contribute to the failure of C3H mice to control chlamydial lung infection. PMID:19728926

  4. Chlamydial Infection in Animals: A Review

    PubMed Central

    Shewen, Patricia E.

    1980-01-01

    A review of the literature concerning chlamydial infection in birds and animals, particularly domestic animals is presented. Following a general discussion of the agent, the nature of chlamydial infection and diagnostic criteria, information regarding disease is summarized for each species. The possibility of zoonotic transmission is also discussed. PMID:6988075

  5. Laboratory diagnosis of human chlamydial infections.

    PubMed Central

    Barnes, R C

    1989-01-01

    Chlamydia trachomatis is a human pathogen that causes ocular disease (trachoma and inclusion conjunctivitis), genital disease (cervicitis, urethritis, salpingitis, and lymphogranuloma venereum), and respiratory disease (infant pneumonitis). Respiratory chlamydioses also occur with infection by avian strains of C. psittaci or infection by the newly described TWAR agent. Diagnosis of most acute C. trachomatis infections relies on detection of the infecting agent by cell culture, fluorescent antibody, immunoassay, cytopathologic, or nucleic acid hybridization methods. Individual non-culture tests for C. trachomatis are less sensitive and specific than the best chlamydial cell culture system but offer the advantages of reduced technology and simple transport of clinical specimens. Currently available nonculture tests for C. trachomatis perform adequately as screening tests in populations in which the prevalence of infection is greater than 10%. A negative culture or nonculture test for C. trachomatis does not, however, exclude infection. The predictive value of a positive nonculture test may be unsatisfactory when populations of low infection prevalence are tested. Tests that detect antibody responses to chlamydial infection have limited utility in diagnosis of acute chlamydial infection because of the high prevalence of persistent antibody in healthy adults and the cross-reactivity due to infection by the highly prevalent C. trachomatis and TWAR agents. Assays for changes in antibody titer to the chlamydial genus antigen are used for the diagnosis of respiratory chlamydioses. A single serum sample that is negative for chlamydial antibody excludes the diagnosis of lymphogranuloma venereum. PMID:2650858

  6. Chlamydial Infection: A Common Sexually Transmitted Disease

    PubMed Central

    Sorbie, Janet

    1982-01-01

    Chlamydia trachomatis infection is more prevalent than gonorrhea and causes a similar clinical picture. It is the prime cause of non-gonococcal urethritis in men and pelvic inflammatory disease in women. Its sequelae in women are ectopic pregnancy and infertility. It can be transmitted from an infected mother to her newborn child, leading to inclusion conjunctivitis and pneumonia. Tetracycline and erythromycin are effective in eradicating chlamydial infections, but the penicillins are not. Screening of high risk groups and special diagnostic facilities would help control this common sexually transmitted disease. PMID:20469385

  7. Chlamydial infections in small ruminants.

    PubMed

    Nietfeld, J C

    2001-07-01

    Chlamydophila abortus (formerly Chlamydia psittaci) is one of the most important causes of reproductive failure in sheep and goats, especially in intensively managed flocks. The disease is usually manifested as abortion in the last 2 to 3 weeks of gestation, regardless of when the animal was infected. Ewes that abort are resistant to future reproductive failure due to C. abortus, but they become inapparent carriers and persistently shed the organism from their reproductive tracts during estrus. Chlamydophila pecorum is the other member of the genus that affects small ruminants, and it is recognized as a primary cause of keratoconjunctivitis in sheep and goats and of polyarthritis in sheep.

  8. Chlamydial infections in free-living birds

    USGS Publications Warehouse

    Brand, C.J.

    1989-01-01

    Most studies of chlamydial infections in free-living wild birds have been limited to surveys for the presence of Chlamydia psittaci or antibody to C psittaci and have largely been done in association with the identification of chlamydiosis in human beings, commercial fowl, or pet birds. The emphasis of these studies has been to determine the prevalence of infection and the potential role of wild birds in the spread of chlamydiae to domestic birds and human beings. Little is known about the epizootiology of chlamydiosis in free-living birds or its affect on their population dynamics. The following article is a summary of reported studies of chlamydiosis in free-living wild birds in relation to host range, ecologic aspects of transmission and maintenance, and the prevalence of disease.

  9. Chlamydial infection induces host cytokinesis failure at abscission.

    PubMed

    Brown, Heather M; Knowlton, Andrea E; Grieshaber, Scott S

    2012-10-01

    Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis.

  10. Chlamydial Infection Induces Host Cytokinesis Failure at Abscission

    PubMed Central

    Brown, Heather M.; Knowlton, Andrea E.; Grieshaber, Scott S.

    2012-01-01

    Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis. PMID:22646503

  11. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts.

    PubMed

    Asquith, Kelly L; Horvat, Jay C; Kaiko, Gerard E; Carey, Alison J; Beagley, Kenneth W; Hansbro, Philip M; Foster, Paul S

    2011-05-01

    Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (-/-) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13-/- mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13-/- mice and depletion of CD4+ T cells did not affect infection in IL-13-/- mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL

  12. Chlamydiaceae and chlamydial infections in sheep or goats.

    PubMed

    Rodolakis, A; Laroucau, K

    2015-12-14

    Chlamydiae induce a range of pathological syndromes in small ruminants. Abortion is the most common clinical expression of the infection that causes important economic losses and presents a risk to human health, particularly in pregnant women. The present paper gives an overview of chlamydial infections in sheep and goats, focusing specifically on abortion and on recent data brought by cellular and genomic approaches regarding genotyping, virulence of strains, epidemiology, diagnosis, pathogenesis and control of the disease.

  13. Chlamydia trachomatis in sexually active teenage girls. Factors related to genital chlamydial infection: a prospective study.

    PubMed

    Rahm, V A; Odlind, V; Pettersson, R

    1991-08-01

    The incidence of new infections with C trachomatis was found to be 19%. Predisposing factors for a subsequent chlamydial infection were multiple partners, smoking and previous infection with C trachomatis. Girls with a spread cervical ectopy were not more likely to contract a chlamydial infection in one year than girls without an ectopy. Oral contraceptive use was not found to predispose for a chlamydial infection.

  14. Molecular mimicry and horror autotoxicus: do chlamydial infections elicit autoimmunity?

    PubMed

    Swanborg, Robert H; Boros, Dov L; Whittum-Hudson, Judith A; Hudson, Alan P

    2006-11-30

    All species of the order Chlamydiales are obligate intracellular eubacterial pathogens of their various hosts. Two chlamydial species, Chlamydia trachomatis and Chlamydia pneumoniae, are primarily human pathogens, and each is known to cause important diseases. Some strains of C. trachomatis are sexually transmitted and frequently cause severe reproductive problems, primarily in women. Other strains of the organism serve as the aetiological agents for blinding trachoma, still the leading cause of preventable blindness in underdeveloped nations. C. pneumoniae is a respiratory pathogen known to cause community-acquired pneumonia. Importantly, both organisms engender an immunopathogenic response in the human host, and both have been associated with widely diverse, relatively common and currently idiopathic chronic diseases, most of which include an important autoimmune component. In this article, we explore the available experimental data regarding the possible elicitation of autoimmunity in various contexts by chlamydial infection, and we suggest several avenues for research to explore this potentially important issue further.

  15. Recognition and treatment of chlamydial infections from birth to adolescence.

    PubMed

    Darville, Toni

    2013-01-01

    The "silent epidemic" of Chlamydia trachomatis threatens to cause reproductive damage and infertility in many of the 50 million women who acquire it each year. Female reproductive tract infection has more recently been linked to stillbirth and premature delivery. Innate immune cells and mediators appear to be the primary players in pathogenesis, with neutrophils playing a prominent role in disease development. Although adaptive antibody and CD4 T cell responses appear primarily protective, these responses are inefficient. Infections are frequently chronic as a result, and when infection is diagnosed and treated with appropriate antibiotics, repeated infection is the rule. The lack of acute symptoms in many infected individuals contributes to the high prevalence of chlamydial infection. Although chronic sequelae are relatively rare in men, and many women sustain infection without developing pelvic inflammatory disease or chronic sequelae, the extremely high prevalence of chlamydial infection leads to significant morbidity and healthcare costs. A vaccine is urgently needed to prevent infection, but given the difficulties of inducing a CD4 T cell memory response that can home quickly to the genital tract, induction of sterilizing immunity may not be possible. A vaccine that prevents disease by lowering bacterial burden and dampening production of tissue-damaging responses may be possible. Until an efficacious vaccine is developed, screening and treatment programs appear to be the best method of disease prevention.

  16. Male genital tract chlamydial infection: implications for pathology and infertility.

    PubMed

    Cunningham, Kelly A; Beagley, Kenneth W

    2008-08-01

    Chlamydia trachomatis infections are prevalent worldwide, but current research, screening, and treatment are focused on females, with the burden of disease and infertility sequelae considered to be a predominantly female problem. The prevalence of chlamydial infection, however, is similar in males and females. Furthermore, a role for this pathogen in the development of male urethritis, epididymitis, and orchitis is widely accepted. The role of Chlamydia in the development of prostatitis is controversial, but we suggest that Chlamydia is an etiological agent, with incidences of up to 39.5% reported in patients with prostatitis. Infection of the testis and prostate is implicated in a deterioration of sperm, possibly affecting fertility. Chlamydia infections also may affect male fertility by directly damaging the sperm, because sperm parameters, proportion of DNA fragmentation, and acrosome reaction capacity are impaired with chlamydial infection. Furthermore, the proportion of male partners of infertile couples with evidence of a Chlamydia infection is greater than that documented in the general population. An effect of male chlamydial infection on the fertility of the female partner also has been reported. Thus, the need for a vaccine to protect both males and females is proposed. The difficulty arises because the male reproductive tract is an immune-privileged site that can be disrupted, potentially affecting spermatogenesis, if inappropriate inflammatory responses are provoked. Examination of responses to infection in humans and in experimental animal models suggest that an immunoglobulin A-inducing vaccine will be able to target the male reproductive tract effectively while avoiding harmful inflammatory responses that may impair fertility.

  17. Sexual behavior, communication, and chlamydial infections among college women.

    PubMed

    Sheahan, S L; Coons, S J; Seabolt, J P; Churchill, L; Dale, T

    1994-01-01

    The sexual practices, partner communication patterns, and prevalence of chlamydial infection were determined in a sample of college women. Specific inclusion criteria were used to screen 146 participants. The presence of a mucopurulent cervical discharge was the only criterion significantly associated with infection. Only 12% of the sample used condoms alone or in combination with another birth control method, and only 31% of the women discussed with their partner their own or their partner's sexual history. Thirty-eight percent of the sample reported a history of one to four episodes of a sexually transmitted disease, and 21% of the women stated they had had two or more sexual partners within the past 6 months. Health providers, counselors, and women themselves must address this health issue with more assertive behavior and communication skills.

  18. Vaginal chlamydial clearance following primary or secondary infection in mice occurs independently of TNF-α.

    PubMed

    Kamalakaran, Sangamithra; Chaganty, Bharat K R; Gupta, Rishein; Guentzel, M Neal; Chambers, James P; Murthy, Ashlesh K; Arulanandam, Bernard P

    2013-01-01

    The role of TNF-α in chlamydial clearance is uncertain. Antibody-mediated depletion of TNF-α in mice and guinea pigs has been shown not to significantly affect chlamydial clearance, whereas production of TNF-α in addition to IFN-γ from T cells has been shown to correlate with enhanced clearance. The aim of our study is to evaluate the mechanistic role of TNF-α in clearance of primary and secondary chlamydial infection from the genital tract (GT) using C57BL/6 TNF-α deficient (TNF-α(-/-)) and wild type (WT) mice. Chlamydial shedding from the lower GT was evaluated following primary and secondary intravaginal challenge. Also, antibody and antigen specific cytokine responses were analyzed from the infected GT and spleens, and oviduct pathology determined to analyze the role of TNF-α in upper GT pathological sequelae. MHC II(-/-) mice, known to display muted adaptive immune responses and failure to resolve genital chlamydial infections, were used as a negative control. Following both primary and secondary genital chlamydial infection, TNF-α(-/-) mice exhibited elevated granzyme B production, but similar IFN-γ and antibody responses. Importantly, absence of TNF-α did not significantly alter the resolution of infection. However, TNF-α(-/-) mice displayed significantly reduced upper genital tract (UGT) pathology compared to WT mice. This study demonstrates mechanistically that optimal chlamydial clearance following primary and secondary chlamydial genital infection can occur in the complete absence of TNF-α, and considered with the reduction of upper GT pathology in TNF-α(-/-) mice, suggests that targeted induction of anti-chlamydial TNF-α responses by vaccination may be unnecessary, and moreover could be potentially pathogenic.

  19. Vaginal chlamydial clearance following primary or secondary infection in mice occurs independently of TNF-α

    PubMed Central

    Kamalakaran, Sangamithra; Chaganty, Bharat K. R.; Gupta, Rishein; Guentzel, M. Neal; Chambers, James P.; Murthy, Ashlesh K.; Arulanandam, Bernard P.

    2013-01-01

    The role of TNF-α in chlamydial clearance is uncertain. Antibody-mediated depletion of TNF-α in mice and guinea pigs has been shown not to significantly affect chlamydial clearance, whereas production of TNF-α in addition to IFN-γ from T cells has been shown to correlate with enhanced clearance. The aim of our study is to evaluate the mechanistic role of TNF-α in clearance of primary and secondary chlamydial infection from the genital tract (GT) using C57BL/6 TNF-α deficient (TNF-α−/−) and wild type (WT) mice. Chlamydial shedding from the lower GT was evaluated following primary and secondary intravaginal challenge. Also, antibody and antigen specific cytokine responses were analyzed from the infected GT and spleens, and oviduct pathology determined to analyze the role of TNF-α in upper GT pathological sequelae. MHC II−/− mice, known to display muted adaptive immune responses and failure to resolve genital chlamydial infections, were used as a negative control. Following both primary and secondary genital chlamydial infection, TNF-α−/− mice exhibited elevated granzyme B production, but similar IFN-γ and antibody responses. Importantly, absence of TNF-α did not significantly alter the resolution of infection. However, TNF-α−/− mice displayed significantly reduced upper genital tract (UGT) pathology compared to WT mice. This study demonstrates mechanistically that optimal chlamydial clearance following primary and secondary chlamydial genital infection can occur in the complete absence of TNF-α, and considered with the reduction of upper GT pathology in TNF-α−/− mice, suggests that targeted induction of anti-chlamydial TNF-α responses by vaccination may be unnecessary, and moreover could be potentially pathogenic. PMID:23483844

  20. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In vivo

    PubMed Central

    Shaw, Jennifer H.; Behar, Amanda R.; Snider, Timothy A.; Allen, Noah A.; Lutter, Erika I.

    2017-01-01

    Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections (STIs) and preventable blindness. Untreated, asymptomatic infection as well as frequent re-infection are common and may drive pelvic inflammatory disease, ectopic pregnancy, and infertility. In vivo models of chlamydial infection continue to be instrumental in progress toward a vaccine and further elucidating the pathogenesis of this intracellular bacterium, however significant gaps in our understanding remain. Chlamydial host cell exit occurs via two mechanisms, lysis and extrusion, although the latter has yet to be reported in vivo and its biological role is unclear. The objective of this study was to investigate whether chlamydial extrusions are shed in vivo following infection with multiple strains of Chlamydia. We utilized an established C3H/HeJ murine cervicovaginal infection model with C. trachomatis serovars D and L2 and the Chlamydia muridarum strain MoPn to monitor the (i) time course of infection and mode of host cell exit, (ii) mucosal and systemic immune response to infection, and (iii) gross and histopathology following clearance of active infection. The key finding herein is the first identification of chlamydial extrusions shed from host cells in an in vivo model. Extrusions, a recently appreciated mode of host cell exit and potential means of dissemination, had been previously observed solely in vitro. The results of this study demonstrate that chlamydial extrusions exist in vivo and thus warrant further investigation to determine their role in chlamydial pathogenesis. PMID:28217555

  1. Chlamydial infections of fish: diverse pathogens and emerging causes of disease in aquaculture species.

    PubMed

    Stride, M C; Polkinghorne, A; Nowak, B F

    2014-05-14

    Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.

  2. Chlamydial infections of fish: diverse pathogens and emerging causes of disease in aquaculture species.

    PubMed

    Stride, M C; Polkinghome, A; Nowak, B F

    2014-06-25

    Chlamydial infections of fish are emerging as an important cause of disease in new and established aquaculture industries. To date, epitheliocystis, a skin and gill disease associated with infection by these obligate intracellular pathogens, has been described in over 90 fish species, including hosts from marine and fresh water environments. Aided by advances in molecular detection and typing, recent years have seen an explosion in the description of these epitheliocystis-related chlamydial pathogens of fish, significantly broadening our knowledge of the genetic diversity of the order Chlamydiales. Remarkably, in most cases, it seems that each new piscine host studied has revealed the presence of a phylogenetically unique and novel chlamydial pathogen, providing researchers with a fascinating opportunity to understand the origin, evolution and adaptation of their traditional terrestrial chlamydial relatives. Despite the advances in this area, much still needs to be learnt about the epidemiology of chlamydial infections in fish if these pathogens are to be controlled in farmed environments. The lack of in vitro methods for culturing of chlamydial pathogens of fish is a major hindrance to this field. This review provides an update on our current knowledge of the taxonomy and diversity of chlamydial pathogens of fish, discusses the impact of these infections on the health, and highlights further areas of research required to understand the biology and epidemiology of this important emerging group of fish pathogens of aquaculture species.

  3. Genital chlamydial infection: association between clinical features, organism genotype and load.

    PubMed

    Jalal, Hamid; Verlander, Neville Q; Kumar, Navin; Bentley, Neil; Carne, Christopher; Sonnex, Christopher

    2011-07-01

    The association between the clinical features of genital chlamydial infection and organism genotype and load was evaluated. Chlamydial DNA was detected and quantified in genital swabs from 233 (7 %) of 3384 consecutive patients attending a genitourinary medicine clinic. The chlamydia-positive subcohort comprised 132 (57 %) females and 101 (43 %) males. Clinical features were present in 33 % women and 72 % men. The chlamydial load was found to be higher in women (median load: 5.6 log) than men (median load: 3.5 log). Single variable analysis failed to show a significant association between chlamydial load and clinical features (P value = 0.3). Owing to the limited amount of clinical material, information on chlamydial genotypes was available for 70 % (n = 162) of chlamydia-positive patients. However, multivariable analysis of these samples did show a significant association between chlamydial load and clinical features (P value = 0.02). This discrepancy is most probably due to the difference in the amount of data analysed by single variable (data from 233 patients) and multivariable (data from 162 patients) analysis. The distribution of chlamydia genotypes was as follows: type E (46 %), F (22 %), D (8 %), K (8 %), G (7 %), J (4 %), I (1 %) and H (0.6 %). No statistically significant association was observed between chlamydial genotype and clinical features in either single variable (P value = 0.6) or multivariable (P value = 0.4) analysis. These findings suggest that chlamydial load and diversity in the ompA gene plays little, if any, role in the pathogenesis of genital chlamydial infection.

  4. The impact of oral contraception on chlamydial infection among patients with pelvic inflammatory disease.

    PubMed

    Spinillo, A; Gorini, G; Piazzi, G; Baltaro, F; Monaco, A; Zara, F

    1996-09-01

    The prevalence of oral contraceptive use in association with chlamydial pelvic inflammatory disease (PID) and the presence of anti-chlamydial IgG and IgA in a population of 144 hospitalized and outpatient subjects with a standard diagnosis of PID was studied. The rates of chlamydial PID and IgA detection were 15.3% (22/144) and 13.9% (20/144), respectively. After stratification for age, number of pregnancies, and lifetime sexual partners, the rates of chlamydial PID (odds ratio = 0.30, 95% CI = 0.10 - 0.89) and IgA detection (odds ratio = 0.23, 95% CI = 0.07 - 0.73) were lower among previous or current oral contraceptive users than in women who had never used birth control methods. Analyses of linear trend indicated a negative association between increasing duration of exposure to hormonal contraception and anti-chlamydial IgG and IgA. This study confirms that among patients with chlamydial PID, the frequency of oral contraceptive use is lower than that in patients with PID of other etiology. Serologic studies suggest a possible relationship between hormonal contraception and changes in immune response or susceptibility to chlamydial infection.

  5. Chlamydial Variants Differ in Ability To Ascend the Genital Tract in the Guinea Pig Model of Chlamydial Genital Infection

    PubMed Central

    Yeruva, Laxmi; Bowlin, Anne K.; Spencer, Nicole; Maurelli, Anthony T.

    2015-01-01

    An important question in the study of chlamydial genital tract disease is why some women develop severe upper tract disease while others have mild or even “silent” infections with or without pathology. Animal studies suggest that the pathological outcome of an infection is dependent upon both the composition of the infecting chlamydial population and the genotype of the host, along with host physiological effects, such as the cyclical production of reproductive hormones and even the size of the infecting inoculum or the number of repeated infections. In this study, we compared two variants of Chlamydia caviae, contrasting in virulence, with respect to their abilities to ascend the guinea pig genital tract. We then determined the effect of combining the two variants on the course of infection and on the bacterial loads of the two variants in the genital tract. Although the variants individually had similar infection kinetics in the cervix, SP6, the virulent variant, could be isolated from the oviducts more often and in greater numbers than the attenuated variant, AZ2. SP6 also elicited higher levels of interleukin 8 (IL-8) in the lower genital tract and increased leukocyte infiltration in the cervix and uterus compared to AZ2. When the two variants were combined in a mixed infection, SP6 outcompeted AZ2 in the lower genital tract; however, AZ2 was able to ascend the genital tract as readily as SP6. These data suggest that the ability of SP6 to elicit an inflammatory response in the lower genital tract facilitates the spread of both variants to the oviducts. PMID:26015484

  6. PCR-based detection of chlamydial infection in swine and subsequent PCR-coupled genotyping of chlamydial omp1-gene amplicons by DNA-hybridization, RFLP-analysis, and nucleotide sequence analysis.

    PubMed Central

    Hoelzle, L. E.; Steinhausen, G.; Wittenbrink, M. M.

    2000-01-01

    Lung and intestine of 49 pigs with respiratory diseases and endocervical swabs from 205 sows with reproductive disorders were investigated for chlamydial infection by polymerase chain reaction. PCR primers targeted DNA sequences on the chlamydial omp1 or omp2 genes. PCR amplicons were generated from 49.0% of pigs with respiratory disease, from 60.0% of sows with reproductive disorders, from 24.5% of respiratory healthy controls, but from no endocervical swabs from fertile sows. By DNA hybridization, a high prevalence of mixed infections with Chlamydophila abortus and Chlamydia suis in the porcine lung and intestine was found and confirmed by RFLP and nucleotide analysis. Of the omp1-PCR amplicons from endocervical swabs 81.3% were identified as Chlamydophila abortus, indicating an association of this chlamydial species with reproductive disorders in sows. Nucleotide sequence analysis of omp1-amplicons identified as deriving from Chlamydia suis shared a maximum of 82.7% homology with the reference strain S45. PMID:11117968

  7. Lack of an effect of antibiotic treatment on prolonged detection of chlamydial DNA in murine genital tract infection.

    PubMed

    Reeves, Dawn M; Nagarajan, Uma; O'Connell, Catherine; Andrews, Charles W; Darville, Toni

    2007-07-01

    Mice treated with antibiotics early or late after active infection had resolved were examined for chlamydial DNA in endocervical swabs. The early eradication of infection limited oviduct pathology, despite the continued detection of chlamydial DNA by nested PCR. Late antibiotic treatment had no effect on the ability to detect DNA or oviduct pathology.

  8. Effect of estradiol on chlamydial genital infection of female guinea pigs.

    PubMed

    Rank, R G; White, H J; Hough, A J; Pasley, J N; Barron, A L

    1982-11-01

    Female guinea pigs were treated daily with 1 mg of beta-estradiol-3-benzoate intramuscularly beginning 14 days before intravaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis and continuing during the course of the infection. Treatment with estradiol was found to markedly influence the course of genital infection with the chlamydial agent of guinea pig inclusion conjunctivitis, producing infections of greater intensity and longer duration than those in control animals. Moreover, pathogenesis was altered in that ascending infection was observed, resulting in endometritis, cystic salpingitis, and cystitis. Infection in the controls was limited to the cervix and vagina. Estradiol treatment increased the apparent number of infected cells in the cervix and vagina as detected by histopathology and immunofluorescent staining. Humoral and cell-mediated immune responses to the chlamydial agent of guinea pig inclusion conjunctivitis were comparable in estradiol-treated and untreated animals. These data indicate that hormonal manipulation may have profound effects on the course of chlamydial genital infections.

  9. Chlamydial infections in wildlife-conservation threats and/or reservoirs of 'spill-over' infections?

    PubMed

    Burnard, Delaney; Polkinghorne, Adam

    2016-11-30

    Members of the order Chlamydiales are biphasic intracellular pathogens known to cause disease in both humans and animals. As we learn more about the genetic diversity of this group of pathogens, evidence is growing that these bacteria infect a broader range of animal hosts than previously thought. Over 400 host species are now documented globally with the majority of these being wild animals. Given the impact of chlamydial infections on humans and domesticated animals, the identification of members of the order Chlamydiales in wildlife raises significant questions over a) their impact on animal health and b) the relationships to those strains also found in humans and domestic animals. In some species such as the iconic marsupial, the koala, the conservation impact is known with chlamydial infections associated with debilitating disease, however, in general, little is known about the pathogenic potential of Chlamydiae infecting most wildlife hosts. Accumulating evidence suggests contact with wild animals is a risk factor for infections in domestic animals and/or humans. Beyond the well-recognised zoonotic pathogen, Chlamydia psittaci, a range of studies have now reported traditional pathogens in the family Chlamydiaceae such as Chlamydia pecorum, Chlamydia suis, Chlamydia pneumoniae and Chlamydia abortus in wild animals. The spectre of cross-host transmission 'spill-over' and 'spill-back' in the epidemiology of infections is of potential concern, however, comprehensive epidemiological studies are lacking for most of these. Accurate evaluation of the significance of chlamydial infections in wildlife is otherwise hampered by i) the cross-sectional nature of most impact studies, ii) a lack of standardised diagnostic approaches, iii) limited study sizes, and iv) biases associated with opportunistic sampling.

  10. Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection.

    PubMed

    Prusty, Bhupesh K; Böhme, Linda; Bergmann, Birgit; Siegl, Christine; Krause, Eva; Mehlitz, Adrian; Rudel, Thomas

    2012-01-01

    Both human herpes viruses and Chlamydia are highly prevalent in the human population and are detected together in different human disorders. Here, we demonstrate that co-infection with human herpes virus 6 (HHV6) interferes with the developmental cycle of C. trachomatis and induces persistence. Induction of chlamydial persistence by HHV6 is independent of productive virus infection, but requires the interaction and uptake of the virus by the host cell. On the other hand, viral uptake is strongly promoted under co-infection conditions. Host cell glutathione reductase activity was suppressed by HHV6 causing NADPH accumulation, decreased formation of reduced glutathione and increased oxidative stress. Prevention of oxidative stress restored infectivity of Chlamydia after HHV6-induced persistence. We show that co-infection with Herpes simplex virus 1 or human Cytomegalovirus also induces chlamydial persistence by a similar mechanism suggesting that Chlamydia -human herpes virus co-infections are evolutionary shaped interactions with a thus far unrecognized broad significance.

  11. Recommendations for partner services programs for HIV infection, syphilis, gonorrhea, and chlamydial infection.

    PubMed

    2008-11-07

    This report provides updated, integrated recommendations for services provided to partners of persons with human immunodeficiency virus (HIV) infection and three other sexually transmitted diseases (STDs) (i.e., syphilis, gonorrhea, and chlamydial infection) and replaces the CDC 2001 Program Operations Guidelines for STD Prevention---Partner Services and the 1998 HIV Partner Counseling and Referral Services Guidance. These recommendations are intended for health department program managers responsible for overseeing partner services programs for HIV infection and the three other STDs at the state and local levels. The recommendations also might be beneficial for HIV prevention community planning groups, STD program advisory bodies, technical assistance providers, community-based organizations, and clinical care providers. The value of partner services in the control of syphilis and gonorrhea is widely accepted. However, such services are underused among partners of persons with HIV infection. On the basis of evidence of effectiveness and cost-effectiveness of these services, CDC strongly recommends that all persons with newly diagnosed or reported HIV infection or early syphilis receive partner services with active health department involvement. Persons with a diagnosis of, or who are reported with, gonorrhea or chlamydial infection also are suitable candidates for partner services; however, resource limitations and the numerous cases of these infections might preclude direct health department involvement in certain instances. Health departments might need to limit direct involvement in partner services for gonorrhea and chlamydial infection to selected high-priority cases and use other strategies for the remainder (e.g., expedited partner therapy). These recommendations highlight the importance of program collaboration and service integration in the provision of partner services. Because coinfection with HIV and one or more other STDs is common, all persons with a

  12. Prevalence of Chlamydial Infections in Fattening Pigs and Their Influencing Factors

    PubMed Central

    Hoffmann, Karolin; Schott, Franziska; Donati, Manuela; Di Francesco, Antonietta; Hässig, Michael; Wanninger, Sabrina; Sidler, Xaver; Borel, Nicole

    2015-01-01

    Chlamydial infections in pigs are associated with respiratory disease, diarrhea, conjunctivitis and other pathologies. The aim of this study was to define the prevalence of Chlamydiaceae in Swiss fattening pigs by applying sensitive and specific detection methods and to correlate prior antibiotic treatment and farm related factors with differences in prevalence. Conjunctival and fecal swabs were collected from 636 pigs in 29 Swiss fattening pig farms with and without antibiotic treatment, at the beginning and the end of the fattening period. The swabs were screened by real-time PCR for Chlamydiaceae. For the chlamydial detection and species-identification, a DNA-microarray analysis was performed. All farms were positive for Chlamydiaceae with 94.3 and 92.0% prevalence in fecal swabs as well as 45.9 and 32.6% in conjunctival swabs at the first and second time points, respectively. Antibiotic treatment could not clear the infection on herd level. Potential contact with wild boars was a significant risk factor, while hygiene criteria did not influence chlamydial prevalence. A correlation of chlamydial positivity to diarrhea, but not to conjunctivitis was evident. Chlamydia suis was the predominant species. Mixed infections with C. suis and C. pecorum were common, with a substantial increase in C. pecorum positivity at the end of the fattening period, and this finding was associated with ruminant contact. C. abortus was detected in one conjunctival swab. In this study, C. suis inhabited the intestinal tract of nearly all examined pigs, implying a long-term infection. C. pecorum was also common and might be transmitted to pigs by ruminants. PMID:26619187

  13. Persistent and acute chlamydial infections induce different structural changes in the Golgi apparatus.

    PubMed

    Zhu, Huiling; Li, Hongmei; Wang, Pu; Chen, Mukai; Huang, Zengwei; Li, Kunpeng; Li, Yinyin; He, Jian; Han, Jiande; Zhang, Qinfen

    2014-07-01

    Chlamydia trachomatis causes a wide range of diseases that have a significant impact on public health. Acute chlamydial infections can cause fragmentation of the Golgi compartment ensuring the lipid transportation from the host cell. However, the changes that occur in the host cell Golgi apparatus after persistent infections are unclear. Here, we examined Golgi-associated gene (golga5) transcription and expression along with the structure of the Golgi apparatus in cells persistently infected with Chlamydia trachomatis. The results showed that persistent infections caused little fragmentation of the Golgi. The results also revealed that Golgi fragmentation might be associated with the suppression of transcription of the gene golga5.

  14. Chlamydial infection of the gastrointestinal tract: a reservoir for persistent infection

    PubMed Central

    Yeruva, Laxmi; Spencer, Nicole; Bowlin, Anne K.; Wang, Yin; Rank, Roger G.

    2013-01-01

    The mechanism by which chlamydiae persist in vivo remains undefined; however, chlamydiae in most animals persist in the gastrointestinal tract (GI) and are transmitted via the fecal-oral route. Oral infection of mice with Chlamydia muridarum was previously shown to establish a long-term persistent infection in the GI tract. In this study, BALB/c, DBA/2 and C57Bl/6 mice, infected orally with C. muridarum, were infected in the cecum for as long as 100 days in the absence of pathology. The primary target tissue was the cecum although the large intestine was also infected in most animals. A strong serum IgG and cecal IgA antibody response developed. Lymphocyte proliferation assays to chlamydial antigen on mesenteric lymph node cells were positive by day 10 and peaked on days 15–21, but the response returned to baseline levels by 50 days, despite the ongoing presence of the organism in the cecum. Since studies have shown that women and men become infected orally with chlamydiae, we propose that the GI tract is a site of persistent infection and that immune down-regulation in the gut allows chlamydiae to persist indefinitely. As a result, women may become reinfected via contamination of the genital tract from the lower GI tract. PMID:23843274

  15. Water-Filtered Infrared A Irradiation in Combination with Visible Light Inhibits Acute Chlamydial Infection

    PubMed Central

    Marti, Hanna; Koschwanez, Maria; Pesch, Theresa; Blenn, Christian; Borel, Nicole

    2014-01-01

    New therapeutic strategies are needed to overcome drawbacks in treatment of infections with intracellular bacteria. Chlamydiaceae are Gram-negative bacteria implicated in acute and chronic diseases such as abortion in animals and trachoma in humans. Water-filtered infrared A (wIRA) is short wavelength infrared radiation with a spectrum ranging from 780 to 1400 nm. In clinical settings, wIRA alone and in combination with visible light (VIS) has proven its efficacy in acute and chronic wound healing processes. This is the first study to demonstrate that wIRA irradiation combined with VIS (wIRA/VIS) diminishes recovery of infectious elementary bodies (EBs) of both intra- and extracellular Chlamydia (C.) in two different cell lines (Vero, HeLa) regardless of the chlamydial strain (C. pecorum, C. trachomatis serovar E) as shown by indirect immunofluorescence and titration by subpassage. Moreover, a single exposure to wIRA/VIS at 40 hours post infection (hpi) led to a significant reduction of C. pecorum inclusion frequency in Vero cells and C. trachomatis in HeLa cells, respectively. A triple dose of irradiation (24, 36, 40 hpi) during the course of C. trachomatis infection further reduced chlamydial inclusion frequency in HeLa cells without inducing the chlamydial persistence/stress response, as ascertained by electron microscopy. Irradiation of host cells (HeLa, Vero) neither affected cell viability nor induced any molecular markers of cytotoxicity as investigated by Alamar blue assay and Western blot analysis. Chlamydial infection, irradiation, and the combination of both showed a similar release pattern of a subset of pro-inflammatory cytokines (MIF/GIF, Serpin E1, RANTES, IL-6, IL-8) and chemokines (IL-16, IP-10, ENA-78, MIG, MIP-1α/β) from host cells. Initial investigation into the mechanism indicated possible thermal effects on Chlamydia due to irradiation. In summary, we demonstrate a non-chemical reduction of chlamydial infection using the combination of water

  16. The contribution of temperature, exposure intensity and visible light to the inhibitory effect of irradiation on acute chlamydial infection.

    PubMed

    Marti, Hanna; Blenn, Christian; Borel, Nicole

    2015-12-01

    Water-filtered infrared A (wIRA) is radiation with a spectrum ranging from 780 to 1400 nm. Chlamydiaceae are obligate intracellular bacteria associated with various diseases in both animals and humans. A recent in vitro study demonstrated that wIRA combined with visible light (wIRA/VIS) has potential as a non-chemical method for the treatment of chlamydial infections without adversely affecting the cell viability. The aim of this study was to investigate the influence of various factors on the effect of wIRA/VIS on acute chlamydial infection, namely the impact of temperature, exposure intensity and infectious dose (multiplicity of infection) as well as the efficacy of the visible light component.We demonstrate that non-thermal effects contribute to the inhibition of acute chlamydial infection. Visible light enhances the inhibitory effect of wIRA on extracellular bacteria (elementary bodies or EBs).Moreover, the inhibitory effect of wIRA/VIS following treatment of EBs prior to infection correlated with increased irradiation intensity. The infectivity of mature chlamydial inclusions was significantly reduced upon wIRA/VIS exposure at all irradiation intensities investigated, suggesting the contribution of host cell factors to the anti-chlamydial effect of wIRA/VIS in the late stage of the developmental cycle. The effect of irradiation was not influenced by the infectious dose.

  17. High frequency of chlamydial co-infections in clinically healthy sheep flocks

    PubMed Central

    2011-01-01

    Background The epidemiological situation of ovine chlamydial infections in continental Europe, especially Germany is poorly characterised. Using the German state of Thuringia as a model example, the chlamydial sero- and antigen prevalence was estimated in thirty-two randomly selected sheep flocks with an average abortion rate lower than 1%. Seven vaccinated flocks were reviewed separately. Results A wide range of samples from 32 flocks were examined. Assumption of a seroprevalence of 10% (CI 95%) at flock level, revealed that 94% of the tested flocks were serologically positive with ongoing infection (i.e. animals with seroconversion) in nearly half (47%) of the flocks. On the basis of an estimated 25% antigen prevalence (CI 95%), PCR and DNA microarray testing, together with sequencing revealed the presence of chlamydiae in 78% of the flocks. The species most frequently found was Chlamydophila (C.) abortus (50%) followed by C. pecorum (47%) and C. psittaci genotype A (25%). Mixed infections occurred in 25% of the tested flocks. Samples obtained from the vaccinated flocks revealed the presence of C. abortus field samples in 4/7 flocks. C. pecorum was isolated from 2/7 flocks and the presence of seroconversion was determined in 3/7 flocks. Conclusions The results imply that chlamydial infections occur frequently in German sheep flocks, even in the absence of elevated abortion rates. The fact that C. pecorum and the potentially zoonotic C. psittaci were found alongside the classical abortifacient agent C. abortus, raise questions about the significance of this reservoir for animal and human health and underline the necessity for regular monitoring. Further studies are needed to identify the possible role of C. psittaci infections in sheep. PMID:21679409

  18. Absence of progesterone effects on chlamydial genital infection in female guinea pigs.

    PubMed

    Pasley, J N; Rank, R G; Hough, A J; Cohen, C; Barron, A L

    1985-01-01

    The effect of progesterone alone and in combination with estradiol was investigated in ovariectomized and gonadally intact female guinea pigs infected with the chlamydial agent of guinea pig inclusion conjunctivitis (GPIC). The course of the infection, as determined by the percentage of cells with GPIC (chlamydia) inclusions in Giemsa-stained vaginal scrapings, was not affected in animals receiving 5.0 mg of progesterone daily. Progesterone had no influence on the enhancement of infection by estradiol. In comparison with sesame oil-treated controls, infection was prolonged by four to six days (P less than .05) in animals receiving a combination of 5.0 mg of progesterone plus 1.0 microgram of estradiol or 1.0 microgram of estradiol alone each day. In ovariectomized animals, estradiol delayed the appearance of IgA antibody in genital secretions, whereas progesterone alone had no effect. Guinea pigs treated with estradiol or progesterone plus estradiol manifested an acute endometritis not observed in animals treated with progesterone alone or in controls receiving sesame oil. Although cervical ectopy, analogous to that seen in women with high levels of progesterone, was identified by histopathology in animals treated with progesterone, no enhancement of the chlamydial infection was observed.

  19. [Analysis of parameters of reproductive tract mucosal immunity in women with chlamydial infection before and after local magnetolaserotherapy].

    PubMed

    Gizinger, O A; Dolgushin, I I; Letiaeva, O I

    2010-01-01

    The objective of the present study was to evaluate the influence of combined treatment with low-intensity laser radiation and magnetic field on neutrophil function in women presenting with Chlamydial infection. Dysfunction of neutrophil granulocytes in these patients was manifest in the first place as the decreased number of phagocytes and the low rate of phagocytosis. It was shown that the concentration of active oxygen species in neutrophils in the patients with Chlamydial infection was significantly smaller than in healthy women. The concurrent application of low-intensity laser radiation and a magnetic field not only stimulated phagocytosis but also increased intracellular production of active oxygen species especially under in vitro conditions. It is concluded that combined treatment with low-intensity laser radiation and magnetic field has beneficial effect on the parameters of mucosal immunity in the reproductive tract of women with Chlamydial infection.

  20. Trachoma and Ocular Chlamydial Infection in the Era of Genomics

    PubMed Central

    Derrick, Tamsyn; Roberts, Chrissy h.; Last, Anna R.; Burr, Sarah E.; Holland, Martin J.

    2015-01-01

    Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma. PMID:26424969

  1. Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid.

    PubMed

    Russell, Marsha; Darville, Toni; Chandra-Kuntal, Kumar; Smith, Bennett; Andrews, Charles W; O'Connell, Catherine M

    2011-01-01

    Chlamydia trachomatis contains a conserved ∼7.5-kb plasmid. Loss of the plasmid results in reduced glycogen accumulation, failure to activate TLR2, and reduced infectivity. We hypothesized that reduced infectivity functions as a means of selection for plasmid maintenance. We directly examined the biological significance of the reduced infectivity associated with plasmid deficiency by determining the relative fitness of plasmid-deficient CM972 versus that of wild-type C. muridarum Nigg in mixed inocula in vitro and in vivo. C. muridarum Nigg rapidly out-competed its plasmid-cured derivative CM972 in vitro but was not competitive with CM3.1, a derivative of CM972 that has reverted to a normal infectivity phenotype. C. muridarum Nigg also effectively competed with CM972 during lower and upper genital tract infection in the mouse, demonstrating that strong selective pressure for plasmid maintenance occurs during infection. The severity of oviduct inflammation and dilatation resulting from these mixed infections correlated directly with the amount of C. muridarum Nigg in the initial inoculum, confirming the role of the plasmid in virulence. Genetic characterization of CM972 and CM3.1 revealed no additional mutations (other than loss of the plasmid) to account for the reduced infectivity of CM972 and detected a single base substitution in TC_0236 in CM3.1 that may be responsible for its restored infectivity. These data demonstrate that a chlamydial strain that differs genetically from its wild-type parent only with respect to the lack of the chlamydial plasmid is unable to compete in vitro and in vivo, likely explaining the rarity of plasmid-deficient isolates in nature.

  2. Effects of various doses of estradiol on chlamydial genital infection in ovariectomized guinea pigs.

    PubMed

    Pasley, J N; Rank, R G; Hough, A J; Cohen, C; Barron, A L

    1985-01-01

    The effect of various doses of estradiol on genital tract infection by the chlamydial agent of guinea pig inclusion conjunctivitis (GPIC) was investigated in ovariectomized guinea pigs. Prolongation of infection, as determined by chlamydial inclusion counts of cells in Giemsa-stained smears of vaginal scrapings, was observed in animals receiving daily doses of 1.0, 10.0, 100.0, or 1000 micrograms of estradiol. In contrast to controls, ascending infection resulting in endometritis was found in animals receiving doses of greater than or equal to 1.0 microgram of estradiol per day. Response to estradiol treatment was reflected in an increase in cervical-uterine wet weight and uterine wall thickness. No differences were observed in time of appearance of antibody titers to GPIC in serum, but a delay in appearance of IgA antibody to GPIC in genital secretions was found in estradiol-treated animals receiving doses of greater than or equal to 1.0 microgram per day.

  3. [Measurement of antibody titers to chlamydial infection and effects of levofloxacin in cystic cervicitis and chlamydial infection].

    PubMed

    Chimura, T

    1997-05-01

    Generally, clinical symptoms such as abnormal leukorrhea are caused by C. trachomatis, an ordinary bacteria in cervical infection. The effects of levofloxacin administration at a dose of 300 mg/day for 5-14 days were investigated in the subjects (n = 66) after the discussion of cystic cervicitis. The treatment was made in combination with chloramphenicol-solcoseryl tablet for vaginal use. And it was demonstrated that treatment was effective in all subjects. Then, Sero IPALISA, an examination of IgA/IgG antibody was conducted for the screening of Chlamydia infection (n = 258). The rate of antibody-positive case was 48/160 (30.0%) for the non-pregnant women and 26/98 (26.5%) for the pregnant. The occurrence rates for the women singing in 15-24 and 35-39 years of age were 50 and 41%, respectively. The results from the measurement of the antibody titer were as follows: the rate of IgA/IgG positive care was 61/87 for IgA and 56/87 for IgG when the cut-off index was 1.11 or more. The rates for both antibody were 11/87 (12.6%) and 24/87 (27.6%) for the indexes of 1.11-3.00 and 3.01 or more, respectively. Next, one to three courses levofloxacin at 300 mg/day for 14 days were given to 48 non-pregnant subjects infected with Chlamydia and one to two courses of clarithromycin at 400 mg/day for 14 days were given to 26 pregnant subjects. Side effects have not been noted in any care and there was no changes in the IgA/IgG antibody titer depending on these treatments.

  4. [Pathomorphological research on chlamydial abortion in sheep].

    PubMed

    Neĭkov, P; Genchev, G G

    1987-01-01

    Serologic and morphologic studies were carried out with ewes and aborted fetuses, respectively, with regard to the Chlamydial infection in the flocks of some farms. The complement-fixation test was employed to examine a total of 656 blood serum samples. It was found that 20.2 per cent of these contained Chlamydial antibodies. Abortions were established with 6 to 8 per cent of the sheep in each flock. Material was sampled from 35 aborted fetuses. Featuring in the gross lesions of the fetal placenta in Chlamydial abortions were the wheat-bran type of whitish coatings on the surface. Characteristic histologic findings were desquamation, necroses, lympho-leukocytic infiltrations, and the partial deposits of calcium salts. Definite diagnostic value with the aborted fetuses were shown to have the lympho-histiocytic proliferations in the liver, adrenal glands, kidneys, lungs as well as the reticuloendothelial hyperplasia with the presence of gigantic cells of Langhans type in the mesenterial lymph nodes.

  5. Electron Microscopy of Cell Cultures Infected with a Chlamydial Agent Causing Polyarthritis of Lambs

    PubMed Central

    Cutlip, Randall C.

    1970-01-01

    McCoy cell cultures infected with the agent of ovine chlamydial polyarthritis were examined with the electron microscope. The agent was seen as small dense particles (250 to 450 nm) with an eccentric nucleoid and a multilaminated cell wall, as large (800 to 1,200 nm) granular particles surrounded by two unit membranes and as intermediate particles. Replication, which occurred throughout the cytoplasm, was initiated by phagocytosis of a small dense particle and terminated by rupture of the plasma membrane. Upon entering a cell, the small dense particles developed into large granular particles which divided by binary fission. Daughter particles either repeated the division or condensed to form new small dense particles. Images PMID:16557765

  6. In Vivo and Ex Vivo Imaging Reveals a Long-Lasting Chlamydial Infection in the Mouse Gastrointestinal Tract following Genital Tract Inoculation

    PubMed Central

    Zhang, Qi; Huang, Yumeng; Gong, Siqi; Yang, Zhangsheng; Sun, Xin; Schenken, Robert

    2015-01-01

    Intravaginal infection with Chlamydia muridarum in mice can ascend to the upper genital tract, resulting in hydrosalpinx, a pathological hallmark for tubal infertility in women infected with C. trachomatis. Here, we utilized in vivo imaging of C. muridarum infection in mice following an intravaginal inoculation and confirmed the rapid ascent of the chlamydial organisms from the lower to upper genital tracts. Unexpectedly, the C. muridarum-derived signal was still detectable in the abdominal area 100 days after inoculation. Ex vivo imaging of the mouse organs revealed that the long-lasting presence of the chlamydial signal was restricted to the gastrointestinal (GI) tract, which was validated by directly measuring the chlamydial live organisms and genomes in the same organs. The C. muridarum organisms spreading from the genital to the GI tracts were detected in different mouse strains and appeared to be independent of oral or rectal routes. Mice prevented from orally taking up excretions also developed the long-lasting GI tract infection. Inoculation of C. muridarum directly into the upper genital tract, which resulted in a delayed vaginal shedding of live organisms, accelerated the chlamydial spreading to the GI tract. Thus, we have demonstrated that the genital tract chlamydial organisms may use a systemic route to spread to and establish a long-lasting infection in the GI tract. The significance of the chlamydial spreading from the genital to GI tracts is discussed. PMID:26099591

  7. Committee opinion no 632: Expedited partner therapy in the management of gonorrhea and chlamydial infection.

    PubMed

    2015-06-01

    Sexually transmitted infections (STIs) disproportionately affect women and create a preventable threat to their fertility. One factor that contributes to young women's high rates of STIs is reinfection from an untreated sexual partner. One way to address this problem is through expedited partner therapy, the practice of treating the sexual partners of patients in whom STIs are diagnosed. Expedited partner therapy enables the obstetrician-gynecologist or other provider to give prescriptions or medications to patients to take to their partners without first examining these partners. Despite the effectiveness of expedited partner therapy, numerous legal, medical, practical, and administrative barriers hinder its routine use by obstetrician-gynecologists. The American College of Obstetricians and Gynecologists supports the use of expedited partner therapy as a method of preventing gonorrhea and chlamydial reinfection when a patient's partners are unable or unwilling to seek medical care. Expedited partner therapy should be accompanied by patient counseling and written treatment instructions for the patient's partner(s). Partners receiving expedited partner therapy should be encouraged to seek additional medical evaluation as soon as possible to discuss screening for other STIs, including human immunodeficiency virus (HIV) infection.

  8. UK National Audit of chlamydial infection management in sexual health clinics. case notes audit: demography, diagnosis and treatment.

    PubMed

    McClean, Hugo; Carne, Chris; Bunting, Paul; Bhaduri, Sumit; Fernandes, Arnold; Dhar, Jyoti; Estreich, Steve; Daniels, David

    2008-07-01

    The case notes of cases of genital chlamydial infection were audited against the UK National Guideline. This was the first web-based and the largest national audit to date, with 193 clinics in all UK Regions contributing data. About half of all cases had no symptoms, with about one-third attending for routine or asymptomatic screens; suggesting significant provision of screening by clinics that might be managed differently to reduce workload. Nucleic acid amplification tests (NAATs) are now well established for chlamydial detection in UK clinics, with 93% of cases having genital NAATs. Azithromycin is now more commonly used than doxycycline (54% vs. 37%). Of 26 pregnant women, 20 were treated with azithromycin, suggesting that most prescribers treating pregnant women consider that erythromycin is not an adequate alternative to azithromycin. Most women had NAATs obtained from sites recommended by the Guideline, with 93% of women who had genital NAATs having these from the cervix or vulvovaginal area.

  9. Lung transplant infection.

    PubMed

    Burguete, Sergio R; Maselli, Diego J; Fernandez, Juan F; Levine, Stephanie M

    2013-01-01

    Lung transplantation has become an accepted therapeutic procedure for the treatment of end-stage pulmonary parenchymal and vascular disease. Despite improved survival rates over the decades, lung transplant recipients have lower survival rates than other solid organ transplant recipients. The morbidity and mortality following lung transplantation is largely due to infection- and rejection-related complications. This article will review the common infections that develop in the lung transplant recipient, including the general risk factors for infection in this population, and the most frequent bacterial, viral, fungal and other less frequent opportunistic infections. The epidemiology, diagnosis, prophylaxis, treatment and outcomes for the different microbial pathogens will be reviewed. The effects of infection on lung transplant rejection will also be discussed.

  10. Usefulness of quantifying leukocytes in first-voided urine to predict positivity for Chlamydia trachomatis in asymptomatic men at high risk for chlamydial infection.

    PubMed

    Ito, Shin; Horie, Kengo; Seike, Kensaku; Yasuda, Mitsuru; Tsuchiya, Tomohiro; Yokoi, Shigeaki; Nakano, Masahiro; Deguchi, Takashi

    2014-12-01

    Chlamydia trachomatis causes acute non-gonococcal urethritis, but some infected men are asymptomatic. We examined leukocytes in uncentrifuged first-voided urine (FVU) from asymptomatic men at high risk for chlamydial infection by automated urine particle analyzers to assess whether the quantification of urinary leukocytes could predict chlamydial infection in these men. We enrolled 209 asymptomatic men, whose female sexual partners had been diagnosed as having a genital chlamydial infection. Their FVU specimens were examined for quantification of leukocytes with automated urine particle analyzers and tested for Neisseria gonorrhoeae, C. trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum, and Ureaplasma urealyticum by nucleotide acid amplification tests. Eleven men positive for N. gonorrhoeae or M. genitalium were excluded from further analysis. In the remaining 198 men, 84 positive for C. trachomatis (42.4%) had 1.8-1666.9 white blood cells (WBCs)/μl (median, 43.3 WBCs/μl) in their FVU, whereas 114 negative for C. trachomatis had 0.1-1378 WBCs/μl (median, 4.8 WBCs/μl). A receiver operating characteristic (ROC) curve was constructed to examine the sensitivity and specificity of leukocytes counts for predicting chlamydial infection. A cut-off point of leukocyte counts of 12.5 WBCs/μl was determined from the ROC curve, resulting in a sensitivity of 86.9% and specificity of 88.6% for predicting chlamydial infection. Leukocyte quantification in FVU by automated urine particle analyzers showed good performance in predicting the positivity and negativity for chlamydial infection in asymptomatic men. This test could potentially develop into a relevant tool for preselecting asymptomatic men prior to C. trachomatis screening.

  11. Characterization of Chlamydial Genital Infection Resulting from Sexual Transmission from Male to Female Guinea Pigs and Determination of Infectious Dose

    PubMed Central

    Rank, Roger G.; Bowlin, Anne K.; Reed, Ronald L.; Darville, Toni

    2003-01-01

    A major problem in the study of chlamydial genital infections in animal models has been the use of varied doses of chlamydiae for infection in different laboratories. It is clearly desirable to use a dose which approximates that of natural sexual infection, but that dose to date has not been determined because of the inability of researchers to quantify chlamydiae in semen. Fortunately, sexual transmission of chlamydiae has been described for the guinea pig model of infection with the chlamydial agent of guinea pig inclusion conjunctivitis (GPIC). In this study, we undertook to determine the approximate infection dose in actual sexual transmission by comparing the kinetics of infection in female guinea pigs acquired via sexual contact to those of genital infections induced artificially with known quantities of chlamydiae. Groups of guinea pigs were infected intravaginally with 104, 103, 102, and 101 inclusion-forming units (IFU) of GPIC, and the kinetics of the infection were determined. Infection with 102 IFU produced infections with lower peak levels than those in animals receiving 104 or 103 IFU. Seventy percent of animals receiving 102 IFU became infected, while 100 and 79% of animals receiving 104 and 103 IFU, respectively, became infected. Animals receiving 102 IFU also had a longer incubation period. Of 19 animals that mated with infected males, 63.2% became infected, with an infection course which was not significantly different than that of the 102-IFU-infected group. The data suggest that female guinea pigs received approximately 102 IFU by sexual transmission. Of interest was the observation that the guinea pigs infected by sexual transmission shed organisms for a significantly shorter time period than that of any group that was artificially infected. This result suggests that there may be factors associated with semen which passively transfer antimicrobial activity to the female or enhance the innate host response in the female. Immunization of females

  12. Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose.

    PubMed

    Rank, Roger G; Bowlin, Anne K; Reed, Ronald L; Darville, Toni

    2003-11-01

    A major problem in the study of chlamydial genital infections in animal models has been the use of varied doses of chlamydiae for infection in different laboratories. It is clearly desirable to use a dose which approximates that of natural sexual infection, but that dose to date has not been determined because of the inability of researchers to quantify chlamydiae in semen. Fortunately, sexual transmission of chlamydiae has been described for the guinea pig model of infection with the chlamydial agent of guinea pig inclusion conjunctivitis (GPIC). In this study, we undertook to determine the approximate infection dose in actual sexual transmission by comparing the kinetics of infection in female guinea pigs acquired via sexual contact to those of genital infections induced artificially with known quantities of chlamydiae. Groups of guinea pigs were infected intravaginally with 10(4), 10(3), 10(2), and 10(1) inclusion-forming units (IFU) of GPIC, and the kinetics of the infection were determined. Infection with 10(2) IFU produced infections with lower peak levels than those in animals receiving 10(4) or 10(3) IFU. Seventy percent of animals receiving 10(2) IFU became infected, while 100 and 79% of animals receiving 10(4) and 10(3) IFU, respectively, became infected. Animals receiving 10(2) IFU also had a longer incubation period. Of 19 animals that mated with infected males, 63.2% became infected, with an infection course which was not significantly different than that of the 10(2)-IFU-infected group. The data suggest that female guinea pigs received approximately 10(2) IFU by sexual transmission. Of interest was the observation that the guinea pigs infected by sexual transmission shed organisms for a significantly shorter time period than that of any group that was artificially infected. This result suggests that there may be factors associated with semen which passively transfer antimicrobial activity to the female or enhance the innate host response in the female

  13. Does inhibition of tumor necrosis factor alpha affect chlamydial genital tract infection in mice and guinea pigs?

    PubMed

    Darville, T; Andrews, C W; Rank, R G

    2000-09-01

    The role of tumor necrosis factor alpha (TNF-alpha) in host defense against chlamydial infection remains unclear. In order to further evaluate the relevance of TNF-alpha to host resistance in chlamydial genital tract infection, we examined the effect of local inhibition of the TNF-alpha response in normal C57 mice and in interferon gamma gene-deficient C57 mice infected intravaginally with the mouse pneumonitis agent of Chlamydia trachomatis. Since the guinea pig model of female genital tract infection more closely approximates the human in terms of ascending infection and development of pathology, we also examined the effect of local inhibition of the TNF-alpha response in guinea pigs infected intravaginally with the guinea pig strain of Chlamydia psittaci. We successfully blocked the early TNF-alpha response in the respective animal models. This blockade had no effect on the numbers of organisms isolated from the genital tract during the time of TNF-alpha inhibition in mice or guinea pigs. Analysis of interleukin-1beta, macrophage inflammatory protein-2, and granulocyte macrophage-colony stimulating factor in the mouse model revealed that blockade of the TNF-alpha response did not alter the release of these proinflammatory proteins. Yet, in TNF-alpha-depleted mice, increased numbers of neutrophils were detected in the genital tract, and, in TNF-alpha-depleted guinea pigs, increased numbers of neutrophils as well as infiltrating lymphocytes were seen in the endocervix. Blockade of TNF-alpha does not affect the level of infection in mice or guinea pigs, but it may decrease TNF-alpha-induced apoptosis of infiltrating inflammatory cells.

  14. UK National Audit of chlamydial infection management in sexual health clinics. clinic policies audit.

    PubMed

    Carne, Chris; McClean, Hugo; Bhaduri, Sumit; Bunting, Paul; Fernandes, Arnold; Dhar, Jyoti; Estreich, Steve; Daniels, David

    2008-07-01

    There was a wide range of activity and chlamydial diagnoses between the 177 clinics that responded. Most (92%) clinics have nucleic acid tests for chlamydial diagnosis. Different practitioners largely share roles in providing advice to patients about partner notification, treatment adherence, safer sex advice and abstinence. Most (97%) clinics have information leaflets about chlamydia, although about 30% of clinics lack leaflets containing information about antibiotics and hormonal contraception. About two-third clinics follow the National Guideline recommended interval for providing a test of cure where this is indicated. Only 18% of clinics routinely ask patients to reattend, with 40% having a policy of no routine follow-up and 62% using telephone or text follow-up. These categories were not mutually exclusive. Most (86%) of the 146 English clinics had a local Chlamydia Screening Programme coordinator for their Primary Care Trust area, although cooperation varies, with cooperation over treatment of 70% and Programme policy of 62%.

  15. Use of a Guinea Pig-Specific Transcriptome Array for Evaluation of Protective Immunity against Genital Chlamydial Infection following Intranasal Vaccination in Guinea Pigs.

    DTIC Science & Technology

    2014-12-11

    2008) Guinea pig model of Mycobacterium tuberculosis latent/dormant infection . Microbes and Infection 10: 1469–1476. 54. Smith DW, Balasubramanian V...RESEARCH ARTICLE Use of a Guinea Pig-Specific Transcriptome Array for Evaluation of Protective Immunity against Genital Chlamydial Infection ...Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio

  16. Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    PubMed Central

    Bartolini, Erika; Ianni, Elvira; Frigimelica, Elisabetta; Petracca, Roberto; Galli, Giuliano; Berlanda Scorza, Francesco; Norais, Nathalie; Laera, Donatello; Giusti, Fabiola; Pierleoni, Andrea; Donati, Manuela; Cevenini, Roberto; Finco, Oretta; Grandi, Guido; Grifantini, Renata

    2013-01-01

    Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform. PMID:24009891

  17. Use of a Guinea pig-specific transcriptome array for evaluation of protective immunity against genital chlamydial infection following intranasal vaccination in Guinea pigs.

    PubMed

    Wali, Shradha; Gupta, Rishein; Veselenak, Ronald L; Li, Yansong; Yu, Jieh-Juen; Murthy, Ashlesh K; Cap, Andrew P; Guentzel, M Neal; Chambers, James P; Zhong, Guangming; Rank, Roger G; Pyles, Richard B; Arulanandam, Bernard P

    2014-01-01

    Guinea pigs have been used as a second animal model to validate putative anti-chlamydial vaccine candidates tested in mice. However, the lack of guinea pig-specific reagents has limited the utility of this animal model in Chlamydia sp. vaccine studies. Using a novel guinea pig-specific transcriptome array, we determined correlates of protection in guinea pigs vaccinated with Chlamydia caviae (C. caviae) via the intranasal route, previously reported by us and others to provide robust antigen specific immunity against subsequent intravaginal challenge. C. caviae vaccinated guinea pigs resolved genital infection by day 3 post challenge. In contrast, mock vaccinated animals continued to shed viable Chlamydia up to day 18 post challenge. Importantly, at day 80 post challenge, vaccinated guinea pigs experienced significantly reduced genital pathology - a sequelae of genital chlamydial infections, in comparison to mock vaccinated guinea pigs. Sera from vaccinated guinea pigs displayed antigen specific IgG responses and increased IgG1 and IgG2 titers capable of neutralizing GPIC in vitro. Th1-cellular/inflammatory immune genes and Th2-humoral associated genes were also found to be elevated in vaccinated guinea pigs at day 3 post-challenge and correlated with early clearance of the bacterium. Overall, this study provides the first evidence of guinea pig-specific genes involved in anti-chlamydial vaccination and illustrates the enhancement of the utility of this animal model in chlamydial pathogenesis.

  18. Water-filtered infrared A reduces chlamydial infectivity in vitro without causing ex vivo eye damage in pig and mouse models.

    PubMed

    Rahn, Carolin; Marti, Hanna; Frohns, Antonia; Frohns, Florian; Blenn, Christian; Leonard, Cory Ann; Barisani-Asenbauer, Talin; Stein, Elisabeth; Borel, Nicole

    2016-12-01

    Repeated ocular infections with Chlamydia trachomatis trigger the development of trachoma, the most common cause of infectious blindness worldwide. Water-filtered infrared A (wIRA) has shown positive effects on cultured cells and human skin. Our aim was to evaluate the potential of wIRA as a possible non-chemical treatment for trachoma patients. We both modeled ocular chlamydial infections using C. trachomatis B to infect human conjunctival epithelial cells (HCjE) and studied the effects of wIRA on non-infected ocular structures with two ex vivo eye models. We focused on the temperature development during wIRA irradiation in cell culture and perfused pig eyes to exclude potentially harmful side effects. Furthermore, cell viability of HCjE and cytotoxicity in mouse retina explants was analyzed. We demonstrated a significant wIRA-dependent reduction of chlamydial infectivity in HCjE cells. Moreover, we observed that wIRA treatment of HCjE prior to infection was sufficient to inhibit chlamydial infectivity and that visible light enhances the effect of wIRA. Irradiation did not reduce cell viability and there was no indication of retinal damage post treatment. Additionally, temperatures during wIRA exposure did not markedly exceed physiological eye temperatures, suggesting that hyperthermia-related lesions are unlikely. For clinical applications, further exploration of wIRA as a non-chemical treatment device in an experimental animal model is essential.

  19. Immunization against chlamydial genital infection in guinea pigs with UV-inactivated and viable chlamydiae administered by different routes

    SciTech Connect

    Rank, R.G.; Batteiger, B.E.; Soderberg, L.S. )

    1990-08-01

    Female guinea pigs were immunized with viable or UV light-inactivated chlamydiae, belonging to the species Chlamydia psittaci, by intravenous, subcutaneous, oral, or ocular routes. All animals were then inoculated vaginally with viable chlamydiae to determine the extent of protection against challenge infection induced by the various regimens. The course of genital infection was significantly reduced in intensity in all groups of animals except the unimmunized controls and those animals immunized orally with inactivated antigen. Guinea pigs immunized with viable antigen were more likely to develop resistance to challenge infection and, in general, had a significantly greater degree of protection than animals immunized with inactivated antigen. No one route seemed superior in producing a protective response. Animals in all groups demonstrating protection developed serum and secretion immunoglobulin G antibody responses to chlamydiae. Lymphocyte proliferative reactions to chlamydial antigen were variable among groups. Immunoblot analysis of serum and secretions indicated a wide range of antibody specificities, but most protected animals produced antibodies to the major outer membrane protein, lipopolysaccharide, and the 61-kilodalton protein. No definitive associations could be made between the increased ability of immunization with viable organisms to produce resistance to challenge infection and a particular immune parameter. These data indicate that viable chlamydiae given by various routes are able to induce a strong immune response which can provide resistance against reinfection in some cases or at least reduce the degree of infection to a greater degree than inactivated antigen. However, complete resistance to genital tract infection may be difficult to obtain and alternate immunizations strategies may have to be developed.

  20. Syndromic treatment of gonococcal and chlamydial infections in women seeking primary care for the genital discharge syndrome: decision-making.

    PubMed Central

    Behets, F. M.; Miller, W. C.; Cohen, M. S.

    2001-01-01

    The syndromic treatment of gonococcal and chlamydial infections in women seeking primary care in clinics where resources are scarce, as recommended by WHO and implemented in many developing countries, necessitates a balance to be struck between overtreatment and undertreatment. The present paper identifies factors that are relevant to the selection of specific strategies for syndromic treatment in the above circumstances. Among them are the general aspects of decision-making and caveats concerning the rational decision-making approach. The positive and negative implications are outlined of providing or withholding treatment following a specific algorithm with a given accuracy to detect infection, i.e. sensitivity, specificity and predictive values. Other decision-making considerations that are identified are related to implementation and include the stability of risk factors with regard to time, space and the implementer, acceptability by stakeholders, and environmental constraints. There is a need to consider empirically developed treatment algorithms as a basis for policy discourse, to be evaluated together with the evidence, alternatives and arguments by the stakeholders. PMID:11731816

  1. High prevalence of extra-genital chlamydial or gonococcal infections among men who have sex with men and transgender women in Lima, Peru.

    PubMed

    Allan-Blitz, Lao-Tzu; Leon, Segundo R; Bristow, Claire C; Konda, Kelika A; Vargas, Silver K; Flores, Juan A; Brown, Brandon J; Caceres, Carlos F; Klausner, Jeffrey D

    2017-02-01

    Chlamydia trachomatis and Neisseria gonorrhoeae are among the most common sexually transmitted bacterial infections in the world. Data are limited, however, on the burden of extra-genital chlamydial and gonococcal infections among men who have sex with men and transgender women in Lima, Peru. Data were gathered from self-collected anal or pharyngeal swabs from participants in Lima, Peru, and analyzed via cross-sectional methods. Prevalence ratios for the association between extra-genital infection with socio-demographic and sexual behaviors were determined. Overall, 127 (32.8%) participants had anal or pharyngeal infections. On multivariate modeling, anal infection was positively associated with practicing both receptive and insertive anal sex, when compared to insertive alone (PR = 2.49; 95% CI = 1.32-4.71), and negatively associated with any antibiotic use in the prior three months (PR = 0.60; 95% CI = 0.39-0.91). Pharyngeal infection was negatively associated with age greater than 30 years compared to 18-30 years (PR = 0.54; 95% CI = 0.30-0.96), and positively associated with gender identity of transgender women (PR = 2.12; 95% CI = 1.20-3.73). This study demonstrates considerable burden of extra-genital chlamydial and gonococcal infections among men who have sex with men and transgender women in Lima, Peru.

  2. A chlamydial type III-secreted effector protein (Tarp) is predominantly recognized by antibodies from humans infected with Chlamydia trachomatis and induces protective immunity against upper genital tract pathologies in mice.

    PubMed

    Wang, Jie; Chen, Lili; Chen, Fan; Zhang, Xiaoyun; Zhang, Yingqian; Baseman, Joel; Perdue, Sondra; Yeh, I-Tien; Shain, Rochelle; Holland, Martin; Bailey, Robin; Mabey, David; Yu, Ping; Zhong, Guangming

    2009-05-14

    Chlamydia trachomatis genome is predicted to encode a type III secretion system consisting of more than 40 open reading frames (ORFs). To test whether these ORFs are expressed and immunogenic during chlamydial infection in humans, we expressed 55 chlamydial ORFs covering all putative type III secretion components plus control molecules as fusion proteins and measured the reactivity of these fusion proteins with antibodies from patients infected with C. trachomatis in the urogenital tract (24 antisera) or in the ocular tissue (8 antisera). Forty-five of the 55 proteins were recognized by at least 1 of the 32 human antisera, suggesting that these proteins are both expressed and immunogenic during chlamydial infection in humans. Tarp, a putative type III secretion effector protein, was identified as a novel immunodominant antigen due to its reactivity with the human antisera at high frequency and titer. The expression and immunogenicity of Tarp were confirmed in cell culture and mouse systems. Tarp was mainly associated with the infectious form of chlamydial organisms and became undetectable between 13 and 24 h during the infection cycle in cell culture. Mice intravaginally infected with C. muridarum developed Tarp-specific humoral and cellular immune responses. More importantly, immunization of mice with Tarp induced Th1-dominant immunity that significantly reduced the shedding of live organisms from the lower genital tract and attenuated inflammatory pathologies in the fallopian tube tissues. These observations have demonstrated that Tarp, an immunodominant antigen identified by human antisera, can induce protective immunity against chlamydial infection and pathology in mice.

  3. Opportunistic screening for genital chlamydial infection. I: Acceptability of urine testing in primary and secondary healthcare settings

    PubMed Central

    Pimenta, J; Catchpole, M; Rogers, P; Perkins, E; Jackson, N; Carlisle, C; Randall, S; Hopwood, J; Hewitt, G; Underhill, G; Mallinson, H; McLean, L; Gleave, T; Tobin, J; Harindra, V; Ghosh, A

    2003-01-01

    Objectives: To determine the acceptability of opportunistic screening for Chlamydia trachomatis in young people in a range of healthcare settings. Design: An opportunistic screening programme (1 September 1999 to 31 August 2000) using urine samples tested by ligase chain reaction (LCR). Data on uptake and testing were collected and in-depth interviews were used for programme evaluation. Setting: General practice, family planning, genitourinary medicine clinics, adolescent sexual health clinics, termination of pregnancy clinics, and women's services in hospitals (antenatal, colposcopy, gynaecology and infertility clinics) in two health authorities (Wirral and Portsmouth and South East Hampshire). Main participants: Sexually active women aged between 16 and 24 years attending healthcare settings for any reason. Main outcome measures: Uptake data: proportion of women accepting a test by area, healthcare setting, and age; overall population coverage achieved in 1 year. Evaluation data: participants' attitudes and views towards opportunistic screening and urine testing. Results: Acceptance of testing by women (16–24 years) was 76% in Portsmouth and 84% in Wirral. Acceptance was lower in younger women (Portsmouth only) and varied by healthcare setting within each site. 50% of the target female population were screened in Portsmouth and 39% in Wirral. Both the opportunistic offer of screening and the method of screening were universally acceptable. Major factors influencing a decision to accept screening were the non-invasive nature of testing and treatment, desire to protect future fertility, and the experimental nature of the screening programme. Conclusions: An opportunistic model of urine screening for chlamydial infection is a practical, universally acceptable method of screening. PMID:12576607

  4. Is there a need for rescreening of patients treated for genital chlamydial infections?

    PubMed

    Mårdh, Per-Anders; Persson, Kenneth

    2002-06-01

    The present communication reviews reasons to perform rescreening of chlamydia-infected persons. It brings up difficulties to differentiate between relapse and reinfection. Studies on follow-up of chlamydia-positive cases after therapy are reviewed. It also highlights reasons for therapeutic failure, like compliance, pharmacological factors, including poor bioavailability, wrong dose regimens, lack of adherence to drug intake, neglect of partner notification and concomitant therapy in consorts, possible development of resistance to drugs generally prescribed, false negative or false positive diagnostic tests and reinfection from extra-genital not 'cured' sites. The review points to the need to establish programmes for routine rescreening of chlamydia-infected persons.

  5. Study of the prevalence and association of ocular chlamydial conjunctivitis in women with genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans attending outpatient clinic

    PubMed Central

    Khattab, Rania Abdelmonem; Abdelfattah, Maha Mohssen

    2016-01-01

    AIM To determine the association between chlamydial conjunctivitis and genital infection by Chlamydia trachomatis, Mycoplasma genitalium and Candida albicans, in addition to the possible relationship between cultured bacterial pathogens and oculogenital chlamydial infection. METHODS This study was performed on 100 (50 symptomatic and 50 asymptomatic) women attending the Gynecological and Obstetric outpatient clinic of Alzahra hospital, Alazhar University. Simultaneously a conjunctival swab was taken from these patients. Polymerase chain reaction (PCR) was done on DNA extracted from both vaginal and conjunctival swab samples. Culture for both vaginal and conjunctival swabs was also done. RESULTS Candida albicans was the predominant organism isolated by culture in 20% and 40% of conjunctival and vaginal swabs respectively. By the PCR method, ocular Chlamydia trachomatis was present in 60% of symptomatic women, while genital Chlamydia trachomatis infection was present in 30% of symptomatic women. The results of this method also indicated that 25/50 (50%) vaginal swabs were positive with PCR for Candida albicans versus 15/50 (30%) were PCR positive in conjunctival swab. Mycoplasma genitalium was present in only 10% of vaginal swabs. Concomitant oculogenital PCR positive results for Chlamydia trachomatis and Candida albicans were 30% and 28% respectively. CONCLUSION Ocular Chlamydia trachomatis was associated with genital Chlamydia trachomatis in a high percentage of women followed by Candida albicans. Cultured bacterial organisms do not play a role in enhancement of Chlamydia trachomatis infection. PMID:27588273

  6. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection.

    PubMed

    Darville, T; Andrews, C W; Sikes, J D; Fraley, P L; Rank, R G

    2001-06-01

    In this study, we expand on the examination of genetically determined differences in host responses that correlate with clearance of Chlamydia trachomatis from the genital tract. We infected C57BL/6, BALB/c, and C3H/HeN mice with the mouse pneumonitis agent of C. trachomatis (MoPn). C57BL/6 mice had the shortest course of infection (22 days) and the lowest incidence of severe hydrosalpinx. BALB/c mice also had a short course of infection (25 days), but all developed hydrosalpinx. C3H/HeN mice had the longest course of infection (38 days), and all developed severe hydrosalpinx. Determination of local cytokine responses by enzyme-linked immunosorbent assay (ELISA) of genital tract secretions revealed that the levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) were significantly increased in the C57BL/6 and BALB/c strains compared to those in the C3H/HeN strain whereas the level of IL-6 was not different. The level of the neutrophil chemokine macrophage inflammatory protein 2 (MIP-2) was increased during the first week of infection in all three strains but was significantly higher in the BALB/c strain, the strain with the most rapid influx of neutrophils into the genital tract. Prolonged detection of MIP-2 in C3H/HeN mice was associated with a protracted presence of neutrophils in the genital tract. Early increases in the levels of the proinflammatory cytokines TNF-alpha and IL-1beta are associated with earlier eradication of infection in the C57BL/6 and BALB/c strains than in the C3H/HeN strain. Increased levels of MIP-2 and neutrophils in BALB/c and C3H/HeN mice relative to C57BL/6 mice suggest that these responses may contribute to pathology.

  7. Natural Cross Chlamydial Infection between Livestock and Free-Living Bird Species

    PubMed Central

    Lemus, Jesús A.; Fargallo, Juan A.; Vergara, Pablo; Parejo, Deseada; Banda, Eva

    2010-01-01

    The study of cross-species pathogen transmission is essential to understanding the epizootiology and epidemiology of infectious diseases. Avian chlamydiosis is a zoonotic disease whose effects have been mainly investigated in humans, poultry and pet birds. It has been suggested that wild bird species play an important role as reservoirs for this disease. During a comparative health status survey in common (Falco tinnunculus) and lesser (Falco naumanni) kestrel populations in Spain, acute gammapathies were detected. We investigated whether gammapathies were associated with Chlamydiaceae infections. We recorded the prevalence of different Chlamydiaceae species in nestlings of both kestrel species in three different study areas. Chlamydophila psittaci serovar I (or Chlamydophila abortus), an ovine pathogen causing late-term abortions, was isolated from all the nestlings of both kestrel species in one of the three studied areas, a location with extensive ovine livestock enzootic of this atypical bacteria and where gammapathies were recorded. Serovar and genetic cluster analysis of the kestrel isolates from this area showed serovars A and C and the genetic cluster 1 and were different than those isolated from the other two areas. The serovar I in this area was also isolated from sheep abortions, sheep faeces, sheep stable dust, nest dust of both kestrel species, carrion beetles (Silphidae) and Orthoptera. This fact was not observed in other areas. In addition, we found kestrels to be infected by Chlamydia suis and Chlamydia muridarum, the first time these have been detected in birds. Our study evidences a pathogen transmission from ruminants to birds, highlighting the importance of this potential and unexplored mechanism of infection in an ecological context. On the other hand, it is reported a pathogen transmission from livestock to wildlife, revealing new and scarcely investigated anthropogenic threats for wild and endangered species. PMID:20976071

  8. Natural cross chlamydial infection between livestock and free-living bird species.

    PubMed

    Lemus, Jesús A; Fargallo, Juan A; Vergara, Pablo; Parejo, Deseada; Banda, Eva

    2010-10-19

    The study of cross-species pathogen transmission is essential to understanding the epizootiology and epidemiology of infectious diseases. Avian chlamydiosis is a zoonotic disease whose effects have been mainly investigated in humans, poultry and pet birds. It has been suggested that wild bird species play an important role as reservoirs for this disease. During a comparative health status survey in common (Falco tinnunculus) and lesser (Falco naumanni) kestrel populations in Spain, acute gammapathies were detected. We investigated whether gammapathies were associated with Chlamydiaceae infections. We recorded the prevalence of different Chlamydiaceae species in nestlings of both kestrel species in three different study areas. Chlamydophila psittaci serovar I (or Chlamydophila abortus), an ovine pathogen causing late-term abortions, was isolated from all the nestlings of both kestrel species in one of the three studied areas, a location with extensive ovine livestock enzootic of this atypical bacteria and where gammapathies were recorded. Serovar and genetic cluster analysis of the kestrel isolates from this area showed serovars A and C and the genetic cluster 1 and were different than those isolated from the other two areas. The serovar I in this area was also isolated from sheep abortions, sheep faeces, sheep stable dust, nest dust of both kestrel species, carrion beetles (Silphidae) and Orthoptera. This fact was not observed in other areas. In addition, we found kestrels to be infected by Chlamydia suis and Chlamydia muridarum, the first time these have been detected in birds. Our study evidences a pathogen transmission from ruminants to birds, highlighting the importance of this potential and unexplored mechanism of infection in an ecological context. On the other hand, it is reported a pathogen transmission from livestock to wildlife, revealing new and scarcely investigated anthropogenic threats for wild and endangered species.

  9. [Mold infections in lung transplants].

    PubMed

    Solé, Amparo; Ussetti, Piedad

    2014-01-01

    Invasive infections by molds, mainly Aspergillus infections, account for more than 10% of infectious complications in lung transplant recipients. These infections have a bimodal presentation: an early one, mainly invading bronchial airways, and a late one, mostly focused on lung or disseminated. The Aspergillus colonization at any time in the post-transplant period is one of the major risk factors. Late colonization, together with chronic rejection, is one of the main causes of late invasive forms. A galactomannan value of 0.5 in bronchoalveolar lavage is currently considered a predictive factor of pulmonary invasive infection. There is no universal strategy in terms of prophylaxis. Targeted prophylaxis and preemptive treatment instead of universal prophylaxis, are gaining more followers. The therapeutic drug monitoring level of azoles is highly recommended in the treatment. Monotherapy with voriconazole is the treatment of choice in invasive aspergillosis; combined antifungal therapies are only recommended in severe, disseminated, and other infections due to non-Aspergillus molds.

  10. Hepatitis B virus core antigen as a carrier for Chlamydia trachomatis MOMP multi-epitope peptide enhances protection against genital chlamydial infection.

    PubMed

    Jiang, Pengfei; Du, Wangqi; Xiong, Yirong; Lv, Yan; Feng, Juan; Zhu, Shanli; Xue, Xiangyang; Chen, Shao; Zhang, Lifang

    2015-12-22

    Chlamydia trachomatis (Ct) is the leading cause of sexually transmitted diseases worldwide. There is no safe and effective vaccine to control the spread of Ct. In development of Ct vaccine, selection of appropriate candidate antigens and an effective delivery system may be the main challenges. Multi-epitope of major outer membrane protein (MOMPm) is the most suitable candidate for a Ct vaccine, while hepatitis B virus core antigen (HBcAg) has unique advantages as vaccine delivery system. Therefore, in this study, we evaluated the immunogenicity and protective immune response of a novel candidate vaccine in a murine model of chlamydial genital infection. This candidate vaccine comprises MOMPm peptide delivered with HBcAg. Our results of Ct-specific serum IgG and secretory IgA assay, cytokine assay, and cytotoxic T-lymphocyte assay revealed that immunogenicity of the candidate vaccine was much better than that of the corresponding synthetic MOMPm peptide. Furthermore, the protective effect of the candidate vaccine was also shown much better than that of the synthetic peptide by calculating the isolation of Chlamydia from vaginal swabs and histopathological analysis. Taken together, our results indicate that HBcAg carrying Ct MOMPm could be an effective immune prophylactic for chlamydial infection.

  11. CD103+ lung dendritic cells (LDCs) induce stronger Th1/Th17 immunity to a bacterial lung infection than CD11b(hi) LDCs.

    PubMed

    Shekhar, Sudhanshu; Peng, Ying; Wang, Shuhe; Yang, Xi

    2017-02-13

    Recent studies suggest differential roles for CD103+ and CD11b(hi) lung dendritic cells (LDCs) in host defense against viral and bacterial infections. In this study, we examined the contribution of these LDC subsets in protective immunity to chlamydial lung infection using a Chlamydia muridarum mouse infection model. We found that CD103+ LDCs showed higher expression of costimulatory molecules (CD40, CD80 and CD86) and increased production of cytokines (IL-12p70, IL-10, IL-23 and IL-6) compared with CD11b(hi) LDCs, but the expression of programmed death-ligand 1 (PD-L1) was similar between the two subsets. More importantly, we found, in adoptive transfer experiments, that the mice receiving CD103+ LDCs from Chlamydia-infected mice exhibited better protection than the recipients of CD11b(hi) LDCs, which was associated with more robust Th1/Th17 cytokine responses. In addition, in vitro experiments showed that CD103+ LDCs induced stronger IFN-γ and IL-17 responses, when cocutured with chlamydial antigen-primed CD4+ T cells, than CD11b(hi) LDCs. Furthermore, the blockade of PD1 in the culture of CD4+ T cells with either CD103+ or CD11b(hi) LDCs enhanced production of IFN-γ and IL-17. In conclusion, our data provide direct evidence that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11b(hi) LDCs.Cellular & Molecular Immunology advance online publication, 13 February 2017; doi:10.1038/cmi.2016.68.

  12. Chlamydial infections - male

    MedlinePlus

    ... Have sex without wearing a male or female condom Have more than one sexual partner Use drugs ... to have sexual contact, use latex or polyurethane condoms. Remember to: Use condoms for all vaginal, anal, ...

  13. Chlamydial and Rickettsial Infections

    DTIC Science & Technology

    1989-01-01

    with other free-living bacteria (Bovarnick and Allen, 1957). The rickettsiae can, however, transport preformed ATP across their cell membrane, a process...replication of rickett- siae ;s that charcteristic of all bacteria : division by binary fission. The generation time for each of the rickettsiae is quite...shortly after the onset of intracellular replication (10-15 hours for R. rickettsii ; 18-24 h for R. tsutsugamushi) one or more rickettsiae begin migrating

  14. Infectious dose and repeated infections are key factors influencing immune response characteristics in guinea pig ocular chlamydial infection.

    PubMed

    Belij-Rammerstorfer, Sandra; Inic-Kanada, Aleksandra; Stojanovic, Marijana; Marinkovic, Emilija; Lukic, Ivana; Stein, Elisabeth; Montanaro, Jacqueline; Bintner, Nora; Schürer, Nadine; Ghasemian, Ehsan; Kundi, Michael; Barisani-Asenbauer, Talin

    2016-04-01

    The aim of this study was to determine whether infectious dose of Chlamydia caviae after repeated infections influences the immunological responses and subsequent clearance of pathogen at the ocular surface of guinea pigs. Animals were infected three times via the conjunctiva at six- and twelve-week intervals by applying either 1 × 10(4) or 1 × 10(6) inclusion-forming units (IFUs) of C. caviae. Ocular pathology, infection course, C. caviae-specific serum IgG levels and their capacity to bind and neutralize infection ex vivo were assessed. Animals infected with 1 × 10(4) IFUs had completely diminished ocular infection and pathology after the 2nd infection with increased levels of C. caviae-specific serum IgG and their effective capacity to bind and neutralize C. caviae. Only partial protection was observed in animals infected with 1 × 10(6) IFUs after the 2nd and 3rd infections. Our findings show that full protection was observed in animals repeatedly infected with the lower dose. The lower dose appeared not to compromise the host immune system, thereby enabling fast clearance of the pathogen and the establishment of competent neutralizing antibodies.

  15. Peri-emphysematous lung infection.

    PubMed

    Mahler, D A; D'Esopo, N D

    1981-01-01

    The difficulty in classifying pulmonary infection within areas of bullous emphysema may have contributed to the lack of appreciation of this entity. This process is important to recognize because: (1) the clinical picture is usually benign:; (2) it may be confused with tuberculosis, fungal disease, and carcinoma of the lung; and (3) radiographic resolution may be slow. For these reasons, pneumonitis which occurs within emphysematous lung may have been previously considered as slowly resolving pneumonias. The development of air-fluid levels within bullae has been called "infected emphysematous bullae." We believe that this phrase is misleading since there are no bacteriologic data to support the presence of infection within the bullae containing fluid. In fact, direct sampling of intrabullous fluid has been rarely reported and, if obtained, has been generally negative for bacteria. Furthermore, the clinical course in our patients is alos not consistent with infection within a space. Once fiberoptic bronchoscopy has excluded an obstructing endobronchial lesion, the physician may patiently follow the anticipated gradual resolution. We suggest that the phrase, "periemphysematous lung infection" best describes these related clinical-radiological conditions.

  16. Chlamydial plasmids and bacteriophages.

    PubMed

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  17. Study finds OC users protected against onset of chlamydial PID.

    PubMed

    1987-09-01

    Preliminary results from a large case-controlled study on the relationship between oral contraceptives and chlamydial infections refute the suspicion that pills increase the chance of contracting chlamydia, and clearly show that pills inhibit progression of an existing infection into chlamydial pelvic inflammatory disease (PID). The research was conducted in Seattle at Washington University. Subjects recruited from a sexually transmitted disease clinic included 700 patients, 100 with clinically verified PID, classified into those with chlamydia, gonorrhea, neither, and PID or no PID. Compared to 762 controls, oral contraceptive users had 1/8 the risk of chlamydial PID; compared to women using no contraception, their risk was 1/11. Oral contraception was safer than other methods with respect to chlamydial PID. No such pattern was evident when gonorrhea incidence was examined. It should be emphasized that pills do not protect against other types of PID. Nor do they prevent the start of a chlamydia infection.

  18. Are oral contraceptives masking symptoms of chlamydial cervicitis and pelvic inflammatory disease?

    PubMed

    Mårdh, P A; Hogg, B

    1998-03-01

    Tubal factor infertility is often diagnosed without any documented history of pelvic inflammatory disease. Chlamydial infection is one of the most common causes of pelvic inflammatory disease and likely also of infertility and ectopic pregnancy. Oral contraceptives may alter the course of chlamydial infections which may mask the clinical expression of the disease. This paper considers a number of unresolved matters related to oral contraceptive use and its possible influence on the epidemiology and course of chlamydial pelvic inflammatory disease.

  19. Human lung ex vivo infection models.

    PubMed

    Hocke, Andreas C; Suttorp, Norbert; Hippenstiel, Stefan

    2017-03-01

    Pneumonia is counted among the leading causes of death worldwide. Viruses, bacteria and pathogen-related molecules interact with cells present in the human alveolus by numerous, yet poorly understood ways. Traditional cell culture models little reflect the cellular composition, matrix complexity and three-dimensional architecture of the human lung. Integrative animal models suffer from species differences, which are of particular importance for the investigation of zoonotic lung diseases. The use of cultured ex vivo infected human lung tissue may overcome some of these limitations and complement traditional models. The present review gives an overview of common bacterial lung infections, such as pneumococcal infection and of widely neglected pathogens modeled in ex vivo infected lung tissue. The role of ex vivo infected lung tissue for the investigation of emerging viral zoonosis including influenza A virus and Middle East respiratory syndrome coronavirus is discussed. Finally, further directions for the elaboration of such models are revealed. Overall, the introduced models represent meaningful and robust methods to investigate principles of pathogen-host interaction in original human lung tissue.

  20. Risk assessment and other screening options for gonorrhoea and chlamydial infections in women attending rural Tanzanian antenatal clinics.

    PubMed Central

    Mayaud, P.; Grosskurth, H.; Changalucha, J.; Todd, J.; West, B.; Gabone, R.; Senkoro, K.; Rusizoka, M.; Laga, M.; Hayes, R.

    1995-01-01

    Sexually transmitted diseases (STDs) are a major cause of morbidity and mortality in developing countries and may play a key role in enhancing the heterosexual transmission of human immunodeficiency virus (HIV). Treatment of STDs is one of the most cost-effective of all health interventions in developing countries; however, STDs among women in rural populations have received little attention. In this study, we report that prevalences of STDs among 964 women attending antenatal clinics in a rural area of the United Republic of Tanzania. A total of 378 (39%) of these women were infected with at least one STD pathogen, 97 (10%) had syphilis, and 81 (8%) has Neisseria gonorrhoeae (NG) and/or Chlamydia trachomatis (CT) infection. The recommended syndromic approach to screening for NG/CT infection, based on reported genital symptoms, had a low sensitivity (43%) and failed to discriminate between infected and uninfected women. A risk score approach that we developed, based on sociodemographic and other factors associated with NG/CT infection, had a higher sensitivity and lower cost per true case treated than other approaches, although its positive predictive value was only about 20%. PMID:8846488

  1. Genital chlamydial infection among women in Nicaragua: validity of direct fluorescent antibody testing, prevalence, risk factors and clinical manifestations.

    PubMed Central

    Herrmann, B; Espinoza, F; Villegas, R R; Smith, G D; Ramos, A; Egger, M

    1996-01-01

    OBJECTIVE: To validate the performance of a direct fluorescence antibody (DFA) test and to determine the prevalence, risk factors and clinical manifestations of cervical chlamydia infection in different groups of women in Nicaragua. STUDY POPULATION: 926 women, 863 routine clinic attenders (mean age 27 years) and 63 sex workers (mean age 25 years) attending health centres in León, Corinto, Matagalpa and Bluefields. METHODS: Cervical specimens were examined using the Syva MicroTrak test system with a cut-off of 10 or more elementary bodies (EBs). The DFA results were validated by a one-step polymerase chain reaction (PCR) assay. Discordant results were further examined in nested PCR assays directed at two different target genes. An interviewer-administered questionnaire and a standard gynaecological examination were completed. RESULTS: Sensitivity of DFA was 80.1%, specificity 98.3%, and positive and negative predictive values 62.5% and 99.3%, respectively. Values were lower in locations where samples thawed because of electricity breaks and higher among sex workers. The majority of discordant results was confirmed as positive in nested PCR assays. Prevalence of cervical chlamydia infection based on positivity in DFA and/or PCR ranged from 2% among routine clinic attenders aged 35 years or older, to 8% among adolescent clinic attenders, and to 14% among sex workers. Among routine clinic attenders, young age (odds ratio [OR] 3.6, 95% confidence intervals [95% CI] 1.4-8.9 for women aged 15-19 years as compared with 1 in women 25 years of age or older) and use of oral contraceptives (OR 4.0, 95% CI 1.7-9.6) were the only statistically significant risk factors identified in multivariate logistic regression analysis. Presence of mucopurulent cervical discharge (OR 5.9, 95% CI 3.0-11.5) and presence of ectropion (OR 2.6, 95% CI 1.1-6.5) were the clinical signs independently associated with infection. CONCLUSIONS: Our results indicate that the DFA test was sensitive and

  2. Lung Cancer in HIV-Infected Patients.

    PubMed

    Mena, Álvaro; Meijide, Héctor; Marcos, Pedro J

    2016-01-01

    The widespread use of HAART for persons living with HIV since 1996 has resulted in a dramatic decline in AIDS-related mortality. However, other comorbidities are increasing, such as metabolic disturbances or cancers, including solid organ malignancies. Among the latest, lung cancer, especially the adenocarcinoma subtype, is on the rise. HIV infection, even controlling for smoking, is an independent risk factor for developing lung cancer. HIV could promote lung cancers through immunosuppression, chronic inflammation, and a direct oncogenic effect. Smoking, lung infections, and chronic pulmonary diseases are risk factors for lung cancer. All may contribute to the cumulative incidence of lung cancer in persons living with HIV. It is double that in the general population. The role of HAART in lung cancer development in persons living with HIV is not well established. Although data supporting it could be too preliminary, persons living with HIV should be considered within high-risk groups that could benefit from screening strategies with low-dose computed tomography, especially those with airway obstruction and emphysema. Current evidence suggests that quitting smoking strategies in persons living with HIV achieve abstinence rates comparable to those in healthy HIV-negative smokers.

  3. Gallium scintigraphic pattern in lung CMV infections

    SciTech Connect

    Ganz, W.I.; Cohen, D.; Mallin, W.

    1994-05-01

    Due to extensive use of prophylactic therapy for Pneumonitis Carinii Pneumonia (PCP), Cytomegalic Viral (CMV) infection may now be the most common lung infection in AIDS patients. This study was performed to determine Gallium-67 patterns in AIDS patients with CMV. Pathology reports were reviewed in AIDS patients who had a dose of 5 to 10 mCi of Gallium-67 citrate. Analysis of images were obtained 48-72 hours later of the entire body was performed. Gallium-67 scans in 14 AIDS patients with biopsy proven CMV, were evaluated for eye, colon, adrenal, lung and renal uptake. These were compared to 40 AIDS patients without CMV. These controls had infections including PCP, Mycobacterial infections, and lymphocytic interstitial pneumonitis. 100% of CMV patients had bowel uptake greater than or equal to liver. Similar bowel activity was seen in 50% of AIDS patients without CMV. 71% had intense eye uptake which was seen in only 10% of patients without CMV. 50% of CMV patients had renal uptake compared to 5% of non-CMV cases. Adrenal uptake was suggested in 50%, however, SPECT imaging is needed for confirmation. 85% had low grade lung uptake. The low grade lung had perihilar prominence. The remaining 15% had high grade lung uptake (greater than sternum) due to superimposed PCP infection. Colon uptake is very sensitive indicator for CMV infection. However, observing eye, renal, and or adrenal uptake improved the diagnostic specificity. SPECT imaging is needed to confirm renal or adrenal abnormalities due to intense bowel activity present in 100% of cases. When high grade lung uptake is seen superimposed PCP is suggested.

  4. Incidence of severe reproductive tract complications associated with diagnosed genital chlamydial infection: the Uppsala Women's Cohort Study

    PubMed Central

    Low, N; Egger, M; Sterne, J A C; Harbord, R M; Ibrahim, F; Lindblom, B; Herrmann, B

    2006-01-01

    Objective To estimate the cumulative incidence of severe complications associated with genital chlamydia infection in the general female population. Methods The Uppsala Women's Cohort Study was a retrospective population based cohort study in Sweden, linking laboratory, hospital, and population registers. We estimated the cumulative incidence of hospital diagnosed pelvic inflammatory disease, ectopic pregnancy, and infertility, and used multivariable regression models to estimate hazard ratios according to screening status. Results We analysed complete data from 43 715 women in Uppsala aged 15–24 years between January 1985 and December 1989. Follow up until the end of 1999 included 709 000 woman years and 3025 events. The cumulative incidence of pelvic inflammatory disease by age 35 years was 3.9% (95% CI 3.7% to 4.0%) overall: 5.6% (4.7% to 6.7%) in women who ever tested positive for chlamydia, 4.0% (3.7% to 4.4%) in those with negative tests, and 2.9% (2.7% to 3.2%) in those who were never screened. The corresponding figures were: for ectopic pregnancy, 2.3% (2.2% to 2.5%) overall, 2.7% (2.1% to 3.5%), 2.0% (1.8% to 2.3%), and 1.9% (1.7% to 2.1%); and for infertility, 4.1% (3.9% to 4.3%) overall, 6.7% (5.7% to 7.9%), 4.7% (4.4% to 5.1%), and 3.1% (2.8% to 3.3%). Low educational attainment was strongly associated with the development of all outcomes. Conclusions The incidence of severe chlamydia associated complications estimated from ours, and other population based studies, was lower than expected. Studies that incorporate data about pelvic inflammatory disease diagnosed in primary care and behavioural risk factors would further improve our understanding of the natural history of chlamydia. Our results provide reassurance for patients, but mean that the benefits of chlamydia screening programmes might have been overestimated. PMID:16731670

  5. Fusarium Infection in Lung Transplant Patients

    PubMed Central

    Carneiro, Herman A.; Coleman, Jeffrey J.; Restrepo, Alejandro; Mylonakis, Eleftherios

    2013-01-01

    Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens. Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment

  6. Influence of infection with Chlamydia trachomatis on pregnancy outcome, infant health and life-long sequelae in infected offspring.

    PubMed

    Mårdh, Per-Anders

    2002-12-01

    This chapter deals with genital chlamydial infections in pregnancy and postpartum. There is increasing evidence that Chlamydia trachomatis infection may result in a number of adverse pregnancy outcomes, including early and late abortion, intrauterine infections of the fetus, stillbirth, prematurity, premature rupture of the membranes (PROM) and postpartum endometritis. Ectopic pregnancy is commonly associated with a previous tubal chlamydial infection where immunological reactions seem to play a role. C. trachomatis infection may be acquired as an intrauterine infection, as well as during transit through the birth channel, and this may result in neonatal conjunctivitis and/or pneumonia. The role of chlamydial infection in the sudden death syndrome has also been considered, but evidence so far is minimal. Neonatal chlamydial infection may cause life-long sequelae, such as obstructive lung disease. Genital chlamydial infections have been associated with problems in insemination and attempts at in vitro fertilization. The chapter also deals with screening of pregnant women for C. trachomatis and the treatment of infected mothers and their offspring.

  7. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection.

    PubMed

    Shekhar, Sudhanshu; Peng, Ying; Gao, Xiaoling; Joyee, Antony G; Wang, Shuhe; Bai, Hong; Zhao, Lei; Yang, Jie; Yang, Xi

    2015-10-01

    The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.

  8. Lung Infections in Systemic Rheumatic Disease: Focus on Opportunistic Infections

    PubMed Central

    Di Franco, Manuela; Lucchino, Bruno; Spaziante, Martina; Iannuccelli, Cristina; Valesini, Guido; Iaiani, Giancarlo

    2017-01-01

    Systemic rheumatic diseases have significant morbidity and mortality, due in large part to concurrent infections. The lung has been reported among the most frequent sites of infection in patients with rheumatic disease, who are susceptible to developing pneumonia sustained both by common pathogens and by opportunistic microorganisms. Patients with rheumatic disease show a peculiar vulnerability to infectious complications. This is due in part to intrinsic disease-related immune dysregulation and in part to the immunosuppressive treatments. Several therapeutic agents have been associated to a wide spectrum of infections, complicating the management of rheumatic diseases. This review discusses the most frequent pulmonary infections encountered in rheumatic diseases, focusing on opportunistic agents, consequent diagnostic challenges and appropriate therapeutic strategies. PMID:28146077

  9. Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion.

    PubMed

    Giles, David K; Whittimore, Judy D; LaRue, Richard W; Raulston, Jane E; Wyrick, Priscilla B

    2006-05-01

    Several chlamydial antigens have been detected in the infected epithelial cell cytosol and on the host cell surface prior to their presumed natural release at the end of the 72-96 h developmental cycle. These extra-inclusion antigens are proposed to influence vital host cell functions, antigen trafficking and presentation and, ultimately, contribute to a prolonged inflammatory response. To begin to dissect the mechanisms for escape of these antigens from the chlamydial inclusion, which are enhanced on exposure to antibiotics, polarized endometrial epithelial cells (HEC-1B) were infected with Chlamydia trachomatis serovar E for 36 h or 48 h. Infected cells were then exposed to chemotactic human polymorphonuclear neutrophils not loaded or pre-loaded in vitro with the antibiotic azithromycin. Viewed by electron microscopy, the azithromycin-mediated killing of chlamydiae involved an increase in chlamydial outer membrane blebbing followed by the appearance of the blebs in larger vesicles (i) everting from but still associated with the inclusion as well as (ii) external to the inclusion. Evidence that the vesicles originated from the chlamydial inclusion membrane was shown by immuno-localization of inclusion membrane proteins A, F, and G on the vesicular membranes. Chlamydial heat shock protein 60 (chsp60) copies 2 and 3, but not copy 1, were released from RB and incorporated into the everted inclusion membrane vesicles and delivered to the infected cell surface. These data represent direct evidence for one mechanism of early antigen delivery, albeit membrane-bound, beyond the confines of the chlamydial inclusion.

  10. Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine.

    PubMed

    Borel, Nicole; Leonard, Cory; Slade, Jessica; Schoborg, Robert V

    The Chlamydiaceae are widespread pathogens of both humans and animals. Chlamydia trachomatis infection causes blinding trachoma and reproductive complications in humans. Chlamydia pneumoniae causes human respiratory tract infections and atypical pneumonia. Chlamydia suis infection is associated with conjunctivitis, diarrhea, and failure to gain weight in domestic swine. Chlamydial infections in humans and domesticated animals are generally controlled by antibiotic treatment-particularly macrolides (usually azithromycin) and tetracyclines (tetracycline and doxycycline). Tetracycline-containing feed has also been used to limit infections and promote growth in livestock populations, although its use has decreased because of growing concerns about antimicrobial resistance development. Because Sandoz and Rockey published an elegant review of chlamydial anti-microbial resistance in 2010, we will review the following: (i) antibiotic resistance in C. suis, (ii) recent evidence for acquired resistance in human chlamydial infections, and (iii) recent non-genetic mechanisms of antibiotic resistance that may contribute to treatment failure.

  11. IL-6 ameliorates acute lung injury in influenza virus infection

    PubMed Central

    Yang, Mei-Lin; Wang, Chung-Teng; Yang, Shiu-Ju; Leu, Chia-Hsing; Chen, Shun-Hua; Wu, Chao-Liang; Shiau, Ai-Li

    2017-01-01

    Interleukin 6 (IL-6) is involved in innate and adaptive immune responses to defend against pathogens. It also participates in the process of influenza infection by affecting viral clearance and immune cell responses. However, whether IL-6 impacts lung repair in influenza pathogenesis remains unclear. Here, we studied the role of IL-6 in acute influenza infection in mice. IL-6-deficient mice infected with influenza virus exhibited higher lethality, lost more body weight and had higher fibroblast accumulation and lower extracellular matrix (ECM) turnover in the lung than their wild-type counterparts. Deficiency in IL-6 enhanced proliferation, migration and survival of lung fibroblasts, as well as increased virus-induced apoptosis of lung epithelial cells. IL-6-deficient lung fibroblasts produced elevated levels of TGF-β, which may contribute to their survival. Furthermore, macrophage recruitment to the lung and phagocytic activities of macrophages during influenza infection were reduced in IL-6-deficient mice. Collectively, our results indicate that IL-6 is crucial for lung repair after influenza-induced lung injury through reducing fibroblast accumulation, promoting epithelial cell survival, increasing macrophage recruitment to the lung and enhancing phagocytosis of viruses by macrophages. This study suggests that IL-6 may be exploited for lung repair during influenza infection. PMID:28262742

  12. An indirect microimmunofluorescence test for detection of chlamydial antibodies in ovine fetal fluids.

    PubMed

    Sanderson, T P; Andersen, A A; Miller, L D; Andrews, J J; Janke, B H; Larson, D L; Schwartz, K J

    1994-07-01

    The objective of this study was to evaluate an indirect microimmunofluorescence test (IMIF) for detection of chlamydial antibodies in serum and/or thoracic fluids of aborted ovine fetuses. One hundred eighty-two ovine fetuses, including 64 fetuses from 40 ewes that were experimentally infected with an ovine abortion strain of Chlamydia psittaci at gestation days 90-100, 10 fetuses from 6 normal ewes, and 108 fetuses selected from those received at the Iowa Veterinary Diagnostic Laboratory, were evaluated in this study. Fetuses from experimentally infected ewes were examined 4-60 days after inoculation. The IMIF findings were compared with the results of complement fixation serology for chlamydiae and concentrations of immunoglobulin (IgG). Chlamydiae-specific antibodies were detected by IMIF in 28 of 38 fetuses infected with C. psittaci. Elevated levels of IgG and IMIF titers > or = 1:8 were consistent findings in ovine fetuses infected with chlamydiae for more than 24 days. IgG levels and titers of chlamydial antibodies increased with maturity of the fetus and duration of chlamydial infection. Chlamydial antibodies were not detected with the complement fixation test. Fluids from ovine fetuses aborted as a result of other causes also were examined, and IMIF results were negative. The results of this study indicate that the IMIF is a useful and relatively rapid test for identification of chlamydial antibodies in ovine fetuses.

  13. Experimental rabbit models of Chlamydia pneumoniae infection.

    PubMed Central

    Moazed, T. C.; Kuo, C.; Patton, D. L.; Grayston, J. T.; Campbell, L. A.

    1996-01-01

    Chlamydia pneumoniae (TWAR), a common cause of acute respiratory disease in humans, has recently been associated with coronary and aortic atherosclerosis. In this study, we evaluated rabbit models of chlamydial infection to investigate the pathogenesis of C. pneumoniae infection. New Zealand White rabbits were inoculated intranasally and intratracheally with C. pneumoniae, strain AR-39, and primary and repeated infection were assessed. After a single inoculation, lung pathology was characterized by a moderate self-resolving interstitial pneumonia with bronchiolitis of 21 days in duration. Chlamydial DNA was detected by polymerase chain reaction (PCR) intermittently in the upper respiratory tract and lung tissue through day 21 postinoculation, spleen tissue at day 14, and peripheral blood mononuclear cells at days 3 and 21. After repeated inoculations, chlamydial DNA was detected by PCR in the upper respiratory tract and lung tissue through day 42. Lung lesions consisted of multifocal interstitial mononuclear cell aggregates that persisted up to day 42. Watanabe heritable hyperlipidemic rabbits were less susceptible to C. pneumoniae infection. After multiple inoculations of Watanabe rabbits, C. pneumoniae was detected by PCR and/or immunocytochemistry until day 21. In conclusion, C. pneumoniae induced a moderate respiratory infection in these rabbit models. Images Figure 1 Figure 2 Figure 3 PMID:8579129

  14. Early airway infection, inflammation, and lung function in cystic fibrosis

    PubMed Central

    Nixon, G; Armstrong, D; Carzino, R; Carlin, J; Olinsky, A; Robertson, C; Grimwood, K

    2002-01-01

    Aims: To determine the relation between lower airway infection and inflammation, respiratory symptoms, and lung function in infants and young children with cystic fibrosis (CF). Methods: A prospective study of children with CF aged younger than 3 years, diagnosed by a newborn screening programme. All were clinically stable and had testing as outpatients. Subjects underwent bronchial lavage (BL) and lung function testing by the raised volume rapid thoracoabdominal compression technique under general anaesthesia. BL fluid was cultured and analysed for neutrophil count, interleukin 8, and neutrophil elastase. Lung function was assessed by forced expiratory volume in 0.5, 0.75, and 1 second. Results: Thirty six children with CF were tested on 54 occasions. Lower airway infection shown by BL was associated with a 10% reduction in FEV0.5 compared with subjects without infection. No relation was identified between airway inflammation and lung function. Daily moist cough within the week before testing was reported on 20/54 occasions, but in only seven (35%) was infection detected. Independent of either infection status or airway inflammation, those with daily cough had lower lung function than those without respiratory symptoms at the time of BL (mean adjusted FEV0.5 195 ml and 236 ml respectively). Conclusions: In young children with CF, both respiratory symptoms and airway infection have independent, additive effects on lung function, unrelated to airway inflammation. Further studies are needed to understand the mechanisms of airway obstruction in these young patients. PMID:12244003

  15. Chlamydial salpingitis in female guinea pigs receiving oral contraceptives.

    PubMed

    Barron, A L; Pasley, J N; Rank, R G; White, H J; Mrak, R E

    1988-01-01

    Female guinea pigs were given daily doses of a combination of oral contraceptive (OC) agents, consisting of mestranol and norethynodrel suspended in sesame oil or distilled H2O, and were infected in the genital tract with the chlamydial agent of guinea pig inclusion conjunctivitis (GPIC). Counts of chlamydial inclusions in cells of vaginal smears collected during infection, showed prolongation and enhancement of infection in OC-treated animals as compared with controls. Appearance of IgG and IgA antibodies to GPIC in genital secretions, as determined by enzyme-linked immunosorbent assay (ELISA), was also delayed in OC-treated animals as compared with controls. OC-treated infected animals were killed on days 15 and 43, and gross pathological evidence for ascending infection culminating in salpingitis was found in all of five and four of five animals, respectively. On the other hand, among untreated infected controls on each sacrifice day, only one of five animals had any evidence for ascending infection. Chlamydiae were detected by light and electron microscopy in fallopian tube tissue collected on day 15 following OC-treatment but not in tissue from control animals.

  16. Sphingoid long chain bases prevent lung infection by Pseudomonas aeruginosa

    PubMed Central

    Pewzner-Jung, Yael; Tavakoli Tabazavareh, Shaghayegh; Grassmé, Heike; Becker, Katrin Anne; Japtok, Lukasz; Steinmann, Jörg; Joseph, Tammar; Lang, Stephan; Tuemmler, Burkhard; Schuchman, Edward H; Lentsch, Alex B; Kleuser, Burkhard; Edwards, Michael J; Futerman, Anthony H; Gulbins, Erich

    2014-01-01

    Cystic fibrosis patients and patients with chronic obstructive pulmonary disease, trauma, burn wound, or patients requiring ventilation are susceptible to severe pulmonary infection by Pseudomonas aeruginosa. Physiological innate defense mechanisms against this pathogen, and their alterations in lung diseases, are for the most part unknown. We now demonstrate a role for the sphingoid long chain base, sphingosine, in determining susceptibility to lung infection by P. aeruginosa. Tracheal and bronchial sphingosine levels were significantly reduced in tissues from cystic fibrosis patients and from cystic fibrosis mouse models due to reduced activity of acid ceramidase, which generates sphingosine from ceramide. Inhalation of mice with sphingosine, with a sphingosine analog, FTY720, or with acid ceramidase rescued susceptible mice from infection. Our data suggest that luminal sphingosine in tracheal and bronchial epithelial cells prevents pulmonary P. aeruginosa infection in normal individuals, paving the way for novel therapeutic paradigms based on inhalation of acid ceramidase or of sphingoid long chain bases in lung infection. PMID:25085879

  17. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection.

    PubMed

    Darville, Toni; O'Neill, Joshua M; Andrews, Charles W; Nagarajan, Uma M; Stahl, Lynn; Ojcius, David M

    2003-12-01

    The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.

  18. A Cross Sectional Analysis of Gonococcal and Chlamydial Infections among Men-Who-Have-Sex-with-Men in Cape Town, South Africa

    PubMed Central

    Kamkuemah, Monika

    2015-01-01

    Background Men-who-have-sex-with-men (MSM) are at high risk of HIV and sexually transmitted infection (STI) transmission. Asymptomatic STIs are common in MSM and remain undiagnosed and untreated where syndromic management is advocated. Untreated STIs could be contributing to high HIV rates. This study investigated symptomatic (SSTI) and asymptomatic STIs (ASTIs) in MSM in Cape Town. Methods MSM, 18 years and above, were enrolled into this study. Participants underwent clinical and microbiological screening for STIs. Urine, oro-pharyngeal and anal swab specimens were collected for STI analysis, and blood for HIV and syphilis screening. A psychosocial and sexual questionnaire was completed. STI specimens were analysed for Neisseria gonorrhoeae (NG) and Chlamydia trachomatis (CT) infection. Results 200 MSM were recruited with a median age of 32 years (IQR 26–39.5). Their median number of sex partners within the last year was 5 (IQR 2–20). 155/200 (78%) reported only male sex partners while 45/200 (23%) reported sex with men and women. 77/200 (39%) reported transactional sex. At enrolment, 88/200 (44%) were HIV positive and 8/112 (7%) initially HIV-negative participants seroconverted during the study. Overall, 47/200 (24%) screened positive for either NG or CT. There were 32 MSM (16%) infected with NG and 7 (3.5%) of these men had NG infections at two anatomical sites (39 NG positive results in total). Likewise, there were 23 MSM (12%) infected with CT and all these men had infections at only one site. Eight of the 47 men (17%) were infected with both NG and CT. ASTI was more common than SSTI irrespective of anatomical site, 38 /200 (19%) versus 9/200 (5%) respectively (p<0.001). The anus was most commonly affected, followed by the oro-pharynx and then urethra. Asymptomatic infection was associated with transgender identity (OR 4.09 CI 1.60–5.62), ≥5 male sex partners in the last year (OR 2.50 CI 1.16–5.62) and transactional sex (OR 2.33 CI 1.13–4.79) but

  19. Targeting Lung Cancer Using an Infectivity Enhanced CXCR4-CRAd

    PubMed Central

    Zhu, Zeng B.; Rivera, Angel A.; Makhija, Sharmila K.; Lu, Baogen; Wang, Minghui; Izumi, Miiru; Cerfolio, Robert; Stoff-Khalili, Mariam A.; Zhou, Fen; Takayama, Koichi; Siegal, Gene P.; Curiel., David T.

    2007-01-01

    Conventional treatments are not adequate for the majority of lung cancer patients. Conditionally replicating adenoviruses (CRAds) represent a promising new modality for the treatment of neoplastic diseases, including non-small cell lung cancer. Specifically, following cellular infection, the virus replicates selectively in the infected tumor cells and kills the cells by cytolysis. Next, the progeny virions infect a new population of surrounding target cells, replicate again and eradicate the infected tumor cells while leaving normal cells unaffected. However, to date there have been two main limitations to successful clinical application of these CRAd agents; i.e. poor infectivity and poor tumor specificity. Here we report the construction of a CRAd agent, CRAd-CXCR4.RGD, in which the adenovirus E1 gene is driven by a tumor-specific CXCR4 promoter and the viral infectivity is enhanced by a capsid modification, RGD4C. This agent CRAd-CXCR4.RGD, as expected, improved both of the viral infectivity and tumor specificity as evaluated in an established lung tumor cell line and in primary tumor tissue from multiple patients. As an added benefit, the activity of the CXCR4 promoter was low in human liver as compared to three other promoters regularly used for targeting tumors. In addition, this agent has the potential of targeting multiple other tumor cell types. From theses data, the CRAd-CXCR4.RGD appears to be a promising novel CRAd agent for lung cancer targeting with low host toxicity. PMID:17113184

  20. Primary pulmonary botryomycosis: a bacterial lung infection mimicking lung cancer.

    PubMed

    Ariza-Prota, M A; Pando-Sandoval, A; García-Clemente, M; Jiménez, H; Álvarez-Álvarez, C; Casan-Clara, P

    2013-07-01

    Primary pulmonary botryomycosis, or bacterial pseudomycosis, is an unusual bacterial infection characterised by the formation of eosinophilic granules that resemble those of Actinomyces species infection. The diagnosis of botryomycosis is based on culture of the granules revealing gram-positive cocci or gram-negative bacilli. The bacterial pathogen most frequently found is Staphylococcus aureus. The pathobiology remains unknown. Pulmonary botryomycosis can resemble actinomycosis, tuberculosis or invasive carcinoma. Definitive treatment requires a combination of both surgical debridement and long-term antimicrobial therapy. We present a case of primary pulmonary botryomycosis in an immunocompetent patient.

  1. [Nocardia farcinica lung infection in a patient with cystic fibrosis and a lung transplant].

    PubMed

    Chacón, C F; Vicente, R; Ramos, F; Porta, J; Lopez Maldonado, A; Ansotegui, E

    2015-03-01

    Patients with cystic fibrosis have a higher risk of developing chronic respiratory infectious diseases. The Nocardia farcinica lung infection is rare in this group of patients, and there are limited publications about this topic. Its diagnosis is complex, due to the clinical and the radiology signs being non-specific. Identification of the agent responsible in the sputum culture is occasionally negative. It is a slow growing organism and for this reason treatment is delayed, which can lead to an increase in complications, hospitable stays, and mortality. A case is reported on a 26 year-old woman with cystic fibrosis and chronic lung colonization by Nocardia farcinica and Aspergillus fumigatus, on long-term treatment with ciprofloxacin, trimethoprim-sulfamethoxazole, and posaconazole, who was admitted to ICU after bilateral lung transplantation. The initial post-operative progress was satisfactory. After discharge, the patient showed a gradual respiratory insufficiency with new chest X-ray showing diffuse infiltrates. Initially, the agent was not seen in the sputum culture. Prompt and aggressive measures were taken, due to the high clinical suspicion of a Nocardia farcinica lung infection. Treatment with a combination of amikacin and meropenem, and later combined with linezolid, led to the disappearance of the lung infiltrates and a clinical improvement. In our case, we confirm the rapid introduction of Nocardia farcinica in the new lungs. The complex identification and the delay in treatment increased the morbimortality. There is a special need for its eradication in patients with lung transplant, due to the strong immunosuppressive treatment.

  2. Bacteriocin-mediated competition in cystic fibrosis lung infections

    PubMed Central

    Ghoul, Melanie; West, Stuart A.; Johansen, Helle Krogh; Molin, Søren; Harrison, Odile B.; Maiden, Martin C. J.; Jelsbak, Lars; Bruce, John B.; Griffin, Ashleigh S.

    2015-01-01

    Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections. PMID:26311664

  3. Aggregatibacter actinomycetemcomitans infection mimicking lung cancer: a case report.

    PubMed

    Matzumura-Kuan, Melissa; Jennings, Jeffrey

    2014-09-01

    Pulmonary infections can mimic a pulmonary neoplasm. Multiple organisms, including bacteria, viruses, and fungi, can present with similar clinical, radiographic, and surgical findings as neoplastic processes. Because treatment and the prognosis are completely different, an accurate diagnosis is crucial, and lung biopsy is usually required. Aggregatibacter actinomycetemcomitans is part of the normal oral flora and is a rare cause of invasive infection due to hematogenous dissemination or aspiration, particularly infective endocarditis. We present a case of A. actinomycetemcomitans and Actinomyces co-infection that presented as a mediastinal mass, with surgical findings similar to lung malignancy but with biopsy and culture showing an infectious origin. After antibiotic treatment, follow-up images showed resolution of the mass.

  4. Inhaled Formulation Design for the Treatment of Lung Infections.

    PubMed

    Garcia-Contreras, Lucila; Yadav, Khushwant S

    2015-01-01

    Lung infections may be bacterial, viral or fungal and they are typically treated with oral or parenteral antibiotics. Inhaled dry powder formulations offer unique opportunities for treating lung infections with enhanced effectiveness and stability. Since drug delivery to the lungs requires chronic and repeated administration of larger amounts of therapeutics, dry powder formulations are attractive alternatives to deliver drugs directly to the lungs as they are not limited by solubility issues and they are regarded as being more stable than liquid dosage forms. This state-of-the-art review presents the use of inhaled formulations for tuberculosis as a main focus, but also for other diseases such as bronchiectasis, chronic obstructive pulmonary disease (COPD), pneumonia and respiratory infections occurring as complications during lung transplants. Opportunities for the use of inhaled therapies and other respiratory diseases or as prevention or antidotes against warfare agents are offered. Typical and novel inhaled formulations that have been used as well as preclinical and clinical studies and evaluation of these inhaled therapies are discussed for each disease state. Lastly, the use of inhaled therapies as an alternative to end the emergence of drug resistant strains is discussed along with the risks of increasing these resistant strains if the inhaled therapy is not designed based on dosing regimens established by wellplanned pharmacokinetic and pharmacodynamic studies.

  5. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract

    PubMed Central

    Yang, Zhangsheng; Tang, Lingli; Shao, Lili; Zhang, Yuyang; Zhang, Tianyuan; Schenken, Robert; Valdivia, Raphael

    2016-01-01

    Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity. PMID:27382018

  6. Respiratory infections in patients with cystic fibrosis undergoing lung transplantation.

    PubMed

    Lobo, Leonard J; Noone, Peadar G

    2014-01-01

    Cystic fibrosis is an inherited disease characterised by chronic respiratory infections associated with bronchiectasis. Lung transplantation has helped to extend the lives of patients with cystic fibrosis who have advanced lung disease. However, persistent, recurrent, and newly acquired infections can be problematic. Classic cystic fibrosis-associated organisms, such as Staphylococcus aureus and Pseudomonas aeruginosa, are generally manageable post-transplantation, and are associated with favourable outcomes. Burkholderia cenocepacia poses particular challenges, although other Burkholderia species are less problematic. Despite concerns about non-tuberculous mycobacteria, especially Mycobacterium abscessus, post-transplantation survival has not been definitively shown to be less than average in patients with these infections. Fungal species can be prevalent before and after transplantation and are associated with high morbidity, so should be treated aggressively. Appropriate viral screening and antiviral prophylaxis are necessary to prevent infection with and reactivation of Epstein-Barr virus and cytomegalovirus and their associated complications. Awareness of drug pharmacokinetics and interactions in cystic fibrosis is crucial to prevent toxic effects and subtherapeutic or supratherapeutic drug dosing. With the large range of potential infectious organisms in patients with cystic fibrosis, infection control in hospital and outpatient settings is important. Despite its complexity, lung transplantation in the cystic fibrosis population is safe, with good outcomes if the clinician is aware of all the potential pathogens and remains vigilant by means of surveillance and proactive treatment.

  7. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    PubMed Central

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  8. Chlorine gas exposure increases susceptibility to invasive lung fungal infection

    PubMed Central

    Gessner, Melissa A.; Doran, Stephen F.; Yu, Zhihong; Dunaway, Chad W.; Matalon, Sadis

    2013-01-01

    Chlorine (Cl2) is a highly irritating and reactive gas with potential occupational and environmental hazards. Acute exposure to Cl2 induces severe epithelial damage, airway hyperreactivity, impaired alveolar fluid clearance, and pulmonary edema in the presence of heightened inflammation and significant neutrophil accumulation in the lungs. Herein, we investigated whether Cl2 exposure affected the lung antimicrobial immune response leading to increased susceptibility to opportunistic infections. Mice exposed to Cl2 and challenged intratracheally 24 h thereafter with the opportunistic mold Aspergillus fumigatus demonstrated an >500-fold increase in A. fumigatus lung burden 72 h postchallenge compared with A. fumigatus mice exposed to room air. Cl2-exposed A. fumigatus challenged mice also demonstrated significantly higher lung resistance following methacholine challenge and increased levels of plasma proteins (albumin and IgG) in the bronchoalveolar lavage fluid. Despite enhanced recruitment of inflammatory cells to the lungs of Cl2-exposed A. fumigatus challenged mice, these cells (>60% of which were neutrophils) demonstrated a profound impairment in generating superoxide. Significantly higher A. fumigatus burden in the lungs of Cl2 exposed mice correlated with enhanced production of IL-6, TNF-α, CXCL1, CCL2, and CCL3. Surprisingly, however, Cl2-exposed A. fumigatus challenged mice had a specific impairment in the production of IL-17A and IL-22 in the lungs compared with mice exposed to room air and challenged with A. fumigatus. In summary, our results indicate that Cl2 exposure markedly impairs the antimicrobial activity and inflammatory reactivity of myeloid cells in the lung leading to increased susceptibility to opportunistic pathogens. PMID:23564508

  9. [The lungs in human immunodeficiency virus type 1 infection].

    PubMed

    Barić, D; Vrkić, L

    1997-01-01

    This report describes a case of two patients who were admitted to the Zadar hospital and according to clinical symptoms directed to the Department of Lung Diseases. Both patients were temporarily employed abroad. It has been established that they were infected with human immunodeficiency virus type 1 (HIV-1). One of the patients has been moved to the Department of Infectious Diseases and later to Zagreb, while the other has returned abroad. On admission to the hospital of the Zadar Medical Center none of them answered the question about being engaged in risky behavior. In 1990 there were 699 registered patients hospitalized and 745 registered in the protocol of the Outpatient Clinic of the Department of Lung Diseases. 0.069% of patients were HIV-1-infected. In 1991, there were 520 hospitalized and 453 outpatients, whereas 0.102% were HIV-1-infected and registered subjects. It must be pointed out that these are only numbers of registration and not subjects, because there were patients who were examined or hospitalized twice or more times during the corresponding calendar year. The aim of this study was to point to a new differentially-diagnostic problem present especially at the Department of Lung Diseases after AIDS has become part of our reality. There still remains a problem in regard to detection of HIV-1 seropositivity in patients at departments with opportunistic infections such as tuberculosis.

  10. Autophagy enhances bacterial clearance during P. aeruginosa lung infection.

    PubMed

    Junkins, Robert D; Shen, Ann; Rosen, Kirill; McCormick, Craig; Lin, Tong-Jun

    2013-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.

  11. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units.

    PubMed

    Vicetti Miguel, Rodolfo D; Henschel, Kevin J; Dueñas Lopez, Fiorela C; Quispe Calla, Nirk E; Cherpes, Thomas L

    2015-12-01

    Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify Chlamydia-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and Chlamydia trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units.

  12. Fluorescent labeling reliably identifies Chlamydia trachomatis in living human endometrial cells and rapidly and accurately quantifies chlamydial inclusion forming units

    PubMed Central

    Vicetti Miguel, Rodolfo D.; Henschel, Kevin J.; Dueñas Lopez, Fiorela C.; Quispe Calla, Nirk E.; Cherpes, Thomas L.

    2016-01-01

    Chlamydia replication requires host lipid acquisition, allowing flow cytometry to identify C. trachomatis-infected cells that accumulated fluorescent Golgi-specific lipid. Herein, we describe modifications to currently available methods that allow precise differentiation between uninfected and C. trachomatis-infected human endometrial cells and rapidly and accurately quantify chlamydial inclusion forming units. PMID:26453947

  13. Modifications of lung clearance mechanisms by acute influenza A infection

    SciTech Connect

    Levandowski, R.A.; Gerrity, T.R.; Garrard, C.S.

    1985-10-01

    Four volunteers with naturally acquired, culture-proved influenza A infection inhaled a radiolabeled aerosol to permit investigation of lung mucociliary clearance mechanisms during and after symptomatic illness. Mucus transport in the trachea was undetectable when monitored with an external multidetector probe within 48 hours of the onset of the illness, but was found at a normal velocity by 1 week in three of the four subjects. In two volunteers who coughed 23 to 48 times during the 4.5-hour observation period, whole lung clearance was as fast within the first 48 hours of illness as during health 3 months later in spite of the absence of measurable tracheal mucus transport. Conversely, in spite of the return 1 week later of mucus transport at velocities expected in the trachea, whole lung clearance for the 4.5-hour period was slowed in two volunteers who coughed less than once an hour. The data offer evidence that cough is important in maintaining lung clearance for at least several days after symptomatic influenza A infection when other mechanisms that depend on ciliary function are severely deficient.

  14. Interleukin 17A is an immune marker for chlamydial disease severity and pathogenesis in the koala (Phascolarctos cinereus).

    PubMed

    Mathew, Marina; Waugh, Courtney; Beagley, Kenneth W; Timms, Peter; Polkinghorne, Adam

    2014-10-01

    The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala's cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala.

  15. Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial-conjunctivitis in guinea pigs.

    PubMed Central

    Watkins, N G; Hadlow, W J; Moos, A B; Caldwell, H D

    1986-01-01

    We used a naturally occurring, Chlamydia psittaci-caused eye disease in guinea pigs, guinea pig inclusion conjunctivitis, as an animal model to understand both the immune response and the pathogenesis of chlamydial eye infections. When instilled into the conjunctival sac of guinea pigs that had been previously infected and were immune, viable chlamydiae or a Triton X-100-soluble extract of them produced a short-lived (12-48 hr) eye disease indistinguishable clinically and histologically from that observed during primary chlamydial eye infection. The clinical and histologic findings were consistent with those of ocular delayed hypersensitivity. Ocular delayed hypersensitivity was induced by primary chlamydial infection at mucosal sites other than conjunctival, such as vaginal and intestinal. Preliminary characterization of the hypersensitivity allergen shows that it is heat sensitive and common to the genus Chlamydia. The allergen is apparently not surface-exposed on chlamydiae and requires viable but not replicating organisms for activity. Our observation should be useful in understanding pathogenetic mechanisms of Chlamydia trachomatis-caused infections in humans, in particular those that produce chronic inflammatory diseases, such as blinding trachoma and urogenital diseases. Images PMID:3463978

  16. Noninvasive monitoring of infection and rejection after lung transplantation

    PubMed Central

    De Vlaminck, Iwijn; Martin, Lance; Kertesz, Michael; Patel, Kapil; Kowarsky, Mark; Strehl, Calvin; Cohen, Garrett; Luikart, Helen; Neff, Norma F.; Okamoto, Jennifer; Nicolls, Mark R.; Cornfield, David; Weill, David; Valantine, Hannah; Khush, Kiran K.; Quake, Stephen R.

    2015-01-01

    The survival rate following lung transplantation is among the lowest of all solid-organ transplants, and current diagnostic tests often fail to distinguish between infection and rejection, the two primary posttransplant clinical complications. We describe a diagnostic assay that simultaneously monitors for rejection and infection in lung transplant recipients by sequencing of cell-free DNA (cfDNA) in plasma. We determined that the levels of donor-derived cfDNA directly correlate with the results of invasive tests of rejection (area under the curve 0.9). We also analyzed the nonhuman cfDNA as a hypothesis-free approach to test for infections. Cytomegalovirus is most frequently assayed clinically, and the levels of CMV-derived sequences in cfDNA are consistent with clinical results. We furthermore show that hypothesis-free monitoring for pathogens using cfDNA reveals undiagnosed cases of infection, and that certain infectious pathogens such as human herpesvirus (HHV) 6, HHV-7, and adenovirus, which are not often tested clinically, occur with high frequency in this cohort. PMID:26460048

  17. Impact of HIV Infection on Medicare Beneficiaries with Lung Cancer.

    PubMed

    Lee, Jeannette Y; Moore, Page C; Lensing, Shelly Y

    2012-01-01

    The incidence of lung cancer among individuals infected with the human immunodeficiency virus (HIV) is elevated compared to that among the general population. This study examines the prevalence of HIV and its impact on outcomes among Medicare beneficiaries who are 65 years of age or older and were diagnosed with nonsmall cell lung cancer (NSCLC) between 1997 and 2008. Prevalence of HIV was estimated using the Poisson point estimate and its 95% confidence interval. Relative risks for potential risk factors were estimated using the log-binomial model. A total of 111,219 Medicare beneficiaries met the study criteria. The prevalence of HIV was 156.4 per 100,000 (95% CI: 140.8 to 173.8) and has increased with time. Stage at NSCLC diagnosis did not vary by HIV status. Mortality rates due to all causes were 44%, 76%, and 88% for patients with stage I/II, III, and IV NSCLC, respectively. Across stages of disease, there was no difference between those who were HIV-infected and those who were not with respect to overall mortality. HIV patients, however, were more likely to die of causes other than lung cancer than their immunocompetent counterparts.

  18. Stochastic Tracking of Infection in a CF Lung

    PubMed Central

    Zarei, Sara; Mirtar, Ali; Rohwer, Forest; Salamon, Peter

    2014-01-01

    Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scan are the two ubiquitous imaging sources that physicians use to diagnose patients with Cystic Fibrosis (CF) or any other Chronic Obstructive Pulmonary Disease (COPD). Unfortunately the cost constraints limit the frequent usage of these medical imaging procedures. In addition, even though both CT scan and MRI provide mesoscopic details of a lung, in order to obtain microscopic information a very high resolution is required. Neither MRI nor CT scans provide micro level information about the location of infection in a binary tree structure the binary tree structure of the human lung. In this paper we present an algorithm that enhances the current imaging results by providing estimated micro level information concerning the location of the infection. The estimate is based on a calculation of the distribution of possible mucus blockages consistent with available information using an offline Metropolis-Hastings algorithm in combination with a real-time interpolation scheme. When supplemented with growth rates for the pockets of mucus, the algorithm can also be used to estimate how lung functionality as manifested in spirometric tests will change in patients with CF or COPD. PMID:25360611

  19. Chlamydia genomics: providing novel insights into chlamydial biology.

    PubMed

    Bachmann, Nathan L; Polkinghorne, Adam; Timms, Peter

    2014-08-01

    Chlamydiaceae are obligate intracellular pathogens that have successfully evolved to colonize a diverse range of hosts. There are currently 11 described species of Chlamydia, most of which have a significant impact on the health of humans or animals. Expanding chlamydial genome sequence information has revolutionized our understanding of chlamydial biology, including aspects of their unique lifecycle, host-pathogen interactions, and genetic differences between Chlamydia strains associated with different host and tissue tropisms. This review summarizes the major highlights of chlamydial genomics and reflects on the considerable impact these have had on understanding the biology of chlamydial pathogens and the changing nature of genomics tools in the 'post-genomics' era.

  20. Clearance of chlamydial elementary bodies from the conjunctival sac

    SciTech Connect

    Taylor, H.R.; Velez, V.L.

    1987-07-01

    The rate of disappearance of inactivated Chlamydia trachomatis elementary body (EB) preparations from the conjunctival sac was studied in monkeys. Direct fluorescent antibody (DFA) cytology showed that the majority of EB had been cleared from the eye within 24 hr of the inoculation of 1 X 10(6) inactivated EB, although small numbers of EB could be detected for up to 144 hr. The rate of clearance in normal and ocular immune animals did not differ, and formalin-killed and UV-inactivated EBs disappeared at a comparable rate. These studies suggest that chlamydial EB are cleared relatively quickly from the eye and support the notion that EBs detected by DFA cytology indicate the presence of current infection.

  1. Interleukin-22 reduces lung inflammation during influenza A virus infection and protects against secondary bacterial infection.

    PubMed

    Ivanov, Stoyan; Renneson, Joelle; Fontaine, Josette; Barthelemy, Adeline; Paget, Christophe; Fernandez, Elodie Macho; Blanc, Fany; De Trez, Carl; Van Maele, Laurye; Dumoutier, Laure; Huerre, Michel-René; Eberl, Gérard; Si-Tahar, Mustapha; Gosset, Pierre; Renauld, Jean Christophe; Sirard, Jean Claude; Faveeuw, Christelle; Trottein, François

    2013-06-01

    Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αβ and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.

  2. Alveolar Macrophages Are a Prominent but Nonessential Target for Murine Cytomegalovirus Infecting the Lungs

    PubMed Central

    Farrell, Helen E.; Lawler, Clara; Oliveira, Martha T.; Davis-Poynter, Nick

    2015-01-01

    ABSTRACT Cytomegaloviruses (CMVs) infect the lungs and cause pathological damage there in immunocompromised hosts. How lung infection starts is unknown. Inhaled murine CMV (MCMV) directly infected alveolar macrophages (AMs) and type 2 alveolar epithelial cells (AEC2s) but not type 1 alveolar epithelial cells (AEC1s). In contrast, herpes simplex virus 1 infected AEC1s and murid herpesvirus 4 (MuHV-4) infected AEC1s via AMs. MCMV-infected AMs prominently expressed viral reporter genes from a human CMV IE1 promoter; but most IE1-positive cells were AEC2s, and CD11c-cre mice, which express cre in AMs, switched the fluorochrome expression of <5% of floxed MCMV in the lungs. In contrast, CD11C-cre mice exhibited fluorochrome switching in >90% of floxed MuHV-4 in the lungs and 50% of floxed MCMV in the blood. AM depletion increased MCMV titers in the lung during the acute phase of infection. Thus, the influence of AMs was more restrictive than permissive. Circulating monocytes entered infected lungs in large numbers and became infected, but not directly; infection occurred mainly via AEC2s. Mice infected with an MCMV mutant lacking its m131/m129 chemokine homolog, which promotes macrophage infection, showed levels of lung infection equivalent to those of wild-type MCMV-infected mice. The level of lung infiltration by Gr-1-positive cells infected with the MCMV m131/m129-null mutant was modestly different from that for wild-type MCMV-infected lungs. These results are consistent with myeloid cells mainly disseminating MCMV from the lungs, whereas AEC2s provide local amplification. IMPORTANCE Cytomegaloviruses (CMVs) chronically and systemically infect most mammals. Human CMV infection is usually asymptomatic but causes lung disease in people with poor immune function. As human infection is hard to analyze, studies with related animal viruses provide important insights. We show that murine CMV has two targets in the lungs: macrophages and surfactant-secreting epithelial cells

  3. Postnatal Infections and Immunology Affecting Chronic Lung Disease of Prematurity

    PubMed Central

    Pryhuber, Gloria S.

    2015-01-01

    Synopsis Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, though the mechanisms of susceptibility and immune dysregulation are active areas of research. This chapter will review aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children. PMID:26593074

  4. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed.

  5. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    PubMed Central

    Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-01-01

    Chlamydiae are important pathogens and symbionts, with unique cell biology features. They lack the cell-division protein FtsZ, which functions in maintaining cell shape and orchestrating cell division in almost all other bacteria. In addition, the existence of peptidoglycan (PG) in chlamydial cell envelopes has been highly controversial. Using electron cryotomography, mass spectrometry and fluorescent labeling dyes, here we show that some environmental chlamydiae have cell-wall sacculi consisting of an unusual PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential. PMID:24292151

  6. IL-22 is essential for lung epithelial repair following influenza infection.

    PubMed

    Pociask, Derek A; Scheller, Erich V; Mandalapu, Sivanarayana; McHugh, Kevin J; Enelow, Richard I; Fattman, Cheryl L; Kolls, Jay K; Alcorn, John F

    2013-04-01

    Influenza infection is widespread in the United States and the world. Despite low mortality rates due to infection, morbidity is common and little is known about the molecular events involved in recovery. Influenza infection results in persistent distal lung remodeling, and the mechanism(s) involved are poorly understood. Recently IL-22 has been found to mediate epithelial repair. We propose that IL-22 is critical for recovery of normal lung function and architecture after influenza infection. Wild-type and IL-22(-/-) mice were infected with influenza A PR8/34 H1N1 and were followed up for up to 21 days post infection. IL-22 receptor was localized to the airway epithelium in naive mice but was expressed at the sites of parenchymal lung remodeling induced by influenza infection. IL-22(-/-) mice displayed exacerbated lung injury compared with wild-type mice, which correlated with decreased lung function 21 days post infection. Epithelial metaplasia was observed in wild-type mice but was not evident in IL-22(-/-) animals that were characterized with an increased fibrotic phenotype. Gene expression analysis revealed aberrant expression of epithelial genes involved in repair processes, among changes in several other biological processes. These data indicate that IL-22 is required for normal lung repair after influenza infection. IL-22 represents a novel pathway involved in interstitial lung disease.

  7. Chlamydia pneumoniae Infection in Mice Induces Chronic Lung Inflammation, iBALT Formation, and Fibrosis

    PubMed Central

    Jupelli, Madhulika; Shimada, Kenichi; Chiba, Norika; Slepenkin, Anatoly; Alsabeh, Randa; Jones, Heather D.; Peterson, Ellena; Chen, Shuang

    2013-01-01

    Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis. PMID:24204830

  8. Intestinal lesions caused by two swine chlamydial isolates in gnotobiotic pigs.

    PubMed

    Rogers, D G; Andersen, A A

    1996-10-01

    The objective of this study was to determine whether 2 distinct chlamydial isolates recovered from the intestines and feces of diarrheic nursery pigs could cause intestinal lesions in gnotobiotic pigs. Both isolates share biological characteristics with Chlamydia trachomatis. Chlamydial isolates R27 and R19 were propagated in Vero cells or embryonated eggs, respectively, and suspended in sucrose-phosphate-glutamine buffer with 10% fetal bovine serum for inoculation. Sham inocula were prepared from uninfected cell culture lysates and from uninfected eggs. Each piglet was fed 1 ml of inoculum or sham inoculum at 3-4 days of age. Ten piglets were each fed 10(9) inclusion-forming-units (IFU) and 14 piglets were each fed 10(6) IFU of isolate R27; 5 control piglets were fed sham inoculum. Twenty piglets were each fed 10(5) IFU R19; 5 control piglets were fed sham inoculum. All infected piglets developed diarrhea 4-5 days postinfection (DPI). Most piglets fed 10(9) IFU R27 became anorexic, dehydrated, and weak and were necropsied 4-7 DPI. Piglets fed 10(6) IFU R27 or 10(5) IFU R19 were necropsied 4, 7, 10, 14, and 18 DPI. Diarrhea, although never profuse, persisted in the piglets fed 10(6) IFU R27 or 10(5) IFU R19 through 12 DPI. At necropsy, all diarrheic piglets had watery colonic contents with flecks of undigested curd. In small intestine, histologic lesions were seen most consistently in distal jejunum and ileum. Distal jejunum and ileum from piglets fed 10(9) IFU R27 and necropsied 4-5 DPI were characterized by villus atrophy and multifocal necrosis of villi; necrosis was limited to the tips or apical one half of villi. Mild to severe villus atrophy, lymphangitis, and perilymphangitis were seen in the distal jejunum and ileum from all infected piglets 7 and 10 DPI. Colon from 1 infected piglet necropsied 10 DPI had mild focal serositis; significant colonic lesions were not seen in the other infected piglets. Immunostaining done on sections of distal jejunum and ileum

  9. Symptomatic Respiratory Virus Infection and Chronic Lung Allograft Dysfunction

    PubMed Central

    Fisher, Cynthia E.; Preiksaitis, Carl M.; Lease, Erika D.; Edelman, Jeffrey; Kirby, Katharine A.; Leisenring, Wendy M.; Raghu, Ganesh; Boeckh, Michael; Limaye, Ajit P.

    2016-01-01

    Background. Chronic lung allograft dysfunction (CLAD) is a major cause of allograft loss post-lung transplantation. Prior studies have examined the association between respiratory virus infection (RVI) and CLAD were limited by older diagnostic techniques, study design, and case numbers. We examined the association between symptomatic RVI and CLAD using modern diagnostic techniques in a large contemporary cohort of lung transplant recipients (LTRs). Methods. We retrospectively assessed clinical variables including acute rejection, cytomegalovirus pneumonia, upper and lower RVI, and the primary endpoint of CLAD (determined by 2 independent reviewers) in 250 LTRs in a single university transplantation program. Univariate and multivariate Cox models were used to analyze the relationship between RVI and CLAD in a time-dependent manner, incorporating different periods of risk following RVI diagnosis. Results. Fifty patients (20%) were diagnosed with CLAD at a median of 95 weeks post-transplantation, and 79 (32%) had 114 episodes of RVI. In multivariate analysis, rejection and RVI were independently associated with CLAD (adjusted hazard ratio [95% confidence interval]) 2.2 (1.2–3.9), P = .01 and 1.9 (1.1–3.5), P = .03, respectively. The association of RVI with CLAD was stronger the more proximate the RVI episode: 4.8 (1.9–11.6), P < .01; 3.4 (1.5–7.5), P < .01; and 2.4 (1.2–5.0), P = .02 in multivariate analysis for 3, 6, and 12 months following RVI, respectively. Conclusions. Symptomatic RVI is independently associated with development of CLAD, with increased risk at shorter time periods following RVI. Prospective studies to characterize the virologic determinants of CLAD and define the underlying mechanisms are warranted. PMID:26565010

  10. Influence of the Chlamydia pneumoniae AR39 bacteriophage ϕCPAR39 on chlamydial inclusion morphology.

    PubMed

    Hoestgaard-Jensen, Kirsten; Christiansen, Gunna; Honoré, Bent; Birkelund, Svend

    2011-07-01

    The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ϕCPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ϕCPAR39 infection. Using immunofluorescence laser confocal microscopy and two-dimensional gel electrophoresis, we investigated the ϕCPAR39 infection of C. pneumoniae AR39. It was observed that ϕCPAR39 infection differentially suppressed the C. pneumoniae protein synthesis as the polymorphic membrane protein 10 and the secreted chlamydial protein Cpn0796 was hardly expressed while the secreted chlamydial protein Cpaf was expressed, but not secreted. The inclusion membrane protein, IncA, was demonstrated to surround the phage-infected abnormal reticulate bodies (RB) as well as being located in the inclusion membrane. As IncA is secreted by the type 3 secretion (T3S) system, it is likely that the T3S is disrupted in the phage-infected chlamydiae such that it accumulates around the infected RB.

  11. Mechanical ventilation and lung infection in the genesis of air-space enlargement

    PubMed Central

    Sartorius, Alfonso; Lu, Qin; Vieira, Silvia; Tonnellier, Marc; Lenaour, Gilles; Goldstein, Ivan; Rouby, Jean-Jacques

    2007-01-01

    Introduction Air-space enlargement may result from mechanical ventilation and/or lung infection. The aim of this study was to assess how mechanical ventilation and lung infection influence the genesis of bronchiolar and alveolar distention. Methods Four groups of piglets were studied: non-ventilated-non-inoculated (controls, n = 5), non-ventilated-inoculated (n = 6), ventilated-non-inoculated (n = 6), and ventilated-inoculated (n = 8) piglets. The respiratory tract of intubated piglets was inoculated with a highly concentrated solution of Escherichia coli. Mechanical ventilation was maintained during 60 hours with a tidal volume of 15 ml/kg and zero positive end-expiratory pressure. After sacrifice by exsanguination, lungs were fixed for histological and lung morphometry analyses. Results Lung infection was present in all inoculated piglets and in five of the six ventilated-non-inoculated piglets. Mean alveolar and mean bronchiolar areas, measured using an analyzer computer system connected through a high-resolution color camera to an optical microscope, were significantly increased in non-ventilated-inoculated animals (+16% and +11%, respectively, compared to controls), in ventilated-non-inoculated animals (+49% and +49%, respectively, compared to controls), and in ventilated-inoculated animals (+95% and +118%, respectively, compared to controls). Mean alveolar and mean bronchiolar areas significantly correlated with the extension of lung infection (R = 0.50, p < 0.01 and R = 0.67, p < 0.001, respectively). Conclusion Lung infection induces bronchiolar and alveolar distention. Mechanical ventilation induces secondary lung infection and is associated with further air-space enlargement. The combination of primary lung infection and mechanical ventilation markedly increases air-space enlargement, the degree of which depends on the severity and extension of lung infection. PMID:17274806

  12. Epigenetic and Transcriptomic Regulation of Lung Repair during Recovery from Influenza Infection.

    PubMed

    Pociask, Derek A; Robinson, Keven M; Chen, Kong; McHugh, Kevin J; Clay, Michelle E; Huang, Grace T; Benos, Panayiotis V; Janssen-Heininger, Yvonne M W; Kolls, Jay K; Anathy, Vikas; Alcorn, John F

    2017-02-09

    Seasonal and pandemic influenza is a cause of morbidity and mortality worldwide. Most people infected with influenza virus display mild-to-moderate disease phenotypes and recover within a few weeks. Influenza is known to cause persistent alveolitis in animal models; however, little is known about the molecular pathways involved in this phenotype. We challenged C57BL/6 mice with influenza A/PR/8/34 and examined lung pathologic processes and inflammation, as well as transcriptomic and epigenetic changes at 21 to 60 days after infection. Influenza induced persistent parenchymal lung inflammation, alveolar epithelial metaplasia, and epithelial endoplasmic reticulum stress that were evident after the clearance of virus and resolution of morbidity. Influenza infection induced robust changes in the lung transcriptome, including a significant impact on inflammatory and extracellular matrix protein expression. Despite the robust changes in lung gene expression, preceding influenza (21 days) did not exacerbate secondary Staphylococcus aureus infection. Finally, we examined the impact of influenza on miRNA expression in the lung and found an increase in miR-155. miR-155 knockout mice recovered from influenza infection faster than controls and had decreased lung inflammation and endoplasmic reticulum stress. These data illuminate the dynamic molecular changes in the lung in the weeks after influenza infection and characterize the repair process, identifying a novel role for miR-155.

  13. Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum

    PubMed Central

    Leonard, Cory Ann; Dewez, Frederic; Borel, Nicole

    2016-01-01

    Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis. PMID:26997956

  14. Stimulator of IFN gene is critical for induction of IFN-beta during Chlamydia muridarum infection.

    PubMed

    Prantner, Daniel; Darville, Toni; Nagarajan, Uma M

    2010-03-01

    Type I IFN signaling has recently been shown to be detrimental to the host during infection with Chlamydia muridarum in both mouse lung and female genital tract. However, the pattern recognition receptor and the signaling pathways involved in chlamydial-induced IFN-beta are unclear. Previous studies have demonstrated no role for TLR4 and a partial role for MyD88 in chlamydial-induced IFN-beta. In this study, we demonstrate that mouse macrophages lacking TLR3, TRIF, TLR7, or TLR9 individually or both TLR4 and MyD88, still induce IFN-beta equivalent to wild type controls, leading to the hypothesis that TLR-independent cytosolic pathogen receptor pathways are crucial for this response. Silencing nucleotide-binding oligomerization domain 1 in HeLa cells partially decreased chlamydial-induced IFN-beta. Independently, small interfering RNA-mediated knockdown of the stimulator of IFN gene (STING) protein in HeLa cells and mouse oviduct epithelial cells significantly decreased IFN-beta mRNA expression, suggesting a critical role for STING in chlamydial-induced IFN-beta induction. Conversely, silencing of mitochondria-associated antiviral signaling proteins and the Rig-I-like receptors, RIG-I, and melanoma differentiation associated protein 5, had no effect. In addition, induction of IFN-beta depended on the downstream transcription IFN regulatory factor 3, and on activation of NF-kappaB and MAPK p38. Finally, STING, an endoplasmic reticulum-resident protein, was found to localize in close proximity to the chlamydial inclusion membrane during infection. These results indicate that C. muridarum induces IFN-beta via stimulation of nucleotide-binding oligomerization domain 1 pathway, and TLR- and Rig-I-like receptor-independent pathways that require STING, culminating in activation of IFN regulatory factor 3, NF-kappaB, and p38 MAPK.

  15. Effect of FHIT loss and p53 mutation on HPV-infected lung carcinoma development.

    PubMed

    Yu, Yan; Liu, Xiaofei; Yang, Yuxuan; Zhao, Xiaodan; Xue, Jianjun; Zhang, Weixiao; Yang, Aimin

    2015-07-01

    High-risk human papillomavirus (HPV)16/18 infection in the development of lung cancer has previously been identified, and fragile histidine triad (FHIT) loss and p53 mutation are frequently observed in the disease. However, the association between these factors has not been well studied. The present study aimed to further investigate the significance of HPV infection, FHIT loss and p53 mutations in the development of lung cancer and their possible associations. DNA was extracted from paraffin-embedded specimens from 88 cases of squamous cell carcinoma (SCC), 56 of adenocarcinoma (AC), 36 of small cell lung carcinoma (SCLC) and 110 non-cancer control cases of lung neoplasms. The prevalence of HPV infection was determined by polymerase chain reaction analysis, and FHIT loss and p53 mutations were detected by immunohistochemistry. The χ(2), Fisher's exact and Pearson correlation tests were applied for statistical analysis. The results of the present study demonstrated that HPVL1 (the major capsid protein of HPV), HPV16 and HPV18 infection were more prevalent in the lung cancer samples compared with the non-cancer controls (all P<0.001). FHIT loss occurred more frequently in the lung cancer samples (44.44%) compared with the non-cancer controls (7.25%) (P<0.001). FHIT loss in the HPVL1-positive group was significantly increased compared with the HPVL1-negative group in the lung cancer cases and the non-cancer controls (P<0.05). In the lung cancer cases, the p53 mutation rates in the HPVL1- and HPV16/18-positive groups were significantly increased compared with the HPVL1- and HPV16/18-negative groups (P<0.05). In the 180 lung cancer cases, the coexistence rate of FHIT loss and a history of smoking was 38.33% (69/180; Pearson contingency coefficient of r=0.318; P<0.001). FHIT loss and p53 mutation exhibited a synergistic effect on HPV-associated lung cancer (Pearson contingency coefficient r=0.357, P<0.001). The present study demonstrated that FHIT loss may be important

  16. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus).

    PubMed

    Guo, Weina; Li, Jing; Kaltenboeck, Bernhard; Gong, Jiansen; Fan, Weixing; Wang, Chengming

    2016-01-18

    To investigate the prevalence and diversity of Chlamydia spp. in domestic birds in China, oral and cloacal swabs of healthy chickens, ducks, geese and pigeons were collected nationwide from live-animal markets and examined by Chlamydia spp. 23 S rRNA gene FRET-PCR followed by high-resolution melting curve analysis and confirmatory sequencing. Overall, 26.2% of the birds (602/2,300) were positive for Chlamydia spp. and five Chlamydia spp. were identified. While occasional detection of C. suis and C. muridarum in poultry is reported here for the first time, the predominant chlamydial agent was C. gallinacea representing 63.8% of all positives (384/602) and 81.2% of positive chickens (359/442). Analysis of the C. gallinacea ompA phylogeny revealed at least 13 well segregated variants (serovars). Seven-month monitoring of C. gallinacea-infected chickens indicated that the infection was persistent. C. gallinacea-infected chickens remained without overt clinical disease, but showed body weight gains significantly reduced by 6.5-11.4% beginning in week 3 post-infection. This study indicates that C. gallinacea is the endemic chlamydial species in chickens, whereas C. psittaci dominates only in pigeons. Further studies are required to address the specific conditions under which C. gallinacea could act as an avian pathogen and possibly also a zoonotic agent.

  17. Chlamydia gallinacea, not C. psittaci, is the endemic chlamydial species in chicken (Gallus gallus)

    PubMed Central

    Guo, Weina; Li, Jing; Kaltenboeck, Bernhard; Gong, Jiansen; Fan, Weixing; Wang, Chengming

    2016-01-01

    To investigate the prevalence and diversity of Chlamydia spp. in domestic birds in China, oral and cloacal swabs of healthy chickens, ducks, geese and pigeons were collected nationwide from live-animal markets and examined by Chlamydia spp. 23 S rRNA gene FRET-PCR followed by high-resolution melting curve analysis and confirmatory sequencing. Overall, 26.2% of the birds (602/2,300) were positive for Chlamydia spp. and five Chlamydia spp. were identified. While occasional detection of C. suis and C. muridarum in poultry is reported here for the first time, the predominant chlamydial agent was C. gallinacea representing 63.8% of all positives (384/602) and 81.2% of positive chickens (359/442). Analysis of the C. gallinacea ompA phylogeny revealed at least 13 well segregated variants (serovars). Seven-month monitoring of C. gallinacea-infected chickens indicated that the infection was persistent. C. gallinacea-infected chickens remained without overt clinical disease, but showed body weight gains significantly reduced by 6.5–11.4% beginning in week 3 post-infection. This study indicates that C. gallinacea is the endemic chlamydial species in chickens, whereas C. psittaci dominates only in pigeons. Further studies are required to address the specific conditions under which C. gallinacea could act as an avian pathogen and possibly also a zoonotic agent. PMID:26778053

  18. Inhibition of chlamydial infectious activity due to P2X7R-dependent phospholipase D activation.

    PubMed

    Coutinho-Silva, Robson; Stahl, Lynn; Raymond, Marie-Noëlle; Jungas, Thomas; Verbeke, Philippe; Burnstock, Geoffrey; Darville, Toni; Ojcius, David M

    2003-09-01

    Chlamydia trachomatis survives within host cells by inhibiting fusion between Chlamydia vacuoles and lysosomes. We show here that treatment of infected macrophages with ATP leads to killing of chlamydiae through ligation of the purinergic receptor, P2X(7)R. Chlamydial killing required phospholipase D (PLD) activation, as PLD inhibition led to rescue of chlamydiae in ATP-treated macrophages. However, there was no PLD activation nor chlamydial killing in ATP-treated P2X(7)R-deficient macrophages. P2X(7)R ligation exerts its effects by promoting fusion between Chlamydia vacuoles and lysosomes. P2X(7)R stimulation also resulted in macrophage death, but fusion with lysosomes preceded macrophage death and PLD inhibition did not prevent macrophage death. These results suggest that P2X(7)R ligation leads to PLD activation, which is directly responsible for inhibition of infection.

  19. The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion

    PubMed Central

    Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.

    2014-01-01

    Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881

  20. Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    PubMed Central

    Horn, Fabiana; Corrêa, André Mendes Ribeiro; Barbieri, Nicolle Lima; Glodde, Susanne; Weyrauch, Karl Dietrich; Kaspers, Bernd; Driemeier, David; Ewers, Christa; Wieler, Lothar H.

    2012-01-01

    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas. PMID:22848424

  1. Innate lymphoid cells promote lung tissue homeostasis following acute influenza virus infection

    PubMed Central

    Monticelli, Laurel A.; Sonnenberg, Gregory F.; Abt, Michael C.; Alenghat, Theresa; Ziegler, Carly G.K.; Doering, Travis A.; Angelosanto, Jill M.; Laidlaw, Brian J.; Yang, Cliff Y.; Sathaliyawala, Taheri; Kubota, Masaru; Turner, Damian; Diamond, Joshua M.; Goldrath, Ananda W.; Farber, Donna L.; Collman, Ronald G.; Wherry, E. John; Artis, David

    2012-01-01

    Innate lymphoid cells (ILCs), a recently identified heterogeneous cell population, are critical in orchestrating immunity and inflammation in the intestine but whether ILCs can influence immune responses or tissue homeostasis at other mucosal sites remains poorly characterized. Here we identify a population of lung-resident ILCs in mice and humans that expressed CD90, CD25, CD127 and T1-ST2. Strikingly, mouse ILCs accumulated in the lung following influenza virus infection and depletion of ILCs resulted in loss of airway epithelial integrity, decreased lung function and impaired airway remodeling. These defects could be restored by administration of the lung ILC product amphiregulin. Collectively, these results demonstrate a critical role for lung ILCs in restoring airway epithelial integrity and tissue homeostasis following influenza virus infection. PMID:21946417

  2. Role of small colony variants in persistence of Pseudomonas aeruginosa infections in cystic fibrosis lungs

    PubMed Central

    Malone, Jacob G

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the later stages of cystic fibrosis (CF) lung infections. Over many years of chronic lung colonization, P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a persistent, low virulence state and simultaneously diversifying to produce a number of phenotypically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony variants (SCVs), small, autoaggregative isolates that show enhanced biofilm formation, strong attachment to surfaces, and increased production of exopolysaccharides. Their appearance in the sputum of CF patients correlates with increased resistance to antibiotics, poor lung function, and prolonged persistence of infection, increasing their relevance as a subject for clinical investigation. The evolution of SCVs in the CF lung is associated with overproduction of the ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype in the CF lung environment. PMID:26251621

  3. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    PubMed

    Staples, Karl J; Nicholas, Ben; McKendry, Richard T; Spalluto, C Mirella; Wallington, Joshua C; Bragg, Craig W; Robinson, Emily C; Martin, Kirstin; Djukanović, Ratko; Wilkinson, Tom M A

    2015-01-01

    Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM) and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  4. Natural Products for the Treatment of Chlamydiaceae Infections

    PubMed Central

    Brown, Mika A.; Potroz, Michael G.; Teh, Seoh-Wei; Cho, Nam-Joon

    2016-01-01

    Due to the global prevalence of Chlamydiae, exploring studies of diverse antichlamydial compounds is important in the development of effective treatment strategies and global infectious disease management. Chlamydiaceae is the most widely known bacterial family of the Chlamydiae order. Among the species in the family Chlamydiaceae, Chlamydia trachomatis and Chlamydia pneumoniae cause common human diseases, while Chlamydia abortus, Chlamydia psittaci, and Chlamydia suis represent zoonotic threats or are endemic in human food sources. Although chlamydial infections are currently manageable in human populations, chlamydial infections in livestock are endemic and there is significant difficulty achieving effective treatment. To combat the spread of Chlamydiaceae in humans and other hosts, improved methods for treatment and prevention of infection are needed. There exist various studies exploring the potential of natural products for developing new antichlamydial treatment modalities. Polyphenolic compounds can inhibit chlamydial growth by membrane disruption, reestablishment of host cell apoptosis, or improving host immune system detection. Fatty acids, monoglycerides, and lipids can disrupt the cell membranes of infective chlamydial elementary bodies (EBs). Peptides can disrupt the cell membranes of chlamydial EBs, and transferrins can inhibit chlamydial EBs from attachment to and permeation through the membranes of host cells. Cellular metabolites and probiotic bacteria can inhibit chlamydial infection by modulating host immune responses and directly inhibiting chlamydial growth. Finally, early stage clinical trials indicate that polyherbal formulations can be effective in treating chlamydial infections. Herein, we review an important body of literature in the field of antichlamydial research. PMID:27754466

  5. Mixed Infection of Mycobacterium abscessus subsp. abscessus and Mycobacterium tuberculosis in the Lung

    PubMed Central

    Sohn, Sungmin; Wang, Sungho; Shi, Hyejin; Park, Sungrock; Lee, Sangki; Park, Kyoung Taek

    2017-01-01

    A mixed infection of Mycobacterium abscessus subsp. abscessus (Mab) and Mycobacterium tuberculosis (MTB) in the lung is an unusual clinical manifestation and has not yet been reported. A 61-year-old woman had been treated for Mab lung disease and concomitant pneumonia, and was diagnosed with pulmonary tuberculosis (PTB). Despite both anti-PTB and anti-Mab therapy, her entire left lung was destroyed and collapsed. She underwent left pneumonectomy and received medical therapy. We were able to successfully treat her mixed infection by pneumonectomy followed by inhaled amikacin therapy. To the best of our knowledge, thus far, this is the first description of a mixed Mab and MTB lung infection. PMID:28180105

  6. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo

    PubMed Central

    Rolle, Anna-Maria; Hasenberg, Mike; Thornton, Christopher R.; Solouk-Saran, Djamschid; Männ, Linda; Weski, Juliane; Maurer, Andreas; Fischer, Eliane; Spycher, Philipp R.; Schibli, Roger; Boschetti, Frederic; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Severin, Gregory W.; Autenrieth, Stella E.; Krappmann, Sven; Davies, Genna; Pichler, Bernd J.; Gunzer, Matthias; Wiehr, Stefan

    2016-01-01

    Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [64Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [64Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [18F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation. PMID:26787852

  7. GRANZYME A AND B-CLUSTER DEFICIENCY DELAYS ACUTE LUNG INJURY IN PNEUMOVIRUS-INFECTED MICE

    PubMed Central

    Bem, Reinout A.; van Woensel, Job B.M.; Lutter, Rene; Domachowske, Joseph B.; Medema, Jan Paul; Rosenberg, Helene F.; Bos, Albert P.

    2009-01-01

    Lower respiratory tract infection by the human pneumovirus respiratory syncytial virus is a frequent cause of acute lung injury in children. Severe pneumovirus disease in humans is associated with activation of the granzyme pathway by effector lymphocytes, which may promote pathology by exaggerating pro-apoptotic caspase activity and pro-inflammatory activity. The main goal of this study was to determine whether granzymes contribute to the development of acute lung injury in pneumovirus-infected mice. Granzyme-expressing mice and granzyme A, and B-cluster single and double-gene deleted mice were inoculated with the rodent pneumovirus pneumonia virus of mice strain J3666, and were studied for markers of lung inflammation and injury. Expression of granzyme A and B is detected in effector lymphocytes in mouse lungs in response to pneumovirus infection. Mice deficient for granzyme A and the granzyme B-cluster have unchanged virus titers in the lungs, but show a significantly delayed clinical response to fatal pneumovirus infection, a feature that is associated with delayed neutrophil recruitment, diminished activation of caspase-3 and reduced lung permeability. We conclude that granzyme A and B-cluster deficiency delays the acute progression of pneumovirus disease by reducing alveolar injury. PMID:20018616

  8. Divergent Functions of Toll-like Receptors during Bacterial Lung Infections

    PubMed Central

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L.; Downey, Gregory P.

    2014-01-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4+ T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain–like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs. PMID:25033332

  9. Divergent functions of Toll-like receptors during bacterial lung infections.

    PubMed

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L; Downey, Gregory P; Jeyaseelan, Samithamby

    2014-10-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.

  10. Loss of Social Behaviours in Populations of Pseudomonas aeruginosa Infecting Lungs of Patients with Cystic Fibrosis

    PubMed Central

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P.; Scanlan, Pauline D.; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A.; Popat, Roman; West, Stuart A.; Griffin, Ashleigh S.

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections. PMID:24454693

  11. Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis.

    PubMed

    Jiricny, Natalie; Molin, Søren; Foster, Kevin; Diggle, Stephen P; Scanlan, Pauline D; Ghoul, Melanie; Johansen, Helle Krogh; Santorelli, Lorenzo A; Popat, Roman; West, Stuart A; Griffin, Ashleigh S

    2014-01-01

    Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.

  12. Toxoplasma gondii tachyzoite-infected peripheral blood mononuclear cells are enriched in mouse lungs and liver.

    PubMed

    Unno, Akihiro; Kachi, Seira; Batanova, Tatiana A; Ohno, Tamio; Elhawary, Nagwa; Kitoh, Katsuya; Takashima, Yasuhiro

    2013-06-01

    The intracellular parasite Toxoplasma gondii is thought to disseminate throughout the host by circulation of tachyzoite-infected leukocytes in the blood, and adherence and migration of such leukocytes into solid tissues. However, it is unclear whether T. gondii-infected leukocytes can migrate to solid organs via the general circulation. In this study, we developed a real-time quantitative PCR (qRT-PCR) method to determine the rate of infection of peripheral blood mononuclear cells (PBMCs) flowing into and remaining within solid organs in mice. A transgenic T. gondii parasite line derived from the PLK strain that expresses DsRed Express, and transgenic green fluorescent protein-positive PBMCs, were used for these experiments. Tachyzoite-infected PBMCs were injected into mouse tail veins and qRT-PCR was used to measure the infection rates of the PBMCs remaining in the lungs, liver, spleen and brain. We found that the PBMCs in the lungs and liver had statistically higher infection rates than that of the original inoculum; this difference was statistically significant. However, the PBMC infection rate in the spleen showed no such enhancement. These results show that tachyzoite-infected PBMCs in the general circulation remain in the lungs and liver more effectively than non-infected PBMCs.

  13. Cytokine and Chemokine Responses of Lung Exposed to Surrogate Viral and Bacterial Infections

    PubMed Central

    Liberati, Teresa A; Trammell, Rita A; Randle, Michelle; Barrett, Sarah; Toth, Linda A

    2013-01-01

    The use of in vitro models of complex in vivo systems has yielded many insights into the molecular mechanisms that underlie normal and pathologic physiology. However although the reduced complexity of these models is advantageous with regard to some research questions, the simplification may obscure or eliminate key influences that occur in vivo. We sought to examine this possibility with regard to the lung's response to infection, which may be inherent to resident lung cells or related to the systemic response to pulmonary infection. We used the inbred mouse strains C57BL/6J, DBA/2J, and B6.129S2-IL6tm1Kopf, which differ in their response to inflammatory and infectious challenges, to assess in vivo responses of lung to surrogate viral and bacterial infection and compared these with responses of cultured lung slices and human A549 cells. Pulmonary cytokine concentrations were measured both after in vivo inoculation of mice and in vitro exposure of lung slices and A549 cells to surrogate viral and bacterial infections. The data indicate similarities and differences in early lung responses to in vivo compared with in vitro exposure to these inflammatory substances. Therefore, resident cells in the lung appear to respond to some challenges in a strain-independent manner, whereas some stimuli may elicit recruitment of peripheral inflammatory cells that generate the subsequent response in a genotype-related manner. These results add to the body of information pointing to host genotype as a crucial factor in mediating the severity of microbial infections and demonstrate that some of these effects may not be apparent in vitro. PMID:23582418

  14. Statistical signal processing technique for identification of different infected sites of the diseased lungs.

    PubMed

    Abbas, Ali

    2012-06-01

    Accurate Diagnosis of lung disease depends on understanding the sounds emanating from lung and its location. Lung sounds are of significance as they supply precise and important information on the health of the respiratory system. In addition, correct interpretation of breath sounds depends on a systematic approach to auscultation; it also requires the ability to describe the location of abnormal finding in relation to bony structures and anatomic landmark lines. Lungs consist of number of lobes; each lung lobe is further subdivided into smaller segments. These segments are attached to each other. Knowledge of the position of the lung segments is useful and important during the auscultation and diagnosis of the lung diseases. Usually the medical doctors give the location of the infection a segmental position reference. Breath sounds are auscultated over the anterior chest wall surface, the lateral chest wall surfaces, and posterior chest wall surface. Adventitious sounds from different location can be detected. It is common to seek confirmation of the sound detection and its location using invasive and potentially harmful imaging diagnosis techniques like x-rays. To overcome this limitation and for fast, reliable, accurate, and inexpensive diagnose a technique is developed in this research for identifying the location of infection through a computerized auscultation system.

  15. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    PubMed

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  16. Genomic and functional analysis of the host response to acute simian varicella infection in the lung

    PubMed Central

    Arnold, Nicole; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Rais, Maham; Messaoudi, Ilhem

    2016-01-01

    Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host. PMID:27677639

  17. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    PubMed Central

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M.; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host–pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host–pathogen interactions. PMID:25699030

  18. Intramuscular Immunisation with Chlamydial Proteins Induces Chlamydia trachomatis Specific Ocular Antibodies

    PubMed Central

    Badamchi-Zadeh, Alexander; McKay, Paul F.; Holland, Martin J.; Paes, Wayne; Brzozowski, Andrzej; Lacey, Charles; Follmann, Frank; Tregoning, John S.; Shattock, Robin J.

    2015-01-01

    Background Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication. Methods We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice. Results Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens. Conclusions If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid

  19. Toxocariasis and lung function: relevance of a neglected infection in an urban landscape.

    PubMed

    Walsh, Michael G; Haseeb, M A

    2014-03-01

    Toxocariasis has been highlighted as a potentially important neglected infection of poverty in developed countries that experience substantive health disparities such as the United States. An association between Toxocara infection and lung function, in concert with a relatively high prevalence of infection, may mark an important mechanism by which this infection could contribute significantly to the differential morbidity across different socioeconomic groups and landscapes. To assess the potential relevance of this infection in a dense urban environment, we measured the association between forced expiratory volume in 1 second (FEV₁) and serology diagnosed Toxocara infection in a sample of US-born New York City residents. We identified a significant independent association between Toxocara infection and lung function, wherein those with previous Toxocara infection had a 236.9 mL reduced FEV₁ compared to those without Toxocara infection even after adjusting for age, sex, ethnicity, level of education, smoking status, body mass index, and pet ownership. These findings from New York City corroborate similar findings in a national sample and, while the cross-sectional data preclude a direct causal relationship, this study identifies a potentially important neglected infection in a dense urban landscape.

  20. Lung Abscess in a Patient With VAP: A Rare Case of Lung Infection Complicated by Two Pathogens.

    PubMed

    Mystakelli, Christina; Gourgiotis, Stavros; Aravosita, Paraskevi; Seretis, Charalampos; Kanna, Efthymia; Aloizos, Stavros

    2013-02-01

    Ventilator-associated pneumonia (VAP) is defined as pneumonia occurring in a patient after intubation with an endotracheal tube or tracheostomy tube lasting for 48 hours or more. We describe a case of 75-year-old male who initially presented with pneumonia of the right basis with accompanying plevritis. The patient was intubated and his condition was complicated with a VAP infection while he developed a lung abscess. The antibiotic therapy was based on susceptibility bronchial secretions isolated acinetobacter baumannii and klebsiella pneumoniae; these pathogens were also isolated from the drained abscess. The patient was discharged in good health. The interest of this case is recommended in the existence of two responsible pathogens, the paucity of the development of lung abscess in a patient with VAP, and the successful treatment of the patient with the combination of controlled drainage of the abscess and appropriate antibiotic therapy.

  1. Laser-mediated rupture of chlamydial inclusions triggers pathogen egress and host cell necrosis

    PubMed Central

    Kerr, Markus C.; Gomez, Guillermo A.; Ferguson, Charles; Tanzer, Maria C.; Murphy, James M.; Yap, Alpha S.; Parton, Robert G.; Huston, Wilhelmina M.; Teasdale, Rohan D

    2017-01-01

    Remarkably little is known about how intracellular pathogens exit the host cell in order to infect new hosts. Pathogenic chlamydiae egress by first rupturing their replicative niche (the inclusion) before rapidly lysing the host cell. Here we apply a laser ablation strategy to specifically disrupt the chlamydial inclusion, thereby uncoupling inclusion rupture from the subsequent cell lysis and allowing us to dissect the molecular events involved in each step. Pharmacological inhibition of host cell calpains inhibits inclusion rupture, but not subsequent cell lysis. Further, we demonstrate that inclusion rupture triggers a rapid necrotic cell death pathway independent of BAK, BAX, RIP1 and caspases. Both processes work sequentially to efficiently liberate the pathogen from the host cytoplasm, promoting secondary infection. These results reconcile the pathogen's known capacity to promote host cell survival and induce cell death. PMID:28281536

  2. Successful lung transplant in a child with cystic fibrosis and persistent Blastobotrys rhaffinosifermentans infection.

    PubMed

    Wong, J Y; Chambers, A L; Fuller, J; Lacson, A; Mullen, J; Lien, D; Humar, A

    2014-08-01

    Fungal respiratory infections in patients with CF are a significant concern both pre- and post-lung transplantation (LTx). Fungal infection is associated with increased mortality post-LTx, and in the past decade, the prevalence of fungal colonization in Canadian pediatric patients with CF has increased. The emergence of novel fungal pathogens is particularly challenging to the transplant community, as little is known regarding their virulence and optimal management. We present a case of a successful double-lung transplant in a pediatric patient with CF who was infected pretransplantation with a novel yeast, Blastobotrys rhaffinosifermentans. This patient was treated successfully with aggressive antifungal therapy post-transplantation, followed by extended fungal prophylaxis. The significance of fungal colonization and infection in children with CF pre- and post-LTx is reviewed.

  3. IL-17A attracts inflammatory cells in murine lung infection with P. aeruginosa.

    PubMed

    Wonnenberg, Bodo; Jungnickel, Christopher; Honecker, Anja; Wolf, Lisa; Voss, Meike; Bischoff, Markus; Tschernig, Thomas; Herr, Christian; Bals, Robert; Beisswenger, Christoph

    2016-11-01

    IL-17A-dependent immunity is of importance in the protection against extracellular bacterial pathogens. However, IL-17A is also suggested to mediate the pathogenesis of lung diseases, such as acute respiratory distress syndrome. Here, we studied the role of IL-17A in a mouse model of acute pneumonia. IL-17A mediated the expression of keratinocyte-derived chemokine (KC) and the recruitment of inflammatory cells in mice infected with a sub-lethal dose of Pseudomonas aeruginosa. IL-17A deficiency protected mice from lethal P. aeruginosa lung infection. A sub-lethal infection with Streptococcus pneumoniae resulted in increased bacterial burden associated with increased pulmonary inflammation. Thus, the type of infectious bacteria seemed to influence the way in which IL-17A functions during pulmonary infection. Reducing pulmonary inflammation by targeting IL-17A may be a therapeutic option in acute P. aeruginosa pneumonia.

  4. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes

    SciTech Connect

    Antonini, James M. . E-mail: jga6@cdc.gov; Taylor, Michael D.; Millecchia, Lyndell; Bebout, Alicia R.; Roberts, Jenny R.

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10{sup 3} Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-{alpha}, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-{alpha} and IL-6) after infection, which are likely

  5. Sphingolipid trafficking and purification in Chlamydia trachomatis-infected cells

    PubMed Central

    2012-01-01

    Chlamydia trachomatis is an obligate intracellular human pathogen, which lacks a system that allows genetic manipulation. Therefore, chlamydial researchers must manipulate the host cell to better understand chlamydial biology. Host-derived lipid acquisition is critical for chlamydial survival within the host. Hence, the ability to track and purify sphingolipids in/from chlamydial infected cells has become an integral part of pivotal studies in chlamydial biology. This Unit outlines protocols that provide details about labeling eukaryotic cells with exogenous lipids to examine Golgi-derived lipid trafficking to the chlamydial inclusion and then performing imaging studies or lipid extractions for quantification. Details are provided to allow these protocols to be applied to subconfluent, polarized or siRNA knockdown cells. In addition, one will find important experimental design considerations and techniques. These methods are powerful tools to aid in the understanding of mechanisms which allow C. trachomatis to manipulate and usurp host cell trafficking pathways. PMID:23184593

  6. Lung transplantation in patients with cystic fibrosis: special focus to infection and comorbidities.

    PubMed

    Dorgan, Daniel J; Hadjiliadis, Denis

    2014-06-01

    Despite advances in medical care, patients with cystic fibrosis still face limited life expectancy. The most common cause of death remains respiratory failure. End-stage cystic fibrosis can be treated with lung transplantation and is the third most common reason for which the procedure is performed. Outcomes for cystic fibrosis are better than most other lung diseases, but remain limited (5-year survival 60%). For patients with advanced disease lung transplantation appears to improve survival. Outcomes for patients with Burkholderia cepacia remain poor, although they are better for patients with certain genomovars. Controversy exists about Mycobacterium abscessus infection and appropriateness for transplant. More information is also becoming available for comorbidities, including diabetes and pulmonary hypertension among others. Extra-corporeal membrane oxygenation is used more frequently for end-stage disease as a bridge to lung transplantation and will likely be used more in the future.

  7. Human lung hydrolases delineate Mycobacterium tuberculosis-macrophage interactions and the capacity to control infection.

    PubMed

    Arcos, Jesús; Sasindran, Smitha J; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S; Torrelles, Jordi B

    2011-07-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independent of their action time (15 min to 12 h), the effects of the hydrolases on the M. tuberculosis cell envelope resulted in a significant decrease (60-80%) in M. tuberculosis association with, and intracellular growth of the bacteria within, human macrophages. The cell envelope-modifying effects of the hydrolases also led to altered M. tuberculosis intracellular trafficking and induced a protective proinflammatory response to infection. These findings add a new concept to our understanding of M. tuberculosis-macrophage interactions (i.e., the impact of lung surfactant hydrolases on M. tuberculosis infection).

  8. Fusarium infection in lung transplant patients: report of 6 cases and review of the literature.

    PubMed

    Carneiro, Herman A; Coleman, Jeffrey J; Restrepo, Alejandro; Mylonakis, Eleftherios

    2011-01-01

    Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens.Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment

  9. Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections

    PubMed Central

    Jäger, Jens; Marwitz, Sebastian; Tiefenau, Jana; Rasch, Janine; Shevchuk, Olga; Kugler, Christian

    2014-01-01

    Histological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model for Legionella pneumophila infection comprising living human lung tissue. We stimulated lung explants with L. pneumophila strains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion of L. pneumophila to the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA− strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context of L. pneumophila infections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations. PMID:24166955

  10. Interleukin-17 Is Required for Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa

    PubMed Central

    Bayes, Hannah K.; Ritchie, Neil D.

    2016-01-01

    Chronic pulmonary infection with Pseudomonas aeruginosa is a feature of cystic fibrosis (CF) and other chronic lung diseases. Cytokines of the interleukin-17 (IL-17) family have been proposed as important in the host response to P. aeruginosa infection through their role in augmenting antibacterial immune responses, although their proinflammatory effect may contribute to lung damage that occurs as a result of chronic infection. We set out to explore the role of IL-17 in the host response to chronic P. aeruginosa infection. We used a murine model of chronic pulmonary infection with CF-related strains of P. aeruginosa. We demonstrate that IL-17 cytokine signaling is essential for mouse survival and prevention of chronic infection at 2 weeks postinoculation using two different P. aeruginosa strains. Following infection, there was a marked expansion of cells within mediastinal lymph nodes, comprised mainly of innate lymphoid cells (ILCs); ∼90% of IL-17-producing (IL-17+) cells had markers consistent with group 3 ILCs. A smaller percentage of IL-17+ cells had markers consistent with a B1 phenotype. In lung homogenates harvested 14 days following infection, there was a significant expansion of IL-17+ cells; about 50% of these were CD3+, split equally between CD4+ Th17 cells and γδ T cells, while the CD3− IL-17+ cells were almost exclusively group 3 ILCs. Further experiments with B cell-deficient mice showed that B cell production of IL-17 or natural antibodies did not provide any defense against chronic P. aeruginosa infection. Thus, IL-17 rather than antibody is a key element in host defense against chronic pulmonary infection with P. aeruginosa. PMID:27698020

  11. Detection of Mycobacterium tuberculosis in latently infected lungs by immunohistochemistry and confocal microscopy

    PubMed Central

    Eugenin, Eliseo; Kaplan, Gilla

    2014-01-01

    Detection of latent Mycobacterium tuberculosis is a challenge in the diagnosis of asymptomatic, subclinical tuberculosis. We report the development of an immunofluorescence technique to visualize and enumerate M. tuberculosis in latently infected rabbit lungs where no acid-fast–stained organisms were seen and no cultivable bacilli were obtained by the agar-plating method. PMID:25161200

  12. Effects of Marijuana on the Lung and Its Defenses against Infection and Cancer.

    ERIC Educational Resources Information Center

    Tashkin, Donald P.

    1999-01-01

    Examines the many effects of marijuana use on the lungs. States that patients with pre-existing immune deficits are particularly vulnerable to marijuana-related pulmonary infections. However, warns that habitual use of marijuana may lead to respiratory cancer must await epidemiological studies, which are now possible since 30 years have passed…

  13. Cross Protective Mucosal Immunity Mediated by Memory Th17 Cells against Streptococcus pneumoniae Lung Infection

    PubMed Central

    Wang, Yan; Jiang, Bin; Guo, Yongli; Li, Wenchao; Tian, Ying; Sonnenberg, Gregory F; Weiser, Jeffery N.; Ni, Xin; Shen, Hao

    2016-01-01

    Pneumonia caused by Streptococcus pneumoniae (Sp) remains a leading cause of serious illness and death worldwide. Immunization with conjugated pneumococcal vaccine has lowered the colonization rate and consequently invasive diseases by inducing serotype-specific antibodies. However, many of current pneumonia cases result from infection by serotype strains not included in the vaccine. In this study, we asked if cross-protection against lung infection by heterologous strains can be induced and investigated the underlying immune mechanism. We found that immune mice recovered from a prior infection were protected against heterologous Sp strains in the pneumonia challenge model, as evident by accelerated bacterial clearance, reduced pathology and apoptosis of lung epithelial cells. Sp infection in the lung induced strong Th17 responses at the lung mucosal site. Transfer of CD4+ T cells from immune mice provided heterologous protection against pneumonia, and this protection was abrogated by IL-17A blockade. Transfer of memory CD4+ T cells from IL-17A knockout mice failed to provide protection. These results indicate that memory Th17 cells played a key role in providing protection against pneumonia in a serotype independent manner and suggest the feasibility of developing a broadly protective vaccine against bacterial pneumonia by targeting mucosal Th17 T cells. PMID:27118490

  14. Rapid Accumulation of Eosinophils in Lung Lesions in Guinea Pigs Infected with Mycobacterium tuberculosis

    PubMed Central

    Lasco, Todd M.; Turner, Oliver C.; Cassone, Lynne; Sugawara, Isamu; Yamada, Hiroyuki; McMurray, David N.; Orme, Ian M.

    2004-01-01

    Guinea pig eosinophils were positively identified in bronchoalveolar lavage populations and in the lung granulomas of Mycobacterium tuberculosis-infected guinea pigs. It is possible that the rapid influx of these cells, and their subsequent degranulation during acute pulmonary tuberculosis, may play a key role in the susceptibility of this animal model. PMID:14742563

  15. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection.

    PubMed

    Wu, Kangyun; Byers, Derek E; Jin, Xiaohua; Agapov, Eugene; Alexander-Brett, Jennifer; Patel, Anand C; Cella, Marina; Gilfilan, Susan; Colonna, Marco; Kober, Daniel L; Brett, Tom J; Holtzman, Michael J

    2015-05-04

    Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13-dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5-12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease.

  16. Development of Liposomal Ciprofloxacin to Treat Lung Infections

    PubMed Central

    Cipolla, David; Blanchard, Jim; Gonda, Igor

    2016-01-01

    Except for management of Pseudomonas aeruginosa (PA) in cystic fibrosis, there are no approved inhaled antibiotic treatments for any other diseases or for infections from other pathogenic microorganisms such as tuberculosis, non-tuberculous mycobacteria, fungal infections or potential inhaled biowarfare agents including Francisella tularensis, Yersinia pestis and Coxiella burnetii (which cause pneumonic tularemia, plague and Q fever, respectively). Delivery of an antibiotic formulation via the inhalation route has the potential to provide high concentrations at the site of infection with reduced systemic exposure to limit side effects. A liposomal formulation may improve tolerability, increase compliance by reducing the dosing frequency, and enhance penetration of biofilms and treatment of intracellular infections. Two liposomal ciprofloxacin formulations (Lipoquin® and Pulmaquin®) that are in development by Aradigm Corporation are described here. PMID:26938551

  17. Comparison between concentrations of amphotericin B in infected lung lesion and in uninfected lung tissue in a patient treated with liposomal amphotericin B (AmBisome).

    PubMed

    Watanabe, Akira; Matsumoto, Kana; Igari, Hidetoshi; Uesato, Masaya; Yoshida, Shigetoshi; Nakamura, Yasutaka; Morita, Kunihiko; Shibuya, Kazutoshi; Matsubara, Hisahiro; Yoshino, Ichiro; Kamei, Katsuhiko

    2010-09-01

    Generally, the primary lesion of a mold infection is in the airway, an extravascular site. Therefore, the antifungal drug concentration at the actual tissue lesion of a mold infection is as important as in the blood compartment. Although our antifungal armamentarium has expanded recently, polyenes are still often needed in clinical practice because of their potent fungicidal activity and the rarity of resistance. Nevertheless, the distribution of amphotericin B (AmB) in infected lung tissue has not yet been evaluated. Using high-performance liquid chromatography analysis, we determined the concentrations of AmB in plasma and infected and uninfected tissues of resected lung simultaneously, in a patient with pulmonary aspergillosis treated with liposomal amphotericin B (L-AmB). The AmB concentration in the infected lesion of the lung was approximately 5.2 times higher than that in plasma and 3.7 times higher than in uninfected lung tissue. L-AmB accumulated in the infected lesion of the lung at a higher concentration. Although our data are from only one patient, they may be useful in helping to develop better strategies for the use of L-AmB against pulmonary fungal infections.

  18. Interleukin-17 Pathophysiology and Therapeutic Intervention in Cystic Fibrosis Lung Infection and Inflammation

    PubMed Central

    Hsu, Daniel; Taylor, Patricia; Fletcher, Dave; van Heeckeren, Rolf; Eastman, Jean; van Heeckeren, Anna; Davis, Pamela; Chmiel, James F.; Pearlman, Eric

    2016-01-01

    Cystic fibrosis (CF) is characterized by an excessive neutrophilic inflammatory response within the airway as a result of defective cystic fibrosis transmembrane receptor (CFTR) expression and function. Interleukin-17A induces airway neutrophilia and mucin production associated with Pseudomonas aeruginosa colonization, which is associated with the pathophysiology of cystic fibrosis. The objectives of this study were to use the preclinical murine model of cystic fibrosis lung infection and inflammation to investigate the role of IL-17 in CF lung pathophysiology and explore therapeutic intervention with a focus on IL-17. Cftr-deficient mice (CF mice) and wild-type mice (WT mice) infected with P. aeruginosa had robust IL-17 production early in the infection associated with a persistent elevated inflammatory response. Intratracheal administration of IL-17 provoked a neutrophilic response in the airways of WT and CF animals which was similar to that observed with P. aeruginosa infection. The neutralization of IL-17 prior to infection significantly improved the outcomes in the CF mice, suggesting that IL-17 may be a therapeutic target. We demonstrate in this report that the pathophysiological contribution of IL-17 may be due to the induction of chemokines from the epithelium which is augmented by a deficiency of Cftr and ongoing inflammation. These studies demonstrate the in vivo contribution of IL-17 in cystic fibrosis lung disease and the therapeutic validity of attenuating IL-17 activity in cystic fibrosis. PMID:27271746

  19. Morphological and Cytochemical Characterization of Cells Infiltrating Mouse Lungs After Influenza Infection

    PubMed Central

    Wyde, Philip R.; Peavy, Duane L.; Cate, Thomas R.

    1978-01-01

    To initiate evaluation of the cell-mediated immunological response to influenza virus in a major site of disease, lung cells were obtained by transpleural lavage from lungs of uninfected mice and from those infected 3 or 6 days previously with 5 50% mouse infectious doses (MID50) of avirulent (P3) or virulent (P9) influenza A Hong Kong (H3N2) virus. The number of cells recovered by lavage was dependent on the dose, time after inoculation, and the type of virus used for inoculation. Although lavage pools were shown to contain peripheral blood leukocytes, this contamination was shown to be consistently less than 5% of the total leukocytes harvested. Among the ca. 0.75 × 106 lavage cells obtained from each uninfected mouse, about 90% were macrophages or lymphocytes in approximately equal proportion. T, B, and null (lyphocytes lacking theta or surface immunoglobulin markers) lymphocytes averaged 23, 9, and 7% of cells in these suspensions, respectively. After infection with either P3 or P9 virus, increased numbers of activated macrophages and lymphoblasts were observed. The major change during P3 infection was an increase in absolute numbers of null lymphocytes. In contrast, during P9 infection, T and B lymphocytes and macrophages progressively increased in absolute numbers while null cells decreased. These data suggest that cell-mediated immunological responses to influenza virus occur in the lung during infection, but that the responses to virulent and avirulent variants may differ both qualitatively and quantitatively. PMID:711312

  20. Nocardia farcinica lung infection in a patient with cystic fibrosis: a case report

    PubMed Central

    2010-01-01

    Introduction Respiratory tract infections are the major causes of morbidity and mortality in patients with cystic fibrosis. Nocardia are rarely implicated in these infections and few reports of the involvement of this species are found in the literature. Case presentation We describe a case of lung infection followed by chronic colonization of trimethoprim and sulfamethoxazole resistant Nocardia farcinica in a patient with cystic fibrosis. The chronic colonization of this uncommon bacterium in patients with cystic fibrosis was proved using a newly developed real-time polymerase chain reaction assay, which indicates that this bacterium, despite treatment, is difficult to eradicate. Conclusion Our case report confirms that this organism can be recovered in persons with cystic fibrosis. Its eradication is necessary especially if the patient is to undergo lung transplantation. PMID:20211000

  1. Spatiotemporal quantification of cell dynamics in the lung following influenza virus infection

    NASA Astrophysics Data System (ADS)

    Yin, Lu; Xu, Shuoyu; Cheng, Jierong; Zheng, Dahai; Limmon, Gino V.; Leung, Nicola H. N.; Rajapakse, Jagath C.; Chow, Vincent T. K.; Chen, Jianzhu; Yu, Hanry

    2013-04-01

    Lung injury caused by influenza virus infection is widespread. Understanding lung damage and repair progression post infection requires quantitative spatiotemporal information on various cell types mapping into the tissue structure. Based on high content images acquired from an automatic slide scanner, we have developed algorithms to quantify cell infiltration in the lung, loss and recovery of Clara cells in the damaged bronchioles and alveolar type II cells (AT2s) in the damaged alveolar areas, and induction of pro-surfactant protein C (pro-SPC)-expressing bronchiolar epithelial cells (SBECs). These quantitative analyses reveal: prolonged immune cell infiltration into the lung that persisted long after the influenza virus was cleared and paralleled with Clara cell recovery; more rapid loss and recovery of Clara cells as compared to AT2s; and two stages of SBECs from Scgb1a1+ to Scgb1a1-. These results provide evidence supporting a new mechanism of alveolar repair where Clara cells give rise to AT2s through the SBEC intermediates and shed light on the understanding of the lung damage and repair process. The approach and algorithms in quantifying cell-level changes in the tissue context (cell-based tissue informatics) to gain mechanistic insights into the damage and repair process can be expanded and adapted in studying other disease models.

  2. Lung Transplantation

    MedlinePlus

    ... are used to treat people who have severe COPD Cystic fibrosis Idiopathic pulmonary fibrosis Alpha-1 antitrypsin deficiency Pulmonary hypertension Complications of lung transplantation include rejection of the transplanted lung and infection. NIH: National Heart, Lung, and Blood Institute

  3. A patient with seminal vesiculitis prior to acute chlamydial epididymitis.

    PubMed

    Furuya, Ryoji; Takahashi, Satoshi; Furuya, Seiji; Takeyama, Koh; Tsukamoto, Taiji

    2005-10-01

    This is the first report of a case of seminal vesiculitis prior to acute chlamydial epididymitis. At the first visit to the clinic, the patient wished to check whether he had Chlamydia trachomatis in his genital tract, because his wife had been diagnosed as having chlamydial cervicitis. He had no specific symptoms at that time; however, transrectal ultrasonograpy (TRUS) revealed swelling of seminal vesicles, which suggested the presence of seminal vesiculitis. Two days after the first visit, he had high-grade fever and was diagnosed as having acute epididymitis caused by C. trachomatis. We had previously reported that seminal vesiculitis was always complicated with acute epididymitis, so this case could provide important evidence that seminal vesiculitis might precede acute epididymitis. It suggested that acute epididymitis could be affected by seminal vesiculitis via the retrograde transmission route.

  4. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses

    PubMed Central

    Gandhale, Pradeep N.; Kumar, Himanshu; Kulkarni, Diwakar D.

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens. PMID:27071061

  5. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses.

    PubMed

    Ranaware, Pradip B; Mishra, Anamika; Vijayakumar, Periyasamy; Gandhale, Pradeep N; Kumar, Himanshu; Kulkarni, Diwakar D; Raut, Ashwin Ashok

    2016-01-01

    The molecular pathogenesis of avian influenza infection varies greatly with individual bird species and virus strain. The molecular pathogenesis of the highly pathogenic avian influenza virus (HPAIV) or the low pathogenic avian influenza virus (LPAIV) infection in avian species remains poorly understood. Thus, global immune response of chickens infected with HPAI H5N1 (A/duck/India/02CA10/2011) and LPAI H9N2 (A/duck/India/249800/2010) viruses was studied using microarray to identify crucial host genetic components responsive to these infection. HPAI H5N1 virus induced excessive expression of type I IFNs (IFNA and IFNG), cytokines (IL1B, IL18, IL22, IL13, and IL12B), chemokines (CCL4, CCL19, CCL10, and CX3CL1) and IFN stimulated genes (OASL, MX1, RSAD2, IFITM5, IFIT5, GBP 1, and EIF2AK) in lung tissues. This dysregulation of host innate immune genes may be the critical determinant of the severity and the outcome of the influenza infection in chickens. In contrast, the expression levels of most of these genes was not induced in the lungs of LPAI H9N2 virus infected chickens. This study indicated the relationship between host immune genes and their roles in pathogenesis of HPAIV infection in chickens.

  6. Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.; Olsen, John C.; Johnson, Larry G.; Yankaskas, James R.; Goldberg, Joanna B.

    1996-01-01

    Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.

  7. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

    PubMed

    Osterholzer, John J; Chen, Gwo-Hsiao; Olszewski, Michal A; Zhang, Yan-Mei; Curtis, Jeffrey L; Huffnagle, Gary B; Toews, Galen B

    2011-01-01

    Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.

  8. The role of leptin in the development of pulmonary neutrophilia in infection and Acute Lung Injury

    PubMed Central

    Ubags, Niki D.; Vernooy, Juanita H.; Burg, Elianne; Hayes, Catherine; Bement, Jenna; Dilli, Estee; Zabeau, Lennart; Abraham, Edward; Poch, Katie R.; Nick, Jerry A.; Dienz, Oliver; Zuñiga, Joaquin; Wargo, Matthew J.; Mizgerd, Joseph P.; Tavernier, Jan; Rincón, Mercedes; Poynter, Matthew E.; Wouters, Emiel F.M.; Suratt, Benjamin T.

    2014-01-01

    Objective One of the hallmarks of severe pneumonia and associated Acute Lung Injury (ALI) is neutrophil recruitment to the lung. Leptin is thought to be up-regulated in the lung following injury and to exert diverse effects on leukocytes, influencing both chemotaxis and survival. We hypothesized that pulmonary leptin contributes directly to the development of pulmonary neutrophilia during pneumonia and ALI. Design Controlled human and murine in vivo and ex vivo experimental studies. Settings Research laboratory of a university hospital. Subjects Healthy human volunteers and subjects hospitalized with bacterial and H1N1 pneumonia. C57Bl/6 and db/db mice were also used. Interventions Lung samples from patients and mice with either bacterial or H1N1 pneumonia and associated ALI were immunostained for leptin. Human bronchoalveolar-lavage (BAL) samples obtained after lipopolysaccharide (LPS)-induced lung injury were assayed for leptin. C57Bl/6 mice were examined after oropharyngeal aspiration of recombinant leptin alone or in combination with E.coli- or K.pneumonia-induced pneumonia. Leptin-resistant (db/db) mice were also examined using the E.coli model. BAL neutrophilia and cytokine levels were measured. Leptin-induced chemotaxis was examined in human blood- and murine marrow-derived neutrophils in vitro. Measurements and Main Results Injured human and murine lung tissue showed leptin induction compared to normal lung, as did human BAL following LPS instillation. BAL neutrophilia in uninjured and infected mice was increased and lung bacterial-load decreased by airway leptin administration, whereas BAL neutrophilia in infected leptin-resistant mice was decreased. In sterile lung injury by LPS, leptin also appeared to decrease airspace neutrophil apoptosis. Both human and murine neutrophils migrated towards leptin in vitro, and this required intact signaling through the JAK2/PI3K pathway. Conclusion We demonstrate that pulmonary leptin is induced in injured human and

  9. [Opportunistic lung infections in patients with chronic obstructive lung disease; a side effect of inhalation corticosteroids?].

    PubMed

    Smeenk, F W; Klinkhamer, P J; Breed, W; Jansz, A R; Jansveld, C A

    1996-01-13

    In four patients, men of 64, 66 and 69 years old and a woman of 65 years, who suffered from chronic obstructive pulmonary disease (COPD) and used inhalation corticosteroids in a relatively high dose (800-1600 micrograms of budesonide per day), a pulmonary infection was diagnosed caused by Mycobacterium malmoense (the first two patients) and Aspergillus (the other two) respectively. Inhalation corticosteroids are of great importance in the treatment of asthmatic patients. Their place in the treatment of patients with COPD is much less clear. The patients did not have an immunological deficiency or anatomical pulmonary or bronchial deformation which could have explained the occurrence of these infections. The high dosages of inhalation corticosteroids may have been involved in the cause of these infections by suppressing the T-cell response locally. In view of this, longterm inhalation corticosteroid treatment should be prescribed in COPD patients only if the efficacy of the medication has been proved in the individual patient involved.

  10. Crossing barriers: infections of the lung and the gut.

    PubMed

    Openshaw, P J

    2009-03-01

    Although known as respiratory pathogens, severe acute respiratory syndrome (SARS) and its sister coronaviruses frequently cause enteric symptoms. In addition, other classically non-enteric viruses (such as HIV and influenza) may also have enteric effects that are crucial in their pathogeneses. These effects can be due to direct infection of the gut mucosa, but can also be because of decreased antibacterial defenses, increased mucosal permeability, bacterial translocation, and systemic leak of endotoxin.

  11. GENETIC BASIS OF MURINE ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL LUNG INFECTION

    EPA Science Inventory

    To evaluate the effect of genetic background and toll-like receptor 2 on antibacterial defense to streptococcal infection, eight genetically diverse strains of mice (A/J, DBA/2J, CAST/Ei, FVB/NJ, BALB/cJ, C57BL/6J, 129/SvImJ, and C3H/HeJ) and tlr2-deficient mice (C57BL/6

  12. Respiratory Failure due to Possible Donor-Derived Sporothrix schenckii Infection in a Lung Transplant Recipient

    PubMed Central

    Bahr, Nathan C.; Janssen, Katherine; Billings, Joanne; Loor, Gabriel; Green, Jaime S.

    2015-01-01

    Background. De novo and donor-derived invasive fungal infections (IFIs) contribute to morbidity and mortality in solid organ transplant (SOT) recipients. Reporting of donor-derived IFIs (DDIFIs) to the Organ Procurement Transplant Network has been mandated since 2005. Prior to that time no systematic monitoring of DDIFIs occurred in the United States. Case Presentation. We report a case of primary graft dysfunction in a 49-year-old male lung transplant recipient with diffuse patchy bilateral infiltrates likely related to pulmonary Sporothrix schenckii infection. The organism was isolated from a bronchoalveolar lavage on the second day after transplantation. Clinical and radiographic responses occurred after initiation of amphotericin B lipid formulation. Conclusion. We believe that this was likely a donor-derived infection given the early timing of the Sporothrix isolation after transplant in a bilateral single lung transplant recipient. This is the first case report of sporotrichosis in a lung transplant recipient. Our patient responded well to amphotericin induction therapy followed by maintenance therapy with itraconazole. The implications of donor-derived fungal infections and Sporothrix in transplant recipients are reviewed. Early recognition and management of these fungi are essential in improving outcomes. PMID:26697244

  13. Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

    PubMed Central

    Kim, Tae Hoon

    2014-01-01

    Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into CD103+ conventional DCs (cDCs), CD11b+ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and CD11b+ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, CD103+ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the CD8+ T cell response against the invading virus. Lymphoid CD8α+ cDCs, which have a developmental relationship with CD103+ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis. PMID:24999309

  14. Ovine chlamydial abortion: characterization of the inflammatory immune response in placental tissues.

    PubMed

    Buxton, D; Anderson, I E; Longbottom, D; Livingstone, M; Wattegedera, S; Entrican, G

    2002-01-01

    Ovine chlamydial abortion is a serious cause of fetal mortality in several sheep-rearing countries. The causal agent, Chlamydophila abortus (Chlamydia psittaci), does not generally induce clinical signs in the ewe other than abortion; this is associated with macroscopically visible damage in the placenta, which may be inflamed and thickened. To investigate the nature of the placental inflammation, seven pregnant sheep were inoculated subcutaneously at 70 days' gestation with C. abortus (strain S 26/3). A further five pregnant sheep received control inoculum by the same route at the same stage of pregnancy. Three of the infected ewes produced stillborn lambs and four produced live lambs. Lesions characteristic of chlamydial infection were present in all placentas except for two from one ewe that gave birth to twins. Histopathological examination of placental tissues from aborted fetuses showed a mixed inflammatory cell infiltrate with vasculitis and thrombosis in the mesenchyme of the intercotyledonary membranes. Cells expressing the macrophage-associated molecule CD 14 were found to be numerous, as were cells expressing major histocompatibility complex class II (MHC II) molecules. Many cells expressing messenger RNA (mRNA) encoding for tumour necrosis factor-alpha (TNF-alpha) were demonstrated, but few cells expressing interferon gamma mRNA and none expressing interleukin-4 mRNA were detected. The fetal immune response included small numbers of CD4+ and CD8+ cells, gamma delta T cells and B cells. It is concluded that abortion is the result of several factors, including destruction of tissue by C. abortus, vascular thrombosis, and an inflammatory response by the fetus. Production of TNF-alpha by fetal macrophages expressing MHC II molecules may be of considerable significance in the pathogenesis of abortion.

  15. Paragonimus westermani infection in lung: A confounding diagnostic entity

    PubMed Central

    Kalhan, Shivani; Sharma, Pankaj; Sharma, Sonia; Kakria, Neha; Dudani, Sharmila; Gupta, Anshu

    2015-01-01

    Paragonimiasis is a food-borne parasitic zoonosis caused by the genus Paragonimus. Fresh water snails, crabs, and crayfish are the first and second intermediate hosts, respectively. Humans acquire this infection by ingesting uncooked/undercooked crustaceans. Laboratory diagnosis of Paragonimiasis is done by demonstration of ova in the sputum/feces/pleural fluid or by serology. A case of pulmonary Paragonimiasis is presented herewith; the patient having been diagnosed with pulmonary tuberculosis earlier. The aim of this presentation is to highlight this entity so that it is considered in the differential diagnosis in a case of hemoptysis. PMID:25983414

  16. The innate immune system of the perinatal lung and responses to respiratory syncytial virus infection.

    PubMed

    Derscheid, R J; Ackermann, M R

    2013-09-01

    The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.

  17. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection.

    PubMed

    Oliver, A; Cantón, R; Campo, P; Baquero, F; Blázquez, J

    2000-05-19

    The lungs of cystic fibrosis (CF) patients are chronically infected for years by one or a few lineages of Pseudomonas aeruginosa. These bacterial populations adapt to the highly compartmentalized and anatomically deteriorating lung environment of CF patients, as well as to the challenges of the immune defenses and antibiotic therapy. These selective conditions are precisely those that recent theoretical studies predict for the evolution of mechanisms that augment the rate of variation. Determination of spontaneous mutation rates in 128 P. aeruginosa isolates from 30 CF patients revealed that 36% of the patients were colonized by a hypermutable (mutator) strain that persisted for years in most patients. Mutator strains were not found in 75 non-CF patients acutely infected with P. aeruginosa. This investigation also reveals a link between high mutation rates in vivo and the evolution of antibiotic resistance.

  18. Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection.

    PubMed

    Caverly, Lindsay J; Zhao, Jiangchao; LiPuma, John J

    2015-10-01

    The importance of infection in the pathogenesis of cystic fibrosis (CF) lung disease has been long recognized, and the use of antibiotics targeting bacteria identified in cultures of respiratory specimens has played a critical role in improving outcomes for individuals with CF. Over the past ∼15 years, the use of culture-independent methods to assess airway microbiology in CF has revealed complex and dynamic CF airway bacterial communities. Recent areas of investigation of the CF lung microbiome have included exploring how bacterial community structures change over time, particularly with respect to disease progression or pulmonary exacerbation, and in response to antibiotic therapies. This review will discuss what has been learned from these studies as well as how these findings offer opportunities to further refine management of CF airway infection.

  19. Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner.

    PubMed

    Dulek, Daniel E; Newcomb, Dawn C; Goleniewska, Kasia; Cephus, Jaqueline; Zhou, Weisong; Reiss, Sara; Toki, Shinji; Ye, Fei; Zaynagetdinov, Rinat; Sherrill, Taylor P; Blackwell, Timothy S; Moore, Martin L; Boyd, Kelli L; Kolls, Jay K; Peebles, R Stokes

    2014-09-01

    The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.

  20. DYNC2H1 mutation causes Jeune syndrome and recurrent lung infections associated with ciliopathy.

    PubMed

    Emiralioglu, Nagehan; Wallmeier, Julia; Olbrich, Heike; Omran, Heymut; Ozcelik, Ugur

    2017-03-03

    Asphyxiating thoracic dystrophy, also known as Jeune syndrome, is included in a group of syndromic skeletal ciliopathies associated with mutations in genes encoding proteins involved in the formation or function of motile cilia. Herein, we report a 6-mo-old male admitted to hospital with recurrent lung infections, thoracic dystrophy, and respiratory distress that was diagnosed as Jeune syndrome; DYNC2H1 mutation was detected via genetic analysis and ciliary dysfunction was noted via high-speed video microscopy.

  1. Cutaneous infection with Alternaria triticina in a Bilateral lung transplant recipient.

    PubMed

    González-Vela, M C; Armesto, S; Unda-Villafuerte, F; Val-Bernal, J F

    2014-10-01

    We report the case of a 60-year-old man who was receiving immunosuppressive therapy for a bilateral lung transplant and presented with a crusted, violaceous plaque on the left hand. Based on histopathology and microbiological culture the patient was diagnosed with infection by Alternaria species. Treatment with itraconazole led to complete resolution of the skin lesion. Forty months later he developed four reddish, nodular, skin lesions on the left leg. Analysis of a biopsy from one of these lesions using histopathologic and molecular techniques identified a mold that shared 98% homology with a strain of Alternaria triticina. Alternaria species belong to a group of dematiaceous fungi that cause opportunistic infections in humans. The incidence of these infections is increasing, mainly in transplant centers. To the best of our knowledge, this is the first reported case of a human infection caused by A. triticina.

  2. Influenza Infection in Mice Induces Accumulation of Lung Mast Cells through the Recruitment and Maturation of Mast Cell Progenitors

    PubMed Central

    Zarnegar, Behdad; Mendez-Enriquez, Erika; Westin, Annika; Söderberg, Cecilia; Dahlin, Joakim S.; Grönvik, Kjell-Olov; Hallgren, Jenny

    2017-01-01

    Mast cells (MCs) are powerful immune cells that mature in the peripheral tissues from bone marrow (BM)-derived mast cell progenitors (MCp). Accumulation of MCs in lung compartments where they are normally absent is thought to enhance symptoms in asthma. The enrichment of lung MCs is also observed in mice subjected to models of allergic airway inflammation. However, whether other types of lung inflammation trigger increased number of MCp, which give rise to MCs, is unknown. Here, mouse-adapted H1N1 influenza A was used as a model of respiratory virus infection. Intranasal administration of the virus induced expression of VCAM-1 on the lung vascular endothelium and an extensive increase in integrin β7hi lung MCp. Experiments were performed to distinguish whether the influenza-induced increase in the number of lung MCp was triggered mainly by recruitment or in situ cell proliferation. A similar proportion of lung MCp from influenza-infected and PBS control mice were found to be in a proliferative state. Furthermore, BM chimeric mice were used in which the possibility of influenza-induced in situ cell proliferation of host MCp was prevented. Influenza infection in the chimeric mice induced a similar number of lung MCp as in normal mice. These experiments demonstrated that recruitment of MCp to the lung is the major mechanism behind the influenza-induced increase in lung MCp. Fifteen days post-infection, the influenza infection had elicited an immature MC population expressing intermediate levels of integrin β7, which was absent in controls. At the same time point, an increased number of toluidine blue+ MCs was detected in the upper central airways. When the inflammation was resolved, the MCs that accumulated in the lung upon influenza infection were gradually lost. In summary, our study reveals that influenza infection induces a transient accumulation of lung MCs through the recruitment and maturation of MCp. We speculate that temporary augmented numbers of lung MCs

  3. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice.

    PubMed

    Loebbermann, Jens; Schnoeller, Corinna; Thornton, Hannah; Durant, Lydia; Sweeney, Nathan P; Schuijs, Martijn; O'Garra, Anne; Johansson, Cecilia; Openshaw, Peter J

    2012-01-01

    Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.

  4. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection

    PubMed Central

    Bayes, H. K.; Ritchie, N.; Irvine, S.; Evans, T. J.

    2016-01-01

    Pseudomonas aeruginosa (PA) remains an important pathogen in patients with cystic fibrosis (CF) lung disease as well as non-CF bronchiectasis and chronic obstructive airways disease. Initial infections are cleared but chronic infection with mucoid strains ensues in the majority of CF patients and specific interventions to prevent this critical infection transition are lacking. The PA bead model has been widely used to study pulmonary P.aeruginosa infection but has limitations in animal husbandry and in accurately mimicking human disease. We have developed an adapted agar bead murine model using a clinical mucoid strain that demonstrates the key features of transition from transitory to chronic airways infection. Infected animals show very limited acute morbidity and mortality, but undergo infection-related weight loss and neutrophilic inflammation, development of anti-pseudomonal antibodies, variable bacterial clearance, endobronchial infection and microbial adaptation with PA small colony variants. We anticipate this model will allow research into the host and microbial factors governing this critical period in Pseudomonas aeruginosa pulmonary pathogenesis when transition to chronicity is occurring. PMID:27804985

  5. The risk of transmission of genital Chlamydia trachomatis infection is less than that of genital Neisseria gonorrhoeae infection.

    PubMed

    Lycke, E; Löwhagen, G B; Hallhagen, G; Johannisson, G; Ramstedt, K

    1980-01-01

    A total of 211 men with 237 female sexual partners and a total of 155 women with 156 male consorts were examined for genital infection with Chlamydia trachomatis and Neisseria gonorrhoeae. The index patients had either single chlamydial or gonococcal infections or dual infections with both microorganisms. Analysis of recovery rates for groups of sexual consorts indicated that gonorrhea was contracted more frequently than chlamydial infection. Thus, when index patients had dual infections, 45% and 28% of their female and male consorts, respectively, had chlamydial infection, but 64% and 77%, respectively, had gonorrhea. When index patients had single infections with C. trachomatis or N. gonorrhoeae, chlamydial infections were observed in consorts of 45% (women) and 28% (men), but gonococcal infections were observed in 80% (women) and 81% (men). Moreover, a significantly larger proportion of consorts of patients with chlamydial infection eluded infection than did partners of patients with gonorrhea. Women who used an intrauterine contraceptive device had chlamydial and gonococcal infections more often than those who used other forms of contraception, or no contraceptive.

  6. Mesenteric lymph duct drainage attenuates acute lung injury in rats with severe intraperitoneal infection.

    PubMed

    Zhang, Yanmin; Zhang, Shukun; Tsui, Naiqiang

    2015-01-01

    The purpose of this study is to investigate the hypothesis that the mesenteric lymphatic system plays an important role in acute lung injury in a rat model induced by severe intraperitoneal infection. Male Wistar rats weighing 250∼300 g were randomly divided into 3 groups and subjected to sham operation, intraperitoneal infection, or mesenteric lymphatic drainage. The activity of diamine oxidase (DAO) and myeloperoxidase (MPO) were measured by enzymatic assay. The endotoxin levels in plasma, lymph, and bronchoalveolar lavage fluid (BALF) were evaluated using the limulus amoebocyte lysate reagent. The cytokines, adhesion factors, chemokines, and inflammatory factors were detected by ELISA. TLR-4, NF-kB, and IRAK-4 were analyzed by Western blotting. Compared with sham-operated rats, rats with intraperitoneal infection had increased MPO and decreased DAO activity in intestinal tissues. Mesenteric lymph drainage reduced the alterations in MPO and DAO activity induced by intraperitoneal infection. The MPO activity in pulmonary tissue and the permeability of pulmonary blood vessels were also increased, which were partially reversed by mesenteric lymph drainage. The endotoxin levels in lymphatic fluid and alveolar perfusion fluid were elevated after intraperitoneal infection but decreased to control levels after lymph drainage. No alterations in the levels of plasma endotoxin were observed. The number of neutrophils was increased in BALF and lymph in the infected rats, and was also reduced after drainage. Lymph drainage also decreased the levels of inflammatory cytokines, chemokines, and adhesion factors in the plasma, lymph, and BALF, as well as the levels of TLR-4, NF-kB, and IRAK-4 in pulmonary and intestinal tissues. The mesenteric lymphatic system is the main pathway involved in early lung injury caused by severe intraperitoneal infection, in which activation of the TLR-4 signal pathway may play a role.

  7. Sequence specific binding of chlamydial histone H1-like protein.

    PubMed Central

    Kaul, R; Allen, M; Bradbury, E M; Wenman, W M

    1996-01-01

    Chlamydia trachomatis is one of the few prokaryotic organisms known to contain proteins that bear homology to eukaryotic histone H1. Changes in macromolecular conformation of DNA mediated by the histone H1-like protein (Hc1) appear to regulate stage specific differentiation. We have developed a cross-linking immunoprecipitation protocol to examine in vivo protein-DNA interaction by immune precipitating chlamydial Hc1 cross linked to DNA. Our results strongly support the presence of sequence specific binding sites on the chlamydial plasmid and hc1 gene upstream of its open reading frame. The preferential binding sites were mapped to 520 bp BamHI-XhoI and 547 bp BamHI-DraI DNA fragments on the plasmid and hc1 respectively. Comparison of these two DNA sequences using Bestfit program has identified a 24 bp region with >75% identity that is unique to the chlamydial genome. Double-stranded DNA prepared by annealing complementary oligonucleotides corresponding to the conserved 24 bp region bind Hc1, in contrast to control sequences with similar A+T ratios. Further, Hc1 binds to DNA in a strand specific fashion, with preferential binding for only one strand. The site specific affinity to plasmid DNA was also demonstrated by atomic force microscopy data images. Binding was always followed by coiling, shrinking and aggregation of the affected DNA. Very low protein-DNA ratio was required if incubations were carried out in solution. However, if DNA was partially immobilized on mica substrate individual strands with dark foci were still visible even after the addition of excess Hc1. PMID:8760883

  8. Inhaled diesel engine emissions reduce bacterial clearance and exacerbate lung disease to Pseudomonas aeruginosa infection in vivo.

    PubMed

    Harrod, Kevin S; Jaramillo, Richard J; Berger, Jennifer A; Gigliotti, Andrew P; Seilkop, Steven K; Reed, Matthew D

    2005-01-01

    Despite experimental evidence supporting an adverse role for air pollution in models of human disease, little has been done in the way of assessing the health effects of inhalation of whole mixtures from defined sources at exposure levels relevant to ambient environmental exposures. The current study assessed the impact of inhaled diesel engine emissions (DEE) in modulating clearance of Pseudomonas aeruginosa (P.a.) and the adverse effects of infection to the pulmonary epithelium. At DEE concentrations representing from high ambient to high occupational exposures, mice were exposed to DEE continuously for one week or six months (6 h/day), and subsequently infected with P.a. by intratracheal instillation. At 18 h following P.a. infection, prior exposure to DEE impaired bacterial clearance and exacerbated lung histopathology during infection. To assess the airway epithelial cell changes indicative of lung pathogenesis, markers of specific lung epithelial cell populations were analyzed by immunohistochemistry. Both ciliated and non-ciliated airway epithelial cell numbers were decreased during P.a. infection by DEE exposure in a concentration-dependent manner. Furthermore, the lung transcription regulator, thyroid transcription factor 1 (TTF-1), was also decreased during P.a. infection by prior exposure to DEE concordant with changes in airway populations. These findings are consistent with the notion that environmental levels of DEE can decrease the clearance of P.a. and increase lung pathogenesis during pulmonary bacterial infection.

  9. SIMIAN IMMUNODEFICIENCY VIRUS INFECTION IN THE BRAIN AND LUNG LEADS TO DIFFERENTIAL TYPE I INTERFERON SIGNALING DURING ACUTE INFECTION*

    PubMed Central

    Alammar, Luna; Gama, Lucio; Clements, Janice E.

    2011-01-01

    Using an accelerated and consistent simian immunodeficiency virus (SIV) pigtailed macaque model of HIV associated neurological disorders, we have demonstrated that virus enters the brain during acute infection. However, neurological symptoms do not manifest until late stages of infection, suggesting that immunological mechanisms exist within the central nervous system (CNS) that control viral replication and associated inflammation. We have shown that interferon beta, a type I interferon central to viral innate immunity, is a major cytokine present in the brain during acute infection and is responsible for limiting virus infection and inflammatory cytokine expression. However, the induction and role of interferon alpha in the CNS during acute SIV infection has never been examined in this model. In the classical model of interferon signaling, interferon beta signals through the interferon α/β receptor, leading to expression of interferon alpha. Surprisingly, although interferon beta is up regulated during acute SIV infection, we found that interferon alpha is down regulated. We demonstrate that this down regulation is coupled with a suppression of signaling molecules downstream of the interferon receptor, namely tyk2, STAT1 and IRF7, as indicated by either lack of protein phosphorylation, lack of nuclear accumulation, or transcriptional and/or translational repression. In contrast to brain, interferon alpha is up regulated in lung and accompanied by activation of tyk2 and STAT1. These data provide a novel observation that during acute SIV infection in the brain there is differential signaling through the interferon α/β receptor that fails to activate expression of interferon alpha in the brain. PMID:21368232

  10. Human Lung Hydrolases Delineate Mycobacterium tuberculosis–Macrophage Interactions and the Capacity To Control Infection

    PubMed Central

    Arcos, Jesus; Sasindran, Smitha J.; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S.; Torrelles, Jordi B.

    2014-01-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independent of their action time (15 min to 12 h), the effects of the hydrolases on the M. tuberculosis cell envelope resulted in a significant decrease (60–80%) in M. tuberculosis association with, and intracellular growth of the bacteria within, human macrophages. The cell envelope-modifying effects of the hydrolases also led to altered M. tuberculosis intracellular trafficking and induced a protective proin-flammatory response to infection. These findings add a new concept to our understanding of M. tuberculosis–macrophage inter-actions (i.e., the impact of lung surfactant hydrolases on M. tuberculosis infection). PMID:21602490

  11. Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung.

    PubMed

    Numata, Mari; Grinkova, Yelena V; Mitchell, James R; Chu, Hong Wei; Sligar, Stephen G; Voelker, Dennis R

    2013-01-01

    There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV) infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG). Preparations of nanodiscs containing POPG (nPOPG) antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 μg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a halftime of 60-120 minutes (m), based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo.

  12. Influenza and dengue virus co-infection impairs monocyte recruitment to the lung, increases dengue virus titers, and exacerbates pneumonia.

    PubMed

    Schmid, Michael A; González, Karla N; Shah, Sanjana; Peña, José; Mack, Matthias; Talarico, Laura B; Polack, Fernando P; Harris, Eva

    2017-03-01

    Co-infections of influenza virus and bacteria are known to cause severe disease, but little information exists on co-infections with other acute viruses. Seasonal influenza and dengue viruses (DENV) regularly co-circulate in tropical regions. The pandemic spread of influenza virus H1N1 (hereafter H1N1) in 2009 led to additional severe disease cases that were co-infected with DENV. Here, we investigated the impact of co-infection on immune responses and pathogenesis in a new mouse model. Co-infection of otherwise sublethal doses of a Nicaraguan clinical H1N1 isolate and two days later with a virulent DENV2 strain increased systemic DENV titers and caused 90% lethality. Lungs of co-infected mice carried both viruses, developed severe pneumonia, and expressed a unique pattern of host mRNAs, resembling only partial responses against infection with either virus alone. A large number of monocytes were recruited to DENV-infected but not to co-infected lungs, and depletion and adoptive transfer experiments revealed a beneficial role of monocytes. Our study shows that co-infection with influenza and DENV impairs host responses, which fail to control DENV titers and instead, induce severe lung damage. Further, our findings identify key inflammatory pathways and monocyte function as targets for future therapies that may limit immunopathology in co-infected patients.

  13. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  14. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  15. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection

    PubMed Central

    Vereecke, Lars; Mc Guire, Conor; Sze, Mozes; Schuijs, Martijn J.; Willart, Monique; Itati Ibañez, Lorena; Hammad, Hamida; Lambrecht, Bart N.; Beyaert, Rudi; Saelens, Xavier; van Loo, Geert

    2016-01-01

    A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20AEC-KO) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20AEC-KO mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20AEC-KO mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20AEC-KO mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20AEC-KO mice during later stages of infection. When A20AEC-KO mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20AEC-KO mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection. PMID:26815999

  16. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections

    PubMed Central

    2014-01-01

    Background In this study, four lung lesion scoring methods (Slaughterhouse Pleurisy Evaluation System [SPES], Consolidation Lung Lesion Score [LLS], Image analyses [IA] and Ratio of lung weight/body weight [LW/BW]) were compared for the assessment of the different pathological outcomes derived from an Actinobacillus pleuropneumoniae (App) experimental infection model. Moreover, pathological data was coupled with clinical (fever, inappetence and clinical score), production (average daily weigh gain [ADWG]) and diagnostic (PCR, ELISA and bacterial isolation) parameters within the four infection outcomes (peracute, acute, subclinically infected and non-infected). Results From the 61 inoculated animals, 9 were classified as peracute (presence of severe App-like clinical signs and lesions and sudden death or euthanasia shortly after inoculation), 31 as acutely affected (presence of App-like clinical signs and lesions and survival until the end of the experiment), 12 as subclinically infected (very mild or no clinical signs but App infection confirmed) and 9 as non-infected animals (lack of App-like clinical signs and lack of evidence of App infection). A significant correlation between all lung lesion scoring systems was found with the exception of SPES score versus LW/BW. SPES showed a statistically significant association with all clinical, production and diagnostic (with the exception of PCR detection of App in the tonsil) variables assessed. LLS and IA showed similar statistically significant associations as SPES, with the exception of seroconversion against App at necropsy. In contrast, LW/BW was statistically associated only with App isolation in lungs, presence of App-like lesions and ELISA OD values at necropsy. Conclusions In conclusion, SPES, LLS and IA are economic, fast and easy-to-perform lung scoring methods that, in combination with different clinical and diagnostic parameters, allow the characterization of different outcomes after App infection. PMID

  17. Unorthodox long-term aerosolized ampicillin use for methicillin-susceptible Staphylococcus aureus lung infection in a cystic fibrosis patient.

    PubMed

    Máiz, Luis; Lamas, Adelaida; Fernández-Olmos, Ana; Suárez, Lucrecia; Cantón, Rafael

    2009-05-01

    Staphylococcus aureus is a significant cause of pulmonary colonization in cystic fibrosis (CF) patients. The optimal strategy of therapy in chronically infected patients with this pathogen is not yet established. We report a successful long-term aerosolized ampicillin treatment of a 14-year-old girl with chronic symptomatic S. aureus lung infection.

  18. Understanding persistent bacterial lung infections: clinical implications informed by the biology of the microbiota and biofilms

    PubMed Central

    Pragman, Alexa A.; Berger, John P.; Williams, Bryan J.

    2015-01-01

    The infections found in chronic obstructive pulmonary disease, cystic fibrosis, and bronchiectasis share a number of clinical similarities, the most striking of which is bacterial persistence despite the use of antibiotics. These infections have been clinically described using culture-based methods usually performed on sputum samples, and treatment has been directed towards the bacteria found in this manner. Unfortunately the clinical response to antibiotics is frequently not predictable based on these cultures, and the role of these cultured organisms in disease progression has been debated. The past 20 years have seen a revolution in the techniques used to describe bacterial populations and their growth patterns. These techniques have revealed these persistent lung infections are vastly more complicated than described by traditional, and still widely relied upon, sputum cultures. A better understanding of the initiation and evolution of these infections, and better clinical tools to describe them, will dramatically alter the way patients are cared for. While clinical tests to more accurately describe these infections are not yet available, the better appreciation of these infections afforded by current science should enlighten practitioners as to the care of their patients with these diseases. PMID:27004018

  19. Systemic Effector and Regulatory Immune Responses to Chlamydial Antigens in Trachomatous Trichiasis

    PubMed Central

    Gall, Alevtina; Horowitz, Amir; Joof, Hassan; Natividad, Angels; Tetteh, Kevin; Riley, Eleanor; Bailey, Robin L.; Mabey, David C. W.; Holland, Martin J.

    2010-01-01

    Trachomatous trichiasis (TT) caused by repeated or chronic ocular infection with Chlamydia trachomatis is the result of a pro-fibrotic ocular immune response. At the conjunctiva, the increased expression of both inflammatory (IL1B, TNF) and regulatory cytokines (IL10) have been associated with adverse clinical outcomes. We measured in vitro immune responses of peripheral blood to a number of chlamydial antigens. Peripheral blood effector cells (CD4, CD69, IFNγ, IL-10) and regulatory cells (CD4, CD25, FOXP3, CTLA4/GITR) were readily stimulated by C. trachomatis antigens but neither the magnitude (frequency or stimulation index) or the breadth and amount of cytokines produced in vitro [IL-5, IL-10, IL-12 (p70), IL-13, IFNγ, and TNFα] were significantly different between TT cases and their non-diseased controls. Interestingly we observed that CD4+ T cells account for <50% of the IFNγ positive cells induced following stimulation. Further investigation in individuals selected from communities where exposure to ocular infection with C. trachomatis is endemic indicated that CD3−CD56+ (classical natural killer cells) were a major early source of IFNγ production in response to C. trachomatis elementary body stimulation and that the magnitude of this response increased with age. Future efforts to unravel the contribution of the adaptive immune response to conjunctival fibrosis should focus on the early events following infection and the interaction with innate immune mediated mechanisms of inflammation in the conjunctiva. PMID:21747780

  20. Systemic effector and regulatory immune responses to chlamydial antigens in trachomatous trichiasis.

    PubMed

    Gall, Alevtina; Horowitz, Amir; Joof, Hassan; Natividad, Angels; Tetteh, Kevin; Riley, Eleanor; Bailey, Robin L; Mabey, David C W; Holland, Martin J

    2011-01-01

    Trachomatous trichiasis (TT) caused by repeated or chronic ocular infection with Chlamydia trachomatis is the result of a pro-fibrotic ocular immune response. At the conjunctiva, the increased expression of both inflammatory (IL1B, TNF) and regulatory cytokines (IL10) have been associated with adverse clinical outcomes. We measured in vitro immune responses of peripheral blood to a number of chlamydial antigens. Peripheral blood effector cells (CD4, CD69, IFNγ, IL-10) and regulatory cells (CD4, CD25, FOXP3, CTLA4/GITR) were readily stimulated by C. trachomatis antigens but neither the magnitude (frequency or stimulation index) or the breadth and amount of cytokines produced in vitro [IL-5, IL-10, IL-12 (p70), IL-13, IFNγ, and TNFα] were significantly different between TT cases and their non-diseased controls. Interestingly we observed that CD4+ T cells account for <50% of the IFNγ positive cells induced following stimulation. Further investigation in individuals selected from communities where exposure to ocular infection with C. trachomatis is endemic indicated that CD3-CD56+ (classical natural killer cells) were a major early source of IFNγ production in response to C. trachomatis elementary body stimulation and that the magnitude of this response increased with age. Future efforts to unravel the contribution of the adaptive immune response to conjunctival fibrosis should focus on the early events following infection and the interaction with innate immune mediated mechanisms of inflammation in the conjunctiva.

  1. Chlamydial conjunctivitis: prevalence and serovar distribution of Chlamydia trachomatis in adults.

    PubMed

    Petrovay, Fruzsina; Németh, István; Balázs, Andrea; Balla, Eszter

    2015-09-01

    The extragenital manifestation of Chlamydia trachomatis infection frequently results in non-specific conjunctivitis among sexually active adults. The aims of the present study were to determine the prevalence of C. trachomatis, to describe the distribution of serovars among patients with conjunctivitis and to characterize the relationship between the prevalence and patient demographics such as age and gender. A total of 245 conjunctival specimens were screened for C. trachomatis DNA targeting the plasmid gene. Serovar determination of the C. trachomatis-positive specimens was carried out by an omp1 PCR-based RFLP analysis method. Statistical analysis was done using a generalized linear model. C. trachomatis was detected in 53 cases (21.6 %) of adult conjunctivitis. Molecular genotyping differentiated seven distinct urogenital serovars, the most prevalent being serovar E (16/53), followed by F (15/53), D (6/53), K (6/53), G (4/53), H (4/53) and J (2/53). Statistical analysis showed higher C. trachomatis prevalence in the younger age groups, and this peaked at younger age in women than in men. The high prevalence of this pathogen found in ocular samples should alert ophthalmologists to focus on the role of C. trachomatis in adult conjunctivitis. The serovar distribution indicated that ocular chlamydial infections usually have a genital source. Nevertheless, conjunctivitis might be the only sign of this sexually transmitted infection. Further comparative genotyping of C. trachomatis in ocular and genital specimens might give more detailed epidemiological information about the aetiology of the disease.

  2. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    PubMed

    Lane, B Josh; Mutchler, Charla; Al Khodor, Souhaila; Grieshaber, Scott S; Carabeo, Rey A

    2008-03-01

    Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  3. Treatment of Cytomegalovirus Infection with Cidofovir and CMV Immune Globulin in a Lung Transplant Recipient.

    PubMed

    Wilkens, Heinrike; Sester, Martina

    2016-01-01

    Cytomegalovirus (CMV) infection after lung transplantation is associated with increased risk for pneumonitis and bronchiolitis obliterans as well as allograft rejection and opportunistic infections. Ganciclovir is the mainstay of prophylaxis and treatment but CMV infections can be unresponsive. Apart from direct antiviral drugs, CMV immunoglobulin (CMVIG) preparations may be considered but are only licensed for prophylaxis. A CMV-seronegative 42-year-old man with cystic fibrosis received a lung from a CMV-seropositive donor. Intravenous ganciclovir prophylaxis was delayed until day 12 due to acute postoperative renal failure and was accompanied by five doses of CMVIG (10 g). By day 16, CMV-DNA was detectable and rising; CMV-specific T-cells were undetectable. Switch from ganciclovir to foscarnet prompted a transient decrease in CMV viral load, but after increasing again to reach 3600 copies/mL foscarnet was changed to intravenous cidofovir and CMVIG was restarted. CMV load continued to fluctuate and declined slowly, whereas CMV-specific T-cells were detected five months later and increased thereafter. At last follow-up, the patient was in very good clinical condition with no evidence of bronchiolitis obliterans. No side effects of this treatment were observed. In this hard-to-treat case, the combination of cidofovir with off-label use of CMVIG contributed to a successful outcome.

  4. Epidemiology of invasive fungal infections in lung transplant recipients on long-term azole antifungal prophylaxis.

    PubMed

    Chong, Pearlie P; Kennedy, Cassie C; Hathcock, Matthew A; Kremers, Walter K; Razonable, Raymund R

    2015-04-01

    Lung transplant recipients (LTR) at our institution receive prolonged and mostly lifelong azole antifungal (AF) prophylaxis. The impact of this prophylactic strategy on the epidemiology and outcome of invasive fungal infections (IFI) is unknown. This was a single-center, retrospective cohort study. We reviewed the medical records of all adult LTR from January 2002 to December 2011. Overall, 16.5% (15 of 91) of patients who underwent lung transplantation during this time period developed IFI. Nineteen IFI episodes were identified (eight proven, 11 probable), 89% (17 of 19) of which developed during AF prophylaxis. LTR with idiopathic pulmonary fibrosis were more likely to develop IFI (HR: 4.29; 95% CI: 1.15-15.91; p = 0.03). A higher hazard of mortality was observed among those who developed IFI, although this was not statistically significant (hazard ratio [HR]: 1.71; 95% confidence interval [CI] [0.58-4.05]; p = 0.27). Aspergillus fumigatus was the most common cause of IFI (45%), with pulmonary parenchyma being the most common site of infection. None of our patients developed disseminated invasive aspergillosis, cryptococcal or endemic fungal infections. IFI continue to occur in LTR, and the eradication of IFI appears to be challenging even with prolonged prophylaxis. Azole resistance is uncommon despite prolonged AF exposure.

  5. Isolation and purification of Mycobacterium tuberculosis from H37Rv infected guinea pig lungs.

    PubMed

    Shi, Libin; Ryan, Gavin J; Bhamidi, Suresh; Troudt, JoLynn; Amin, Anita; Izzo, Angelo; Lenaerts, Anne J; McNeil, Michael R; Belisle, John T; Crick, Dean C; Chatterjee, Delphi

    2014-09-01

    Evidence suggests that Mycobacterium tuberculosis grown in vivo may have a different phenotypic structure from its in vitro counterpart. In order to study the differences between in vivo and in vitro grown bacilli, it is important to establish a reliable method for isolating and purifying M. tuberculosis from infected tissue. In this study, we developed an optimal method to isolate bacilli from the lungs of infected guinea pigs, which was also shown to be applicable to the interferon-γ gene knockout mouse model. Briefly, 1) the infected lungs were thoroughly homogenized; 2) a four step enzymatic digestion was utilized to reduce the bulk of the host tissue using collagenase, DNase I and pronase E; 3) residual contamination by the host tissue debris was successfully reduced using percoll density gradient centrifugation. These steps resulted in a protocol such that relatively clean, viable bacilli can be isolated from the digested host tissue homogenate in about 50% yield. These bacilli can further be used for analytical studies of the more stable cellular components such as lipid, peptidoglycan and mycolic acid.

  6. The NOD/RIP2 pathway is essential for host defenses against Chlamydophila pneumoniae lung infection.

    PubMed

    Shimada, Kenichi; Chen, Shuang; Dempsey, Paul W; Sorrentino, Rosalinda; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Doherty, Terence M; Underhill, David; Crother, Timothy R; Arditi, Moshe

    2009-04-01

    Here we investigated the role of the Nod/Rip2 pathway in host responses to Chlamydophila pneumoniae-induced pneumonia in mice. Rip2(-/-) mice infected with C. pneumoniae exhibited impaired iNOS expression and NO production, and delayed neutrophil recruitment to the lungs. Levels of IL-6 and IFN-gamma levels as well as KC and MIP-2 levels in bronchoalveolar lavage fluid (BALF) were significantly decreased in Rip2(-/-) mice compared to wild-type (WT) mice at day 3. Rip2(-/-) mice showed significant delay in bacterial clearance from the lungs and developed more severe and chronic lung inflammation that continued even on day 35 and led to increased mortality, whereas WT mice cleared the bacterial load, recovered from acute pneumonia, and survived. Both Nod1(-/-) and Nod2(-/-) mice also showed delayed bacterial clearance, suggesting that C. pneumoniae is recognized by both of these intracellular receptors. Bone marrow chimera experiments demonstrated that Rip2 in BM-derived cells rather than non-hematopoietic stromal cells played a key role in host responses in the lungs and clearance of C. pneumoniae. Furthermore, adoptive transfer of WT macrophages intratracheally was able to rescue the bacterial clearance defect in Rip2(-/-) mice. These results demonstrate that in addition to the TLR/MyD88 pathway, the Nod/Rip2 signaling pathway also plays a significant role in intracellular recognition, innate immune host responses, and ultimately has a decisive impact on clearance of C. pneumoniae from the lungs and survival of the infectious challenge.

  7. Dendritic cell function and pathogen-specific T cell immunity are inhibited in mice administered levonorgestrel prior to intranasal Chlamydia trachomatis infection

    PubMed Central

    Quispe Calla, Nirk E.; Vicetti Miguel, Rodolfo D.; Mei, Ao; Fan, Shumin; Gilmore, Jocelyn R.; Cherpes, Thomas L.

    2016-01-01

    The growing popularity of levonorgestrel (LNG)-releasing intra-uterine systems for long-acting reversible contraception provides strong impetus to define immunomodulatory properties of this exogenous progestin. In initial in vitro studies herein, we found LNG significantly impaired activation of human dendritic cell (DCs) and their capacity to promote allogeneic T cell proliferation. In follow-up studies in a murine model of intranasal Chlamydia trachomatis infection, we analogously found that LNG treatment prior to infection dramatically reduced CD40 expression in DCs isolated from draining lymph nodes at 2 days post infection (dpi). At 12 dpi, we also detected significantly fewer CD4+ and CD8+ T cells in the lungs of LNG-treated mice. This inhibition of DC activation and T cell expansion in LNG-treated mice also delayed chlamydial clearance and the resolution of pulmonary inflammation. Conversely, administering agonist anti-CD40 monoclonal antibody to LNG-treated mice at 1 dpi restored lung T cell numbers and chlamydial burden at 12 dpi to levels seen in infected controls. Together, these studies reveal that LNG suppresses DC activation and function, and inhibits formation of pathogen-specific T cell immunity. They also highlight the need for studies that define in vivo effects of LNG use on human host response to microbial pathogens. PMID:27892938

  8. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide.

    PubMed Central

    Brieland, J K; Remick, D G; Freeman, P T; Hurley, M C; Fantone, J C; Engleberg, N C

    1995-01-01

    The in vivo role of endogenous tumor necrosis factor alpha (TNF-alpha) and reactive nitrogen intermediates (RNIs) in modulation of growth of Legionella pneumophila in the lung was assessed using a murine model of replicative L. pneumophila lung infection. Intratracheal inoculation of mice with L. pneumophila resulted in induction of endogenous TNF-alpha, which preceded clearance of L. pneumophila from the lung. Inhibition of endogenous TNF-alpha activity, via in vivo administration of TNF-alpha neutralizing antibody, or inhibition of endogenous RNIs, via administration of the nitric oxide (NO) synthetase inhibitor N-monomethyl-L-arginine (NMMA), resulted in enhanced growth of L. pneumophila in the lung at > or = 3 days postinfection (when compared with untreated L. pneumophila-infected mice). Because of the similar kinetics of enhanced pulmonary growth of L. pneumophila in mice treated in vivo with either anti-TNF-alpha antibody or NMMA, the immunomodulatory effect of NO on endogenous TNF-alpha activity in the lung was assessed. Administration of NMMA to L. pneumophila-infected mice resulted in a significant decrease in endogenous TNF-alpha activity in the lung during replicative L. pneumophila infections in vivo. However, administration of exogenous TNF-alpha to NMMA-treated mice failed to significantly enhance clearance of L. pneumophila from the lung. Results of these studies indicate that both endogenous NO and TNF-alpha facilitate resolution of replicative L. pneumophila lung infections and that regulation of L. pneumophila replication by TNF-alpha is mediated, at least in part, by NO. PMID:7642253

  9. A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

    PubMed Central

    Schirm, Sibylle; Ahnert, Peter; Wienhold, Sandra; Mueller-Redetzky, Holger; Nouailles-Kursar, Geraldine; Loeffler, Markus; Witzenrath, Martin; Scholz, Markus

    2016-01-01

    Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future. PMID:27196107

  10. Genome-Wide Identification of Klebsiella pneumoniae Fitness Genes during Lung Infection

    PubMed Central

    Breen, Paul; Deornellas, Valerie; Mu, Qiao; Zhao, Lili; Wu, Weisheng; Cavalcoli, James D.; Mobley, Harry L. T.

    2015-01-01

    ABSTRACT Klebsiella pneumoniae is an urgent public health threat because of resistance to carbapenems, antibiotics of last resort against Gram-negative bacterial infections. Despite the fact that K. pneumoniae is a leading cause of pneumonia in hospitalized patients, the bacterial factors required to cause disease are poorly understood. Insertion site sequencing combines transposon mutagenesis with high-throughput sequencing to simultaneously screen thousands of insertion mutants for fitness defects during infection. Using the recently sequenced K. pneumoniae strain KPPR1 in a well-established mouse model of pneumonia, insertion site sequencing was performed on a pool of >25,000 transposon mutants. The relative fitness requirement of each gene was ranked based on the ratio of lung to inoculum read counts and concordance between insertions in the same gene. This analysis revealed over 300 mutants with at least a 2-fold fitness defect and 69 with defects ranging from 10- to >2,000-fold. Construction of 6 isogenic mutants for use in competitive infections with the wild type confirmed their requirement for lung fitness. Critical fitness genes included those for the synthesis of branched-chain and aromatic amino acids that are essential in mice and humans, the transcriptional elongation factor RfaH, and the copper efflux pump CopA. The majority of fitness genes were conserved among reference strains representative of diverse pathotypes. These results indicate that regulation of outer membrane components and synthesis of amino acids that are essential to its host are critical for K. pneumoniae fitness in the lung. PMID:26060277

  11. Tumor necrosis factor-related apoptosis-inducing ligand translates neonatal respiratory infection into chronic lung disease.

    PubMed

    Starkey, M R; Nguyen, D H; Essilfie, A T; Kim, R Y; Hatchwell, L M; Collison, A M; Yagita, H; Foster, P S; Horvat, J C; Mattes, J; Hansbro, P M

    2014-05-01

    Respiratory infections in early life can lead to chronic respiratory disease. Chlamydia infections are common causes of respiratory disease, particularly pneumonia in neonates, and are linked to permanent reductions in pulmonary function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. Here we identify novel roles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in promoting Chlamydia respiratory infection-induced pathology in early life, and subsequent chronic lung disease. By infecting TRAIL-deficient neonatal mice and using neutralizing antibodies against this factor and its receptors in wild-type mice, we demonstrate that TRAIL is critical in promoting infection-induced histopathology, inflammation, and mucus hypersecretion, as well as subsequent alveolar enlargement and impaired lung function. This suggests that therapeutic agents that target TRAIL or its receptors may be effective treatments for early-life respiratory infections and associated chronic lung disease.

  12. Parainfluenza virus infection in adult lung transplant recipients: an emergent clinical syndrome with implications on allograft function.

    PubMed

    Vilchez, Regis A; Dauber, James; McCurry, Kenneth; Iacono, Aldo; Kusne, Shimon

    2003-02-01

    Parainfluenza virus is a common cause of seasonal upper respiratory tract infections in children and adults. Studies indicate that parainfluenza virus may play an important role in the etiology of respiratory tract infections in lung transplant recipients with an estimated incidence of 5.3 per 100 patients. Parainfluenza virus type 3 is the most frequent serotype in lung transplant patients. The rate of lower respiratory tract infections with parainfluenza virus among lung transplant recipients is between 10 and 66% of cases. In addition, trans-bronchial biopsy at the time of parainfluenza infection shows signs of acute allograft rejection. Subsequently, 32% of patients have been found to have active bronchiolitis obliterans at a median time of 6 months (range 1-14) postviral infection. These findings indicate that parainfluenza virus infections may have long-term implications for lung transplant recipients. Further studies are required to identify the mechanisms of immunomodulation of parainfluenza virus among these patients. In addition, controlled studies are needed to evaluate the efficacy of aerosolized ribavarin in the treatment of parainfluenza virus infection and to determine whether vaccines may be effective in these high-risk patients.

  13. Morphology and Morphometry of the Lung in Corn Snakes (Pantherophis guttatus) Infected with Three Different Strains of Ferlavirus.

    PubMed

    Starck, J M; Neul, A; Schmidt, V; Kolb, T; Franz-Guess, S; Balcecean, D; Pees, M

    2017-03-08

    Ophidian paramyxovirus (ferlavirus) is a global threat to reptilian sauropsids in herpetological collections, with occasional but fatal effects. This study characterizes the effects of three different genetic strains of ferlavirus on the dynamic changes of histology and morphometry of the lung of corn snakes (Pantherophis guttatus). Lungs from 42 corn snakes were either sham-infected or infected experimentally under standardized conditions. From 4 to 49 days after intratracheal inoculation, the lungs were examined qualitatively and quantitatively. Progressive microscopical changes were seen in the lung. Initially, increased numbers of heterophils were observed in the interstitium followed by proliferation and vacuolation of epithelial cells lining faveoli. Electron microscopy revealed loss of type-I pneumocytes, hyperplasia of type-II pneumocytes, and interstitial infiltrates of heterophils and mononuclear cells. With progression of disease the respiratory epithelium was initially overgrown by transformed type-II pneumocytes and later became multilayered. The results of the study suggest that the respiratory capacity of the lungs declines with disease development. The dynamics of disease development and histopathology differed in snakes infected with different ferlavirus genogroups. Animals infected with virus genogroup B developed histopathological changes and morphometric changes more rapidly and of greater intensity than snakes infected with viruses from genogroups A or C.

  14. In vivo ultrastructural analysis of the intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle.

    PubMed

    Rank, Roger G; Whittimore, Judy; Bowlin, Anne K; Wyrick, Priscilla B

    2011-08-01

    We utilized a recently developed model of intracervical infection with Chlamydia muridarum in the mouse to elicit a relatively synchronous infection during the initial developmental cycle in order to examine at the ultrastructural level the development of both the chlamydial inclusion and the onset of the inflammatory response. At 18 h after infection, only a few elementary bodies attached to cells were visible, as were an occasional intracellular intermediate body and reticulate body. By 24 h, inclusions had 2 to 5 reticulate bodies and were beginning to fuse. A few polymorphonuclear leukocytes (PMNs) were already present in the epithelium in the vicinity of and directly adjacent to infected cells. By 30 h, the inclusions were larger and consisted solely of reticulate bodies, but by 36 to 42 h, they contained intermediate bodies and elementary bodies as well. Many PMNs were adjacent to or actually inside infected cells. Chlamydiae appeared to exit the cell either (i) through disintegration of the inclusion membrane and rupture of the cell, (ii) by dislodgement of the cell from the epithelium by PMNs, or (iii) by direct invasion of the infected cell by the PMNs. When PMNs were depleted, the number of released elementary bodies was significantly greater as determined both visually and by culture. Interestingly, depletion of PMNs revealed the presence of inclusions containing aberrant reticulate bodies, reminiscent of effects seen in vitro when chlamydiae are incubated with gamma interferon. In vivo evidence for the contact-dependent development hypothesis, a potential mechanism for triggering the conversion of reticulate bodies to elementary bodies, and for translocation of lipid droplets into the inclusion is also presented.

  15. Lung Adenocarcinoma Originates from Retrovirus Infection of Proliferating Type 2 Pneumocytes during Pulmonary Post-Natal Development or Tissue Repair

    PubMed Central

    Murgia, Claudio; Caporale, Marco; Ceesay, Ousman; Di Francesco, Gabriella; Ferri, Nicola; Varasano, Vincenzo; de las Heras, Marcelo; Palmarini, Massimo

    2011-01-01

    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer. PMID:21483485

  16. Antiviral immune responses and lung inflammation after respiratory syncytial virus infection.

    PubMed

    Openshaw, Peter J M

    2005-01-01

    Respiratory syncytial virus (RSV) is one of the commonest and most troublesome viruses of infancy. It causes most cases of bronchiolitis, which is associated with wheezing in later childhood. In primary infection, the peak of disease coincides not with the peak of viral replication but with the development of specific T and B cell responses. This immune response is apparently responsible for much of the disease. Animal models clearly show that a range of immune responses can enhance disease severity, particularly after vaccination with formalin-inactivated RSV. Prior immune sensitization leads to exuberant chemokine production, an excessive cellular influx, and an overabundance of cytokines during RSV challenge. The inflammatory host response to viral infection may be relevant not only to childhood bronchiolitis, but also to obstructive lung diseases in adults.

  17. Diagnosis and prevalence of ovine pulmonary adenocarcinoma in lung tissues of naturally infected farm sheep

    PubMed Central

    Sonawane, Ganesh G.; Tripathi, Bhupendra Nath; Kumar, Rajiv; Kumar, Jyoti

    2016-01-01

    Aim: This study was aimed to detect ovine pulmonary adenocarcinoma (OPA) in sheep flocks affected with pulmonary disorders at organized farm. Materials and Methods: A total of 75 sheep died naturally were thoroughly examined for the lesions of OPA during necropsy. Tissue sections from affected portion of the lungs from each animal were collected aseptically and divided into two parts; one each for polymerase chain reaction (PCR) and another for histopathology. Results: On PCR examination of lung tissues, six sheep (8%) were found to be positive for JSRV. Two of them were 3-6 months of age and did not show clinical signs/gross lesions of OPA. Four adult sheep positive on PCR revealed characteristic lesions of OPA on gross and histopathological examination. Conclusion: In the absence of known specific antibody response to the infection with JSRV, there is no diagnostic serological test available. The PCR assay employed in this study on lung tissues, using primers based on the U3 region of the viral long terminal repeat for JSRV would be helpful in the screening of preclinical and clinical cases of OPA in sheep. PMID:27182131

  18. SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology.

    PubMed

    Morales, Lucía; Oliveros, Juan Carlos; Fernandez-Delgado, Raúl; tenOever, Benjamin Robert; Enjuanes, Luis; Sola, Isabel

    2017-03-08

    Severe acute respiratory syndrome coronavirus (SARS-CoV) causes lethal disease in humans, which is characterized by exacerbated inflammatory response and extensive lung pathology. To address the relevance of small non-coding RNAs in SARS-CoV pathology, we deep sequenced RNAs from the lungs of infected mice and discovered three 18-22 nt small viral RNAs (svRNAs). The three svRNAs were derived from the nsp3 (svRNA-nsp3.1 and -nsp3.2) and N (svRNA-N) genomic regions of SARS-CoV. Biogenesis of CoV svRNAs was RNase III, cell type, and host species independent, but it was dependent on the extent of viral replication. Antagomir-mediated inhibition of svRNA-N significantly reduced in vivo lung pathology and pro-inflammatory cytokine expression. Taken together, these data indicate that svRNAs contribute to SARS-CoV pathogenesis and highlight the potential of svRNA-N antagomirs as antivirals.

  19. Donor-derived tuberculosis (TB): isoniazid-resistant TB transmitted from a lung transplant donor with inadequately treated latent infection.

    PubMed

    Jensen, T O; Darley, D R; Goeman, E E; Shaw, K; Marriott, D J; Glanville, A R

    2016-10-01

    Donor-derived tuberculosis (TB) is an increasingly recognized complication of solid organ transplantation. We report a case of isoniazid-resistant pulmonary TB in a lung transplant recipient. The patient acquired the infection from the lung donor who was previously empirically treated with isoniazid for latent TB. The case highlights the caveat that, while adequate treatment of latent TB with isoniazid is presumed, meticulous screening of donors is required.

  20. Immune Response in Male Guinea Pigs Infected with the Guinea Pig Inclusion Conjunctivitis Agent of Chlamydia Psittaci

    DTIC Science & Technology

    1994-01-01

    occasionally epididymitis . About 20% of men infected with gonorrhea will have a concomitant chlamydial infection (15). Curiously, men show a lower infection...al. (18) examined the course of chlamydial induced epididymitis . When C. trachomatis, biovar MoPn, was injected into the vas deferens, the organism... epididymitis due to Chlamydia trachomatis in rats. Infect. Immun. 60:2324-2328. 19. Johnson, A. P., M. J. Hare, G. D. Wilbanks, P. Cooper, C. M. Heatherington

  1. Some characteristics of a secreted chlamydial antigen recognized by IgG from C. trachomatis patient sera.

    PubMed Central

    Stuart, E S; Macdonald, A B

    1989-01-01

    Chlamydia trachomatis serovars release a glycolipid antigen (GLXA) into the culture supernatant during the infective cycle. This antigen is recognized by IgG isolated from humans with a natural chlamydial infection; GLXA may be a major antigenic determinant of chlamydia. It can be immunopurified by molecular shift or affinity chromatography. Silver staining of SDS-PAGE gels demonstrates a pattern of bands that is essentially the same for preparations isolated by either method. GLXA can also be extracted from mature elementary bodies (EB). These preparations show the same pattern of silver staining bands, and the major bands are immunoreactive as shown by Western blot analysis. Isoelectric focusing studies demonstrate that purified GLXA has an acidic pI. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:2606506

  2. Use of an artificial neural network to predict risk factors of nosocomial infection in lung cancer patients.

    PubMed

    Chen, Jie; Pan, Qin-Shi; Hong, Wan-Dong; Pan, Jingye; Zhang, Wen-Hui; Xu, Gang; Wang, Yu-Min

    2014-01-01

    Statistical methods to analyze and predict the related risk factors of nosocomial infection in lung cancer patients are various, but the results are inconsistent. A total of 609 patients with lung cancer were enrolled to allow factor comparison using Student's t-test or the Mann-Whitney test or the Chi-square test. Variables that were significantly related to the presence of nosocomial infection were selected as candidates for input into the final ANN model. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. The prevalence of nosocomial infection from lung cancer in this entire study population was 20.1% (165/609), nosocomial infections occurring in sputum specimens (85.5%), followed by blood (6.73%), urine (6.0%) and pleural effusions (1.82%). It was shown that long term hospitalization (≥ 22 days, P= 0.000), poor clinical stage (IIIb and IV stage, P=0.002), older age (≥ 61 year old, P=0.023), and use the hormones were linked to nosocomial infection and the ANN model consisted of these four factors .The artificial neural network model with variables consisting of age, clinical stage, time of hospitalization, and use of hormones should be useful for predicting nosocomial infection in lung cancer cases.

  3. Lung fluke (Paragonimus africanus) infects Nigerian red-capped mangabeys and causes respiratory disease

    PubMed Central

    Friant, Sagan; Brown, Kelsey; Saari, Mason T.; Segel, Nicholas H.; Slezak, Julia; Goldberg, Tony L.

    2015-01-01

    Eggs of the lung fluke genus Paragonimus were detected in red-capped mangabeys (Cercocebus torquatus) in Nigeria. We assess the role of these primates as potential sylvatic hosts and the clinical effects of the parasite on monkeys. DNA sequenced from eggs in feces were 100% identical in the ITS2 region to Paragonimus africanus sequences from humans in Cameroon. Paragonimus-positive monkeys coughed more than uninfected monkeys. Experimental de-worming led to reduction in parasite intensity and a corresponding reduction of coughing to baseline levels in infected monkeys. This report provides the first evidence of Paragonimus sp. in C. torquatus, of P. africanus in Nigerian wildlife, and the first molecular evidence of the parasite in African wildlife. Coughing, sometimes interpreted as a communication behavior in primates, can actually indicate infection with lung parasites. Observations of coughing in primates may, in turn, provide a useful mechanism for surveillance of Paragonimus spp, which are re-emerging human pathogens, in wildlife reservoirs. PMID:26543803

  4. Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections

    NASA Astrophysics Data System (ADS)

    Zhang, Fuwu; Smolen, Justin A.; Zhang, Shiyi; Li, Richen; Shah, Parth N.; Cho, Sangho; Wang, Hai; Raymond, Jeffery E.; Cannon, Carolyn L.; Wooley, Karen L.

    2015-01-01

    In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate.In this study, a new type of degradable polyphosphoester-based polymeric nanoparticle, capable of carrying silver cations via interactions with alkyne groups, has been developed as a potentially effective and safe treatment for lung infections. It was found that up to 15% (w/w) silver loading into the nanoparticles could be achieved, consuming most of the pendant alkyne groups along the backbone, as revealed by Raman spectroscopy. The well-defined Ag-loaded nanoparticles released silver in a controlled and sustained manner over 5 days, and displayed enhanced in vitro antibacterial activities against cystic fibrosis-associated pathogens and decreased cytotoxicity to human bronchial epithelial cells, in comparison to silver acetate. Electronic supplementary information (ESI) available: Materials, experimental details, and characterization. See DOI: 10.1039/c4nr07103d

  5. Lung fluke (Paragonimus africanus) infects Nigerian red-capped mangabeys and causes respiratory disease.

    PubMed

    Friant, Sagan; Brown, Kelsey; Saari, Mason T; Segel, Nicholas H; Slezak, Julia; Goldberg, Tony L

    2015-12-01

    Eggs of the lung fluke genus Paragonimus were detected in red-capped mangabeys (Cercocebus torquatus) in Nigeria. We assess the role of these primates as potential sylvatic hosts and the clinical effects of the parasite on monkeys. DNA sequenced from eggs in feces were 100% identical in the ITS2 region to Paragonimus africanus sequences from humans in Cameroon. Paragonimus-positive monkeys coughed more than uninfected monkeys. Experimental de-worming led to reduction in parasite intensity and a corresponding reduction of coughing to baseline levels in infected monkeys. This report provides the first evidence of Paragonimus sp. in C. torquatus, of P. africanus in Nigerian wildlife, and the first molecular evidence of the parasite in African wildlife. Coughing, sometimes interpreted as a communication behavior in primates, can actually indicate infection with lung parasites. Observations of coughing in primates may, in turn, provide a useful mechanism for surveillance of Paragonimus spp, which are re-emerging human pathogens, in wildlife reservoirs.

  6. Guillain-Barré Syndrome in a Boy With Lung Fluke Infection: Case Report and Literature Review.

    PubMed

    Yang, Cui-Wei; Gao, Feng; Xia, Zhe-Zhi

    2015-08-01

    Guillain-Barré syndrome is the most common acute peripheral neuropathy in children in most countries. The cause and pathogenesis of the disease have yet to be clarified. There have been only a few reports of Guillain-Barré syndrome resulting from parasite infections worldwide, no cases of Guillain-Barré syndrome after lung fluke infection have been reported. We report a case of an 8-year-old male patient with Guillain-Barré syndrome after lung fluke infection. The child had a history of consumption of undercooked crabs. He was diagnosed with paragonimiasis. The patient experienced paralysis of and pain in the lower limbs about 3 weeks after symptom onset. Neurologic and electrophysiologic examination findings supported the diagnosis of Guillain-Barré syndrome. Parasitic infections should also be considered when determining which antecedent infection is associated with Guillain-Barré syndrome.

  7. Birth weight, childhood lower respiratory tract infection, and adult lung function

    PubMed Central

    Shaheen, S; Sterne, J; Tucker, J; Florey, C

    1998-01-01

    BACKGROUND—Historical cohort studies in England have found that impaired fetal growth and lower respiratory tract infections in early childhood are associated with lower levels of lung function in late adult life. These relations are investigated in a similar study in Scotland.
METHODS—In 1985-86 a follow up study was carried out of 1070 children who had been born in St Andrew's from 1921 to 1935 and followed from birth to 14 years of age by the Mackenzie Institute for Medical Research. Recorded information included birth weight and respiratory illnesses. The lung function of 239 of these individuals was measured.
RESULTS—There was no association between birth weight and lung function. Pneumonia before two years of age was associated with a difference in mean forced expiratory volume in one second (FEV1) of −0.39 litres (95% confidence interval (CI) −0.67, −0.11; p = 0.007) and in mean forced vital capacity (FVC) of −0.60 litres (95% CI −0.92, −0.28; p<0.001), after controlling for age, sex, height, smoking, type of spirometer, and other illnesses before two years. Similar reductions were seen in men and women. Bronchitis before two years was associated with smaller deficits in FEV1 and FVC. Asthma or wheeze at two years and older and cough after five years were also associated with a reduction in FEV1.
CONCLUSIONS—The relation between impaired fetal growth and lower lung function in late adult life seen in previous studies was not confirmed in this cohort. The deficits in FEV1 and FVC associated with pneumonia and bronchitis in the first two years of life are consistent with a causal relation.

 PMID:9797752

  8. Leukotriene B4 induces release of antimicrobial peptides in lungs of virally infected mice.

    PubMed

    Gaudreault, Eric; Gosselin, Jean

    2008-05-01

    Leukotriene B(4) (LTB(4)) is a lipid mediator of inflammation that was recently shown to exert antiviral activities. In this study, we demonstrate that the release of antimicrobial proteins by neutrophils contribute to an early host defense against influenza virus infection in vitro as well as in vivo. Daily i.v. treatments with LTB(4) lead to a significant decrease in lung viral loads at day 5 postinfection in mice infected with influenza A virus compared with the placebo-treated group. This reduction in viral load was not present in mice deficient in the high-affinity LTB(4) receptor. Viral clearance in lungs was associated with up-regulated presence of antimicrobial peptides such as beta-defensin-3, members of the mouse eosinophil-related RNase family, and the mouse cathelicidin-related antimicrobial peptide. Our results also indicate that neutrophils are important in the antiviral effect of LTB(4). Viral loads in neutrophil-depleted mice were not diminished by LTB(4) administration, and a substantial reduction in the presence of murine cathelicidin-related antimicrobial peptide and the murine eosinophil-related RNase family in lung tissue was observed. Moreover, in vitro treatment of human neutrophil cultures with LTB(4) led rapidly to the secretion of the human cathelicidin LL-37 and eosinophil-derived neurotoxin, known as antiviral peptides. Pretreatment of cell cultures with specific LTB(4) receptor antagonists clearly demonstrate the implication of the high-affinity LTB(4) receptor in the LTB(4)-mediated activity. Together, these results demonstrate the importance of neutrophils and the secretion of antimicrobial peptides during the early immune response mediated by LTB(4) against a viral pathogen.

  9. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  10. Ion-Current-Based Temporal Proteomic Profiling of Influenza-A-Virus-Infected Mouse Lungs Revealed Underlying Mechanisms of Altered Integrity of the Lung Microvascular Barrier.

    PubMed

    Shen, Shichen; Li, Jun; Hilchey, Shannon; Shen, Xiaomeng; Tu, Chengjian; Qiu, Xing; Ng, Andrew; Ghaemmaghami, Sina; Wu, Hulin; Zand, Martin S; Qu, Jun

    2016-02-05

    Investigation of influenza-A-virus (IAV)-infected lung proteomes will greatly promote our understanding on the virus-host crosstalk. Using a detergent-cocktail extraction and digestion procedure and a reproducible ion-current-based method, we performed the first comprehensive temporal analysis of mouse IAV infection. Mouse lung tissues at three time points post-inoculation were compared with controls (n = 4/group), and >1600 proteins were quantified without missing value in any animal. Significantly changed proteins were identified at 4 days (n = 144), 7 days (n = 695), and 10 days (n = 396) after infection, with low false altered protein rates (1.73-8.39%). Functional annotation revealed several key biological processes involved in the systemic host responses. Intriguingly, decreased levels of several cell junction proteins as well as increased levels of tissue metalloproteinase MMP9 were observed, reflecting the IAV-induced structural breakdown of lung epithelial barrier. Supporting evidence of MMP9 activation came from immunoassays examining the abundance and phosphorylation states of all MAPKs and several relevant molecules. Importantly, IAV-induced MMP gelatinase expression was suggested to be specific to MMP9, and p38 MAPK may contribute predominantly to MMP9 elevation. These findings help to resolve the long-lasting debate regarding the signaling pathways of IAV-induced MMP9 expression and shed light on the molecular mechanisms underlying pulmonary capillary-alveolar leak syndrome that can occur during influenza infection.

  11. Lack of Long-Lasting Hydrosalpinx in A/J Mice Correlates with Rapid but Transient Chlamydial Ascension and Neutrophil Recruitment in the Oviduct following Intravaginal Inoculation with Chlamydia muridarum

    PubMed Central

    Zhang, Hongbo; Zhou, Zhou; Chen, Jianlin; Wu, Ganqiu; Yang, Zhangsheng; Zhou, Zhiguang; Baseman, Joel; Zhang, Jin; Reddick, Robert Lee

    2014-01-01

    Lower genital tract infection with Chlamydia trachomatis and C. muridarum can induce long-lasting hydrosalpinx in the upper genital tract of women and female mice, respectively. However, A/J mice were highly resistant to induction of long-lasting hydrosalpinx by C. muridarum. We further compared host inflammatory responses and chlamydial infection courses between the hydrosalpinx-resistant A/J mice and CBA/J mice known to be susceptible to hydrosalpinx induction. Both mouse strains developed robust pyosalpinx during the acute phase followed by hydrosalpinx during the chronic phase. However, the hydrosalpinges disappeared in A/J mice by day 60 after infection, suggesting that some early hydrosalpinges are reversible. Although the overall inflammatory responses were indistinguishable between CBA/J and A/J mice, we found significantly more neutrophils in oviduct lumen of A/J mice on days 7 and 10, which correlated with a rapid but transient oviduct invasion by C. muridarum with a peak infection on day 7. In contrast, CBA/J mice developed a delayed and extensive oviduct infection. These comparisons have revealed an important role of the interactions of oviduct infection with inflammatory responses in chlamydial induction of long-lasting hydrosalpinx, suggesting that a rapid but transient invasion of oviduct by chlamydial organisms can prevent the development of the long-lasting hydrosalpinges. PMID:24711570

  12. Pharmacokinetic/pharmacodynamic evaluation of sulbactam against Acinetobacter baumannii in in vitro and murine thigh and lung infection models.

    PubMed

    Yokoyama, Yuta; Matsumoto, Kazuaki; Ikawa, Kazuro; Watanabe, Erika; Shigemi, Akari; Umezaki, Yasuhiro; Nakamura, Koyo; Ueno, Keiichiro; Morikawa, Norifumi; Takeda, Yasuo

    2014-06-01

    Acinetobacter baumannii is a pathogen that has become globally associated with nosocomial infections. Sulbactam, a potent inhibitor of β-lactamases, was previously shown to be active against A. baumannii strains in vitro and effective against A. baumannii infections. However, a pharmacokinetic/pharmacodynamic (PK/PD) analysis of sulbactam against A. baumannii infections has not yet been performed. This is necessary because optimisation of dosing regimens should be based on PK/PD analysis. Therefore, in vitro and in vivo PK/PD analyses of sulbactam were performed using murine thigh and lung infection models of A. baumannii to evaluate the pharmacokinetics and pharmacodynamics of sulbactam. Sulbactam showed time-dependent bactericidal activity in vitro against A. baumannii. The PK/PD index that best correlated with its in vivo effects was the time that the free drug concentration remained above the minimum inhibitory concentration (fT>MIC) both in the thigh (R(2)=0.95) and lung (R(2)=0.96) infection models. Values of fT>MIC for a static effect and 1, 2 and 3log10 kill, respectively, were 21.0%, 32.9%, 43.6% and 57.3% in the thigh infection model and 20.4%, 24.5%, 29.3% and 37.3% in the lung infection model. Here we report the in vitro and in vivo time-dependent activities of sulbactam against A. baumannii infection and demonstrate that sulbactam was sufficiently bactericidal when an fT>MIC of >60% against A. baumannii thigh infection and >40% against A. baumannii lung infection was achieved.

  13. The Impact of Protein Phosphorylation on Chlamydial Physiology

    PubMed Central

    Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.

    2016-01-01

    Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729

  14. CD36 and Fyn kinase mediate malaria-induced lung endothelial barrier dysfunction in mice infected with Plasmodium berghei.

    PubMed

    Anidi, Ifeanyi U; Servinsky, Laura E; Rentsendorj, Otgonchimeg; Stephens, R Scott; Scott, Alan L; Pearse, David B

    2013-01-01

    Severe malaria can trigger acute lung injury characterized by pulmonary edema resulting from increased endothelial permeability. However, the mechanism through which lung fluid conductance is altered during malaria remains unclear. To define the role that the scavenger receptor CD36 may play in mediating this response, C57BL/6J (WT) and CD36-/- mice were infected with P. berghei ANKA and monitored for changes in pulmonary endothelial barrier function employing an isolated perfused lung system. WT lungs demonstrated a >10-fold increase in two measures of paracellular fluid conductance and a decrease in the albumin reflection coefficient (σalb) compared to control lungs indicating a loss of barrier function. In contrast, malaria-infected CD36-/- mice had near normal fluid conductance but a similar reduction in σalb. In WT mice, lung sequestered iRBCs demonstrated production of reactive oxygen species (ROS). To determine whether knockout of CD36 could protect against ROS-induced endothelial barrier dysfunction, mouse lung microvascular endothelial monolayers (MLMVEC) from WT and CD36-/- mice were exposed to H2O2. Unlike WT monolayers, which showed dose-dependent decreases in transendothelial electrical resistance (TER) from H2O2 indicating loss of barrier function, CD36-/- MLMVEC demonstrated dose-dependent increases in TER. The differences between responses in WT and CD36-/- endothelial cells correlated with important differences in the intracellular compartmentalization of the CD36-associated Fyn kinase. Malaria infection increased total lung Fyn levels in CD36-/- lungs compared to WT, but this increase was due to elevated production of the inactive form of Fyn further suggesting a dysregulation of Fyn-mediated signaling. The importance of Fyn in CD36-dependent endothelial signaling was confirmed using in vitro Fyn knockdown as well as Fyn-/- mice, which were also protected from H2O2- and malaria-induced lung endothelial leak, respectively. Our results demonstrate

  15. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development.

    PubMed

    Pribul, Philippa K; Harker, James; Wang, Belinda; Wang, Hongwei; Tregoning, John S; Schwarze, Jürgen; Openshaw, Peter J M

    2008-05-01

    Macrophages are abundant in the lower respiratory tract. They play a central role in the innate response to infection but may also modulate excessive inflammation. Both macrophages and ciliated epithelial cells respond to infection by releasing soluble mediators, leading to the recruitment of innate and adaptive effector cells. To study the role of lung macrophages in acute respiratory viral infection, we depleted them by the inhalation of clodronate liposomes in an established mouse model of respiratory syncytial virus (RSV) disease. Infection caused an immediate local release of inflammatory cytokines and chemokines, peaking on day 1, which was virtually abolished by clodronate liposome treatment. Macrophage depletion inhibited the activation (days 1 to 2) and recruitment (day 4) of natural killer (NK) cells and enhanced peak viral load in the lung (day 4). However, macrophage depletion did not affect the recruitment of activated CD4 or CD8 T cells, weight loss, or virus-induced changes in lung function. Therefore, lung macrophages play a central role in the early responses to viral infection but have remarkably little effect on the adaptive response occurring at the time of peak disease severity.

  16. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4).

    PubMed

    Derda, Monika; Wojtkowiak-Giera, Agnieszka; Kolasa-Wołosiuk, Agnieszka; Kosik-Bogacka, Danuta; Hadaś, Edward; Jagodziński, Paweł P; Wandurska-Nowak, Elżbieta

    2016-06-01

    Toll-like receptors (TLRs) play a key role in the innate immune responses to a variety of pathogens including parasites. TLRs are among the most highly conserved in the evolution of the receptor family, localized mainly on cells of the immune system and on other cells such as lung cells. The aim of this study was to determine for the first time the expression of TLR2 and TLR4 in the lung of Acanthamoeba spp. infected mice using quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemical (IHC) staining. The Acanthamoeba spp. were isolated from a patient with Acanthamoeba keratitis (AK) (strain Ac 55) and from environmental samples of water from Malta Lake (Poznań, Poland - strain Ac 43). We observed a significantly increased level of expression of TLR2 as well as TLR4 mRNA from 2 to 30 days post Acanthamoeba infection (dpi) in the lungs of mice infected with Ac55 (KP120880) and Ac43 (KP120879) strains. According to our observations, increased TLR2 and TLR4 expression in the pneumocytes, interstitial cells and epithelial cells of the bronchial tree may suggest an important role of these receptors in protective immunity against Acanthamoeba infection in the lung. Moreover, increased levels of TLR2 and TLR4 mRNA expression in infected Acanthamoeba mice may suggest the involvement of these TLRs in the recognition of this amoeba pathogen-associated molecular pattern (PAMP).

  17. Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung.

    PubMed

    Stahl, F R; Keyser, K A; Heller, K; Bischoff, Y; Halle, S; Wagner, K; Messerle, M; Förster, R

    2015-01-01

    Infection with cytomegalovirus (CMV) shows a worldwide high prevalence with only immunocompromised individuals or newborns to become symptomatic. The host's constitution and the pathogen's virulence determine whether disease occurs after infection. Mouse CMV (MCMV) is an appreciated pathogen for in vivo investigation of host-pathogen interactions. It has recently been reported that a single base pair deletion can spontaneously occur in the open reading frame of MCMV-encoded chemokine 2 (MCK2), preventing the expression of the full-length gene product. To study the consequences of this mutation, we compared the Mck2-defective reporter virus MCMV-3D with the newly generated repaired Mck2(+) mutant MCMV-3DR. Compared with MCMV-3D, neonatal mice infected with MCMV-3DR showed severe viral disease after lung infection. Viral disease coincided with high viral activity in multiple organs and increased virus replication in previously described nodular inflammatory foci (NIF) in the lung. Notably, MCMV-3DR showed tropism for alveolar macrophages in vitro and in vivo, whereas MCMV-3D did not infect this cell type. Moreover, in vivo depletion of alveolar macrophages reduced MCMV-3DR replication in the lung. We proposed an Mck2-mediated mechanism by which MCMV exploits alveolar macrophages to increase replication upon first encounter with the host's lung mucosa.

  18. The conserved Tarp actin binding domain is important for chlamydial invasion.

    PubMed

    Jewett, Travis J; Miller, Natalie J; Dooley, Cheryl A; Hackstadt, Ted

    2010-07-15

    The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells.

  19. Importance of bacterial replication and alveolar macrophage-independent clearance mechanisms during early lung infection with Streptococcus pneumoniae.

    PubMed

    Camberlein, Emilie; Cohen, Jonathan M; José, Ricardo; Hyams, Catherine J; Callard, Robin; Chimalapati, Suneeta; Yuste, Jose; Edwards, Lindsey A; Marshall, Helina; van Rooijen, Nico; Noursadeghi, Mahdad; Brown, Jeremy S

    2015-03-01

    Although the importance of alveolar macrophages for host immunity during early Streptococcus pneumoniae lung infection is well established, the contribution and relative importance of other innate immunity mechanisms and of bacterial factors are less clear. We have used a murine model of S. pneumoniae early lung infection with wild-type, unencapsulated, and para-amino benzoic acid auxotroph mutant TIGR4 strains to assess the effects of inoculum size, bacterial replication, capsule, and alveolar macrophage-dependent and -independent clearance mechanisms on bacterial persistence within the lungs. Alveolar macrophage-dependent and -independent (calculated indirectly) clearance half-lives and bacterial replication doubling times were estimated using a mathematical model. In this model, after infection with a high-dose inoculum of encapsulated S. pneumoniae, alveolar macrophage-independent clearance mechanisms were dominant, with a clearance half-life of 24 min compared to 135 min for alveolar macrophage-dependent clearance. In addition, after a high-dose inoculum, successful lung infection required rapid bacterial replication, with an estimated S. pneumoniae doubling time of 16 min. The capsule had wide effects on early lung clearance mechanisms, with reduced half-lives of 14 min for alveolar macrophage-independent and 31 min for alveolar macrophage-dependent clearance of unencapsulated bacteria. In contrast, with a lower-dose inoculum, the bacterial doubling time increased to 56 min and the S. pneumoniae alveolar macrophage-dependent clearance half-life improved to 42 min and was largely unaffected by the capsule. These data demonstrate the large effects of bacterial factors (inoculum size, the capsule, and rapid replication) and alveolar macrophage-independent clearance mechanisms during early lung infection with S. pneumoniae.

  20. Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease.

    PubMed Central

    Brieland, J.; Freeman, P.; Kunkel, R.; Chrisp, C.; Hurley, M.; Fantone, J.; Engleberg, C.

    1994-01-01

    The role of host immune responses in the pathogenesis of Legionnaires' disease is incompletely understood, due in part to the current lack of an animal model that is both susceptible to replicative Legionella pneumophila-induced lung infection and for which species-specific immunological reagents are available. We have developed a model of replicative L. pneumophila lung infection in intratracheally inoculated A/J mice. L. pneumophila was obtained in the exponential growth phase and inoculated into the trachea of 6- to 8-week-old female A/J mice. Microbiological and histopathological evidence of infection was demonstrated in mice inoculated with 10(6) colony-forming units. Development of an acute pneumonia that resembled human Legionnaires' disease coincided with exponential growth of the bacteria in the lung 24 to 48 hours after intratracheal inoculation of L. pneumophila. This was associated with increased plasma levels of interferon-gamma at 24 hours after inoculation. After 48 hours, the bacteria were gradually eliminated from the lung over the next 5 days, corresponding with resolution of the inflammatory response in the lung, thereby mimicking the outcome frequently seen in the immunocompetent human host. Treatment of animals with anti-interferon-gamma antibody enhanced bacterial replication and disease progression, indicating an important role of host immune response in resolution of the infection. Because of the availability of murine-specific reagents, this model of replicative L. pneumophila lung infection in A/J mice after intrapulmonary inoculation of L. pneumophila potentially provides an important tool for future studies investigating the role of host immune responses in the pathogenesis of Legionnaires' disease in the immunocompetent host. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7992856

  1. Complement C5 Activation during Influenza A Infection in Mice Contributes to Neutrophil Recruitment and Lung Injury

    PubMed Central

    Garcia, Cristiana C.; Weston-Davies, Wynne; Russo, Remo C.; Tavares, Luciana P.; Rachid, Milene A.; Alves-Filho, José C.; Machado, Alexandre V.; Ryffel, Bernhard; Nunn, Miles A.; Teixeira, Mauro M.

    2013-01-01

    Influenza virus A (IAV) causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 104 PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1) or inoculated with PBS (Mock). We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF) upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs) formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections. PMID:23696894

  2. Chronic lung disease in HIV-infected children established on antiretroviral therapy

    PubMed Central

    Rylance, Jamie; Mchugh, Grace; Metcalfe, John; Mujuru, Hilda; Nathoo, Kusum; Wilmore, Stephanie; Rowland-Jones, Sarah; Majonga, Edith; Kranzer, Katharina; Ferrand, Rashida A

    2016-01-01

    Objective: Respiratory disease is a major cause of morbidity and mortality in HIV-infected children. Despite antiretroviral therapy (ART), children suffer chronic symptoms. We investigated symptom prevalence, lung function and exercise capacity among older children established on ART and an age-matched HIV-uninfected group. Design: A cross-sectional study in Zimbabwe of HIV-infected children aged 6–16 years receiving ART for over 6 months and HIV-uninfected children attending primary health clinics from the same area. Methods: Standardized questionnaire, spirometry, incremental shuttle walk testing, CD4+ cell count, HIV viral load and sputum culture for tuberculosis were performed. Results: A total of 202 HIV-infected and 150 uninfected participants (median age 11.1 years in each group) were recruited. Median age at HIV diagnosis and ART initiation was 5.5 (interquartile range 2.8–7.5) and 6.1 (interquartile range 3.6–8.4) years, respectively. Median CD4+ cell count was 726 cells/μl, and 79% had HIV viral load less than 400 copies/ml. Chronic respiratory symptoms were rare in HIV-uninfected children [n = 1 (0.7%)], but common in HIV-infected participants [51 (25%)], especially cough [30 (15%)] and dyspnoea [30 (15%)]. HIV-infected participants were more commonly previously treated for tuberculosis [76 (38%) vs 1 (0.7%), P < 0.001], had lower exercise capacity (mean incremental shuttle walk testing distance 771 vs 889 m, respectively, P < 0.001) and more frequently abnormal spirometry [43 (24.3%) vs 15 (11.5%), P = 0.003] compared with HIV-uninfected participants. HIV diagnosis at an older age was associated with lung function abnormality (P = 0.025). No participant tested positive for Mycobacterium tuberculosis. Conclusion: In children, despite ART, HIV is associated with significant respiratory symptoms and functional impairment. Understanding pathogenesis is key, as new treatment strategies are urgently required. PMID:27662546

  3. Cigarette smoke exposure exacerbates lung inflammation and compromises immunity to bacterial infection.

    PubMed

    Lugade, Amit A; Bogner, Paul N; Thatcher, Thomas H; Sime, Patricia J; Phipps, Richard P; Thanavala, Yasmin

    2014-06-01

    The detrimental impact of tobacco on human health is clearly recognized, and despite aggressive efforts to prevent smoking, close to one billion individuals worldwide continue to smoke. People with chronic obstructive pulmonary disease are susceptible to recurrent respiratory infections with pathogens, including nontypeable Haemophilus influenzae (NTHI), yet the reasons for this increased susceptibility are poorly understood. Because mortality rapidly increases with multiple exacerbations, development of protective immunity is critical to improving patient survival. Acute NTHI infection has been studied in the context of cigarette smoke exposure, but this is the first study, to our knowledge, to investigate chronic infection and the generation of adaptive immune responses to NTHI after chronic smoke exposure. After chronic NTHI infection, mice that had previously been exposed to cigarette smoke developed increased lung inflammation and compromised adaptive immunity relative to air-exposed controls. Importantly, NTHI-specific T cells from mice exposed to cigarette smoke produced lower levels of IFN-γ and IL-4, and B cells produced reduced levels of Abs against outer-membrane lipoprotein P6, with impaired IgG1, IgG2a, and IgA class switching. However, production of IL-17, which is associated with neutrophilic inflammation, was enhanced. Interestingly, cigarette smoke-exposed mice exhibited a similar defect in the generation of adaptive immunity after immunization with P6. Our study has conclusively demonstrated that cigarette smoke exposure has a profound suppressive effect on the generation of adaptive immune responses to NTHI and suggests the mechanism by which prior cigarette smoke exposure predisposes chronic obstructive pulmonary disease patients to recurrent infections, leading to exacerbations and contributing to mortality.

  4. Fatal Scopulariopsis infection in a lung transplant recipient: lessons of organ procurement.

    PubMed

    Shaver, C M; Castilho, J L; Cohen, D N; Grogan, E L; Miller, G G; Dummer, J S; Gray, J N; Lambright, E S; Loyd, J E; Robbins, I M

    2014-12-01

    Seventeen days after double lung transplantation, a 56-year-old patient with idiopathic pulmonary fibrosis developed respiratory distress. Imaging revealed bilateral pulmonary infiltrates with pleural effusions and physical examination demonstrated sternal instability. Broad-spectrum antibacterial and antifungal therapy was initiated and bilateral thoracotomy tubes were placed. Both right and left pleural cultures grew a mold subsequently identified as Scopulariopsis brumptii. The patient underwent pleural irrigation and sternal debridement three times but pleural and wound cultures continued to grow S. brumptii. Despite treatment with five antifungal agents, the patient succumbed to his illness 67 days after transplantation. Autopsy confirmed the presence of markedly invasive fungal disease and pleural rind formation. The patient's organ donor had received bilateral thoracostomy tubes during resuscitation in a wilderness location. There were no visible pleural abnormalities at the time of transplantation. However, the patient's clinical course and the location of the infection, in addition to the lack of similar infection in other organ recipients, strongly suggest that Scopulariopsis was introduced into the pleural space during prehospital placement of thoracostomy tubes. This case of lethal infection transmitted through transplantation highlights the unique risk of using organs from donors who are resuscitated in an outdoor location.

  5. Similarity in Pathogenic Features in Lung and Peritoneal Infection by Coxiella burnetii, Typhus Group Rickettsiae, and Chlamydiae

    DTIC Science & Technology

    1990-06-26

    onset of infection. 4 Current data on Rocky Mountain spotted fever (RMSF) suggest that for its agent, R. rickettsii , another member of the Rickettsia ...Continue on reverse it necessary anid identify by block number) FIELD GROUP SUB-GROUP Proteobacteria; Coxiella burnetii; Typhus group rickettsiae ...New York Academy of Sciences June 26, 1990 Similarity in Pathogenic Features in Lung and Peritoneal Infection by Coxiella burdi, T"hus Group Rickettsiae

  6. Pharmacokinetics/Pharmacodynamics of Pulmonary Delivery of Colistin against Pseudomonas aeruginosa in a Mouse Lung Infection Model.

    PubMed

    Lin, Yu-Wei; Zhou, Qi Tony; Cheah, Soon-Ee; Zhao, Jinxin; Chen, Ke; Wang, Jiping; Chan, Hak-Kim; Li, Jian

    2017-03-01

    Colistin is often administered by inhalation and/or the parenteral route for the treatment of respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa However, limited pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide the optimization of dosage regimens of inhaled colistin. In the present study, PK of colistin in epithelial lining fluid (ELF) and plasma was determined following intratracheal delivery of a single dose of colistin solution in neutropenic lung-infected mice. The antimicrobial efficacy of intratracheal delivery of colistin against three P. aeruginosa strains (ATCC 27853, PAO1, and FADDI-PA022; MIC of 1 mg/liter for all strains) was examined in a neutropenic mouse lung infection model. Dose fractionation studies were conducted over 2.64 to 23.8 mg/kg of body weight/day. The inhibitory sigmoid model was employed to determine the PK/PD index that best described the antimicrobial efficacy of pulmonary delivery of colistin. In both ELF and plasma, the ratio of the area under the unbound concentration-time profile to MIC (fAUC/MIC) was the PK/PD index that best described the antimicrobial effect in mouse lung infection (R(2) = 0.60 to 0.84 for ELF and 0.64 to 0.83 for plasma). The fAUC/MIC targets required to achieve stasis against the three strains were 684 to 1,050 in ELF and 2.15 to 3.29 in plasma. The histopathological data showed that pulmonary delivery of colistin reduced infection-caused pulmonary inflammation and preserved the integrity of the lung epithelium, although colistin introduced mild pulmonary inflammation in healthy mice. This study showed pulmonary delivery of colistin provides antimicrobial effects against MDR P. aeruginosa lung infections superior to those of parenteral administrations. For the first time, our results provide important preclinical PK/PD information for optimization of inhaled colistin therapy.

  7. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ

    NASA Astrophysics Data System (ADS)

    Pilhofer, Martin; Aistleitner, Karin; Biboy, Jacob; Gray, Joe; Kuru, Erkin; Hall, Edward; Brun, Yves V.; Vannieuwenhze, Michael S.; Vollmer, Waldemar; Horn, Matthias; Jensen, Grant J.

    2013-12-01

    Chlamydiae are important pathogens and symbionts with unique cell biological features. They lack the cell-division protein FtsZ, and the existence of peptidoglycan (PG) in their cell wall has been highly controversial. FtsZ and PG together function in orchestrating cell division and maintaining cell shape in almost all other bacteria. Using electron cryotomography, mass spectrometry and fluorescent labelling dyes, here we show that some environmental chlamydiae have cell wall sacculi consisting of a novel PG type. Treatment with fosfomycin (a PG synthesis inhibitor) leads to lower infection rates and aberrant cell shapes, suggesting that PG synthesis is crucial for the chlamydial life cycle. Our findings demonstrate for the first time the presence of PG in a member of the Chlamydiae. They also present a unique example of a bacterium with a PG sacculus but without FtsZ, challenging the current hypothesis that it is the absence of a cell wall that renders FtsZ non-essential.

  8. Alpha/Beta Interferon Receptor Signaling Amplifies Early Proinflammatory Cytokine Production in the Lung during Respiratory Syncytial Virus Infection

    PubMed Central

    Goritzka, Michelle; Durant, Lydia R.; Pereira, Catherine; Salek-Ardakani, Samira; Openshaw, Peter J. M.

    2014-01-01

    ABSTRACT Type I interferons (IFNs) are produced early upon virus infection and signal through the alpha/beta interferon (IFN-α/β) receptor (IFNAR) to induce genes that encode proteins important for limiting viral replication and directing immune responses. To investigate the extent to which type I IFNs play a role in the local regulation of inflammation in the airways, we examined their importance in early lung responses to infection with respiratory syncytial virus (RSV). IFNAR1-deficient (IFNAR1−/−) mice displayed increased lung viral load and weight loss during RSV infection. As expected, expression of IFN-inducible genes was markedly reduced in the lungs of IFNAR1−/− mice. Surprisingly, we found that the levels of proinflammatory cytokines and chemokines in the lungs of RSV-infected mice were also greatly reduced in the absence of IFNAR signaling. Furthermore, low levels of proinflammatory cytokines were also detected in the lungs of IFNAR1−/− mice challenged with noninfectious innate immune stimuli such as selected Toll-like receptor (TLR) agonists. Finally, recombinant IFN-α was sufficient to potentiate the production of inflammatory mediators in the lungs of wild-type mice challenged with innate immune stimuli. Thus, in addition to its well-known role in antiviral resistance, type I IFN receptor signaling acts as a central driver of early proinflammatory responses in the lung. Inhibiting the effects of type I IFNs may therefore be useful in dampening inflammation in lung diseases characterized by enhanced inflammatory cytokine production. IMPORTANCE The initial response to viral infection is characterized by the production of interferons (IFNs). One group of IFNs, the type I IFNs, are produced early upon virus infection and signal through the IFN-α/β receptor (IFNAR) to induce proteins important for limiting viral replication and directing immune responses. Here we examined the importance of type I IFNs in early responses to respiratory

  9. A Bovine Model of Respiratory Chlamydia psittaci Infection: Challenge Dose Titration

    PubMed Central

    Reinhold, Petra; Ostermann, Carola; Liebler-Tenorio, Elisabeth; Berndt, Angela; Vogel, Anette; Lambertz, Jacqueline; Rothe, Michael; Rüttger, Anke; Schubert, Evelyn; Sachse, Konrad

    2012-01-01

    This study aimed to establish and evaluate a bovine respiratory model of experimentally induced acute C. psittaci infection. Calves are natural hosts and pathogenesis may resemble the situation in humans. Intrabronchial inoculation of C. psittaci strain DC15 was performed in calves aged 2–3 months via bronchoscope at four different challenge doses from 106 to 109 inclusion-forming units (ifu) per animal. Control groups received either UV-inactivated C. psittaci or cell culture medium. While 106 ifu/calf resulted in a mild respiratory infection only, the doses of 107 and 108 induced fever, tachypnea, dry cough, and tachycardia that became apparent 2–3 days post inoculation (dpi) and lasted for about one week. In calves exposed to 109 ifu C. psittaci, the respiratory disease was accompanied by severe systemic illness (apathy, tremor, markedly reduced appetite). At the time point of most pronounced clinical signs (3 dpi) the extent of lung lesions was below 10% of pulmonary tissue in calves inoculated with 106 and 107 ifu, about 15% in calves inoculated with 108 and more than 30% in calves inoculated with 109 ifu C. psittaci. Beside clinical signs and pathologic lesions, the bacterial load of lung tissue and markers of pulmonary inflammation (i.e., cell counts, concentration of proteins and eicosanoids in broncho-alveolar lavage fluid) were positively associated with ifu of viable C. psittaci. While any effect of endotoxin has been ruled out, all effects could be attributed to infection by the replicating bacteria. In conclusion, the calf represents a suitable model of respiratory chlamydial infection. Dose titration revealed that both clinically latent and clinically manifest infection can be reproduced experimentally by either 106 or 108 ifu/calf of C. psittaci DC15 while doses above 108 ifu C. psittaci cannot be recommended for further studies for ethical reasons. This defined model of different clinical expressions of chlamydial infection allows studying host

  10. The role of C5a in acute lung injury induced by highly pathogenic viral infections

    PubMed Central

    Wang, Renxi; Xiao, He; Guo, Renfeng; Li, Yan; Shen, Beifen

    2015-01-01

    The complement system, an important part of innate immunity, plays a critical role in pathogen clearance. Unregulated complement activation is likely to play a crucial role in the pathogenesis of acute lung injury (ALI) induced by highly pathogenic virus including influenza A viruses H5N1, H7N9, and severe acute respiratory syndrome (SARS) coronavirus. In highly pathogenic virus-induced acute lung diseases, high levels of chemotactic and anaphylatoxic C5a were produced as a result of excessive complement activaiton. Overproduced C5a displays powerful biological activities in activation of phagocytic cells, generation of oxidants, and inflammatory sequelae named “cytokine storm”, and so on. Blockade of C5a signaling have been implicated in the treatment of ALI induced by highly pathogenic virus. Herein, we review the literature that links C5a and ALI, and review our understanding of the mechanisms by which C5a affects ALI during highly pathogenic viral infection. In particular, we discuss the potential of the blockade of C5a signaling to treat ALI induced by highly pathogenic viruses. PMID:26060601

  11. Nocardia kroppenstedtii sp. nov., an actinomycete isolated from a lung transplant patient with a pulmonary infection.

    PubMed

    Jones, Amanda L; Fisher, Andrew J; Mahida, Rahul; Gould, Kate; Perry, John D; Hannan, Margaret M; Judge, Eoin P; Brown, Ros; Boagey, Kimberley; Goodfellow, Michael

    2014-03-01

    A novel actinomycete, strain N1286(T), isolated from a lung transplant patient with a pulmonary infection, was provisionally assigned to the genus Nocardia. The strain had chemotaxonomic and morphological properties typical of members of the genus Nocardia and formed a distinct phyletic line in the Nocardia 16S rRNA gene tree. Isolate N1286(T) was most closely related to Nocardia farcinica DSM 43665(T) (99.8% gene sequence similarity) but could be distinguished from the latter by the low level of DNA-DNA relatedness. These strains were also distinguishable on the basis of a broad range of phenotypic properties. It is concluded that strain N1286(T) represents a novel species of the genus Nocardia for which the name Nocardia kroppenstedtii sp. nov. is proposed. The type strain is N1286(T) ( = DSM 45810(T) = NCTC 13617(T)).

  12. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection.

    PubMed

    Nandi, Bisweswar; Behar, Samuel M

    2011-10-24

    Resistance to Mycobacterium tuberculosis requires the host to restrict bacterial replication while preventing an over-exuberant inflammatory response. Interferon (IFN) γ is crucial for activating macrophages and also regulates tissue inflammation. We dissociate these two functions and show that IFN-γ(-/-) memory CD4(+) T cells retain their antimicrobial activity but are unable to suppress inflammation. IFN-γ inhibits CD4(+) T cell production of IL-17, which regulates neutrophil recruitment. In addition, IFN-γ directly inhibits pathogenic neutrophil accumulation in the infected lung and impairs neutrophil survival. Regulation of neutrophils is important because their accumulation is detrimental to the host. We suggest that neutrophilia during tuberculosis indicates failed Th1 immunity or loss of IFN-γ responsiveness. These results establish an important antiinflammatory role for IFN-γ in host protection against tuberculosis.

  13. Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae

    PubMed Central

    Peñaloza, Hernán F; Nieto, Pamela A; Muñoz-Durango, Natalia; Salazar-Echegarai, Francisco J; Torres, Javiera; Parga, María J; Alvarez-Lobos, Manuel; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2015-01-01

    Streptococcus pneumoniae is a major aetiological agent of pneumonia worldwide, as well as otitis media, sinusitis, meningitis and sepsis. Recent reports have suggested that inflammation of lungs due to S. pneumoniae infection promotes bacterial dissemination and severe disease. However, the contribution of anti-inflammatory molecules to the pathogenesis of S. pneumoniae remains unknown. To elucidate whether the production of the anti-inflammatory cytokine interleukin-10 (IL-10) is beneficial or detrimental for the host during pneumococcal pneumonia, we performed S. pneumoniae infections in mice lacking IL-10 (IL-10−/− mice). The IL-10−/− mice showed increased mortality, higher expression of pro-inflammatory cytokines, and an exacerbated recruitment of neutrophils into the lungs after S. pneumoniae infection. However, IL-10−/− mice showed significantly lower bacterial loads in lungs, spleen, brain and blood, when compared with mice that produced this cytokine. Our results support the notion that production of IL-10 during S. pneumoniae infection modulates the expression of pro-inflammatory cytokines and the infiltration of neutrophils into the lungs. This feature of IL-10 is important to avoid excessive inflammation of tissues and to improve host survival, even though bacterial dissemination is less efficient in the absence of this cytokine. PMID:26032199

  14. Evaluation of combination therapy for Burkholderia cenocepacia lung infection in different in vitro and in vivo models

    PubMed Central

    Brackman, Gilles; Crabbé, Aurélie; Rigole, Petra; Vercruysse, Jurgen; Verstraete, Glenn; Cappoen, Davie; Vervaet, Chris; Cos, Paul

    2017-01-01

    Burkholderia cenocepacia is an opportunistic pathogen responsible for life-threatening infections in cystic fibrosis patients. B. cenocepacia is extremely resistant towards antibiotics and therapy is complicated by its ability to form biofilms. We investigated the efficacy of an alternative antimicrobial strategy for B. cenocepacia lung infections using in vitro and in vivo models. A screening of the NIH Clinical Collection 1&2 was performed against B. cenocepacia biofilms formed in 96-well microtiter plates in the presence of tobramycin to identify repurposing candidates with potentiator activity. The efficacy of selected hits was evaluated in a three-dimensional (3D) organotypic human lung epithelial cell culture model. The in vivo effect was evaluated in the invertebrate Galleria mellonella and in a murine B. cenocepacia lung infection model. The screening resulted in 60 hits that potentiated the activity of tobramycin against B. cenocepacia biofilms, including four imidazoles of which econazole and miconazole were selected for further investigation. However, a potentiator effect was not observed in the 3D organotypic human lung epithelial cell culture model. Combination treatment was also not able to increase survival of infected G. mellonella. Also in mice, there was no added value for the combination treatment. Although potentiators of tobramycin with activity against biofilms of B. cenocepacia were identified in a repurposing screen, the in vitro activity could not be confirmed nor in a more sophisticated in vitro model, neither in vivo. This stresses the importance of validating hits resulting from in vitro studies in physiologically relevant model systems. PMID:28248999

  15. A novel mouse model of conditional IRAK-M deficiency in myeloid cells: application in lung Pseudomonas aeruginosa infection.

    PubMed

    Jiang, Di; Matsuda, Jennifer; Berman, Reena; Schaefer, Niccolette; Stevenson, Connor; Gross, James; Zhang, Bicheng; Sanchez, Amelia; Li, Liwu; Chu, Hong Wei

    2017-02-01

    Myeloid cells such as macrophages are critical to innate defense against infection. IL-1 receptor-associated kinase M (IRAK-M) is a negative regulator of TLR signaling during bacterial infection, but the role of myeloid cell IRAK-M in bacterial infection is unclear. Our goal was to generate a novel conditional knockout mouse model to define the role of myeloid cell IRAK-M during bacterial infection. Myeloid cell-specific IRAK-M knockout mice were generated by crossing IRAK-M floxed mice with LysM-Cre knock-in mice. The resulting LysM-Cre(+)/IRAK-M(fl/wt) and control (LysM-Cre(-)/IRAK-M(fl/wt)) mice were intranasally infected with Pseudomonas aeruginosa (PA). IRAK-M deletion, inflammation, myeloperoxidase (MPO) activity and PA load were measured in leukocytes, bronchoalveolar lavage (BAL) fluid and lungs. PA killing assay with BAL fluid was performed to determine mechanisms of IRAK-M-mediated host defense. IRAK-M mRNA and protein levels in alveolar and lung macrophages were significantly reduced in LysM-Cre(+)/IRAK-M(fl/wt) mice compared with control mice. Following PA infection, LysM-Cre(+)/IRAK-M(fl/wt) mice have enhanced lung neutrophilic inflammation, including MPO activity, but reduced PA load. The increased lung MPO activity in LysM-Cre(+)/IRAK-M(fl/wt) mouse BAL fluid reduced PA load. Generation of IRAK-M conditional knockout mice will enable investigators to determine precisely the function of IRAK-M in myeloid cells and other types of cells during infection and inflammation.

  16. Survival following lung resection in immunocompromised patients with pulmonary invasive fungal infection

    PubMed Central

    Wu, Geena X.; Khojabekyan, Marine; Wang, Jami; Tegtmeier, Bernard R.; O'Donnell, Margaret R.; Kim, Jae Y.; Grannis, Frederic W.; Raz, Dan J.

    2016-01-01

    OBJECTIVES Pulmonary invasive fungal infections (IFIs) are associated with high mortality in patients being treated for haematological malignancy. There is limited understanding of the role for surgical lung resection and outcomes in this patient population. METHODS This is a retrospective cohort of 50 immunocompromised patients who underwent lung resection for IFI. Patient charts were reviewed for details on primary malignancy and treatment course, presentation and work-up of IFI, reasons for surgery, type of resection and outcomes including postoperative complications, mortality, disease relapse and survival. Analysis was also performed on two subgroups based on year of surgery from 1990–2000 and 2001–2014. RESULTS The median age was 39 years (range: 5–64 years). Forty-seven patients (94%) had haematological malignancies and 38 (76%) underwent haematopoietic stem cell transplantation (HSCT). Surgical indications included haemoptysis, antifungal therapy failure and need for eradication before HSCT. The most common pathogen was Aspergillus in 34 patients (74%). Wedge resections were performed in 32 patients (64%), lobectomy in 9 (18%), segmentectomy in 2 (4%) and some combination of the 3 in 7 (14%) for locally extensive, multifocal disease. There were 9 (18%) minor and 14 (28%) major postoperative complications. Postoperative mortality at 30 days was 12% (n = 6). Acute respiratory distress syndrome was the most common cause of postoperative death. Overall 5-year survival was 19%. Patients who had surgery in the early period had a median survival of 24 months compared with 5 months for those who had surgery before 2001 (P = 0.046). At the time of death, 15 patients (30%) had probable or proven recurrent IFI. Causes of death were predominantly related to refractory malignancy, fungal lung disease or complications of graft versus host disease (GVHD). Patients who had positive preoperative bronchoscopy cultures had a trend towards worse survival compared with

  17. Soluble metals associated with residual oil fly ash increase morbidity and lung injury after bacterial infection in rats.

    PubMed

    Roberts, Jenny R; Taylor, Michael D; Castranova, Vincent; Clarke, Robert W; Antonini, James M

    2004-02-13

    Inhalation of residual oil fly ash (ROFA) has been shown to impair lung defense mechanisms in laboratory animals and susceptible populations. Bioavailability of soluble transition metals has been shown to play a key role in lung injury caused by ROFA exposure. The goal of this study was to evaluate the effect of soluble metals on lung defense and injury in animals preexposed to ROFA followed by pulmonary challenge with a bacterial pathogen. ROFA was suspended in saline (ROFA-TOTAL), incubated overnight at 37 degrees C, and separated by centrifugation into soluble (ROFA-SOL) and insoluble (ROFA-INSOL) fractions. A portion of the soluble sample was treated with the metal-binding resin Chelex for 24 h at 37 degrees C. Sprague-Dawley rats were intratracheally dosed at d 0 with ROFA-TOTAL (1.0 mg/100 g body weight), ROFA-INSOL, ROFA-SOL, saline, saline + Chelex, or ROFA-SOL + Chelex. At d 3, 5 x 10(5) Listeria monocytogenes were intratracheally instilled into rats from each treatment group. At d 6, 8, and 10, left lungs were removed, homogenized, and cultured to assess bacterial clearance. Histopathological analysis was performed on the right lungs. Pulmonary exposure of ROFA-TOTAL or ROFA-SOL before infection led to a marked increase in lung injury and inflammation at all three time points after inoculation, and an increase in morbidity in comparison to saline control rats. Treatment with ROFA-INSOL, saline + Chelex, or ROFA-SOL + Chelex caused no significant increases in lung damage and morbidity when compared to control. By d 10, the ROFA-SOL and ROFA-TOTAL groups had approximately 200-fold more bacteria in the lung than saline control, indicating the inability of these groups to effectively respond to the infection. None of the other treatment groups had significant impairments in bacterial clearance when compared to saline. In conclusion, exposure to ROFA-TOTAL and ROFA-SOL significantly suppressed the lung response to infection. These results suggest that soluble

  18. Transcriptional analysis of in vitro expression patterns of Chlamydophila abortus polymorphic outer membrane proteins during the chlamydial developmental cycle

    PubMed Central

    Wheelhouse, Nicholas; Aitchison, Kevin; Spalding, Lucy; Livingstone, Morag; Longbottom, David

    2009-01-01

    Chlamydophila abortus is the aetiological agent of ovine enzootic abortion. Sequencing, annotation and comparative analysis of the genome of C. abortus strain S26/3 has revealed variation in the loci encoding the polymorphic membrane proteins (Pmps). These Pmps resemble autotransporter proteins of the type V secretion system, suggesting an important role in chlamydial pathogenesis. The purpose of this study was to characterise the transcriptional expression patterns of this family during the developmental cycle of C. abortus. McCoy cells were infected with C. abortus and analysed for pmp mRNA expression over a 72 h period. Few pmp transcripts were detected in the early stages of the developmental cycle. Peak expression occurred at 48 h post-infection (p.i.) other than for pmp5E, where it was observed at 24 h p.i. Overall, expression of pmps 5E, 18D and 10G were found to be 40 to 100-fold higher than the lowest expressing pmps (6H, 13G and 15G) at 24 h p.i., while pmps 18D and 17G were 14 to 16-fold higher than the lowest (11G, 14G and 15G) at 48 h. Levels of expression for all the other pmp genes were below one copy per genome at any time point. The expression of all the pmps reduced to near base-line levels by 60 h p.i. These results demonstrate that pmp expression in C. abortus is mid to late cycle, consistent with conversion of the reticulate body to the elementary body. The low level of pmp transcription may be indicative of heterogeneity in expression, suggesting a possible role for some of the Pmps in antigenic variation and chlamydial pathogenesis. PMID:19454212

  19. Influenza A Virus Infection in Pigs Attracts Multifunctional and Cross-Reactive T Cells to the Lung

    PubMed Central

    Talker, Stephanie C.; Stadler, Maria; Koinig, Hanna C.; Mair, Kerstin H.; Rodríguez-Gómez, Irene M.; Graage, Robert; Zell, Roland; Dürrwald, Ralf; Starick, Elke; Harder, Timm; Weissenböck, Herbert; Lamp, Benjamin; Hammer, Sabine E.; Ladinig, Andrea; Saalmüller, Armin

    2016-01-01

    ABSTRACT Pigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i. Ex vivo flow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67+) CD8+ T cells with an early effector phenotype (perforin+ CD27+) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4+ and CD8+ T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4+ and CD8+ T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4+ and CD8+ memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles and in vitro reactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs. IMPORTANCE Pigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we

  20. Expression of Toll-like receptor 4 in lungs of immune-suppressed rat with Acinetobacter baumannii infection

    PubMed Central

    Wang, Yanmei; Zhang, Xiaohong; Feng, Xuanlin; Liu, Xiaoshu; Deng, Lei; Liang, Zong-An

    2016-01-01

    Toll-like receptor 4 (TLR4) is involved in the regulation of host responses to Acinetobacter baumannii (A. baumannii). The aim of the present study was to examine the function of TLR4 in lung inflammation in immune-suppressed rats with A. baumannii infection. A total of 72 Sprague-Dawley male rats were randomly divided into the control, A. baumannii infection and immune-suppressed infection groups. The immune-suppressed infection group was treated with 100 mg/kg hydrocortisone by subcutaneous injection every other day for 2 weeks prior to A. baumannii infection. Lung tissue was obtained on the 3rd and 7th day after tracheal inoculation with A. baumannii. The expression of TLR4 in bronchial and alveolar epithelial cells, and alveolar macrophage was examined using immunohistochemistry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid were detected using ELISA. The results showed that in the control group, the expression of TLR4 was upregulated in the bronchial and alveolar epithelial, and alveolar macrophages, and the levels of IL-6 and TNF-α were increased in the early phase of A. baumannii infection. On the 7th day, no significant difference in the levels of IL-6 and TNF-α was observed between the A. baumannii infection and control groups. Conversely, the expression of TLR4 was downregulated in the immune-suppressed group, and the levels of IL-6 and TNF-α were reduced on the 3rd day after infection. In the subsequent observation period, the expression of TLR4 was upregulated and the levels of IL-6 and TNF-α were increased. In conclusion, the results show a critical role of TLR4 in mediating effective immune response in the lung of rat with A. baumannii infection. PMID:27703512

  1. The use of intrauterine contraceptive devices, pelvic inflammatory disease, and Chlamydia trachomatis infection.

    PubMed

    Edelman, D A

    1988-04-01

    With the same epidemiologic approach taken in a recent study that suggested that oral contraceptive use may not protect against chlamydial pelvic inflammatory disease, the risks of chlamydial pelvic inflammatory disease were evaluated for intrauterine contraceptive device users. Compared with women using no method of contraception, intrauterine contraceptive device users were not found to be at any higher risk of cervical chlamydial infection. Whether this places intrauterine contraceptive device users at no increased risk of chlamydial pelvic inflammatory disease cannot be ascertained from the available data. Further research is needed before any conclusions can be made regarding the risks of chlamydial pelvic inflammatory disease to users of intrauterine contraceptive devices, oral contraceptives, and other contraceptive methods.

  2. Impacts of allergic airway inflammation on lung pathology in a mouse model of influenza A virus infection

    PubMed Central

    Kawaguchi, Akira; Ohara, Yuki; Takahashi, Kenta; Sato, Yuko; Ainai, Akira; Nagata, Noriyo; Tashiro, Masato; Hasegawa, Hideki

    2017-01-01

    Influenza A virus is the respiratory pathogen responsible for influenza. Infection by the 2009 pandemic influenza A (H1N1) virus caused severe lower airway inflammation and pneumonia. Asthma is a chronic inflammatory disorder of the airways that affects the entire brachial tree, and was one of the commonest underlying medical conditions among patients hospitalized with the 2009 pandemic influenza virus infection. Although respiratory virus infections are the major causes of asthma exacerbation, the mechanism by which influenza exacerbates asthma is poorly understood. Animal models of disease comorbidity are crucial to understanding host-pathogen interactions and elucidating complex pathologies. Existing murine models of influenza virus infection in asthmatics show that asthmatic mice are highly resistant to influenza virus infection, which contradicts clinical observations in humans. Here, we developed a murine model of influenza virus/asthma comorbidity using NC/Nga mice, which are highly sensitive to allergic reactions such as atopic dermatitis and allergic airway inflammation. This model was then used to examine the impact of allergic airway inflammation on lung pathology in the 2009 pandemic influenza virus infected mice. The results showed that induction of acute allergic airway inflammation in pre-existing influenza virus infection had additive effects on exacerbation of lung pathology, which mirrors findings in human epidemiological studies. In contrast, pre-existing allergic airway inflammation protected from subsequent influenza virus infection, which was compatible with those of previous murine models of influenza virus infection in asthmatic mice. These variable outcomes of this murine model indicate that the temporal relation between allergic airway inflammation and influenza virus infection might play a critical role in asthma and influenza comorbidity. Thus, this murine model will further our understanding of how influenza virus infection affects an

  3. Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung.

    PubMed

    Locke, Landon W; Myerburg, Michael M; Weiner, Daniel J; Markovetz, Matthew R; Parker, Robert S; Muthukrishnan, Ashok; Weber, Lawrence; Czachowski, Michael R; Lacy, Ryan T; Pilewski, Joseph M; Corcoran, Timothy E

    2016-05-01

    Airway surface liquid hyperabsorption and mucus accumulation are key elements of cystic fibrosis lung disease that can be assessed in vivo using functional imaging methods. In this study we evaluated experimental factors affecting measurements of mucociliary clearance (MCC) and small-molecule absorption (ABS) and patient factors associated with abnormal absorption and mucus clearance.Our imaging technique utilises two radiopharmaceutical probes delivered by inhalation. Measurement repeatability was assessed in 10 adult cystic fibrosis subjects. Experimental factors were assessed in 29 adult and paediatric cystic fibrosis subjects (51 scans). Patient factors were assessed in a subgroup with optimal aerosol deposition (37 scans; 24 subjects). Paediatric subjects (n=9) underwent initial and 2-year follow-up scans. Control subjects from a previously reported study are included for comparison.High rates of central aerosol deposition influenced measurements of ABS and, to a lesser extent, MCC. Depressed MCC in cystic fibrosis was only detectable in subjects with previous Pseudomonas aeruginosa infection. Cystic fibrosis subjects without P. aeruginosa had similar MCC to control subjects. Cystic fibrosis subjects had consistently higher ABS rates.We conclude that the primary experimental factor affecting MCC/ABS measurements is central deposition percentage. Depressed MCC in cystic fibrosis is associated with P. aeruginosa infection. ABS is consistently increased in cystic fibrosis.

  4. Effect of aquo-alchoholic extract of Glycyrrhiza glabra against Pseudomonas aeruginosa in Mice Lung Infection Model.

    PubMed

    Chakotiya, Ankita Singh; Tanwar, Ankit; Srivastava, Pranay; Narula, Alka; Sharma, Rakesh Kumar

    2017-03-26

    The prevalence of lung infection caused by Pseudomonas aeruginosa strains that are classified as multi-drug resistant has increased considerably and is mainly attributed to relative insufficiency of potent chemotherapeutic modalities. The present study was conducted to evaluate the antimicrobial activity of aquo-alcoholic extract of Glycyrrhiza glabra against the P. aeruginosa causing lung infection in Swiss albino mice. The study involves evaluation of lethal dose of P. aeruginosa in Swiss albino mice and analysis of disease manifestation that includes bacteremia, hypothermia, reduction in body weight and other parameters for 48h of infection. Physical manifestations of infected mice showed a significant decline in body temperature that is 29±0.57°C (at 48th h) from 38.81±0.33°C (0h) and 30% weight loss was observed at the end of the study. Further the efficacy of G. glabra extract against lung infection induced with the calculated lethal dose was evaluated by employing bacteremia, histopathology and radiological analysis. Bacterial burden showed that 2.30±0.02 Log10CFU/mL at day 7, a significant decline in the bacterial load as compared to day 1 when the bacterial burden was found to be 3.32±0.1 Log10CFU/mL. Histopathological results showed more diffuse and patchy accumulation of inflammatory cells within the alveolar space also the infiltrates were noted in all the lung section of infected mice. In treated animal group improved lung histology was seen with the exudates were less seen in D1 dose (20mg/kg) and disappeared in D2 dose (80mg/kg). The study clearly declares that the G. glabra extract is effective against lung infection caused by P. aeruginosa at dose of 80mg/kg. The LCMS results revealed that the extract contains Glycyrrhizin, Stigmasterol and Ergosterol, Licochalcone and Glabridin. The current study expected to further exploit the biomedical properties of this extract in the preparation of a potent regimen against such threatening pathogen.

  5. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice

    PubMed Central

    Shi, Hengfei; Ren, Ke; Lv, Baojie; Zhang, Wei; Zhao, Ying; Tan, Ren Xiang; Li, Erguang

    2016-01-01

    The roots of Scutellaria baicalensis has been used as a remedy for inflammatory and infective diseases for thousands of years. We evaluated the antiviral activity against respiratory syncytial virus (RSV) infection, the leading cause of childhood infection and hospitalization. By fractionation and chromatographic analysis, we determined that baicalin was responsible for the antiviral activity of S. baicalensis against RSV infection. The concentration for 50% inhibition (IC50) of RSV infection was determined at 19.9 ± 1.8 μM, while the 50% cytotoxic concentration (CC50) was measured at 370 ± 10 μM. We then used a mouse model of RSV infection to further demonstrate baicalin antiviral effect. RSV infection caused significant lung injury and proinflammatory response, including CD4 and CD8 T lymphocyte infiltration. Baicalin treatment resulted in reduction of T lymphocyte infiltration and gene expression of proinflammatory factors, while the treatment moderately reduced RSV titers recovered from the lung tissues. T lymphocyte infiltration and cytotoxic T lymphocyte modulated tissue damage has been identified critical factors of RSV disease. The study therefore demonstrates that baicalin subjugates RSV disease through antiviral and anti-inflammatory effect. PMID:27767097

  6. Staphylococcus aureus capsular types and antibody response to lung infection in patients with cystic fibrosis.

    PubMed Central

    Albus, A; Fournier, J M; Wolz, C; Boutonnier, A; Ranke, M; Høiby, N; Hochkeppel, H; Döring, G

    1988-01-01

    Chronic respiratory tract infections caused by Staphylococcus aureus are common in patients with cystic fibrosis (CF). Recently, it was shown in a few CF patients that S. aureus isolates produce capsular polysaccharides (CPs). However, it is not known whether this is a common feature and whether an immune response to CPs in CF is detectable. Therefore, we examined 170 S. aureus isolates from CF patients and healthy individuals for production of CP types 5 and 8 by using monoclonal antibodies. We found that CP-producing staphylococcal isolates were randomly distributed among CF patients and healthy carriers. Eighty-five percent of all isolates produced CPs, 77% of which were type 8. Examination of one sputum sample by an immunofluorescence technique suggested that production of CPs is not an in vitro phenomenon. S. aureus isolates from various sites of a single person often yielded more than one CP type. A random distribution of S. aureus strains with CP type 5 or 8 from the skin and respiratory tracts of patients and from the skin of healthy individuals was found. Antibody response to CP types 5 and 8, measured by enzyme-linked immunosorbent assay, was not elevated in CF patients with chronic S. aureus lung infection in comparison with healthy carriers. On the contrary, in CF patients the ratios of antibodies to CP 8 were significantly lower (P less than 0.005; alpha = 0.025). The ratios of antibodies to CP types did not change when monitored longitudinally over several months. This study suggests that the production of CPs is a universal property of S. aureus and that infected CF patients do not have elevated ratios of antibodies to these antigens. Images PMID:3230130

  7. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.

    PubMed

    Campbell, Jessica; Huang, Yumeng; Liu, Yuanjun; Schenken, Robert; Arulanandam, Bernard; Zhong, Guangming

    2014-01-01

    Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity) correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intravaginal inoculation with the luciferase-expressing C. muridarum, 8 of 10 mice displayed bioluminescence signal in the lower with 4 also in the upper genital tracts on day 3 after infection. By day 7, all 10 mice developed bioluminescence signal in the upper genital tracts. The bioluminescence signal was maintained in the upper genital tract in 6 and 2 mice by days 14 and 21, respectively. The bioluminescence signal was no longer detectable in any of the mice by day 28. The whole body imaging approach also revealed an unexpected airway infection following the intravaginal inoculation. Although the concomitant airway infection was transient and did not significantly alter the genital tract infection time courses, caution should be taken during data interpretation. The above observations have demonstrated that C. muridarum can not only achieve rapid ascending infection in the genital tract but also cause airway infection following a genital tract inoculation. These findings have laid a foundation for further optimizing the C. muridarum intravaginal infection murine model for understanding chlamydial pathogenic mechanisms.

  8. Dectin-2 Deficiency Promotes Th2 Response and Mucin Production in the Lungs after Pulmonary Infection with Cryptococcus neoformans

    PubMed Central

    Nakamura, Yuri; Sato, Ko; Yamamoto, Hideki; Matsumura, Kana; Matsumoto, Ikumi; Nomura, Toshiki; Miyasaka, Tomomitsu; Ishii, Keiko; Kanno, Emi; Tachi, Masahiro; Yamasaki, Sho; Saijo, Shinobu; Iwakura, Yoichiro

    2014-01-01

    Dectin-2 is a C-type lectin receptor that recognizes high mannose polysaccharides. Cryptococcus neoformans, a yeast-form fungal pathogen, is rich in polysaccharides in its cell wall and capsule. In the present study, we analyzed the role of Dectin-2 in the host defense against C. neoformans infection. In Dectin-2 gene-disrupted (knockout) (Dectin-2KO) mice, the clearance of this fungus and the inflammatory response, as shown by histological analysis and accumulation of leukocytes in infected lungs, were comparable to those in wild-type (WT) mice. The production of type 2 helper T (Th2) cytokines in lungs was higher in Dectin-2KO mice than in WT mice after infection, whereas there was no difference in the levels of production of Th1, Th17, and proinflammatory cytokines between these mice. Mucin production was significantly increased in Dectin-2KO mice, and this increase was reversed by administration of anti-interleukin 4 (IL-4) monoclonal antibody (MAb). The levels of expression of β1-defensin, cathelicidin, surfactant protein A (Sp-A), and Sp-D in infected lungs were comparable between these mice. In in vitro experiments, IL-12p40 and tumor necrosis factor alpha (TNF-α) production and expression of CD86 and major histocompatibility complex (MHC) class II by bone marrow-derived dendritic cells and alveolar macrophages were completely abrogated in Dectin-2KO mice. Finally, the disrupted lysates of C. neoformans, but not of whole yeast cells, activated Dectin-2-triggered signaling in an assay with nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing this receptor. These results suggest that Dectin-2 may oppose the Th2 response and IL-4-dependent mucin production in the lungs after infection with C. neoformans, and it may not be required for the production of Th1, Th17, and proinflammatory cytokines or for clearance of this fungal pathogen. PMID:25422263

  9. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection

    PubMed Central

    Scordo, Julia M.; Arcos, Jesús; Kelley, Holden V.; Diangelo, Lauren; Sasindran, Smitha J.; Youngmin, Ellie; Wewers, Mark D.; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B.

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis (M.tb) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site. PMID:28373877

  10. Relevance of maintenance triple-drug immunosuppression to bridle the amplification of rat cytomegalovirus infection after experimental lung transplantation.

    PubMed

    Lehle, K; von Suesskind-Schwendi, M; Diez, C; Michl, M; Geissler, E K; Wottge, H U; Schmid, C; Hirt, S W

    2012-12-01

    Immunosuppressive therapy required to treat rejection after lung transplantation (LTx) contributes significantly to the pathogenesis of cytomegalovirus (CMV) infection and disease. In a weak allogeneic left LTx model in the rat (Fisher 344 [F344] to Wistar Kyoto [WKY] rats) we analyzed the influence of acute CMV infection on postoperative day (POD) 3, with application of standard triple-drug immunosuppression (TD-IS) (cyclosporin A, azathioprine, prednisolone) on late outcome after LTx. Native right lungs and syngeneic grafts (WKY to WKY) served as controls. Rats were sacrificed on POD 15, 30, 60, and 100. TD-IS completely prevented acute and chronic rejection in non-infected rats. Allografts of CMV-infected rats treated with TD-IS showed only mild perivascular infiltrations in 6/10 rats (POD 15 and 30), which persisted up to POD 100 in 4/10 rats. In the long-term course, mild isolated interstitial and alveolar changes were found in 40% of these animals. In conclusion, rat CMV infection partially neutralized the immunosuppressive effect of TD-IS. However, an amplification of CMV infection under TD-IS can be controlled and does not result in fatal outcome.

  11. Protochlamydia Induces Apoptosis of Human HEp-2 Cells through Mitochondrial Dysfunction Mediated by Chlamydial Protease-Like Activity Factor

    PubMed Central

    Matsuo, Junji; Nakamura, Shinji; Ito, Atsushi; Yamazaki, Tomohiro; Ishida, Kasumi; Hayashi, Yasuhiro; Yoshida, Mitsutaka; Takahashi, Kaori; Sekizuka, Tsuyoshi; Takeuchi, Fumihiko; Kuroda, Makoto; Nagai, Hiroki; Hayashida, Kyoko; Sugimoto, Chihiro; Yamaguchi, Hiroyuki

    2013-01-01

    Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive

  12. Multimodal 4D imaging of cell-pathogen interactions in the lungs provides new insights into pulmonary infections

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Douady, Julien; Cleret, Aurélie; Garraud, Kévin; Mathieu, Jacques; Quesnel-Hellmann, Anne; Tournier, Jean-Nicolas

    2011-07-01

    Lung efficiency as gas exchanger organ is based on the delicate balance of its associated mucosal immune system between inflammation and sterility. In this study, we developed a dynamic imaging protocol using confocal and twophoton excitation fluorescence (2PEF) on freshly harvested infected lungs. This modus operandi allowed the collection of important information about CX3CR1+ pulmonary cells. This major immune cell subset turned out to be distributed in an anisotropic way in the lungs: subpleural, parenchymal and bronchial CX3CR1+ cells have then been described. The way parenchymal CX3CR1+ cells react against LPS activation has been considered using Matlab software, demonstrating a dramatic increase of average cell speed. Then, interactions between Bacillus anthracis spores and CX3CR1+ dendritic cells have been investigated, providing not only evidences of CX3CR1+ cells involvement in pathogen uptake but also details about the capture mechanisms.

  13. The Pig: A Relevant Model for Evaluating the Neutrophil Serine Protease Activities during Acute Pseudomonas aeruginosa Lung Infection

    PubMed Central

    Bréa, Déborah; Vandebrouck, Clarisse; Barc, Céline; Pezant, Jérémy; Melo, Sandrine; Olivier, Michel; Delaunay, Rémy; Boulesteix, Olivier; Berthon, Patricia; Rossignol, Christelle; Burlaud Gaillard, Julien; Becq, Frédéric; Gauthier, Francis; Si-Tahar, Mustapha; Meurens, François; Berri, Mustapha; Caballero-Posadas, Ignacio; Attucci, Sylvie

    2016-01-01

    The main features of lung infection and inflammation are a massive recruitment of neutrophils and the subsequent release of neutrophil serine proteases (NSPs). Anti-infectious and/or anti-inflammatory treatments must be tested on a suitable animal model. Mice models do not replicate several aspects of human lung disease. This is particularly true for cystic fibrosis (CF), which has led the scientific community to a search for new animal models. We have shown that mice are not appropriate for characterizing drugs targeting neutrophil-dependent inflammation and that pig neutrophils and their NSPs are similar to their human homologues. We induced acute neutrophilic inflammatory responses in pig lungs using Pseudomonas aeruginosa, an opportunistic respiratory pathogen. Blood samples, nasal swabs and bronchoalveolar lavage fluids (BALFs) were collected at 0, 3, 6 and 24 h post-insfection (p.i.) and biochemical parameters, serum and BAL cytokines, bacterial cultures and neutrophil activity were evaluated. The release of proinflammatory mediators, biochemical and hematological blood parameters, cell recruitment and bronchial reactivity, peaked at 6h p.i.. We also used synthetic substrates specific for human neutrophil proteases to show that the activity of pig NSPs in BALFs increased. These proteases were also detected at the surface of lung neutrophils using anti-human NSP antibodies. Pseudomonas aeruginosa-induced lung infection in pigs results in a neutrophilic response similar to that described for cystic fibrosis and ventilator-associated pneumonia in humans. Altogether, this indicates that the pig is an appropriate model for testing anti-infectious and/or anti-inflammatory drugs to combat adverse proteolytic effects of neutrophil in human lung diseases. PMID:27992534

  14. Suppression of IRG-1 Reduces Inflammatory Cell Infiltration and Lung Injury in Respiratory Syncytial Virus Infection by Reducing Production of Reactive Oxygen Species

    PubMed Central

    Ren, Ke; Lv, Yuanzi; Zhuo, Yujie; Chen, Changmai; Shi, Hengfei; Guo, Lin; Yang, Guang; Hou, Yayi

    2016-01-01

    ABSTRACT Respiratory syncytial virus (RSV) infection is a common cause of lower respiratory tract illness in infants and children. RSV is a negative-sense, single-strand RNA (ssRNA) virus that mainly infects airway epithelial cells. Accumulating evidence indicates that reactive oxygen species (ROS) production is a major factor for pulmonary inflammation and tissue damage of RSV disease. We investigated immune-responsive gene-1 (IRG1) expression during RSV infection, since IRG1 has been shown to mediate innate immune response to intracellular bacterial pathogens by modulating ROS and itaconic acid production. We found that RSV infection induced IRG1 expression in human A549 cells and in the lung tissues of RSV-infected mice. RSV infection or IRG1 overexpression promoted ROS production. Accordingly, knockdown of IRG1 induction blocked RSV-induced ROS production and proinflammatory cytokine gene expression. Finally, we showed that suppression of IRG1 induction reduced immune cell infiltration and prevented lung injury in RSV-infected mice. These results therefore link IRG1 induction to ROS production and immune lung injury after RSV infection. IMPORTANCE RSV infection is among the most common causes of childhood diseases. Recent studies identify ROS production as a factor contributing to RSV disease. We investigated the cause of ROS production and identified IRG1 as a critical factor linking ROS production to immune lung injury after RSV infection. We found that IRG1 was induced in A549 alveolar epithelial cells and in mouse lungs after RSV infection. Importantly, suppression of IRG1 induction reduced inflammatory cell infiltration and lung injury in mice. This study links IRG1 induction to oxidative damage and RSV disease. It also uncovers a potential therapeutic target in reducing RSV-caused lung injury. PMID:27252532

  15. Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection.

    PubMed

    McGill, Jodi; Legge, Kevin L

    2009-10-01

    Following influenza virus infection, CD8 T cells encounter mature, Ag-bearing dendritic cells within the draining lymph nodes and undergo activation, programmed proliferation, and differentiation to effector cells before migrating to the lungs to mediate viral clearance. However, it remains unclear whether CD8 T cells continue their proliferation after arriving in the lungs. To address this question, we developed a novel, in vivo, dual-label system using intranasal CFSE and BrdU administration to identify virus-specific CD8 T cells that are actively undergoing cell division while in the lungs. With this technique we demonstrate that a high frequency of virus-specific CD8 T cells incorporate BrdU while in the lungs and that this lung-resident proliferation contributes significantly to the magnitude of the Ag-specific CD8 T cell response following influenza virus infection.

  16. Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus

    PubMed Central

    WAN, QIAOFENG; WANG, HAO; HAN, XUEBO; LIN, YUAN; YANG, YANHUI; GU, LIGANG; ZHAO, JIAQING; WANG, LI; HUANG, LING; LI, YANBIN; YANG, YURONG

    2014-01-01

    The present study aimed to investigate the protective effects and underlying mechanisms of baicalin on imprinting control region mice infected with influenza A/FM/1/47 (H1N1) virus. Oral administration of baicalin into mice infected with H1N1 prevented death, increased the mean time to death and inhibited lung index and lung consolidation. Subsequently, fluorescence quantitative polymerase chain reaction was used to assess the mRNA expression of toll-like receptor 7 (TLR7) and myeloid differentiation primary response gene 88 (MYD88), and western blot analysis was used to determine the expression of phosphorylated nuclear factor κB (NF-κB)-P65 and c-jun/activator protein 1 (AP-1). An enzyme-linked immunosorbent assay was applied to test for the inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β and IL-6, in the lung tissue. The findings indicated that baicalin downregulated the mRNA expression of TLR7 and MYD88, significantly downregulated the protein expression of NF-κB-P65 and AP-1 and also inhibited the secretion of TNF-α, IL-1β and IL-6. In conclusion, baicalin effectively reduced the pathological damage and inflammation of the lungs by downregulating the TLR7/MYD88-mediated signaling pathway. PMID:24748990

  17. [Lung disease and HIV infection in children at the Charles de Gaulle university pediatric hospital center in Ouagadougou (Burkina Faso)].

    PubMed

    Kouéta, Fla; Yé, Diarra; Dao, Lassina; Zoungrana-Kaboré, Alice; Ouédraogo, Sylvie Armelle P; Napon, M; Sawadogo, Alphonse

    2008-01-01

    To compare the clinical and radiological aspects of lung diseases in HIV-positive and HIV-negative children, we conducted a retrospective case control study covering a 3-year period from January 2003 through December 2005 at Charles de Gaulle University Pediatric Hospital Center in Ouagadougou. HIV-positive patients hospitalised for lung disease were matched to HIV-negative patients controls, hospitalised for the same symptoms, by age and date of hospitalisation. The study included 186 patients (93 HIV-positive and 93 HIV-negative) and collected data on age, sex, clinical signs, radiological signs and short-term course. Of the 93 HIV-positive children suspected to have been contaminated by mother-to-child transmission, 92 had HIV1 and 1 had a double infection of HIV1 and 2. The mean age in both groups was 48 months. Clinically severe lung disease (44%) was more common in HIV-positive children. Radiology showed that interstitial syndrome was significantly more common in HIV-positive children (p=0001) with a sensitivity of 71% and a specificity of 60%. The case-fatality rate was 4.2% among HIV-positive children. This study allows us to remind paediatricians of the importance of lung disease in HIV-infected children. Moreover, the vertical transmission responsible for disease in all our patients shows the need to accelerate the scaling up of the program for prevention of mother-to-child HIV transmission in our country.

  18. Role for Tumor Necrosis Factor Alpha in Murine Cytomegalovirus Transcriptional Reactivation in Latently Infected Lungs

    PubMed Central

    Simon, Christian O.; Seckert, Christof K.; Dreis, Doris; Reddehase, Matthias J.; Grzimek, Natascha K. A.

    2005-01-01

    Interstitial pneumonia is a major clinical manifestation of primary or recurrent cytomegalovirus (CMV) infection in immunocompromised recipients of a bone marrow transplant. In a murine model, lungs were identified as a prominent site of CMV latency and recurrence. Pulmonary latency of murine CMV is characterized by high viral genome burden and a low incidence of variegated immediate-early (IE) gene expression, reflecting a sporadic activity of the major IE promoters (MIEPs) and enhancer. The enhancer-flanking promoters MIEP1/3 and MIEP2 are switched on and off during latency in a ratio of ∼2:1. MIEP1/3 latency-associated activity generates the IE1 transcript of the ie1/3 transcription unit but not the alternative splicing product IE3 that encodes the essential transactivator of early gene expression. Splicing thus appeared to be an important checkpoint for maintenance of latency. In accordance with previous work of others, we show here that signaling by the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) activates IE1/3 transcription in vivo. As an addition to current knowledge, Poisson distribution analysis revealed an increased incidence of IE1/3 transcriptional events as well as a higher amount of transcripts per event. Notably, TNF-α promoted the splicing to IE3 transcripts, but transcription did not proceed to the M55/gB early gene. Moreover, the activated transcriptional state induced by TNF-α did not predispose latently infected mice to a higher incidence of virus recurrence after hematoablative treatment. In conclusion, TNF-α is an important inductor of IE gene transcriptional reactivation, whereas early genes downstream in the viral replicative cycle appear to be the rate-limiting checkpoint(s) for virus recurrence. PMID:15596827

  19. Oseltamivir treatment of mice before or after mild influenza infection reduced cellular and cytokine inflammation in the lung

    PubMed Central

    Wong, Zi Xin; Jones, Jessica E.; Anderson, Gary P.; Gualano, Rosa C.

    2011-01-01

    Please cite this paper as: Wong et al. (2011) Oseltamivir treatment of mice before or after mild influenza infection reduced cellular and cytokine inflammation in the lung. Influenza and Other Respiratory Viruses 5(5), 343–350. Background  Lung inflammation is a critical determinant of influenza infection outcomes but is seldom evaluated in animal studies of oseltamivir (OS), which have focused on viral titre and survival. Objectives  To study the effects of pre‐ and post‐infection dosing with OS on viral replication and inflammation in a mouse model of non‐lethal influenza infection. Methods  BALB/c mice were infected with a laboratory‐adapted H3N1 strain of influenza. In pre‐dosing studies, OS was gavaged twice daily (1 and 10 mg/kg/day) from 4 hours prior to infection and continuing for 5 days (d) post‐infection (p.i). In the second post‐infection dosing study, dosing at 10 mg/kg/day began at 24–48 hours p.i. Mice were dissected at d3, d5 and d7 p.i. (pre‐dosing study) and d5 p.i. (post‐dosing study). Lung viral titres were determined by plaque assay. Bronchoalveolar lavage fluid (BALF) was collected and used for the quantitation of inflammatory cells and mediators. Results  Pre‐infection dosing of OS reduced total cells, neutrophils and macrophages in BALF. With pre‐ or post‐infection dosing, the pro‐inflammatory mediators TNF‐α, IL‐1β, IL‐6 and granulocyte–macrophage colony‐stimulating factor, the neutrophil chemokines keratinocyte‐derived chemokine and MIP‐1α and the macrophage chemokine MCP‐1 were reduced in BALF. Pre‐dosing with 1 mg/kg OS did not reduce viral titres, while 10 mg/kg slightly reduced viral titres at d3 and d5 p.i. Conclusions  Oseltamivir reduced the inflammatory response to influenza when given pre‐ or post‐infection. This anti‐inflammatory effect may contribute to the clinical benefit of OS. PMID:21668689

  20. An optimized two-photon method for in vivo lung imaging reveals intimate cell collaborations during infection

    NASA Astrophysics Data System (ADS)

    Fiole, Daniel; Deman, Pierre; Trescos, Yannick; Douady, Julien; Tournier, Jean-Nicolas

    2013-02-01

    Lung tissue motion arising from breathing and heart beating has been described as the largest annoyance of in vivo imaging. Consequently, infected lung tissue has never been imaged in vivo thus far, and little is known concerning the kinetics of the mucosal immune system at the cellular level. We have developed an optimized post-processing strategy to overcome tissue motion, based upon two-photon and second harmonic generation (SHG) microscopy. In contrast to previously published data, we have freed the lung parenchyma from any strain and depression in order to maintain the lungs under optimal physiological parameters. Excitation beams swept the sample throughout normal breathing and heart movements, allowing the collection of many images. Given that tissue motion is unpredictably, it was essential to sort images of interest. This step was enhanced by using SHG signal from collagen as a reference for sampling and realignment phases. A normalized cross-correlation criterion was used between a manually chosen reference image and rigid transformations of all others. Using CX3CR1+/gfp mice this process allowed the collection of high resolution images of pulmonary dendritic cells (DCs) interacting with Bacillus anthracis spores, a Gram-positive bacteria responsible for anthrax disease. We imaged lung tissue for up to one hour, without interrupting normal lung physiology. Interestingly, our data revealed unexpected interactions between DCs and macrophages, two specialized phagocytes. These contacts may participate in a better coordinate immune response. Our results not only demonstrate the phagocytizing task of lung DCs but also infer a cooperative role of alveolar macrophages and DCs.

  1. True microbiota involved in chronic lung infection of cystic fibrosis patients found by culturing and 16S rRNA gene analysis.

    PubMed

    Rudkjøbing, Vibeke B; Thomsen, Trine R; Alhede, Morten; Kragh, Kasper N; Nielsen, Per H; Johansen, Ulla R; Givskov, Michael; Høiby, Niels; Bjarnsholt, Thomas

    2011-12-01

    Patients suffering from cystic fibrosis (CF) develop chronic lung infection. In this study, we investigated the microorganisms present in transplanted CF lungs (n = 5) by standard culturing and 16S rRNA gene analysis. A correspondence between culturing and the molecular methods was observed. In conclusion, standard culturing seems reliable for the identification of the dominating pathogens.

  2. Lung Infection by Human Bocavirus Induces the Release of Profibrotic Mediator Cytokines In Vivo and In Vitro

    PubMed Central

    Karagiannidis, Christian; Bayh, Inga; Brockmann, Michael; Pieper, Monika; Windisch, Wolfram; Schildgen, Oliver; Schildgen, Verena

    2016-01-01

    Human Bocavirus subtype 1 (HBoV1) is associated with respiratory diseases and may contribute to chronic lung diseases by persisting in the infected host. Here the question was addressed if HBoV infections could contribute to fibrogenesis processes as suggested by previously published clinical observations. Cytokine profiles induced by HBoV infection in CuFi-8 air-liquid interphase cell cultures and in bronchoalveolar lavage fluid (BALF) of 20 HBoV-positive and 12 HBoV-negative patients were analysed by semi-quantitative Western spot blot analyses. Although lots of cytokines were regulated independently of HBoV status, several cytokines associated with lung fibrosis and tumour development, e.g., EGF, VEGF, TARC (CCL17), TNF-α, TNF-β, TIMP-1, were clearly upregulated in the HBoV-positive cohort. These findings suggest that the development of lung fibrosis might be triggered by HBoV induced cytokine expression. PMID:26807786

  3. Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model.

    PubMed

    Nagarajan, Uma M; Prantner, Daniel; Sikes, James D; Andrews, Charles W; Goodwin, Anna M; Nagarajan, Shanmugam; Darville, Toni

    2008-10-01

    Type I interferons (IFNs) induced during in vitro chlamydial infection exert bactericidal and immunomodulatory functions. To determine the precise role of type I IFNs during in vivo chlamydial genital infection, we examined the course and outcome of Chlamydia muridarum genital infection in mice genetically deficient in the receptor for type I IFNs (IFNAR(-/-) mice). A significant reduction in chlamydial shedding and duration of lower genital tract infection was observed in IFNAR(-/-) mice in comparison to the level of chlamydial shedding and duration of infection in wild-type (WT) mice. Furthermore, IFNAR(-/-) mice developed less chronic oviduct pathology in comparison to that in WT mice. Compared to the WT, IFNAR(-/-) mice had a greater number of chlamydial-specific T cells in their iliac lymph nodes 21 days postinfection. IFNAR(-/-) mice also exhibited earlier and enhanced CD4 T-cell recruitment to the cervical tissues, which was associated with increased expression of CXCL9 in the genital secretions of IFNAR(-/-) mice, but not with expression of CXCL10, which was reduced in the genital secretions of IFNAR(-/-) mice. These data suggest that type I IFNs exacerbate C. muridarum genital infection through an inhibition of the chlamydial-specific CD4 T-cell response.

  4. Pectin-Derived Acidic Oligosaccharides Improve the Outcome of Pseudomonas aeruginosa Lung Infection in C57BL/6 Mice.

    PubMed

    Bernard, Henry; Desseyn, Jean-Luc; Gottrand, Frédéric; Stahl, Bernd; Bartke, Nana; Husson, Marie-Odile

    2015-01-01

    The administration of prebiotics as oligosaccharides (OS), by acting on intestinal microbiota, could modulate the immune and inflammatory response and represent a new strategy to improve the outcome of bacterial infection. The aim of this study was to determine whether pectin-derived acidic oligosaccharides (pAOS) could modulate the outcome of pulmonary P. aeruginosa (PA) infection in C57BL/6 mice, which develop a Th1 response to PA lung infection. Mice were randomized for 5 weeks to consume a control or a 5% pAOS diet and chronically infected by PA. Resistance to a second PA infection was also analyzed by reinfecting the surviving mice 2 weeks after the first infection. Compared with control mice, mice fed pAOS had reduced mortality (P<0.05). This improvement correlated with a better control of the inflammatory response with a lower neutrophil count on day 1 (P<0.05), a sustained neutrophil and macrophage recruitment on days 2 and 3 (P<0.01) a greater and sustained IL-10 release in lung (P<0.05) and a reduction of the Th1 response and M1 activation with a lower IFN-γ/IL-4 (P<0.01) and nos2/arg1 (P<0.05) ratios. These results coincided with a modulation of the intestinal microbiota as shown by an increased butyric acid concentration in feces (P<0.05). Moreover, pAOS decreased the bacterial load (P<0.01) in mice reinfected 2 weeks after the first infection, suggesting that pAOS could reduce pulmonary exacerbations. In conclusion, pAOS improved the outcome of PA infection in C57BL/6 mice by modulating the intestinal microbiota and the inflammatory and immune responses.

  5. Pectin- Derived Acidic Oligosaccharides Improve the Outcome of Pseudomonas aeruginosa Lung Infection in C57BL/6 Mice

    PubMed Central

    Bernard, Henry; Desseyn, Jean-Luc; Gottrand, Frédéric; Stahl, Bernd; Bartke, Nana; Husson, Marie-Odile

    2015-01-01

    The administration of prebiotics as oligosaccharides (OS), by acting on intestinal microbiota, could modulate the immune and inflammatory response and represent a new strategy to improve the outcome of bacterial infection. The aim of this study was to determine whether pectin-derived acidic oligosaccharides (pAOS) could modulate the outcome of pulmonary P. aeruginosa (PA) infection in C57BL/6 mice, which develop a Th1 response to PA lung infection. Mice were randomized for 5 weeks to consume a control or a 5% pAOS diet and chronically infected by PA. Resistance to a second PA infection was also analyzed by reinfecting the surviving mice 2 weeks after the first infection. Compared with control mice, mice fed pAOS had reduced mortality (P<0.05). This improvement correlated with a better control of the inflammatory response with a lower neutrophil count on day 1 (P<0.05), a sustained neutrophil and macrophage recruitment on days 2 and 3 (P<0.01) a greater and sustained IL-10 release in lung (P<0.05) and a reduction of the Th1 response and M1 activation with a lower IFN-γ/IL-4 (P<0.01) and nos2/arg1 (P<0.05) ratios. These results coincided with a modulation of the intestinal microbiota as shown by an increased butyric acid concentration in feces (P<0.05). Moreover, pAOS decreased the bacterial load (P<0.01) in mice reinfected 2 weeks after the first infection, suggesting that pAOS could reduce pulmonary exacerbations. In conclusion, pAOS improved the outcome of PA infection in C57BL/6 mice by modulating the intestinal microbiota and the inflammatory and immune responses. PMID:26599638

  6. Profile of cytokines in the lungs of BALB/c mice after intra-nasal infection with Histoplasma capsulatum mycelial propagules.

    PubMed

    Sahaza, Jorge Humberto; Suárez-Alvarez, Roberto; Estrada-Bárcenas, Daniel Alfonso; Pérez-Torres, Armando; Taylor, Maria Lucia

    2015-08-01

    The host pulmonary response to the fungus Histoplasma capsulatum was evaluated, through the profile of cytokines detected by the MagPix magnetic beads platform in lung homogenates and by lung-granulomas formation, from mice intra-nasally infected with mycelial propagules (M-phase) of two virulent H. capsulatum strains, EH-46 and G-217B. Results highlight that mice lung inflammatory response depends on the H. capsulatum strain used, during the first step of the fungal infection. IL-1β and TNF-α increased their concentrations in mice infected with both strains. The highest levels of IL-6, IL-17, and IL-23 were found in EH-46-infected mice, whereas levels of IL-22 were variable at all post-infection times for both strains. Significant increases of IL-12, IFN-γ, IL-4, and IL-10 were associated to EH-46-infected mice. Histological lung findings from EH-46-infected mice revealed incipient and numerous well-developed granulomas, distributed in lung-lobes at the 14th and the 21st days after infection, according to cytokine profiles.

  7. Identification of an iron-responsive protein that is antigenic in patients with Chlamydia trachomatis genital infections.

    PubMed

    Raulston, Jane E; Miller, Jeffrey D; Davis, Caroyn H; Schell, Maria; Baldwin, Amy; Ferguson, Kaethe; Lane, Heather

    2007-12-01

    Chlamydia trachomatis is an important cause of immune-mediated damage to the reproductive tract of infected patients. Certain chlamydial antigens and host genetic factors have been identified as contributing to immunopathological events, but a comprehensive understanding of specific components involved in destructive vs. protective immune responses to chlamydial infections is far from clear. In this study, it is shown that C. trachomatis-infected patients generate antibodies against an iron-responsive chlamydial protein, YtgA. The identity of YtgA was confirmed by mass spectrometry following two-dimensional polyacrylamide gel electrophoresis and Western blot analysis. This finding underscores a necessity to examine patient sera samples to identify chlamydial antigens that are likely encountered and important to the immune response during human infections.

  8. Exposure to cigarette smoke and Chlamydia pneumoniae infection in mice: Effect on infectious burden, systemic dissemination and cytokine responses: A pilot study.

    PubMed

    Kumar, Swati; Smith-Norowitz, Tamar A; Kohlhoff, Stephan; Apfalter, Petra; Roblin, Patricia; Kutlin, Andrei; Harkema, Jack; Ng, Sheung P; Doherty-Lyons, Shannon; Zelikoff, Judith T; Hammerschlag, Margaret R

    2016-01-01

    Cigarette smoke exposure has been considered a risk factor for infection with Chlamydia pneumoniae. C. pneumoniae infection is associated with respiratory tract infection and chronic respiratory disease, which is a serious public health concern. To determine whether prior exposure to cigarette smoke worsens C. pneumoniae infection (specifically, increases infectious burden and systemic dissemination) as well as alters cytokine responses in mice, adult female C57BL/6 mice were exposed to either filtered air (FA) or mainstream cigarette smoke (MCS) (15 mg/m(3), total suspended particulates) for 5 days/week for 2 weeks and then infected with C. pneumoniae (10(5) IFU) via intratracheal instillation. Mice were euthanized on Days 7, 14 or 26 post-infection (p.i.). Chlamydial burdens in the lungs and spleen were quantified by quantitative PCR (qPCR) and histologic analyses were performed; cytokine levels (TNFα, IL-4, IFNγ) in bronchoalveolar lavage fluid and serum were assayed by enzyme-linked immunosorbent assay (ELISA). The results indicated that: (1) mice exposed to either FA or MCS had similar chlamydial burdens in the lungs and spleen on Days 14 and 26 p.i.; (2) proximal and distal airway inflammation was observed on Day 14 p.i. in both FA and MCS mice, but persisted in MCS mice until Day 26 p.i.; FA exposed mice demonstrated resolution of distal airway inflammation; and (3) MCS mice displayed higher serum levels of IFNγ and IL-4 on Day 26 p.i. These findings indicate that exposure of mice to MCS (at a concentration equivalent to smoking < 1 pack cigarettes/day) led to greater C. pneumoniae-induced inflammation, as indicated by prolonged inflammatory changes.

  9. Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion.

    PubMed

    Ur-Rehman, Tofeeq; Slepenkin, Anatoly; Chu, Hencelyn; Blomgren, Anders; Dahlgren, Markus K; Zetterström, Caroline E; Peterson, Ellena M; Elofsson, Mikael; Gylfe, Asa

    2012-08-01

    Salicylidene acylhydrazides belong to a class of compounds shown to inhibit bacterial type III secretion (T3S) in pathogenic Gram-negative bacteria. This class of compounds also inhibits growth and replication of Chlamydiae, strict intracellular bacteria that possess a T3S system. In this study a library of 58 salicylidene acylhydrazides was screened to identify inhibitors of Chlamydia growth. Compounds inhibiting growth of both Chlamydia trachomatis and Chlamydophila pneumoniae were tested for cell toxicity and seven compounds were selected for preliminary pharmacokinetic analysis in mice using cassette dosing. Two compounds, ME0177 and ME0192, were further investigated by individual pharmacokinetic analysis. Compound ME0177 had a relatively high peak plasma concentration (C(max)) and area under curve and therefore may be considered for systemic treatment of Chlamydia infections. The other compound, ME0192, had poor pharmacokinetic properties but the highest anti-chlamydial activity in vitro and therefore was tested for topical treatment in a mouse vaginal infection model. ME0192 administered vaginally significantly reduced the infectious burden of C. trachomatis and the number of infected mice.

  10. Listeria ivanovii Infection in Mice: Restricted to the Liver and Lung with Limited Replication in the Spleen

    PubMed Central

    Zhou, Mengying; Jiang, Mingjuan; Ren, Chenyan; Liu, Sijing; Pu, Qikang; Goldfine, Howard; Shen, Hao; Wang, Chuan

    2016-01-01

    Listeria monocytogenes (LM) vectors have shown much promise in delivery of viral and tumor antigens for the development of vaccines. L. ivanovii (LI) is a closely related bacterium with a similar intracellular life cycle that may offer advantages over LM because it is not a human pathogen, but can infect other animal species. Recent studies show that recombinant LI expressing Mycobacterium tuberculosis antigens is effective in inducing protective immunity in mouse models, demonstrating the potential of LI as a live vaccine vector. However, a key barrier in the development of LI into a live vaccine vector is that its pathogenic and immunogenic characteristics have yet to be fully understood. Therefore, in this research, C57BL/6J mice were inoculated with LM or LI intravenously or intranasally, and bacterial loads, histopathologic changes, and cytokine production were determined at indicated days post inoculation. Results showed that after intravenous infection with LM or LI, bacteria were found proliferating in the liver, spleen, and lung. However, LI could only reach a heavy burden in the liver and its ability to multiply and to resist host immunity seemed limited in the spleen and lung. After intranasal inoculation with LI, bacteria were mainly localized in the lung and failed to infect liver or spleen, while LM could. In organs with heavy LI burden, lesions were isolated, localized and densely packed, compared to lesions caused by LM, which were invasive. In the liver of intravenously inoculated mice and lung of intranasally inoculate mice, LI was able to elicit comparable cytokine production with LM and cause less severe histopathologic damages, and thus could be considered as a vector for treating or preventing hepatic or pulmonary diseases. PMID:27375558

  11. Chronic lung infection by Pseudomonas aeruginosa biofilm is cured by L-Methionine in combination with antibiotic therapy

    PubMed Central

    Gnanadhas, Divya Prakash; Elango, Monalisha; Datey, Akshay; Chakravortty, Dipshikha

    2015-01-01

    Bacterial biofilms are associated with 80–90% of infections. Within the biofilm, bacteria are refractile to antibiotics, requiring concentrations >1,000 times the minimum inhibitory concentration. Proteins, carbohydrates and DNA are the major components of biofilm matrix. Pseudomonas aeruginosa (PA) biofilms, which are majorly associated with chronic lung infection, contain extracellular DNA (eDNA) as a major component. Herein, we report for the first time that L-Methionine (L-Met) at 0.5 μM inhibits Pseudomonas aeruginosa (PA) biofilm formation and disassembles established PA biofilm by inducing DNase expression. Four DNase genes (sbcB, endA, eddB and recJ) were highly up-regulated upon L-Met treatment along with increased DNase activity in the culture supernatant. Since eDNA plays a major role in establishing and maintaining the PA biofilm, DNase activity is effective in disrupting the biofilm. Upon treatment with L-Met, the otherwise recalcitrant PA biofilm now shows susceptibility to ciprofloxacin. This was reflected in vivo, in the murine chronic PA lung infection model. Mice treated with L-Met responded better to antibiotic treatment, leading to enhanced survival as compared to mice treated with ciprofloxacin alone. These results clearly demonstrate that L-Met can be used along with antibiotic as an effective therapeutic against chronic PA biofilm infection. PMID:26521707

  12. Mast cells play an important role in Chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway

    PubMed Central

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Alsabeh, Randa; Slepenkin, Anatoly V.; Peterson, Ellena; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    Mast cells are known as central players in allergy and anaphylaxis, and play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae (Cpn) is an important human pathogen, but it is unclear what role mast cells play during Cpn infection. We infected C57BL/6 (WT) and mast cell-deficient mice, Kitw-sh/w-sh (Wsh), with Cpn. Wsh mice showed improved survival than WT, with fewer cells in Wsh BALF despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT. Cromolyn, a mast cell stabilizer, reduced BAL cells and bacterial burden similar to Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BAL cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation while Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of MMP-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during Cpn infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for Cpn. PMID:25754739

  13. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?

    PubMed Central

    Huang, Jinling; Gogarten, Johann Peter

    2007-01-01

    Background Ancient endosymbioses are responsible for the origins of mitochondria and plastids, and they contribute to the divergence of several major eukaryotic groups. Although chlamydiae, a group of obligate intracellular bacteria, are not found in plants, an unexpected number of chlamydial genes are most similar to plant homologs, which, interestingly, often contain a plastid-targeting signal. This observation has prompted several hypotheses, including gene transfer between chlamydiae and plant-related groups and an ancestral relationship between chlamydiae and cyanobacteria. Results We conducted phylogenomic analyses of the red alga Cyanidioschyzon merolae to identify genes specifically related to chlamydial homologs. We show that at least 21 genes were transferred between chlamydiae and primary photosynthetic eukaryotes, with the donor most similar to the environmental Protochlamydia. Such an unusually high number of transferred genes suggests an ancient chlamydial endosymbiosis with the ancestral primary photosynthetic eukaryote. We hypothesize that three organisms were involved in establishing the primary photosynthetic lineage: the eukaryotic host cell, the cyanobacterial endosymbiont that provided photosynthetic capability, and a chlamydial endosymbiont or parasite that facilitated the establishment of the cyanobacterial endosymbiont. Conclusion Our findings provide a glimpse into the complex interactions that were necessary to establish the primary endosymbiotic relationship between plastid and host cytoplasms, and thereby explain the rarity with which long-term successful endosymbiotic relationships between heterotrophs and photoautotrophs were established. Our data also provide strong and independent support for a common origin of all primary photosynthetic eukaryotes and of the plastids they harbor. PMID:17547748

  14. Concentration of amoxycillin and clavulanate in lung compartments in adults without pulmonary infection.

    PubMed Central

    Cook, P. J.; Andrews, J. M.; Woodcock, J.; Wise, R.; Honeybourne, D.

    1994-01-01

    BACKGROUND--The efficacy of an antibiotic is usually predicted from serum levels and MIC90 values for likely pathogens, but in the lung tissue concentrations may be more informative. This study compares concentrations of amoxycillin and clavulanate in serum, epithelial lining fluid (ELF), alveolar macrophages, and bronchial mucosa in 15 adults. METHODS--Amoxycillin 500 mg and clavulanic acid 250 mg were given 1-2 hours before diagnostic bronchoscopy for haemoptysis or radiological abnormality. Mucosal biopsy samples were taken from macroscopically normal sites, alveolar macrophages harvested by lavage, and ELF volume derived from urea concentrations in bronchial lavage fluid and blood. Amoxycillin was assayed by inhibition of growth of Micrococcus lutea, and clavulanate (in serum, ELF, and bronchial mucosa) by inhibition of growth of Klebsiella pneumoniae; in macrophages clavulanate was measured by high performance liquid chromatography. RESULTS--The median concentrations in serum were 6.90 mg/l for amoxycillin and 5.25 mg/l for clavulanate. The median bronchial mucosal concentration of amoxycillin was 2.99 mg/l and of clavulanate was 1.65 mg/l; the median concentrations in ELF were 0.89 and 0.96 mg/l, and in macrophages 0 and 0.76 mg/l, respectively. In macrophages amoxycillin levels were undetectable in 10 of 14 subjects (71%); by contrast, only 6 of 14 subjects (43%) had no detectable clavulanate. CONCLUSIONS--Clavulanate levels exceeded quoted MIC90 values (around 0.25 mg/l) for Legionella pneumophila both in ELF and in macrophages. Amoxycillin-clavulanate may therefore have a clinical role in infections with Legionella pneumophila. PMID:7831630

  15. Haemophilus influenzae LicB contributes to lung damage in an aged mice co-infection model.

    PubMed

    Bondy, Jessica; Osharovich, Sofya; Storm, Julie; Durning, Graham; McAuliffe, Timothy; Fan, Xin

    2016-01-01

    Phosphorylcholine (ChoP) decoration of lipopolysaccharides is an important virulence strategy adopted by Haemophilus influenzae to establish a niche on the mucosal surface and to promote adherence to the host cells. The incorporation of ChoP on the LPS surface involves the lic1 operon, which consists of the licA, licB, licC, and licD genes. Among which, licB is a choline transporter gene required for acquisition of choline from environmental sources. In this study, we investigated the pathogenesis of the licB gene in an aged mice infection model. Due to immediate clearance of H. influenzae upon infection in mice, we employed influenza A virus and H. influenzae co-infection model. Our data showed that in the co-infection model, the secondary bacterial infection with a very low H. influenzae concentration of 100 colony forming unit is lethal to the aged mice. Although we did not observe any differences in weight loss between parent and licB mutant strains during the course of infection, a significant reduction of lung tissue damage was observed in the licB mutant infected aged mice. These results suggest that the licB gene is a virulence factor during H. influenzae infection in the lung in aged mice, possibly due to the increased binding to the host cell receptor via ChoP expression on the bacterial surface. In addition, when aged mice and mature mice were compared in the challenge experiments, we did not observe any protective immunity in the co-infection model suggesting the detrimental effects of the secondary bacterial infection on the aged mice in contrast to obvious immune-protections observed in the mature mice. The results of our experiments also implied that the co-infection model with influenza A virus and H. influenzae may be employed as a model system to study H. influenzae pathogenesis in vivo in aged mice.

  16. High-Sensitivity MALDI-MRM-MS Imaging of Moxifloxacin Distribution in Tuberculosis-Infected Rabbit Lungs and Granulomatous Lesions

    PubMed Central

    Prideaux, Brendan; Dartois, Véronique; Staab, Dieter; Weiner, Danielle M.; Goh, Anne; Via, Laura E.; Barry, Clifton E.; Stoeckli, Markus

    2011-01-01

    MALDI-MSI is a powerful technology for localizing drug and metabolite distributions in biological tissues. To enhance our understanding of tuberculosis (TB) drug efficacy and how efficiently certain drugs reach their site of action, MALDI-MSI was applied to image the distribution of the second-line TB drug moxifloxacin at a range of time points after dosing. The ability to perform multiple monitoring of selected ion transitions in the same experiment enabled extremely sensitive imaging of moxifloxacin within tuberculosis-infected rabbit lung biopsies in less than 15 min per tissue section. Homogeneous application of a reference standard during the matrix spraying process enabled the ion-suppressing effects of the inhomogeneous lung tissue to be normalized. The drug was observed to accumulate in granulomatous lesions at levels higher than that in the surrounding lung tissue from 1.5 h postdose until the final time point. MALDI-MSI moxifloxacin distribution data were validated by quantitative LC/MS/MS analysis of lung and granuloma extracts from adjacent biopsies taken from the same animals. Drug distribution within the granulomas was observed to be inhomogeneous, and very low levels were observed in the caseum in comparison to the cellular granuloma regions. In this experiment the MALDI-MRM-MSI method was shown to be a rapid and sensitive method for analyzing the distribution of anti-TB compounds and will be applied to distribution studies of additional drugs in the future. PMID:21332183

  17. Retrospective Analysis of Bacterial and Viral Co-Infections in Pneumocystis spp. Positive Lung Samples of Austrian Pigs with Pneumonia

    PubMed Central

    Weissenbacher-Lang, Christiane; Kureljušić, Branislav; Nedorost, Nora; Matula, Bettina; Schießl, Wolfgang; Stixenberger, Daniela; Weissenböck, Herbert

    2016-01-01

    Aim of this study was the retrospective investigation of viral (porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), torque teno sus virus type 1 and 2 (TTSuV1, TTSuV2)) and bacterial (Bordetella bronchiseptica (B. b.), Mycoplasma hyopneumoniae (M. h.), and Pasteurella multocida (P. m.)) co-infections in 110 Pneumocystis spp. positive lung samples of Austrian pigs with pneumonia. Fifty-one % were positive for PCV2, 7% for PRRSV, 22% for TTSuV1, 48% for TTSuV2, 6% for B. b., 29% for M. h., and 21% for P. m. In 38.2% only viral, in 3.6% only bacterial and in 40.0% both, viral and bacterial pathogens were detected. In 29.1% of the cases a co-infection with 1 pathogen, in 28.2% with 2, in 17.3% with 3, and in 7.3% with 4 different infectious agents were observed. The exposure to Pneumocystis significantly decreased the risk of a co-infection with PRRSV in weaning piglets; all other odds ratios were not significant. Four categories of results were compared: I = P. spp. + only viral co-infectants, II = P. spp. + both viral and bacterial co-infectants, III = P. spp. + only bacterial co-infectants, and IV = P. spp. single infection. The evaluation of all samples and the age class of the weaning piglets resulted in a predomination of the categories I and II. In contrast, the suckling piglets showed more samples of category I and IV. In the group of fattening pigs, category II predominated. Suckling piglets can be infected with P. spp. early in life. With increasing age this single infections can be complicated by co-infections with other respiratory diseases. PMID:27428002

  18. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection

    PubMed Central

    Sinha, Meenal; McCabe, Orla; Palmer, Jonathan M.; Choera, Tsokyi; Yun Lim, Fang; Wimmerova, Michaela; Carrington, Stephen D.; Yuan, Shaopeng; Lowell, Clifford A.; Oscarson, Stefan; Keller, Nancy P.; Fahy, John V.

    2016-01-01

    The immune mechanisms that recognize inhaled Aspergillus fumigatus conidia to promote their elimination from the lungs are incompletely understood. FleA is a lectin expressed by Aspergillus fumigatus that has twelve binding sites for fucosylated structures that are abundant in the glycan coats of multiple plant and animal proteins. The role of FleA is unknown: it could bind fucose in decomposed plant matter to allow Aspergillus fumigatus to thrive in soil, or it may be a virulence factor that binds fucose in lung glycoproteins to cause Aspergillus fumigatus pneumonia. Our studies show that FleA protein and Aspergillus fumigatus conidia bind avidly to purified lung mucin glycoproteins in a fucose-dependent manner. In addition, FleA binds strongly to macrophage cell surface proteins, and macrophages bind and phagocytose fleA-deficient (∆fleA) conidia much less efficiently than wild type (WT) conidia. Furthermore, a potent fucopyranoside glycomimetic inhibitor of FleA inhibits binding and phagocytosis of WT conidia by macrophages, confirming the specific role of fucose binding in macrophage recognition of WT conidia. Finally, mice infected with ΔfleA conidia had more severe pneumonia and invasive aspergillosis than mice infected with WT conidia. These findings demonstrate that FleA is not a virulence factor for Aspergillus fumigatus. Instead, host recognition of FleA is a critical step in mechanisms of mucin binding, mucociliary clearance, and macrophage killing that prevent Aspergillus fumigatus pneumonia. PMID:27058347

  19. Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection

    PubMed Central

    Moltedo, Bruno; Li, Wenjing; Yount, Jacob S.; Moran, Thomas M.

    2011-01-01

    Migratory lung dendritic cells (DCs) transport viral antigen from the lungs to the draining mediastinal lymph nodes (MLNs) during influenza virus infection to initiate the adaptive immune response. Two major migratory DC subsets, CD103+ DCs and CD11bhigh DCs participate in this function and it is not clear if these antigen presenting cell (APC) populations become directly infected and if so whether their activity is influenced by the infection. In these experiments we show that both subpopulations can become infected and migrate to the draining MLN but a difference in their response to type I interferon (I-IFN) signaling dictates the capacity of the virus to replicate. CD103+ DCs allow the virus to replicate to significantly higher levels than do the CD11bhigh DCs, and they release infectious virus in the MLNs and when cultured ex-vivo. Virus replication in CD11bhigh DCs is inhibited by I-IFNs, since ablation of the I-IFN receptor (IFNAR) signaling permits virus to replicate vigorously and productively in this subset. Interestingly, CD103+ DCs are less sensitive to I-IFNs upregulating interferon-induced genes to a lesser extent than CD11bhigh DCs. The attenuated IFNAR signaling by CD103+ DCs correlates with their described superior antigen presentation capacity for naïve CD8+ T cells when compared to CD11bhigh DCs. Indeed ablation of IFNAR signaling equalizes the competency of the antigen presenting function for the two subpopulations. Thus, antigen presentation by lung DCs is proportional to virus replication and this is tightly constrained by I-IFN. The “interferon-resistant” CD103+ DCs may have evolved to ensure the presentation of viral antigens to T cells in I-IFN rich environments. Conversely, this trait may be exploitable by viral pathogens as a mechanism for systemic dissemination. PMID:22072965

  20. Coinoculation with Hartmannella vermiformis enhances replicative Legionella pneumophila lung infection in a murine model of Legionnaires' disease.

    PubMed Central

    Brieland, J; McClain, M; Heath, L; Chrisp, C; Huffnagle, G; LeGendre, M; Hurley, M; Fantone, J; Engleberg, C

    1996-01-01

    The effect of inhaled amoebae on the pathogenesis of Legionnaires' disease was investigated in vivo. A/J mice, which are susceptible to replicative Legionella pneumophila infections, were inoculated intratracheally with L. pneumophila (10(6) bacteria per mouse) or were coinoculated with L. pneumophila (10(6) bacteria per mouse) and Hartmannella vermiformis (10(6) amoebae per mouse). The effect of coinoculation with H. vermiformis on bacterial clearance, histopathology, cellular recruitment into the lung, and intrapulmonary levels of cytokines including gamma interferon and tumor necrosis factor alpha was subsequently assessed. Coinoculation with H. vermiformis significantly enhanced intrapulmonary growth of L. pneumophila in A/J mice. Histopathologic and flow cytometric analysis of lung tissue demonstrated that while A/J mice inoculated with L. pneumophila alone develop multifocal pneumonitis which resolves with minimal mortality, mice coinoculated with H. vermiformis develop diffuse pneumonitis which is associated with diminished intrapulmonary recruitment of lymphocytes and mononuclear phagocytic cells and significant mortality. Furthermore, coinoculation of mice with H. vermiformis resulted in a fourfold enhancement in intrapulmonary levels of gamma interferon and tumor necrosis factor alpha compared with mice infected with L. pneumophila alone. The effect of H. vermiformis on intrapulmonary growth of L. pneumophila in a resistant host (i.e., BALB/c mice) was subsequently evaluated. While BALB/c mice do not develop replicative L. pneumophila infections following inoculation with L. pneumophila alone, there was an eightfold increase in intrapulmonary L. pneumophila in BALB/c mice coinoculated with H. vermiformis. These studies, demonstrating that intrapulmonary amoebae potentiate replicative L. pneumophila lung infection in both a susceptible and a resistant host, have significant implications with regard to the potential role of protozoa in the pathogenesis of

  1. Phenotypic diversity and genotypic flexibility of Burkholderia cenocepacia during long-term chronic infection of cystic fibrosis lungs

    PubMed Central

    Flibotte, Stephane; Sinha, Sunita; Paiero, Adrianna; Ehrlich, Rachel L.; Balashov, Sergey; Ehrlich, Garth D.

    2017-01-01

    Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures—including immune responses and therapeutic interventions—shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2–20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution. PMID:28325850

  2. Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-γ production and infection control in mice.

    PubMed

    Gracey, Eric; Baglaenko, Yuriy; Prayitno, Nadia; Van Rooijen, Nico; Akram, Ali; Lin, Aifeng; Chiu, Basil; Inman, Robert D

    2015-12-01

    Protective immunity to the pathogen Chlamydia is dependent on a robust IFN-γ response generated by innate and adaptive lymphocytes. Here we assess the role of the macrophage in orchestrating a protective response in vivo to the murine pathogen, Chlamydia muridarum. During acute pulmonary and peritoneal infection, resident macrophages in both sites are infected with C. muridarum and adopt an inflammatory phenotype. In the lung, this activation is restricted to interstitial macrophages, which harbor higher levels of C. muridarum 16sRNA than alveolar macrophages. We examined innate and adaptive lymphocyte activation in the peritoneal cavity with macrophage depletion and with adoptive transfer of infected macrophages. These experiments demonstrate macrophage activation correlates with a protective IFN-γ response and effective control of C. muridarum. These studies suggest that a quantitative or qualitative alteration in macrophages may play a key role in the development of Chlamydia-associated diseases.

  3. Differential CMV-Specific CD8+ Effector T Cell Responses in the Lung Allograft Predominate over the Blood during Human Primary Infection1

    PubMed Central

    Pipeling, Matthew R.; West, Erin E.; Osborne, Christine M.; Whitlock, Amanda B.; Dropulic, Lesia K.; Willett, Matthew H.; Forman, Michael; Valsamakis, Alexandra; Orens, Jonathan B.; Moller, David R.; Lechtzin, Noah; Migueles, Stephen A.; Connors, Mark; McDyer, John F.

    2009-01-01

    Acquisition of T cell responses during primary CMV infection in lung transplant recipients (LTRs) appear critical for host defense and allograft durability, with increased mortality in donor+/recipient− (D+R−) individuals. In 15 D+R− LTRs studied, acute primary CMV infection was characterized by viremia in the presence or absence of pneumonitis, with viral loads higher in the lung airways/allograft compared with the blood. A striking influx of CD8+ T cells into the lung airways/allograft was observed, with inversion of the CD4+:CD8+ T cell ratio. De novo CMV-specific CD8+ effector frequencies in response to pooled peptides of pp65 were strikingly higher in lung mononuclear cells compared with the PBMC and predominated over IE1-specific responses and CD4+ effector responses in both compartments. The frequencies of pp65-specific cytokine responses were significantly higher in lung mononuclear cells compared with PBMC and demonstrated marked contraction with long-term persistence of effector memory CD8+ T cells in the lung airways following primary infection. CMV-tetramer+CD8+ T cells from PBMC were CD45RA− during viremia and transitioned to CD45RA+ following resolution. In contrast, CMV-specific CD8+ effectors in the lung airways/allograft maintained a CD45RA− phenotype during transition from acute into chronic infection. Together, these data reveal differential CMV-specific CD8+ effector frequencies, immunodominance, and polyfunctional cytokine responses predominating in the lung airways/allograft compared with the blood during acute primary infection. Moreover, we show intercompartmental phenotypic differences in CMV-specific memory responses during the transition to chronic infection. PMID:18566421

  4. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    PubMed Central

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  5. Stenotrophomonas maltophilia Virulence and Specific Variations in Trace Elements during Acute Lung Infection: Implications in Cystic Fibrosis

    PubMed Central

    Crocetta, Valentina; Consalvo, Ada; Zappacosta, Roberta; Di Ilio, Carmine; Di Bonaventura, Giovanni

    2014-01-01

    Metal ions are necessary for the proper functioning of the immune system, and, therefore, they might have a significant influence on the interaction between bacteria and host. Ionic dyshomeostasis has been recently observed also in cystic fibrosis (CF) patients, whose respiratory tract is frequently colonized by Stenotrophomonas maltophilia. For the first time, here we used an inductively mass spectrometry method to perform a spatial and temporal analysis of the pattern of changes in a broad range of major trace elements in response to pulmonary infection by S. maltophilia. To this, DBA/2 mouse lungs were comparatively infected by a CF strain and by an environmental one. Our results showed that pulmonary ionomic profile was significantly affected during infection. Infected mice showed increased lung levels of Mg, P, S, K, Zn, Se, and Rb. To the contrary, Mn, Fe, Co, and Cu levels resulted significantly decreased. Changes of element concentrations were correlated with pulmonary bacterial load and markers of inflammation, and occurred mostly on day 3 post-exposure, when severity of infection culminated. Interestingly, CF strain – significantly more virulent than the environmental one in our murine model - provoked a more significant impact in perturbing pulmonary metal homeostasis. Particularly, exposure to CF strain exclusively increased P and K levels, while decreased Fe and Mn ones. Overall, our data clearly indicate that S. maltophilia modulates pulmonary metal balance in a concerted and virulence-dependent manner highlighting the potential role of the element dyshomeostasis during the progression of S. maltophilia infection, probably exacerbating the harmful effects of the loss of CF transmembrane conductance regulator function. Further investigations are required to understand the biological significance of these alterations and to confirm they are specifically caused by S. maltophilia. PMID:24586389

  6. Genetic background affects the expansion of macrophage subsets in the lungs of Mycobacterium tuberculosis-infected hosts.

    PubMed

    Bertolini, Thais Barboza; de Souza, Alexandre Ignacio; Gembre, Ana Flávia; Piñeros, Annie Rocio; Prado, Rafael de Queiroz; Silva, João Santana; Ramalho, Leandra Naira Zambelli; Bonato, Vânia Luiza Deperon

    2016-05-01

    M1 macrophages are more effective in the induction of the inflammatory response and clearance of Mycobacterium tuberculosis than M2 macrophages. Infected C57BL/6 mice generate a stronger cellular immune response compared with BALB/c mice. We hypothesized that infected C57BL/6 mice would exhibit a higher frequency and function of M1 macrophages than infected BALB/c mice. Our findings show a higher ratio of macrophages to M2 macrophages in the lungs of chronically infected C57BL/6 mice compared with BALB/c mice. However, there was no difference in the functional ability of M1 and M2 macrophages for the two strains in vitro. In vivo, a deleterious role for M2 macrophages was confirmed by M2 cell transfer, which rendered the infected C57BL/6, but not the BALB/c mice, more susceptible and resulted in mild lung inflammation compared with C57BL/6 mice that did not undergo cell transfer. M1 cell transfer induced a higher inflammatory response, although not protective, in infected BALB/c mice compared with their counterparts that did not undergo cell transfer. These findings demonstrate that an inflammation mediated by M1 macrophages may not induce bacterial tolerance because protection depends on the host genetic background, which drives the magnitude of the inflammatory response against M. tuberculosis in the pulmonary microenvironment. The contribution of our findings is that although M1 macrophage is an effector leucocyte with microbicidal machinery, its dominant role depends on the balance of M1 and M2 subsets, which is driven by the host genetic background.

  7. Streptococcus pneumoniae-induced pneumonia and Citrobacter rodentium-induced gut infection differentially alter vitamin A concentrations in the lung and liver of mice.

    PubMed

    Restori, Katherine H; McDaniel, Kaitlin L; Wray, Amanda E; Cantorna, Margherita T; Ross, A Catharine

    2014-03-01

    In the developing world, vitamin A (VA) deficiency is endemic in populations that are also at great risk of morbidity and mortality because of pneumococcal pneumonia and enteric infections. To better understand how lung and gastrointestinal pathogens affect VA status, we assessed VA concentrations in serum, lung, and liver during an invasive pneumonia infection induced by Streptococcus pneumoniae serotype 3, and a noninvasive gut infection induced by Citrobacter rodentium, in vitamin A-adequate (VAA) and vitamin A-deficient (VAD) mice. For pneumonia infection, mice were immunized with pneumococcal polysaccharide serotype 3 (PPS3), or not (infected-control), 5 d prior to intranasal inoculation with S. pneumoniae. Two days post-inoculation, immunization was protective against systemic infection regardless of VA status as PPS3 immunization decreased bacteremia compared with infected-control mice (P < 0.05). Retinol concentrations in the lung were higher in infected-control VAA mice (15.7 nmol/g: P < 0.05) compared with PPS3-immunized mice (8.23 nmol/g), but this was not associated with increased lung bacterial burden. VAA mice had reduced severity of C. rodentium-induced gut infection as measured by fecal bacterial shedding compared with VAD mice (P < 0.05). Liver retinol and retinyl ester concentrations in VAA mice decreased at the peak of infection (retinol, 8.1 nmol/g; retinyl esters, 985 nmol/g; P < 0.05, compared with uninfected mice; retinol, 29.5 nmol/g; retinyl esters, 1730 nmol/g), whereas tissue VA concentrations were low in VAD mice during both infections. Colonic mucin gene expression was also depressed at peak infection compared with uninfected mice (P < 0.05). Overall, pneumonia had less effect on VA status than gastrointestinal infection, predominantly owing to reduced hepatic VA storage at the peak of gut infection.

  8. OligoG CF-5/20 Disruption of Mucoid Pseudomonas aeruginosa Biofilm in a Murine Lung Infection Model

    PubMed Central

    Song, Zhijun; Ciofu, Oana; Onsøyen, Edvar; Rye, Philip D.; Høiby, Niels

    2016-01-01

    Biofilm growth is a universal survival strategy for bacteria, providing an effective and resilient approach for survival in an otherwise hostile environment. In the context of an infection, a biofilm provides resistance and tolerance to host immune defenses and antibiotics, allowing the biofilm population to survive and thrive under conditions that would destroy their planktonic counterparts. Therefore, the disruption of the biofilm is a key step in eradicating persistent bacterial infections, as seen in many types of chronic disease. In these studies, we used both in vitro minimum biofilm eradication concentration (MBEC) assays and an in vivo model of chronic biofilm infection to demonstrate the biofilm-disrupting effects of an alginate oligomer, OligoG CF-5/20. Biofilm infections were established in mice by tracheal instillation of a mucoid clinical isolate of Pseudomonas aeruginosa embedded in alginate polymer beads. The disruption of the biofilm by OligoG CF-5/20 was observed in a dose-dependent manner over 24 h, with up to a 2.5-log reduction in CFU in the infected mouse lungs. Furthermore, in vitro assays showed that 5% OligoG CF-5/20 significantly reduced the MBEC for colistin from 512 μg/ml to 4 μg/ml after 8 h. These findings support the potential for OligoG CF-5/20 as a biofilm disruption agent which may have clinical value in reducing the microbial burden in chronic biofilm infections. PMID:26833153

  9. Population Pharmacokinetics of Colistin Methanesulfonate in Rats: Achieving Sustained Lung Concentrations of Colistin for Targeting Respiratory Infections

    PubMed Central

    W. S. Yapa, Shalini; Li, Jian; Porter, Christopher J. H.; Nation, Roger L.

    2013-01-01

    Colistin methanesulfonate (CMS), the inactive prodrug of colistin, is administered by inhalation for the management of respiratory infections. However, limited pharmacokinetic data are available for CMS and colistin following pulmonary delivery. This study investigates the pharmacokinetics of CMS and colistin following intravenous (i.v.) and intratracheal (i.t.) administration in rats and determines the targeting advantage after direct delivery into the lungs. In addition to plasma, bronchoalveolar lavage (BAL) fluid was collected to quantify drug concentrations in lung epithelial lining fluid (ELF). The resulting data were analyzed using a population modeling approach in S-ADAPT. A three-compartment model described the disposition of both compounds in plasma following i.v. administration. The estimated mean clearance from the central compartment was 0.122 liters/h for CMS and 0.0657 liters/h for colistin. Conversion of CMS to colistin from all three compartments was required to fit the plasma data. The fraction of the i.v. dose converted to colistin in the systemic circulation was 0.0255. Two BAL fluid compartments were required to reflect drug kinetics in the ELF after i.t. dosing. A slow conversion of CMS (mean conversion time [MCTCMS] = 3.48 h) in the lungs contributed to high and sustained concentrations of colistin in ELF. The fraction of the CMS dose converted to colistin in ELF (fm,ELF = 0.226) was higher than the corresponding fractional conversion in plasma after i.v. administration. In conclusion, pulmonary administration of CMS achieves high and sustained exposures of colistin in lungs for targeting respiratory infections. PMID:23917323

  10. Differential Cytokine Gene Expression in Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with Aerosolized Mycobacterium bovis

    PubMed Central

    2016-01-01

    The hallmark lesion of tuberculosis in humans and animals is the granuloma. The granuloma represents a distinct host cellular immune response composed of epithelioid macrophages, lymphocytes, and multinucleated giant cells, often surrounding a caseous necrotic core. Within the granuloma, host-pathogen interactions determine disease outcome. Factors within the granulomas such as cytokines and chemokines drive cell recruitment, activity, function and ultimately the success or failure of the host’s ability to control infection. Hence, an understanding of the granuloma-level cytokine response is necessary to understand tuberculosis pathogenesis. In-situ cytokine expression patterns were measured using a novel in situ hybridization assay, known as RNAScope® in granulomas of the lungs, tracheobronchial lymph nodes and caudal mediastinal lymph nodes of cattle experimentally infected with Mycobacterium bovis via aerosol exposure. In spite of microscopic morphological similarities, significant differences were seen between late stage granulomas of the lung compared to those of the tracheobronchial lymph nodes for IL-17A, IFN-γ, TGF-β, IL10 and IL-22 but not for TNF-α. Additionally, significant differences were noted between granulomas from two different thoracic lymph nodes that both receive afferent lymphatics from the lungs (i.e., tracheobronchial and caudal mediastinal lymph nodes) for TNF-α, IL-17A, IFN-γ, TGF-β and IL-10 but not for IL-22. These findings show that granuloma morphology alone is not a reliable indicator of granuloma function as granulomas of similar morphologies can have disparate cytokine expression patterns. Moreover, anatomically distinct lymph nodes (tracheobronchial vs caudal mediastinal) differ in cytokine expression patterns even when both receive afferent lymphatics from a lung containing tuberculoid granulomas. These findings show that selection of tissue and anatomic location are critical factors in assessing host immune response to M

  11. Antagonism of miR-328 increases the antimicrobial function of macrophages and neutrophils and rapid clearance of non-typeable Haemophilus influenzae (NTHi) from infected lung.

    PubMed

    Tay, Hock L; Kaiko, Gerard E; Plank, Maximilian; Li, JingJing; Maltby, Steven; Essilfie, Ama-Tawiah; Jarnicki, Andrew; Yang, Ming; Mattes, Joerg; Hansbro, Philip M; Foster, Paul S

    2015-04-01

    Pathogenic bacterial infections of the lung are life threatening and underpin chronic lung diseases. Current treatments are often ineffective potentially due to increasing antibiotic resistance and impairment of innate immunity by disease processes and steroid therapy. Manipulation miRNA directly regulating anti-microbial machinery of the innate immune system may boost host defence responses. Here we demonstrate that miR-328 is a key element of the host response to pulmonary infection with non-typeable haemophilus influenzae and pharmacological inhibition in mouse and human macrophages augments phagocytosis, the production of reactive oxygen species, and microbicidal activity. Moreover, inhibition of miR-328 in respiratory models of infection, steroid-induced immunosuppression, and smoke-induced emphysema enhances bacterial clearance. Thus, miRNA pathways can be targeted in the lung to enhance host defence against a clinically relevant microbial infection and offer a potential new anti-microbial approach for the treatment of respiratory diseases.

  12. Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice

    PubMed Central

    Iwanaga, Naoki; Seki, Masafumi; Fukudome, Kenji; Oshima, Kazuhiro; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Mukae, Hiroshi; Kohno, Shigeru

    2016-01-01

    Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G+ neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4+ T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function. PMID:27091927

  13. A Prototype Recombinant-Protein Based Chlamydia pecorum Vaccine Results in Reduced Chlamydial Burden and Less Clinical Disease in Free-Ranging Koalas (Phascolarctos cinereus).

    PubMed

    Waugh, Courtney; Khan, Shahneaz Ali; Carver, Scott; Hanger, Jonathan; Loader, Joanne; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2016-01-01

    Diseases associated with Chlamydia pecorum infection are a major cause of decline in koala populations in Australia. While koalas in care can generally be treated, a vaccine is considered the only option to effectively reduce the threat of infection and disease at the population level. In the current study, we vaccinated 30 free-ranging koalas with a prototype Chlamydia pecorum vaccine consisting of a recombinant chlamydial MOMP adjuvanted with an immune stimulating complex. An additional cohort of 30 animals did not receive any vaccine and acted as comparison controls. Animals accepted into this study were either uninfected (Chlamydia PCR negative) at time of initial vaccination, or infected (C. pecorum positive) at either urogenital (UGT) and/or ocular sites (Oc), but with no clinical signs of chlamydial disease. All koalas were vaccinated/sampled and then re-released into their natural habitat before re-capturing and re-sampling at 6 and 12 months. All vaccinated koalas produced a strong immune response to the vaccine, as indicated by high titres of specific plasma antibodies. The incidence of new infections in vaccinated koalas over the 12-month period post-vaccination was slightly less than koalas in the control group, however, this was not statistically significant. Importantly though, the vaccine was able to significantly reduce the infectious load in animals that were Chlamydia positive at the time of vaccination. This effect was evident at both the Oc and UGT sites and was stronger at 6 months than at 12 months post-vaccination. Finally, the vaccine was also able to reduce the number of animals that progressed to disease during the 12-month period. While the sample sizes were small (statistically speaking), results were nonetheless striking. This study highlights the potential for successful development of a Chlamydia vaccine for koalas in a wild setting.

  14. Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation.

    PubMed

    Atochina-Vasserman, Elena N; Gow, Andrew J; Abramova, Helen; Guo, Chang-Jiang; Tomer, Yaniv; Preston, Angela M; Beck, James M; Beers, Michael F

    2009-02-15

    Pneumocystis pneumonia (PCP), the most common opportunistic pulmonary infection associated with HIV infection, is marked by impaired gas exchange and significant hypoxemia. Immune reconstitution disease (IRD) represents a syndrome of paradoxical respiratory failure in patients with active or recently treated PCP subjected to immune reconstitution. To model IRD, C57BL/6 mice were selectively depleted of CD4(+) T cells using mAb GK1.5. Following inoculation with Pneumocystis murina cysts, infection was allowed to progress for 2 wk, GK1.5 was withdrawn, and mice were followed for another 2 or 4 wk. Flow cytometry of spleen cells demonstrated recovery of CD4(+) cells to >65% of nondepleted controls. Lung tissue and bronchoalveolar lavage fluid harvested from IRD mice were analyzed in tandem with samples from CD4-depleted mice that manifested progressive PCP for 6 wks. Despite significantly decreased pathogen burdens, IRD mice had persistent parenchymal lung inflammation, increased bronchoalveolar lavage fluid cellularity, markedly impaired surfactant biophysical function, and decreased amounts of surfactant phospholipid and surfactant protein (SP)-B. Paradoxically, IRD mice also had substantial increases in the lung collectin SP-D, including significant amounts of an S-nitrosylated form. By native PAGE, formation of S-nitrosylated SP-D in vivo resulted in disruption of SP-D multimers. Bronchoalveolar lavage fluid from IRD mice selectively enhanced macrophage chemotaxis in vitro, an effect that was blocked by ascorbate treatment. We conclude that while PCP impairs pulmonary function and produces abnormalities in surfactant components and biophysics, these responses are exacerbated by IRD. This worsening of pulmonary inflammation, in response to persistent Pneumocystis Ags, is mediated by recruitment of effector cells modulated by S-nitrosylated SP-D.

  15. Signaling via Tumor Necrosis Factor Receptor 1 but Not Toll-Like Receptor 2 Contributes Significantly to Hydrosalpinx Development following Chlamydia muridarum Infection

    PubMed Central

    Dong, Xiaohua; Liu, Yuanjun; Chang, Xiaotong; Lei, Lei

    2014-01-01

    Chlamydial infection in the lower genital tract can lead to hydrosalpinx, which is accompanied by activation of both pattern recognition receptor TLR2- and inflammatory cytokine receptor TNFR1-mediated signaling pathways. In the current study, we compared the relative contributions of these two receptors to chlamydial induction of hydrosalpinx in mice. We found that mice with or without deficiencies in TLR2 or TNFR1 displayed similar time courses of live organism shedding from vaginal swabs, suggesting that these receptor-mediated signaling pathways are not required for controlling chlamydial lower genital infection. However, mice deficient in TNFR1 but not TLR2 developed significantly reduced hydrosalpinx. The decreased pathogenicity correlated with a significant reduction in interleukin-17 by in vitro-restimulated splenocytes of TNFR1-deficient mice. Although TLR2-deficient mice developed hydrosalpinx as severe as that of wild-type mice, peritoneal macrophages from mice deficient in TLR2 but not TNFR1 produced significantly reduced cytokines upon chlamydial stimulation, suggesting that reduced macrophage responses to chlamydial infection do not always lead to a reduction in hydrosalpinx. Thus, we have demonstrated that the signaling pathways triggered by the cytokine receptor TNFR1 play a more significant role in chlamydial induction of hydrosalpinx than those mediated by the pattern recognition receptor TLR2, which has laid a foundation for further revealing the chlamydial pathogenic mechanisms. PMID:24549331

  16. Environmental silica in badger lungs: a possible association with susceptibility to Mycobacterium bovis infection

    SciTech Connect

    Higgins, D.A.; Kung, I.T.; Or, R.S.

    1985-04-01

    Badger lungs contain dark granular foci (0.2 to 2.0 mm) comprising aggregates of enlarged macrophages containing birefringent crystalline particles. Particles were examined from the lungs of three badgers; many were silicates and a significant number were pure silica (SiO/sub 2/). The particles and the accompanying pathology resembled mixed dust fibrosis and silicosis in humans, diseases associated with increased susceptibility to tuberculosis.

  17. Natural Anti-Infective Pulmonary Proteins: In Vivo Cooperative Action of Surfactant Protein SP-A and the Lung Antimicrobial Peptide SP-BN.

    PubMed

    Coya, Juan Manuel; Akinbi, Henry T; Sáenz, Alejandra; Yang, Li; Weaver, Timothy E; Casals, Cristina

    2015-08-15

    The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 μM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.

  18. Asymptomatic Endemic Chlamydia pecorum Infections Reduce Growth Rates in Calves by up to 48 Percent

    PubMed Central

    Poudel, Anil; Elsasser, Theodore H.; Rahman, Kh. Shamsur; Chowdhury, Erfan U.; Kaltenboeck, Bernhard

    2012-01-01

    Intracellular Chlamydia (C.) bacteria cause in cattle some acute but rare diseases such as abortion, sporadic bovine encephalomyelitis, kerato-conjunctivitis, pneumonia, enteritis and polyarthritis. More frequent, essentially ubiquitous worldwide, are low-level, asymptomatic chlamydial infections in cattle. We investigated the impact of these naturally acquired infections in a cohort of 51 female Holstein and Jersey calves from birth to 15 weeks of age. In biweekly sampling, we measured blood/plasma markers of health and infection and analyzed their association with clinical appearance and growth in dependence of chlamydial infection intensity as determined by mucosal chlamydial burden or contemporaneous anti-chlamydial plasma IgM. Chlamydia 23S rRNA gene PCR and ompA genotyping identified only C. pecorum (strains 1710S, Maeda, and novel strain Smith3v8) in conjunctival and vaginal swabs. All calves acquired the infection but remained clinically asymptomatic. High chlamydial infection associated with reduction of body weight gains by up to 48% and increased conjunctival reddening (P<10−4). Simultaneously decreased plasma albumin and increased globulin (P<10−4) suggested liver injury by inflammatory mediators as mechanisms for the growth inhibition. This was confirmed by the reduction of plasma insulin like growth factor-1 at high chlamydial infection intensity (P<10−4). High anti-C. pecorum IgM associated eight weeks later with 66% increased growth (P = 0.027), indicating a potential for immune protection from C. pecorum-mediated growth depression. The worldwide prevalence of chlamydiae in livestock and their high susceptibility to common feed-additive antibiotics suggests the possibility that suppression of chlamydial infections may be a major contributor to the growth promoting effect of feed-additive antibiotics. PMID:23024776

  19. Chlamydia trachomatis infection in sexually active adolescents: prevalence and risk factors.

    PubMed

    Chacko, M R; Lovchik, J C

    1984-06-01

    The prevalence of Chlamydia trachomatis genital infection was studied in a sexually active urban Baltimore adolescent population. Possible risk factors such as age, past history of sexually transmitted disease, number of sexual partners, contact with sexually transmitted disease, oral contraceptive use, and concomitant gonococcal infection were also evaluated. The prevalence of chlamydial infection in the 280 adolescents studied was 26%: 35% in male adolescents, 27% in pregnant female adolescents, and 23% in nonpregnant female adolescents. Chlamydia was almost three times as prevalent as gonorrhea in the same population. Age, past history of sexually transmitted disease, oral contraceptive use, and concomitant gonorrhea were not significantly associated with chlamydial infection. However, multiple current sexual partners, contact with sexually transmitted disease, genitourinary symptoms, and cervical ectopy were significantly associated with chlamydial infection. Testing for chlamydial infection in sexually active urban teenagers is recommended for those with genitourinary symptoms, those with cervical ectopy, or those who are contacts of persons with sexually transmitted disease. Considering the reservoir of infection in the asymptomatic female adolescents, screening for chlamydial infections in family planning clinics warrants consideration.

  20. Chronological study of Mycoplasma hyopneumoniae infection, seroconversion and associated lung lesions in vaccinated and non-vaccinated pigs.

    PubMed

    Sibila, M; Nofrarías, M; López-Soria, S; Segalés, J; Valero, O; Espinal, A; Calsamiglia, M

    2007-05-16

    A field trial was conducted to study Mycoplasma hyopneumoniae (Mh) infection dynamics by nested polymerase chain reaction (nPCR) and serology in pigs of a farm affected by enzootic pneumonia (EP). Moreover, correlation of Mh detection at different respiratory tract sites with presence of EP gross and microscopic lung lesions was assessed. These parameters were studied and compared between vaccinated (two doses at 1 and 3 weeks of age versus one dose at 6 weeks of age) and non-vaccinated pigs. Animals were monitored from birth to slaughter by nPCR from nasal swabs and by serology. From 3 to 22 weeks of age, an average of three pigs per treatment and per batch were necropsied (n = 302). The remaining pigs were sent to the slaughter (n = 103). Nasal, bronchial and tonsillar swabs were taken from the necropsied/slaughtered pigs; gross and microscopic EP-suggestive lung lesions were also assessed. Single and double vaccination resulted in earlier seroconversion and higher percentage of Mh seropositive pigs compared to control group. At slaughter, double vaccinated pigs showed lower percentage of EP-compatible gross lung lesions and lower Mh prevalence at upper respiratory tract sites (nasal cavity and tonsil) than control pigs.

  1. Efficacy and mechanism of action of yin lai tang (lung-stomach treatment) in dyspepsia mouse infected by FM1 virus.

    PubMed

    Liu, Tiegang; Yu, He; Zhang, Wang; Zhen, Jianhua; Li, Xiaofei; Lv, Guokai; Gu, Hong-Xiao; Murtaza, Ghulam

    2013-01-01

    The aim of this study was to assess the efficacy and elaborate the mechanism of action of Yin Lai Tang (Lung-Stomach Treatment) on dyspepsia mouse infected by FM1 virus. Ninety male, 4 week old Kunming mouse with 12-14 g weight, were randomly divided into 9 groups, i.e., normal, infected, dyspepsia, ribavirin, Shuanghuanglian, Children's indigestion tablet, YinLaiTang high dose, YinLaiTang middle dose and YinLaiTang low dose, and these groups had been treated by according drugs to get objectives. Compared with normal group, lung index significantly (p < 0.01) increased in all groups except ribavirin group where lung index obviously (p < 0.05) increased. There was non-significant (p > 0.05) difference in the values of lung homogenate virus titer between dyspepsia group and other groups. Compared to normal group, there was variable degree of inflammatory cell infiltrations in respiratory tract structures in the animals of other groups, and there was a significant (p < 0.01) increase in the level of serum IL-6, IL-10, and TNF-alpha in infected and dyspepsia group and significant (p < 0.01) decrease in the level of serum IFN-gamma was observed. Compared with single clearing stomach method and single clearing lung approach, lung-stomach treatment reduced the level of IL-6 with non-significant difference (p > 0.05) and increased the level of IL-10 obviously, and compared with the single clearing lung method, there was a significant difference (p < 0.05). Compared with the single clearing stomach method and the single clearing lung method, the lung-stomach treatment method had a better efficacy and showed effects on the expression of pro-inflammatory factor and anti-inflammatory factor.

  2. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections.

    PubMed

    Wilder, Cara N; Allada, Gopal; Schuster, Martin

    2009-12-01

    In the opportunistic pathogen Pseudomonas aeruginosa, acyl-homoserine lactone (acyl-HSL) quorum sensing (QS) regulates biofilm formation and expression of many extracellular virulence factors. Curiously, QS-deficient variants, often carrying mutations in the central QS regulator LasR, are frequently isolated from infections, particularly from cystic fibrosis (CF) lung infections. Very little is known about the proportion and diversity of these QS variants in individual infections. Such information is desirable to better understand the selective forces that drive the evolution of QS phenotypes, including social cheating and innate (nonsocial) benefits. To obtain insight into the instantaneous within-patient diversity of QS, we assayed a panel of 135 concurrent P. aeruginosa isolates from eight different adult CF patients (9 to 20 isolates per patient) for various QS-controlled phenotypes. Most patients contained complex mixtures of QS-proficient and -deficient isolates. Among all patients, deficiency in individual phenotypes ranged from 0 to about 90%. Acyl-HSL, sequencing, and complementation analyses of variants with global loss-of-function phenotypes revealed dependency upon the central QS circuitry genes lasR, lasI, and rhlI. Deficient and proficient isolates were clonally related, implying evolution from a common ancestor in vivo. Our results show that the diversity of QS types is high within and among patients, suggesting diverse selection pressures in the CF lung. A single selective mechanism, be it of a social or nonsocial nature, is unlikely to account for such heterogeneity. The observed diversity also shows that conclusions about the properties of P. aeruginosa QS populations in individual CF infections cannot be drawn from the characterization of one or a few selected isolates.

  3. Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.

    PubMed

    Chiba, Norika; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Alsabeh, Randa; Slepenkin, Anatoly V; Peterson, Ellena; Crother, Timothy R; Arditi, Moshe

    2015-04-15

    Mast cells are known as central players in allergy and anaphylaxis, and they play a pivotal role in host defense against certain pathogens. Chlamydia pneumoniae is an important human pathogen, but it is unclear what role mast cells play during C. pneumoniae infection. We infected C57BL/6 (wild-type [WT]) and mast cell-deficient mice (Kit(W-sh/W-sh) [Wsh]) with C. pneumoniae. Wsh mice showed improved survival compared with WT mice, with fewer cells in Wsh bronchoalveolar lavage fluid (BALF), despite similar levels of cytokines and chemokines. We also found a more rapid clearance of bacteria from the lungs of Wsh mice compared with WT mice. Cromolyn, a mast cell stabilizer, reduced BALF cells and bacterial burden similar to the levels seen in Wsh mice; conversely, Compound 48/80, a mast cell degranulator, increased the number of BALF cells and bacterial burden. Histology showed that WT lungs had diffuse inflammation, whereas Wsh mice had patchy accumulations of neutrophils and perivascular accumulations of lymphocytes. Infected Wsh mice had reduced amounts of matrix metalloprotease-9 in BALF and were resistant to epithelial integral membrane protein degradation, suggesting that barrier integrity remains intact in Wsh mice. Mast cell reconstitution in Wsh mice led to enhanced bacterial growth and normal epithelial integral membrane protein degradation, highlighting the specific role of mast cells in this model. These data suggest that mast cells play a detrimental role during C. pneumoniae infection by facilitating immune cell infiltration into the airspace and providing a more favorable replicative environment for C. pneumoniae.

  4. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection.

    PubMed

    Empey, Kerry M; Orend, Jacob G; Peebles, R Stokes; Egaña, Loreto; Norris, Karen A; Oury, Tim D; Kolls, Jay K

    2012-01-01

    Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Reduced CD8 T-cells and negligible interferon gamma (IFNγ) in the airway are associated with severe infant RSV disease, yet there is an abundance of alveolar macrophages (AM) and neutrophils. However, it is unclear, based on our current understanding of macrophage functional heterogeneity, if immature AM improve viral clearance or contribute to inflammation and airway obstruction in the IFNγ-deficient neonatal lung environment. The aim of the current study was to define the age-dependent AM phenotype during neonatal RSV infection and investigate their differentiation to classically activated macrophages (CAM) using i.n. IFNγ in the context of improving viral clearance. Neonatal and adult BALB/cJ mice were infected with 1×10(6) plaque forming units (PFU)/gram (g) RSV line 19 and their AM responses compared. Adult mice showed a rapid and robust CAM response, indicated by increases in major histocompatibility complex class II (MHC II), CD86, CCR7, and a reduction in mannose receptor (MR). Neonatal mice showed a delayed and reduced CAM response, likely due to undetectable IFNγ production. Intranasal (i.n.) treatment with recombinant mouse IFNγ (rIFNγ) increased the expression of CAM markers on neonatal AM, reduced viral lung titers, and improved weight gain compared to untreated controls with no detectable increase in CD4 or CD8 T-cell infiltration. In vitro infection of J774A.1 macrophages with RSV induced an alternatively activated macrophage (AAM) phenotype however, when macrophages were first primed with IFNγ, a CAM phenotype was induced and RSV spread to adjacent Hep-2 cells was reduced. These studies demonstrate that the neonatal AM response to RSV infection is abundant and immature, but can be exogenously stimulated to express the antimicrobial phenotype, CAM, with i.n. rIFNγ.

  5. Inhibition of Human Metapneumovirus Binding to Heparan Sulfate Blocks Infection in Human Lung Cells and Airway Tissues

    PubMed Central

    Klimyte, Edita M.; Smith, Stacy E.; Oreste, Pasqua; Lembo, David

    2016-01-01

    ABSTRACT Human metapneumovirus (HMPV), a recently discovered paramyxovirus, infects nearly 100% of the world population and causes severe respiratory disease in infants, the elderly, and immunocompromised patients. We previously showed that HMPV binds heparan sulfate proteoglycans (HSPGs) and that HMPV binding requires only the viral fusion (F) protein. To characterize the features of this interaction critical for HMPV binding and the role of this interaction in infection in relevant models, we utilized sulfated polysaccharides, heparan sulfate mimetics, and occluding compounds. Iota-carrageenan demonstrated potent anti-HMPV activity by inhibiting binding to lung cells mediated by the F protein. Furthermore, analysis of a minilibrary of variably sulfated derivatives of Escherichia coli K5 polysaccharide mimicking the HS structure revealed that the highly O-sulfated K5 polysaccharides inhibited HMPV infection, identifying a potential feature of HS critical for HMPV binding. The peptide dendrimer SB105-A10, which binds HS, reduced binding and infection in an F-dependent manner, suggesting that occlusion of HS at the target cell surface is sufficient to prevent infection. HMPV infection was also inhibited by these compounds during apical infection of polarized airway tissues, suggesting that these interactions take place during HMPV infection in a physiologically relevant model. These results reveal key features of the interaction between HMPV and HS, supporting the hypothesis that apical HS in the airway serves as a binding factor during infection, and HS modulating compounds may serve as a platform for potential antiviral development. IMPORTANCE Human metapneumovirus (HMPV) is a paramyxovirus that causes respiratory disease worldwide. It has been previously shown that HMPV requires binding to heparan sulfate on the surfaces of target cells for attachment and infection. In this study, we characterize the key features of this binding interaction using heparan sulfate

  6. Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections

    PubMed Central

    Domm, William; Misra, Ravi S.; O’Reilly, Michael A.

    2015-01-01

    Children born preterm often exhibit reduced lung function and increased severity of response to respiratory viruses, suggesting that premature birth has compromised proper development of the respiratory epithelium and innate immune defenses. Increasing evidence suggests that premature birth promotes aberrant lung development likely due to the neonatal oxygen transition occurring before pulmonary development has matured. Given that preterm infants are born at a point of time where their immune system is also still developing, early life oxygen exposure may also be disrupting proper development of innate immunity. Here, we review current literature in hopes of stimulating research that enhances understanding of how the oxygen environment at birth influences lung development and host defense. This knowledge may help identify those children at risk for disease and ideally culminate in the development of novel therapies that improve their health. PMID:26322310

  7. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease.

    PubMed

    Rieber, Nikolaus; Brand, Alina; Hector, Andreas; Graepler-Mainka, Ute; Ost, Michael; Schäfer, Iris; Wecker, Irene; Neri, Davide; Wirth, Andreas; Mays, Lauren; Zundel, Sabine; Fuchs, Jörg; Handgretinger, Rupert; Stern, Martin; Hogardt, Michael; Döring, Gerd; Riethmüller, Joachim; Kormann, Michael; Hartl, Dominik

    2013-02-01

    Pseudomonas aeruginosa persists in patients with cystic fibrosis (CF) and drives CF lung disease progression. P. aeruginosa potently activates the innate immune system, mainly mediated through pathogen-associated molecular patterns, such as flagellin. However, the host is unable to eradicate this flagellated bacterium efficiently. The underlying immunological mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells generated in cancer and proinflammatory microenvironments and are capable of suppressing T cell responses. We hypothesized that P. aeruginosa induces MDSCs to escape T cell immunity. In this article, we demonstrate that granulocytic MDSCs accumulate in CF patients chronically infected with P. aeruginosa and correlate with CF lung disease activity. Flagellated P. aeruginosa culture supernatants induced the generation of MDSCs, an effect that was 1) dose-dependently mimicked by purified flagellin protein, 2) significantly reduced using flagellin-deficient P. aeruginosa bacteria, and 3) corresponded to TLR5 expression on MDSCs in vitro and in vivo. Both purified flagellin and flagellated P. aeruginosa induced an MDSC phenotype distinct from that of the previously described MDSC-inducing cytokine GM-CSF, characterized by an upregulation of the chemokine receptor CXCR4 on the surface of MDSCs. Functionally, P. aeruginosa-infected CF patient ex vivo-isolated as well as flagellin or P. aeruginosa in vitro-generated MDSCs efficiently suppressed polyclonal T cell proliferation in a dose-dependent manner and modulated Th17 responses. These studies demonstrate that flagellin induces the generation of MDSCs and suggest that P. aeruginosa uses this mechanism to undermine T cell-mediated host defense in CF and other P. aeruginosa-associated chronic lung diseases.

  8. Pivotal Advance: Invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection.

    PubMed

    Kok, Wai Ling; Denney, Laura; Benam, Kambez; Cole, Suzanne; Clelland, Colin; McMichael, Andrew J; Ho, Ling-Pei

    2012-03-01

    Little is known of how a strong immune response in the lungs is regulated to minimize tissue injury during severe influenza A virus (IAV) infection. Here, using a model of lethal, high-pathogenicity IAV infection, we first show that Ly6C(hi)Ly6G(-) inflammatory monocytes, and not neutrophils, are the main infiltrate in lungs of WT mice. Mice devoid of iNKT cells (Jα18(-/-) mice) have increased levels of inflammatory monocytes, which correlated with increased lung injury and mortality (but not viral load). Activation of iNKT cells correlated with reduction of MCP-1 levels and improved outcome. iNKT cells were able to selectively lyse infected, MCP-1-producing monocytes in vitro, in a CD1d-dependent process. Our study provides a detailed profile and kinetics of innate immune cells in the lungs during severe IAV infection, highlighting inflammatory monocytes as the major infiltrate and identifying a role for iNKT cells in control of these cells and lung immune-pathology.

  9. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    PubMed

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  10. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis?

    PubMed

    Cenci, Ugo; Ducatez, Mathieu; Kadouche, Derifa; Colleoni, Christophe; Ball, Steven G

    2016-01-01

    Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.

  11. Molecular identification of chlamydial cause of abortion in small ruminants in Jordan.

    PubMed

    Ababneh, Huthaifa Salah; Ababneh, Mustafa Mohammed Kheir; Hananeh, Wael Mahmoud; Alsheyab, Fawzi Mohammad; Jawasreh, Khaleel Ibraheem; Al-Gharaibeh, Moath Ahmad; Ababneh, Mohammed Mahmoud

    2014-12-01

    Chlamydophila abortus (Ch. abortus) is the etiological agent of ovine enzootic abortion (OEA) and one of the most common infectious agents of abortion in small ruminants worldwide. RFLP-PCR analysis of the outer membrane protein gene (OMP2 gene) was used for diagnosis and characterization of chlamydial causes of abortion in small ruminants in Jordan. Sixty-six placental tissues and 15 vaginal swabs were collected from aborted ewes and does to identify cause of abortion in Jordan. Thirty-eight placental samples (58 %) and 13 vaginal swabs (87 %) were positive for chlamydial DNA. Shedding of bacteria in vaginal swabs was detected within 7 days after abortion. The results of this study showed that chlamydiosis is one of the important causes of abortion in small ruminants in Jordan. In addition, vaginal swab is an excellent sample for molecular diagnosis of chlamydiosis. DNA sequencing and RFLP analysis of the OMP2 reveal that all chlamydial cause of abortion in small ruminants in Jordan are due to Ch. abortus. While, Ch. pecorum was not detected in any sample. OMP2 gene of the isolated Jordanian strain was identical (100 %) to Ch. abortus FAS strain. In conclusion, Ch. abortus is an important cause of abortion in Jordan; vaginal swab within 7 days of abortion can be used for molecular diagnosis of chlamydiosis in small ruminants.

  12. Systems Medicine for Lung Diseases: Phenotypes and Precision Medicine in Cancer, Infection, and Allergy.

    PubMed

    Schmeck, Bernd; Bertrams, Wilhelm; Lai, Xin; Vera, Julio

    2016-01-01

    Lung diseases cause an enormous socioeconomic burden. Four of them are among the ten most important causes of deaths worldwide: Pneumonia has the highest death toll of all infectious diseases, lung cancer kills the most people of all malignant proliferative disorders, chronic obstructive pulmonary disease (COPD) ranks third in mortality among the chronic noncommunicable diseases, and tuberculosis is still one of the most important chronic infectious diseases. Despite all efforts, for example, by the World Health Organization and clinical and experimental researchers, these diseases are still highly prevalent and harmful. This is in part due to the specific organization of tissue homeostasis, architecture, and immunity of the lung. Recently, several consortia have formed and aim to bring together clinical and molecular data from big cohorts of patients with lung diseases with novel experimental setups, biostatistics, bioinformatics, and mathematical modeling. This "systems medicine" concept will help to match the different disease modalities with adequate therapeutic and possibly preventive strategies for individual patients in the sense of precision medicine.

  13. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice.

    PubMed

    Chen, Gwo-Hsiao; Teitz-Tennenbaum, Seagal; Neal, Lori M; Murdock, Benjamin J; Malachowski, Antoni N; Dils, Anthony J; Olszewski, Michal A; Osterholzer, John J

    2016-02-15

    Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.

  14. IL-23-Dependent IL-17 Production Is Essential in Neutrophil Recruitment and Activity in Mouse Lung Defense against Respiratory Mycoplasma pneumoniae Infection

    PubMed Central

    Wu, Qun; Martin, Richard J.; Rino, John G.; Breed, Rachel; Torres, Raul M.; Chu, Hong Wei

    2007-01-01

    IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4 h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in lung defense against the infection. PMID:17198762

  15. Duox2 is required for the transcription of pattern recognition receptors in acute viral lung infection: An interferon-independent regulatory mechanism.

    PubMed

    Hong, Seung-No; Kim, Ji Young; Kim, Hanna; Kim, Dong-Young; Won, Tae-Bin; Han, Doo Hee; Rhee, Chae-Seo; Kim, Hyun Jik

    2016-10-01

    The innate immune response, which constitutes the first line of defense against influenza A virus (IAV) infection, is activated by pattern recognition receptors (PRRs) that recognize viral structures. We found that the PRRs, retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA5), which have been implicated as interferon (IFN)-stimulated genes, were dominantly responsible for the recognition of IAV in lungs of mice at 3 and 7 days post infection (dpi). Intranasal administration of IFNs enhanced RIG-I and MDA5 gene expression after IAV infection and mRNA levels of RIG-I and MDA5 were significantly reduced at 7 dpi in mice with neutralization of secreted IFNs. However, blockade of IFNs did not alter the transcription of RIG-I and MDA5 at 3 dpi. We studied the antiviral effect of Duox2 in vivo lung to elucidate the role of Duox2 in respiratory mucosa. RIG-I and MDA5 mRNA levels were induced to a lower extent in lungs of mice that were inoculated with Duox2 small hairpin RNA regardless of secreted IFNs at 3 dpi. We propose that Duox2 is responsible for IFN-independent signaling for induction of PRRs transcription and can control acute IAV lung infection at the beginning of infection.

  16. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis.

    PubMed

    Grieshaber, Nicole A; Fischer, Elizabeth R; Mead, David J; Dooley, Cheryl A; Hackstadt, Ted

    2004-05-11

    The chlamydial developmental cycle is characterized by an intracellular replicative form, termed the reticulate body, and an extracellular form called the elementary body. Elementary bodies are characterized by a condensed chromatin, which is maintained by a histone H1-like protein, Hc1. Differentiation of elementary bodies to reticulate bodies is accompanied by dispersal of the chromatin as chlamydiae become transcriptionally active, although the mechanisms of Hc1 release from DNA have remained unknown. Dissociation of the nucleoid requires chlamydial transcription and translation with negligible loss of Hc1. A genetic screen was therefore designed to identify chlamydial genes rescuing Escherichia coli from the lethal effects of Hc1 overexpression. CT804, a gene homologous to ispE, which encodes an intermediate enzyme of the non-mevalonate methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, was selected. E. coli coexpressing CT804 and Hc1 grew normally, although they expressed Hc1 to a level equivalent to that which condensed the chromatin of parent Hc1-expressing controls. Inhibition of the MEP pathway with fosmidomycin abolished IspE rescue of Hc1-expressing E. coli. Deproteinated extract from IspE-expressing bacteria caused dispersal of purified chlamydial nucleoids, suggesting that chlamydial histone-DNA interactions are disrupted by a small metabolite within the MEP pathway rather than by direct action of IspE. By partial reconstruction of the MEP pathway, we determined that 2-C-methylerythritol 2,4-cyclodiphosphate dissociated Hc1 from chlamydial chromatin. These results suggest that chlamydial histone-DNA interactions are disrupted upon germination by a small metabolite in the MEP pathway of isoprenoid biosynthesis.

  17. Reconceptualizing the chlamydial inclusion as a pathogen-specified parasitic organelle: an expanded role for Inc proteins

    PubMed Central

    Moore, Elizabeth R.; Ouellette, Scot P.

    2014-01-01

    Chlamydia is an obligate intracellular pathogen that develops in the host cell in a vacuole termed the chlamydial inclusion. The prevailing concept of the chlamydial inclusion is of a parasitophorous vacuole. Here, the inclusion is the recipient of one-way host-pathogen interactions thus draining nutrients from the cell and negatively impacting it. While Chlamydia orchestrates some aspects of cell function, recent data indicate host cells remain healthy up until, and even after, chlamydial egress. Thus, while Chlamydia relies on the host cell for necessary metabolites, the overall function of the host cell, during chlamydial growth and development, is not grossly disturbed. This is consistent with the obligate intracellular organism's interest to maintain viability of its host. To this end, Chlamydia expresses inclusion membrane proteins, Incs, which serve as molecular markers for the inclusion membrane. Incs also contribute to the physical structure of the inclusion membrane and facilitate host-pathogen interactions across it. Given the function of Incs and the dynamic interactions that occur at the inclusion membrane, we propose that the inclusion behaves similarly to an organelle-albeit one that benefits the pathogen. We present the hypothesis that the chlamydial inclusion acts as a pathogen-specified parasitic organelle. This representation integrates the inclusion within existing subcellular trafficking pathways to divert a subset of host-derived metabolites thus maintaining host cell homeostasis. We review the known interactions of the chlamydial inclusion with the host cell and discuss the role of Inc proteins in the context of this model and how this perspective can impact the study of these proteins. Lessons learnt from the chlamydial pathogen-specified parasitic organelle can be applied to other intracellular pathogens. This will increase our understanding of how intracellular pathogens engage the host cell to establish their unique developmental niches

  18. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair

    PubMed Central

    Quantius, Jennifer; Schmoldt, Carole; Vazquez-Armendariz, Ana I.; Becker, Christin; El Agha, Elie; Wilhelm, Jochen; Morty, Rory E.; Vadász, István; Mayer, Konstantin; Gattenloehner, Stefan; Fink, Ludger; Matrosovich, Mikhail; Li, Xiaokun; Seeger, Werner; Lohmeyer, Juergen; Bellusci, Saverio; Herold, Susanne

    2016-01-01

    Influenza Virus (IV) pneumonia is associated with severe damage of the lung epithelium and respiratory failure. Apart from efficient host defense, structural repair of the injured epithelium is crucial for survival of severe pneumonia. The molecular mechanisms underlying stem/progenitor cell mediated regenerative responses are not well characterized. In particular, the impact of IV infection on lung stem cells and their regenerative responses remains elusive. Our study demonstrates that a highly pathogenic IV infects various cell populations in the murine lung, but displays a strong tropism to an epithelial cell subset with high proliferative capacity, defined by the signature EpCamhighCD24lowintegrin(α6)high. This cell fraction expressed the stem cell antigen-1, highly enriched lung stem/progenitor cells previously characterized by the signature integrin(β4)+CD200+, and upregulated the p63/krt5 regeneration program after IV-induced injury. Using 3-dimensional organoid cultures derived from these epithelial stem/progenitor cells (EpiSPC), and in vivo infection models including transgenic mice, we reveal that their expansion, barrier renewal and outcome after IV-induced injury critically depended on Fgfr2b signaling. Importantly, IV infected EpiSPC exhibited severely impaired renewal capacity due to IV-induced blockade of β-catenin-dependent Fgfr2b signaling, evidenced by loss of alveolar tissue repair capacity after intrapulmonary EpiSPC transplantation in vivo. Intratracheal application of exogenous Fgf10, however, resulted in increased engagement of non-infected EpiSPC for tissue regeneration, demonstrated by improved proliferative potential, restoration of alveolar barrier function and increased survival following IV pneumonia. Together, these data suggest that tropism of IV to distal lung stem cell niches represents an important factor of pathogenicity and highlight impaired Fgfr2b signaling as underlying mechanism. Furthermore, increase of alveolar Fgf10

  19. Lung Function in Wheezing Infants after Acute Lower Respiratory Tract Infection and Its Association with Respiratory Outcome

    PubMed Central

    Qi, Yuan-Yuan; Jiang, Gao-Li; Wang, Li-Bo; Wan, Cheng-Zhou; Zhang, Xiao-Bo; Qian, Li-Ling

    2017-01-01

    Background: Wheezing is common in early childhood and remains an important health concern. The aim of this study was to assess the lung function of wheezing infants and to investigate the relationship between lung function and respiratory outcome. Methods: Infants <2 years of age with acute lower respiratory tract infection (ALRTI) who had undergone lung function tests were included in the study. They were assigned to wheeze or no wheeze group based on physical examination. Infants without any respiratory diseases were enrolled as controls. Lung function was measured during the acute phase and 3 months after ALRTI. One-year follow-up for infants with ALRTI was achieved. Results: A total of 252 infants with ALRTI who had acceptable data regarding tidal breathing were included in the final analysis. Compared with the control and the no wheeze groups, infants in the wheeze group had significantly decreased time to peak tidal expiratory flow as a percentage of total expiratory time (TPTEF/TE) (20.1 ± 6.4% vs. 34.4 ± 6.2% and 26.4 ± 8.3%, respectively, P < 0.0001) and significantly increased peak tidal expiratory flow (PTEF) (90.7 ± 26.3 ml/s vs. 79.3 ± 18.4 ml/s and 86.1 ± 28.0 ml/s, respectively, P < 0.01), sReff and Reff. The infants in the wheeze group still had lower TPTEF/TE and volume to peak tidal expiratory flow as a percentage of total expiratory volume (VPTEF/VE) than the no wheeze infants 3 months after the ALRTI. Moreover, there was a significant inverse relationship between TPTEF/TE, VPTEF/VE, and the recurrence of wheezing and pneumonia. Conclusions: Impaired lung function was present in wheezing infants with ALRTI and the deficits persisted. In addition, the lower level of TPTEF/TE and VPTEF/VE was a risk factor for poor respiratory outcome. PMID:28051016

  20. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung

    PubMed Central

    Woodworth, Joshua S.; Cohen, Sara B.; Moguche, Albanus O.; Plumlee, Courtney R.; Agger, Else Marie; Urdahl, Kevin B.; Andersen, Peter

    2016-01-01

    The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1−CXCR3+ cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma. PMID:27554293

  1. Subunit vaccine H56/CAF01 induces a population of circulating CD4 T cells that traffic into the Mycobacterium tuberculosis-infected lung.

    PubMed

    Woodworth, J S; Cohen, S B; Moguche, A O; Plumlee, C R; Agger, E M; Urdahl, K B; Andersen, P

    2017-03-01

    The capacity of CD4 T cells to protect against Mycobacterium tuberculosis (Mtb) is governed by their ability to localize to the lung site of infection. Subunit vaccine H56/CAF01, a liposome-adjuvanted fusion protein of Mtb antigens Ag85B, ESAT-6, and Rv2660, conferred durable protection and elicited polyfunctional CD4 T cells that preferentially localized to the lung parenchyma. These lung-resident T cells had reduced KLRG1 and increased CXCR3 expression, an intermediate state of Th1 differentiation that has been associated with Mtb protection. Importantly, KLGR1(-) CXCR3(+) cells were also enriched in the lung vasculature and peripheral circulation of vaccinated animals, but not controls. Moreover, S1P1R blockade rapidly cleared this population from the blood and adoptive transfer of T cells recovered from the vasculature of vaccinated, but not control, mice efficiently trafficked into the Mtb-infected lung parenchyma. Thus, durable immunity elicited by H56/CAF01 vaccination is associated with the maintenance of circulating CD4 T cells that selectively home to the lung parenchyma.

  2. Role of CCL11 in eosinophilic lung disease during respiratory syncytial virus infection.

    PubMed

    Matthews, Stephen P; Tregoning, John S; Coyle, Anthony J; Hussell, Tracy; Openshaw, Peter J M

    2005-02-01

    Respiratory syncytial virus (RSV) is a major viral pathogen of infants and the elderly. Significant morbidity is caused by an overexuberant mixed lung cell infiltrate, which is thought to be driven by chemokines. One of the main chemotactic mediators responsible for the movement of eosinophils is CCL11 (eotaxin). Using a mouse model of eosinophilic bronchiolitis induced by RSV, we show here that treatment in vivo with a blocking antibody to CCL11 greatly reduces lung eosinophilia and disease severity. In addition, anti-CCL11 caused a striking inhibition of CD4-T-cell influx and shifted cytokine production away from interleukin-5 without reducing the resistance to viral replication. These results suggest that in addition to influencing eosinophil diapedesis and survival, anti-CCL11 has an action on T cells. These studies strengthen the case for anti-CCL11 treatment of Th2-driven diseases.

  3. Granzyme A Is Expressed in Mouse Lungs during Mycobacterium tuberculosis Infection but Does Not Contribute to Protection In Vivo

    PubMed Central

    Uranga, Santiago; Marinova, Dessislava; Martin, Carlos; Pardo, Julián; Aguilo, Nacho

    2016-01-01

    Granzyme A, a serine protease expressed in the granules of cytotoxic T and Natural Killer cells, is involved in the generation of pro-inflammatory cytokines by macrophages. Granzyme A has been described to induce in macrophages in vitro the activation of pro-inflammatory pathways that impair intracellular mycobacterial replication. In the present study, we explored the physiological relevance of Granzyme A in the control of pulmonary Mycobacterium tuberculosis infection in vivo. Our results show that, even though Granzyme A is expressed by cytotoxic cells from mouse lungs during pulmonary infection, its deficiency in knockout mice does not have an effect in the control of M. tuberculosis infection. In addition our findings indicate that absence of Granzyme A does not affect the protection conferred by the live-attenuated M. tuberculosis vaccine MTBVAC. Altogether, our findings are in apparent contradiction with previously published in vitro results and suggest that Granzyme A does not have a crucial role in vivo in the protective response to tuberculosis. PMID:27055232

  4. Clinical Usefulness of PCR for Differential Diagnosis of Tuberculosis and Nontuberculous Mycobacterial Infection in Paraffin-Embedded Lung Tissues.

    PubMed

    Kim, Yo Na; Kim, Kyoung Min; Choi, Ha Na; Lee, Ju Hyung; Park, Ho Sung; Jang, Kyu Yun; Moon, Woo Sung; Kang, Myoung Jae; Lee, Dong Geun; Chung, Myoung Ja

    2015-09-01

    The need for isolation of nontuberculous mycobacteria (NTM) from clinical specimens has increased in recent years. Our aim was to determine the clinical usefulness of PCR for differential diagnosis of tuberculosis and nontuberculous mycobacterial infection in lung tissue that show chronic granulomatous inflammation. A total of 199 formalin-fixed, paraffin-embedded specimens, including 137 Mycobacterium tuberculosis (MTB), 17 NTM cases, and 45 other than mycobacterial cases were collected. We performed acid-fast staining, MTB and NTM nested PCRs, and MTB and NTM real-time PCRs. No histologic difference between MTB and NTM infections was observed. Sensitivity and specificity for detecting MTB were 70.1% and 95.1% by nested PCR, respectively, and 70.8% and 100.0% by real-time PCR, respectively. Sensitivity and specificity for detecting NTM were 52.9% and 96.15% by nested PCR, respectively, and 35.3% and 100.0% by real-time PCR, respectively. Mycobacteria were identified by acid-fast staining in 50 of 154 cases (32.5%). All 50 acid-fast staining-positive cases showed positive nested and real-time PCR results (n = 47 MTB PCR positive; n = 3 NTM PCR positive), and results agreed with final diagnosis. PCR will be useful for the rapid diagnosis of mycobacterial infection and differentiation of MTB from NTM in formalin-fixed, paraffin-embedded specimens, especially in acid-fast staining-positive specimens.

  5. Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors

    PubMed Central

    SUN, Q.F.; ZHAO, X.N.; PENG, C.L.; HAO, Y.T.; ZHAO, Y.P.; JIANG, N.; XUE, H.; GUO, J.Z.; YUN, C.H.; CONG, B.; ZHAO, X.G.

    2015-01-01

    Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor-specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd-CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy. PMID:26323510

  6. Neonatal respiratory syncytial virus infection has an effect on lung inflammation and the CD4(+) CD25(+) T cell subpopulation during ovalbumin sensitization in adult mice.

    PubMed

    Comas-García, A; López-Pacheco, C P; García-Zepeda, E A; Soldevila, G; Ramos-Martínez, P; Ramos-Castañeda, J

    2016-08-01

    In BALB/c adult mice, respiratory syncytial virus (RSV) infection enhances the degree of lung inflammation before and/or after ovalbumin (OVA) respiratory sensitization. However, it is unclear whether RSV infection in newborn mice has an effect on the immune response to OVA respiratory sensitization in adult mice. The aim of this study was to determine if RSV neonatal infection alters T CD4(+) population and lung inflammation during OVA respiratory sensitization in adult mice. BALB/c mice were infected with RSV on the fourth day of life and challenged by OVA 4 weeks later. We found that in adult mice, RSV neonatal infection prior to OVA sensitization reduces the CD4(+) CD25(+) and CD4(+) CD25(+) forkhead protein 3 (FoxP3)(+) cell populations in the lungs and bronchoalveolar lavage. Furthermore, it also attenuates the inflammatory infiltrate and cytokine/chemokine expression levels in the mouse airways. In conclusion, the magnitude of the immune response to a non-viral respiratory perturbation in adult mice is not enhanced by a neonatal RSV infection.

  7. Chlamydia trachomatis infections in neonates and young children.

    PubMed

    Darville, Toni

    2005-10-01

    In 1911, Lindner and colleagues identified intracytoplasmic inclusions in infants with a nongonococcal form of ophthalmia neonatorum called inclusion conjunctivitis of the newborn (ICN). Mothers of affected infants were found to have inclusions in their cervical epithelial cells, fathers of such infants had inclusions in their urethral cells, and the epidemiology of sexually transmitted chlamydial infections was revealed. Fifty years later, chlamydial isolation procedures were developed, and studies again demonstrated Chlamydia trachomatis as an etiology of ICN and the female birth canal as the reservoir. In the late 1970s, a report by Beem and Saxon described respiratory tract colonization and a distinct pneumonia syndrome in infected infants. Genital chlamydial infection is recognized as the world's most common sexually transmitted disease, with estimates of greater than 4 million new infections occurring annually in the United States. Although most C. trachomatis infections in men and women are asymptomatic, infection can lead to severe reproductive complications in women. The high prevalence in women of child-bearing age results in exposure of an estimated 100,000 neonates in the United States annually. Many of these infants develop conjunctivitis, pneumonia, or both in the first few months of life. Clinical features, diagnosis, treatment, and approaches to prevention of conjunctivitis and pneumonia in the newborn and young infant are reviewed here. Appropriate testing for chlamydial infection in a pediatric victim of sexual assault and the implications of identifying C. trachomatis in suspected cases of childhood sexual abuse also are reviewed.

  8. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation

    PubMed Central

    Jackson-Jones, Lucy H.; Duncan, Sheelagh M.; Magalhaes, Marlène S.; Campbell, Sharon M.; Maizels, Rick M.; McSorley, Henry J.; Allen, Judith E.; Bénézech, Cécile

    2016-01-01

    Fat-associated lymphoid clusters (FALC) are inducible structures that support rapid innate-like B-cell immune responses in the serous cavities. Little is known about the physiological cues that activate FALCs in the pleural cavity and more generally the mechanisms controlling B-cell activation in FALCs. Here we show, using separate models of pleural nematode infection with Litomosoides sigmodontis and Altenaria alternata induced acute lung inflammation, that inflammation of the pleural cavity rapidly activates mediastinal and pericardial FALCs. IL-33 produced by FALC stroma is crucial for pleural B1-cell activation and local IgM secretion. However, B1 cells are not the direct target of IL-33, which instead requires IL-5 for activation. Moreover, lung inflammation leads to increased IL-5 production by type 2 cytokine-producing innate lymphoid cells (ILC2) in the FALC. These findings reveal a link between inflammation, IL-33 release by FALC stromal cells, ILC2 activation and pleural B-cell activation in FALCs, resulting in local and antigen-specific IgM production. PMID:27582256

  9. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  10. Involvement of the different lung compartments in the pathogenesis of pH1N1 influenza virus infection in ferrets.

    PubMed

    Vidaña, Beatriz; Martínez, Jorge; Martorell, Jaime; Montoya, María; Córdoba, Lorena; Pérez, Mónica; Majó, Natàlia

    2016-11-08

    Severe cases after pH1N1 infection are consequence of interstitial pneumonia triggered by alveolar viral replication and an exacerbated host immune response, characterized by the up-regulation of pro-inflammatory cytokines and the influx of inflammatory leukocytes to the lungs. Different lung cell populations have been suggested as culprits in the unregulated innate immune responses observed in these cases. This study aims to clarify this question by studying the different induction of innate immune molecules by the distinct lung anatomic compartments (vascular, alveolar and bronchiolar) of ferrets intratracheally infected with a human pH1N1 viral isolate, by means of laser microdissection techniques. The obtained results were then analysed in relation to viral quantification in the different anatomic areas and the histopathological lesions observed. More severe lung lesions were observed at 24 h post infection (hpi) correlating with viral antigen detection in bronchiolar and alveolar epithelial cells. However, high levels of viral RNA were detected in all anatomic compartments throughout infection. Bronchiolar areas were the first source of IFN-α and most pro-inflammatory cytokines, through the activation of RIG-I. In contrast, vascular areas contributed with the highest induction of CCL2 and other pro-inflammatory cytokines, through the activation of TLR3.

  11. Alpha-1-antitrypsin (AAT) anomalies are associated with lung disease due to rapidly growing mycobacteria and AAT inhibits Mycobacterium abscessus infection of macrophages.

    PubMed

    Chan, Edward D; Kaminska, Aleksandra M; Gill, Wendy; Chmura, Kathryn; Feldman, Nicole E; Bai, Xiyuan; Floyd, Corinne M; Fulton, Kayte E; Huitt, Gwen A; Strand, Matthew J; Iseman, Michael D; Shapiro, Leland

    2007-01-01

    Rapidly growing mycobacteria (RGM) are ubiquitous in the environment but cause lung disease in only a fraction of exposed individuals. This variable susceptibility to disease implies vulnerability to RGM infection due to weakness in host defense. Since most persons who contract RGM lung disease have no known host defense defect, it is likely that uncharacterized host deficiencies exist that predispose to RGM infection. Alpha-1-antitrypsin (AAT) is a host factor that may protect individuals from respiratory infections. Therefore, we assessed AAT protein anomalies as a risk factor for RGM lung disease. In a cohort of 100 patients with RGM lung disease, Mycobacterium (M.) abscessus was the most prevalent organism, isolated in 64 (64%) subjects. Anomalous AAT proteins were present in 27% of the cohort, which is 1.6 times the estimated prevalence of anomalous AAT proteins in the United States population (p=0.008). In in vitro studies, both AAT and a synthetic inhibitor of serine proteases suppressed M. abscessus infection of monocyte-derived macrophages by up to 65% (p<0.01). AAT may be an anti-RGM host-defense factor, and anomalous AAT phenotypes or AAT deficiency may constitute risk factors for pulmonary disease due to RGM.

  12. Association of a PAI-1 Gene Polymorphism and Early Life Infections with Asthma Risk, Exacerbations, and Reduced Lung Function

    PubMed Central

    Kim, Dong Young; Oh, Sam S.; Torgerson, Dara R.; Pino-Yanes, Maria; Hu, Donglei; Sen, Saunak; Huntsman, Scott; Eng, Celeste; Farber, Harold J.; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R.; Serebrisky, Denise; Thyne, Shannon M.; Borrell, Luisa N.; Williams, L. Keoki; DuPont, William; Seibold, Max A.; Burchard, Esteban G.; Avila, Pedro C.; Kumar, Rajesh

    2016-01-01

    Background Plasminogen activator inhibitor-1 (PAI-1) is induced in airways by virus and may mediate asthmatic airway remodeling. We sought to evaluate if genetic variants and early life lower respiratory infections jointly affect asthma risk. Methods We included Latino children, adolescents, and young adults aged 8–21 years (1736 subjects with physician-diagnosed asthma and 1747 healthy controls) from five U.S. centers and Puerto Rico after excluding subjects with incomplete clinical or genetic data. We evaluated the independent and joint effects of a PAI-1 gain of function polymorphism and bronchiolitis / Respiratory Syncytial Virus (RSV) or other lower respiratory infections (LRI) within the first 2 years of life on asthma risk, asthma exacerbations and lung function. Results RSV infection (OR 9.9, 95%CI 4.9–20.2) and other LRI (OR 9.1, 95%CI 7.2–11.5) were independently associated with asthma, but PAI-1 genotype was not. There were joint effects on asthma risk for both genotype-RSV (OR 17.7, 95% CI 6.3–50.2) and genotype-LRI (OR 11.7, 95% CI 8.8–16.4). A joint effect of genotype-RSV resulted in a 3.1-fold increased risk for recurrent asthma hospitalizations. In genotype-respiratory infection joint effect analysis, FEV1% predicted and FEV1/FVC % predicted were further reduced in the genotype-LRI group (β -2.1, 95% CI -4.0 to -0.2; β -2.0, 95% CI -3.1 to -0.8 respectively). Similarly, lower FEV1% predicted was noted in genotype-RSV group (β -3.1, 95% CI -6.1 to -0.2) with a trend for lower FEV1/FVC % predicted. Conclusions A genetic variant of PAI-1 together with early life LRI such as RSV bronchiolitis is associated with an increased risk of asthma, morbidity, and reduced lung function in this Latino population. PMID:27556405

  13. Long-term impairment of Streptococcus pneumoniae lung clearance is observed after initial infection with influenza A virus but not human metapneumovirus in mice.

    PubMed

    Ludewick, Herbert P; Aerts, Laetitia; Hamelin, Marie-Eve; Boivin, Guy

    2011-07-01

    Human metapneumovirus (hMPV) is a paramyxovirus responsible for respiratory tract infections in humans. Our objective was to investigate whether hMPV could predispose to long-term bacterial susceptibility, such as previously observed with influenza viruses. BALB/c mice were infected with hMPV or influenza A and, 14 days following viral infection, challenged with Streptococcus pneumoniae. Only mice previously infected with influenza A demonstrated an 8% weight loss of their body weight 72 h following S. pneumoniae infection, which correlated with an enhanced lung bacterial replication of >7 log(10) compared with pneumococcus infection alone. This enhanced bacterial replication was not related to altered macrophage or neutrophil recruitment or deficient production of critical cytokines. However, bacterial challenge induced the production of gamma interferon in bronchoalveolar lavages of influenza-infected mice, but not in those of hMPV-infected animals. In conclusion, hMPV does not cause long-term impairment of pneumococcus lung clearance, in contrast to influenza A virus.

  14. Interferon-gamma (IFN-gamma)-dependent protection and synthesis of chemoattractants for mononuclear leucocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans.

    PubMed

    Kawakami, K; Qureshi, M H; Zhang, T; Koguchi, Y; Shibuya, K; Naoe, S; Saito, A

    1999-07-01

    We have recently demonstrated that IL-12 induced cellular inflammatory responses consisting mainly of accumulation of mononuclear leucocytes in the lungs of mice infected with Cryptococcus neoformans and protected mice against fulminant infection. We examined the involvement of endogenously synthesized IFN-gamma in such a response by investigating the effects of a neutralizing monoclonal antibody against this cytokine. The latter treatment completely abrogated the positive effects of IL-12 on survival of infected mice and prevented IL-12-induced elimination of microbials from the lungs. Histopathological examination showed that accumulation of mononuclear leucocytes in the infected lungs caused by IL-12 was clearly inhibited by anti-IFN-gamma MoAb. We also examined the local production of mononuclear cell-attracting chemokines such as monocyte chemotactic protein-1 (MCP-1), regulated upon activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta and IFN-gamma-inducible protein 10 (IP-10) in the lungs using a reverse transcriptase-polymerase chain reaction (RT-PCR) method. We found that these chemokines were not synthesized in the infected lungs, while IL-12 treatment markedly induced their production. Interestingly, neutralizing anti-IFN-gamma MoAb strongly suppressed IL-12-induced production of these chemokines. Similar results were obtained with MCP-1 and MIP-1alpha when their synthesis was measured at the protein level using respective ELISA kits. Our results indicate that IFN-gamma plays a central role in the protective effects of IL-12 by inducing mononuclear leucocyte-attracting chemokines and cellular inflammatory responses.

  15. Bone marrow transplantation alters lung antigen presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection

    PubMed Central

    Zhou, Xiaofeng; Loomis-King, Hillary; Gurczynski, Stephen J.; Wilke, Carol A.; Konopka, Kristine E.; Ptaschinski, Catherine; Coomes, Stephanie M; Iwakura, Yoichiro; van Dyk, Linda F.; Lukacs, Nicholas W.; Moore, Bethany B.

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplant (BMT) followed by infection with murine gamma herpesvirus (γHV-68) that results in pneumonitis and fibrosis and mimics human “non-infectious” HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection (dpi). CD4 T cells in BMT mice are skewed towards IL-17A rather than IFN-γ production. Transplantation of bone marrow from Il-17a−/− donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more TGF-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest “non-infectious” HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset. PMID:26376362

  16. Sequence homologies between Mycoplasma and Chlamydia spp. lead to false-positive results in chlamydial cell cultures tested for mycoplasma contamination with a commercial PCR assay.

    PubMed

    Maass, Viola; Kern, Jan Marco; Poeckl, Matthias; Maass, Matthias

    2011-10-01

    Mycoplasma contamination is a frequent problem in chlamydial cell culture. After obtaining contradictory contamination results, we compared three commercial PCR kits for mycoplasma detection. One kit signaled contamination in mycoplasma-free Chlamydia pneumoniae cultures. Sequencing of cloned PCR products revealed primer homology with the chlamydial genome as the basis of this false-positive result.

  17. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.

    PubMed

    Poston, Taylor B; Gottlieb, Sami L; Darville, Toni

    2017-01-19

    Genital infection with Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, is the most common bacterial sexually transmitted infection globally. Ascension of chlamydial infection to the female upper genital tract can cause acute pelvic inflammatory disease, tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. Shortcomings of current chlamydia control strategies, especially for low- and middle-income countries, highlight the need for an effective vaccine. Evidence from animal models, human epidemiological studies, and early trachoma vaccine trials suggest that a C. trachomatis vaccine is feasible. Vaccine development for genital chlamydial infection has been in the preclinical phase of testing for many years, but the first Phase I trials of chlamydial vaccine candidates are underway, and scientific advances hold promise for additional candidates to enter clinical evaluation in the coming years. We describe the clinical and public health need for a C. trachomatis vaccine, provide an overview of Chlamydia vaccine development efforts, and summarize current vaccine candidates in the development pipeline.

  18. Goat serums for fluorescent antibody conjugates to chlamydial antigens.

    PubMed Central

    Tessler, J

    1984-01-01

    Serums from goats hyperimmunized with Chlamydia psittaci consistently produce antichlamydial fluorescent antibody conjugate of high titer. The titer of the fluorescent antibody conjugate prepared from a given serum correlated well with the titer obtained by agar gel precipitin, but not with the complement fixation. The agar gel precipitin test can be used to predict whether a given serum is satisfactory for use in production of a conjugate for direct fluorescent antibody tests. Serums with an agar gel precipitin titer of 1/8 or higher generally produce a usable fluorescent antibody conjugate. Labeling gamma globulins with fluorescein isothiocyanate at a ratio of 1/150 resulted in satisfactory fluorescent antibody conjugates. Cultures of Vero cells infected with chlamydiae were found to be suitable for titration of the fluorescent antibody conjugates. PMID:6372973

  19. Intratracheal infection as an efficient route for testing vaccines against Chlamydia abortus in sheep.

    PubMed

    Álvarez, D; Salinas, J; Buendía, A J; Ortega, N; del Río, L; Sánchez, J; Navarro, J A; Gallego, M C; Murcia-Belmonte, A; Cuello, F; Caro, M R

    2015-09-01

    Pregnant ewes have been widely used to test vaccines against Chlamydia abortus. However, this model entails many disadvantages such as high economic costs and long periods of pregnancy. The murine model is very useful for specific studies but cannot replace the natural host for the later stages of vaccine evaluation. Therefore, a non-pregnant model of the natural host might be useful for a vaccine trial to select the best vaccine candidates prior to use of the pregnant model. With this aim, two routes of infection were assessed in young non-pregnant sheep, namely, intranasal (IN) and intratracheal (IT). In addition, groups of non-vaccinated sheep and sheep immunised with an inactivated vaccine were established to investigate the suitability of the model for testing vaccines. After the experimental infection, isolation of the microorganism in several organs, with pathological and immunohistochemical analyses, antibody production assessment and investigation by PCR of the presence of chlamydia in the vagina or rectum were carried out. Experimental IT inoculation of C. abortus induced pneumonia in sheep during the first few days post-infection, confirming the suitability of the IT route for testing vaccines in the natural host. The course of infection and the resulting pathological signs were less severe in vaccinated sheep compared with non-vaccinated animals, demonstrating the success of vaccination. IN infection did not produce evident lesions or demonstrate the presence of chlamydial antigen in the lungs and cannot be considered an appropriate model for testing vaccines.

  20. Lung transplantation

    PubMed Central

    Afonso, José Eduardo; Werebe, Eduardo de Campos; Carraro, Rafael Medeiros; Teixeira, Ricardo Henrique de Oliveira Braga; Fernandes, Lucas Matos; Abdalla, Luis Gustavo; Samano, Marcos Naoyuki; Pêgo-Fernandes, Paulo Manuel

    2015-01-01

    ABSTRACT Lung transplantation is a globally accepted treatment for some advanced lung diseases, giving the recipients longer survival and better quality of life. Since the first transplant successfully performed in 1983, more than 40 thousand transplants have been performed worldwide. Of these, about seven hundred were in Brazil. However, survival of the transplant is less than desired, with a high mortality rate related to primary graft dysfunction, infection, and chronic graft dysfunction, particularly in the form of bronchiolitis obliterans syndrome. New technologies have been developed to improve the various stages of lung transplant. To increase the supply of lungs, ex vivo lung reconditioning has been used in some countries, including Brazil. For advanced life support in the perioperative period, extracorporeal membrane oxygenation and hemodynamic support equipment have been used as a bridge to transplant in critically ill patients on the waiting list, and to keep patients alive until resolution of the primary dysfunction after graft transplant. There are patients requiring lung transplant in Brazil who do not even come to the point of being referred to a transplant center because there are only seven such centers active in the country. It is urgent to create new centers capable of performing lung transplantation to provide patients with some advanced forms of lung disease a chance to live longer and with better quality of life. PMID:26154550

  1. Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae.

    PubMed

    Sun, Zhiyuan; Liu, Maojun; Zou, Huafeng; Li, Xian; Shao, Guoqing; Zhao, Ruqian

    2013-12-27

    Toll-like receptors (TLRs) and glucocorticoid receptor (GR) act respectively as effectors of innate immune and stress responses. The crosstalk between them is critical for the maintenance of homeostasis during the immune response. Vaccination is known to boost adaptive immunity, yet it remains elusive whether vaccination may affect GR/TLR interactions following infection. Duroc×Meishan crossbred piglets were allocated to three groups. The control group (CC) received neither vaccination nor infection; the non-vaccinated infection group (NI) was artificially infected intratracheally with Mycoplasma hyopneumoniae (M. hyopneumoniae); while the vaccinated, infected group (VI) was vaccinated intramuscularly with inactivated M. hyopneumoniae one month before infection. The clinical signs and macroscopic lung lesions were significantly reduced by vaccination. However, vaccination did not affect the concentration of M. hyopneumoniae DNA in the lung. Serum cortisol was significantly decreased in both NI and VI pigs (P<0.01), but only VI pigs demonstrated significantly diminished nuclear GR content. TLRs 1-10 were all expressed in lung, among which TLR2 was the most abundant and was significantly up-regulated (P<0.05) in NI pigs, but not in VI pigs. Accordingly, GR binding to the GR response element on TLR2 promoter was significantly increased (P<0.05) in NI pigs, but not in VI pigs. These results suggest that the inhibition of GR nuclear translocation and binding to the TLR2 promoter, which results in diminished TLR2 expression, is associated with the protective effect of vaccination on M. hyopneumoniae-induced lung lesions in the pig.

  2. Regulatory T Cell Induction and Retention in the Lungs Drives Suppression of Detrimental Type-2 Helper T Cells During Pulmonary Cryptococcal Infection

    PubMed Central

    Wiesner, Darin L.; Smith, Kyle D.; Kotov, Dmitri I.; Nielsen, Judith N.; Bohjanen, Paul R.; Nielsen, Kirsten

    2015-01-01

    Lethal disease caused by the fungus, Cryptococcus neoformans, is a consequence of the combined failure to control pulmonary fungal replication and immunopathology caused by induced type-2 helper T (Th2) cell responses in animal models. In order to gain incites into immune regulatory networks, we examined the role of regulatory T (Treg) cells in suppression of Th2 cells, using a mouse model of experimental cryptococcosis. Upon pulmonary infection with Cryptococcus, Treg cells accumulated in the lung parenchyma independently of priming in the draining lymph node. Using peptide-MHCII molecules to identify Cryptococcus-specific Treg cells combined with genetic fate-mapping, we noted that a majority of the Treg cells found in the lungs were induced during the infection. Additionally, we found that Treg cells utilized the transcription factor, Interferon Regulatory Factor 4 (IRF4), to dampen harmful Th2 cell responses, as well as mediate chemokine retention of Treg cells in the lungs. Taken together, induction and IRF4-dependent localization of Treg cells in the lungs allow Treg cells to suppress the deleterious effects of Th2 cells during cryptococcal infection. PMID:26590316

  3. Effects of ozone on the defense to a respiratory Listeria monocytogenes infection in the rat. Suppression of macrophage function and cellular immunity and aggravation of histopathology in lung and liver during infection

    SciTech Connect

    Van Loveren, H.; Rombout, P.J.; Wagenaar, S.S.; Walvoort, H.C.; Vos, J.G.

    1988-07-01

    We have investigated the effect of exposure to ozone on defense mechanisms to a respiratory infection with Listeria monocytogenes in the rat. For this purpose rats were continuously exposed to O/sub 3/ concentrations ranging from 0.25 to 2.0 mg/m3 for a period of 1 week. In this model defense to a respiratory infection with Listeria depends on acquired specific cellular immune responses, as well as on natural nonspecific defense mechanisms. The results confirm earlier findings that show that ozone exposure can suppress the capacity of macrophages to ingest and kill Listeria. Moreover, the results show that ozone can also have a suppressive effect on the development of cellular immune responses to a respiratory Listeria infection, i.e., on T/B ratios in lung draining lymph nodes, delayed-type hypersensitivity responses to Listeria antigen, and lymphoproliferative responses in spleen and lung draining lymph nodes to Listeria antigen. The effects on the specific immune responses are especially overt if exposure to the oxidant gas occurs during an ongoing primary infection. The pathological lesions induced by a pulmonary Listeria monocytogenes infection were characterized by multifocal infiltrates of histiocytic and lymphoid cells. The foci sometimes had a granulomatous appearance. Moreover, the cellularity of the interstitial tissues was increased. In the lung many diffuse alveolar macrophages could be seen in the alveoli. Ozone exposure greatly increased the severity of the lung lesions and also of liver lesions resulting from the pulmonary infection. A prominent finding was the formation of granulomas in ozone-exposed and Listeria-infected rats.

  4. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    PubMed Central

    Xu, Jintao; Eastman, Alison J.; Flaczyk, Adam; Neal, Lori M.; Zhao, Guolei; Carolan, Jacob; Malachowski, Antoni N.; Stolberg, Valerie R.; Yosri, Mohammed; Chensue, Stephen W.; Curtis, Jeffrey L.; Osterholzer, John J.

    2016-01-01

    ABSTRACT Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. PMID:27406560

  5. Lung histopathology, radiography, high-resolution computed tomography, and bronchio-alveolar lavage cytology are altered by Toxocara cati infection in cats and is independent of development of adult intestinal parasites.

    PubMed

    Dillon, A Ray; Tillson, D M; Hathcock, J; Brawner, B; Wooldridge, A; Cattley, R; Welles, B; Barney, S; Lee-Fowler, T; Botzman, L; Sermersheim, M; Garbarino, R

    2013-04-15

    This study presents clinical findings after oral ingestion of Toxocara cati eggs which resulted in rapid pulmonary lung migration and parenchymal disease, noted on clinically relevant diagnostic methods. Further, the study investigated the efficacy of pre-infection applications of preventative medication on larval migration through the lungs. A third aim of the study was to determine if adult cats infected with T. cati developed lung disease. Cats in infected groups were administered five oral doses of L3 T. cati larvae. Four-month-old specific pathogen free (SPF) kittens were divided into three groups (six per group): an infected untreated group, an uninfected untreated control group, and an infected treated group (topical moxidectin and imidacloprid, Advantage Multi for Cats, Bayer Healthcare LLC). Six 2- to 3-year-old adult multiparous female SPF cats were an infected untreated adult group. The cats were evaluated by serial CBCs, bronchial-alveolar lavage (BAL), fecal examinations, thoracic radiographs, and thoracic computed tomography (CT) scans and were euthanized 65 days after the initial infection. Adult T. cati were recovered in infected untreated kittens (5/6) and infected untreated adults (5/6) in numbers consistent with natural infections. Eggs were identified in the feces of most but not all cats with adult worm infections. No adult worms were identified in the uninfected controls or the infected treated group. All cats in the infected groups, including treated cats and untreated cats without adult worms, had lung pathology based on evaluation of radiography, CT scans, and histopathology. The infected cats demonstrated a transient peripheral eosinophilia and marked eosinophilic BAL cytology, but normal bronchial reactivity based on in vivo CT and in vitro ring studies. Lung lesions initially identified by CT on day 11 were progressive. Thoracic radiographs in infected cats had a diffuse bronchial-interstitial pattern and enlarged pulmonary arteries

  6. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.

    PubMed

    Lee, Andre; Vastermark, Ake; Saier, Milton H

    2014-08-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels.

  7. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins

    PubMed Central

    Lee, Andre; Vastermark, Ake

    2014-01-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg2+ transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca2+ and Mg2+ transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. PMID:24869855

  8. Horizontal gene transfer of chlamydial-like tRNA genes into early vascular plant mitochondria.

    PubMed

    Knie, Nils; Polsakiewicz, Monika; Knoop, Volker

    2015-03-01

    Mitochondrial genomes of lycophytes are surprisingly diverse, including strikingly different transfer RNA (tRNA) gene complements: No mitochondrial tRNA genes are present in the spikemoss Selaginella moellendorffii, whereas 26 tRNAs are encoded in the chondrome of the clubmoss Huperzia squarrosa. Reinvestigating the latter we found that trnL(gag) and trnS(gga) had never before been identified in any other land plant mitochondrial DNA. Sensitive sequence comparisons showed these two tRNAs as well as trnN(guu) and trnS(gcu) to be very similar to their respective counterparts in chlamydial bacteria. We identified homologs of these chlamydial-type tRNAs also in other lycophyte, fern, and gymnosperm DNAs, suggesting horizontal gene transfer (HGT) into mitochondria in the early vascular plant stem lineages. These findings extend plant mitochondrial HGT to affect individual tRNA genes, to include bacterial donors, and suggest that Chlamydiae on top of their recently proposed key role in primary chloroplast establishment may also have participated in early tracheophyte genome evolution.

  9. Detection of Quiescent Infections with Multiple Elephant Endotheliotropic Herpesviruses (EEHVs), Including EEHV2, EEHV3, EEHV6, and EEHV7, within Lymphoid Lung Nodules or Lung and Spleen Tissue Samples from Five Asymptomatic Adult African Elephants

    PubMed Central

    Zong, Jian-Chao; Heaggans, Sarah Y.; Long, Simon Y.; Latimer, Erin M.; Nofs, Sally A.; Bronson, Ellen; Casares, Miguel; Fouraker, Michael D.; Pearson, Virginia R.; Richman, Laura K.

    2015-01-01

    ABSTRACT More than 80 cases of lethal hemorrhagic disease associated with elephant endotheliotropic herpesviruses (EEHVs) have been identified in young Asian elephants worldwide. Diagnostic PCR tests detected six types of EEHV in blood of elephants with acute disease, although EEHV1A is the predominant pathogenic type. Previously, the presence of herpesvirus virions within benign lung and skin nodules from healthy African elephants led to suggestions that African elephants may be the source of EEHV disease in Asian elephants. Here, we used direct PCR-based DNA sequencing to detect EEHV genomes in necropsy tissue from five healthy adult African elephants. Two large lung nodules collected from culled wild South African elephants contained high levels of either EEHV3 alone or both EEHV2 and EEHV3. Similarly, a euthanized U.S. elephant proved to harbor multiple EEHV types distributed nonuniformly across four small lung nodules, including high levels of EEHV6, lower levels of EEHV3 and EEHV2, and a new GC-rich branch type, EEHV7. Several of the same EEHV types were also detected in random lung and spleen samples from two other elephants. Sanger PCR DNA sequence data comprising 100 kb were obtained from a total of 15 different strains identified, with (except for a few hypervariable genes) the EEHV2, EEHV3, and EEHV6 strains all being closely related to known genotypes from cases of acute disease, whereas the seven loci (4.0 kb) obtained from EEHV7 averaged 18% divergence from their nearest relative, EEHV3. Overall, we conclude that these four EEHV species, but probably not EEHV1, occur commonly as quiescent infections in African elephants. IMPORTANCE Acute hemorrhagic disease characterized by high-level viremia due to infection by members of the Proboscivirus genus threatens the future breeding success of endangered Asian elephants worldwide. Although the genomes of six EEHV types from acute cases have been partially or fully characterized, lethal disease predominantly

  10. Molecular immunophenotyping of lungs and spleens in naive and vaccinated chickens early after pulmonary avian influenza A (H9N2) virus infection.

    PubMed

    Degen, Winfried G J; Smith, Jacqueline; Simmelink, Bartjan; Glass, Elizabeth J; Burt, Dave W; Schijns, Virgil E J C

    2006-08-28

    In a respiratory-infection-model with the avian influenza A H9N2 virus we studied lung and splenic immune reactions in chickens using a recently developed 5K chicken immuno-microarray. Groups of chickens were either mock-immunized (referred to as non-immune), vaccinated with inactivated viral antigen only (immune) or with viral antigen in a water-in-oil (W/O) immunopotentiator (immune potentiated). Three weeks after vaccination all animals were given a respiratory infection. Immune potentiated birds developed inhibitory antiviral antibodies, showed minimal lung histopathology and no detectable viral sequences, while non-immune animals showed microscopic immunopathology and detectable virus. Immune birds, receiving antigen in saline only, showed minimal microscopic histopathology, and intermediate levels of virus detection. These classical features in the different groups were mirrored by overlapping or specific mRNA gene expression profiles in lungs and spleen using microarray analysis. To our knowledge this is the first study demonstrating pneumonia-associated lung pathology of the low pathogenic avian influenza H9N2 virus. Our data provide insights into the molecular interaction of this virus with its natural host when naive or primed by vaccination.

  11. IL-17RA in Non-Hematopoietic Cells Controls CXCL-1 and 5 Critical to Recruit Neutrophils to the Lung of Mycobacteria-Infected Mice during the Adaptive Immune Response

    PubMed Central

    Lombard, Robin; Epardaud, Mathieu; Le Vern, Yves; Buzoni-Gatel, Dominique; Winter, Nathalie

    2016-01-01

    During chronic infection with Mycobacterium tuberculosis (Mtb), bacilli multiplication is constrained within lung granulomas until excessive inflammation destroys the lung. Neutrophils are recruited early and participate in granuloma formation, but excessive neutrophilia exacerbates the tuberculosis disease. Neutrophils thus appear as potential targets for therapeutic interventions, especially in patients for whom no antibiotic treatment is possible. Signals that regulate neutrophil recruitment to the lung during mycobacterial infection need to be better understood. We demonstrated here, in the mouse model, that neutrophils were recruited to the lung in two waves after intranasal infection with virulent Mtb or the live attenuated vaccine strain Bacillus Calmette Guérin (BCG). A first wave of neutrophils was swiftly recruited, followed by a subsequent adaptive wave that reached the lung together with IFN-γ- and IL-17A-producing T cells. Interestingly, the second neutrophil wave did not participate to mycobacteria control in the lung and established contacts with T cells. The adaptive wave was critically dependent on the expression of IL-17RA, the receptor for IL-17A, expressed in non-hematopoietic cells. In absence of this receptor, curtailed CXCL-1 and 5 production in the lung restrained neutrophil recruitment. CXCL-1 and 5 instillation reconstituted lung neutrophil recruitment in BCG-infected IL17RA-/- mice. PMID:26871571

  12. Differential susceptibilities to azithromycin treatment of chlamydial infection in the gastrointestinal tract and cervix

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evidence from animal studies suggests that chlamydiae may persist in the gastrointestinal tract (GI) and be a reservoir for reinfection of the genital tract. We hypothesize that there may be a differential susceptibility of organisms in the GI and genital tracts. To determine the effect of azithromy...

  13. Combined administration of oseltamivir and hochu-ekki-to (TJ-41) dramatically decreases the viral load in lungs of senescence-accelerated mice during influenza virus infection.

    PubMed

    Ohgitani, Eriko; Kita, Masakazu; Mazda, Osam; Imanishi, Jiro

    2014-02-01

    To enhance the effect of anti-influenza-virus agent treatment, the effect of combined administration of oseltamivir phosphate and hochu-ekki-to (Japanese traditional herbal medicine, HET) on early viral clearance was examined. Senescence-accelerated mice were given HET in drinking water for 2 weeks, followed by intranasal infection with influenza A virus strain PR8. After 4 hours of infection, oseltamivir was administered orally for 5 days. The viral loads in the lungs of the group receiving combined treatment were dramatically lower when compared with the viral loads in the lungs of the group receiving oseltamivir alone. HET significantly increased the induction of IL-1β and TNF-α in the lungs of PR8-infected mice and stimulated alveolar macrophage phagocytosis. From these results, we conclude that these functions may be responsible the increased effect on viral load reduction. Here, we show that the combined administration of oseltamivir and HET is very useful for influenza treatment in senescence-accelerated mice.

  14. [Laboratory diagnosis of sexually transmitted infections in chronic inflammatory diseases of the reproductive system].

    PubMed

    Gasanova, T A

    2001-01-01

    The complex clinico-laboratory examination of 120 infertile married couples and 120 couples with habitual miscarriage was made. For control, 96 healthy married couples were used. The microbiological risk factors of chronic pelvic inflammatory diseases were determined, namely: mixed parasitocenosis, including active anaerobic, viral and fungal components, as well as Chlamydia trachomatis. As shown in this study, metabolically active forms of chlamydial infection were characteristic of infertile married women and persistent forms of C. trachomatis, for pregnant women. At the same time chlamydial infection did not cause infertility in males. The use two of levels of laboratory tests for qualitative, quantitative and functional evaluation of parasitocenoses were proposed.

  15. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection.

    PubMed

    Jounai, Kenta; Sugimura, Tetsu; Ohshio, Konomi; Fujiwara, Daisuke

    2015-01-01

    When activated by viral infection, plasmacytoid dendritic cells (pDCs) play a primary role in the immune response through secretion of IFN-α. Lactococcus lactis subsp. lactis JCM5805 (JCM5805) is a strain of lactic acid bacteria (LAB) that activates murine and human pDCs to express type I and type III interferons (IFNs). JCM5805 has also been shown to activate pDCs via a Toll-like receptor 9 (TLR9) dependent pathway. In this study, we investigated the anti-viral effects of oral administration of JCM5805 using a mouse model of murine parainfluenza virus (mPIV1) infection. JCM5805-fed mice showed a drastic improvement in survival rate, prevention of weight loss, and reduction in lung histopathology scores compared to control mice. We further examined the mechanism of anti-viral effects elicited by JCM5805 administration using naive mice. Microscopic observations showed that JCM5805 was incorporated into CD11c+ immune cells in Peyer's patches (PP) and PP pDCs were significantly activated and the expression levels of IFNs were significantly increased. Interestingly, nevertheless resident pDCs at lung were not activated and expressions levels of IFNs at whole lung tissue were not influenced, the expressions of anti-viral factors induced by IFNs, such as Isg15, Oasl2, and Viperin, at lung were up-regulated in JCM5805-fed mice compared to control mice. Therefore expressed IFNs from intestine might be delivered to lung and IFN stimulated genes might be induced. Furthermore, elevated expressions of type I IFNs from lung lymphocytes were observed in response to mPIV1 ex vivo stimulation in JCM5805-fed mice compared to control. This might be due to increased ratio of pDCs located in lung were significantly increased in JCM5805 group. Taken together, a specific LAB strain might be able to affect anti-viral immunological profile in lung via activation of intestinal pDC leading to enhanced anti-viral phenotype in vivo.

  16. Preparation and evaluation of monoclonal antibodies against chlamydial protease-like activity factor to detect Chlamydia pneumoniae antigen in early pediatric pneumonia.

    PubMed

    Zheng, J; Ding, T; Chen, Z; Fang, H; Li, H; Lu, H; Wu, Y

    2015-07-01

    Chlamydia pneumoniae causes diseases in humans, including community-acquired pneumonia, bronchitis, and sinusitis. It is also associated with atherosclerosis, coronary heart disease, and hyperlipidemia. In this study, we investigated novel materials with which to develop a sensitive and specific method to identify early C. pneumoniae infection, to allow more effective clinical treatment and prevention. We prepared novel monoclonal antibodies (mAbs) against a recombinant protein equivalent to the immunodominant region of chlamydial protease-like activity factor (CPAF) from C. pneumoniae. The mAbs specifically reacted with the endogenous CPAF antigen of the C. pneumoniae type strain in immunoblotting and indirect immunofluorescence (IIF) assays, but did not react with C. trachomatis type strains or genital secretions from patients with acute C. trachomatis infection. The mAb with the highest titer was used to develop a new IIF assay and enzyme-linked immunosorbent assay (ELISA) to detect the C. pneumoniae antigen in clinical specimens from child patients suspected of pneumonia. The sensitivity, specificity, and concordance rate of the mAb-based IIF and ELISA tests were compared with those of polymerase chain reaction (PCR). Our results show that these mAbs have excellent specificity and may be used to develop new screening tools for the diagnosis of early pediatric pneumonia.

  17. The DNA sensor, cyclic GMP-AMP synthase (cGAS) is essential for induction of IFN beta during Chlamydia trachomatis infection1

    PubMed Central

    Zhang, Yugen; Yeruva, Laxmi; Marinov, Anthony; Prantner, Daniel; Wyrick, Priscilla; Lupashin, Vladimir; Nagarajan, Uma M.

    2014-01-01

    IFNβ has been implicated as an effector of oviduct pathology resulting from genital chlamydial infection in the mouse model. In this study, we investigated the role of cytosolic DNA and engagement of DNA sensors in IFNβ expression during chlamydial infection. We determined that TREX-1, a host 3’to 5’ exonuclease, reduced IFNβ expression significantly during chlamydial infection using siRNA and gene knock out fibroblasts, implicating cytosolic DNA as a ligand for this response. The DNA sensor cGAS has been shown to bind cytosolic DNA to generate cGAMP, which binds to the signaling adaptor STING to induce IFNβ expression. We determined that cGAS is required for IFNβ expression during chlamydial infection in multiple cell types. Interestingly, although infected cells deficient for STING or cGAS alone failed to induce IFNβ, co-culture of cells depleted for either STING or cGAS rescued IFNβ expression. These data demonstrate that cGAMP produced in infected cGAS+STING− cells can migrate into adjacent cells via gap junctions to function in trans in cGAS−STING+ cells. Further, we observed cGAS localized in punctate regions on the cytosolic side of the chlamydial inclusion membrane in association with STING, indicating that chlamydial DNA is likely recognized outside the inclusion as infection progresses. These novel findings provide evidence that cGAS-mediated-DNA sensing directs IFNβ expression during C.trachomatis infection and suggests that effectors from infected cells can directly upregulate IFNβ expression in adjacent uninfected cells during in vivo infection, contributing to pathogenesis. PMID:25070851

  18. Chlamydia trachomatis cervical infection and oral contraceptive use among adolescent girls.

    PubMed

    Oh, M K; Feinstein, R A; Soileau, E J; Cloud, G A; Pass, R F

    1989-09-01

    This study examines the relationship between oral contraceptive use and Chlamydia trachomatis cervical infection in women less than 19 years of age. The clinical and epidemiologic data of 73 (19.4% prevalence rate) girls with chlamydial infection were analyzed, with special attention given to contraceptive use. The findings were compared with data from 303 girls who were chlamydia negative to assess the relationship between oral contraceptive use and C. trachomatis infection. Use of an oral contraceptive for 6 months or longer was associated with chlamydial infection (p = 0.005; odds ratio = 2.41; 95% confidence interval 1.53-3.29). Oral contraceptive use was not associated with an increased rate of Neisseria gonorrhoeae or Trichomonas vaginalis infection. Association of oral contraceptive use with chlamydial infection remained significant after adjustments were made for confounding variables in a logistic regression process (p = 0.013). This study suggests that oral contraceptive use may promote chlamydial infection of the cervix or enhance the detection of the C. trachomatis from the cervix in this population.

  19. Cryptococcus neoformans Infection in Mice Lacking Type I Interferon Signaling Leads to Increased Fungal Clearance and IL-4-Dependent Mucin Production in the Lungs

    PubMed Central

    Sato, Ko; Yamamoto, Hideki; Nomura, Toshiki; Matsumoto, Ikumi; Miyasaka, Tomomitsu; Zong, Tong; Kanno, Emi; Uno, Kazuko; Ishii, Keiko; Kawakami, Kazuyoshi

    2015-01-01

    Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection. PMID:26384031

  20. Comparison of ribavirin and oseltamivir in reducing mortality and lung injury in mice infected with mouse adapted A/California/04/2009 (H1N1)

    PubMed Central

    Zarogiannis, Sotirios G.; Noah, James W.; Jurkuvenaite, Asta; Steele, Chad; Matalon, Sadis; Noah, Diana L.

    2016-01-01

    Aim To compare the efficacy of ribavirin and oseltamivir in reducing mortality, lung injury and cytokine response profile in pandemic influenza H1N1 (2009) infection. Main Methods We assessed survival, weight loss, lung viral load (by RT-PCR), lung injury (by protein content in bronchoalveolar lavage), and inflammation (cell counts, differentials and cytokines in the bronchoalveolar lavage) in BALB/c mice after infection with mouse-adapted pandemic influenza strain A/California/04/2009. Key Findings Our results indicate that ribavirin (80 mg kg−1) and oseltamivir (50 mg kg−1) are equally effective in improving survival (100% vs. 0% in water treated controls), while ribavirin proved to be more effective in significantly preventing weight loss. Both drugs diminished the injury of the alveolar-capillary barrier by decreasing the protein detected in the BAL to baseline levels, and they were also equally effective in reduction lung viral loads by 100-fold. Administration of either drug did not decrease the amount of inflammatory infiltrate in the lung, but ribavirin significantly reduced the percentage comprised of lymphocytes. This study shows that these antivirals differentially regulate inflammatory cytokines and chemokines with ribavirin significantly reducing most of the cytokines/chemokines measured. Ribavirin treatment leads to a Th1 cytokine response while oseltamivir leads to a Th2 cytokine response with significant increase in the levels of the anti-inflammatory cytokine IL-10. Significance This study reveals new mechanistic insights in the way that ribavirin and oseltamivir exert their antiviral activity and supports the theory that ribavirin could potentially serve as an efficacious therapeutic alternative for oseltamivir resistant pandemic H1N1 strains. PMID:22269828

  1. Higher vaginal pH is associated with Chlamydia trachomatis infection in women: a prospective case-controlled study.

    PubMed

    Das, Satyajit; Sabin, Caroline; Allan, Sriskandab

    2005-04-01

    This is a prospective case-controlled study of female attendees in Coventry. This study found an association of higher vaginal pH with chlamydial infection, independent of any other factors. Studies in vitro have shown that an acidic vaginal secretion inhibits chlamydial infection. Our objective was to analyse the association of vaginal pH and chlamydial infection in women attending a genitourinary medicine clinic. Chlamydial infections were diagnosed with ELISA and confirmed within direct immunofluorescence. Vaginal pH was measured by a pH indicator tape ranging from 3 to 8. Consecutive female attendees with no sexually transmitted infections (STIs) were included as controls. In all, 144 female cases, diagnosed with chlamydial infection, had a median age of 20 years. Seventeen women had associated bacterial vaginosis. Eighty-two women had no other STIs. Ninety-eight women were using the oral contraceptive pill (OCP). The 145 control women had a median age of 26 years and 52 were receiving the OCP. A significantly higher vaginal pH was seen in the cases (P = 0.0001, Wilcoxon test), even after adjusting for other risk factors associated with vaginal pH, including OCP use (odds ratio: 6.49, 95% confidence interval, 3.59-11.73, P = 0.0001). Chlamydial infection in women was associated with a higher vaginal pH level, independent of any other factors. This study has implications for the treatment of other conditions known to lead to an increase in vaginal pH, even in asymptomatic individuals.

  2. Recombinant Human Respiratory Syncytial Virus (RSV) Monoclonal Antibody Fab is Effective Therapeutically when Introduced Directly into the Lungs of RSV-Infected Mice

    NASA Astrophysics Data System (ADS)

    Crowe, James E., Jr.; Murphy, Brian R.; Chanock, Robert M.; Williamson, R. Anthony; Barbas, Carlos F., III; Burton, Dennis R.

    1994-02-01

    Previously, recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fabs were generated by antigen selection from random combinatorial libraries displayed at the tip of filamentous phage. Two such Fabs, which exhibited high binding affinity for RSV F glycoprotein (a major protective antigen), were evaluated for therapeutic efficacy in infected mice just before or at the time of peak virus replication in the lungs. Fab 19, which neutralized RSV infectivity with high efficiency in tissue culture, was effective therapeutically when delivered directly into the lungs by intranasal instillation under anesthesia. In contrast, RSV Fab 126, which failed to neutralize virus in cell culture, did not exhibit a therapeutic effect under these conditions. The amount of Fab 19 required to effect a 5000- to 12,000-fold reduction in titer of RSV in the lungs within 24 hr was rather small. In four separate experiments, a single instillation of 12.9-50 μg of RSV Fab 19 was sufficient to achieve such a reduction in pulmonary virus in a 25g mouse. The use of Fabs instead of the whole immunoglobulin molecules from which they are derived reduced the protein content of a therapeutic dose. This is important because the protein load that can be delivered effectively into the lungs is limited. The therapeutic effect of a single treatment with Fab 19 was not sustained, so that a rebound in pulmonary virus titer occurred on the 2nd day after treatment. This rebound in pulmonary RSV titer could be prevented by treating infected mice with a single dose of Fab 19 daily for 3 days. These observations suggest that human monoclonal Fabs grown in Escherichia coli may prove useful in the treatment of serious RSV disease as well as diseases caused by other viruses where replication in vivo is limited primarily to the lumenal lining of the respiratory tract.

  3. Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A.

    PubMed

    Sundström, Karin B; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas

    2016-01-01

    Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7-10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20-25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS.

  4. Caspase-1 Dependent IL-1β Secretion Is Critical for Host Defense in a Mouse Model of Chlamydia pneumoniae Lung Infection

    PubMed Central

    Shimada, Kenichi; Crother, Timothy R.; Karlin, Justin; Chen, Shuang; Chiba, Norika; Ramanujan, V. Krishnan; Vergnes, Laurent; Ojcius, David M.; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the ‘inflammasome’, and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1−/− mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1−/− mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1−/− mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation. PMID:21731762

  5. Caspase-1 dependent IL-1β secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection.

    PubMed

    Shimada, Kenichi; Crother, Timothy R; Karlin, Justin; Chen, Shuang; Chiba, Norika; Ramanujan, V Krishnan; Vergnes, Laurent; Ojcius, David M; Arditi, Moshe

    2011-01-01

    Chlamydia pneumoniae (CP) is an important human pathogen that causes atypical pneumonia and is associated with various chronic inflammatory disorders. Caspase-1 is a key component of the 'inflammasome', and is required to cleave pro-IL-1β to bioactive IL-1β. Here we demonstrate for the first time a critical requirement for IL-1β in response to CP infection. Caspase-1⁻/⁻ mice exhibit delayed cytokine production, defective clearance of pulmonary bacteria and higher mortality in response to CP infection. Alveolar macrophages harbored increased bacterial numbers due to reduced iNOS levels in Caspase-1⁻/⁻ mice. Pharmacological blockade of the IL-1 receptor in CP infected wild-type mice phenocopies Caspase-1-deficient mice, and administration of recombinant IL-1β rescues CP infected Caspase-1⁻/⁻ mice from mortality, indicating that IL-1β secretion is crucial for host immune defense against CP lung infection. In vitro investigation reveals that CP-induced IL-1β secretion by macrophages requires TLR2/MyD88 and NLRP3/ASC/Caspase-1 signaling. Entry into the cell by CP and new protein synthesis by CP are required for inflammasome activation. Neither ROS nor cathepsin was required for CP infection induced inflammasome activation. Interestingly, Caspase-1 activation during CP infection occurs with mitochondrial dysfunction indicating a possible mechanism involving the mitochondria for CP-induced inflammasome activation.

  6. A novel post-exposure medical countermeasure L-97-1 improves survival and acute lung injury following intratracheal infection with Yersinia pestis

    PubMed Central

    Wilson, Constance N; Vance, Constance O; Doyle, Timothy M; Brink, David S; Matuschak, George M; Lechner, Andrew J

    2012-01-01

    Yersinia pestis, a Gram-negative bacillus causing plague and Centers for Disease Control and Prevention (CDC) classified Category A pathogen, has high potential as a bioweapon. Lipopolysaccharide, a virulence factor for Y. pestis, binds to and activates A1 adenosine receptor (AR)s and, in animals, A1AR antagonists block induced acute lung injury (ALI) and increase survival following cecal ligation and perforation. In this study, rats were infected intratracheally with viable Y. pestis [CO99 (pCD1+/Δpgm) 1 × 108 CFU/animal] and treated daily for 3 d with ciprofloxacin (cipro), the A1AR antagonist L-97-1, or cipro plus L-97-1 starting at 0, 6, 24, 48, or 72 h post-Y. pestis. At 72 h post-Y. pestis, cipro plus L-97-1 significantly improved 6-d survival to 60–70% vs 28% for cipro plus H2O and 33% for untreated Y. pestis controls (P = 0.02, logrank test). Lung edema, hemorrhage and leukocyte infiltration index (LII) were evaluated histologically to produce ALI scores. Cipro plus L-97-1 significantly reduced lung edema, as well as aggregate lung injury scores vs controls or cipro plus H2O, and LII vs controls (P < 0.05, Student's unpaired t test). These results support efficacy for L-97-1 as a post-exposure medical countermeasure, adjunctive therapy to antibiotics for Y. pestis. PMID:21862597

  7. Myeloid-Restricted AMPKα1 Promotes Host Immunity and Protects against IL-12/23p40-Dependent Lung Injury during Hookworm Infection.

    PubMed

    Nieves, Wildaliz; Hung, Li-Yin; Oniskey, Taylor K; Boon, Louis; Foretz, Marc; Viollet, Benoit; Herbert, De'Broski R

    2016-06-01

    How the metabolic demand of parasitism affects immune-mediated resistance is poorly understood. Immunity against parasitic helminths requires M2 cells and IL-13, secreted by CD4(+) Th2 and group 2 innate lymphoid cells (ILC2), but whether certain metabolic enzymes control disease outcome has not been addressed. This study demonstrates that AMP-activated protein kinase (AMPK), a key driver of cellular energy, regulates type 2 immunity and restricts lung injury following hookworm infection. Mice with a selective deficiency in the AMPK catalytic α1 subunit in alveolar macrophages and conventional dendritic cells produced less IL-13 and CCL17 and had impaired expansion of ILC2 in damaged lung tissue compared with wild-type controls. Defective type 2 responses were marked by increased intestinal worm burdens, exacerbated lung injury, and increased production of IL-12/23p40, which, when neutralized, restored IL-13 production and improved lung recovery. Taken together, these data indicate that defective AMPK activity in myeloid cells negatively impacts type 2 responses through increased IL-12/23p40 production. These data support an emerging concept that myeloid cells and ILC2 can coordinately regulate tissue damage at mucosal sites through mechanisms dependent on metabolic enzyme function.

  8. Developing Optimal Parameters for Hyperpolarized Noble Gas and Inert Fluorinated Gas MRI of Lung Disorders

    ClinicalTrials.gov

    2016-04-19

    Lung Transplant; Lung Resection; Lung Cancer; Asthma; Cystic Fibrosis; Chronic Obstructive Pulmonary Disease; Emphysema; Mesothelioma; Asbestosis; Pulmonary Embolism; Interstitial Lung Disease; Pulmonary Fibrosis; Bronchiectasis; Seasonal Allergies; Cold Virus; Lung Infection; Pulmonary Hypertension; Pulmonary Dysplasia; Obstructive Sleep Apnea

  9. Characterization of Nontypable Haemophilus influenzae Isolates Recovered from Adult Patients with Underlying Chronic Lung Disease Reveals Genotypic and Phenotypic Traits Associated with Persistent Infection

    PubMed Central

    Garmendia, Junkal; Viadas, Cristina; Calatayud, Laura; Mell, Joshua Chang; Martí-Lliteras, Pau; Euba, Begoña; Llobet, Enrique; Gil, Carmen; Bengoechea, José Antonio; Redfield, Rosemary J.; Liñares, Josefina

    2014-01-01

    Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of

  10. Transcriptome profiling of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment

    PubMed Central

    Liang, Xiaoli; Yang, Zifeng; Jiang, Zhihong

    2017-01-01

    The influenza A virus is an acute contagious pathogen that affects the human respiratory system and can cause severe lung disease and even death. Lariciresinol-4-β-D-glucopyranoside is a lignan that is extracted from Isatis indigotica, which is a medicinal herb plant that was commonly applied to treat infections, the common cold, fever and inflammatory diseases. Our previous study demonstrated that lariciresinol-4-β-D-glucopyranoside possesses anti-viral and anti-inflammatory properties. However, the comprehensive and detailed mechanisms that underlie the effect of lariciresinol-4-β-D-glucopyranoside interventions against influenza virus infection remain to be elucidated. In this study, we employed high-throughput RNA sequencing (RNA-seq) to investigate the transcriptomic responses of influenza A virus-infected lung epithelial (A549) cells with lariciresinol-4-β-D-glucopyranoside treatment. The transcriptome data show that infection with influenza A virus prompted the activation of 368 genes involved in RIG-I signalling, the inflammatory response, interferon α/β signalling and gene expression that was not affected by lariciresinol-4-β-D-glucopyranoside treatment. Lariciresinol-4-β-D-glucopyranoside exerted its pharmacological actions on the immune system, signal transduction, cell cycle and metabolism, which may be an underlying defense mechanism against influenza virus infection. In addition, 166 differentially expressed genes (DEGs) were uniquely expressed in lariciresinol-4-β-D-glucopyranoside-treated cells, which were concentrated in the cell cycle, DNA repair, chromatin organization, gene expression and biosynthesis domains. Among them, six telomere-associated genes were up-regulated by lariciresinol-4-β-D-glucopyranoside treatment, which have been implicated in telomere regulation and stability. Collectively, we employed RNA-seq analysis to provide comprehensive insight into the mechanism of lariciresinol-4-β-D-glucopyranoside against influenza

  11. Low cord-serum 25-hydroxyvitamin D levels are associated with poor lung function performance and increased respiratory infection in infancy

    PubMed Central

    Lai, Shen-Hao; Liao, Sui-Ling; Tsai, Ming-Han; Hua, Man-Chin; Chiu, Chih-Yung; Yeh, Kuo-Wei

    2017-01-01

    Background Perinatal vitamin D deficiency is associated with a higher risk of wheezing in childhood. However, the relationship between vitamin D levels and lung function in infancy has not been investigated. The aim of this study was to investigate the impact of perinatal vitamin D levels on respiratory function and disease outcome in infancy. Materials and methods Full-term infants without any chronic diseases or major anomalies were enrolled in the Prediction of Allergies in Taiwanese Children cohort study. Maternal and cord blood were collected for determining the 25(OH)D level. Questionnaires were recorded at birth and 6 months of age. Infant lung function, including tidal breathing analysis, respiratory mechanics, and forced tidal expiration, was tested at 6 months of age. Results A total of 122 mother—infant pairs were enrolled in this study, and 71 infants underwent lung function testing at 6 months of age. 25(OH)D levels in maternal and cord serum were highly correlated (r2 = 0.457, p < 0.0001). Infants with lower cord serum 25(OH)D levels (< 13.7 ng/ml) had higher resistance of respiratory system (p < 0.01) and a higher risk of a respiratory tract infection before the age of 6 months (p < 0.01). Conclusion Although a high correlation was found between maternal and cord vitamin D levels, the effect on respiratory outcome was different. Our study is the first to show that low cord 25(OH)D levels significantly relationship with poorer lung function performance and higher likelihood of a respiratory tract infection before 6 months of age. PMID:28267792

  12. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung.

    PubMed

    Khader, Shabaana A; Guglani, Lokesh; Rangel-Moreno, Javier; Gopal, Radha; Junecko, Beth A Fallert; Fountain, Jeffrey J; Martino, Cynthia; Pearl, John E; Tighe, Michael; Lin, Yin-yao; Slight, Samantha; Kolls, Jay K; Reinhart, Todd A; Randall, Troy D; Cooper, Andrea M

    2011-11-15

    IL-23 is required for the IL-17 response to infection with Mycobacterium tuberculosis, but is not required for the early control of bacterial growth. However, mice deficient for the p19 component of IL-23 (Il23a(-/-)) exhibit increased bacterial growth late in infection that is temporally associated with smaller B cell follicles in the lungs. Cxcl13 is required for B cell follicle formation and immunity during tuberculosis. The absence of IL-23 results in decreased expression of Cxcl13 within M. tuberculosis-induced lymphocyte follicles in the lungs, and this deficiency was associated with increased cuffing of T cells around the vessels in the lungs of these mice. Il23a(-/-) mice also poorly expressed IL-17A and IL-22 mRNA. These cytokines were able to induce Cxcl13 in mouse primary lung fibroblasts, suggesting that these cytokines are likely involved in B cell follicle formation. Indeed, IL-17RA-deficient mice generated smaller B cell follicles early in the response, whereas IL-22-deficient mice had smaller B cell follicles at an intermediate time postinfection; however, only Il23a(-/-) mice had a sustained deficiency in B cell follicle formation and reduced immunity. We propose that in the absence of IL-23, expression of long-term immunity to tuberculosis is compromised due to reduced expression of Cxcl13 in B cell follicles and reduced ability of T cells to migrate from the vessels and into the lesion. Further, although IL-17 and IL-22 can both contribute to Cxcl13 production and B cell follicle formation, it is IL-23 that is critical in this regard.

  13. Low or high doses of cefquinome targeting low or high bacterial inocula cure Klebsiella pneumoniae lung infections but differentially impact the levels of antibiotic resistance in fecal flora.

    PubMed

    Vasseur, Maleck V; Laurentie, Michel; Rolland, Jean-Guy; Perrin-Guyomard, Agnès; Henri, Jérôme; Ferran, Aude A; Toutain, Pierre-Louis; Bousquet-Mélou, Alain

    2014-01-01

    The combination of efficacious treatment against bacterial infections and mitigation of antibiotic resistance amplification in gut microbiota is a major challenge for antimicrobial therapy in food-producing animals. In rats, we evaluated the impact of cefquinome, a fourth-generation cephalosporin, on both Klebsiella pneumoniae lung infection and intestinal flora harboring CTX-M-producing Enterobacteriaceae. Germfree rats received a fecal flora specimen from specific-pathogen-free pigs, to which a CTX-M-producing Escherichia coli strain had been added. K. pneumoniae cells were inoculated in the lungs of these gnotobiotic rats by using either a low (10(5) CFU) or a high (10(9) CFU) inoculum. Without treatment, all animals infected with the low or high K. pneumoniae inoculum developed pneumonia and died before 120 h postchallenge. In the treated groups, the low-inoculum rats received a 4-day treatment of 5 mg/kg of body weight cefquinome beginning at 24 h postchallenge (prepatent phase of the disease), and the high-inoculum rats received a 4-day treatment of 50 mg/kg cefquinome beginning when the animals expressed clinical signs of infection (patent phase of the disease). The dose of 50 mg/kg targeting the high K. pneumoniae inoculum cured all the treated rats and resulted in a massive amplification of CTX-M-producing Enterobacteriaceae. A dose of 5 mg/kg targeting the low K. pneumoniae inoculum cured all the rats and averted an outbreak of clinical disease, all without any amplification of CTX-M-producing Enterobacteriaceae. These findings might have implications for the development of new antimicrobial treatment strategies that ensure a cure for bacterial infections while avoiding the amplification of resistance genes of human concern in the gut microbiota of food-producing animals.

  14. Transcriptomic and Epigenetic Profiling of the Lung of Influenza-Infected Pigs: A Comparison of Different Birth Weight and Susceptibility Groups

    PubMed Central

    Wilkinson, Jamie M.; Gunvaldsen, Rayna E.; Detmer, Susan E.; Dyck, Michael K.; Dixon, Walter T.; Foxcroft, George R.; Plastow, Graham S.; Harding, John C. S.

    2015-01-01

    Influenza viruses are a common cause of respiratory disease in swine. Infections range in severity from asymptomatic to causing significant morbidity. The main objective of this study was to compare lung transcriptomic and epigenetic responses to influenza infection in pigs from high or low birth weight litters. The latter is a potential indicator of intrauterine growth restriction, a significant risk factor for prenatal programming effects. Individual pigs from high (HBW) or low birth weight (LBW) litters (n = 17) were inoculated with influenza A virus and euthanized 48 hours later. Lesion severity and viral loads were assessed as previously described. The transcriptional response to infection in LBW and HBW groups (n = 16) was assessed by microarray. A separate analysis of pigs classified as ‘Resilient’ (RES) or ‘Susceptible’ (SUS) (n = 6) on the basis of severity of lung pathology was also conducted. Eight genes were confirmed as differentially expressed for the birth weight comparison, including three antiviral genes with lower expression in LBW: ISG15, OAS1, and OAS2 (P<0.05). The promoter region methylation status of these three genes was assessed for each birth weight group, and no differences were found. These expression data are consistent with our previous finding that LBW pigs had less severe lesion scores and a trend towards lower viral titres in lung than the HBW cohort. The SUS v RES comparison identified 91 differentially expressed genes (FDR<0.05) that were enriched with functional annotation terms and pathways associated with inflammation. The cytokine genes IL6, IL8, and CCL2 were all upregulated in SUS pigs, and may have driven disease severity in these animals. In conclusion, this study found no evidence that the transcriptional immune response to influenza was adversely affected by low litter birth weight, but did identify several candidate genes for driving disease pathology. PMID:26393920

  15. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility

    PubMed Central

    Hoppe, Julia; Ünal, Can M.; Thiem, Stefanie; Grimpe, Louisa; Goldmann, Torsten; Gaßler, Nikolaus; Richter, Matthias; Shevchuk, Olga; Steinert, Michael

    2017-01-01

    Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa. PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila, we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue. PMID:28326293

  16. Chlamydial Lipoproteins Stimulate Toll-Like Receptors 1/2 Mediated Inflammatory Responses through MyD88-Dependent Pathway

    PubMed Central

    Wang, Yong; Liu, Qiong; Chen, Ding; Guan, Jie; Ma, Linghui; Zhong, Guangming; Shu, Hengping; Wu, Xiang

    2017-01-01

    Chlamydiae are very important pathogens which could cause several types of diseases in human, but little is known about its pathogenic mechanism. In order to elucidate host inflammatory response and the signal pathway induced by Chlamydial lipoproteins, the predicted lipoproteins of Chlamydia trachomatis were tested for their ability to induce the release of proinflammatory cytokines by mouse macrophages or human TLR (Toll-Like Receptor) expressing cell lines. The results showed that recombinant proteins of C. trachomatis D381, D541, D067, and D775 displayed a strong ability to induce the release of IL-8 in TLR expressing cell line. The signal pathways involved TLR1/2 and TLR2/CD14 but not TLR4. Moreover, except D067, the proinflammatory cytokine induction by D381, D541, and D775 required the thioacylation site (cysteine) for lipid modification and the induction was through MyD88-mediated pathway. Our data supported that lipoproteins played a vital role in pathogenesis of C. trachomatis-induced inflammatory responses via TLR pathway. It was the first study to characterize other chlamydial lipoproteins after identifying the role of MIP (D541) on pathogenesis of Chlamydial diseases. PMID:28184217

  17. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans.

    PubMed

    Yamamoto, Hideki; Nakamura, Yuri; Sato, Ko; Takahashi, Yurie; Nomura, Toshiki; Miyasaka, Tomomitsu; Ishii, Keiko; Hara, Hiromitsu; Yamamoto, Natsuo; Kanno, Emi; Iwakura, Yoichiro; Kawakami, Kazuyoshi

    2014-04-01

    Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported that Cryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection with C. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible to C. neoformans infection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection.

  18. Effects of sustained antibiotic bactericidal treatment on Chlamydia trachomatis-infected epithelial-like cells (HeLa) and monocyte-like cells (THP-1 and U-937).

    PubMed

    Mpiga, Philomene; Ravaoarinoro, Madeleine

    2006-04-01

    Chlamydia trachomatis is a human pathogen that causes multiple diseases worldwide. Despite appropriate therapy with existing antichlamydial antibiotics, chronic exacerbated diseases often occur and lead to serious sequelae. Since C. trachomatis has been found to enter a persistent state after exposure to deleterious conditions, the role of persistence in the failure of chlamydial antibiotherapy is questioned. HeLa, THP-1 and U-937 cells were infected with 10(4)C. trachomatis serovar L2 infectious particles. Three days later the infected cells were treated with minimal bactericidal concentrations of doxycycline (DOX), erythromycin (ERY) or tetracycline (TET) for 24 days or 30 days. Antibiotic efficacy was assessed by measuring chlamydial inclusions and infectious particles, by investigating the resumption of chlamydial growth after antibiotic removal and by testing Chlamydia viability using reverse transcriptase polymerase chain reaction targeting unprocessed 16S rRNA, processed 16S rRNA and Omp-1 mRNA. Treatment of infected HeLa cells with the usual antichlamydial antibiotics suppressed chlamydial active growth. The infection remained unapparent. However, 24 days post treatment the bacterium was found to be viable, as proved by continued expression of unprocessed and processed 16S rRNA and Omp-1 mRNA. This inactive unapparent chlamydial state is not infectious, suggesting Chlamydia persistence. Chlamydia trachomatis also developed persistence both in permissive THP-1 and non-permissive U-937 cells. Unlike in HeLa cells, persistent chlamydial infection in THP-1 and U-937 cells was resolved after 30 days of DOX treatment. Of interest, we noticed that only THP-1 and U-937 cells that were persistently infected following their interaction with infected HeLa cells remained capable of transmitting active infection to HeLa cells. These findings suggest that DOX, TET and ERY, usually administered to combat chlamydial diseases, fail to resolve persistent infection occurring

  19. Inclusion keratoconjunctivitis ('pink eye') in sheep. A proposal for a new name for chlamydial keratoconjunctivitis in sheep and comment on recent clinical trials.

    PubMed

    Bogaard, A E

    1984-09-01

    The cytoplasmatic inclusion bodies, which, in 1931, Coles discovered in the corneal cells of sheep suffering from contagious keratoconjunctivitis are now considered to be the reticulate bodies of a chlamydia, Colesiota conjunctivae (synonym: Chlamydia psittaci ovis). According to the postulates of Koch Colesiota conjunctivae is a primary cause of contagious keratoconjunctivitis in sheep, but the clinical picture is complex and is a result of the interaction between the infecting chlamydiae, host resistance factors, and secondary infections caused by opportunistic bacterial ocular pathogens. The clinical syndrome might also be caused by other micro-organisms, such as Mycoplasma conjunctivae or environmental factors, such as dust. However, in these cases, cytoplasmatic inclusion bodies cannot be found in the corneal cells of diseased eyes. To differentiate chlamydial keratoconjunctivitis from keratoconjunctivitis due to other causes, it is proposed to include in the name the laboratory findings typical for this disease: Sheep Inclusion Keratoconjunctivitis. Chlamydia are Gram-negative bacteria, which are obligate intracellular parasites. Prolonged treatment seems to be required to eradicate chlamydiae from a host and antibiotics must reach intracellular levels that are higher than their minimum inhibitory concentration for chlamydiae. Tetracyclines are the drugs of choice. This means that for a microbiological cure, diseased sheep must be injected several times a day for a week or more. Because the disease is usually self-limiting and economic losses are considered low, this seems unnecessary and control of the disease by local treatment of secondary infections seems sufficient. However, this will not prevent spreading of the disease in a herd and relapses may occur.

  20. Cellular transcriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway

    PubMed Central

    2011-01-01

    Background Influenza viruses can modulate and hijack several cellular signalling pathways to efficiently support their replication. We recently investigated and compared the cellular gene expression profiles of human lung A549 cells infected by five different subtypes of human and avian influenza viruses (Josset et al. Plos One 2010). Using these transcriptomic data, we have focused our analysis on the modulation of the p53 pathway in response to influenza infection. Results Our results were supported by both RT-qPCR and western blot analyses and reveal multiple alterations of the p53 pathway during infection. A down-regulation of mRNA expression was observed for the main regulators of p53 protein stability during infection by the complete set of viruses tested, and a significant decrease in p53 mRNA expression was also observed in H5N1 infected cells. In addition, several p53 target genes were also down-regulated by these influenza viruses and the expression of their product reduced. Conclusions Our data reveal that influenza viruses cause an overall down-regulation of the host p53 pathway and highlight this pathway and p53 protein itself as important viral targets in the altering of apoptotic processes and in cell-cycle regulation. PMID:21651802

  1. Structures of and allelic diversity and relationships among the major outer membrane protein (ompA) genes of the four chlamydial species.

    PubMed Central

    Kaltenboeck, B; Kousoulas, K G; Storz, J

    1993-01-01

    DNA sequences coding for 81% of the ompA gene from 24 chlamydial strains, representing all chlamydial species, were determined from DNA amplified by polymerase chain reactions. Chlamydial strains of serovars and strains with similar chromosomal restriction fragment length polymorphism had identical ompA DNA sequences. The ompA sequences were segregated into 23 different ompA alleles and aligned with each other, and phylogenetic relationships among them were inferred by neighbor-joining and maximum parsimony analyses. The neighbor-joining method produced a single phylogram which was rooted at the branch between two major clusters. One cluster included all Chlamydia trachomatis ompA alleles (trachoma group). The second cluster was composed of three major groups of ompA alleles: psittacosis group (alleles MN, 6BC, A22/M, B577, LW508, FEPN, and GPIC), pneumonia group (Chlamydia pneumoniae AR388 with the allele KOALA), and polyarthritis group (ruminant and porcine chlamydial alleles LW613, 66P130, L71, and 1710S with propensity for polyarthritis). These groups were distinguished through specific DNA sequence signatures. Maximum parsimony analysis yielded two equally most parsimonious phylograms with topologies similar to the ompA tree of neighbor joining. Two phylograms constructed from chlamydial genomic DNA distances had topologies identical to that of the ompA phylogram with respect to branching of the chlamydial species. Human serovars of C. trachomatis with essentially identical genomes represented a single taxonomic unit, while they were divergent in the ompA tree. Consistent with the ompA phylogeny, the porcine isolate S45, previously considered to be Chlamydia psittaci, was identified as C. trachomatis through biochemical characteristics. These data demonstrate that chlamydial ompA allelic relationships, except for human serovars of C. trachomatis, are cognate with chromosomal phylogenies. Images PMID:8419295

  2. Efficient lung recruitment of respiratory syncytial virus-specific Th1 cells induced by recombinant bacillus Calmette-Guérin promotes virus clearance and protects from infection.

    PubMed

    Cautivo, Kelly M; Bueno, Susan M; Cortes, Claudia M; Wozniak, Aniela; Riedel, Claudia A; Kalergis, Alexis M

    2010-12-15

    Infection by the respiratory syncytial virus (RSV) can cause extensive inflammation and lung damage in susceptible hosts due to a Th2-biased immune response. Such a deleterious inflammatory response can be enhanced by immunization with formalin- or UV-inactivated RSV, as well as with vaccinia virus expressing the RSV-G protein. Recently, we have shown that vaccination with rBCG-expressing RSV Ags can prevent the disease in the mouse. To further understand the immunological mechanisms responsible for protection against RSV, we have characterized the T cell populations contributing to virus clearance in mice immunized with this BCG-based vaccine. We found that both CD4(+) and CD8(+) T cells were recruited significantly earlier to the lungs of infected mice that were previously vaccinated. Furthermore, we observed that simultaneous adoptive transfer of CD8(+) and CD4(+) RSV-specific T cells from vaccinated mice was required to confer protection against virus infection in naive recipients. In addition, CD4(+) T cells induced by vaccination released IFN-γ after RSV challenge, indicating that protection is mediated by a Th1 immune response. These data suggest that vaccination with rBCG-expressing RSV Ags can induce a specific effector/memory Th1 immune response consisting on CD4(+) and CD8(+) T cells, both necessary for a fully protective response against RSV. These results support the notion that an effective induction of Th1 T cell immunity against RSV during childhood could counteract the unbalanced Th2-like immune response triggered by the natural RSV infection.

  3. 9 CFR 82.2 - Criteria for determining birds or poultry to be infected with, exposed to, or free from END.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... poultry to be infected with, exposed to, or free from END. 82.2 Section 82.2 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DISEASE (END) AND CHLAMYDI-OSIS Exotic Newcastle Disease (END) § 82.2 Criteria for determining birds or poultry to be infected with, exposed to,...

  4. 9 CFR 82.2 - Criteria for determining birds or poultry to be infected with, exposed to, or free from END.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... poultry to be infected with, exposed to, or free from END. 82.2 Section 82.2 Animals and Animal Products... ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS EXOTIC NEWCASTLE DISEASE (END) AND CHLAMYDI-OSIS Exotic Newcastle Disease (END) § 82.2 Criteria for determining birds or poultry to be infected with, exposed to,...

  5. In Vivo Pharmacodynamic Target Assessment of Delafloxacin against Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae in a Murine Lung Infection Model

    PubMed Central

    Lepak, Alexander J.

    2016-01-01

    Delafloxacin is a broad-spectrum anionic fluoroquinolone under development for the treatment of bacterial pneumonia. The goal of the study was to determine the pharmacokinetic/pharmacodynamic (PK/PD) targets in the murine lung infection model for Staphylococcus aureus, Streptococcus pneumoniae, and Klebsiella pneumoniae. Four isolates of each species were utilized for in vivo studies: for S. aureus, one methicillin-susceptible and three methicillin-resistant isolates; S. pneumoniae, two penicillin-susceptible and two penicillin-resistant isolates; K. pneumoniae, one wild-type and three extended-spectrum beta-lactamase-producing isolates. MICs were determined using CLSI methods. A neutropenic murine lung infection model was utilized for all treatment studies, and drug dosing was by the subcutaneous route. Single-dose plasma pharmacokinetics was determined in the mouse model after administration of 2.5, 10, 40, and 160 mg/kg. For in vivo studies, 4-fold-increasing doses of delafloxacin (range, 0.03 to 160 mg/kg) were administered every 6 h (q6h) to infected mice. Treatment outcome was measured by determining organism burden in the lung (CFU counts) at the end of each experiment (24 h). The Hill equation for maximum effect (Emax) was used to model the dose-response data. The magnitude of the PK/PD index, the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC), associated with net stasis and 1-log kill endpoints was determined in the lung model for all isolates. MICs ranged from 0.004 to 1 mg/liter. Single-dose PK parameter ranges include the following: for maximum concentration of drug in serum (Cmax), 2 to 70.7 mg/liter; AUC from 0 h to infinity (AUC0–∞), 2.8 to 152 mg · h/liter; half-life (t1/2), 0.7 to 1 h. At the start of therapy mice had 6.3 ± 0.09 log10 CFU/lung. In control mice the organism burden increased 2.1 ± 0.44 log10 CFU/lung over the study period. There was a relatively steep dose

  6. Infection

    DTIC Science & Technology

    2010-09-01

    standing, diagnosis, and treatment of musculoskeletal infections. Key Words: musculoskeletal infection, biofilm , bacteria, biomaterial (J Orthop Trauma...form a biofilm , or slime layer.1 The recurrence of infections is often the result of microbial biofilm formation on the implant, enabling the persistence...Klebsiella pneumoniae). Staphylococcus species is by far the most studied pathogen in musculoskeletal infections and can produce a multilayered biofilm

  7. An α-helical core encodes the dual functions of the chlamydial protein IncA.

    PubMed

    Ronzone, Erik; Wesolowski, Jordan; Bauler, Laura D; Bhardwaj, Anshul; Hackstadt, Ted; Paumet, Fabienne

    2014-11-28

    Chlamydia is an intracellular bacterium that establishes residence within parasitophorous compartments (inclusions) inside host cells. Chlamydial inclusions are uncoupled from the endolysosomal pathway and undergo fusion with cellular organelles and with each other. To do so, Chlamydia expresses proteins on the surface of the inclusion using a Type III secretion system. These proteins, termed Incs, are located at the interface between host and pathogen and carry out the functions necessary for Chlamydia survival. Among these Incs, IncA plays a critical role in both protecting the inclusion from lysosomal fusion and inducing the homotypic fusion of inclusions. Within IncA are two regions homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) domains referred to as SNARE-like domain 1 (SLD1) and SNARE-like domain 2 (SLD2). Using a multidisciplinary approach, we have discovered the functional core of IncA that retains the ability to both inhibit SNARE-mediated fusion and promote the homotypic fusion of Chlamydia inclusions. Circular dichroism and analytical ultracentrifugation experiments show that this core region is composed almost entirely of α-helices and assembles into stable homodimers in solution. Altogether, we propose that both IncA functions are encoded in a structured core domain that encompasses SLD1 and part of SLD2.

  8. Antibodies Raised Against Chlamydial Lipopolysaccharide Antigens Reveal Convergence in Germline Gene Usage and Differential Epitope Recognition

    PubMed Central

    Brooks, Cory L; Müller-Loennies, Sven; Borisova, Svetlana N.; Brade, Lore; Kosma, Paul; Hirama, Tomoko; MacKenzie, C. Roger; Brade, Helmut; Evans, Stephen V

    2011-01-01

    In order to explore monoclonal antibody recognition carbohydrate antigens, several structures from two monoclonal antibodies directed against carbohydrate epitopes derived from chlamydial LPS have been solved to high resolution. With the exception of CDR H3, antibodies S54-10 and S73-2 are both derived from the same set of germline gene segments as the previously reported structures S25-2 and S45-18. Despite this similarity, the antibodies differ in specificity and the mechanism by which they recognize their cognate antigen. S54-10 uses an unrelated CDR H3 to recognize its antigen in a fashion analogous to S45-18; however, S73-2 recognizes the same antigen as S45-18 and S54-10 in a wholly unrelated manner. Together, these antibody-antigen structures provide snapshots into how the immune system uses the same set of inherited germline gene segments to generate multiple possible specificities that allow for differential recognition of epitopes, and how unrelated CDR H3 sequences can result in convergent binding of clinically-relevant bacterial antigens. PMID:20000757

  9. Chlamydial seasonal dynamics and isolation of 'Candidatus Neptunochlamydia vexilliferae' from a Tyrrhenian coastal lake.

    PubMed

    Pizzetti, Ilaria; Schulz, Frederik; Tyml, Tomáš; Fuchs, Bernhard M; Amann, Rudolf; Horn, Matthias; Fazi, Stefano

    2016-09-01

    The Chlamydiae are a phylum of obligate intracellular bacteria comprising important human and animal pathogens, yet their occurrence in the environment, their phylogenetic diversity and their host range has been largely underestimated. We investigated the seasonality of environmental chlamydiae in a Tyrrhenian coastal lake. By catalysed reporter deposition fluorescence in situ hybridization, we quantified the small planktonic cells and detected a peak in the abundance of environmental chlamydiae in early autumn with up to 5.9 × 10(4) cells ml(-1) . Super-resolution microscopy improved the visualization and quantification of these bacteria and enabled the detection of pleomorphic chlamydial cells in their protist host directly in an environmental sample. To isolate environmental chlamydiae together with their host, we applied a high-throughput limited dilution approach and successfully recovered a Vexillifera sp., strain harbouring chlamydiae (93% 16S rRNA sequence identity to Simkania negevensis), tentatively named 'Candidatus Neptunochlamydia vexilliferae'. Transmission electron microscopy in combination with fluorescence in situ hybridization was used to prove the intracellular location of these bacteria representing the first strain of marine chlamydiae stably maintained alongside with their host in a laboratory culture. Taken together, this study contributes to a better understanding of the distribution and diversity of environmental chlamydiae in previously neglected marine environments.

  10. Early Innate Immunity to Bacterial Infection in the Lung Is Regulated Systemically by the Commensal Microbiota via Nod-Like Receptor Ligands

    PubMed Central

    2014-01-01

    The commensal microbiota is a major regulator of the immune system. The majority of commensal bacteria inhabit the gastrointestinal tract and are known to regulate local mucosal defenses against intestinal pathogens. There is growing appreciation that the commensal microbiota also regulates immune responses at extraintestinal sites. Currently, however, it is unclear how this influences host defenses against bacterial infection outside the intestine. Microbiota depletion caused significant defects in the early innate response to lung infection by the major human pathogen Klebsiella pneumoniae. After microbiota depletion, early clearance of K. pneumoniae was impaired, and this could be rescued by administration of bacterial Nod-like receptor (NLR) ligands (the NOD1 ligand MurNAcTriDAP and NOD2 ligand muramyl dipeptide [MDP]) but not bacterial Toll-like receptor (TLR) ligands. Importantly, NLR ligands from the gastrointestinal, but not upper respiratory, tract rescued host defenses in the lung. Defects in early innate immunity were found to be due to reduced reactive oxygen species-mediated killing of bacteria by alveolar macrophages. These data show that bacterial signals from the intestine have a profound influence on establishing the levels of antibacterial defenses in distal tissues. PMID:25135683

  11. Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection.

    PubMed

    McClean, Siobhán; Healy, Marc E; Collins, Cassandra; Carberry, Stephen; O'Shaughnessy, Luke; Dennehy, Ruth; Adams, Áine; Kennelly, Helen; Corbett, Jennifer M; Carty, Fiona; Cahill, Laura A; Callaghan, Máire; English, Karen; Mahon, Bernard P; Doyle, Sean; Shinoy, Minu

    2016-05-01

    Members of the Burkholderia cepacia complex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species: Burkholderia cenocepacia, the most virulent, and B. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species. Escherichia coli strains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responses in vivo Mice immunized with either recombinant linocin or OmpW were protected from B. cenocepacia and B. multivorans challenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens.

  12. Linocin and OmpW Are Involved in Attachment of the Cystic Fibrosis-Associated Pathogen Burkholderia cepacia Complex to Lung Epithelial Cells and Protect Mice against Infection

    PubMed Central

    Healy, Marc E.; Collins, Cassandra; Carberry, Stephen; O'Shaughnessy, Luke; Dennehy, Ruth; Adams, Áine; Kennelly, Helen; Corbett, Jennifer M.; Carty, Fiona; Cahill, Laura A.; Callaghan, Máire; English, Karen; Mahon, Bernard P.; Doyle, Sean; Shinoy, Minu

    2016-01-01

    Members of the Burkholderia cepacia complex (Bcc) cause chronic opportunistic lung infections in people with cystic fibrosis (CF), resulting in a gradual lung function decline and, ultimately, patient death. The Bcc is a complex of 20 species and is rarely eradicated once a patient is colonized; therefore, vaccination may represent a better therapeutic option. We developed a new proteomics approach to identify bacterial proteins that are involved in the attachment of Bcc bacteria to lung epithelial cells. Fourteen proteins were reproducibly identified by two-dimensional gel electrophoresis from four Bcc strains representative of two Bcc species: Burkholderia cenocepacia, the most virulent, and B. multivorans, the most frequently acquired. Seven proteins were identified in both species, but only two were common to all four strains, linocin and OmpW. Both proteins were selected based on previously reported data on these proteins in other species. Escherichia coli strains expressing recombinant linocin and OmpW showed enhanced attachment (4.2- and 3.9-fold) to lung cells compared to the control, confirming that both proteins are involved in host cell attachment. Immunoproteomic analysis using serum from Bcc-colonized CF patients confirmed that both proteins elicit potent humoral responses in vivo. Mice immunized with either recombinant linocin or OmpW were protected from B. cenocepacia and B. multivorans challenge. Both antigens induced potent antigen-specific antibody responses and stimulated strong cytokine responses. In conclusion, our approach identified adhesins that induced excellent protection against two Bcc species and are promising vaccine candidates for a multisubunit vaccine. Furthermore, this study highlights the potential of our proteomics approach to identify potent antigens against other difficult pathogens. PMID:26902727

  13. Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA

    PubMed Central

    Aimanianda, Vishukumar; Nietzsche, Sandor; Thywißen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A.; Gunzer, Matthias

    2010-01-01

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  14. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA.

    PubMed

    Bruns, Sandra; Kniemeyer, Olaf; Hasenberg, Mike; Aimanianda, Vishukumar; Nietzsche, Sandor; Thywissen, Andreas; Jeron, Andreas; Latgé, Jean-Paul; Brakhage, Axel A; Gunzer, Matthias

    2010-04-29

    Aspergillus fumigatus is the most important airborne fungal pathogen causing life-threatening infections in immunocompromised patients. Macrophages and neutrophils are known to kill conidia, whereas hyphae are killed mainly by neutrophils. Since hyphae are too large to be engulfed, neutrophils possess an array of extracellular killing mechanisms including the formation of neutrophil extracellular traps (NETs) consisting of nuclear DNA decorated with fungicidal proteins. However, until now NET formation in response to A. fumigatus has only been demonstrated in vitro, the importance of neutrophils for their production in vivo is unclear and the molecular mechanisms of the fungus to defend against NET formation are unknown. Here, we show that human neutrophils produce NETs in vitro when encountering A. fumigatus. In time-lapse movies NET production was a highly dynamic process which, however, was only exhibited by a sub-population of cells. NETosis was maximal against hyphae, but reduced against resting and swollen conidia. In a newly developed mouse model we could then demonstrate the existence and measure the kinetics of NET formation in vivo by 2-photon microscopy of Aspergillus-infected lungs. We also observed the enormous dynamics of neutrophils within the lung and their ability to interact with and phagocytose fungal elements in situ. Furthermore, systemic neutrophil depletion in mice almost completely inhibited NET formation in lungs, thus directly linking the immigration of neutrophils with NET formation in vivo. By using fungal mutants and purified proteins we demonstrate that hydrophobin RodA, a surface protein making conidia immunologically inert, led to reduced NET formation of neutrophils encountering Aspergillus fungal elements. NET-dependent killing of Aspergillus-hyphae could be demonstrated at later time-points, but was only moderate. Thus, these data establish that NET formation occurs in vivo during host defence against A. fumigatus, but suggest

  15. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  16. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection

    PubMed Central

    Fernández, Andrea G.; Bonetto, Josefina; Giambartolomei, Guillermo H.; Fossati, Carlos A.; Baldi, Pablo C.

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site. PMID:26448160

  17. CCL20 and Beta-Defensin 2 Production by Human Lung Epithelial Cells and Macrophages in Response to Brucella abortus Infection.

    PubMed

    Hielpos, M Soledad; Ferrero, Mariana C; Fernández, Andrea G; Bonetto, Josefina; Giambartolomei, Guillermo H; Fossati, Carlos A; Baldi, Pablo C

    2015-01-01

    Both CCL20 and human β-defensin 2 (hBD2) interact with the same membrane receptor and display chemotactic and antimicrobial activities. They are produced by airway epithelia in response to infectious agents and proinflammatory cytokines. Whereas Brucella spp. can infect humans through inhalation, their ability to induce CCL20 and hBD2 in lung cells is unknown. Here we show that B. abortus induces CCL20 expression in human alveolar (A549) or bronchial (Calu-6) epithelial cell lines, primary alveolar epithelial cells, primary human monocytes, monocyte-derived macrophages and the monocytic cell line THP-1. CCL20 expression was mainly mediated by JNK1/2 and NF-kB in both Calu-6 and THP-1 cells. CCL20 secretion was markedly induced in A549, Calu-6 and THP-1 cells by heat-killed B. abortus or a model Brucella lipoprotein (L-Omp19) but not by the B. abortus lipopolysaccharide (LPS). Accordingly, CCL20 production by B. abortus-infected cells was strongly TLR2-dependent. Whereas hBD2 expression was not induced by B. abortus infection, it was significantly induced in A549 cells by conditioned media from B. abortus-infected THP-1 monocytes (CMB). A similar inducing effect was observed on CCL20 secretion. Experiments using blocking agents revealed that IL-1β, but not TNF-α, was involved in the induction of hBD2 and CCL20 secretion by CMB. In the in vitro antimicrobial assay, the lethal dose (LD) 50 of CCL20 for B. abortus (>50 μg/ml) was markedly higher than that against E. coli (1.5 μg/ml) or a B. abortus mutant lacking the O polysaccharide in its LPS (8.7 ug/ml). hBD2 did not kill any of the B. abortus strains at the tested concentrations. These results show that human lung epithelial cells secrete CCL20 and hBD2 in response to B. abortus and/or to cytokines produced by infected monocytes. Whereas these molecules do not seem to exert antimicrobial activity against this pathogen, they could recruit immune cells to the infection site.

  18. Prevalence and predictors of chlamydia co-infection among patients infected with gonorrhoea at a sexual health clinic in Sydney.

    PubMed

    Templeton, David J; Manokaran, Niveditha; O'Connor, Catherine C

    2012-09-01

    Anogenital gonorrhoea (Neisseria gonorrhoeae) is commonly diagnosed at sexual health clinics by on-site microscopy. Whether to add anti-chlamydial therapy in such situations is unclear. The medical records of all patients diagnosed with gonorrhoea between May 2005 and April 2010 at RPA Sexual Health were reviewed. Of 165 patients diagnosed with anogenital gonorrhoea, 27 (16.4%, 95% confidence interval (CI) 11.1-22.9%) were co-infected with chlamydia (Chlamydia trachomatis). Compared with those only infected with anogenital gonorrhoea, there was no correlation of anogenital gonorrhoea-chlamydia co-infection with any demographic, behavioural or clinical variables examined. Anti-chlamydial therapy should be considered for all patients with gram stain diagnosed anogenital gonorrhoea at the initial clinic visit.

  19. Probable Phaeoacremonium parasiti