21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...
21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...
21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...
21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Chloral hydrate, pentobarbital, and magnesium... FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate. (a) Specifications. Each milliliter of solution contains 42.5 milligrams (mg) of chloral hydrate, 8.86 mg of...
21 CFR 522.380 - Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Chloral hydrate, pentobarbital, and magnesium... INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.380 Chloral hydrate, pentobarbital, and magnesium sulfate sterile aqueous solution. (a) [Reserved] (b)(1) Specifications. Chloral hydrate, pentobarbital, and...
Fallah, Razieh; Alaei, Ali; Akhavan Karbasi, Sedighah; Shajari, Ahmad
2014-06-01
To compare efficacy and safety of chloral hydrate (CH), chloral hydrate and promethazine (CH + P) and chloral hydrate and hydroxyzine (CH + H) in electroencephalography (EEG) sedation. In a parallel single-blinded randomized clinical trial, ninety 1-7 y-old uncooperative kids who were referred to Pediatric Neurology Clinic of Shahid Sadoughi University, Yazd, Iran from April through August 2012, were randomly assigned to receive 40 mg/kg of chloral hydrate or 40 mg/kg of chloral hydrate and 1 mg/kg of promethazine or 40 mg/kg of chloral hydrate and 2 mg/kg of hydroxyzine. The primary endpoint was efficacy in sufficient sedation (obtaining four Ramsay sedation score) and successful completion of EEG. Secondary endpoint was clinical adverse events. Thirty nine girls (43.3 %) and 51 boys (56.7 %) with mean age of 3.34 ± 1.47 y were assessed. Sufficient sedation and completion of EEG were achieved in 70 % (N = 21) of chloral hydrate group, in 83.3 % (N = 25) of CH + H group and in 96.7 % (N = 29) of CH + P group (p = 0.02). Mild clinical adverse events including vomiting [16.7 % (N = 5) in CH, 6.7 % (N = 2) in CH + P, 6.7 % (N = 2) in CH + H], agitation in 3.3 % of CH + P (N = 1) group and mild transient hypotension in 3.3 % of CH + H (N = 1) group occurred. Safety of these three sedation regimens was not statistically significant different (p = 0.14). Combination of chloral hydrate-antihistamines can be used as the most effective and safe sedation regimen in drug induced sleep electroencephalography of kids.
Chloral hydrate for sedation of children with asthma during dental treatment.
Abdulhamid, I; Tremblay, M; Stenger, J; Tutag Lehr, V
2016-06-01
We hypothesised that chloral hydrate is safe and effective for sedation during dental treatments for children with mild asthma. We evaluated the safety and efficacy of chloral hydrate by measuring changes in heart rate (HR), transcutaneous oxygen saturation, (SpO2), asthma score, behaviour, types and frequency of adverse reactions associated with chloral hydrate were assessed throughout treatment. Children (<10 years old) with mild asthma undergoing dental treatments received a single 65 mg/kg oral dose of chloral hydrate liquid 1 hour prior to treatment in an open label trial. Heart rate (HR), SpO2, asthma score, behaviour, types and frequency of adverse reactions associated with chloral hydrate were assessed throughout treatment. Asthma score was obtained before and after treatment. Thirty minutes after treatment, SpO2, HR, and level of consciousness was assessed. Twenty four children were enrolled and 92% (22/24) recovered from sedation without respiratory depression. Two experienced mild respiratory depression related to chloral hydrate. Asthma was not a contributing factor as they did not experience wheezing, cough, tachypnoea, or retractions. Inhaled nitrous oxide supplemented chloral hydrate sedation in 63% (15/24) children to achieve effective cooperation. Three children had a SpO2 <95% (2 during treatment, 1 during recovery). Chloral hydrate 65 mg/kg administered a as single oral dose appears to be safe with respect to disease exacerbation for children with mild asthma undergoing dental treatment. Due to ineffective sedation and mild respiratory depression associated with chloral hydrate, newer, easily titrated medications, such as midazolam, may offer advantages.
Chloral hydrate, a sedative, is used in the short-term treatment of insomnia (to help you fall asleep and ... Chloral hydrate comes as a capsule and liquid to take by mouth and as a suppository to insert rectally. ...
Yuen, V M; Li, B L; Cheuk, D K; Leung, M K M; Hui, T W C; Wong, I C; Lam, W W; Choi, S W; Irwin, M G
2017-10-01
Chloral hydrate is commonly used to sedate children for painless procedures. Children may recover more quickly after sedation with dexmedetomidine, which has a shorter half-life. We randomly allocated 196 children to chloral hydrate syrup 50 mg.kg -1 and intranasal saline spray, or placebo syrup and intranasal dexmedetomidine spray 3 μg.kg -1 , 30 min before computerised tomography studies. More children resisted or cried after drinking chloral hydrate syrup than placebo syrup, 72 of 107 (67%) vs. 42 of 87 (48%), p = 0.009, but there was no difference after intranasal saline vs. dexmedetomidine, 49 of 107 (46%) vs. 40 of 87 (46%), p = 0.98. Sedation was satisfactory in 81 of 107 (76%) children after chloral hydrate and 64 of 87 (74%) children after dexmedetomidine, p = 0.74. Of the 173 children followed up for at least 4 h after discharge, 38 of 97 (39%) had recovered normal function after chloral hydrate and 32 of 76 (42%) after dexmedetomidine, p = 0.76. Six children vomited after chloral hydrate syrup and placebo spray vs. none after placebo syrup and dexmedetomidine spray, p = 0.03. © 2017 The Association of Anaesthetists of Great Britain and Ireland.
Stephen, Marie Christy Sharafine; Mathew, John; Varghese, Ajoy Mathew; Kurien, Mary; Mathew, George Ani
2015-12-01
To evaluate the efficacy and safety of intranasal midazolam and chloral hydrate syrup for procedural sedation in children. Prospective randomized placebo-controlled trial (double blind, double dummy). Tertiary care hospital over 18 months. Eighty-two children, 1 to 6 years old, undergoing auditory brainstem response testing were randomized to receive either intranasal midazolam with oral placebo or chloral hydrate syrup with placebo nasal spray. Intranasal midazolam was delivered at 0.5 mg/kg (100 mcg per spray) and oral syrup at 50 mg/kg. Children not sedated at 30 minutes had a second dose at half the initial dose. The primary outcomes measured were safety and efficacy. Secondary outcomes were time to onset of sedation, parental separation, nature of parental separation, parental satisfaction, audiologist's satisfaction, time to recovery, and number of attempts. Forty-one children were in each group, and no major adverse events were noted. The chloral hydrate group showed earlier onset of sedation (66%) compared with the intranasal midazolam group (33%). Significant difference in time to recovery was noted in the chloral hydrate group (78 minutes) versus the intranasal midazolam group (108 minutes). The parents' and audiologist's satisfaction was higher for chloral hydrate (95% and 75%) than for intranasal midazolam (49% and 29%, respectively). Overall, sedation was 95% with chloral hydrate versus 51% with intranasal midazolam. Both drugs maintained sedation. Intranasal midazolam and chloral hydrate are both safe and efficacious for pediatric procedural sedation. Chloral hydrate was superior to intranasal midazolam, with an earlier time to onset of sedation, a faster recovery, better satisfaction among parents and the audiologist, and successful sedation. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Sun, YongMei; Zong, Wei; Zhou, MuRu; Ma, YuanYe; Wang, JianHong
2015-08-01
The medical use of morphine as a pain killer is hindered by its side effects including dependence and further addiction. As the prototypical μ receptor agonist, morphine's rewarding effect can be measured by conditioned place preference (CPP) paradigms in animals. Chloral hydrate is a clinical sedative. Using a morphine CPP paradigm that mainly contains somatosensory cues, we found that pre-CPP treatment in rats using chloral hydrate for 6 consecutive days could disrupt the establishment of CPP in a U shape. Chloral hydrate had no effect on the body weight of rats. Our results indicate that prior treatment with chloral hydrate can interrupt the rewarding effect of morphine. Copyright © 2015 Elsevier Inc. All rights reserved.
Cozzi, Giorgio; Norbedo, Stefania; Barbi, Egidio
2017-04-01
Sedation is often required for children undergoing diagnostic procedures. Chloral hydrate has been one of the sedative drugs most used in children over the last 3 decades, with supporting evidence for its efficacy and safety. Recently, chloral hydrate was banned in Italy and France, in consideration of evidence of its carcinogenicity and genotoxicity. Dexmedetomidine is a sedative with unique properties that has been increasingly used for procedural sedation in children. Several studies demonstrated its efficacy and safety for sedation in non-painful diagnostic procedures. Dexmedetomidine's impact on respiratory drive and airway patency and tone is much less when compared to the majority of other sedative agents. Administration via the intranasal route allows satisfactory procedural success rates. Studies that specifically compared intranasal dexmedetomidine and chloral hydrate for children undergoing non-painful procedures showed that dexmedetomidine was as effective as and safer than chloral hydrate. For these reasons, we suggest that intranasal dexmedetomidine could be a suitable alternative to chloral hydrate.
Fallah, Razieh; Fadavi, Nafiseh; Behdad, Shekofah; Fallah Tafti, Mahmoud
2014-01-01
Magnetic resonance imaging (MRI) is a useful diagnostic tool for the evaluation of congenital or acquired brain lesions. But, in all of less than 8-year-old children, pharmacological agents and procedural sedation should be used to induce motionless conditions for imaging studies. The purpose of this study was to compare the efficacy and safety of combination of chloral hydrate-hydroxyzine (CH+H) and chloral hydrate-midazolam (CH+M) in pediatric MRI sedation. In a parallel single-blinded randomized clinical trial, sixty 1-7-year-old children who underwent brain MRI, were randomly assigned to receive chloral hydrate in a minimum dosage of 40 mg/kg in combination with either 2 mg/kg of hydroxyzine or 0.5 mg/kg of midazolam. The primary outcomes were efficacy of adequate sedation (Ramsay sedation score of five) and completion of MRI examination. The secondary outcome was clinical side-effects. Twenty-eight girls (46.7%) and 32 boys (53.3%) with the mean age of 2.72±1.58 years were studied. Adequate sedation and completion of MRI were achieved in 76.7% of CH+H group. Mild and transient clinical side-effects, such as vomiting of one child in each group and agitation in 2 (6.6 %) children of CH+M group, were also seen. The adverse events were more frequent in CH+M group. Combinations of chloral hydrate-hydroxyzine and chloral hydrate-midazolam were effective in pediatric MRI sedation; however, chloral hydrate-hydroxyzine was safer.
Cao, Qianzhong; Lin, Yiquan; Xie, Zhubin; Shen, Weihua; Chen, Ying; Gan, Xiaoliang; Liu, Yizhi
2017-06-01
Pediatric ophthalmic examinations can be conducted under sedation either by chloral hydrate or by dexmedetomidine. The objective was to compare the success rates and quality of ophthalmic examination of children sedated by intranasal dexmedetomidine vs oral chloral hydrate. One hundred and forty-one children aged from 3 to 36 months (5-15 kg) scheduled to ophthalmic examinations were randomly sedated by either intranasal dexmedetomidine (2 μg·kg -1 , n = 71) or oral chloral hydrate (80 mg·kg -1 , n = 70). The primary endpoint was successful sedation to complete the examinations including slit-lamp photography, tonometry, anterior segment analysis, and refractive error inspection. The secondary endpoints included quality of eye position, intraocular pressure, onset time, duration of examination, recovery time, discharge time, any side effects during examination, and within 48 h after discharge. Sixty-one children were sedated by dexmedetomidine with a success rate of 85.9%, which is significantly higher than that by chloral hydrate (64.3%) [OR 3.39, 95% CI: 1.48-7.76, P = 0.003]. Furthermore, children in the dexmedetomidine group displayed better eye position in anterior segment analysis than in chloral hydrate group median difference. All children displayed stable hemodynamics and none suffered hypoxemia in both groups. Oral chloral hydrate induced higher percentages of vomiting and altered bowel habit after discharge than dexmedetomidine. Intranasal dexmedetomidine provides more successful sedation and better quality of ophthalmic examinations than oral chloral hydrate for small children. © 2017 John Wiley & Sons Ltd.
Díaz-Barriga, M G; Jackson-Herrerías, G
1990-01-01
In this paper a comparison of sedation effectiveness, vomiting incidence and postoperative sleeping time with three sedation schemes: Chloral hydrate exclusively, hidroxicine chlorhydrate the night before and 15 minutes before chloral hydrate administration and hidroxicine chlorhydrate 15 minutes before chloral hydrate. We find that there is no significant differences between these three sedation schemes in sedation, degree of postoperative sleeping time and vomiting incidence, therefore we can expect an effective sedation degree using any of these sedation methods.
Pan, Qingjun; Liu, Yuan; Zhu, Xuezhi; Liu, Huafeng
2014-05-01
The aim of this study was to investigate the effect and mechanism of action of chloral hydrate on the peptidoglycan (PGN)-induced inflammatory macrophage response. The effect of chloral hydrate on the production of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) by murine peritoneal macrophages with PGN-stimulation was investigated. In addition, RAW264.7 cells transfected with a nuclear factor-κB (NF-κB) luciferase reporter plasmid stimulated by PGN were used to study the effect of chloral hydrate on the levels NF-κB activity. Flow cytometry and western blotting were performed to investigate the expression levels of toll-like receptor 2 (TLR2) in the treated RAW264.7 cells. It was identified that chloral hydrate reduced the levels of IL-6 and TNF-α produced by the peritoneal macrophages stimulated with PGN. The levels of NF-κB activity of the RAW264.7 cells stimulated by PGN decreased following treatment with chloral hydrate, which was associated with a reduction in the expression levels of TLR2 and reduced levels of TLR2 signal transduction. These data demonstrate that chloral hydrate reduced the magnitude of the PGN-induced inflammatory macrophage response associated with lower expression levels of TLR2.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway.
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-12-10
BACKGROUND There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. MATERIAL AND METHODS This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. RESULTS The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. CONCLUSIONS Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-01-01
Background There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. Material/Methods This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. Results The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. Conclusions Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation. PMID:27941708
78 FR 40175 - Exempt Chemical Preparations Under the Controlled Substances Act
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-03
..., Chloral hydrate..... Amber ampule: 1 mL...... 1/28/2013 AccuStandard, Inc CLP-HC-X1, Composite Mix Amber......... 1/28/2013 products. AccuStandard, Inc M-551B-2, Chloral hydrate..... Amber ampule: 1 mL...... 1/28...Standard, Inc M-E-1179-M, Chloral hydrate... Amber ampule: 1 mL...... 1/28/2013 Agilent Technologies...
Salehi, Forod; Riasi, Hamid Reza; Ebrahimzadeh, Ali; Askari Janatabadi, Sima
2017-01-01
This study aimed to compare the effects of oral midazolam and chloral hydrate in pre-echocardiography sedation of children. In this double-blind clinical trial, 68 children were randomly assigned to midazolam (0.2 mg/kg) or chloral hydrate (50 mg/kg). The intensity, duration, and onset of the drugs' effects were assessed. Data were analyzed using the χ 2 and Mann-Whitney tests ( P ≤ .05). The average onset and duration of sedation in the children assigned to midazolam was shorter than in those assigned chloral hydrate (6.35 ± 3.65 and 19.14 ± 5.86 minutes, P = .0001, and 27.64 ± 8.34 and 48.97 ± 14.81 minutes, P = .0001). Gastrointestinal side effects were more frequent in the chloral hydrate group (23.5% against 0%, P = .003). According to the results of the present study, chloral hydrate and midazolam can be appropriate choices for pre-echocardiography sedation of patients without cardiovascular risk factors. Considering the similar effectiveness, more rapid onset, and shorter duration of sedation, besides less side effects in the midazolam group, researchers recommend the routine use of this drug.
Karaoui, Mohammed; Varadaraj, Varshini; Munoz, Beatriz; Collins, Megan E; Al Djasim, Leyla; Al Naji, Esam; Hamweyah, Karam; Shamrani, Mohammed Al; Craven, Earl Randy; Friedman, David S
2018-05-10
To determine safety and efficacy of oral chloral hydrate sedation (CHS) for outpatient pediatric ophthalmic procedures. Prospective, interventional case series METHODS-SETTING: - King Khaled Eye Specialist Hospital. Children ages 1 month to 5 years undergoing CHS for ocular imaging/evaluation PROCEDURES: Details on chloral hydrate dose administered, sedation achieved, vitals, and adverse events were recorded OUTCOME MEASURES: Primary Outcome: Percent of patients with a sedation level ≥4 at 45 minutes post chloral hydrate administration. Time from sedation to discharge; adverse events, including changes in vital signs following chloral hydrate administration. 324 children were recruited with a mean age of 2.2 (SD: 1.3) years and mean weight of 10.9 (SD: 3.3) kg. Adequate sedation was obtained with a mean chloral hydrate first dose of 77.4 (SD: 14.7) mg/kg in 306 (94.4%) patients, with an additional 6 patients (1.9%) achieving adequate sedation with a second dose (overall adequate sedation: 96.3%). Mean reductions in heart rate, respiratory rate and oxygen (O 2 ) saturation from pre-sedation to 25 min post-sedation were 11.7 (SD: 14.3) beats-per-minute, 1.2 (SD: 2.4) breaths-per-minute, and 0.81 (SD: 1.2) %, respectively (p<0.001 for all). In multivariable regression, odds of remaining sedated 45 minutes after chloral hydrate administration was 2.53 times higher for American Society of Anesthesiologists (ASA) class II or III patients than for ASA I (95% CI: 1.11-5.78, p=0.03), 1.03 times higher per mg increase in initial dose of chloral hydrate (95% CI: 1.01-1.06, p=0.006), and 2.70 times higher per unit increase in number of planned procedures (95% CI: 1.63-4.47, p<0.001). Three patients developed minor adverse events: 2 cases of O 2 desaturation and 1 paradoxical reaction, none requiring significant intervention. Patients were discharged a median of 90 minutes after chloral hydrate administration. Chloral hydrate administered by a dedicated sedation service as in this prospective assessment can be used safely and effectively for outpatient pediatric ophthalmic procedures. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chakrabarti, A.; Schatten, H.; Mitchell, K. D.; Crosser, M.; Taylor, M.
1998-01-01
The mitotic inhibitor, chloral hydrate, induces ciliary loss in the early embryo phase of Lytechinus pictus. It causes a breakdown of cilia at the junction of the cilium and the basal body known as the basal plate. This leaves the plasma membrane temporarily unsealed. The basal apparatus accessory structures, consisting of the basal body, basal foot, basal foot cap, striated side arm, and striated rootlet, are either misaligned or disintegrated by treatment with chloral hydrate. Furthermore, microtubules which are associated with the basal apparatus are disassembled. Mitochondria accumulate at the base of cilia - underneath the plasma membrane - and show alterations in their structural organization. The accumulation of mitochondria is observed in 40% of all electron micrograph sections while 60% show the areas mostly devoid of mitochondria. The microvilli surrounding a cilium and striated rootlet remain intact in the presence of chloral hydrate. These results suggest that deciliation in early sea urchin embryos by chloral hydrate is caused by combined effects on the ciliary membrane and on microtubules in the cilia. Furthermore, it is suggested that chloral hydrate can serve as a tool to explore the cytoskeletal mechanisms that are involved in cilia motility in the developing sea urchin embryo.
Chloral hydrate in intractable status epilepticus.
Lampl, Y; Eshel, Y; Gilad, R; Sarova-Pinchas, I
1990-06-01
Five adult patients were admitted to the neurological department in a state of status epilepticus. All were treated unsuccessfully with IV diazepam and diphenylhydantoin. Administration of sodium valporate or phenobarbital also was ineffective. However, after treatment with intrarectal chloral hydrate, all seizures ceased. The excellent effect of this drug was proved both clinically and electrodiagnostically. Discussed is the possibility of using chloral hydrate to treat patients with status epilepticus in whom conventional treatment has failed.
Zhang, Wenhua; Wang, Zixin; Song, Xingrong; Fan, Yanting; Tian, Hang; Li, Bilian
2016-03-01
Chloral hydrate, a commonly used sedative in children during noninvasive diagnostic procedures, is associated with side effects like prolonged sedation, paradoxical excitement, delirium, and unpleasant taste. Dexmedetomidine, a highly selective α-2 agonist, has better pharmacokinetic properties than chloral hydrate. We conducted this prospective, double-blind, randomized controlled trial to evaluate efficacy of intranasal dexmedetomidine with that of a second oral dose of chloral hydrate for rescue sedation during magnetic resonance imaging (MRI) studies in infants. One hundred and fifty infants (age group: 1-6 months), who were not adequately sedated after initial oral dose of 50 mg · kg(-1) chloral hydrate, were randomly divided into three groups with the following protocol for each group. Group C: second oral dose chloral hydrate 25 mg · kg(-1); Group L and Group H: intranasal dexmedetomidine in a dosage of 1 and 2 mcg · kg(-1), respectively. Status of sedation, induction time, time to wake up, vital signs, oxygen saturation, and recovery characteristics were recorded. Successful rescue sedation in Groups C, L, and H were achieved in 40 (80%), 47 (94%), and 49 (98%) of infants, respectively, on an intention to treat analysis, and the proportion of infants successfully sedated in Group H was more than that of Group L (P ˂ 0.01). There were no significant differences in sedation induction time; however, the time to wake up was significantly shorter in Group L as compared to that in Group C or H (P < 0.01). No significant adverse hemodynamic or hypoxemic effects were observed in the study. Intranasal dexmedetomidine induced satisfactory rescue sedation in 1- to 6-month-old infants during MRI study, and appears to cause sedation in a dose-dependent manner. © 2015 John Wiley & Sons Ltd.
Delgado, Jorge; Toro, Rodrigo; Rascovsky, Simon; Arango, Andres; Angel, Gabriel J; Calvo, Victor; Delgado, Jorge A
2015-01-01
Chloral hydrate is a sedative that has been used for magnetic resonance imaging (MRI). To evaluate the use, effectiveness and safety of chloral hydrate administered by radiologists for the sedation of children who require MRI procedures. We retrospectively reviewed the clinical charts for all patients ages 0 - 10 years old who underwent sedation with chloral hydrate for MRI from January 2000 to December 2010. Demographic factors, dose information, indication for MRI, therapeutic failures and adverse reactions to the drug were reviewed. One thousand, seven hundred and three children (946 males, 757 females) with a median age of 2.5 years (range: 4 days - 9.91 years) received chloral hydrate. Moderate to deep sedation was achieved in 1,618/1,703 (95%) of the patients, 35/1,703 (2.1%) of the patients failed to achieve moderate to deep sedation, and 47/1,703 (2.8%) of the patients woke up during MRI examination. Adverse reactions were present in 31/1,703 (1.8%) of the patients. Three severe adverse reactions occurred (0.18%). A single dose of chloral hydrate (40-60 mg/kg) was administered to 1,477/1,703 patients (86.7%). An additional dose of chloral hydrate (10-20 mg/kg), given 15 min after the first dose or when the patient woke up during the MRI examination, was required in 226/1,703 patients (13.3%). The likelihood of requiring an additional dose in children older than 2 years was 2.2 times the likelihood compared to children younger than 2 years (OR = 2.2 [95%CI: 1.6-3.0]). The use of a reduced dose (<50 mg/kg) was not associated with a higher therapeutic failure rate (OR = 1.04 [95%CI 0.57-1.89]). Chloral hydrate is an appropriate sedation option for pediatric patients in MRI services when strict patient selection criteria are met. The use of a reduced dose does not affect the effectiveness of sedation. The lack of data regarding the presence of transient oxygen desaturation, the time to induce sedation and the exact duration of sedation are limitations of this study.
Chloral hydrate as a sedating agent for neurodiagnostic procedures in children.
Fong, Choong Yi; Tay, Chee Geap; Ong, Lai Choo; Lai, Nai Ming
2017-11-03
Paediatric neurodiagnostic investigations, including brain neuroimaging and electroencephalography (EEG), play an important role in the assessment of neurodevelopmental disorders. The use of an appropriate sedative agent is important to ensure the successful completion of the neurodiagnostic procedures, particularly in children, who are usually unable to remain still throughout the procedure. To assess the effectiveness and adverse effects of chloral hydrate as a sedative agent for non-invasive neurodiagnostic procedures in children. We used the standard search strategy of the Cochrane Epilepsy Group. We searched MEDLINE (OVID SP) (1950 to July 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, Issue 7, 2017), Embase (1980 to July 2017), and the Cochrane Epilepsy Group Specialized Register (via CENTRAL) using a combination of keywords and MeSH headings. We included randomised controlled trials that assessed chloral hydrate agent against other sedative agent(s), non-drug agent(s), or placebo for children undergoing non-invasive neurodiagnostic procedures. Two review authors independently assessed the studies for their eligibility, extracted data, and assessed risk of bias. Results were expressed in terms of risk ratio (RR) for dichotomous data, mean difference (MD) for continuous data, with 95% confidence intervals (CIs). We included 13 studies with a total of 2390 children. The studies were all conducted in hospitals that provided neurodiagnostic services. Most studies assessed the proportion of sedation failure during the neurodiagnostic procedure, time for adequate sedation, and potential adverse effects associated with the sedative agent.The methodological quality of the included studies was mixed, as reflected by a wide variation in their 'Risk of bias' profiles. Blinding of the participants and personnel was not achieved in most of the included studies, and three of the 13 studies had high risk of bias for selective reporting. Evaluation of the efficacy of the sedative agents was also underpowered, with all the comparisons performed in single small studies.Children who received oral chloral hydrate had lower sedation failure when compared with oral promethazine (RR 0.11, 95% CI 0.01 to 0.82; 1 study, moderate-quality evidence). Children who received oral chloral hydrate had a higher risk of sedation failure after one dose compared to those who received intravenous pentobarbital (RR 4.33, 95% CI 1.35 to 13.89; 1 study, low-quality evidence), but after two doses there was no evidence of a significant difference between the two groups (RR 3.00, 95% CI 0.33 to 27.46; 1 study, very low-quality evidence). Children who received oral chloral hydrate appeared to have more sedation failure when compared with music therapy, but the quality of evidence was very low for this outcome (RR 17.00, 95% CI 2.37 to 122.14; 1 study). Sedation failure rates were similar between oral chloral hydrate, oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam.Children who received oral chloral hydrate had a shorter time to achieve adequate sedation when compared with those who received oral dexmedetomidine (MD -3.86, 95% CI -5.12 to -2.6; 1 study, moderate-quality evidence), oral hydroxyzine hydrochloride (MD -7.5, 95% CI -7.85 to -7.15; 1 study, moderate-quality evidence), oral promethazine (MD -12.11, 95% CI -18.48 to -5.74; 1 study, moderate-quality evidence), and rectal midazolam (MD -95.70, 95% CI -114.51 to -76.89; 1 study). However, children with oral chloral hydrate took longer to achieve adequate sedation when compared with intravenous pentobarbital (MD 19, 95% CI 16.61 to 21.39; 1 study, low-quality evidence) and intranasal midazolam (MD 12.83, 95% CI 7.22 to 18.44; 1 study, moderate-quality evidence).No data were available to assess the proportion of children with successful completion of neurodiagnostic procedure without interruption by the child awakening. Most trials did not assess adequate sedation as measured by specific validated scales, except in the comparison of chloral hydrate versus intranasal midazolam and oral promethazine.Compared to dexmedetomidine, chloral hydrate was associated with a higher risk of nausea and vomiting (RR 12.04 95% CI 1.58 to 91.96). No other adverse events were significantly associated with chloral hydrate (including behavioural change, oxygen desaturation) although there was an increased risk of adverse events overall (RR 7.66, 95% CI 1.78 to 32.91; 1 study, low-quality evidence). The quality of evidence for the comparisons of oral chloral hydrate against several other methods of sedation was very variable. Oral chloral hydrate appears to have a lower sedation failure rate when compared with oral promethazine for children undergoing paediatric neurodiagnostic procedures. The sedation failure was similar for other comparisons such as oral dexmedetomidine, oral hydroxyzine hydrochloride, and oral midazolam. When compared with intravenous pentobarbital and music therapy, oral chloral hydrate had a higher sedation failure rate. However, it must be noted that the evidence for the outcomes for the comparisons of oral chloral hydrate against intravenous pentobarbital and music therapy was of very low to low quality, therefore the corresponding findings should be interpreted with caution.Further research should determine the effects of oral chloral hydrate on major clinical outcomes such as successful completion of procedures, requirements for additional sedative agent, and degree of sedation measured using validated scales, which were rarely assessed in the studies included in this review. The safety profile of chloral hydrate should be studied further, especially the risk of major adverse effects such as bradycardia, hypotension, and oxygen desaturation.
Maud, Pétrault; Thavarak, Ouk; Cédrick, Lachaud; Michèle, Bastide; Vincent, Bérézowski; Olivier, Pétrault; Régis, Bordet
2014-01-01
Since an ethical issue has been raised regarding the use of the well-known anesthetic agent chloral hydrate, owing to its mutagenic and carcinogenic effects in animals, attention of neuroscientists has turned to finding out an alternative agent able to meet not only potency, safety, and analgesic efficacy, but also reduced neuroprotective effect for stroke research. The aim of this study was to compare the potential of chloral hydrate and isoflurane for both modulating the action of the experimental neuroprotectant MK801 and exerting analgesia. After middle cerebral artery occlusion in rats, no difference was observed in 24 h survival rate, success of ischemia, or infarct volume reduction between both anesthetics. However, isoflurane exerted a more pronounced analgesic effect than chloral hydrate as evidenced by formalin test 3 hours after anesthesia onset, thus encouraging the use of isoflurane in experimental stroke models. PMID:24719888
Bustos-Fierro, C; Olivera, M E; Manzo, P G; Jiménez-Kairuz, Álvaro F
2013-01-01
To evaluate the stability of an extemporaneously prepared 7% chloral hydrate syrup under different conditions of storage and dispensing. Three batches of 7% chloral hydrate syrup were prepared. Each batch was stored in 50 light-resistant glass containers of 60 mL with child-resistant caps and in two bottles of 1000 mL to simulate two forms of dispensing, mono and multi-dose, respectively. Twenty five mono-dose bottles and a multi-dose bottle of each batch were stored under room conditions (20 ± 1 °C) and the rest of the samples were stored in the fridge (5 ± 2 °C). The physical, chemical and microbiological stability was evaluated for 180 days. Stability was defined as retention of at least 95% of the initial concentration of chloral hydrate, the absence of both visible particulate matter, or color and/or odor changes and the compliance with microbiological attributes of non-sterile pharmaceutical products. At least 98% of the initial chloral hydrate concentration remained throughout the 180-day study period. There were no detectable changes in color, odor, specific gravity and pH and no visible microbial growth. These results were not affected by storage, room or refrigeration conditions or by the frequent opening or closing of the multi-dose containers. Extemporaneously compounded 7% chloral hydrate syrup was stable for at least 180 days when stored in mono or multi-dose light-resistant glass containers at room temperature and under refrigeration. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.
Chen, Mei-Lian; Chen, Qiang; Xu, Fan; Zhang, Jia-Xin; Su, Xiao-Ying; Tu, Xiao-Zhen
2017-01-01
This study evaluates the safety and efficacy of chloral hydrate administration for the conscious sedation of infants in the pediatric cardiovascular intensive care unit (PCICU).We conducted a retrospective review of the charts of 165 infants with congenital heart disease who received chloral hydrate in our PCICU between January 2014 and December 2014. Chloral hydrate was administered orally or rectally to infants using doses of 50 mg/kg. We collected and analyzed relevant clinical parameters.The overall length of time to achieve sedation was ranged from 5 to 35 min (10.8 ± 6.2 min); the overall mean duration of sedation was ranged from 15 to 60 min (33.5 ± 11.3 min); and the overall mean length of time to return to normal activity was 10 min to 6 h (34.3 ± 16.2 min). The length of the PCICU stay was ranged from 3 to 30 days (8.2 ± 7.1 days). Physiologically, there were no clinically significant changes in heart rate, mean arterial pressure, respiratory rate, or peripheral oxygen saturation before, during, or after use of the chloral hydrate. There were no significant differences regarding sedative effects in the subgroups (cyanotic vs acyanotic group, with pulmonary infection vs without pulmonary infection group, and with pulmonary hypertension vs without pulmonary hypertension group).Our experience suggests that chloral hydrate is a safe and efficacious agent for conscious sedation of infants in the PCICU.
Integrated Risk Information System (IRIS)
Chloral hydrate ; CASRN 302 - 17 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E
1995-11-01
for a computer-aided simulation of body levels of chloral hydrate in a therapeutic situation and for the estimate of toxicokinetics of its active metabolites generated during the environmental pollution scenario.
SPERMATID MICRONUCLEUS ANALYSES OF TRICHLOROETHYLENE AND CHLORAL HYDRATE EFFECTS IN MICE
Mice were exposed by inhalation to trichloroethylene (TCE), or by i.p. injection to the TCE metabolite, chloral hydrate (CH). arly spermatids were analyzed for micronucleus (MN) frequency and kinetochore status (presence or absence) using fluorochrome-labeled anti-kinetochore ant...
Efficacy of Reconstituted Oral Chloral Hydrate from Crystals for Echocardiography Sedation.
Hill, Garick D; Walbergh, Deborah B; Frommelt, Peter C
2016-04-01
Chloral hydrate has been the drug of choice for uncooperative infants and children requiring sedation for echocardiography. Recently, the commercially available liquid formulation was discontinued by the manufacturer, and the only oral form of chloral hydrate available was made using reconstituted crystals. The aim of this study was to compare sedation efficacy before and after this change in chloral hydrate formulas. Consecutive patients presenting for echocardiography sedation during the transition from the manufacturer-derived old formulation to the locally reconstituted new formulation were retrospectively reviewed for time to onset of level 3 sedation, duration of level ≤3 sedation, requirement for additional sedative medications, sedation failure, ability to complete the echocardiographic examination, and adverse events related to the sedatives. The cohort included 124 patients (63 old, 61 new). Although the mean age at sedation was younger for the new group, the weight and average dose of chloral hydrate used were not significantly different. There were no adverse events in either group. Time to onset of sedation was the same between the two formulations, but the duration of sedation was significantly shorter for the new group (42.4 ± 24.5 vs 55.3 ± 26.2 min, P = .01). In addition, the need for secondary sedating agents because of inadequate sedation and sedation failure were significantly greater using the new compared with the old formulation. Chloral hydrate reformulation using reconstituted crystals results in a shorter duration of sedation, more frequent requirement for a secondary sedative agent, more frequent sedation failure, and occasional inability to complete the echocardiographic examination compared with the manufacturer's formulation. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Miller, Jeff; Xue, Bin; Hossain, Md; Zhang, Ma-Zhong; Loepke, Andreas; Kurth, Dean
2016-03-01
Procedural sedation using chloral hydrate is used in many institutions to improve the quality of transthoracic echocardiograms (TTE) in infants and young children. Chloral hydrate has limited availability in some countries, creating the need for alternative effective sedatives. The aim of our study was to compare the effectiveness of two doses of intranasal dexmedetomidine vs oral chloral hydrate sedation for transthoracic echocardiography. This is a randomized, prospective study of 150 children under the age of 3 years with known or suspected congenital heart disease scheduled for transthoracic echocardiography with sedation. Group CH received oral chloral hydrate 70 mg · kg(-1), group DEX2 received 2 μg · kg(-1) intranasal dexmedetomidine, and group DEX3 received 3 μg · kg(-1) intranasal dexmedetomidine. Acceptance of drug administration, sedation onset and duration, heart rate, and oxygen saturation, sonographer and parent satisfaction were recorded. All patients were successfully sedated for TTE. A second sedative dose (rescue) for failed single-dose sedation was required for 4% of patients after CH, none of the patients after DEX2, and 4% of patients after DEX3. Patients in group CH had an average heart rate decline of 22% during sedation, while group DEX2 decreased 27%, and group DEX3 23% (P = 0.2180). Mean time from administration of the sedative to final patient discharge was 96 min after CH, 83 min after DEX2, and 94 min after DEX3 (P = 0.1826). Intranasal dexmedetomidine 2 and 3 μg · kg(-1) were found to be as effective for TTE sedation as oral chloral hydrate with similar sedation onset and recovery time and heart rate changes in this study population. © 2015 John Wiley & Sons Ltd.
CHLORAL HYDRATE DECREASES GAP JUNCTION COMMUNICATION IN RAT LIVER EPITHELIAL CELLS
Chloral hydrate decreases gap junction communication in rat liver epithelial cells
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Connexins (Cx) that make up these junctions are composed of a closely related group of m...
Abulebda, Kamal; Patel, Vinit J; Ahmed, Sheikh S; Tori, Alvaro J; Lutfi, Riad; Abu-Sultaneh, Samer
2017-10-28
The use of diagnostic auditory brainstem response testing under sedation is currently the "gold standard" in infants and young children who are not developmentally capable of completing the test. The aim of the study is to compare a propofol-ketamine regimen to an oral chloral hydrate regimen for sedating children undergoing auditory brainstem response testing. Patients between 4 months and 6 years who required sedation for auditory brainstem response testing were included in this retrospective study. Drugs doses, adverse effects, sedation times, and the effectiveness of the sedative regimens were reviewed. 73 patients underwent oral chloral hydrate sedation, while 117 received propofol-ketamine sedation. 12% of the patients in the chloral hydrate group failed to achieve desired sedation level. The average procedure, recovery and total nursing times were significantly lower in the propofol-ketamine group. Propofol-ketamine group experienced higher incidence of transient hypoxemia. Both sedation regimens can be successfully used for sedating children undergoing auditory brainstem response testing. While deep sedation using propofol-ketamine regimen offers more efficiency than moderate sedation using chloral hydrate, it does carry a higher incidence of transient hypoxemia, which warrants the use of a highly skilled team trained in pediatric cardio-respiratory monitoring and airway management. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
NINETY-DAY TOXICITY STUDY OF CHLORAL HYDRATE IN THE SPRAGUE-DAWLEY RAT
Male and female Sprague-Dawley rats were administered drinking water containing 300, 600, 1200, or 2400 mg/l chloral hydrate for 90 days. ontrol group recieved distilled water only. o animals died during the study and differences were observed in body weight gain or food and wate...
Chloral hydrate sedation for magnetic resonance imaging in newborn infants.
Finnemore, Anna; Toulmin, Hilary; Merchant, Naz; Arichi, Tom; Tusor, Nora; Cox, David; Ederies, Ash; Nongena, Phumza; Ko, Christopher; Dias, Ryan; Edwards, Anthony D; Groves, Alan M
2014-02-01
The aim of this study was to look for clinically significant adverse effects of chloral hydrate used in a large cohort of infants sedated for magnetic resonance imaging. Case notes of infants who underwent magnetic resonance imaging (MRI) scanning from 2008 to 2010 were reviewed, with patient demographics, sedation dose, comorbidities, time to discharge, and side effects of sedation noted. Four hundred and eleven infants (median [range] postmenstrual age per weight at scan 42 [31(+4) -60] weeks per 3500 g [1060-9900 g]) were sedated with chloral hydrate (median [range] dose 50 [20-80] mg·kg(-1)). In three cases (0.7%), desaturations occurred which prompted termination of the scan. One infant (0.2%) was admitted for additional observation following sedation but had no prolonged effects. In 17 (3.1%) cases, infants had desaturations which were self-limiting or responded to additional inspired oxygen such that scanning was allowed to continue. When adhering to strict protocols, MRI scanning in newborn infants in this cohort was performed using chloral hydrate sedation with a relatively low risk of significant adverse effects. © 2013 John Wiley & Sons Ltd.
On cannabis, chloral hydrate, and career cycles of psychotropic drugs in medicine.
Snelders, Stephen; Kaplan, Charles; Pieters, Toine
2006-01-01
This article compares the careers of two psychotropic drugs in Western psychiatry, with a focus on the nineteenth century: Cannabis indica and chloral hydrate. They were used by doctors for similar indications, such as mania, delirium tremens, and what we would now call drug dependence. The two show similar career paths consisting of three phases: initial enthusiasm and therapeutic optimism; subsequent negative appraisal; and finally, limited use. These cycles, which we term "Seige cycles," are generally typical of the careers of psychotropic drugs in modern medicine. However, differences in the careers of both drugs are also established. The phases of chloral show relatively higher peaks and lower valleys than those of cannabis. Chloral is the first typically "modern" psychotropic drug; a synthetic, it was introduced in 1869 at a time of growing asylum populations, pharmaceutical interests, and high cultural expectations of scientific medicine. Cannabis indica, introduced in the 1840s, is typically a "premodern" drug steeped in the climate of cultural Romanticism. We conclude that the analytical concept of the Seige cycle is a useful tool for future research into drug careers in medicine.
Valenzuela, Dianne G; Kumar, Divjot Singh; Atkins, Cheryl Labelle; Beers, Alison; Kozak, Frederick K; Chadha, Neil K
2016-04-01
The auditory brainstem response (ABR) test is used to identify hearing loss and measure hearing thresholds of infants and children who cannot be tested using standard behavioral hearing testing methods. In order for the ABR to yield useful data, a child must be asleep throughout the duration of the test. In many centers, this is achieved through the use of a general anesthetic, with its inherent risks and costs. Since 2004, ABRs have been routinely conducted at BC Children's Hospital in an ambulatory care setting under oral chloral hydrate sedation, with monitoring by a specialist nurse. The aim of this retrospective study was to assess the effectiveness and safety of nurse-led sedation with chloral hydrate for ABR testing at our tertiary pediatric center. Medical and audiology records were reviewed for children aged 6 months to 17 years who underwent ABR testing from 2004 to 2012. We reviewed the dosage of drug used, condition of the child after chloral hydrate administration, adverse effects, audiological results, patients' vital signs, and the effectiveness of the sedative in keeping the child asleep throughout the duration of the test. Frequency distributions were derived for adverse outcomes. 725 ABR records encompassing 635 children (multiple ABR tests in some children) were reviewed. The average dose of chloral hydrate used was 52mg/kg. The majority of sedated ABR's (80.8%) were completed without any incident. Significant events [apnea and/or bradycardia], minor complications [vomiting, hypoxemia, prolonged sedation, and/or tachypnea] and restlessness were noted in 3.4%, 6.2%, and 5.0% of the cases, respectively. The majority of these issues resolved without medical intervention, such as the need to provide supplementary oxygen. In 95.9% of ABRs, chloral hydrate was successful in sedating the child adequately to answer the audiological question. This forms the largest study to date on oral sedation for ABR testing. Based on our results, the use of chloral hydrate in the presence of a sedation nurse was a safe and reliable method of performing ABR in infants and children. This may be of significant value to centres worldwide exploring alternatives to general anesthesia for ABR testing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chloral hydrate (CH) and 2-chloroacetaldehyde (CAA) have been identified as chlorination by-products in drinking water. oth chemicals are genotoxic, but their carcinogenic potential had not been adequately tested. hese bioassays were conducted using male B6C3F1 mice exposed to 1 ...
Isoflurane: An Ideal Anesthetic for Rodent Orthotopic Liver Transplantation Surgery?
Cao, D; Liu, Y; Li, J; Gong, J
2016-10-01
Because the choice of anesthetic affects the rodent orthotopic liver transplantation (OLT) model, we compared the effects of isoflurane, ketamine, chloral hydrate, and pentobarbital on the OLT model. OLT was performed using the two-cuff technique. Two hundred male rats were randomly divided into five groups: control, isoflurane, ketamine, chloral hydrate, and pentobarbital groups. Rectal temperatures, respiratory rates, arterial blood values (pH, PaCO 2 , PaO 2 , and SatO 2 ), liver function tests and histopathology, recovery times, and anhepatic stage mortality rates were assessed. Compared with controls, respiratory rates decreased by 20% in the isoflurane group, and decreased by 40%-50% in the ketamine, chloral hydrate, and pentobarbital groups. The PaO 2 , SatO 2 , and pH levels in the ketamine, chloral hydrate, and pentobarbital groups were significantly lower than those in the isoflurane and control groups (P < .05). Only the pentobarbital group displayed significant liver histopathologic changes along with significantly higher levels of serum alanine aminotransferase and total bilirubin, but a significantly lower level of serum albumin, compared with the control group (P < .05). The isoflurane group had a 0% anhepatic stage mortality rate compared with rates of 30%-40% in the other anesthetic groups. Isoflurane should be the preferred anesthetic for rodent OLT surgery due to its minimal respiratory and hepatic physiological effects as well as its low anhepatic phase mortality rate. Secondary to isoflurane, ketamine and chloral hydrate may be administered as donor anesthetics. Pentobarbital use should be avoided entirely in rodent OLT surgery due to its significant hepatotoxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Forkert, Poh-Gek; Lash, Lawrence; Tardif, Robert; Tanphaichitr, Nongnuj; Vandevoort, Catherine; Moussa, Madeleine
2003-03-01
We have investigated the potential of the male reproductive tract to accumulate trichloroethylene (TCE) and its metabolites, including chloral, trichloroethanol (TCOH), trichloroacetic acid (TCA), and dichloroacetic acid (DCA). Human seminal fluid and urine samples from eight mechanics diagnosed with clinical infertility and exposed to TCE occupationally were analyzed. In in vivo experimental studies, TCE and its metabolites were determined in epididymis and testis of mice exposed to TCE (1000 ppm) by inhalation for 1 to 4 weeks. In other studies, incubations of monkey epididymal microsomes were performed in the presence of TCE and NADPH. Our results showed that seminal fluid from all eight subjects contained TCE, chloral, and TCOH. DCA was present in samples from two subjects, and only one contained TCA. TCA and/or TCOH were also identified in urine samples from only two subjects. TCE, chloral, and TCOH were detected in murine epididymis after inhalation exposure with TCE for 1 to 4 weeks. Levels of TCE and chloral were similar throughout the entire exposure period. TCOH levels were similar at 1 and 2 weeks but increased significantly after 4 weeks of TCE exposure. Chloral was identified in microsomal incubations with TCE in monkey epididymis. CYP2E1, a P450 that metabolizes TCE, was localized in human and monkey epididymal epithelium and testicular Leydig cells. These results indicated that TCE is metabolized in the reproductive tract of the mouse and monkey. Furthermore, TCE and its metabolites accumulated in seminal fluid, and suggested associations between production of TCE metabolites, reproductive toxicity, and impaired fertility.
Maheras, Kathleen J; Gow, Alexander
2013-09-30
To examine psychoacoustics in mice, we have used 2,2,2-tribromoethanol anesthesia in multiple studies. We find this drug is fast-acting and yields consistent results, providing 25-30 min of anesthesia. Our recent studies in binaural hearing prompted development of a regimen to anesthesia time to 1h. We tested a novel cocktail using 2,2,2-tribromoethanol coupled with low dose chloral hydrate to extend the effective anesthesia time. We have established an intraperitoneal dosing regimen for 2,2,2-tribromoethanol-chloral hydrate anesthesia. To measure efficacy of the drug cocktail, we measured auditory brainstem responses (ABRs) at 10 min intervals to determine the effects on hearing thresholds and wave amplitudes and latencies. This novel drug combination increases effective anesthesia to 1h. ABR Wave I amplitudes, but not latencies, are marginally suppressed. Additionally, amplitudes of the centrally derived Waves III and V show significant inter-animal variability that is independent of stimulus intensity. These data argue against the systematic suppression of ABRs by the drug cocktail. Using 2,2,2-tribromoethanol-chloral hydrate combination in psychoacoustic studies has several advantages over other drug cocktails, the most important being preservation of latencies from centrally- and peripherally-derived ABR waves. In addition, hearing thresholds are unchanged and wave amplitudes are not systematically suppressed, although they exhibit greater variability. We demonstrate that 375 mg/kg 2,2,2-tribromoethanol followed after 5 min by 200mg/kg chloral hydrate provides an anesthesia time of 60 min, has negligible effects on ABR wave latencies and thresholds and non-systematic effects on amplitudes. Copyright © 2013 Elsevier B.V. All rights reserved.
Gan, Xiaoliang; Lin, Haotian; Chen, Jingjing; Lin, Zhuoling; Lin, Yiquan; Chen, Weirong
2016-06-01
It is a challenge to rescue ophthalmology examinations performed in children in the sedation room after initial chloral hydrate failure. Intranasal dexmedetomidine can be used in rescue sedation in children undergoing computed tomography. The present study aimed to assess the efficacy and tolerability of intranasal dexmedetomidine use in children undergoing ophthalmic examination after chloral hydrate failure. Sixty uncooperative pediatric patients with cataract (aged 5-36 months; weight, 7-15 kg) presented for follow-up ophthalmic examination. Patients who experienced chloral hydrate failure were randomized to 1 of 2 groups to receive intranasal dexmedetomidine 1 or 2 μg/kg for rescue sedation. Each group contained 30 patients. The primary outcome was the rate of a successful ophthalmic examination. Secondary outcomes included sedation onset time, recovery time, duration of examination, discharge time, and adverse events, including percentage of heart rate reduction, respiratory depression, vomiting, and postsedative agitation. A successful ophthalmic examination was achieved in 93.3% (28/30) of patients in the 2-μg/kg dose group and in 66.7% (20/30) of patients in the 1-μg/kg dose group (P = 0.021). The onset time, recovery time, and discharge time did not significantly differ between the 2 groups. None of the patients required clinical intervention due to heart rate reduction, and none of the patients in either group experienced vomiting, respiratory depression, or agitation after the administration of dexmedetomidine. In children undergoing ophthalmic examination, intranasal dexmedetomidine can be administered in the sedation room for rescue sedation after chloral hydrate failure, with the 2-μg/kg dose being more efficacious than the 1-μg/kg dose, as measured by success rate. ClinicalTrials.gov identifier: NCT02077712. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.
Maheras, Kathleen J.; Gow, Alexander
2013-01-01
Background To examine psychoacoustics in mice, we have used 2,2,2-tribromoethanol anesthesia in multiple studies. We find this drug is fast-acting and yields consistent results, providing 30 – 40 min of anesthesia. Our recent studies in binaural hearing prompted development of a regimen to anesthesia time to one hour. We tested a novel cocktail using 2,2,2-tribromoethanol coupled with low dose chloral hydrate to extend the effective anesthesia time. New Method We have established an intraperitoneal dosing regimen for 2,2,2-tribromoethanol-chloral hydrate anesthesia. To measure efficacy of the drug cocktail, we measured auditory brainstem responses (ABRs) at 10 min intervals to determine the effects on hearing thresholds and wave amplitudes and latencies. Results This novel drug combination increases effective anesthesia to one hour. ABR Wave I amplitudes, but not latencies, are marginally suppressed. Additionally, amplitudes of the centrally-derived Waves III and V show significant inter-animal variability that is independent of stimulus intensity. These data argue against the systematic suppression of ABRs by the drug cocktail. Comparison with Existing Methods Using 2,2,2-tribromoethanol-chloral hydrate combination in psychoacoustic studies has several advantages over other drug cocktails, the most important being preservation of latencies from centrally- and peripherally-derived ABR waves. In addition, hearing thresholds are unchanged and wave amplitudes are not systematically suppressed, although they exhibit greater variability. Conclusions We demonstrate that 375 mg/kg 2,2,2-tribromoethanol followed after five min by 200 mg/kg chloral hydrate provides an anesthesia time of 60 min, has negligible effects on ABR wave latencies and thresholds and non-systematic effects on amplitudes. PMID:23856212
Wohlrab, J; Gilbrich, F; Wolff, L; Fischer, M; Philipp, S
2017-03-01
Psoriasis is known today as a T‑cell-mediated autoimmunological systemic disease. The chronic inflammatory processes involve neuroimmunological factors that are held responsible not only for various aspects of psychiatric-neurological comorbidities but also for neurosensory problems, primarily itching. Amongst other things, the significance of GABA A receptors are often discussed in this context. The topical use of chloral hydrate in semisolid preparations for antipruritic therapy goes back to Neisser and is currently experiencing a revival in individually manufactured formulations. However, it is currently unknown whether the unwanted side effects that are described for systemic use of chloral hydrate are also relevant for topical application. For lack of clinical safety data, preclinical tests for cutaneous cytotoxicity and calculations for systemic bioavailability after topical application have been performed. The present data cannot fully remove safety concerns for topical application of chloral hydrate in the formulation favoured by the NRF (Neues Rezepturformularium)-the so-called 1‑2-3-cream. A twice daily use of the 1‑2-3-cream on a maximum of 10% of the body surface can be regarded as safe. For a better assessment of harmlessness, tests for cutaneous bioavailability (concentration-time profile) on human skin and clinical studies would be necessary.
NRL Industrial Chemical Assessment for Hazard, Probability, and Biomarker Prioritization
2016-07-15
AMMONYX AO|AMMONYX DMCD 40|AMMONYX LO |AMPHITOL 20N|AROMOX DM 12D-W|AROMOX DMCD|AROMOX DMMC- W|ATLAS CD 413|CONCO XAL|CYCLOMOX L|DDNO...N,N-DIMETHYL-, N- OXIDE|DODECYLDIMETHYL AMINE OXIDE|EMAL 20N|EMCOL L|EMCOL LO |EMPIGEN OB|LAURAMINE OXIDE|LAURYLAMINE OXIDE|LAURYLDIMETHYLA MINE N...ETHANEDIOL, 2,2,2- TRICHLORO- |FELSULES|HS|HYDRAL|HYD RATE DE CHLORAL|KESSODRATE| LO RINAL|NOCTEC|NORTEC|NY COTON|NYCTON|PHALDRON E|RECTULES|SK-CHLORAL
Franks, Robert G
2016-01-01
The use of chloral hydrate optical clearing paired with differential interference contrast microscopy allows the analysis of internal structures of developing plant organs without the need for paraffin embedding and sectioning. This approach is appropriate for the analysis of the developing gynoecium or seedpod of the flowering plant Arabidopsis thaliana and many other types of fixed plant material. Early stages of ovule development are observable with this approach.
NASA Technical Reports Server (NTRS)
Schatten, H.; Chakrabarti, A.
1998-01-01
This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their ability to reform normal mitotic figures. These results indicate that chloral hydrate and diazepam affect centrosome structure which results in the inability to reform normal microtubule formations and causes abnormal fertilization and mitosis.
Efficacy and safety of chloral hydrate sedation in infants for pulmonary function tests.
Wandalsen, Gustavo Falbo; Lanza, Fernanda de Cordoba; Nogueira, Márcia Cristina Pires; Solé, Dirceu
2016-12-01
To describe the efficacy and safety of chloral hydrate sedation in infants for pulmonary function tests. All sedation attempts for pulmonary function tests in infants carried out between June 2007 and August 2014 were evaluated. Obstructive sleep apnea and heart disease were contraindications to the exams. Anthropometric data, exam indication, used dose, outcomes of sedation and clinical events were recorded and described. The sedation attempts in 277 infants (165 boys) with a median age of 51.5 weeks of life (14 to 182 weeks) were evaluated. The main indication for the tests was recurrent wheezing (56%) and the chloral hydrate dose ranged from 50 to 80mg/kg (orally). Eighteen (6.5%) infants had some type of clinical complication, with the most frequent being cough and/or airway secretion (1.8%); respiratory distress (1.4%) and vomiting (1.1%). A preterm infant had bradycardia for approximately 15 minutes, which was responsive to tactile stimulation. All observed adverse effects were transient and there was no need for resuscitation or use of injectable medications. The data demonstrated that chloral hydrate at the employed doses is a safe and effective medicament for sedation during short procedures in infants, such as pulmonary function tests. Because of the possibility of severe adverse events, recommendations on doses and contraindications should be strictly followed and infants should be monitored by trained staff. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Radiation sensitive indicator based on tetrabromophenol blue dyed poly(vinyl alcohol)
NASA Astrophysics Data System (ADS)
Beshir, W. B.
2013-05-01
Radiation sensitive indicators based on dyed polyvinyl alcohol (PVA) containing acid- sensitive dye (tetrabromophenol blue, TBPB) and chloral hydrate (CCl3·CH·(OH)2, 2,2,2-trichloroethane-1,1-diol) have been developed. These plastic film dosimeters undergo color change from blue (the alkaline form of TBPB) to yellow (the acidic form of TBPB), indicating acid formation. The concentration of radiation formed acids in the films containing different concentrations of chloral hydrate was calculated at different doses. These films can be used as dosimeters for food irradiation applications where the maximum of the useful dose ranges are between 1 and 8 kGy depending on chloral hydrate concentration in the film. The films have the advantage of negligible humidity effects on response in the intermediate range of relative humidity from 0 to 70% as good post irradiation stability when stored in the dark at room temperature. The overall combined uncertainty (at 2σ) associated with measurement of response (ΔA mm-1) at 623 nm for dose range 1-8 kGy is 4.53%.
Russo, A; Pacchierotti, F; Metalli, P
1984-01-01
The effects of chloral hydrate (CH), an in vivo metabolite of trichloroethylene, have been evaluated by cytogenetic observations of mouse secondary spermatocytes after ip treatment with 82.7, 165.4, or 413.5 mg/kg bw. Hyper-haploid metaphases have been scored to determine whether previous observations in various nonmammalian organisms about an effect of this drug on the mitotic spindle could be confirmed in mice. At each dose, the frequencies of hyper-haploid cells have been estimated to assess the response of pachytene, preleptotene, premeiotic, and staminal gonial cells. Significant increases above the control value have been observed particularly after treatment of actively dividing gonial cells, confirming the results obtained with the same batch of the drug in a parallel collaborative investigation with Aspergillus nidulans. Thus: a) chloral hydrate has been shown to be effective in inducing nondisjunction in a mammalian system; b) a prevalent action on the mitotic spindle has been confirmed and quantified; and c) the usefulness of parallel investigations with different methods is stressed, particularly to collect information about the mechanisms of induction of nondisjunction events.
Hüske, Christin; Sander, Svenja Esther; Hamann, Melanie; Kershaw, Olivia; Richter, Franziska; Richter, Angelika
2016-07-01
Although injectable anesthetics are still widely used in laboratory rodents, scientific data concerning pain and distress during and after stereotactic surgery are rare. However, optimal anesthesia protocols have a high impact on the quality of the derived data. We therefore investigated the suitability of recommended injectable anesthesia with a traditionally used monoanesthesia for stereotactic surgery in view of optimization and refinement in rats. The influence of the recommended complete reversal anesthesia (MMF; 0.15mg/kg medetomidine, 2mg/kg midazolam, 0.005mg/kg fentanyl; i.m.) with or without reversal and of chloral hydrate (430mg/kg, 3.6%, i.p.) on various physiological, biochemical and behavioral parameters (before, during, after surgery) was analyzed. Isoflurane was also included in stress parameter analysis. In all groups, depth of anesthesia was sufficient for stereotactic surgery with no animal losses. MMF caused transient exophthalmos, myositis at the injection site and increased early postoperative pain scores. Reversal induced agitation, restlessness and hypothermia. Even the low concentrated chloral hydrate led to peritonitis and multifocal liver necrosis, corresponding to increased stress hormone levels and loss in body weight. Increased stress response was also exerted by isoflurane anesthesia. Pronounced systemic toxicity of chloral hydrate strongly questions its further use in rodent anesthesia. In view of undesired effects of MMF and isoflurane, thorough consideration of anesthesia protocols for particular research projects is indispensable. Reversal should be restricted to emergency situations. Our data support further refinement of the current protocols and the importance of sham operated controls. Copyright © 2016 Elsevier B.V. All rights reserved.
Isoflurane prevents neurocognitive dysfunction after cardiopulmonary bypass in rats.
Li, Wen; Zheng, Beijie; Xu, Huan; Deng, Yuxiao; Wang, Shuyan; Wang, Xiangrui; Su, Diansan
2013-06-01
Postoperative cognitive dysfunction occurs frequently after cardiac surgeries with cardiopulmonary bypass (CPB). Available data from rat CPB models are conflicting. However, none of them was designed to investigate the role of isoflurane (the main anesthetic in all of these studies) in the neurocognitive dysfunction after CPB. Isoflurane has documented neuroprotective effects so the present authors hypothesized that isoflurane prevents the neurocognitive dysfunction in rats after CPB. A prospective, interventional study. A university research laboratory. Male Sprague-Dawley rats. Male Sprague-Dawley rats were divided into 5 groups: the isoflurane CPB group, the animals were anesthetized with isoflurane and underwent 60 minutes of normothermic CPB; the chloral hydrate CPB group, the animals were anesthetized with chloral hydrate and underwent 60 minutes of normothermic CPB; the isoflurane sham group, the animals were subjected only to cannulation and the same duration of anesthesia but no CPB; the chloral hydrate sham group, the animals received only cannulation and the same duration of anesthesia but no CPB; and the naive group, the animals received no treatment. The neurocognitive function of all rats was measured on days 4 to 6 (short-term) and 31 to 33 after CPB (long-term). After the behavior tests, the animals were sacrificed, and the brain was harvested for the measurement of acetylcholinesterase (AChE) and choline acetyltransferase protein levels. Short-term (days 4-6 after CPB) learning and memory were impaired after CPB when the animals were anesthetized with chloral hydrate. When isoflurane was used, the learning and memory did not change after CPB. No long-term (days 31-33 after CPB) neurocognitive changes were found after CPB. AChE decreased significantly after isoflurane anesthesia regardless of whether CPB was performed. Isoflurane prevented the neurocognitive dysfunction induced by CPB, which might involve the cerebral cholinergic system. Copyright © 2013 Elsevier Inc. All rights reserved.
Reynolds, Jason; Rogers, Amber; Medellin, Eduardo; Guzman, Jonathan A; Watcha, Mehernoor F
2016-03-01
Dexmedetomidine is increasingly used by various routes for pediatric sedation. However, there are few randomized controlled trials comparing the efficacy of dexmedetomidine to other commonly used sedatives. To compare the efficacy of sedation with intranasal dexmedetomidine to oral chloral hydrate for auditory brainstem response (ABR) testing. In this double-blind, double-dummy study, children undergoing ABR testing were randomized to receive intranasal dexmedetomidine 3 mcg · kg(-1) plus oral placebo (Group IN DEX) or oral chloral hydrate 50 mg · kg(-1) plus intranasal saline placebo (Group CH). We recorded demographic data, times from sedative administration to start and completion of testing, quality of sedation, occurrence of predefined adverse events, discharge times, and return to baseline activity on the day of testing. Testing completion rates with a single dose of medication were higher in the IN DEX group (89% vs 66% for CH, odds ratio with 95% confidence intervals 4.04 [1.3-12.6], P = 0.018). The median [95% CI)] time to successful testing start was shorter (25 [20-29] min vs 30 [20-49] min for IN DEX and CH, respectively, log rank test P = 0.02) and the proportion of children whose parents reported a return to baseline activity on the day of testing was greater for the IN DEX than the CH group (89% vs 64%, OR [95% CI] 4.71 [1.34-16.6], P = 0.02). There were no major adverse events in either group and no significant differences in the incidence of minor events. Intranasal dexmedetomidine is an effective alternative to oral chloral hydrate sedation for ABR testing, with the advantages of a higher incidence of testing completion with a single dose, shorter time to desired sedation level, and with significantly more patients reported to return to baseline activity on the same day. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
1974-01-01
Possible interactions among drugs contemplated for use during manned spaceflights have been studied in several animal species. The following seven drugs were investigated: nitrofurantoin, chloral hydrate, hexobarbital, phenobarbital, flurazepam, diphenoxylate, and phenazopyridine. Particular combinations included: chloral hydrate, hexobarbital or flurazepam with nitrofurantoin; phenobarbital or flurazepam with phenazopyridine; and diphenoxylate with two dose formulations of nitrofurantoin. The mechanism of action and an explanation of the interaction between diphenoxylate and nitrofurantoin still remains unclear. In man, the interaction does not appear to be significant, affecting only two subjects out of six and with only one dose formulation (Furadantin).
21 CFR 1308.22 - Excluded substances.
Code of Federal Regulations, 2011 CFR
2011-04-01
....C. 811(g) (1)): Excluded Nonnarcotic Products Company Trade name NDC code Form Controlled substance... TB Phenobarbital 8.00 Hawthorne Products Inc Choate's Leg Freeze LQ Chloral hydrate 246.67 Parke...
Evaluation of possible interaction among drugs contemplated for use during manned space flights
NASA Technical Reports Server (NTRS)
1973-01-01
Possible interactions among drugs contemplated for use during manned spaceflights have been studied in several animal species. The following seven drugs were investigated: nitrofurantoin, chloral hydrate, hexobarbital, phenobarbital, flurazepam, diphenoxylate, and phenazopyridine. Particular combinations included: chloral hydrate, hexabarbital or flurazepam with nitrofurantoin; phenobarbital or flurazepam with phenazopyridine; and diphenoxylate with two does formulations of nitrofurantoin. Studies were carried out in several species to determine whether induction of liver microsomal enzymes would increase the tendency of phenazopyridine to produce methemoglobin in vivo. Animals were premedicated with phenobarbital, a known inducer of azoreductase, and in a separate experiment with flurazepam, before administration of phenazopyridine. Methemoglobin production was determined in each animal after receiving phenazopyridine. No evidence was found for increased production of methemoglobin in the rat, dog, or rabbit that could be attributed to increased amounts of microsomal enzymes.
Photolytic removal of DBPs by medium pressure UV in swimming pool water.
Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus
2013-01-15
Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. Copyright © 2012 Elsevier B.V. All rights reserved.
Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin
2015-01-01
We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS.
Chloral hydrate decreases gap junction communications in rat liver epithelial cells
Gap junction communication (GJC) is involved in controlling cell proliferation and differentiation. Alterations in GJC are associated with carcinogenesis, but the mechanisms involvedareunknown.Chloralhydrate(CH), a by-productofchlorinedisinfection ofwater,is carcinogenic in mice,...
CARBINOLAMINES AND GEMINAL DIOLS IN AQUEOUS ENVIRONMENTAL ORGANIC CHEMISTRY
Organic chemistry textbooks generally treat geminal diols as curiosities-exceptions to the stability of the C=O double bond. However, most aldehydes of environmental significance, to wit, trichloroethanal (chloral), methanala (formaldehyde), ethanal (acetaldehyde), and propanal ...
Huang, Yongshun; Xia, Lihua; Wu, Qifeng; Zeng, Zifang; Huang, Zhenlie; Zhou, Shanyu; Jin, Jiachun; Huang, Hanlin
2015-01-01
Background We documented previously the entity of trichloroethylene (TCE) hypersensitivity syndrome (THS) in occupational workers. Objectives To identify the culprit causative compound, determine the type of hypersensitivity of THS, and establish a screening test for subjects at risk of THS. Methods TCE and its main metabolites chloral hydrate (CH), trichloroethanol (TCOH) and trichloroacetic acid (TCA) were used as allergens at different concentrations in skin patch tests. The study included 19 case subjects diagnosed with occupational THS, 22 control healthy workers exposed to TCE (exposure >12 weeks), and 20 validation new workers exposed to TCE for <12 weeks free of THS. All subjects were followed-up for 12 weeks after the patch test. Results The highest patch test positive rate in subjects with THS was for CH, followed by TCOH, TCA and TCE. The CH patch test positive rate was 100% irrespective of CH concentrations (15%, 10% and 5%). The TCOH patch test positive rate was concentration-dependent (89.5%, 73.7% and 52.6% for 5%, 0.5% and 0.05%, respectively). Lower patch test positive rates were noted for TCA and TCE. All patch tests (including four allergens) were all negative in each of the 22 control subjects. None of the subjects of the validation group had a positive 15% CH patch test. Conclusions Chloral hydrate seems to be the culprit causative compound of THS and type IV seems to be the major type of hypersensitivity of THS. The CH patch test could be potentially useful for screening workers at risk of THS. PMID:26020924
IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES
Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to several drinking water disinfection byproducts (DBPs), including DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks o...
The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...
The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by-products (DBPS) including total organic halide, trihalomethanes, haloacetic acids, haloacentonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along with ...
IMPROVING MEASURES OF BIOLOGIC EFFECT: MEASURING EFFECTS IN HUMAN MALES.
Animal toxicology studies have demonstrated spermatogenesis and sperm quality effects after exposure to DCA, BDCM, chloral hydrate and DBA. Population-based field studies to identify human male reproductive risks of DBPs require preliminary work to develop specific epidemiologi...
Code of Federal Regulations, 2014 CFR
2014-04-01
... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...
Code of Federal Regulations, 2013 CFR
2013-04-01
... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...
Code of Federal Regulations, 2012 CFR
2012-04-01
... products. Aspirin Chloral hydrate Chlorobutanol Cyclomethycaine sulfate Eugenol Hexylresorcinol... isothiocyanate Aspirin Bismuth sodium tartrate Camphor (exceeding 3 percent) Capsaicin Capsicum Capsicum... oxide (vii) Poison ivy, poison oak, and poison sumac drug products. Alcohol Aspirin Benzethonium...
CYTOCHROME P450-DEPENDENT METABOLISM OF TRICHLOROETHYLENE IN THE RAT KIDNEY
The metabolism of trichloroethylene (Tri) by cytochrome P450 (P450) was studied in microsomes from liver and kidney homogenates and from isolated renal proximal tubular (PT) and distal tubular (DT) cells from male Fischer 344 rats. Chloral hydrate (CH) was the only metabolite con...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Drugs. 140.19 Section 140.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.19 Drugs. Traders shall not keep for sale, or sell, give away, or use any opium, chloral, cocaine, peyote or mescal bean...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 25 Indians 1 2013-04-01 2013-04-01 false Drugs. 140.19 Section 140.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.19 Drugs. Traders shall not keep for sale, or sell, give away, or use any opium, chloral, cocaine, peyote or mescal bean...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 25 Indians 1 2012-04-01 2011-04-01 true Drugs. 140.19 Section 140.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.19 Drugs. Traders shall not keep for sale, or sell, give away, or use any opium, chloral, cocaine, peyote or mescal bean...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Drugs. 140.19 Section 140.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.19 Drugs. Traders shall not keep for sale, or sell, give away, or use any opium, chloral, cocaine, peyote or mescal bean...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 25 Indians 1 2014-04-01 2014-04-01 false Drugs. 140.19 Section 140.19 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.19 Drugs. Traders shall not keep for sale, or sell, give away, or use any opium, chloral, cocaine, peyote or mescal bean...
Code of Federal Regulations, 2011 CFR
2011-04-01
... anesthesia, 0.5 mg/lb in inhalation anesthesia; for intravenous use in horses at 0.25 mg/lb body weight in barbiturate anesthesia, 0.2 mg/lb in inhalation anesthesia, 0.25 mg/lb with chloral hydrate with or without... horses to stimulate respiration during and after general anesthesia; or to speed awakening and return of...
1990-10-01
New Orleans, LA 70189-0407 Approved for public release; distribution is unlimited. Reproduction in whole or in part is permitted for any purpose of...have the subject supine on a bed with pillows at the head to minimize neck muscle tone. The room is kept quiet and a mild hypnotic , such as chloral
Effect of anesthetics on the radiosensitivity of a murine tumor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheldon, P.W.; Chu, A.M.
The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken tomore » minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam.« less
Azizkhani, Reza; Kanani, Soheila; Sharifi, Ali; Golshani, Keihan; Masoumi, Babak; Ahmadi, Omid
2014-01-01
The increasing use of diagnostic imaging in pediatric medicine has resulted in growing need for procedural sedation and analgesia (PSA) to minimize motion artifacts during procedures. The drug of choice in pediatric PSA was not introduced until now. The aim of the present study was comparison of oral chloral hydrate (OCH) and rectal sodium thiopental (RST) in pediatric PSA. In the present randomized clinical trial, 2-6 years old pediatrics who referred for performing brain computed tomography scan was enrolled and were randomly divided in to two groups. OCH (50mg/kg) and RST (25mg/kg) were prescribed and a trained nurse recorded the time from drug prescription to receiving the conscious sedation (onset of action), the total period which the patient has the Ramsay score≥4 (duration of action), and adverse effect of agents. Mann-Whitney U test and chi-squared test, and Non-parametric analysis of covariance (ANCOVA) were used for comparisons. One hundred and forty children were entered to two groups of OCH and RST, randomly. The patients of two groups had similar age, sex, weight, and baseline vital signs except for diastolic blood pressure (p<0.001). The onset of action in OCH and RST groups were 24.5±6.1and 28.7±5.2 minutes, respectively (p<0.001). Duration of action in OCH and RST groups were 12.9±2.8 minutes and 13.7±2.6 minutes, respectively (p=0.085). Non-parametric ANCOVA revealed that only diastolic blood pressure was affected by drug prescription (p=0.001). In 11(15.7%) patients in RST group, diarrhea was observed during 24 hours (p=0.001). Oxygen desaturation was observed only in two patients, both in OCH group. Each of the sedative has advantages and disadvantages that should be considered when selecting one for inducing short-term sedation. It seems that rectal sodium thiopental and oral chloral hydrate are equally effective in pediatric PSA and based on patient's condition we can administrate one of these agents.
Effects of Different Anesthetics on Oscillations in the Rat Olfactory Bulb
Li, Anan; Zhang, Lei; Liu, Min; Gong, Ling; Liu, Qing; Xu, Fuqiang
2012-01-01
Different types of oscillations in the olfactory bulb (OB), including θ (1 to 4 and 5 to 12 Hz), β (13 to 30 Hz), and γ oscillations (31 to 64 and 65 to 90 Hz), are important in olfactory information processing and olfactory-related functions and have been investigated extensively in recent decades. The awake and anesthetized states, 2 different brain conditions, are used widely in electrophysiologic studies of OB. Chloral hydrate, pentobarbital, and urethane are commonly used anesthetics in these studies. However, the influence of these anesthetics on the oscillations has not been reported. In the present study, we recorded the local field potential (LFP) in the OB of rats that were freely moving or anesthetized with these agents. Chloral hydrate and pentobarbital had similar effects: they slightly affected the power of θ oscillations; significantly increased the power of β oscillations; significantly decreased the power of γ oscillations, and showed similar recovery of γ oscillations. Urethane had very different effects: it significantly increased oscillations at 1 to 4 Hz but decreased those at 5 to 12 Hz, decreased β and γ oscillations, and showed no overt recovery in γ oscillations. These results provide experimental evidence of different effects of various anesthetics on OB oscillations and suggest that the choice of anesthetic should consider the experimental application. PMID:23043811
Acetylcholinesterase and Acetylcholine Receptor.
1986-01-21
Cl3CCH2OH) binds similarly to its carbon analogue, neopentyl alcohol, and chloral binds better than its carbon analogue, pivalaldehyde. In the latter case...III. Since the 3H-DFP was obtained in propylene glycol , the stability of DFP in the hydroxylic solvent and thus its true concentration was investi...solution of unlabeled DFP in propylene glycol was obtained from NEN for use in model experi- ments and found to have no inhibiting activity. We turned
Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.
Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung
2013-05-15
Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improved colorimetric determination of serum zinc.
Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L
1977-07-01
We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.
Villanueva, Cristina M; Castaño-Vinyals, Gemma; Moreno, Víctor; Carrasco-Turigas, Glòria; Aragonés, Nuria; Boldo, Elena; Ardanaz, Eva; Toledo, Estefanía; Altzibar, Jone M; Zaldua, Itziar; Azpiroz, Lourdes; Goñi, Fernando; Tardón, Adonina; Molina, Antonio J; Martín, Vicente; López-Rojo, Concepción; Jiménez-Moleón, José J; Capelo, Rocío; Gómez-Acebo, Inés; Peiró, Rosana; Ripoll, Mónica; Gracia-Lavedan, Esther; Nieuwenhujsen, Mark J; Rantakokko, Panu; Goslan, Emma H; Pollán, Marina; Kogevinas, Manolis
2012-04-01
Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture. Copyright © 2012 Elsevier Inc. All rights reserved.
Radiation hardening of low condensation products containing amino group (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, S.; Hayashi, K.; Kaetsu, I.
1967-11-01
An initial condensation product is prepared by condensing a monomer selected from the group of urea, thiourea, melanine, aniline and acidamide with formalin. 0ne or more of the initial condensation product is then mixed with a substance which forms an acid or base by irradiation with an ionizing radiation in the presence or absence of the initial condensation product, except for halogenated hydrocarbon. The mixture is hardened by irradiation of the ionizing radiation to form a resinous substance. Formamide, acetamide, oxalic diamide, succinic diamide, acrylamide, etc. can be used as the acidamide monomer. Phosphonitrile chloride, cyanuric chloride, chloral hydrate, trichloroaceticmore » acid, monochloroacetic acid, ammonium chloride, aluminium chloride, gaseous chlorine, sullurous acid gas, sodium sulfite, aluminium sulfate, potassium hydrogensulfate, sodium pyrophosphate, potassium pyrophosphate, potassium phosphate, ammonia, bromine, bromal, bromal hydrate, dibromoacetic acid, sulfonated benzene, sulfonated toluene, etc. can be used as the acid- or base- forming substance. To the initial condensation product may be added 0.5-20%, in certain cases 20-50%, by weight of the said substances. The ionizing radiation can be electron beams. In an example, 2% chloral hydrate was homogeneously dissolved in the initial urea-formalin condensation product having a degree of condensation of 3--5. The solution was then irradiated by gamma rays at the dose rate of 4 x 10/sup 4/ r/hour from a /sup 60/Co source with a dose 5.0 x 10/sup 6/ roentgens. A white resinous composition was obtained. (JA)« less
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.
2012-01-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464
Ma, Shengcun; Guo, Xiaoqi; Chen, Baiyang
2016-08-01
Chloral hydrate (CH) is a disinfection byproduct commonly found in disinfected water, and once formed, CH may undergo several transformation processes in water distribution system. In order to understand its fate and occurrence in water, this study examined several factors that may affect the stability of CH in water, including pH, temperature, initial CH concentration, typical anions, and the presence of free chlorine and monochloramine. The results indicated that CH was a relatively stable compound (half-life ∼7 d for 20 μg/L) in ambient pH (7) and temperature (20 °C) conditions. However, the hydrolysis rate can be greatly facilitated by increasing pH (from 7 to 12) and temperature (from 20 to 60 °C) or decreasing initial CH concentration (from 10 mg/L to 20 μg/L). To quantify the influences of these factors on the CH hydrolysis rate constant (k, 1/h), which spans five orders of magnitude, this study developed a multivariate model that predicts literature and this study's data well (R(2) = 0.90). In contrast, the presence of chloride, nitrate, monochloramine, and free chlorine exhibited no significant impacts on the degradation of CH, while the CH loss in non-buffered waters spiked with sodium hypochlorite was driven by alkaline hydrolysis. In terms of reaction products, CH hydrolysis yielded mostly chloroform and formic acid and a few chloride, which confirmed decarburization as a dominant pathway and dehalogenation as a noticeable coexisting reaction. Copyright © 2016. Published by Elsevier Ltd.
Fernandes, Magda L; Oliveira, Welser Machado de; Santos, Maria do Carmo Vasconcellos; Gomez, Renato S
2015-01-01
Sedation for electroencephalography in uncooperative patients is a controversial issue because majority of sedatives, hypnotics, and general anesthetics interfere with the brain's electrical activity. Chloral hydrate (CH) is typically used for this sedation, and dexmedetomidine (DEX) was recently tested because preliminary data suggest that this drug does not affect the electroencephalogram (EEG). The aim of the present study was to compare the EEG pattern during DEX or CH sedation to test the hypothesis that both drugs exert similar effects on the EEG. A total of 17 patients underwent 2 EEGs on 2 separate occasions, one with DEX and the other with CH. The EEG qualitative variables included the phases of sleep and the background activity. The EEG quantitative analysis was performed during the first 2 minutes of the second stage of sleep. The EEG quantitative variables included density, duration, and amplitude of the sleep spindles and absolute spectral power. The results showed that the qualitative analysis, density, duration, and amplitude of sleep spindles did not differ between DEX and CH sedation. The power of the slow-frequency bands (δ and θ) was higher with DEX, but the power of the faster-frequency bands (α and β) was higher with CH. The total power was lower with DEX than with CH. The differences of DEX and CH in EEG power did not change the EEG qualitative interpretation, which was similar with the 2 drugs. Other studies comparing natural sleep and sleep induced by these drugs are needed to clarify the clinical relevance of the observed EEG quantitative differences.
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S
2012-11-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Lash, Lawrence H.; Putt, David A.; Parker, Jean C.
2006-01-01
Male and female Fischer 344 rats were administered trichloroethylene (TRI) (2, 5, or 15 mmol/kg body weight) in corn oil by oral gavage and TRI and its metabolites were measured at times up to 48 hr in liver, kidney, blood, and urine. We tested the hypothesis that sex-dependent differences in distribution and metabolism of TRI could help explain differences in toxicity. Higher levels of TRI were generally observed in tissues of males. A biphasic pattern of TRI concentration was observed in liver, kidney, and blood of both males and females, consistent with enterohepatic recirculation. Higher concentrations of cytochrome P450 (P450)-derived metabolites (chloral hydrate, trichloroacetate, trichloroethanol) were observed in livers of males than in livers of females whereas the opposite pattern was observed in kidneys. Chloral hydrate was the primary P450-derived metabolite in blood and urine of males whereas trichloroacetate was the primary P450-derived metabolite in blood and urine of females. S-(1,2-Dichlorovinyl)glutathione (DCVG) was recovered in liver and kidney of female rats only and in blood of both male and female rats, with generally higher amounts found in females. S-(1,2-Dichlorovinyl)-l-cysteine (DCVC), the penultimate nephrotoxic metabolite, was recovered in male and female liver, female kidney, male blood, and in urine of both males and females. The results demonstrate sex-dependent differences in recovery of key metabolites of TRI that may help explain differences in susceptibility to TRI-induced toxicity with both the liver and kidney as target organs. PMID:16754541
Metabolism of halogenated ethylenes.
Leibman, K C; Ortiz, E
1977-01-01
The metabolism of the chlorinated ethylenes may be explained by the formation of chloroethylene epoxides as the first intermediate products. The evidence indicates that these epoxides rearrange with migration of chlorine to form chloroacetaldehydes and chloroacetyl chlorides. Thus, monochloroacetic acid, chloral hydrate, and trichloroacetic acid have been found in reaction mixtures of 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene, respectively, with rat liver microsomal systems. Rearrangements of the chloroethylene, and glycols formed from the epoxides by hydration may also take place, but would appear, at least in the case of 1,1-dichloroethylene, to be quantitatively less important. The literature on the metabolism of chlorinated ethylenes and its relationship to their toxicity is reviewed. PMID:612463
NASA Astrophysics Data System (ADS)
Chow, A. T.; Wong, P.; O'Geen, A. T.; Dahlgren, R. A.
2009-12-01
Foliar litter is an important terrestrial source of dissolved organic matter (DOM) in surface water. DOM is a public health concern since it is a precursor of carcinogenic disinfection byproducts (DBPs) during drinking water treatment. Chemical characterization of in-situ water samples for their impact on water treatment may be misleading because DOM characteristics can be altered from their original composition during downstream transport to water treatment plants. In this study, we collected leachate from four fresh litters and decomposed duffs from four dominant vegetation components of California oak woodlands: blue oak (Quercus douglassi), live oak (Quercus wislizenii), foothill pine (Pinus sabiniana), and annual grasses to evaluate their DOM degradability and the reactivity of altered DOM towards DBP formation. Samples were filtered through a sterilized membrane (0.2 micron) and exposed to natural sunlight and Escherichia coli K-12 independently for 14 days. Generally speaking, leachate from decomposed duff was relatively resistant towards biodegradation compared to that from fresh litter, but the former was more susceptible to photo-transformation. Photo-bleaching caused a 30% decrease in ultra-violet absorbance at 254 nm (UVA) but no significant changes in dissolved organic carbon (DOC) concentration. This apparent loss of aromatic carbon in DOM, in terms of specific UVA, did not result in a decrease of specific trihalomethane (THM) formation potential, although aromatic carbon is considered as a major reactive site for THM formation. In addition, there were significant increases (p < 0.05) of chloral hydrate after the 14-day exposure, suggesting that the photolytic products could be a precursor of chloral hydrate. In contrast, samples inoculated with E. coli did not show a significant effect on the DOC concentration, UVA or DBP formation, although the colony counts indicated a 2-log cell growth during the 14-day incubation. Results suggest photolysis is a major biogeochemical process altering terrestrial DOC in surface water.
Electroencephalography for children with autistic spectrum disorder: a sedation protocol.
Keidan, Ilan; Ben-Menachem, Erez; Tzadok, Michal; Ben-Zeev, Bruria; Berkenstadt, Haim
2015-02-01
To report the effectiveness and efficiency of a predetermined sedation protocol for providing sedation for electroencephalograph (EEG) studies in children with autism. Sleep EEG has been advocated for the majority of children with autism spectrum disorder. In most cases, sedation is required to allow adequate studies. Most sedation drugs have negative effects on the EEG pattern. The sedation protocol we adopted included chloral hydrate, dexmedetomidine, and ketamine and was evaluated prospectively for 2 years. One hundred and eighty-three children with autistic spectrum disorder were sedated with the described drug protocol that was efficient, provided adequate EEG readings, and was not associated with serious adverse events. Our protocol kept costs to a minimum but provided appropriate escalation in care when required. © 2014 John Wiley & Sons Ltd.
Lock, Edward A; Reed, Celia J; McMillan, JoEllyn M; Oatis, John R; Schnellmann, Rick G
2007-01-01
The industrial solvent trichloroethylene (TCE) and its major metabolites have been shown to cause formic aciduria in male rats. We have examined whether chloral hydrate (CH) and trichloroacetic acid (TCA), known metabolites of TCE, produce an increase in formic acid in vitro in cultures of rat hepatocytes or human renal proximal tubule cells (HRPTC). The metabolism and cytotoxicity of CH was also examined to establish that the cells were metabolically active and not compromised by toxicity. Rat hepatocytes and HRPTC were cultured in serum-free medium and then treated with 0.3–3mM CH for 3 days or 0.03–3mM CH for 10 days respectively and formic acid production, metabolism to trichloroethanol (TCE-OH) and TCA and cytotoxicity determined. No increase in formic acid production in rat hepatocytes or HRPTC exposed to CH was observed over and above that due to chemical degradation, neither was formic acid production observed in rat hepatocytes exposed to TCA. HRPTC metabolised CH to TCE-OH and TCA with a 12-fold greater capacity to form TCE-OH versus TCA. Rat hepatocytes exhibited a 1.6-fold and 3-fold greater capacity than HRPTC to form TCE-OH and TCA respectively. CH and TCA were not cytotoxic to rat hepatocytes at concentrations up to 3mM/day for 3 days. With HRPTC, one sample showed no cytotoxicity to CH at concentrations up to 3mM/day for 10 days, while in another cytotoxicity was seen at 1mM/day for 3 days. In summary, increased formic acid production was not observed in rat hepatocytes or HRPTC exposed to TCE metabolites, suggesting that the in vivo response cannot be modelled in vitro. CH was toxic to HRPTC at millimolar concentrations/day over 10 days, while glutathione derived metabolites of TCE were toxic at micromolar concentrations/day over 10 days (Lock et al., 2006) supporting the view that glutathione derived metabolites are likely to be responsible for nephrotoxicity. PMID:17161896
CDKL5 variant in a boy with infantile epileptic encephalopathy: case report.
Wong, Virginia Chun-Nei; Kwong, Anna Ka-Yee
2015-04-01
A Chinese boy presented at 18 months with intractable epilepsy, developmental delay and autistic features. He had multiple seizure types, including absence, myoclonic seizures, limb spasm and tonic seizures. His seizures were finally controlled at 3 years of age with clonazepam and a short course of chloral hydrate incidentally given for his insomnia. Subsequently, he had improvement in his communication skills. A novel hemizygous missense variant (c.1649G>A; p.R550Q) in exon 12 of CDKL5 gene was detected for him, his asymptomatic mother and elder sister. His phenotype is less severe than other male cases. We recommend screening CDKL5 for boys with pharmarco-resistant epilepsy and a trial of benzodiazepines for Infantile Epileptic Encephalopathy (IEE). Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Shao, Y, Yvonne Y.; Wang, Lai; Welter, J, Jean F.; Ballock, R. Tracy
2011-01-01
Indian Hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. PMID:21930256
Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes
Bolger, Fiachra B.; Lowry, John P.
2005-01-01
In this communication we review selected experiments involving the use of carbon paste electrodes (CPEs) to monitor and measure brain tissue O2 levels in awake freely-moving animals. Simultaneous measurements of rCBF were performed using the H2 clearance technique. Voltammetric techniques used include both differential pulse (O2) and constant potential amperometry (rCBF). Mild hypoxia and hyperoxia produced rapid changes (decrease and increase respectively) in the in vivo O2 signal. Neuronal activation (tail pinch and stimulated grooming) produced similar increases in both O2and rCBF indicating that CPE O2currents provide an index of increases in rCBF when such increases exceed O2 utilization. Saline injection produced a transient increase in the O2 signal while chloral hydrate produced slower more long-lasting changes that accompanied the behavioral changes associated with anaesthesia. Acetazolamide increased O2 levels through an increase in rCBF.
Development of a radiation-sensitive indicator
NASA Astrophysics Data System (ADS)
Abdel-Fattah, A. A.; El-Kelany, M.; Abdel-Rehim, F.
1996-10-01
A poly(vinyl alcohol) (PVA) film containing acid-sensitive dye (bromophenol red, BPR) and water soluble chlorine-containing substance [CCl 3COONa or chloral hydrate (CCl 3CH(OH) 2, 2,2,2-trichloroethan-1,1-diol)] may be useful as a radiation-sensitive indicator. The acid-sensitive dye in the film changes its color from violet to pale yellow by irradiation due to the consequent lowering of the pH of the film caused by the HCl generated from the radiolysis of the Cl-containing substance. This film can be used as a dosimeter in a relatively low dose range up to 5 kGy. This response range makes this film useful in some food irradiation, pasteurization and water purification applications. The effects of temperature and relative humidity during irradiation and post-irradiation storage on the response of the film are discussed. It is inexpensive, does not require toxic solvents in preparation and easy to prepare in a laboratory.
Wu, Jie; Ye, Jian; Peng, Huanlong; Wu, Meirou; Shi, Weiwei; Liang, Yongmei; Liu, Wei
2018-06-01
In the Pearl River Delta area, the upstream municipal wastewater is commonly discharged into rivers which are a pivotal source of downstream drinking water. Solar irradiation transforms some of the dissolved organic matter discharged from the wastewater, also affecting the formation of disinfection by-products in subsequent drinking water treatment plants. The effect of simulated solar radiation on soluble microbial products extracted from activated sludge was documented in laboratory experiments. Irradiation was found to degrade macromolecules in the effluent, yielding smaller, more reactive intermediate species which reacted with chlorine or chloramine to form higher levels of noxious disinfection by-products. The soluble microbial products were found to be more active in formation of disinfection by-products regard than naturally-occurring organic matter. The results show that solar irradiation induced the formation of more trihalomethane (THMs), chloral hydrate (CH) and trichloronitromethane (TCNM), causing greater health risks for downstream drinking water. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shao, Yvonne Y; Wang, Lai; Welter, Jean F; Ballock, R Tracy
2012-01-01
Indian hedgehog (Ihh) is a key component of the regulatory apparatus governing chondrocyte proliferation and differentiation in the growth plate. Recent studies have demonstrated that the primary cilium is the site of Ihh signaling within the cell, and that primary cilia are essential for bone and cartilage formation. Primary cilia are also postulated to act as mechanosensory organelles that transduce mechanical forces acting on the cell into biological signals. In this study, we used a hydrostatic compression system to examine Ihh signal transduction under the influence of mechanical load. Our results demonstrate that hydrostatic compression increased both Ihh gene expression and Ihh-responsive Gli-luciferase activity. These increases were aborted by disrupting the primary cilia structure with chloral hydrate. These results suggest that growth plate chondrocytes respond to hydrostatic loading by increasing Ihh signaling, and that the primary cilium is required for this mechano-biological signal transduction to occur. Copyright © 2011 Elsevier Inc. All rights reserved.
Role of nitric oxide in the control of the gastric motility within the nucleus ambiguus of rats.
Sun, H-Z; Zhao, S-Z; Ai, H-B
2012-12-01
This study aims to investigate whether exogenous nitric oxide (NO) plays a role in controlling gastric motility within the nucleus ambiguus (NA). Experiments were performed on male Wistar rats anaesthetized with chloral hydrate. A latex balloon, connected to a pressure transducer, was inserted into the pylorus through the fundus for continuous recording of the change of gastric smooth muscle contractile curves. Microinjection of the NO-donor sodium nitroprusside (SNP; 5 nmol) or L-arginine (L-Arg; 5 nmol) into the NA significantly inhibited gastric motility, whereas the treatment of NO-synthase inhibitor N-nitro-L-arginine methylester (L-NAME) increased gastric motility remarkably. The negative effect of SNP or L-Arg on gastric motility was abolished by bilateral subdiaphragmatic vagotomy as well as by intravenous injection of ganglionic blocker, hexamethonium bromide (Hb). These results demonstrated that NO inhibited gastric motility by activating the cholinergic preganglionic neurons in the NA and through the mediation of vagus nerves.
The role of serendipity in drug discovery
Ban, Thomas A.
2006-01-01
Serendipity is one of the many factors that may contribute to drug discovery. It has played a role in the discovery of prototype psychotropic drugs that led to modern pharmacological treatment in psychiatry. It has also played a role in the discovery of several drugs that have had an impact on the development of psychiatry, “Serendipity” in drug discovery implies the finding of one thing while looking for something else. This was the case in six of the twelve serendipitous discoveries reviewed in this paper, ie, aniline purple, penicillin, lysergic acid diethylamide, meprobamate, chlorpromazine, and imipramine, in the case of three drugs, ie, potassium bromide, chloral hydrate, and lithium, the discovery was serendipitous because an utterly false rationale led to correct empirical results; and in case of two others, ie, iproniazid and sildenafil, because valuable indications were found for these drugs which were not initially those sought. The discovery of one of the twelve drugs, chlordiazepoxide, was sheer luck. PMID:17117615
Metabolism and mutagenicity of halogenated olefins--a comparison of structure and activity.
Henschler, D
1977-01-01
Chlorinated ethylenes are metabolized in mammals, as a first step, to epoxides. The fate of these electrophilic intermediates may be reaction with nucleophiles (alkylation), hydrolysis, or intramolecular rearrangement. The latter reaction has been studied in the whole series of chlorinated epoxiethanes. The rearrangement products found were: acyl chlorides (tetrachloro-, trichloro-, and 1,1-dichloroethylenes), or chlorinated aldehydes (1,2-dichloroethylenes, cis- and trans-, vinyl chloride). The metabolities found in vivo are identical with, or further derivatives of these rearrangment products, with one important exception: trichloroethylene. With this compound, in vivo rearrangement yields chloral exclusively. The mechanism of the different rearrangement has been identified as a Lewis acid catalysis. All chlorinated ethylenes have been investigated in a tissue-mediated mutagenicity testing system. The prominent molecular feature of those with mutagenic effects (trichloro-, 1,1-dichloro-, and monochloroethylene) is unsymmetric chlorine substitution which renders the epoxides unstable, whereas symmetric substitution confers relative stability and nonmutagenic property. PMID:348459
Chloral hydrate enteral infusion for sedation in ventilated children: the CHOSEN pilot study.
Joffe, Ari R; Hogan, Jessica; Sheppard, Cathy; Tawfik, Gerda; Duff, Jonathan P; Garcia Guerra, Gonzalo
2017-11-26
We aimed to test a novel method of delivery of chloral hydrate (CH) sedation in ventilated critically ill young children. Children < 12 years old, within 72 hours of admission, who were ventilated, receiving enteral tube-feeds, with intermittent CH ordered were enrolled after signed consent. Patients received a CH loading-dose of 10 mg/kg enterally, then a syringe-pump enteral infusion at 5 mg/kg/hour, increasing to a maximum of 9 mg/kg/hour. Cases were compared to historical controls matched for age group and Pediatric Risk of Mortality score (PRISM) category, using Fisher's exact test and the t test. The primary outcome was feasibility, defined as the use of an enteral CH continuous infusion without discontinuation attributable to a pre-specified potential harm. There were 21 patients enrolled, at age 11.4 (12.1) months, with bronchiolitis in 10 (48%), a mean Pediatric Logistic Organ Dysfunction (PELOD) score of 6.2 (5.2), and having received enteral CH continuous infusion for 4.5 (2.2) days. Infusion of CH was feasible in 20/21 (95%; 95% CI 76-99%) patients, with one (5%) adverse event of duodenal ulcer perforation on day 3 in a patient with croup receiving regular ibuprofen and dexamethasone. The CH infusion dose (mg/kg/h) on day 2 (n = 20) was 8.9 (IQR 5.9, 9), and on day 4 (n = 11) was 8.8 (IQR 7, 9). Days to titration of adequate sedation (defined as ≤ 3 PRN doses/shift) was 1 (IQR 0.5, 2.5), and hours to awakening for extubation was 5 (IQR 2, 9). Cases (versus controls) had less positive fluid balance at 48 h (-2 (45) vs. 26 (46) ml/kg, p = 0.051), and a decrease in number of PRN sedation doses from 12 h pre to 12 hours post starting CH (4.7 (3.3) to 2.6 (2.8), p = 0.009 versus 2.9 (3.9) to 3.4 (5), p = 0.74). There were no statistically significant differences between cases and controls in inotrope scores, signs or treatment of withdrawal, or PICU days. Delivering CH by continuous enteral infusion is feasible, effective, and may be associated with less positive fluid balance. Whether there is a risk of duodenal perforation requires further study.
Tremblay, François; Parkinson, Joan E
2003-11-01
Fran The effects of sedation and of halogenate anesthesia on electroretinographic recordings were investigated by reviewing the hospital charts of 27 patients who were eventually diagnosed free of retinal disease. The same ERG protocol was performed in conscious (n=9), sedated (chloral hydrate or pentobarbital sodium, n=9) and anesthetized (halothane or isoflurane, in combination with N2O, n=9) young patients. Sedation decreased the a- and b-wave amplitude of the scotopic bright-flash response, without affecting implicit times. ERG recordings performed in photopic conditions showed minimal disturbances. Anesthesia spared the a-wave of the scotopic bright-flash response but decreased more severely the b-wave. In addition, anesthesia reduced the amplitude and prolonged the implicit time of the photopic responses, affecting predominantly the ionotropic glutamate dependent OFF components (peak of b-wave, 0P4 and 0P5). The normal retinal physiology is affected by sedation and anesthesia through different mechanisms that still remain to be fully elucidated. These alterations in electroretinographic recordings must be considered when evaluating ERGs obtained under similar sedation/anesthetized conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praslicka, M.; Helona, J.; Havelka, J.
1955-01-01
Tadpoles of Rana esculenta were selected for experiments to ascertain changes in the action of irradiation produced by certain narcotics and by strychnine. The control tadpoles were irradiated with a dose of 27,500 r, as were also tadpoles in a watery solution of one of the following substances: ether (0.1%), ethanol (2 and 2.5%), chloral hydrate (0.3%), avertine (irradiation in water for 5 mins. in 0.1% solution), strychnine (1: 100,000, of the tadpoles irradiated in the watery solution of narcotic substances is in all cases statistically and significantly prolonged in comparison with that in the case of the tadpoles irradiatedmore » in water. Strychnine in a concentration of 1: 100,000, which produced signs of irritation, produced sensitivity to irradiation; in concentrations of 1: 50,000 and 1: 30,000, which produced inhibition, it had a protective effect, in as far as the tadpoles survived the toxic action of the strychnine. It would appear that irradiation intensifies the toxic action of avertine, ether, chloroform, and scopolamine. (auth)« less
Drug withdrawal symptoms in children after continuous infusions of fentanyl.
French, J P; Nocera, M
1994-04-01
The purpose of this research was to determine the extent to which critically ill infants exhibited signs and symptoms of narcotic withdrawal after receiving continuous infusions of fentanyl. The convenience sample consisted of 12 pediatric intensive care unit (PICU) patients under 25 months of age who received fentanyl infusions for at least 24 hours. Drug withdrawal symptoms were monitored using the Neonatal Abstinence Score Tool (NAST), which assigns a score to each behavior indicative of withdrawal. A score of 8 or greater indicates Neonatal Abstinence Syndrome (NAS). Scoring began 4 hours after discontinuation of fentanyl and was conducted once per hour for 8 hours. Six subjects had a NAST score exceeding 8; these infants frequently exhibited tremors with or without stimulation, increased muscle tone, insomnia, and increased respiratory rate and effort. There were significant correlations between fentanyl dosage and NAST score (r = .76, p < 0.01), between length of infusion of fentanyl and NAST score (r = .70, p < 0.05), and between chloral hydrate dosage and NAST score (r = .62, p < 0.05). These findings suggest the need for an observation protocol and a possible weaning regimen after fentanyl is discontinued.
Anaphylaxis to gelatin-containing rectal suppositories.
Sakaguchi, M; Inouye, S
2001-12-01
Some children--though the number is few-have been sensitized with gelatin. To investigate the relationship between the presence of antigelatin IgE and anaphylaxis to gelatin-containing rectal suppository, we measured antigelatin IgE in the sera of the children with anaphylaxis. Ten children showed systemic allergic reactions, including anaphylaxis, to a chloral hydrate rectal suppository containing gelatin (231 mg/dose) that had been used as a sedative. These children's clinical histories and serum samples were submitted from physicians to the National Institute of Infectious Diseases during a 2-year period from 1996 to 1997. Of the 10 children, 5 showed apparent anaphylaxis, including hypotension and/or cyanosis, along with urticaria or wheezing; 2 showed both urticaria and wheezing without hypotension or cyanosis; the other 3 showed only urticaria. All of the children had antigelatin IgE (mean value +/- SD, 7.9 +/- 8.4 Ua/mL). As a control, samples from 250 randomly selected children had no antigelatin IgE. These findings suggest that the 10 children's systemic allergic reactions to this suppository were caused by the gelatin component. Gelatin-containing suppositories must be used with the same caution as gelatin-containing vaccines and other medications.
Woolard, D J; Terndrup, T E
1994-01-01
The frequency of, indications for, and complications from non-acetaminophen sedative-analgesic agents (SAAs) administered to children less than 16 years of age in the emergency department (ED) were determined by a retrospective review. All 21,353 charts from a single university hospital ED over a 16-month period were included. Few children (N = 759; 3.5%) received SAAs. Of 919 total doses, 13% of children received a second and 4.5% received a third SAA. The group was 59% male. Most children were < or = 10 years of age. Sixty-two percent of SAAs were either sedatives or opioids. Sedatives given included chloral hydrate, diazepam, lorazepam, midazolam, and phenobarbital. Opioids given included morphine, codeine, and meperidine. Indications for SAAs included painful procedures, analgesia, radiographic imaging, and seizure activity. Complications (N = 51; 6.7%) included inadequate sedation, vomiting, and respiratory depression or oxygen desaturation. Respiratory depression or oxygen desaturation occurred only after intravenous administration of SAAs for seizures. In children, non-acetaminophen SAAs are used most commonly in younger patients requiring sedation for painful procedures or for radiologic imaging. Respiratory depression was observed only after intravenous administration of anticonvulsants.
Staveski, Sandra L; Tesoro, Tiffany M; Cisco, Michael J; Roth, Stephen J; Shin, Andrew Y
2014-01-01
The use of sedative and analgesic medications is directly linked to patient outcomes. The practice of administering as-needed sedative or analgesic medications deserves further exploration. We hypothesized that important variations exist in the practice of administering as-needed medications in the intensive care unit (ICU). We aimed to determine the influence of time of day on the practice of administering as-needed sedative or analgesic medications to children in the ICU. Medication administration records of patients admitted to our pediatric cardiovascular ICU during a 4-month period were reviewed to determine the frequency and timing of as-needed medication usage by shift. A total of 152 ICU admissions (1854 patient days) were reviewed. A significantly greater number of as-needed doses were administered during the night shift (fentanyl, P = .005; lorazepam, P = .03; midazolam, P = .0003; diphenhydramine, P = .0003; and chloral hydrate, P = .0006). These differences remained statistically significant after excluding doses given during the first 6 hours after cardiovascular surgery. Morphine administration was similar between shifts (P = .08). We identified a pattern of increased administration of as-needed sedative or analgesic medications during nights. Further research is needed to identify the underlying causes of this practice variation.
Tian, Jiang; Dong, Qiaofeng; Yu, Chenlei; Zhao, Ruixue; Wang, Jing; Chen, Lanzhou
2016-06-01
Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon-phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography-mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P-C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments.
[Depressive-like state and sleep in laboratory mice].
Strekalova, T V; Cespuglio, R; Koval'zon, V M
2008-01-01
In order to induce the state of anhedonia, a key symptom of depression, mice were subjected to a one-month stress procedure comprised of various stressors. Anhedonic state was defined by a reduction of preference for sucrose solution over tap water. Conventional cortical and neck-muscle electrodes were implanted to control and stressed animals under chloral-hydrate anesthesia. After a two-week recovery and habituation period, mice from chronically stressed group were re-subjected to five-day stress, and the anhedonic state was verified. As not all the stressed mice displayed a decrease in sucrose preference, animals were divided in two groups: stressed-non-anhedonic and stressed-anhedonic animals. Seven-day continuous polygraphic recording was carried out in animals from both stressed groups and the control group in recording chambers under conditions of 12/12-hour light/dark schedule. The anhedonic mice demonstrated a significant advanced shift in circadian distribution of paradoxical sleep and increased amount of paradoxical sleep during the light period. In the course of the dark period, the anhedonic group showed a slight but significant decrease in total amount of slow-wave sleep as compared to the non-anhedonic and control groups. The results suggest that the changes in sleep structure documented in the model of anhedonia are similar to those described for human depression.
Watanabe, Hideaki; Tohyama, Mikiko; Kamijima, Michihiro; Nakajima, Tamie; Yoshida, Takemi; Hashimoto, Koji; Iijima, Masafumi
2010-08-01
Patients having a generalised rash with severe liver dysfunction associated with exposure to trichloroethylene (TCE) have been reported mainly in Asian countries. However, no case has been reported in Japan since the 1990s. Here, we describe a case of hypersensitivity syndrome (HS) caused by TCE in a 30-year-old Japanese man. The patient developed a rash, fever and liver dysfunction 21 days after he had been exposed to TCE at his workplace. Serum human herpesvirus (HHV)-6 and cytomegalovirus (CMV) DNA were detected 4 and 7 weeks, respectively, after the onset; the IgG antibody titres to HHV-6 and CMV were significantly elevated 6 and 9 weeks, respectively, after the onset. Patch testing was positive for the metabolites of TCE (i.e. trichloroethanol, trichloroacetic acid and chloral hydrate) but not for TCE itself; these results suggest that the TCE metabolites induced this disease. Human leucocyte antigen-B*1301, which has been reported to be strongly associated with TCE-induced HS, was identified in this patient. In addition, the clinical findings, laboratory data and period of virus reactivation after onset were quite similar to those of drug-induced hypersensitivity syndrome (DIHS). We also review TCE-induced HS from the viewpoint of the similarity to DIHS in this article. Copyright 2010 S. Karger AG, Basel.
Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria
2015-01-01
Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870
Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle.
Netchiporouk, L; Shram, N; Salvert, D; Cespuglio, R
2001-04-01
In the present study, cortical extracellular levels of glucose were monitored for the first time throughout the sleep-wake states of the freely moving rat. For this purpose, polygraphic recordings (electroencephalogram of the fronto-occipital cortices and electromyogram of the neck muscles) were achieved in combination with differential normal pulse voltammetry (DNPV) using a specific glucose sensor. Data obtained reveal that the basal extracellular glucose concentration in the conscious rat is 0.59 +/- 0.3 m M while under chloral hydrate anaesthesia (0.4 g/kg, i.p.) it increases up to 180% of its basal concentration. Regarding the sleep-wake cycle, the existence of spontaneous significant variations in the mean glucose level during slow-wave sleep (SWS = +13%) and paradoxical sleep (PS = -11%) compared with the waking state (100%) is also reported. It is to be noticed that during long periods of active waking, glucose level tends towards a decrease that becomes significant after 15 min (active waking = -32%). On the contrary, during long episodes of slow-wave sleep, it tends towards an increase which becomes significant after 12 min (SWS = +28%). It is suggested that voltammetric techniques using enzymatic biosensors are useful tools allowing direct glucose measurements in the freely moving animal. On the whole, paradoxical sleep is pointed out as a state highly dependent on the availability of energy and slow-wave sleep as a period of energy saving.
Zhang, Shujuan; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F
2016-07-01
UV filters are a kind of emerging contaminant, and their transformation behavior in water treatment processes has aroused great concern. In particular, toxic products might be produced during reaction with disinfectants during the disinfection process. As one of the most widely used UV filters, oxybenzone has received significant attention, because its transformation and toxicity changes during chlorine oxidation are a concern. In our study, the reaction between oxybenzone and chlorine followed pseudo-first-order and second-order kinetics. Three transformation products were detected by LC-MS/MS, and the stability of products followed the order of tri-chloro-methoxyphenoyl > di-chlorinated oxybenzone > mono-chlorinated oxybenzone. Disinfection byproducts (DBPs) including chloroform, trichloroacetic acid, dichloroacetic acid and chloral hydrate were quickly formed, and increased at a slower rate until their concentrations remained constant. The maximum DBP/oxybenzone molar yields for the four compounds were 12.02%, 6.28%, 0.90% and 0.23%, respectively. SOS/umu genotoxicity test indicated that genotoxicity was highly elevated after chlorination, and genotoxicity showed a significantly positive correlation with the response of tri-chloro-methoxyphenoyl. Our results indicated that more genotoxic transformation products were produced in spite of the elimination of oxybenzone, posing potential threats to drinking water safety. This study shed light on the formation of DBPs and toxicity changes during the chlorination process of oxybenzone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Qian-Yuan, Wu; Chao, Li; Ye, Du; Wen-Long, Wang; Huang, Huang; Hong-Ying, Hu
2016-05-15
Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp. Copyright © 2016. Published by Elsevier Ltd.
Guttman, Rita
1940-01-01
1. The alkaline earths, Ba, Sr, Ca, and Mg, in isotonic solutions of their chlorides, have, in general, no effect upon the resting potential of non-medullated spider crab nerve. 2. Ba, Sr, and Ca can, however, prevent the depressing action of K upon the resting potential. The order of effectiveness of these ions in this regard is the following: Ba > Sr > Ca. 3. Ba, Sr, Ca, and Mg oppose the depressing action of veratrine sulfate upon the resting potential. The order of effectiveness is Ba > Sr > Ca > Mg. The relation between drop in potential caused by veratrine sulfate and the logarithm of the veratrine sulfate concentration is a linear one. 4. The action of various other organic ions and molecules which depress the resting potential: saponin, amyl urethane, chloral hydrate, and Na salicylate is neutralized by Ba. 5. Hypertonic sea water solutions do not affect the resting potential. Also, preliminary experiments indicate that the nerves do not shrink in hypertonic solutions although they swell in hypotonic sea water. 6. The alkaline earths depress excitability reversibly. The various organic agents which depress the resting potential also depress excitability, in most cases, reversibly, but the concentrations necessary to depress excitability are much smaller than those necessary to depress the resting potential. 7. The relation of these findings to theories put forward as possible explanations of resting potential phenomena is considered. PMID:19873160
Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.
Abusallout, Ibrahim; Hua, Guanghui
2016-09-01
The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse. Published by Elsevier Ltd.
Lu, S; Hu, W; Zhang, Z; Ji, Z; Zhang, T
2018-05-18
This study evaluated the manufacturing method and anti-adhesion properties of a new composite mesh in the rat model, which was made from sirolimus (SRL) grafts on a poly(L-lactic acid) (PLLA)-modified polypropylene (PP) hernia mesh. PLLA was first grafted onto argon-plasma-treated native PP mesh through catalysis of stannous chloride. SRL was grafted onto the surface of PP-PLLA meshes using catalysis of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in a CH 2 Cl 2 solvent. Sprague-Dawley female rats received either SRL-coated meshes, PP-PLLA meshes, or native PP meshes to repair abdominal wall defects. At different intervals, rats were euthanized by a lethal dose of chloral hydrate and adhesion area and tenacity were evaluated. Sections of the mesh with adjacent tissues were assessed histologically. Attenuated total reflection Fourier transformed infrared (ATR-FTIR) spectroscopy indicated the existence of a C=O group absorption peak (1724.1 cm -1 ), and scanning electron microscope morphological analysis indicated that the surface of the PP mesh was covered with SRL. Compared to the native PP meshes and PP-PLLA meshes, SRL-coated meshes demonstrated the greatest ability to decrease the formation of adhesions (P < 0.05) and inflammation. The SRL-coated composite mesh showed minimal formation of intra-abdominal adhesions in a rat model of abdominal wall defect repair.
Hervada, A R; Feit, E; Sagraves, R
1978-09-01
The amount of drug excreted into breast milk is dependent upon the lipid solubility of the medication, the mechanism of transport, the degree of ionization, and change in plasma pH. The higher the lipid solubility, the greater the concentration in human milk. The majority of drugs are transported into mammary blood capillaries by passive diffusion. The rest are transported by reverse pinocytosis. Once the drug has entered the epithelial cells of breast tissue, the drug molecules are excreted into the human milk by active transport, passive diffusion, or apocrine secretion. The amount of free (active) drug available for transport depends on the degree of protein binding the plasma pH. Another factor affecting excretion of drugs is the time when breast feeding occurs. In the 1st few days of life, when colostrum is present, water-soluble drugs pass through the breast more easily than afterwards when milk is produced. Then lipid-soluble drugs cross in higher concentrations. The effect on nursing infants is dependent on the amount excreted into the milk, the total amount absorbed by the infant, and the toxicity of the drug. The use of the following drugs in breast feeding mothers is reviewed: anticoagulants, antihypertensives and diuretics, antimicrobials, drugs affecting the central nervous system (alcohol, chloral hydrate, meprobamate, lithium, and aspirin), marijuana, other drugs (antihistamines, atropine, ergot alkaloids, laxatives, nicotine, iodides, propylthiouracil, theophylline), hormones (insulin, thyroxine, and oral contraceptives), and radiopharmaceuticals.
Chen, Li; Lodge, Daniel J
2015-01-01
Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511
Issues in the Pharmacokinetics of Trichloroethylene and Its Metabolites
Chiu, Weihsueh A.; Okino, Miles S.; Lipscomb, John C.; Evans, Marina V.
2006-01-01
Much progress has been made in understanding the complex pharmacokinetics of trichloroethylene (TCE). Qualitatively, it is clear that TCE is metabolized to multiple metabolites either locally or into systemic circulation. Many of these metabolites are thought to have toxicologic importance. In addition, efforts to develop physiologically based pharmacokinetic (PBPK) models have led to a better quantitative assessment of the dosimetry of TCE and several of its metabolites. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article is a review of a number of the current scientific issues in TCE pharmacokinetics and recent PBPK modeling efforts with a focus on literature published since 2000. Particular attention is paid to factors affecting PBPK modeling for application to risk assessment. Recent TCE PBPK modeling efforts, coupled with methodologic advances in characterizing uncertainty and variability, suggest that rigorous application of PBPK modeling to TCE risk assessment appears feasible at least for TCE and its major oxidative metabolites trichloroacetic acid and trichloroethanol. However, a number of basic structural hypotheses such as enterohepatic recirculation, plasma binding, and flow- or diffusion-limited treatment of tissue distribution require additional evaluation and analysis. Moreover, there are a number of metabolites of potential toxicologic interest, such as chloral, dichloroacetic acid, and those derived from glutathione conjugation, for which reliable pharmacokinetic data is sparse because of analytical difficulties or low concentrations in systemic circulation. It will be a challenge to develop reliable dosimetry for such cases. PMID:16966104
Survey of Sedation and Analgesia Practice Among Canadian Pediatric Critical Care Physicians.
Garcia Guerra, Gonzalo; Joffe, Ari R; Cave, Dominic; Duff, Jonathan; Duncan, Shannon; Sheppard, Cathy; Tawfik, Gerda; Hartling, Lisa; Jou, Hsing; Vohra, Sunita
2016-09-01
Despite the fact that almost all critically ill children experience some degree of pain or anxiety, there is a lack of high-quality evidence to inform preferred approaches to sedation, analgesia, and comfort measures in this environment. We conducted this survey to better understand current comfort and sedation practices among Canadian pediatric intensivists. The survey was conducted after a literature review and initial focus groups. The survey was then pretested and validated. The final survey was distributed by email to 134 intensivists from 17 PICUs across Canada using the Research Electronic Data Capture system. The response rate was 73% (98/134). The most commonly used sedation scores are Face, Legs, Activity, Cry, and Consolability (42%) and COMFORT (41%). Withdrawal scores are commonly used (65%). In contrast, delirium scores are used by only 16% of the respondents. Only 36% of respondents have routinely used sedation protocols. The majority (66%) do not use noise reduction methods, whereas only 23% of respondents have a protocol to promote day/night cycles. Comfort measures including music, swaddling, soother, television, and sucrose solutions are frequently used. The drugs most commonly used to provide analgesia are morphine and acetaminophen. Midazolam and chloral hydrate were the most frequent sedatives. Our survey demonstrates great variation in practice in the management of pain and anxiety in Canadian PICUs. Standardized strategies for sedation, delirium and withdrawal, and sleep promotion are lacking. There is a need for research in this field and the development of evidence-based, pediatric sedation and analgesia guidelines.
Zhang, Li; Xu, Liang; Zeng, Qiang; Zhang, Shao-Hui; Xie, Hong; Liu, Ai-Lin; Lu, Wen-Qing
2012-01-24
Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs. © 2011 Elsevier B.V. All rights reserved.
Lee, Soo Jeong; Baek, Kwangwoo
2015-12-01
Pediatric dentists face challenges when young patients require a mesiodens extraction. General anesthesia may be a burden to the child as well as the parent due to dental fears and costs. The aim of this study was to evaluate oral and intravenous sedation in the outpatient setting as a safe and effective means of managing patients who require a mesiodens extraction. Records were reviewed retrospectively to find patients who underwent a mesiodens removal procedure from January 2013 to September 2014 in the Department of Pediatric Dentistry at Ajou University Hospital (Suwon, Gyeonggi-do, Republic of Korea). A total of 81 patients (62 male and 19 female) between 4 and 11 years of age (mean [± SD] 81.6 ± 14.1 months) were studied, with a mean weight of 22.9 ± 3.3 kg (16 kg to 30 kg). Vital signs, sedation drug dosage, and sedation time were studied. Mean doses of 63.7 ± 2.5 mg/kg chloral hydrate and 1.36 ± 0.22 mg/kg hydroxyzine were used for oral sedation. Nitrous oxide/oxygen was administrated for 40.0 ± 2.1 min. The mean dose of midazolam administered intravenously was 0.14 ± 0.06 mg/kg (2.38 ± 0.97 times). In all cases, the mesiodens was removed successfully. Intravenous sedation combined with oral sedation and nitrous oxide/oxygen inhalation can be an alternative to general anesthesia when administrated and monitored properly.
Body and brain temperature coupling: the critical role of cerebral blood flow
Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.
2010-01-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681
Prévot, E; Maudhuit, C; Le Poul, E; Hamon, M; Adrien, J
1996-12-01
Sleep deprivation (SD) for one night induces mood improvement in depressed patients. However, relapse often occurs on the day after deprivation subsequently to a sleep episode. In light of the possible involvement of central serotonin (5-hydroxytryptamine, 5-HT) neurotransmission in both depression and sleep mechanisms, we presently investigated, in the rat, the effects of SD and recovery sleep on the electrophysiological response of 5-HT neurons in the nucleus raphe dorsalis (NRD) to an acute challenge with the 5-HT reuptake blocker citalopram. In all rats, citalopram induced a dose-dependent inhibition of the firing of NRD neurons recorded under chloral hydrate anaesthesia. After SD, achieved by placing rats in a slowly rotating cylinder for 24 h, the inhibitory action of citalopram was significantly reduced (with a concomitant 53% increase in its ED50 value). After a recovery period of 4 h, a normal susceptibility of the firing to citalopram was restored. The decreased sensitivity of 5-HT neuronal firing to the inhibitory effect of citalopram after SD probably results in an enhancement of 5-HT neurotransmission. Such an adaptive phenomenon (similar to that reported after chronic antidepressant treatment), and its normalization after recovery sleep, parallel the mood improvement effect of SD and the subsequent relapse observed in depressed patients. These data suggest that the associated changes in 5-HT autocontrol of the firing of NRD serotoninergic neurons are relevant to the antidepressant action of SD.
Body and brain temperature coupling: the critical role of cerebral blood flow.
Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2009-08-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.
Mao, Yu-Qin; Wang, Xiao-Mao; Guo, Xian-Fen; Yang, Hong-Wei; Xie, Yuefeng F
2016-09-01
Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products (DBPs) of great health concern. In this study, their formation and speciation during chlorination were investigated for raw and process waters collected at three O3-biological activated carbon (BAC) advanced drinking water treatment plants. The results showed that all HA formation potentials (HAFPs) were highly enhanced whenever ozone was applied before or after conventional treatment. Sand filtration and BAC filtration could substantially reduce HAFPs. Trihalomethanes (THMs) were also measured to better understand the role of HAs in DBPs. Very different from HAFPs, THMFPs kept decreasing with the progress of treatment steps, which was mainly attributed to the different precursors for HAs and THMs. Brominated HAs were detected in bromide-containing waters. Chloral hydrate (CH) contributed from 25% to 48% to the total HAs formed in waters containing 100-150 μg L(-1) bromide, indicating the wide existence of other HAs after chlorination besides CH production. In addition, bromide incorporation factor (BIF) in HAs and THMs increased with the progress of treatment steps and the BIF values of THMs were generally higher than those of HAs. The BAC filtration following ozonation could significantly reduce HA precursors produced from ozonation but without complete removal. The brominated HAFPs in the outflow of BAC were still higher than their levels in the raw water. As a result, O3-BAC combined treatment was effective at controlling the total HAs, whereas it should be cautious for waters with high bromide levels. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zghoul, Tarek; Blier, Pierre
2003-03-01
Potent serotonin (5-HT) reuptake inhibitors are the only drugs that consistently exert a therapeutic action in obsessive-compulsive disorder (OCD). Given that some hallucinogens were reported to exert an anti-OCD effect outlasting their psychotomimetic action, possible modifications of neuronal responsiveness to 5-HT by LSD were examined in two rat brain structures: one associated with OCD, the orbitofrontal cortex (OFC), and another linked to depression, the hippocampus. The effects of concurrent microiontophoretic application of LSD and 5-HT were examined on neuronal firing rate in the rat OFC and hippocampus under chloral hydrate anaesthesia. In order to determine whether LSD could also exert a modification of 5-HT neuronal responsiveness upon systemic administration, after a delay when hallucinosis is presumably no longer present, it was given once daily (100 microg/kg i.p.) for 4 d and the experiments were carried out 24 h after the last dose. LSD attenuated the firing activity of OFC neurons, and enhanced the inhibitory effect of 5-HT when concomitantly ejected on the same neurons. In the hippocampus, LSD also decreased firing rate by itself but decreased the inhibitory action of 5-HT. The inhibitory action of 5-HT was significantly greater in the OFC, but smaller in the hippocampus, when examined after subacute systemic administration of LSD. It is postulated that some hallucinogens could have a beneficial action in OCD by enhancing the responsiveness to 5-HT in the OFC, and not necessarily in direct relation to hallucinosis. The latter observation may have theoretical implications for the pharmacotherapy of OCD.
Early drug discovery and the rise of pharmaceutical chemistry.
Jones, Alan Wayne
2011-06-01
Studies in the field of forensic pharmacology and toxicology would not be complete without some knowledge of the history of drug discovery, the various personalities involved, and the events leading to the development and introduction of new therapeutic agents. The first medicinal drugs came from natural sources and existed in the form of herbs, plants, roots, vines and fungi. Until the mid-nineteenth century nature's pharmaceuticals were all that were available to relieve man's pain and suffering. The first synthetic drug, chloral hydrate, was discovered in 1869 and introduced as a sedative-hypnotic; it is still available today in some countries. The first pharmaceutical companies were spin-offs from the textiles and synthetic dye industry and owe much to the rich source of organic chemicals derived from the distillation of coal (coal-tar). The first analgesics and antipyretics, exemplified by phenacetin and acetanilide, were simple chemical derivatives of aniline and p-nitrophenol, both of which were byproducts from coal-tar. An extract from the bark of the white willow tree had been used for centuries to treat various fevers and inflammation. The active principle in white willow, salicin or salicylic acid, had a bitter taste and irritated the gastric mucosa, but a simple chemical modification was much more palatable. This was acetylsalicylic acid, better known as Aspirin®, the first blockbuster drug. At the start of the twentieth century, the first of the barbiturate family of drugs entered the pharmacopoeia and the rest, as they say, is history. Copyright © 2011 John Wiley & Sons, Ltd.
Pulmonary atelectasis in children anesthetized for cardiothoracic MR: evaluation of risk factors.
Blitman, Netta M; Lee, Hwayoung K; Jain, Vineet R; Vicencio, Alfin G; Girshin, Michael; Haramati, Linda B
2007-01-01
To systematically assess the frequency and risk factors for atelectasis in children anesthetized for cardiothoracic magnetic resonance (MR). We retrospectively identified 58 consecutive children (age range, 6 days to 21 years) who underwent cardiothoracic MR from January 2001 to December 2004 whose imaging and medical charts were available. One certificate of added qualification pediatric radiologist and 1 of 2 cardiothoracic radiologists, in consensus, evaluated the first and last set of axial images. Images were evaluated for cardiac, vascular and tracheobronchial abnormalities, and degree of atelectasis. Atelectasis was considered significant if the equivalent of 3 or more segments were involved. Patients received 1 or more of 7 anesthetic medications (n = 27), chloral hydrate alone (n = 4), or required no anesthesia (n = 27). Significant atelectasis developed only in those receiving anesthetic medications. Thirty-seven percent (10/27) of anesthetized children developed significant atelectasis in the first and/or last axial sequence. In 90% (9 /10) of patients, it developed in the first axial sequence. Strong risk factors were age younger than 1 year (80%, 8/10, P = 0.029) and MR evidence of tracheobronchial narrowing (50%, 5/10, P = 0.008). In patients with vascular ring, there was a trend toward significance (40%, 4/10, P = 0.09). None of the anesthesia factors were significant, including ventilation mode, anesthesia duration, or American Society of Anesthesiology risk (all P > 0.1). Atelectasis may occur shortly after induction of anesthesia in children younger than 1 year of age or with tracheobronchial narrowing when anesthetized for cardiothoracic MR.
Oral Sedation Postdischarge Adverse Events in Pediatric Dental Patients
Huang, Annie; Tanbonliong, Thomas
2015-01-01
The study investigated patient discharge parameters and postdischarge adverse events after discharge among children who received oral conscious sedation for dental treatment. This prospective study involved 51 patients needing dental treatment under oral conscious sedation. Each patient received one of various regimens involving combinations of a narcotic (ie, morphine or meperidine), a sedative-hypnotic (ie, chloral hydrate), a benzodiazepine (ie, midazolam or diazepam), and/or an antihistamine (ie, hydroxyzine HCl). Nitrous oxide and local anesthesia were used in conjunction with all regimens. After written informed consent was obtained, each guardian was contacted by phone with specific questions in regard to adverse events following the dental appointment. Out of 51 sedation visits, 46 were utilized for analysis including 23 boys and 23 girls ranging from 2 years 2 months to 10 years old (mean 5.8 years). 60.1% of patients slept in the car on the way home, while 21.4% of that group was difficult to awaken upon reaching home. At home, 76.1% of patients slept; furthermore, 85.7% of patients who napped following the dental visit slept longer than usual. After the appointment, 19.6% exhibited nausea, 10.1% vomited, and 7.0% experienced a fever. A return to normal behavior was reported as follows: 17.4% in <2 hours, 39.1% in 2–6 hours, 28.3% in 6–10 hours, and 15.2% in >10 hours. Postdischarge excessive somnolence, nausea, and emesis were frequent complications. The time to normality ranged until the following morning demonstrating the importance of careful postdischarge adult supervision. PMID:26398124
Lee, Soo Jeong
2015-01-01
Background Pediatric dentists face challenges when young patients require a mesiodens extraction. General anesthesia may be a burden to the child as well as the parent due to dental fears and costs. The aim of this study was to evaluate oral and intravenous sedation in the outpatient setting as a safe and effective means of managing patients who require a mesiodens extraction. Methods Records were reviewed retrospectively to find patients who underwent a mesiodens removal procedure from January 2013 to September 2014 in the Department of Pediatric Dentistry at Ajou University Hospital (Suwon, Gyeonggi-do, Republic of Korea). A total of 81 patients (62 male and 19 female) between 4 and 11 years of age (mean [± SD] 81.6 ± 14.1 months) were studied, with a mean weight of 22.9 ± 3.3 kg (16 kg to 30 kg). Vital signs, sedation drug dosage, and sedation time were studied. Results Mean doses of 63.7 ± 2.5 mg/kg chloral hydrate and 1.36 ± 0.22 mg/kg hydroxyzine were used for oral sedation. Nitrous oxide/oxygen was administrated for 40.0 ± 2.1 min. The mean dose of midazolam administered intravenously was 0.14 ± 0.06 mg/kg (2.38 ± 0.97 times). In all cases, the mesiodens was removed successfully. Conclusions Intravenous sedation combined with oral sedation and nitrous oxide/oxygen inhalation can be an alternative to general anesthesia when administrated and monitored properly. PMID:28879282
Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying
2017-11-01
The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phosphorylation of spinal signaling-regulated kinases by acute uterine cervical distension in rats.
Wang, L Z; Liu, X; Wu, W X; Chai, R K; Chang, X Y
2010-01-01
Spinal extracellular signaling-regulated kinase 1 and 2 (ERK 1/2) have been found to contribute to nociceptive processing, but the role of spinal ERK 1/2 in visceral pain related to the uterine cervix, the source of pain during the first stage of labor, is unknown. The aim of this study was to investigate ERK activation (phosphorylation) in spinal dorsal horn neurons after acute uterine cervical distension. Under intraperitoneal anesthesia using chloral hydrate 300 mg/kg, female Sprague-Dawley rats were exposed to a 10-s uterine cervical distension of 25, 50, 75, and 100g or no distension (sham). The electromyographic response in the rectus abdominis muscle and mean arterial blood pressure and heart rate changes to uterine cervical distension were determined. The numbers of phosphorylated-ERK 1/2- immunoreactive (pERK 1/2-IR) dorsal horn neurons in cervical (C5-8), thoracic (T5-8), thoracolumbar (T12-L2) and lumbosacral (L(6)-S(1)) segments were counted using immunohistochemistry. Compared with the non-distended sham rats, uterine cervical distension resulted in a stimulus-dependent increase in electromyographic activity and the number of pERK-IR neurons that selectively located to the thoracolumbar segment, mostly in the deep dorsal and the central canal regions. The time course study demonstrated that spinal ERK activation peaked at 60 min with a slow decline for 120 min after uterine cervical distension stimulation. This study suggests that activation of spinal ERK might be involved in acute visceral pain arising from the uterine cervix. Copyright 2009 Elsevier Ltd. All rights reserved.
Caldwell, Jane C.; Keshava, Nagalakshmi
2006-01-01
Trichloroethylene (TCE) exposure has been associated with increased risk of liver and kidney cancer in both laboratory animal and epidemiologic studies. The U.S. Environmental Protection Agency 2001 draft TCE risk assessment concluded that it is difficult to determine which TCE metabolites may be responsible for these effects, the key events involved in their modes of action (MOAs), and the relevance of these MOAs to humans. In this article, which is part of a mini-monograph on key issues in the health risk assessment of TCE, we present a review of recently published scientific literature examining the effects of TCE metabolites in the context of the preceding questions. Studies of the TCE metabolites dichloroacetic acid (DCA), trichloroacetic acid (TCA), and chloral hydrate suggest that both DCA and TCA are involved in TCE-induced liver tumorigenesis and that many DCA effects are consistent with conditions that increase the risk of liver cancer in humans. Studies of S-(1,2-dichlorovinyl)-l-cysteine have revealed a number of different possible cell signaling effects that may be related to kidney tumorigenesis at lower concentrations than those leading to cytotoxicity. Recent studies of trichloroethanol exploring an alternative hypothesis for kidney tumorigenesis have failed to establish the formation of formate as a key event for TCE-induced kidney tumors. Overall, although MOAs and key events for TCE-induced liver and kidney tumors have yet to be definitively established, these results support the likelihood that toxicity is due to multiple metabolites through several MOAs, none of which appear to be irrelevant to humans. PMID:16966105
Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment.
Fu, Jie; Lee, Wan-Ning; Coleman, Clark; Nowack, Kirk; Carter, Jason; Huang, Ching-Hua
2017-10-15
The removal of precursors of 36 disinfection byproducts (DBPs) in effluents from flocculation/sedimentation process was evaluated across a pilot-scale two-stage biofiltration process, i.e., a sand/anthracite (SA) biofilter (empty bed contact time (EBCT) of 7.5 min) coupled with a biologically-active granular activated carbon (GAC) contactor (EBCT of 15 min). The biofiltration process exhibited a good capacity for removal of the total DBP formation potential (DBPFP) (by 25.90 ± 2.63%), and GAC contactors contributed most to the DBPFP removal (accounting for 60.63 ± 16.64% of the total removal). The removal percentage of DBPFPs of different structure types was in the following order: halonitroalkanes (58.50%) > haloaldehydes (33.62%) > haloacetic acids (HAAs, 28.13%) > haloalkanes (20.46%) > haloketones (13.46%) > nitrosamines (10.23%) > halonitriles (-8.82%) > haloalkenes (-9.84%). The precursors of bromo-DBPs (containing only bromine atoms) and maximal halogenated DBPs (containing 3 & 4 halo atoms) were removed largely compared to other DBPs. Among the total DBPFP, trihalomethanes (THMs), HAAs, and chloral hydrate were the dominant DBPs, and they accounted for >92% of the total targeted DBPs by weight. Pearson correlation analysis (CA) and principal components analysis (PCA) indicated a significant association among these dominant DBPs. Canonical correspondence analysis (CCA) revealed specific ultraviolet absorbance (SUVA 254 ) could serve as a good surrogate parameter for DBPFP. Pre-chlorination upstream of the biofilters may not greatly impact the overall removal of DBPFP by SA/GAC biofiltration. In addition, results showed that SA/GAC biofiltration was a useful procedure to remove the inorganic DBP chlorite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gahr, Maximilian; Connemann, Bernhard J; Zeiss, René; Fröhlich, Albrecht
2018-03-02
Psychopharmacotherapy is essential in the treatment of many mental disorders. Adverse drug reactions (ADR) have impact on compliance and tolerability. Sleep disorders or impaired sleep may occur as ADRs of psychopharmacotherapy. Sleep disorders are associated with an increased risk for physical and mental illness and may impair cognition, impulse control, emotion regulation and mood. Objective of the following study was the systematic presentation of type and risk of sleep disorders/impairments of sleep of frequently prescribed psychotropic drugs. Psychotropic agents that are most frequently prescribed in Germany were identified by using the Arzneiverordnungs-Report 2016. Summaries of product characteristics (SmPC) of corresponding original products were analyzed regarding presence and frequency of sleep disorders/impairments of sleep according to the International Classification of Sleep Disorders 3 (ICSD-3). N = 64 SmPCs were analyzed. In most of the analyzed SmPCs, at least one sleep disorder (50/64; 78 %) was listed. At least one SmPC with a corresponding ADR was found in the categories insomnia (52 %), parasomnias (33 %), and sleep-related movement disorders (20 %); sleep-related breathing disorders (6 %) and central disorders of hypersomnolence (5 %) were rarely listed; circadian rhythm sleep-wake disorder was not found. The SmPCs of the four most frequently prescribed agents (citalopram > venlafaxine > mirtazapine > sertraline) listed insomnia as an ADR. Nearly all analysed hypnotics (except chloral hydrate) were associated with nightmares. Most of the psychotropic agents frequently prescribed in Germany may induce sleep disorders/impairments of sleep. The four most frequently prescribed agents were antidepressants and all of the corresponding SmPCs listed insomnia as a possible ADR. Sleep disorders should be taken seriously as possible ADRs of psychopharmacotherapy. © Georg Thieme Verlag KG Stuttgart · New York.
Opelt, Marissa; Eroglu, Emrah; Waldeck-Weiermair, Markus; Russwurm, Michael; Koesling, Doris; Malli, Roland; Graier, Wolfgang F; Fassett, John T; Schrammel, Astrid; Mayer, Bernd
2016-11-11
Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN), resulting in activation of soluble guanylate cyclase (sGC) and cGMP-mediated vasodilation. We have previously shown that a minor reaction of ALDH2-catalyzed GTN bioconversion, accounting for about 5% of the main clearance-based turnover yielding inorganic nitrite, results in direct NO formation and concluded that this minor pathway could provide the link between vascular GTN metabolism and activation of sGC. However, lack of detectable NO at therapeutically relevant GTN concentrations (≤1 μm) in vascular tissue called into question the biological significance of NO formation by purified ALDH2. We addressed this issue and used a novel, highly sensitive genetically encoded fluorescent NO probe (geNOp) to visualize intracellular NO formation at low GTN concentrations (≤1 μm) in cultured vascular smooth muscle cells (VSMC) expressing an ALDH2 mutant that reduces GTN to NO but lacks clearance-based GTN denitration activity. NO formation was compared with GTN-induced activation of sGC. The addition of 1 μm GTN to VSMC expressing either wild-type or C301S/C303S ALDH2 resulted in pronounced intracellular NO elevation, with maximal concentrations of 7 and 17 nm, respectively. Formation of GTN-derived NO correlated well with activation of purified sGC in VSMC lysates and cGMP accumulation in intact porcine aortic endothelial cells infected with wild-type or mutant ALDH2. Formation of NO and cGMP accumulation were inhibited by ALDH inhibitors chloral hydrate and daidzin. The present study demonstrates that ALDH2-catalyzed NO formation is necessary and sufficient for GTN bioactivation in VSMC. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mühler, Roland; Rahne, Torsten; Verhey, Jesko L
2013-01-01
Recently an optimized broad-band chirp stimulus has been proposed for the objective estimation of hearing thresholds with auditory brainstem responses (ABRs). Several studies have demonstrated that this stimulus, compensating for the travelling wave delay of the frequency components of a click stimulus at the basilar membrane, evokes larger ABR amplitudes in adults. This study analyses the amplitude of chirp-evoked ABRs recorded in infants below 48 month of age under clinical conditions and compares these results with literature data. Chirp-evoked ABR recordings in 46 infants under chloral hydrate sedation or general anaesthesia were analysed retrospectively. The amplitude of the wave V was measured as a function of the stimulus intensity. To compare ABR amplitudes across infants with different hearing losses, the stimulus intensity was readjusted to the subjects' individual physiological threshold in dB SL (sensation level). Individual wave V amplitudes were plotted against stimulus intensity and individual amplitude growth functions were calculated. To investigate the maturation of chirp-evoked ABR, data from infants below and above 18 months of age were analysed separately. Chirp-evoked ABR amplitudes in both age groups were larger than the click-evoked ABR amplitudes in young infants from the literature. Amplitudes of chirp-evoked ABR in infants above 18 months of age were not substantially smaller than those reported for normal hearing adults. Amplitudes recorded in infants below 18 months were significantly smaller than those in infants above 18 months. A significant difference between chirp-evoked ABR amplitudes recorded in sedation or under general anaesthesia was not found. The higher amplitudes of ABR elicited by a broadband chirp stimulus allow for a reduction of the recording time in young infants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok
2012-02-01
The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems.
Song, Juhyun; Hur, Bo Eun; Bokara, Kiran Kumar; Yang, Wonsuk; Cho, Hyun Jin; Park, Kyung Ah; Lee, Won Taek; Lee, Kyoung Min
2014-01-01
Purpose Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-induced Alzheimer rat model. Materials and Methods We studied the effect of Agm on AD pathology using a STZ-induced Alzheimer rat model. For each experiment, rats were given anesthesia (chloral hydrate 300 mg/kg, ip), followed by a single injection of STZ (1.5 mg/kg) bilaterally into each lateral ventricle (5 µL/ventricle). Rats were injected with Agm (100 mg/kg) daily up to two weeks from the surgery day. Results Agm suppressed the accumulation of amyloid beta and enhanced insulin signal transduction in STZ-induced Alzheimer rats [experimetal control (EC) group]. Upon evaluation of cognitive function by Morris water maze testing, significant improvement of learning and memory dysfunction in the STZ-Agm group was observed compared with the EC group. Western blot results revealed significant attenuation of the protein expressions of cleaved caspase-3 and Bax, as well as increases in the protein expressions of Bcl2, PI3K, Nrf2, and γ-glutamyl cysteine synthetase, in the STZ-Agm group. Conclusion Our results showed that Agm is involved in the activation of antioxidant signaling pathways and activation of insulin signal transduction. Accordingly, Agm may be a promising therapeutic agent for improving cognitive decline and attenuating apoptosis in AD. PMID:24719136
Hoffman, George M; Nowakowski, Rhonda; Troshynski, Todd J; Berens, Richard J; Weisman, Steven J
2002-02-01
Guidelines for risk reduction during procedural sedation from the American Academy of Pediatrics (AAP) and the American Society of Anesthesiologists (ASA) rely on expert opinion and consensus. In this article, we tested the hypothesis that application of an AAP/ASA-structured model would reduce the risk of sedation-related adverse events. Prospectively coded sedation records were abstracted by a hospital quality improvement specialist with practical and administrative experience in pediatric sedation. Process variables included notation of nulla per os (NPO) status, performance of a guided risk assessment, assignment of ASA physical status score, obtaining informed consent, generation of a sedation plan, and assessment of sedation level using a quantitative scoring system. Content variables included adherence to AAP NPO guidelines, ASA class, target sedation level, actual sedation level, age, procedure, and drugs used. Complication risk was assessed by logistic regression and Mantel-Haenszel odds ratios (OR). Complications were identified in 40 of 960 records (4.2%). The complication rate was 34 of 895 (3.8%) with planned conscious sedation and 6 of 65 (9.2%) with planned deep sedation ([DS]; OR: 2.6). Complications were reduced by performance of structured risk assessment (OR: 0.10), adherence to all process guidelines (OR: 0), and avoiding actual DS (OR: 0.4). The only drug associated with higher risk was chloral hydrate (OR: 2.1). Failure to adhere to NPO guidelines did not increase risk in this assessment; however, the adverse event rate was 0 if all process guidelines were followed. Presedation assessment reduces complications of DS. Repeated assessment of sedation score reduces the risk of inadvertent DS. The data provide direct evidence that AAP/ASA guidelines can reduce the risk of pediatric procedural sedation.
Watson, Kalinda; Farré, Maria José; Leusch, Frederic D L; Knight, Nicole
2018-05-28
Parallel factor (PARAFAC) analysis of fluorescence excitation-emission matrices (EEMs) was used to investigate the organic matter and DBP formation characteristics of untreated, primary treated (enhanced coagulation; EC) and secondary treated synthetic waters prepared using a Suwannee River natural organic matter (SR-NOM) isolate. The organic matter was characterised by four different fluorescence components; two humic acid-like (C1 and C2) and two protein-like (C3 and C4). Secondary treatment methods tested, following EC treatment, were; powdered activated carbon (PAC), granular activated carbon (GAC), 0.1% silver-impregnated activated carbon (SIAC), and MIEX® resin. Secondary treatments were more effective at removing natural organic matter (NOM) and fluorescent DBP-precursor components than EC alone. The formation of a suite of 17 DBPs including chlorinated, brominated and iodinated trihalomethanes (THMs), dihaloacetonitriles (DHANs), chloropropanones (CPs), chloral hydrate (CH) and trichloronitromethane (TCNM) was determined after chlorinating water sampled before and after each treatment step. Regression analysis was used to investigate the relationship between peak component fluorescence intensity (F MAX ), DBP concentration and speciation, and more commonly used aggregate parameters such as DOC, UV 254 and SUVA 254 . PARAFAC component 1 (C1) was in general a better predictor of DBP formation than other aggregate parameters, and was well correlated (R ≥ 0.80) with all detected DBPs except dibromochloromethane (DBCM) and dibromoacetonitrile (DBAN). These results indicate that the fluorescence-PARAFAC approach could provide a robust analytical tool for predicting DBP formation, and for evaluating the removal of NOM fractions relevant to DBP formation during water treatment. Copyright © 2018. Published by Elsevier B.V.
Lin, Ming-Wei; Lei, Yen-Ping; Lin, Anya Maan-yuh
2014-01-01
Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain. PMID:24646838
Jian, Qianyun; Boyer, Treavor H; Yang, Xiuhong; Xia, Beicheng; Yang, Xin
2016-06-01
Dissolved organic matter (DOM) was leached from leaves of two trees commonly grown in subtropical regions, Pinus elliottii (commonly known as slash pine) and Schima superba (S. superba), and its degradation pattern and potential for forming disinfection byproducts (DBPs) were evaluated. The leaves were exposed in the field for up to one year before leaching. The DOM leached from slash pine litter contained on average 10.4 mg of dissolved organic carbon (DOC) per gram of dry weight; for S. superba the average was 37.2 mg-DOC/g-dry weight. Ultraviolet and visible light absorbance, fluorescence, and molecular weight analysis indicated that more aromatic/humic and higher molecular weight compounds are formed as leaf litter ages. A 4-component parallel factor analysis of the fluorescence data showed that the intensity of peaks related with protein-like components decreased gradually during biodegradation, while that of peaks attributed to humic-acid-like components increased continuously. Fresh slash pine leachates formed on average 40.0 μg of trihalomethane (THM) per milligram of DOC, while S. superba leachates formed 45.6 μg. THM formation showed peak values of 55.7 μg/mg DOC for slash pine and 74.9 μg/mg DOC for S. superba after 8 months of aging. The formation of haloacetonitrile (HAN) and trichloronitromethane (TCNM) increased with increasing leaf age, while chloral hydrate (CH) formation did not show such a trend. Specific UV absorbance showed some positive correlation with DBPs, but humic-acid-like and protein-like absorbance peaks correlated with CH and TCNM yields in only some leaf samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Uhl, W; Hartmann, C
2005-01-01
For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially, especially with P. aeruginosa. The contamination was not removable by backwashing with chlorine concentrations up to 2 mg/l free chlorine.
De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José
2015-12-15
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.
2010-01-01
Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394
Huang, Nan; Wang, Ting; Wang, Wen-Long; Wu, Qian-Yuan; Li, Ang; Hu, Hong-Ying
2017-05-01
Benzalkonium chlorides (BACs), as typical cationic surfactants and biocides widely applied in household and industrial products, have been frequently detected as micropollutants in many aquatic environments. In this study, the combination of UV irradiation and chlorine (UV/chlorine), a newly interested advanced oxidation process, was used to degrade dodecylbenzyldimethylammonium chloride (DDBAC). UV/chlorine showed synergistic effects on DDBAC degradation comparing to UV irradiation or chlorination alone. Radical quenching experiments indicated that degradation of DDBAC by UV/chlorine involved both UV photolysis and radical species oxidation, which accounted for 48.4% and 51.6%, respectively. Chlorine dosage and pH are essential parameters affecting the treatment efficiency of UV/chlorine. The pseudo first order rate constant (k obs, DDBAC ) increased from 0.046 min -1 to 0.123 min -1 in response to chlorine dosage at 0-150 mg/L, and the degradation percentage of DDBAC within 12 min decreased from 81.4% to 56.6% at pH 3.6-9.5. Five main intermediates were identified and semi-quantified using HPLC-MS/MS and a possible degradation pathway was proposed. The degradation mechanisms of DDBAC by UV/chlorine included cleavage of the benzyl-nitrogen bond and hydrogen abstraction of the alkyl chain. Trichloromethane (TCM), chloral hydrate (CH), trichloropropanone (TCP), dichloropropanone (DCP) and dichloroacetonitrile (DCAN) were detected using GC-ECD. The formation of chlorinated products increased rapidly initially, then decreased (TCM, TCP, DCP and DCAN) or remained stable (CH) with extended treatment. The actual formation of TCM peaked at 30 min (50.3 μg/L), while other chlorinated products did not exceed 10 μg/L throughout the process. Based on the luminescent bacterial assay, DDBAC solution underwent almost complete detoxification subjected to UV/chlorine treatment for 120 min, which is more effective than UV irradiation or chlorination alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Effect of drinking boron on microtructure of adrenal gland in rats].
Li, Shenghe; Wang, Jue; Zhou, Jinxing; Jin, Guangming; Gu, Youfang; Xu, Wanxiang
2012-09-01
The effects of drinking boron exposure on the mass, organ indexes and structure of adrenal gland were studied in the paper. Methods 192 Sprague-Dawley rats (28 +/- 2 days) with no bacteria infecting were divided into six groups (n = 32, male = female) randomly. Treated rats drunk the distilled water which supplemented with boron of 0, 40, 80, 160, 320 and 640 mg/L, respectively, for 60 days. At the 30th and the 60th day of experiment, 16 rats (n = 8, male = female) of each group were selected and made into narcosis with 10% Chloral Hydrate. The adrenal glands were obtained, weighted and fixed after dissection, then the samples were made into paraffin sections, stained with HE stain and chromaffin, observed and photographed by Olympus CH-30 microphotograph system. Compared with control group, the average mass of adrenal gland of male rats in each experiment group decreased significantly or most significantly at the 30th day of experiment (P < 0.05 or P < 0.01), but the index of adrenal gland of male rats in the group of 640 mg/L boron at 60th day of experiment increased significantly (P < 0.05). Under the microscope, the microstructure of adrenal gland of rats in the group of 40 mg/L boron were better obviously than control group, and the numbers of chromaffin granules in chromaffin cell increased obviously. The histopathological changes of different degree could be observed in the group of 80 to 640 mg/L boron, and they became remarkable with the boron supplementation. By comparative observation, the damage of cells in adrenal medulla appeared ahead of them in adrenal cortex, and the pathological change of adrenal gland in male rats were obvious than female rats. Drinking supplemented with 40 mg/L boron could prompt the structure of adrenal gland in rats, but could cause different degree damage, or even obvious toxic effect when the concentration of boron supplementation in drinking from 80 to 640 mg/L.
Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3.
Thomas, Margaret Lois; de Antueno, Roberto; Coyle, Krysta Mila; Sultan, Mohammad; Cruickshank, Brianne Marie; Giacomantonio, Michael Anthony; Giacomantonio, Carman Anthony; Duncan, Roy; Marcato, Paola
2016-11-01
Breast cancer stem cells (CSCs) can be identified by increased Aldefluor fluorescence caused by increased expression of aldehyde dehydrogenase 1A3 (ALDH1A3), as well as ALDH1A1 and ALDH2. In addition to being a CSC marker, ALDH1A3 regulates gene expression via retinoic acid (RA) signaling and plays a key role in the progression and chemotherapy resistance of cancer. Therefore, ALDH1A3 represents a druggable anti-cancer target of interest. Since to date, there are no characterized ALDH1A3 isoform inhibitors, drugs that were previously described as inhibiting the activity of other ALDH isoforms were tested for anti-ALDH1A3 activity. Twelve drugs (3-hydroxy-dl-kynurenine, benomyl, citral, chloral hydrate, cyanamide, daidzin, DEAB, disulfiram, gossypol, kynurenic acid, molinate, and pargyline) were compared for their efficacy in inducing apoptosis and reducing ALDH1A3, ALDH1A1 and ALDH2-associated Aldefluor fluorescence in breast cancer cells. Citral was identified as the best inhibitor of ALDH1A3, reducing the Aldefluor fluorescence in breast cancer cell lines and in a patient-derived tumor xenograft. Nanoparticle encapsulated citral specifically reduced the enhanced tumor growth of MDA-MB-231 cells overexpressing ALDH1A3. To determine the potential mechanisms of citral-mediated tumor growth inhibition, we performed cell proliferation, clonogenic, and gene expression assays. Citral reduced ALDH1A3-mediated colony formation and expression of ALDH1A3-inducible genes. In conclusion, citral is an effective ALDH1A3 inhibitor and is able to block ALDH1A3-mediated breast tumor growth, potentially via blocking its colony forming and gene expression regulation activity. The promise of ALDH1A3 inhibitors as adjuvant therapies for patients with tumors that have a large population of high-ALDH1A3 CSCs is discussed. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
[On the history of barbiturates].
Norn, Svend; Permin, Henrik; Kruse, Edith; Kruse, Poul R
2015-01-01
Throughout the history of humanity, numerous therapeutic agents have been employed for their sedative and hypnotic properties such as opium, henbane (Hyoscyamus niger) and deadly nightshade (Atropa belladonna), but also alcohol and wine. In the 19th century potassium bromide was introduced as a sedative - and antiepileptic drug and chloral hydrate as sedative-hypnotics. A new era was reached by the introduction of barbiturates. The story started with the chemist Adolf von Baeyer. His breakthrough in the synthesis of new agents as barbituric acid and indigo and his education of young chemists was of great importance for the science of organic chemistry and the development of the dye and medicine industry in the late 19th century. The next important step was the development of barbiturates. The pioneers were Josef von Mering and Emil Fischer. Using the Grimaux-method they synthesized various barbiturates. It was von Mering who got the idea of introducing ethyl groups in the inactive barbituric acid to obtain sedatives, but the synthesis was succeeded by the chemist Emil Fischer. Experiments with dogs clearly showed sedative and hypnotic effect of the barbiturates and the oral administration of barbital (Veronal) confirmed the effect in humans. Barbital was commercialized in 1903 and in 1911 phenobarbital (Luminal) was introduced in the clinic, and this drug showed hypnotic and antiepileptic effects. Thereafter a lot of new barbiturates appeared. Dangerous properties of the drugs were recognized as abuse, addiction, and poisoning. An optimum treatment of acute barbiturate intoxication was obtained by the "Scandinavian method", which was developed in the Poison Centre of the Bispebjerg Hospital in Copenhagen. The centre was established by Carl Clemmesen in 1949 and the intensive care treatment reduced the mortality of the admitted persons from 20% to less than 2%. To-day only a few barbiturates are used in connection with anaesthesia and for the treatment of epilepsy, and chemists are focusing on drugs with more selective effects.
Effect of anti-vertigo granule on the opening number and blood flow of mouse ear capillary network
NASA Astrophysics Data System (ADS)
Li, Chongxian; Liu, Xiaobin; Li, Jun; Hao, Shaojun; Wang, Xidong; Li, Wenjun; Zhang, Zhengchen
2018-04-01
To observe the effects of anti-glare particles on the open number and blood flow in the auricle of mice with microcirculation disturbance model. Sixty mice, half male and half female, were randomly divided into 6 groups. The mice were given Kangxuan granule suspension, serum brain granule suspension and normal saline of the same volume, respectively, once a day. The mice were anesthetized by intraperitoneal injection of chloral hydrate at 1 hour after the last administration. The mouse was fixed on the observation platform and the auricle was placed on the transmission stage. BZ-2000 microcirculation microscope and microcirculation analysis system were used to observe the changes of blood velocity and capillary opening volume in auricle of mice before administration. The changes of blood velocity and capillaries opening volume of mouse auricle were observed 2 min after epinephrine injection into tail vein of mice. Bear fruit: Compared with those before epinephrine, the opening number of capillary reticulum of auricle in large dose Kangxuan granule group was significantly decreased (P<0.05), and in normal saline group and middle group. In the small dose Kangxuan granule group, the opening number of capillary network of auricle decreased significantly (P<0.01). Compared with the model group, the large dose Kangxuan granule group could significantly increase the opening number of the auricle capillary network in mice (P<0.01). Yangxuannao granule group could significantly increase the opening number of auricle capillary reticulum in mice (P<0.05), compared with the model group by Ridit test. Both Kangxuan granule group and Yangxuannao granule group could significantly improve the auricle hair of mice with microcirculation disorder. The blood flow in fine blood vessels (P<0.01). Kangxuan granule has a good effect on the opening number of capillary network of auricle and blood flow in mice with microcirculation disorder.
Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing
2016-01-01
The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bola, R. Aaron; Kiyatkin, Eugene A.
2016-01-01
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008
Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun
2018-06-15
Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8 M -1 s -1 and 3.6 (±0.1) × 10 7 M -1 s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a micropollutant by ClO • . Copyright © 2018 Elsevier Ltd. All rights reserved.
Interaction of biogenic amines with ethanol.
Smith, A A
1975-01-01
Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response to ethanol can be pharmacologically separated from other major narcotic classes such as opioids and barbiturates by respiratory depression effects. The specific requirement for serotonin mediation exhibited by ethanol and several other alcohols opens the door for a rational therapeutic approach to the treatment of alcohol abuse. At the same time, this finding tends to lessen the probability that alcoholism is in some way connected with the formation of addictive alkaloids.
Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C
2014-10-01
Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real-time PCR data between studies or research groups and should therefore be considered for quantitative PCR data.
Anticonvulsants for alcohol withdrawal.
Minozzi, Silvia; Amato, Laura; Vecchi, Simona; Davoli, Marina
2010-03-17
Alcohol abuse and dependence represents a most serious health problem worldwide with major social, interpersonal and legal interpolations. Besides benzodiazepines, anticonvulsants are often used for the treatment of alcohol withdrawal symptoms. Anticonvulsants drugs are indicated for the treatment of alcohol withdrawal syndrome, alone or in combination with benzodiazepine treatments. In spite of the wide use, the exact role of the anticonvulsants for the treatment of alcohol withdrawal has not yet bee adequately assessed. To evaluate the effectiveness and safety of anticonvulsants in the treatment of alcohol withdrawal. We searched Cochrane Drugs and Alcohol Group' Register of Trials (December 2009), PubMed, EMBASE, CINAHL (1966 to December 2009), EconLIT (1969 to December 2009). Parallel searches on web sites of health technology assessment and related agencies, and their databases. Randomized controlled trials (RCTs) examining the effectiveness, safety and overall risk-benefit of anticonvulsants in comparison with a placebo or other pharmacological treatment. All patients were included regardless of age, gender, nationality, and outpatient or inpatient therapy. Two authors independently screened and extracted data from studies. Fifty-six studies, with a total of 4076 participants, met the inclusion criteria. Comparing anticonvulsants with placebo, no statistically significant differences for the six outcomes considered.Comparing anticonvulsant versus other drug, 19 outcomes considered, results favour anticonvulsants only in the comparison carbamazepine versus benzodiazepine (oxazepam and lorazepam) for alcohol withdrawal symptoms (CIWA-Ar score): 3 studies, 262 participants, MD -1.04 (-1.89 to -0.20), none of the other comparisons reached statistical significance.Comparing different anticonvulsants no statistically significant differences in the two outcomes considered.Comparing anticonvulsants plus other drugs versus other drugs (3 outcomes considered), results from one study, 72 participants, favour paraldehyde plus chloral hydrate versus chlordiazepoxide, for the severe-life threatening side effects, RR 0.12 (0.03 to 0.44). Results of this review do not provide sufficient evidence in favour of anticonvulsants for the treatment of AWS. There are some suggestions that carbamazepine may actually be more effective in treating some aspects of alcohol withdrawal when compared to benzodiazepines, the current first-line regimen for alcohol withdrawal syndrome. Anticonvulsants seem to have limited side effects, although adverse effects are not rigorously reported in the analysed trials.
Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin
2014-01-01
Abstract Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10–11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real-time PCR data between studies or research groups and should therefore be considered for quantitative PCR data. PMID:24945082
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi
2005-01-01
Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626
Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S
2012-10-01
Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but remained below the World Health Organization guideline value of 70 μg/L in all cases. MP UV and high LP UV doses (1000 mJ/cm²) increased chloral hydrate formation after subsequent chlorination (20-40% increase for 40 mJ/cm² MP UV). These results indicate the importance of bench-testing DBP implications of UV applications in combination with post-disinfectants as part of the engineering assessment of a UV-chlorine/chloramine multi-barrier disinfection design for drinking water treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biodegradability of DBP precursors after drinking water ozonation.
de Vera, Glen Andrew; Keller, Jurg; Gernjak, Wolfgang; Weinberg, Howard; Farré, Maria José
2016-12-01
Ozonation is known to generate biodegradable organic matter, which is typically reduced by biological filtration to avoid bacterial regrowth in distribution systems. Post-chlorination generates halogenated disinfection byproducts (DBPs) but little is known about the biodegradability of their precursors. This study determined the effect of ozonation and biofiltration conditions, specifically ozone exposure and empty bed contact time (EBCT), on the control of DBP formation potentials in drinking water. Ozone exposure was varied through addition of H 2 O 2 during ozonation at 1 mgO 3 /mgDOC followed by biological filtration using either activated carbon (BAC) or anthracite. Ozonation led to a 10% decrease in dissolved organic carbon (DOC), without further improvement from H 2 O 2 addition. Raising H 2 O 2 concentrations from 0 to 2 mmol/mmolO 3 resulted in increased DBP formation potentials during post-chlorination of the ozonated water (target Cl 2 residual after 24 h = 1-2 mg/L) as follows: 4 trihalomethanes (THM4, 37%), 8 haloacetic acids (HAA8, 44%), chloral hydrate (CH, 107%), 2 haloketones (HK2, 97%), 4 haloacetonitriles (HAN4, 33%), trichloroacetamide (TCAM, 43%), and adsorbable organic halogen (AOX, 27%), but a decrease in the concentrations of 2 trihalonitromethanes (THNM2, 43%). Coupling ozonation with biofiltration prior to chlorination effectively lowered the formation potentials of all DBPs including CH, HK2, and THNM2, all of which increased after ozonation. The dynamics of DBP formation potentials during BAC filtration at different EBCTs followed first-order reaction kinetics. Minimum steady-state concentrations were attained at an EBCT of about 10-20 min, depending on the DBP species. The rate of reduction in DBP formation potentials varied among individual species before reaching their minimum concentrations. CH, HK2, and THNM2 had the highest rate constants of between 0.5 and 0.6 min -1 followed by HAN4 (0.4 min -1 ), THM4 (0.3 min -1 ), HAA8 (0.2 min -1 ), and AOX (0.1 min -1 ). At an EBCT of 15 min, the reduction in formation potential for most DBPs was less than 50% but was higher than 70% for CH, HK2, and THNM2. The formation of bromine-containing DBPs increased with increasing EBCT, most likely due to an increase in Br - /DOC ratio. Overall, this study demonstrated that the combination of ozonation and biofiltration is an effective approach to mitigate DBP formation during drinking water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fisher, Anthony C; McCulloch, Daphne L; Borchert, Mark S; Garcia-Filion, Pamela; Fink, Cassandra; Eleuteri, Antonio; Simpson, David M
2015-08-01
Pattern electroretinograms (PERGs) have inherently low signal-to-noise ratios and can be difficult to detect when degraded by pathology or noise. We compare an objective system for automated PERG analysis with expert human interpretation in children with optic nerve hypoplasia (ONH) with PERGs ranging from clear to undetectable. PERGs were recorded uniocularly with chloral hydrate sedation in children with ONH (aged 3.5-35 months). Stimuli were reversing checks of four sizes focused using an optical system incorporating the cycloplegic refraction. Forty PERG records were analysed; 20 selected at random and 20 from eyes with good vision (fellow eyes or eyes with mild ONH) from over 300 records. Two experts identified P50 and N95 of the PERGs after manually deleting trials with movement artefact, slow-wave EEG (4-8 Hz) or other noise from raw data for 150 check reversals. The automated system first identified present/not-present responses using a magnitude-squared coherence criterion and then, for responses confirmed as present, estimated the P50 and N95 cardinal positions as the turning points in local third-order polynomials fitted in the -3 dB bandwidth [0.25 … 45] Hz. Confidence limits were estimated from bootstrap re-sampling with replacement. The automated system uses an interactive Internet-available webpage tool (see http://clinengnhs.liv.ac.uk/esp_perg_1.htm). The automated system detected 28 PERG signals above the noise level (p ≤ 0.05 for H0). Good subjective quality ratings were indicative of significant PERGs; however, poor subjective quality did not necessarily predict non-significant signals. P50 and N95 implicit times showed good agreement between the two experts and between experts and the automated system. For the N95 amplitude measured to P50, the experts differed by an average of 13% consistent with differing interpretations of peaks within noise, while the automated amplitude measure was highly correlated with the expert measures but was proportionally larger. Trial-by-trial review of these data required approximately 6.5 h for each human expert, while automated data processing required <4 min, excluding overheads relating to data transfer. An automated computer system for PERG analysis, using a panel of signal processing and statistical techniques, provides objective present/not-present detection and cursor positioning with explicit confidence intervals. The system achieves, within an efficient and robust statistical framework, estimates of P50 and N95 amplitudes and implicit times similar to those of clinical experts.
Ileka-Priouzeau, Samuel; Campagna, Céline; Legay, Christelle; Deonandan, Raywat; Rodriguez, Manuel J; Levallois, Patrick
2015-02-01
Past studies have examined the effects of maternal exposure to water chlorination disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs) during pregnancy. However, no human-based study has yet evaluated the effect of emerging DBPs, such as haloacetaldehydes (HAs) and haloacetonitriles (HANs) on small-for-gestational-age (SGA) status in newborns. This study aims to assess the association between maternal multiroute exposure to HAs and HANs during the third trimester of pregnancy and SGA status at birth, among neonates delivered by women residing in the Quebec City area (Province of Quebec, Canada). We also evaluated the interaction between exposure to these emerging unregulated by-products and regulated DBPs also found in drinking water (THMs and HAAs), for which a positive association with adverse reproductive outcomes has been suggested in previous studies. We conducted a population-based case-control study in the Quebec City area. SGA newborns (n=330) were compared to 1100 controls, with matching based on calendar week of birth. HA and HAN concentrations in drinking water at participant's tap were estimated using spatio-temporal strategy based on bimonthly measurements carried out at several locations in the participant's distribution system. A computer-assisted telephone interview was completed to collect information on individual habits of water consumption and water related activities in order to determine individual multiroute exposure. This enabled us to estimate the dose of HAs and HANs absorbed daily by each participant. Associations between total HA, HAN concentrations in drinking water and SGA were analyzed. Associations between the daily-absorbed doses of these emerging DBPs and SGA were also analyzed. Odds ratios (ORs) comparing the 4th quartile of exposure to the reference group (the first three quartiles) were obtained by means of conditional logistic regression, and controlling for potential confounders. Globally, no evidence of increased risk of SGA was found with total HA and HAN concentrations in tap water when participants in the 4th quartile of exposure were compared to the first three quartiles (OR=1.0; 95% CI [0.7-1.5] and OR=0.8; 95% CI [0.6-1.2], respectively). Similarly, no association was found with the daily-absorbed doses of total HAs or HANs (OR=0.9; 95% CI [0.6-1.3] and OR=1.1; 95% CI [0.7-1.6], respectively). However, a small non statistically significant association was found between the dose of brominated HA and SGA (OR=1.4; 95% CI [0.9-2.1]). Also, in spite of the lack of interaction between other DBP classes, an unexpected negative interaction was observed between concentration of chloral hydrate (CH) (which represents the main HA species), and regulated DBPs (P=0.006). In this population, exposure to low levels of HAs and HANs during the third trimester of pregnancy through drinking water was not associated to SGA status in newborns. Nonetheless, more research is needed to clarify possible effect of brominated compounds and interaction between different DBPs. Copyright © 2015 Elsevier Inc. All rights reserved.
Shen, Sheng; Zhou, Jiexue; Meng, Shandong; Wu, Jiaqing; Ma, Juan; Zhu, Chunli; Deng, Gengguo; Liu, Dong
2017-11-01
The aim of the present study was to investigate the protective effects of ischemic preconditioning on rats with renal ischemia-reperfusion injury and the effects on the expression of Bcl-2 and Bax. Thirty-six SD rats were randomly divided into three groups (n=12) including sham operation (S) group, ischemia-reperfusion group (I/R) group and ischemic preconditioning (IP) group. After anesthesia with intraperitoneal injection of chloral hydrate, bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h to establish the I/R model. Both kidneys in rats of S group were separated and exposed for 45 min, but renal pedicles were not clipped. In IP group, bilateral renal pedicles were clipped for 5 min, followed by perfusion for 5 min, this procedure was repeated 3 times. Then bilateral renal pedicles were clipped for 45 min, followed by perfusion for 6 h. Blood samples were collected and rats were sacrificed to collect renal tissue. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were measured. Activity of superoxide dismutase (SOD) was measured by xanthine oxidase assay. Degree of renal injury was evaluated by H&E staining. TUNEL kit was used to detect the number of apoptotic cells in renal tissue. Expression levels of Bcl-2 and Bax were detected by semi-quantitative PCR and western blot analysis at mRNA and protein levels, respectively. Results showed that levels of Cr and BUN in I/R and IP groups were significantly higher than those in S group, and levels of Cr and BUN in I/R group were significantly higher than that in IP group (P<0.05). Activity of SOD in I/R group and IP group were significantly lower than those in S group, and activity of SOD in I/R group were significantly lower than those in IP group (P<0.05). H&E staining showed that, compared with S group, renal injury in the I/R and IP groups was more serious than that in the S group, and I/R group was more serious than the IP group (P<0.05). TUNEL apoptosis assay showed that number of apoptotic cells in IP and I/R groups were significantly higher than that in the S group (P<0.01). Semi-quantitative PCR and western blot analysis showed that, compared with the S group, expression levels of Bcl-2 mRNA and protein were significantly decreased, expression levels of Bax mRNA and protein were significantly increased, and the ratio of Bcl-2/Bax was significantly decreased in the IP and I/R groups (P<0.01). Compared with the I/R group, expression level of Bcl-2 was significantly increased, the level of Bax was significantly deceased, and the ratio of Bcl-2/Bax was significantly increased in the IP group (P<0.01). As a result, ischemic preconditioning can protect rats with renal ischemia-reperfusion injury possibly by increasing the expression level of Bcl-2 and decreasing the expression level of Bax.
Meintjes, Marguerite; Endozo, Raymond; Dickson, John; Erlandsson, Kjel; Hussain, Khalid; Townsend, Caroline; Menezes, Leon; Bomanji, Jamshed
2013-06-01
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had an accumulation of F-DOPA in the pancreas and an SUV ratio greater than 1.5, indicating focal disease with an SUV(max) more than 50% higher than that of the unaffected areas of the pancreas. The remaining 13 patients had diffuse accumulation of (18)F-DOPA in the pancreas (SUV ratio<1.3). Using this ratio, a focal lesion can be distinguished from diffuse uptake and normal pancreatic uptake. The sizes of these regions of interest varied according to the age of the child. All patients diagnosed with focal lesions underwent surgery and were cured eventually. Lesions were accurately localized by PET/CT and confirmed by histological results after surgery. Three of these patients had to undergo second (18)F-DOPA scans and second surgeries after unsuccessful excision during their first surgery. Three patients with diffuse disease underwent a partial pancreatectomy, and histological results confirmed diffuse disease. One patient was cured and two remain on high-dose diazoxide therapy because of persistent hypoglycaemia. (18)F-DOPA PET/CT offers excellent differentiation of focal from diffuse CHI, and the contrast-enhanced CT technique permits precise preoperative localization of the lesion and anatomical landmarks.
MECHANISMS INVOLVED IN TRICHLOROETHYLENE INDUCED LIVER CANCER: IMPORTANCE TO ENVIRONMENTAL CLEANUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bull, Richard J.; Thrall, Brain D.
2001-12-31
Trichloroethylene (TCE) is a common contaminant of groundwater as a result of poor disposal practices of the past. As a consequence, this solvent is the focus of many clean-up operations of uncontrolled hazardous waste sites. TCE is carcinogenic in both mice and rats, but at different sites, the liver and kidney, respectively (NCI 1976; NTP 1988; NTP 1990). Liver tumor induction in mice has been the tumor most critical from the standpoint of environmental regulation (Bull 2000). Under the proposed cancer risk guidelines of the Environmental Protection Agency (EPA 1996), identifying the dose-response behavior of key events involved in carcinogenicmore » responses can be used for developing alternative risk assessments. A major difficulty in developing alternative approaches for TCE is the fact that three of its metabolites are capable of inducing liver cancer in mice (Bull et al. 1990; Daniel et al. 1992; DeAngelo et al. 1999; Pereria 1996). Two of these metabolites have distinct modes of action, dichloroacetate (DCA) and trichloroacetate (TCA). The third metabolite, chloral hydrate, is probably active as a result of its conversion to one or both of these two metabolites. Ordinarily, the first approach to assigning causality to a metabolite in tumorigenesis would be an attempt to measure its concentration in the body and associate that with tumorigenic concentrations observed when the compound is itself administered. This can be done with relative ease with TCA. However, it has been more difficult with DCA since blood levels of this metabolite after exposure to carcinogenic doses of DCA fall rapidly below detection limits (Kato-Weinstein et al. 1998; Merdink et al. 1998). Mutations in the ras protooncogene have been used to determine if distinct patterns of DNAsequence alterations can provide indications of the type of DNA damage that might be produced by carcinogens. The presence of ras mutations in chemically-induced tumors was suggested as a means o f determining whether a chemical was genotoxic (Wiseman et al. 1986). However, the 7 discovery that spontaneous tumors also contain this oncogene indicated that this assumption may not be correct (Fox and Watanabe 1985). Several non-genotoxic carcinogens have been shown to produce tumors with a H-ras mutation frequency considerably below those that result spontaneously (Maronpot et al. 1995). Among these chemicals are a class called peroxisome proliferators, of which TCA and TCE are members. DCA and TCE were found to induce tumors with similar H-ras mutation spectra (Anna et al. 1994), whereas only limited data have been available on TCA (Fereira-Gonzalez et al. 1995). Thus, a major focus of this research was to evaluate whether the pattern and frequency of H-ras mutations in TCE-induced tumors could be explained by the same parameters in tumors induced by the metabolites TCA or DCA. The present project was organized around three interrelated objectives: The first objective addressed the pharmacokinetic questions regarding the formation and elimination of DCA and TCA in mice administered TCE and whether levels of these metabolites may account for the tumors induced by TCE. The second objective was to investigate potential molecular mechanisms by which TCA and DCA may, in the absence of directly causing mutations, promote the clonal growth and expansion of precancerous cell populations within mouse liver. The third objective was to investigate whether the genotype of tumors induced by TCA and DCA can be used to establish the relative roles of these metabolites in TCE-induced cancer. In particular, the focus of the latter studies was to compare the incidence and spectra of mutations in the H-ras gene (codon 61) to determine if the reported similarities in the genotype of DCA- and TCE-induced tumors have a causal relationship.« less
NASA Astrophysics Data System (ADS)
Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.
2003-04-01
Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration, dilution, sorption, and biodegradation that can significantly improve the raw water quality (Tufenkji et al, 2002; Kuehn and Mueller, 2000; Kivimaki et al, 1998; Stuyfzand, 1998). Transport through alluvial aquifers is associated with a number of water quality benefits, including removal of microbes, pesticides, total and dissolved organic carbon (TOC and DOC), nitrate, and other contaminants (Hiscock and Grischek, 2002; Tufenkji et al., 2002; Ray et al, 2002; Kuehn and Mueller, 2000; Doussan et al, 1997; Cosovic et al, 1996; Juttner, 1995; Miettinen et al, 1994). In comparison to most groundwater sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to exploit (shallow) and more highly productive for drinking water supplies (Doussan et al, 1997). Increased applications of RBF are anticipated as drinking water utilities strive to meet increasingly stringent drinking water regulations, especially with regard to the provision of multiple barriers for protection against microbial pathogens, and with regard to tighter regulations for disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs). In the above context, research was conducted to document the water quality benefits during RBF at three major river sources in the mid-western United States, specifically with regard to DBP precursor organic matter and microbial pathogens. Specific objectives were to: 1. Evaluate the merits of RBF for removing/controlling DBP precursors and certain other drinking water contaminants (e.g. microorganisms). 2. Evaluate whether RBF can improve finished drinking water quality by removing and/or altering natural organic matter (NOM) in a manner that is not otherwise accomplished through conventional processes of drinking water treatment (e.g. coagulation, flocculation, sedimentation). 3. Evaluate changes in the character of NOM upon ground passage from the river to the wells. The experimental approach entailed monitoring the performance of three different RBF systems along the Ohio, Wabash, and Missouri Rivers in the Midwestern United States and involved a cooperative effort between the American Water Works Company, Inc. and Johns Hopkins University. Samples of the river source waters and the bank-filtered well waters were analyzed for a range of water quality parameters including TOC, DOC, UV-absorbance at 254-nm (UV-254), biodegradable dissolved organic carbon (BDOC), biologically assimilable organic carbon (AOC), inorganic species, DBP formation potential, and microorganisms. In the second year of the project, river waters were subjected to a bench-scale conventional treatment train consisting of coagulation, flocculation, sedimentation, glass-fiber filtration, and ozonation. The treated river waters were compared with the bank-filtered waters in terms of TOC, DOC, UV-254, and DBP formation potential. In the third and fourth years of the project, NOM from the river and well waters was characterized using the XAD-8 resin adsorption fractionation method (Leenheer, 1981; Thurman &Malcolm, 1981). XAD-8 adsorbing (hydrophobic) and non-adsorbing (hydrophilic) fractions of the river and well waters were compared with respect to DOC, UV-254, and DBP formation potential to determine whether RBF alters the character of the source water NOM upon ground passage and if so, which fractions are preferentially removed. The results demonstrate the effectiveness of RBF at removing the organic precursors to potentially carcinogenic DBPs. When compared to a bench-scale conventional treatment train optimized for turbidity removal, RBF performed as well as the treatment at one of the sites and significantly better than the treatment at the other two sites in terms of removal of organic carbon and DBP precursor material. Removals of TOC and DOC upon RBF at the three sites generally ranged from 30 to 70% compared to 20 to 50% removals upon bench-scale treatment of the river waters. Reductions in precursor material for a variety of DBP precursors for trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin upon RBF ranged from 50 to 100% using both the formation potential (FP) and the uniform formation conditions (UFC) tests (Standard Methods, 1998; Summers et al., 1996), while reductions upon bench-scale treatment were generally in the range of 40 to 80%. The significantly higher reductions of the DBP precursors relative to those of TOC and DOC indicate a preferential reduction upon ground passage in the NOM that reacts with chlorine to form DBPs. Upon both bench-scale conventional treatment and RBF, a shift was observed in DBP formation from the chlorinated to the more brominated species due to the removal of DOC relative to bromide upon treatment or RBF. As DOC is removed, the bromide:DOC ratio increases, leading to the formation of more brominated DBPs. The shift was more pronounced upon RBF due to the generally higher reductions in DOC. UFC testing with a constant chlorine:DOC:bromide ratio ruled out the possibility of any significant preferential removal of the NOM precursor material for the more chlorinated DBPs. These results highlight the importance of the bromide ion in the formation of DBPs in drinking water, especially in light of the higher theoretical cancer risk associated with the brominated DBPs. Risk calculations demonstrated the ability of RBF to reduce the theoretical excess cancer risk due to THMs formed upon chlorination, in all cases, and with substantially better performance than the bench-scale treatment train. The characterization studies were carried out to evaluate whether the observed removals of DBP precursor material upon RBF reflected a preferential removal of NOM of particular character. The results of this study indicate that RBF appears to be equally capable of removing material of different character. The different removal mechanisms in the subsurface (e.g. sorption, biodegradation, filtration) combine to provide similar removal of the operationally defined hydrophilic and hydrophobic fractions of organic material upon ground passage. Thus, the reductions in DBP formation upon RBF observed during the first two phases of this research are largely the result of a decrease in the NOM concentration rather than a major shift in the NOM character. Preliminary monitoring of a number of microorganisms indicates that RBF may also serve as a significant barrier for the removal of microbial contaminants, including human pathogens. The monitoring data demonstrated >3 log removal of Clostridium spores and >2 log removal of bacteriophage. Assuming that these indicator organisms can be used as surrogates for Giardia cysts and human enteric viruses, RBF at the three study sites surpassed the performance requirements in the United States for conventional coagulation, sedimentation, and filtration (e.g., 2.5 log removal for Giardia cysts and 2.0 log removal of viruses). References Cosovic, D.; Hrsak, V.; Vojvodic, V.; &Krznaric, D., 1996. Transformation of organic matter and bank filtration from a polluted stream. Wat. Res., 30:12:2921. Doussan, C.; Poitevin, G.; Ledoux, E.; &Detay, M., 1997. River bank filtration: Modeling of the changes in water chemistry with emphasis on nitrogen species, J. Contam. Hydrol., 25:129. Hiscock, K.M. &Grischek, T., 2002. Attenuation of Groundwater Pollution by Bank Filtration. Jour. Hydrol., 266:139. Juttner, F., 1995. Elimination of Terpenoid Odorous Compounds by Slow Sand and River Bank Filtration of the Ruhr River, Germany. Wat. Sci. Tech., 31:11:211. Kivimaki, A-L.; Lahti, K.; Hatva, T.; Tuominen, S.M.; &Miettinen, I.T., 1998. Removal of organic matter during bank filtration. Artificial Recharge of Groundwater (J.H. Peters, editor). A.A. Balkema. Rotterdam, Netherlands; Brookfield, VT. Kuehn, W. &Mueller, U., 2000. Riverbank filtration: an overview. Jour. AWWA, 92:12:60. Leenheer, J.A., 1981. Comprehensive Approach to Preparative Isolation and Fractionation of Dissolved Organic Carbon from Natural Waters and Wastewaters. Environ. Sci. Technol., 15:5:578. Miettinen, I.T.; Martikainen, P.J.; &Vartiainen, T., 1994. Humus Transformation at the Bank Filtration Water Plant. Wat. Sci. Tech., 30:10:179. Ray, C.; Grischek, T.; Schubert, J.; Wang, J.Z.; &Speth, T.F., 2002. A perspective of riverbank filtration. Jour. AWWA, 94:4:149. Standard Methods for the Examination of Water and Wastewater, 1998 (20th ed.). APHA, AWWA, and WEF, Washington. Stuyfzand, P.J., 1998. Fate of pollutants during artificial recharge and bank filtration in the Netherlands. Artificial Recharge of Groundwater (J.H. Peters, editor). A.A. Balkema. Rotterdam, Netherlands; Brookfield, Vermont. Summers, R.S.; Hooper, S.M.; Shukairy, H.M.; Solarik, G.; &Owen, D., 1996. Assessing DBP Yield: Uniform Formation Conditions. Jour. AWWA, 88:6:80. Thurman, E.M. &Malcolm, R.L., 1981. Preparative Isolation of Aquatic Humic Substances. Environ. Sci. Technol., 15:4:463. Tufenkji, N.; Ryan, J.N.; &Elimelech, M., 2002. The Promise of Bank Filtration. Envir. Sci. &Technol., 36:21:423A.