Science.gov

Sample records for chlorella vulgaris arc

  1. Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature

    PubMed Central

    Chinnasamy, Senthil; Ramakrishnan, Balasubramanian; Bhatnagar, Ashish; Das, Keshav C.

    2009-01-01

    The growth response of Chlorella vulgaris was studied under varying concentrations of carbon dioxide (ranging from 0.036 to 20%) and temperature (30, 40 and 50°C). The highest chlorophyll concentration (11 μg mL–1) and biomass (210 μg mL–1), which were 60 and 20 times more than that of C. vulgaris at ambient CO2 (0.036%), were recorded at 6% CO2 level. At 16% CO2 level, the concentrations of chlorophyll and biomass values were comparable to those at ambient CO2 but further increases in the CO2 level decreased both of them. Results showed that the optimum temperature for biomass production was 30°C under elevated CO2 (6%). Although increases in temperature above 30°C resulted in concomitant decrease in growth response, their adverse effects were significantly subdued at elevated CO2. There were also differential responses of the alga, assessed in terms of NaH14CO3 uptake and carbonic anhydrase activity, to increases in temperature at elevated CO2. The results indicated that Chlorella vulgaris grew better at elevated CO2 level at 30°C, albeit with lesser efficiencies at higher temperatures. PMID:19333419

  2. Coagulation-membrane filtration of Chlorella vulgaris.

    PubMed

    Lee, Duu-Jong; Liao, Guan-Yu; Chang, Yin-Ru; Chang, Jo-Shu

    2012-03-01

    Filtration-based separation of Chlorella vulgaris, a species with excellent potential for CO(2) capture and lipid production, was investigated using a surface-modified hydrophilic polytetrafluoroethylene (PTFE) membrane. Coagulation using polyaluminum chloride (PACl) attained maximum turbidity removal at 200 mg L(-1) as Al(2)O(3). The membrane filtration flux at 1 bar increased as the PACl dose increased, regardless of overdosing in the coagulation stage. The filtered cake at the end of filtration tests peaked in solid content at 10 mg L(-1) as Al(2)O(3), reaching 34% w/w, roughly two times that of the original suspension. Differential scanning calorimetry (DSC) tests demonstrate that the cake with minimum water-solid binding strength produced the driest filter cake. Coagulation using 10 mg L(-1) PACl as Al(2)O(3), followed by PTFE membrane filtration at 1 bar, is an effective process for harvesting C. vulgaris from algal froth.

  3. Chlorella vulgaris: A Multifunctional Dietary Supplement with Diverse Medicinal Properties.

    PubMed

    Panahi, Yunes; Darvishi, Behrad; Jowzi, Narges; Beiraghdar, Fatemeh; Sahebkar, Amirhossein

    2016-01-01

    Chlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteinsChlorella vulgaris is a green unicellular microalgae with biological and pharmacological properties important for human health. C. vulgaris has a long history of use as a food source and contains a unique and diverse composition of functional macro- and micro-nutrients including proteins, omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects., omega-3 polyunsaturated fatty acids, polysaccharides, vitamins and minerals. Clinical trials have suggested that supplementation with C. vulgaris can ameliorate amelioration hyperlipidemia and hyperglycemia, and protect against oxidative stress, cancer and chronic obstructive pulmonary disease. In this review, we summarize the findings on the health benefits of Chlorella supplementation and the molecular mechanisms underlying these effects.

  4. [Photodegradation of 17beta-estradiol induced by Chlorella vulgaris].

    PubMed

    Ge, Liyun; Deng, Huanhuan; Wu, Feng; Weng, Yue; Deng, Nansheng

    2004-07-01

    The study showed that when exposed to high-pressure Hg-lamp (HPML, lambda(max) > or = 365 nm), and the concentration of Chlorella vulgaris was 4.0 x 10(10) cells x L(-1), the photodegradation rate of 17beta-estradiol could reach to 37%. When the concentration of Chlorella vulgaris was 4.2 x 10(10) cells x L(-1), the photodegradation of 1.5 x 10(-5) - 6.0 x 10(-5) mol x L(-1) 17beta-estradiol in aqueous solutions was pseudo-first order reaction. Increasing the initial concentration of 17beta-estradiol could lower its photodegradation rate. The influence of light intension and Chlorella vulgaris concentration on the photodegradation of 17beta-estradiol was also studied in this paper.

  5. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.

    PubMed

    Gille, Andrea; Trautmann, Andreas; Posten, Clemens; Briviba, Karlis

    2015-08-01

    Microalgae can contribute to a balanced diet because of their composition. Beside numerous essential nutrients, carotenoids are in the focus for food applications. The bioavailability of carotenoids from photoautotrophic-cultivated Chlorella vulgaris (C. vulgaris) and Chlamydomonas reinhardtii (C. reinhardtii) was compared. An in vitro digestion model was used to investigate carotenoid bioaccessibility. Furthermore, the effect of sonication on bioaccessibility was assessed. Lutein was the main carotenoid in both species. C. reinhardtii showed higher amounts of lutein and β-carotene than C. vulgaris. In contrast to C. reinhardtii, no β-carotene and only 7% of lutein were bioaccessible in nonsonicated C. vulgaris. Sonication increased the bioaccessibility of carotenoids from C. vulgaris to a level comparable with C. reinhardtii (β-carotene: ≥ 10%; lutein: ≥ 15%). Thus, C. reinhardtii represents a good carotenoid source for potential use in foods without processing, while the application of processing methods, like sonication, is necessary for C. vulgaris.

  6. Epigenetic modulation of Chlorella (Chlorella vulgaris) on exposure to polycyclic aromatic hydrocarbons.

    PubMed

    Yang, Mihi; Youn, Je-In; Kim, Seung Joon; Park, Jong Y

    2015-11-01

    DNA methylation in promoter region can be a new chemopreventive marker against polycyclic aromatic hydrocarbons (PAHs). We performed a randomized, double blind and cross-over trial (N=12 healthy females) to evaluate chlorella (Chlorella vulgaris)-induced epigenetic modulation on exposure to PAHs. The subjects consumed 4 tablets of placebo or chlorella supplement (total chlorophyll ≈ 8.3mg/tablet) three times a day before meals for 2 weeks. When the subjects consumed chlorella, status of global hypermethylation (5-methylcytosine) was reduced, compared to placebo (p=0.04). However, DNA methylation at the DNMT1 or NQO1 was not modified by chlorella. We observed the reduced levels of urinary 1-hydroxypyrene (1-OHP), a typical metabolite of PAHs, by chlorella intake (p<0.1) and a positive association between chlorella-induced changes in global hypermethylation and urinary 1-OHP (p<0.01). Therefore, our study suggests chlorella works for PAH-detoxification through the epigenetic modulation, the interference of ADME of PAHs and the interaction of mechanisms.

  7. Vitreoscilla hemoglobin gene ( vgb) improves lutein production in Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Ma, Ruijuan; Lin, Xiangzhi

    2014-03-01

    Vitreoscilla hemoglobin is an oxygen-binding protein that promotes oxygen delivery and reduces oxygen consumption under low oxygen conditions to increase the efficiency of cell respiration and metabolism. In this study, we introduced a Vitreoscilla hemoglobin gene ( vgb) into Chlorella vulgaris by Agrobacterium tumefaciens -mediated transformation (ATMT). PCR analysis confirmed that the vgb gene was successfully integrated into the Chlorella vulgaris genome. Analysis of biomass obtained in shake flasks revealed transformant biomass concentrations as high as 3.28 g/L, which was 38.81% higher than that of the wild-type strain. Lutein content of transformants also increased slightly. Further experiments recovered a maximum lutein yield of 2.91 mg/L from the transformants, which was 36.77% higher than that of the wild-type strain. The above results suggest that integrated expression of the vgb gene may improve cell growth and lutein yield in Chlorella vulgaris, with applications to lutein production from Chlorella during fermentation.

  8. Oral administration of Chlorella vulgaris augments concomitant antitumor immunity.

    PubMed

    Tanaka, K; Tomita, Y; Tsuruta, M; Konishi, F; Okuda, M; Himeno, K; Nomoto, K

    1990-01-01

    Chlorella vulgaris, an unicellular green algae, or its acetone-extract (Ac-Ex) were administered orally to Meth A tumor bearing BALB/c or (BALB/c x DBA/2)F1 (CDF1) mice. When CDF1 mice were fed daily with 10% dried powder of Chlorella vulgaris (CVP) containing diet before and after Meth A tumor inoculation, the growth of rechallenged Meth A tumor was significantly suppressed in an antigen-specific manner. Augmentation of antitumor resistance was exhibited also by Winn assay using lymph node cells of tumor-bearing mice orally administered with CVP or Ac-Ex. Antigen-specific concomitant immunity in these mice were mediated by cytostatic T cells but not by cytotoxic T cells. Natural killer cells seemed not to contribute in antitumor resistance in this system.

  9. Effect of aniline on Chlorella vulgaris

    SciTech Connect

    Amman, H.M.; Terry, b.

    1985-08-01

    A direct correlation between concentration of waste effluent, including aniline, released by a dye company into a waterway in Eastern North Carolina, and the rise and fall of populations of Chlorella, was demonstrated previously. The present study establishes threshold concentrations of aniline which affect growth of these algae, but also shows that physiologic parameters within the organism, such as the rate of photosynthesis, were decreased as sub-threshold concentrations of toxicant.

  10. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.

    PubMed

    Lau, Kin Yan; Pleissner, Daniel; Lin, Carol Sze Ki

    2014-10-01

    Heterotrophic cultivation of Chlorella vulgaris was investigated in food waste hydrolysate. The highest exponential growth rate in terms of biomass of 0.8day(-1) was obtained in a hydrolysate consisting of 17.9gL(-1) glucose, 0.1gL(-1) free amino nitrogen, 0.3gL(-1) phosphate and 4.8mgL(-1) nitrate, while the growth rate was reduced in higher concentrated hydrolysates. C. vulgaris utilized the nutrients recovered from food waste for the formation of biomass and 0.9g biomass was produced per gram glucose consumed. The microalgal biomass produced in nutrient sufficient batch cultures consisted of around 400mgg(-1) carbohydrates, 200mgg(-1) proteins and 200mgg(-1) lipids. The conversion of nutrients derived from food waste and the balanced biomass composition make C. vulgaris a promising strain for the recycling of food waste in food, feed and fuel productions.

  11. Use of Chlorella vulgaris for bioremediation of textile wastewater.

    PubMed

    Lim, Sing-Lai; Chu, Wan-Loy; Phang, Siew-Moi

    2010-10-01

    The potential application of Chlorella vulgaris UMACC 001 for bioremediation of textile wastewater (TW) was investigated using four batches of cultures in high rate algae ponds (HRAP) containing textile dye (Supranol Red 3BW) or TW. The biomass attained ranged from 0.17 to 2.26 mg chlorophyll a/L while colour removal ranged from 41.8% to 50.0%. There was also reduction of NH(4)-N (44.4-45.1%), PO(4)-P (33.1-33.3%) and COD (38.3-62.3%) in the TW. Supplementation of the TW with nutrients of Bold's Basal Medium (BBM) increased biomass production but did not improve colour removal or reduction of pollutants. The mechanism of colour removal by C. vulgaris is biosorption, in accordance with both the Langmuir and Freundlich models. The HRAP using C. vulgaris offers a good system for the polishing of TW before final discharge. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. [Research on characteristic of interrelationship between toxic organic compound BPA and Chlorella vulgaris].

    PubMed

    Chen, Shan-Jia; Chen, Xiu-Rong; Yan, Long; Zhao, Jian-Guo; Zhang, Fei; Jiang, Zi-Jian

    2014-04-01

    The effects of different concentrations of bisphenol A (BPA) on Chlorella vulgaris and removal capacity of BPA by Chlorella vulgaris were investigated. Results showed that a low concentration (0-20 mg x L(-1)) of BPA promoted the growth of Chlorella vulgaris, whereas a relative high concentration (20-50 mg x L(-1)) of BPA inhibited the growth of Chlorella vulgaris, and the inhibition effect was positively correlated with the concentration of BPA. Likewise, a high dose of initial BPA (> 20 mg x L(-1)) led to a decline in the content of chlorephyll a. Chlorella vulgaris had BPA removal capacity when initial BPA concentration ranged from 2 mg x L(-1) to 50 mg x L(-1). There was positive correlation between the removal rate of BPA per cell and initial BPA concentration. The removal rate of BPA was the highest when initial BPA was 50 mg x L(-1), which appeared between lag phase and logarithmic phase.

  13. Biodiesel production in crude oil contaminated environment using Chlorella vulgaris.

    PubMed

    Xaaldi Kalhor, Aadel; Mohammadi Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad; Movafeghi, Ali

    2016-12-01

    Biodiesel is a valuable alternative to fossil fuels and many countries choose biodiesel as an unconventional energy source. A large number of investigations have been done on microalgae as a source of oil production. In recent years, wastewater pollutions have caused many ecological problems, and therefore, wastewater phycoremediation has attracted the international attention. This paper studied the cultivation of Chlorella vulgaris in a crude oil polluted environment for biodiesel production. Intended concentrations were 10 and 20gperliter (crude oil/water) at two times. The results showed that the growth of C. vulgaris was improved in wastewater and the maximum amount of dry mass and oil was produced at the highest concentration of crude oil (0.41g and 0.15g/l, respectively). In addition, dry mass and oil yield of the microalga were significantly enhanced by increasing the experiment duration.

  14. Stability and loading properties of curcumin encapsulated in Chlorella vulgaris.

    PubMed

    Jafari, Yaser; Sabahi, Hossein; Rahaie, Mahdi

    2016-11-15

    Curcumin (Cur), a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform-infrared spectroscopy (FT-IR). Fluorescence micrographs, TGA, DSC and FTIR spectra suggested the hypothesis inclusion Cur in Nano-empty spaces inside cell wall of Alg. The TGA analysis showed that the thermal stability of Alg and Cur at algae/curcumin complex was 3.8% and 33% higher than their free forms at 0-300°C and 300-600°C ranges, respectively. After encapsulation in Alg cells, the photostability of Cur was enhanced by about 2.5-fold. Adsorption isotherm of Cur into Alg was fitted with the Freundlich isotherm. The microcapsules were loaded with Cur up to about 55% w/w which is much higher than other reported bio-carriers. In conclusion, the data proved that Chlorella vulgaris cell can be used as a new stable carrier for Cur.

  15. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.

    PubMed

    Park, Charnho; Lee, Ja Hyun; Yang, Xiaoguang; Yoo, Hah Young; Lee, Ju Hun; Lee, Soo Kweon; Kim, Seung Wook

    2016-06-01

    Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5-10 % (w/w)] and microalgal biomass [20-140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.

  16. Removal and biodegradation of nonylphenol by immobilized Chlorella vulgaris.

    PubMed

    Gao, Q T; Wong, Y S; Tam, N F Y

    2011-11-01

    The removal and biodegradation of nonylphenol (NP) by alginate-immobilized cells of Chlorella vulgaris were compared with their respective free cultures. The effects of four cell densities of 10(4) per algal bead were investigated, as were the four algal bead concentrations, with regard to the removal and biodegradation of NP. Although immobilization significantly decreased the growth rate and NP's biodegradation efficiency of C. vulgaris, NP removal over a short period was enhanced. The NP removal mechanism by immobilized cells was similar to that by free cells, including adsorption onto alginate matrix and algal cells, absorption within cells and cellular biodegradation. The optimal cell density and bead concentration for the removal and biodegradation of NP was 50-100×10(4) cells algal bead(-1) and 2-4 beads ml(-1) of wastewater, respectively. These results demonstrated that immobilized C. vulgaris cells under optimal biomass and photoautotrophic conditions are effective in removing NP from contaminated water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    PubMed Central

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  18. Growth of Chlorella vulgaris and associated bacteria in photobioreactors.

    PubMed

    Lakaniemi, Aino-Maija; Intihar, Veera M; Tuovinen, Olli H; Puhakka, Jaakko A

    2012-01-01

    The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non-axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water-based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture-independent molecular tools based on denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l(-1) and 2.0 day(-1) respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR-DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non-photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions.

  19. Physiological and biochemical responses of Chlorella vulgaris to Congo red.

    PubMed

    Hernández-Zamora, Miriam; Perales-Vela, Hugo Virgilio; Flores-Ortíz, César Mateo; Cañizares-Villanueva, Rosa Olivia

    2014-10-01

    Extensive use of synthetic dyes in many industrial applications releases large volumes of wastewater. Wastewaters from dying industries are considered hazardous and require careful treatment prior to discharge into receiving water bodies. Dyes can affect photosynthetic activities of aquatic flora and decrease dissolved oxygen in water. The aim of this study was to evaluate the effect of Congo red on growth and metabolic activity of Chlorella vulgaris after 96h exposure. Exposure of the microalga to Congo red reduced growth rate, photosynthesis and respiration. Analysis of chlorophyll a fluorescence emission showed that the donor side of photosystem II was affected at high concentrations of Congo red. The quantum yield for electron transport (φEo), the electron transport rate (ETR) and the performance index (PI) also decreased. The reduction in the ability to absorb and use the quantum energy increased non-photochemical (NPQ) mechanisms for thermal dissipation. Overall, Congo red affects growth and metabolic activity in photosynthetic organisms in aquatic environments.

  20. Biofilm formation by Chlorella vulgaris is affected by light quality.

    PubMed

    Hultberg, Malin; Asp, Håkan; Marttila, Salla; Bergstrand, Karl-Johan; Gustafsson, Susanne

    2014-11-01

    Formation of biofilm on surfaces is a common feature in aquatic environments. Major groups of inhabitants in conditions where light is present are photoautotrophic microorganisms, such as cyanobacteria and microalgae. This study examined the effect of light quality on growth and biofilm formation of the microalgal species Chlorella vulgaris. Dense biofilm formation and aggregated growth of cells were observed in treatments exposed to blue, purple and white light. Less dense biofilm formation and solitary growth of cells were observed in treatments exposed to red, yellow or green light. Microalgal biofilms are of high importance in many respects, not least from an economic perspective. One example is the intense efforts undertaken to control biofilm formation on technical surfaces such as ship hulls. The present study suggests that light quality plays a role in biofilm formation and that blue-light receptors may be involved.

  1. Polyphosphate during the Regreening of Chlorella vulgaris under Nitrogen Deficiency

    PubMed Central

    Chu, Fei-Fei; Shen, Xiao-Fei; Lam, Paul K. S.; Zeng, Raymond J.

    2015-01-01

    Polyphosphate (Poly-P) accumulation has been reported in Chlorella vulgaris under nitrogen deficiency conditions with sufficient P supply, and the process has been demonstrated to have great impact on lipid productivity. In this article, the utilization of polyphosphates and the regreening process under N resupplying conditions, especially for lipid production reviving, were investigated. This regreening process was completed within approximately 3–5 days. Polyphosphates were first degraded within 3 days in the regreening process, with and without an external P supply, and the degradation preceded the assimilation of phosphate in the media with an external P offering. Nitrate assimilation was markedly influenced by the starvation of P after polyphosphates were exhausted in the medium without external phosphates, and then the reviving process of biomass and lipid production was strictly impeded. It is, thus, reasonable to assume that simultaneous provision of external N and P is essential for overall biodiesel production revival during the regreening process. PMID:26426008

  2. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.

    PubMed

    Anjos, Mariana; Fernandes, Bruno D; Vicente, António A; Teixeira, José A; Dragone, Giuliano

    2013-07-01

    Biofixation of CO2 by microalgae has been recognized as an attractive approach to CO2 mitigation. The main objective of this work was to maximize the rate of CO2 fixation ( [Formula: see text] ) by the green microalga Chlorella vulgaris P12 cultivated photoautotrophically in bubble column photobioreactors under different CO2 concentrations (ranging from 2% to 10%) and aeration rates (ranging from 0.1 to 0.7 vvm). Results showed that the maximum [Formula: see text] (2.22 gL(-1)d(-1)) was obtained by using 6.5% CO2 and 0.5 vvm after 7 days of cultivation at 30°C. Although final biomass concentration and maximum biomass productivity of microalgae were affected by the different cultivation conditions, no significant differences were obtained in the biochemical composition of microalgal cells for the evaluated levels of aeration and CO2. The present study demonstrated that optimization of microalgal cultivation conditions can be considered a useful strategy for maximizing CO2 bio-mitigation by C. vulgaris. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane

    PubMed Central

    Wu, Shijin; Zhang, Huaxing; Yu, Xiang; Qiu, Lequan

    2014-01-01

    Abstract The aim of this study was to evaluate the acute toxicity effects of dichloromethane and dichloroethane on Chlorella vulgaris at the physiological and molecular level. Data showed that the cell number, chlorophyll a, and total protein content gradually decreased with increasing dichloromethane and dichloroethane concentrations over a 96-h exposure. Lower doses of two organic solvents had stimulatory effects on catalase and superoxide dismutase activity. Malondialdehyde showed a concentration-dependent increase in response to dichloromethane and dichloroethane exposure. Electron microscopy also showed that there were some chloroplast abnormalities in response to different concentrations of dichloromethane and dichloroethane exposure. Real-time polymerase chain reaction assay demonstrated that dichloromethane and dichloroethane reduced the transcript abundance of psaB, whereas that of psbC changed depending on the toxicant after 24 h of exposure. Dichloromethane and dichloroethane affected the activity of antioxidant enzymes, disrupted the chloroplast ultrastructure, and reduced transcription of photosynthesis-related genes in C. vulgaris, leading to metabolic disruption and cell death. PMID:24550665

  4. Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet

    PubMed Central

    Lee, Hee Sun; Park, Hoon Jung

    2008-01-01

    This study was performed to investigate effects of Chlorella vulgaris on lipid metabolism in rats fed high fat diet. Sixty 6-week-old male Wistar rats were divided into two groups; normal diet group and high fat diet group, then the rats in each group were further divided into three subgroups and fed 0%, 5% and 10% (w/w) chlorella-containing diets, respectively, and raised for 9 weeks. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activity and total protein and albumin concentration were not different among groups. Serum total lipids and liver TG concentration were significantly lower in 5% and 10% chlorella groups than 0% chlorella group in high fat diet groups (p<0.05). Serum TG, serum total cholesterol, liver total lipid and liver total cholesterol concentrations were significantly lower in 10% chlorella groups than 0% chlorella group in high fat diet groups (p<0.05). Fecal total lipid, TG and total cholesterol excretions were significantly higher in 5% and 10% chlorella groups than 0% chlorella groups in normal diet and high fat diet groups, respectively (p<0.05). These results suggest that Chlorella vulgaris is effective for prevention of dyslipidemia which may be due to the modulation of lipid metabolism and increased fecal excretion of lipid. PMID:20016720

  5. The culture of Chlorella vulgaris with human urine in multibiological life support system experiments

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Hong; Tong, Ling; Fu, Yuming; He, Wenting; Hu, Enzhu; Hu, Dawei

    The Integrative Experimental System (IES) was established as a tool to evaluate the rela-tionship of the subsystems in Bioregenerative Life Support System, and Multibiological Life Support System Experiments (MLSSE) have been conducted in the IES. The IES consists of a higher plant chamber, an animal chamber and a plate photo bioreactor (PPB) which cultivated lettuce (Lactuca sativa L.), silkworm (Bombyx Mori L.) and microalgae (Chlorella vulgaris), respectively. In MLSSE, four volunteers took turns breathing the system air through a tube connected with the animal chamber periodically. According to the CO2 concentration in the IES, the automotive control system of the PPB changed the light intensity regulating the photosynthesis of Chlorella vulgaris to make CO2 /O2 in the system maintain at stable levels. Chlorella vulgaris grew with human urine by carrying certain amount of alga liquid out of the bioreactor every day with synthetic urine replenished into the system, and O2 was regenerated, at the same time human urine was purified. Results showed that this IES worked stably and Chlorella vulgaris grew well; The culture of Chlorella vulgaris could be used to keep the balance of CO2 and O2 , and the change of light intensity could control the gas composition in the IES; Microalgae culture could be used in emergency in the system, the culture of Chlorella vulgaris could recover to original state in 5 days; 15.6 ml of condensation water was obtained every day by the culture of Chlorella vulgaris; The removal efficiencies of N, P in human urine could reach to 98.2% and 99.5%.

  6. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis

    PubMed Central

    Yusof, Yasmin Anum Mohd; Md. Saad, Suhana; Makpol, Suzana; Shamaan, Nor Aripin; Ngah, Wan Zurinah Wan

    2010-01-01

    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2. INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti‐cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail. METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0‐4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis. RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro‐ apoptotic proteins P53, Bax and caspase‐3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti‐apoptotic protein Bcl‐2. CONCLUSIONS: Chlorella vulgaris may have anti‐cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase‐3 proteins and through a reduction of Bcl‐2 protein, which subsequently lead to increased DNA damage and apoptosis. PMID:21340229

  7. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris.

    PubMed

    Zuniga, Cristal; Levering, Jennifer; Antoniewicz, Maciek R; Guarnieri, Michael T; Betenbaugh, Michael J; Zengler, Karsten

    2017-09-26

    Phototrophic organisms exhibit a highly dynamic proteome, adapting their biomass composition in response to diurnal light/dark cycles and nutrient availability. Here, we used experimentally determined biomass compositions over the course of growth to determine and constrain the biomass objective function (BOF) in a genome-scale metabolic model of Chlorella vulgaris UTEX 395 over time. Changes in the BOF, which encompasses all metabolites necessary to produce biomass, influence the state of the metabolic network thus directly affecting predictions. Simulations using dynamic BOFs predicted distinct proteome demands during heterotrophic or photoautotrophic growth. Model-driven analysis of extracellular nitrogen concentrations and predicted nitrogen uptake rates revealed an intracellular nitrogen pool, which contains 38% of the total nitrogen provided in the medium for photoautotrophic and 13% for heterotrophic growth. Agreement between flux and gene expression trends was determined by statistical comparison. Accordance between predicted fluxes trends and gene expression trends was found for 65% of multi-subunit enzymes and 75% of allosteric reactions. Reactions with the highest agreement between simulations and experimental data were associated with energy metabolism, terpenoid biosynthesis, fatty acids, nucleotides, and amino acids metabolism. Furthermore, predicted flux distributions at each time point were compared with gene expression data to gain new insights into intracellular compartmentalization, specifically for transporters. A total of 103 genes related to internal transport reactions were identified and added to the updated model of C. vulgaris, iCZ946, thus increasing our knowledgebase by 10% for this model green alga. {copyright, serif} 2017 American Society of Plant Biologists. All rights reserved.

  8. Use of diluted urine for cultivation of Chlorella vulgaris.

    PubMed

    Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka

    2016-01-01

    Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.

  9. Chlorella vulgaris triggers apoptosis in hepatocarcinogenesis-induced rats*

    PubMed Central

    Mohd Azamai, Emey Suhana; Sulaiman, Suhaniza; Mohd Habib, Shafina Hanim; Looi, Mee Lee; Das, Srijit; Abdul Hamid, Nor Aini; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2009-01-01

    Chlorella vulgaris (CV) has been reported to have antioxidant and anticancer properties. We evaluated the effect of CV on apoptotic regulator protein expression in liver cancer-induced rats. Male Wistar rats (200~250 g) were divided into eight groups: control group (normal diet), CDE group (choline deficient diet supplemented with ethionine in drinking water to induce hepatocarcinogenesis), CV groups with three different doses of CV (50, 150, and 300 mg/kg body weight), and CDE groups treated with different doses of CV (50, 150, and 300 mg/kg body weight). Rats were sacrificed at various weeks and liver tissues were embedded in paraffin blocks for immunohistochemistry studies. CV, at increasing doses, decreased the expression of anti-apoptotic protein, Bcl-2, but increased the expression of pro-apoptotic protein, caspase 8, in CDE rats, which was correlated with decreased hepatoctyes proliferation and increased apoptosis as determined by bromodeoxy-uridine (BrdU) labeling and terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) assay, respectively. Our study shows that CV has definite chemopreventive effect by inducing apoptosis via decreasing the expression of Bcl-2 and increasing the expression of caspase 8 in hepatocarcinogenesis-induced rats. PMID:19198018

  10. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].

    PubMed

    Zheng, Hongli; Gao, Zhen; Zhang, Qi; Huang, He; Ji, Xiaojun; Sun, Honglei; Dou, Chang

    2011-03-01

    We studied the effects of three inorganic carbon sources, Na2CO3, NaHCO3 and CO2, and their initial concentrations on lipid production of Chlorella vulgaris. Chlorella vulgaris could utilize Na2CO3, NaHCO3 and CO2 to produce lipids. After 10-day cultivation with each of the three inorganic carbon sources, lipid yield of Chlorella vulgaris reached its peak with the concentration increase of the inorganic carbon source, but dropped again by further increase of the concentration. The pH value of the culture medium for Chlorella vulgaris increased after the cultivation on inorganic carbon source. The optimal concentration of both Na2CO3 and NaHCO3 was 40 mmol/L, and their corresponding biomass dry weight was 0.52 g/L and 0.67 g/L with their corresponding lipid yield 0.19 g/L and 0.22 g/L. When the concentration of CO2 was 6%, Chlorella vulgaris grew the fastest and its biomass dry weight was 2.42 g/L with the highest lipid yield of 0.72 g/L. When the concentration of CO2 was too low, the supply of inorganic carbon was insufficient and lipid yield was low. A too high concentration of CO2 caused a low pH and lipid accumulation was inhibited. Na2CO3 and NaHCO3 were more favorable for Chlorella vulgaris to accumulate unsaturated fatty acids than that of CO2.

  11. [Using Excess Activated Sludge Treated 4-Chlorophenol Contained Waste Water to Cultivate Chlorella vulgaris].

    PubMed

    Wang, Lu; Chen, Xiu-rong; Yan, Long; He, Yi-xuan; Shi, Zhen-dong

    2015-04-01

    Using different rations of sludge extracts and supernate from 4-Chlorophenol (4-CP) simulated wastewater's excess sludge after centrifugation to cultivate the Chlorella vulgaris to achieve the goal of excess sludge utilization together with chlorella cultivating. The experiments were performed in 500 mL flasks with different rations of sludge extracts & BG-11 and supernate & BG-11 in a light growth chamber respectively. Number of algal cells, Chlorophyll, enzyme activity, oil and water total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), toxicity index were investigated. Result showed that the nutrition supplies and toxicity in the excess sludge were removed efficiently via Chlorella vulgaris, the removal rates of TN and TP were at least 40% and 90% respectively; After 10 days cultivation, the density growth of 50% sludge extracts was 20 times higher of the beginning while its chlorophyll content was lower than that of the blank group. Sludge extracts could promote the proliferation of algae, but were not conducive to the synthesis of chlorophyll. The quantity of SOD in per cell showed Chlorella vulgaris gave a positive response via stimulation from toxicant in sludge extracts and supernate. The best time for collecting chlorella vulgaris was the fifth day of cultivation, taking neutral oil accumulation as the evaluating indicator for its utilization combined with the removal of supplies and toxicity.

  12. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    SciTech Connect

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe/sup 3 +/-DFOB) and ferric-rhodotorulate (Fe/sup 3 +/-RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe/sup 3 +/-EDTA and Fe/sup 3 +/-EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 ..mu..M CCCP or 1 mM vanadate. Cyanide (100 ..mu..M KCN) or 25 ..mu..M antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron (/sup 55/Fe) was taken up while labeled ligands ((/sup 14/C) citrate or RA) were not accumulated. Cation competition from Ni/sup 2 +/ and Co/sup 2 +/ observed using Fe/sup 3 +/-DFOB and Fe/sup 3 +/-RA while iron uptake from Fe/sup 3 +/-citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe/sup 3 +/-DFOB indicated that a receptor may be involved in this mechanism.

  13. The Use of Chlorella Vulgaris in a Simple Demonstration of Heavy Metal Toxicity.

    ERIC Educational Resources Information Center

    Gipps, J. F.; Biro, P.

    1978-01-01

    An experimental system, suitable for secondary schools, uses Chlorella vulgaris to demonstrate the effects of mercury and cadmium. Very low concentrations of mercury or cadmium decrease growth, whereas lead or arsenic have little effect. Further experiments show additive interactions between mercury and cadmium and antagonistic interactions…

  14. The Use of Chlorella Vulgaris in a Simple Demonstration of Heavy Metal Toxicity.

    ERIC Educational Resources Information Center

    Gipps, J. F.; Biro, P.

    1978-01-01

    An experimental system, suitable for secondary schools, uses Chlorella vulgaris to demonstrate the effects of mercury and cadmium. Very low concentrations of mercury or cadmium decrease growth, whereas lead or arsenic have little effect. Further experiments show additive interactions between mercury and cadmium and antagonistic interactions…

  15. Isolation and characterization of brassinosteroids from algal cultures of Chlorella vulgaris Beijerinck (Trebouxiophyceae).

    PubMed

    Bajguz, Andrzej

    2009-11-15

    The brassinosteroids (BRs) occur ubiquitously in the plant kingdom. The occurrence of BRs has been demonstrated in almost every part of higher plants, such as pollen, flower buds, fruits, seeds, vascular cambium, leaves, shoots and roots. In this study, BRs were isolated and identified in the culture of wild-type Chlorella vulgaris. Seven BRs, including teasterone, typhasterol, 6-deoxoteasterone, 6-deoxotyphasterol, 6-deoxocastasterone, castasterone and brassinolide, were identified by GC-MS. All compounds belong to the BR biosynthetic pathway. The results suggest that early and late C6 oxidation pathways are operating in C. vulgaris. This study represents the first isolation of BRs from C. vulgaris cultures.

  16. Enhancement of Chlorella vulgaris growth and bioremediation ability of aquarium wastewater using diazotrophs.

    PubMed

    Ali, Sayeda Mohammed; Nasr, Hoda Shafeek; Abbas, Wafaa Tawfik

    2012-08-15

    Treatment of aquarium wastewater represents an important process to clean and recycle wastewater to be safely returned to the environment, used for cultivation or to minimize the multiple renewal of water. Chlorella vulgaris was an important freshwater microalgae which used in wastewater treatment, and increasing its potential of treatment can be achieved with existence of N2-fixing bacteria. Co-culturing of Chlorella vulgaris with the diazotrophs, Azospirillum brasilense or Azotobacter chroococcum in three different media; aquarium wastewater (AWW), sterile enriched natural aquarium wastewater (GPM) and synthetic wastewater media (SWW) were studied. Biomass yield of the microalgae was estimated by determination of chlorophylls (a and b), total carotenoid and the dry weight of C. vulgaris. Also determination of ammonia, nitrite, phosphate and nitrate in the culture were done. The presence of diazotrophs significantly increased the biomass of C. vulgaris by increasing its microalgae pigments (chlorophylls a and b, and total carotenoids). The highest pigments percentage was reported due to addition of A. brasilense to C. vulgaris (18.3-133.5%) compared to A. chroococcum (23.9-56.9%). As well as increased dry weight from 12 to 50%. There was also improved removal of nitrate, nitrite, ammonia and phosphate; where, the highest removal percentage was reported due to addition of A. chroococcum to C. vulgaris (0.0-52%) compared to A. brasilense (0.6-16.4%). A. brasilense and A. chroococcum can support C. vulgaris biomass production and bioremediation activity in the aquarium to minimize the periodical water renewal.

  17. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    PubMed

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  18. Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA.

    PubMed

    Chen, Chunxiang; Ma, Xiaoqian; He, Yao

    2012-08-01

    To find out an alternative of coal saving, a kind of microalgae, Chlorella vulgaris (C. vulgaris) which is widespread in fresh water was introduced into coal pyrolysis process. In this work, the pyrolysis experiments of C. vulgaris and coal blend (CCB) were carried out by TGA, and those of C. vulgaris and coal were also taken respectively as control groups. It was found that: the TG and DTG profiles of CCB were similar to C. vulgaris, but different from coal under various blending ratios; DTG profiles of CCB were different at several heating rates; interaction was observed between the solid phases of CCB; kinetic triplets were determined by the Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and master-plots method, respectively. The results provide a reference for further study on co-pyrolysis of microalgae and coal to a certain extent. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  19. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats.

    PubMed

    Shim, Jae-Young; Shin, Hye-seoung; Han, Jae-Gab; Park, Hyeung-Suk; Lim, Byung-Lak; Chung, Kyung-Won; Om, Ae-Son

    2008-09-01

    The biochemical mechanisms of Chlorella vulgaris protection against cadmium (Cd)-induced liver toxicity were investigated in male Sprague-Dawley rats (5 weeks of age, weighing 90-110 g). Forty rats were randomly divided into one control and three groups treated with 10 ppm Cd: one Cd without Chlorella (Cd-0C), one Cd with 5% Chlorella (Cd-5C), and one Cd with 10% Chlorella (Cd-10C) groups. The rats had free access to water and diet for 8 weeks. Body weight gain and relative liver weight were significantly lower in the Cd-0C group than in Cd-5C and Cd-10C groups. Rats in the Cd-0C group had significantly higher hepatic concentrations of Cd and metallothioneins (MTs) than in the Cd-5C or Cd-10C group. The hepatic MT I/II mRNA was expressed in all experimental rats. MT II was more expressed in the Cd-5C and Cd-10C groups than in the Cd-0C group. Morphologically, a higher level of congestion and vacuolation was observed in the livers of the Cd-0C group compared to those of the Cd-5C and Cd-10C groups. Therefore, this study suggests that C. vulgaris has a protective effect against Cd-induced liver damage by reducing Cd accumulation and stimulating the expression of MT II in liver. However, the details of the mechanism of C. vulgaris on liver toxicity remains to be clarified by further studies.

  20. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.

    PubMed

    Ji, Yan; Hu, Wenrong; Li, Xiuqing; Ma, Guixia; Song, Mingming; Pei, Haiyan

    2014-01-01

    Monosodium glutamate wastewater (MSGW) is a potential medium for microbial cultivation because of containing abundant organic nutrient. This paper seeks to evaluate the feasibility of growing Chlorella vulgaris with MSGW and assess the influence of MSGW concentration on the biomass productivity and biochemical compositions. The MSGW diluted in different concentrations was prepared for microalga cultivation. C. vulgaris growth was greatly promoted with MSGW compared with the inorganic BG11 medium. C. vulgaris obtained the maximum biomass concentration (1.02 g/L) and biomass productivity (61.47 mg/Ld) with 100-time diluted MSGW. The harvested biomass was rich in protein (36.01-50.64%) and low in lipid (13.47-25.4%) and carbohydrate (8.94-20.1%). The protein nutritional quality and unsaturated fatty acids content of algal increased significantly with diluted MSGW. These results indicated that the MSGW is a feasible alternative for mass cultivation of C. vulgaris.

  1. Effects of nickel and pH on the growth of Chlorella vulgaris

    SciTech Connect

    Lustigman, B.; Lee, L.H.; Khalil, A.

    1995-07-01

    Chlorella is a spherical, unicellular, eukaryotic green algae. It is an obligate photoautotrophy containing chlorophylls a and b. It is a frequent symbiont of many other organisms such as paramecium, hydra and sponges and is important in fresh and marine environments, as well as in the soil. For these reasons, it has been suggested that Chlorella be used for metabolic studies as an indicator of environmental pollution. Ability of microorganisms to grow in environments containing high levels of toxic metals is frequently due to the organisms` capacity for adsorption of these ions and the role that they may play as essential cofactors in metalloenzymes as is the case for nickel. The purpose of this study was to determine the effect of nickel on the growth of Chlorella vulgaris. 19 refs., 4 figs., 1 tab.

  2. Influence of nutrient level on biodegradation and bioconcentration of phthalate acid esters in Chlorella vulgaris.

    PubMed

    Chi, Jie; Li, Bin; Wang, Qian Y; Liu, Hua

    2007-02-01

    Influences of major nutrients (N, P) on the biodegradation and bioconcentration of dibutyl phthalate (DBP) and di-2-ethylexyl phthalate (DEHP) by Chlorella vulgaris in lake water were investigated in this work. Our study demonstrated that nutrient addition obviously influenced biodegradation rate constants and apparent bioconcentration factors (BCFs) of DBP and DEHP in Chlorella vulgaris. The effects of P addition on biodegradation were less pronounced than the effects of N addition as a result of N-limitation status of phytoplankton in the lake water, while addition of both N and P more greatly affected biodegradation than addition of N or P. BCFs of DBP and DEHP decreased with increasing algal exudate as measured by dissolved organic carbon (DOC) and a strong correlation between BCFs and DOC was obtained. The results indicate that DOC plays an important role in the bioconcentration of DBP and DEHP.

  3. Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture.

    PubMed

    Hadj-Romdhane, F; Jaouen, P; Pruvost, J; Grizeau, D; Van Vooren, G; Bourseau, P

    2012-11-01

    When microalgae culture medium is recycled, ions (e.g. Na(+), K(+), Ca(2+)) that were not assimilated by the microalgae accumulate in the medium. Therefore, a growth medium (HAMGM) was developed that included ions that were more easily assimilated by Chlorella vulgaris, such as ammonium one (NH(4)(+)). Recycling performance was studied by carrying out 8-week continuous cultivation of C. vulgaris with recycled HAMGM medium. No loss of biomass productivity was observed compared to culture in a conventional medium, and accumulation of ions over time was negligible.

  4. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.

    PubMed

    Hultberg, Malin; Jönsson, Helene Larsson; Bergstrand, Karl-Johan; Carlsson, Anders S

    2014-05-01

    In this study, the green microalga Chlorella vulgaris was exposed to monochromatic light at six different wavelengths in order to study the effect on biomass productivity and fatty acid content. A significantly higher amount of biomass by produced in the treatments with yellow, red and white light compared with blue, green and purple light. There were also significant differences in total lipid content and fatty acid profile between the treatments. The green light regime gave the lowest concentration of lipids, but increased the concentration of polyunsaturated fatty acids. Thus it can be concluded that light quality significantly affects biomass productivity, total lipid concentration and fatty acid profile in the microalga C. vulgaris.

  5. Development of novel microsatellite markers for strain-specific identification of Chlorella vulgaris.

    PubMed

    Jo, Beom-Ho; Lee, Chang Soo; Song, Hae-Ryong; Lee, Hyung-Gwan; Oh, Hee-Mock

    2014-09-01

    A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

  6. Oral administration of a unicellular green algae, Chlorella vulgaris, prevents stress-induced ulcer.

    PubMed

    Tanaka, K; Yamada, A; Noda, K; Shoyama, Y; Kubo, C; Nomoto, K

    1997-10-01

    Oral administration of dry powder of Chlorella vulgaris (CVP) showed clear prophylactic effects in water-immersion restraint stress-induced and in cysteamine-induced peptic ulcer models, but not in Shay's rat model. Drugs that enhance the protective factors of ulcer formation are effective in the first two models. CVP may prevent ulcer formation mainly through the "immune-brain-gut" axis and protection of gastric mucosa by its own characteristics.

  7. Effects of Pb(Ⅱ) exposure on Chlorella protothecoides and Chlorella vulgaris growth, malondialdehyde, and photosynthesis-related gene transcription.

    PubMed

    Xiong, Bang; Zhang, Wei; Chen, Lin; Lin, Kuang-Fei; Guo, Mei-Jin; Wang, Wei-Liang; Cui, Xin-Hong; Bi, Hua-Song; Wang, Bin

    2014-11-01

    Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms.

  8. Cultivation of Chlorella vulgaris using different sources of carbon and its impact on lipid production

    NASA Astrophysics Data System (ADS)

    Fransiscus, Yunus; Purwanto, Edy

    2017-05-01

    A cultivation process of Chlorella vulgaris has been done in different treatment to investigate the optimum condition for lipid production. Firstly, autotroph and heterotroph condition have been applied to test the significance impact of carbon availability to the growth and lipid production of Chlorella vulgaris. And for the same purpose, heterotroph condition using glucose, fructose and sucrose as carbon sources was independently implemented. The growth rate of Chlorella vulgaris in autotroph condition was much slower than those in heterotroph. The different sources of carbon gave no significant different in the growth pattern, but in term of lipid production it was presented a considerable result. At lower concentration (3 and 6 gr/L) of carbon sources there was only slight different in lipid production level. At higher concentration (12 gr/L) glucose as a carbon source produced the highest result, 60.18% (w/w) compared to fructose and sucrose that produced 27.34% (w/w) and 18.19% (w/w) respectively.

  9. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    PubMed

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  10. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    PubMed

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment.

  11. Chlorella vulgaris production enhancement with supplementation of synthetic medium in dairy manure wastewater.

    PubMed

    Shi, Jun; Pandey, Pramod K; Franz, Annaliese K; Deng, Huiping; Jeannotte, Richard

    2016-03-01

    To identify innovative ways for better utilizing flushed dairy manure wastewater, we have assessed the effect of dairy manure and supplementation with synthetic medium on the growth of Chlorella vulgaris. A series of experiments were carried out to study the impacts of pretreatment of dairy wastewater and the benefits of supplementing dairy manure wastewater with synthetic medium on C. vulgaris growth increment and the ultrastructure (chloroplast, starch, lipid, and cell wall) of C. vulgaris cells. Results showed that the biomass production of C. vulgaris in dairy wastewater can be enhanced by pretreatment and using supplementation with synthetic media. A recipe combining pretreated dairy wastewater (40 %) and synthetic medium (60 %) exhibited an improved growth of C. vulgaris. The effects of dairy wastewater on the ultrastructure of C. vulgaris cells were distinct compared to that of cells grown in synthetic medium. The C. vulgaris growth in both synthetic medium and manure wastewater without supplementing synthetic medium was lower than the growth in dairy manure supplemented with synthetic medium. We anticipate that the results of this study will help in deriving an enhanced method of coupling nutrient-rich dairy manure wastewater for biofuel production.

  12. Survey on nitrogen removal and membrane filtration characteristics of Chlorella vulgaris Beij. on treating domestic type wastewaters.

    PubMed

    Wang, Yu-Hsuan; Wu, Chuen-Mei; Wu, Wan-Lin; Chu, Ching-Ping; Chung, Yu-Jen; Liao, Chien-Sen

    2013-01-01

    The main objective of this study is to evaluate the nitrogen assimilation and filtration characteristics of Chlorella vulgaris Beij. when treating domestic wastewaters. Chlorella could assimilate organic nitrogen, ammonia and nitrate in wastewater, and the mean cell residence time (MCRT) to achieve the maximum biomass content in a bioreactor was different for each individual nitrogen source used. The experimental results showed that using nitrate as the only nitrogen source was the most favorable for biomass growth. With ammonia and nitrate coexisting in the aquatic phase, Chlorella possibly utilized ammonia first, and this was unfavorable to subsequent biomass growth. Nitrifying bacteria in wastewaters significantly affected Chlorella growth as they possibly competed with Chlorella in assimilating ammonia and nitrate in domestic wastewater. In a submerged ultrafiltration (UF) membrane module, with an initial concentration of 850 mg/L of Chlorella, the optimized flux was 0.02 m(3)/(m(2)·h), and the filtration cycle was 30 min. A 'dual membrane bioreactor (MBR)' configuration using UF membranes for Chlorella incubation was proposed. MBR1 provides an environment with long MCRT for efficient nitrification. The converted nitrate is assimilated by Chlorella in MBR2 to sustain its growth. UF permeate from MBR1 is bacteria-free and does not affect the growth of Chlorella in MBR2. MCRT of Chlorella growth is controlled by the UF membrane of MBR2, providing the flexibility to adjust variations of nitrogen composition in the wastewater.

  13. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    PubMed

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons.

    PubMed

    Xaaldi Kalhor, Aadel; Movafeghi, Ali; Mohammadi-Nassab, Adel Dabbagh; Abedi, Ehsan; Bahrami, Ahmad

    2017-08-22

    Oil production and/or transportation can cause severe environmental pollution and disrupt the populations of living organisms. In the present study, biodegradation of petroleum hydrocarbons is investigated using Chlorella vulgaris as a green algal species. The microalga was treated by 10 and 20g/l crude oil/water concentrations at two experimental durations (7 and 14days). Based on the results obtained, C. vulgaris owned not only considerable resistance against the pollutants but also high ability in remediation of crude oil hydrocarbons (~94% of the light and ~88% of heavy compounds in 14days). Intriguingly, dry weight of C. vulgaris increased by the rising crude oil concentration indicating the positive effect of crude oil on the growth of the algal species. This biodegradation process is remarkably a continuous progression over a period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    PubMed

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Optimization of pressurized liquid extraction of carotenoids and chlorophylls from Chlorella vulgaris.

    PubMed

    Cha, Kwang Hyun; Lee, Hee Ju; Koo, Song Yi; Song, Dae-Geun; Lee, Dong-Un; Pan, Cheol-Ho

    2010-01-27

    Pressurized liquid extraction (PLE) was applied to the extraction of carotenoids and chlorophylls from the green microalga Chlorella vulgaris. Four extraction techniques such as maceration (MAC), Soxhlet extraction (SOX), ultrasound assisted extraction (UAE), and PLE were compared, and both the extraction temperature (50, 105, and 160 degrees C) and the extraction time (8, 19, and 30 min), which are the two main factors for PLE, were optimized with a central composite design to obtain the highest extraction efficiency. The extraction solvent (90% ethanol/water) could adequately extract the functional components from C. vulgaris. PLE showed higher extraction efficiencies than MAC, SOX, and UAE. Temperature was the key parameter having the strongest influence on the extraction of carotenoids and chlorophylls from chlorella. In addition, high heat treatment (>110 degrees C) by PLE minimized the formation of pheophorbide a, a harmful chlorophyll derivative. These results indicate that PLE may be a useful extraction method for the simultaneous extraction of carotenoids and chlorophylls from C. vulgaris.

  17. Raffinose Synthesis in Chlorella vulgaris Cultures after a Cold Shock 1

    PubMed Central

    Salerno, Graciela L.; Pontis, Horacio G.

    1989-01-01

    Chlorella vulgaris cultures have been submitted to a chilling shock, bringing down the growing temperature from to 24°C to 4°C. Growth was stopped immediately, and concomitantly there was an accumulation of sucrose and a decrease in the starch content. The enzymes involved in sucrose metabolism were differentially affected by the chilling shock. Sucrose phosphate synthase activity increased while sucrose synthase was not affected. Simultaneously with the chilling shock, raffinose began to accumulate. When algal cultures were returned at 24°C, raffinose disappeared. The presence of raffinose in algal cells has not been reported before. PMID:16666596

  18. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; He, Huanhuan; Jin, Tao; Wang, Hongyu

    2012-09-01

    With the increasing concerns for global climate change, a sustainable, efficient and renewable energy production from wastewater is imperative. In this study, a novel microbial carbon capture cell (MCC), is constructed for the first time by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells (MFCs) to fulfill the zero discharge of carbon dioxide. This process can achieve an 84.8% COD removal, and simultaneously the maximum power density can reach 2485.35 mW m-3 at a current density of 7.9 A m-3 and the Coulombic efficiency is 9.40%, which are 88% and 57.7% greater than that with suspended C. vulgaris, respectively. These enhancements in performance demonstrate the feasibility of an economical and effective approach for the simultaneous wastewater treatment, electricity generation and biodiesel production from microalgae.

  19. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency.

    PubMed

    Shen, Qiao-Hui; Gong, Yu-Peng; Fang, Wen-Zhe; Bi, Zi-Cheng; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-10-01

    Chlorella vulgaris, a marine microalgae strain adaptable to 0-50 g L(-1) of salinity, was selected for studying the coupling system of saline wastewater treatment and lipid accumulation. The effect of total nitrogen (T N) concentration was investigated on algal growth, nutrients removal as well as lipid accumulation. The removal efficiencies of TN and total phosphorus (TP) were found to be 92.2-96.6% and over 99%, respectively, after a batch cultivation of 20 days. To illustrate the response of lipid accumulation to nutrients removal, C. vulgaris was further cultivated in the recycling experiment of tidal saline water within the photobioreactor. The lipid accumulation was triggered upon the almost depletion of nitrate (<5 mg L(-1)), till the final highest lipid content of 40%. The nitrogen conversion in the sequence of nitrate, nitrite, and then to ammonium in the effluents was finally integrated with previous discussions on metabolic pathways of algal cell under nitrogen deficiency.

  20. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.

    PubMed

    Liu, Zhi-Yuan; Wang, Guang-Ce; Zhou, Bai-Cheng

    2008-07-01

    The economic feasibility of algal mass culture for biodiesel production is enhanced by the increase in biomass productivity and storage lipids. Effect of iron on growth and lipid accumulation in marine microalgae Chlorella vulgaris were investigated. In experiment I, supplementing the growth media with chelated FeCl3 in the late growth phase increased the final cell density but did not induce lipid accumulation in cells. In experiment II, cells in the late-exponential growth phase were collected by centrifugation and re-inoculated into new media supplemented with five levels of Fe3+ concentration. Total lipid content in cultures supplemented with 1.2 x 10(-5) mol L(-1) FeCl3 was up to 56.6% biomass by dry weight and was 3-7-fold that in other media supplemented with lower iron concentration. Moreover, a simple and rapid method determining the lipid accumulation in C. vulgaris with spectrofluorimetry was developed.

  1. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer's yeast.

    PubMed

    Prochazkova, Gita; Kastanek, Petr; Branyik, Tomas

    2015-02-01

    One of the key bottlenecks of the economically viable production of low added value microalgal products (food supplements, feed, biofuels) is the harvesting of cells from diluted culture medium. The main goals of this work were to prepare a novel flocculation agent based on spent brewer's yeast, a brewery by-product, and to test its harvesting efficiency on freshwater Chlorella vulgaris in different environments. The yeast was first autolyzed/hydrolyzed and subsequently chemically modified with 2-chloro-N,N-diethylethylamine hydrochloride (DEAE). Second, optimal dosage of modified spent yeast (MSY) flocculant for harvesting C. vulgaris was determined in culture media of various compositions. It was found that the absence of phosphorus ions decreased (0.4 mg MSY/g biomass), while the presence of algogenic organic matter (AOM) increased (51 mg MSY/g biomass) the required dosage of flocculant as compared to complete mineral medium with phosphorus and without AOM (12 mg MSY/g biomass).

  2. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.

    PubMed

    Abreu, Ana P; Fernandes, Bruno; Vicente, António A; Teixeira, José; Dragone, Giuliano

    2012-08-01

    Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The bioconcentration and degradation of nonylphenol and nonylphenol polyethoxylates by Chlorella vulgaris.

    PubMed

    Sun, Hong-Wen; Hu, Hong-Wei; Wang, Lei; Yang, Ying; Huang, Guo-Lan

    2014-01-17

    Nonylphenol polyethoxylates (NPnEOs), a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP) and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1-12) by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor) of 2.42 × 10(3). Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2) and the algal phase (n ≥ 5) was quite low at the end of a 48 h experiment.

  4. Mutual facilitations of food waste treatment, microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production.

    PubMed

    Hou, Qingjie; Pei, Haiyan; Hu, Wenrong; Jiang, Liqun; Yu, Ze

    2016-03-01

    Food waste contains large amount of organic matter that may be troublesome for handing, storage and transportation. A microbial fuel cell (MFC) was successfully constructed with different inoculum densities of Chlorella vulgaris for promoting food waste treatment. Maximum COD removal efficiency was registered with 44% and 25 g CODL(-1)d(-1) of substrate degradation rate when inoculated with the optimal initial density (150 mg L(-1)) of C. vulgaris, which were 2.9 times and 3.1 times higher than that of the abiotic cathode. With the optimum inoculum density of C. vulgaris, the highest open circuit voltage, working voltage and power density of MFC were 260 mV, 170 mV and 19151 mW m(-3), respectively. Besides the high biodiesel quality, promoted by MFC stimulation the biomass productivity and highest total lipid content of C. vulgaris were 207 mg L(-1)d(-1) and 31%, which were roughly 2.7 times and 1.2 times higher than the control group.

  5. Two-stage mixotrophic cultivation for enhancing the biomass and lipid productivity of Chlorella vulgaris.

    PubMed

    Cui, Hongwu; Meng, Fanping; Li, Feng; Wang, Yuejie; Duan, Weiyan; Lin, Yichen

    2017-10-10

    This study proposes a two-stage mixotrophic process for cultivating Chlorella vulgaris. Heterotrophic growth is the dominant step in Phase I (to increase microalgal biomass) and photoautotrophic growth occurs in Phase II (to improve biomass concentration and lipid production). The results show that the addition of the low-cost antioxidant sodium erythorbate (8 g L(-1)) significantly accelerates the growth of microalgae in the first stage with air aeration. Furthermore, a higher CO2 fixation rate was obtained in the second stage (at least 344.32 mg CO2 L(-1) day(-1)) with 10% CO2 aeration. This approximately corresponds to an increase of 177% over simple photoautotrophic cultivation with 10% CO2 aeration during the whole period. The two-stage cultivation strategy achieved a maximum C. vulgaris biomass concentration of 3.45 g L(-1) and lipid productivity of 43.70 mg L(-1) day(-1), which are 1.85 and 1.64 times those arising due to simple photoautotrophy, respectively. Moreover, an analysis of the product's fatty acid profile indicates that C. vulgaris might be an ideal candidate for two-stage mixotrophic cultivation of a renewable biomass for use in biodiesel applications. Another interesting point to note from the study is that it is an insufficiency of N and CO2 that probably limits the further growth of C. vulgaris.

  6. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water.

    PubMed

    Baglieri, Andrea; Sidella, Sarah; Barone, Valeria; Fragalà, Ferdinando; Silkina, Alla; Nègre, Michèle; Gennari, Mara

    2016-09-01

    This work evaluates the possibility of cultivating Scenedesmus quadricauda and Chlorella vulgaris microalgae in wastewater from the hydroponic cultivation of tomatoes with the aim of purifying the water. S. quadricauda and C. vulgaris were also used in purification tests carried out on water contaminated by the following active ingredients: metalaxyl, pyrimethanil, fenhexamid, iprodione, and triclopyr. Fifty-six days after the inoculum was placed, a reduction was found in the concentration of nitric nitrogen, ammonia nitrogen, and soluble and total phosphorus. The decrease was 99, 83, 94, and 94 %, respectively, for C. vulgaris and 99, 5, 88, and 89 %, respectively, for S. quadricauda. When the microalgae were present, all the agrochemicals tested were removed more quickly from the water than from the sterile control (BG11). The increase in the rate of degradation was in the order metalaxyl > fenhexamid > iprodione > triclopyr > pyrimethanil. It was demonstrated that there was a real degradation of fenhexamid, metalaxyl, triclopyr, and iprodione, while in the case of pyrimethanil, the active ingredient removed from the substrate was absorbed onto the cells of the microalgae. It was also found that the agrochemicals used in the tests had no significant effect on the growth of the two microalgae. The experiment highlighted the possibility of using cultivations of C. vulgaris and S. quadricauda as purification systems for agricultural wastewater which contains eutrophic inorganic compounds such as nitrates and phosphates and also different types of pesticides.

  7. The Bioconcentration and Degradation of Nonylphenol and Nonylphenol Polyethoxylates by Chlorella vulgaris

    PubMed Central

    Sun, Hong-Wen; Hu, Hong-Wei; Wang, Lei; Yang, Ying; Huang, Guo-Lan

    2014-01-01

    Nonylphenol polyethoxylates (NPnEOs), a major class of nonionic surfactants, can easily enter into aquatic environments through various pathways due to their wide applications, which leads to the extensive existence of their relative stable metabolites, namely nonylphenol (NP) and mono- to tri-ethoxylates. This study investigated the bioconcentration and degradation of NP and NPnEO oligomers (n = 1–12) by a green algae, Chlorella vulgaris. Experimental results showed that C. vulgaris can remove NP from water phase efficiently, and bioconcentration and degradation accounted for approximately half of its loss, respectively, with a 48 h BCF (bioconcentration factor) of 2.42 × 103. Moreover, C. vulgaris could concentrate and degrade NPnEOs, distribution profiles of the series homologues of the NPnEOs in algae and water phase were quite different from the initial homologue profile. The 48 h BCF of the NPnEO homologues increased with the length of the EO chain. Degradation extent of total NPnEOs by C. vulgaris was 95.7%, and only 1.1% remained in water phase, and the other 3.2% remained in the algal cells. The algae removed the NPnEOs mainly through degradation. Due to rapid degradation, concentrations of the long chain NPnEO homologous in both water (n ≥ 2) and the algal phase (n ≥ 5) was quite low at the end of a 48 h experiment. PMID:24445260

  8. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris.

    PubMed

    Perales-Vela, Hugo Virgilio; García, Roberto Velasco; Gómez-Juárez, Evelyn Alicia; Salcedo-Álvarez, Martha Ofelia; Cañizares-Villanueva, Rosa Olivia

    2016-10-01

    Antibiotics are increasingly being used in human and veterinary medicine, as well as pest control in agriculture. Recently, their emergence in the aquatic environment has become a global concern. The aim of this study was to evaluate the effect of streptomycin on growth and photosynthetic activity of Chlorella vulgaris after 72h exposure. We found that growth, photosynthetic activity and the content of the D1 protein of photosystem II decreased. Analysis of chlorophyll a fluorescence emission shows a reduction in the energy transfer between the antenna complex and reaction center. Also the activity of the oxygen evolution complex and electron flow between QA and QB were significantly reduced; in contrast, we found an increase in the reduction rate of the acceptor side of photosystem I. The foregoing can be attributed to the inhibition of the synthesis of the D1 protein and perhaps other coded chloroplast proteins that are part of the electron transport chain which are essential for the transformation of solar energy in the photosystems. We conclude that micromolar concentrations of streptomycin can affect growth and photosynthetic activity of Chlorella vulgaris. The accumulation of antibiotics in the environment can become an ecological problem for primary producers in the aquatic environment.

  9. Modulation of Cell Cycle Profile by Chlorella vulgaris Prevents Replicative Senescence of Human Diploid Fibroblasts.

    PubMed

    Saberbaghi, Tayyebeh; Abbasian, Firouz; Mohd Yusof, Yasmin Anum; Makpol, Suzana

    2013-01-01

    In this study, the effects of Chlorella vulgaris (CV) on replicative senescence of human diploid fibroblasts (HDFs) were investigated. Hot water extract of CV was used to treat HDFs at passages 6, 15, and 30 which represent young, presenescence, and senescence ages, respectively. The level of DNA damage was determined by comet assay while apoptosis and cell cycle profile were determined using FACSCalibur flow cytometer. Our results showed direct correlation between increased levels of damaged DNA and apoptosis with senescence in untreated HDFs (P < 0.05). Cell cycle profile showed increased population of untreated senescent cells that enter G0/G1 phase while the cell population in S phase decreased significantly (P < 0.05). Treatment with CV however caused a significant reduction in the level of damaged DNA and apoptosis in all age groups of HDFs (P < 0.05). Cell cycle analysis showed that treatment with CV increased significantly the percentage of senescent HDFs in S phase and G2/M phases but decreased the population of cells in G0/G1 phase (P < 0.05). In conclusion, hot water extract of Chlorella vulgaris effectively decreased the biomarkers of ageing, indicating its potential as an antiageing compound.

  10. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.

    PubMed

    Wong, Y K; Ho, K C; Tsang, Y F; Wang, L; Yung, K K L

    2016-01-01

    Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min.

  11. Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets

    PubMed Central

    Kucuker, Mehmet Ali; Wieczorek, Nils; Kuchta, Kerstin; Copty, Nadim K.

    2017-01-01

    In recent years, biosorption is being considered as an environmental friendly technology for the recovery of rare earth metals (REE). This study investigates the optimal conditions for the biosorption of neodymium (Nd) from an aqueous solution derived from hard drive disk magnets using green microalgae (Chlorella vulgaris). The parameters considered include solution pH, temperature and biosorbent dosage. Best-fit equilibrium as well as kinetic biosorption models were also developed. At the optimal pH of 5, the maximum experimental Nd uptakes at 21, 35 and 50°C and an initial Nd concentration of 250 mg/L were 126.13, 157.40 and 77.10 mg/g, respectively. Analysis of the optimal equilibrium sorption data showed that the data fitted well (R2 = 0.98) to the Langmuir isotherm model, with maximum monolayer coverage capacity (qmax) of 188.68 mg/g, and Langmuir isotherm constant (KL) of 0.029 L/mg. The corresponding separation factor (RL) is 0.12 indicating that the equilibrium sorption was favorable. The sorption kinetics of Nd ion follows well a pseudo-second order model (R2>0.99), even at low initial concentrations. These results show that Chlorella vulgaris has greater biosorption affinity for Nd than activated carbon and other algae types such as: A. Gracilis, Sargassum sp. and A. Densus. PMID:28388641

  12. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  13. Biosorption of neodymium on Chlorella vulgaris in aqueous solution obtained from hard disk drive magnets.

    PubMed

    Kucuker, Mehmet Ali; Wieczorek, Nils; Kuchta, Kerstin; Copty, Nadim K

    2017-01-01

    In recent years, biosorption is being considered as an environmental friendly technology for the recovery of rare earth metals (REE). This study investigates the optimal conditions for the biosorption of neodymium (Nd) from an aqueous solution derived from hard drive disk magnets using green microalgae (Chlorella vulgaris). The parameters considered include solution pH, temperature and biosorbent dosage. Best-fit equilibrium as well as kinetic biosorption models were also developed. At the optimal pH of 5, the maximum experimental Nd uptakes at 21, 35 and 50°C and an initial Nd concentration of 250 mg/L were 126.13, 157.40 and 77.10 mg/g, respectively. Analysis of the optimal equilibrium sorption data showed that the data fitted well (R2 = 0.98) to the Langmuir isotherm model, with maximum monolayer coverage capacity (qmax) of 188.68 mg/g, and Langmuir isotherm constant (KL) of 0.029 L/mg. The corresponding separation factor (RL) is 0.12 indicating that the equilibrium sorption was favorable. The sorption kinetics of Nd ion follows well a pseudo-second order model (R2>0.99), even at low initial concentrations. These results show that Chlorella vulgaris has greater biosorption affinity for Nd than activated carbon and other algae types such as: A. Gracilis, Sargassum sp. and A. Densus.

  14. Effect of a hot water extract of Chlorella vulgaris on proliferation of IEC-6 cells.

    PubMed

    Song, Seo-Hyeon; Kim, In-Hye; Nam, Taek-Jeong

    2012-05-01

    Chlorella vulgaris, a unicellular microalgae, exerts various biological effects; however their effect on proliferation signaling pathways in normal cells has not been studied. We investigated the effect of hot water extracts of Chlorella vulgaris (CVE) on cell proliferation and related signaling pathways in rat intestinal epithelial cells (IEC-6). CVE increased the expression of insulin-like growth factor-I receptor (IGF-IR) and the phosphorylation of focal adhesion kinase (FAK) and Src. In addition, CVE induced activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt pathways. We verified the increased phosphorylation of extracellular-signal-related kinase (ERK) and Akt and the increased expression of the PI3K regulatory subunit p85. CVE also influenced the canonical Wnt pathway through increased expression of the nuclear β-catenin, cyclin D1. Tyr-397 of FAK mediates interactions with Src homology 2 (SH2) domains in a number of other signaling proteins, including PI3K, PLC-γ, Shc, Grb7, Src and Nck2. Because CVE induced FAK activation, FAK may affect the Wnt pathway. Addition of a FAK inhibitor decreased the expression of nuclear β-catenin, cyclin D1 and c-myc, and increased the expression of cytosolic β-catenin. We conclude that CVE stimulated proliferation of IEC-6 cells via the MAPK, PI3K/Akt and canonical Wnt pathways, and that this affected the canonical Wnt pathway.

  15. Quantification of nutrient-replete growth rates in five-ion hyperspace for Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae).

    USDA-ARS?s Scientific Manuscript database

    The effects of five ions, NO3-, PO43-, K+, Na+ and Cl- on growth rates and cell densities were quantified for Chlorella vulgaris (Chlorophycea) and Peridinium cinctum (Dinophycea) in batch cultures. A five dimensional experimental design, the five component mixture design projected across a total i...

  16. Assessing Nutrient Removal Kinetics in Flushed Manure Using Chlorella vulgaris Biomass Production.

    PubMed

    Pandey, Pramod; Shi, Jun

    2017-01-01

    The utilization of dairy wastewater for producing algal biomass is seen as a two-fold opportunity to treat wastewater and produce algae biomass, which can be potentially used for production of biofuels. In animal agriculture system, one of the major waste streams is dairy manure that contains high levels of nitrogen and phosphorus. Furthermore, it is produced abundantly in California's dairy industry, as well as many other parts of the world. We hypothesized that flushed manure, wastewater from a dairy farm, can be used as a potential feedstock after pretreatment to grow Chlorella vulgaris biomass and to reduce nutrients of manure. In this study, we focused on investigating the use of flushed manure, produced in a dairy farm for growing C. vulgaris biomass. A series of batch-mode experiments, fed with manure feedstock and synthetic medium, were conducted and corresponding C. vulgaris production was analyzed. Impacts of varying levels of sterilized manure feedstock (SMF) and synthetic culture medium (SCM) (20-100%) on biomass production, and consequential changes in total nitrogen (TN) and total phosphorus (TP) were determined. C. vulgaris production data (Shi et al., 2016) were fitted into a model (Aslan and Kapdan, 2006) for calculating kinetics of TN and TP removal. Results showed that the highest C. vulgaris biomass production occurs, when SMF and SCM were mixed with ratio of 40%:60%. With this mixture, biomass on Day 9 was increased by 1,740% compared to initial biomass; and on Day 30, it was increased by 2,456.9%. The production was relatively low, when either only SCM or manure feedstock medium (without pretreatment, i.e., no sterilization) was used as a culture medium. On this ratio, TN and TP were reduced by 29.9 and 12.3% on Day 9, and these reductions on Day 30 were 76 and 26.9%, respectively.

  17. Chlorella vulgaris culture as a regulator of CO2 in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Li, Ming; Hu, Dawei; Liu, Hong; Hu, Enzhu; Xie, Beizhen; Tong, Ling

    2013-08-01

    It is the primary task for a bioregenerative life support system (BLSS) to maintain the stable concentrations of CO2 and O2. However, these concentrations could fluctuate based on various factors, such as the imbalance between respiration/assimilation quotients of the heterotrophic and autotrophic components. They can even be out of balance through catastrophic failure of higher plants in the emergency conditions. In this study, the feasibility of using unicellular Chlorella vulgaris of typically rapid growth as both “compensatory system” and “regulator” to control the balance of CO2 and O2 was analyzed in a closed ecosystem. For this purpose, a small closed ecosystem called integrative experimental system (IES) was established in our laboratory where we have been conducting multi-biological life support system experiments (MLSSE). The IES consists of a closed integrative cultivating system (CICS) and a plate photo-bioreactor. Four volunteers participated in the study for gas exchange by periodical breathing through a tube connected with the CICS. The plate photo-bioreactor was used to cultivate C. vulgaris. Results showed that the culture of C. vulgaris could be used in a situation of catastrophic failure of higher plant under the emergencies. And the productivity could recover itself to the original state in 3 to 5 days to protect the system till the higher plant was renewed. Besides, C. vulgaris could grow well and the productivity could be affected by the light intensity which could help to keep the balance of CO2 and O2 in the IES efficiently. Thus, C. vulgaris could be included in the design of a BLSS as a “compensatory system” in the emergency contingency and a “regulator” during the normal maintenance.

  18. Assessing Nutrient Removal Kinetics in Flushed Manure Using Chlorella vulgaris Biomass Production

    PubMed Central

    Pandey, Pramod; Shi, Jun

    2017-01-01

    The utilization of dairy wastewater for producing algal biomass is seen as a two-fold opportunity to treat wastewater and produce algae biomass, which can be potentially used for production of biofuels. In animal agriculture system, one of the major waste streams is dairy manure that contains high levels of nitrogen and phosphorus. Furthermore, it is produced abundantly in California’s dairy industry, as well as many other parts of the world. We hypothesized that flushed manure, wastewater from a dairy farm, can be used as a potential feedstock after pretreatment to grow Chlorella vulgaris biomass and to reduce nutrients of manure. In this study, we focused on investigating the use of flushed manure, produced in a dairy farm for growing C. vulgaris biomass. A series of batch-mode experiments, fed with manure feedstock and synthetic medium, were conducted and corresponding C. vulgaris production was analyzed. Impacts of varying levels of sterilized manure feedstock (SMF) and synthetic culture medium (SCM) (20–100%) on biomass production, and consequential changes in total nitrogen (TN) and total phosphorus (TP) were determined. C. vulgaris production data (Shi et al., 2016) were fitted into a model (Aslan and Kapdan, 2006) for calculating kinetics of TN and TP removal. Results showed that the highest C. vulgaris biomass production occurs, when SMF and SCM were mixed with ratio of 40%:60%. With this mixture, biomass on Day 9 was increased by 1,740% compared to initial biomass; and on Day 30, it was increased by 2,456.9%. The production was relatively low, when either only SCM or manure feedstock medium (without pretreatment, i.e., no sterilization) was used as a culture medium. On this ratio, TN and TP were reduced by 29.9 and 12.3% on Day 9, and these reductions on Day 30 were 76 and 26.9%, respectively. PMID:28798913

  19. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris.

    PubMed

    Cheng, Jinfeng; Qiu, Hongchen; Chang, Zhaoyang; Jiang, Zaimin; Yin, Wenke

    2016-01-01

    The objective of the present work was to evaluate the effect of exogenously applied cadmium on the physiological response of green algae Chlorella vulgaris. The study investigated the long-term effect (18 days) of cadmium on the levels of algae biomass, assimilation pigment composition, soluble protein, oxidative status (production of hydrogen peroxide and superoxide anion), antioxidant enzymes (such as superoxide dismutase, peroxidase, catalase and glutathione reductase enzyme) in C. vulgaris. The results showed that growth, the amount of chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoids gradually decreased with increasing cadmium over 18 days exposure. Cadmium at concentration of 7 mg L(-1) inhibited algal growth expressed as the number of cells. Our research found that C. vulgaris has a high tolerance to cadmium. Contents of chlorophylls (Chl a and Chl b) and carotenoids (Car) of C. vulgaris was significantly decline with rising concentration of cadmium (p < 0.05). The decrease of 54.04 and 93.37 % in Chl a, 60.65 and 74.32 % in Chl b, 50.00 and 71.88 % in total carotenoids was noticed following the treatment with 3 and 7 mg L(-1) cadmium doses compared with control treatment, respectively. Cadmium treatments caused a significant change in the physiological competence (calculated as chlorophyll a/b) which increased with increasing Cd(II) doses up to 1 mg L(-1) but decreased at 3 mg L(-1). While accumulation of soluble protein was enhanced by presence of cadmium, the treatment with cadmium at 3 and 7 mg L(-1) increased the concentration of soluble proteins by 88, 95.8 % in C. vulgaris, respectively. Moreover, low doses of cadmium stimulated enzymatic (superoxide dismutase, catalase and glutathione reductase) in C. vulgaris, The content of peroxidase increased with the increasing cadmium concentration, and had slightly decreased at the concentration of 7 mg L(-1), but was still higher than control group, which showed that cadmium

  20. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris.

    PubMed

    Jeon, Jin Young; Kwon, Ji-Sue; Kang, Soon Tae; Kim, Bo-Ra; Jung, Yuchul; Han, Jae Gap; Park, Joon Hyun; Hwang, Jae Kwan

    2014-01-01

    Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high-energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA-2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4 ·7H2 O, EDTA-2Na, and trace metal solution, respectively. These values were validated using a 5-L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source.

  1. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04.

    PubMed

    Ji, Min-Kyu; Kim, Hyun-Chul; Sapireddy, Veer Raghavulu; Yun, Hyun-Shik; Abou-Shanab, Reda A I; Choi, Jaeyoung; Lee, Wontae; Timmes, Thomas C; Inamuddin; Jeon, Byong-Hun

    2013-03-01

    The feasibility of using a microalga Chlorella vulgaris YSW-04 was investigated for removal of nutrients from piggery wastewater effluent. The consequent lipid production by the microalga was also identified and quantitatively determined. The wastewater effluent was diluted to different concentrations ranging from 20 to 80 % of the original using either synthetic media or distilled water. The dilution effect on both lipid production and nutrient removal was evaluated, and growth rate of C. vulgaris was also monitored. Dilution of the wastewater effluent improved microalgal growth, lipid productivity, and nutrient removal. The growth rate of C. vulgaris was increased with decreased concentration of piggery wastewater in the culture media regardless of the diluent type. Lipid production was relatively higher when using synthetic media than using distilled water for dilution of wastewater. The composition of fatty acids accumulated in microalgal biomass was dependent upon both dilution ratio and diluent type. The microalga grown on a 20 % concentration of wastewater effluent diluted with distilled water was more promising for generating high-efficient biodiesel compared to the other culture conditions. The highest removal of inorganic nutrients was also achieved at the same dilution condition. Our results revealed the optimal pretreatment condition for the biodegradation of piggery wastewater with microalgae for subsequent production of high-efficient biodiesel.

  2. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    PubMed

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Alleviating CTAC and Flu combined pollution damage in Chlorella vulgaris by exogenous nitric oxide.

    PubMed

    Li, Qi; Liang, Zhijie; Ge, Fei; Xu, Yin; Yang, Liang; Zeng, Hui

    2014-02-01

    This study investigates the effect of sodium nitroprussiate (SNP), an exogenous NO-donor, on the joint toxicity of binary mixtures of cetyltrimethylammonium chloride (CTAC) and fluoranthene (Flu) (CTAC/Flu), which are representatives for surfactants and polycyclic aromatic hydrocarbons (PAHs) respectively, in a unicellular green alga Chlorella vulgaris (C. vulgaris). The results showed that the addition of low SNP (20μM) alleviated the CTAC/Flu combined pollution damage in C. vulgaris. Supplement of low SNP significantly increased the algae biomass, chlorophyll content, soluble protein content and the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) as compared to CTAC/Flu treatment alone. SNP also reduced the content of malondialdehyde (MDA) and the reactive oxygen species (ROS), as compared with CTAC/Flu treated alone. On the contrary, the above phenomena were reversed when high concentration of SNP (100μM) was added. Our study indicated that the damage of the joint action of surfactants and PAHs on hydrobios can be alleviated through protecting against oxidant substances and increasing the activity of antioxidant enzymes with an exogenous supply of NO in certain concentration range.

  4. Effective flocculation of Chlorella vulgaris using chitosan with zeta potential measurement

    NASA Astrophysics Data System (ADS)

    Low, Y. J.; Lau, S. W.

    2017-06-01

    Microalgae are considered as one promising source of third-generation biofuels due to their fast growth rates, potentially higher yield rates and wide ranges of growth conditions. However, the extremely low biomass concentration in microalgae cultures presents a great challenge to the harvesting of microalgae because a large volume of water needs to be removed to obtain dry microalgal cells for the subsequent oil extraction process. In this study, the fresh water microalgae Chlorella vulgaris (C. vulgaris) was effectively harvested using both low molecular weight (MW) and high MW chitosan flocculants. The flocculation efficiency was evaluated by physical appearance, supernatant absorbance, zeta potential and solids content after centrifugal dewatering. High flocculation efficiency of 98.0-99.0% was achieved at the optimal dosage of 30-40 mg/g with formation of large microalgae flocs. This study suggests that the polymer bridging mechanism was governing the flocculation behaviour of C. vulgaris using high MW chitosan. Besides, charge patch neutralisation mechanism prevailed at low MW chitosan where lower dosage was sufficient to reach near-zero zeta potential compared with the high MW chitosan. The amount of chitosan polymer present in the culture may also affect the mechanism of flocculation.

  5. The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions

    DOE PAGES

    Henard, Calvin A.; Guarnieri, Michael T.; Knoshaug, Eric P.

    2017-01-17

    Oleaginous microalgae synthesize and accumulate large quantities of lipids that are promising feedstocks for the production of biofuels (Hu et al., 2008; Williams and Laurens, 2010; Day et al., 2012; Quinn and Davis, 2015). The algal species Chlorella vulgaris accumulates triacylglycerides that dominate its cellular composition (>60% lipid based on dry cell weight) when cultured in medium lacking a nitrogen source (Guarnieri et al., 2011; Ikaran et al., 2015), which is a 'lipid trigger' in an array of microalgae. As such, C. vulgaris represents a model algal species for examination of lipid accumulation mechanisms and a potential deployment organism inmore » industrial algal biofuels applications. C. vulgaris has been extensively characterized biochemically and physiologically (Converti et al., 2009; Liang et al., 2009), and de novo-generated transcriptomic and proteomic datasets have indicated that post-transcriptional and -translational mechanisms likely govern lipid accumulation in response to nitrogen starvation (Guarnieri et al., 2011, 2013). However, the specific mechanisms underlying lipid biosynthesis in response to nitrogen stress remain elusive.« less

  6. Cloning and Expression of a Cytosolic HSP90 Gene in Chlorella vulgaris

    PubMed Central

    Liu, Zhengyi; Zhang, Lei; Pu, Yang; Liu, Zhaopu; Li, Zhiling; Zhao, Yushan; Qin, Song

    2014-01-01

    Heat shock protein 90 (HSP90), a highly conserved molecular chaperone, plays essential roles in folding, keeping structural integrity, and regulating the subset of cytosolic proteins. We cloned the cDNA of Chlorella vulgaris HSP90 (named CvHSP90) by combining homology cloning with rapid amplification of cDNA ends (RACE). Sequence analysis indicated that CvHSP90 is a cytosolic member of the HSP90 family. Quantitative RT-PCR was applied to determine the expression level of messenger RNA (mRNA) in CvHSP90 under different stress conditions. C. vulgaris was kept in different temperatures (5–45°C) for 1 h. The mRNA expression level of CvHSP90 increased with temperature from 5 to 10°C, went further from 35 to 40°C, and reached the maximum at 40°C. On the other hand, for C. vulgaris kept at 35°C for different durations, the mRNA expression level of CvHSP90 increased gradually and reached the peak at 7 h and then declined progressively. In addition, the expression level of CvHSP90 at 40 or 45 in salinity (‰) was almost fourfold of that at 25 in salinity (‰) for 2 h. Therefore, CvHSP90 may be a potential biomarker to monitor environment changes. PMID:24738061

  7. Differential sensitivity of two green algae, Scenedesmus quadricauda and Chlorella vulgaris, to 14 pesticide adjuvants.

    PubMed

    Ma, Jianyi; Lin, Fucheng; Zhang, Renzhi; Yu, Weiwu; Lu, Ninghai

    2004-05-01

    Growth-inhibition tests for 14 pesticide adjuvants which are widely used to manufacture various pesticidal formulations in China, were performed on the green algae Scenedesmus quadricauda, and Chlorella vulgaris to compare differential sensitivity among populations of these algae to the adjuvants. The results showed that the acute toxicities of 700#, 1601#, By-140, and SOPA to S. quadricauda and C. vulgaris were the lowest among all the tested adjuvants. The acute toxicities of Tween 80, O-25, and AEO-13 phosphate to the selected two green algae were intermediate among the tested adjuvants. The acute toxicities of 602#, 500#, OT, NP-10, OP-10, and JFC were the highest. Meanwhile, the algal species vary widely in their response to those adjuvants. The results showed that there was a differential response to various adjuvants among the selected algal species and that the sensitivities of the various algal species exposed to 1601# and OT varied by nearly 1 order and to 700#, and By-140 varied by over 1 order of magnitude. In addition, the NOEC and LOEC values of the selected 14 adjuvants to S. quadricauda and C. vulgaris were tested; the result showed that NOEC < or = EC10

  8. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.

    PubMed

    Woodworth, Benjamin D; Mead, Rebecca L; Nichols, Courtney N; Kolling, Derrick R J

    2015-03-01

    Microalgae are an attractive biofuel feedstock because of their high lipid to biomass ratios, lipid compositions that are suitable for biodiesel production, and the ability to grow on varied carbon sources. While algae can grow autotrophically, supplying an exogenous carbon source can increase growth rates and allow heterotrophic growth in the absence of light. Time course analyses of dextrose-supplemented Chlorella vulgaris batch cultures demonstrate that light availability directly influences growth rate, chlorophyll production, and total lipid accumulation. Parallel photomixotrophic and heterotrophic cultures grown to stationary phase reached the same amount of biomass, but total lipid content was higher for algae grown in the presence of light (an average of 1.90 mg/mL vs. 0.77 mg/mL over 5 days of stationary phase growth). Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation.

    PubMed

    Vandamme, Dries; Foubert, Imogen; Fraeye, Ilse; Muylaert, Koenraad

    2012-11-01

    Microalgae excrete relatively large amounts of algal organic matter (AOM) that may interfere with flocculation. The influence of AOM on flocculation of Chlorella vulgaris was studied using five different flocculation methods: aluminum sulfate, chitosan, cationic starch, pH-induced flocculation and electro-coagulation-flocculation (ECF). The presence of AOM was found to inhibit flocculation for all flocculation methods resulting in an increase of dosage demand. For pH-induced flocculation, the dosage required to achieve 85% flocculation increased only 2-fold when AOM was present, while for chitosan, this dosage increased 9-fold. For alum, ECF and cationic starch flocculation, the dosage increased 5-6-fold. Interference by AOM is an important parameter to consider in the assessment of flocculation-based harvesting of microalgae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells.

    PubMed

    Jeon, Hyeon Jin; Seo, Kyu-won; Lee, Sang Hyun; Yang, Yung-Hun; Kumaran, Rangarajulu Senthil; Kim, Sunghyun; Hong, Seok Won; Choi, Yong Su; Kim, Hyung Joo

    2012-04-01

    In this study, a novel algal biomass production method using a sediment microbial fuel cell (SMFC) system was assessed. Under the experimental conditions, CO(2) generation from the SMFC and its rate of increase were found to be dependent on the current generated from the SMFC. However, the CH(4) production rate from the SMFC was inhibited by the generation of current. When Chlorella vulgaris was inoculated into the cathode compartment of the SMFC and current was generated under 10 Ω resistance, biomass production from the anode compartment was observed to be closely associated with the rate of current generation from the SMFC. The experimental results demonstrate that 420 mg/L of algae (dry cell weight) was produced when the current from the SMFC reached 48.5 mA/m(2). Therefore, SMFC could provide a means for producing algal biomass via CO(2) generated by the oxidation of organics upon current generation.

  11. Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration.

    PubMed

    Discart, V; Bilad, M R; Vandamme, D; Foubert, I; Muylaert, K; Vankelecom, I F J

    2013-02-01

    Recent reports show strong evidence for the involvement of transparent exopolymer particles (TEPs), mainly produced by microalgae in natural environments, in membrane fouling in a wide range of membrane filtration processes. The objective of this study is to fundamentally investigate the direct role of TEPs on membrane fouling by using different Chlorella vulgaris broth solutions and different fractions of such broth (the soluble and bound fractions, the cells separated from these fractions and the cells with their bound sugars, separated from the soluble fraction) as filtration feed. The relation between the feed properties and their filterability over three membranes was determined. Scanning electron microscopy and light microscopy showed that the foulant types differed for each broth fraction and confirmed the role of TEPs in the fouling of microfiltration membranes. In addition, this study contributes to the role of TEPs in the filtration of microalgae cultivated for commercial reasons.

  12. Isolation and purification of lutein from the microalga Chlorella vulgaris by extraction after saponification.

    PubMed

    Li, Hua-Bin; Jiang, Yue; Chen, Feng

    2002-02-27

    A simple and efficient method for the isolation and purification of lutein from the microalga Chlorella vulgaris was developed. Crude lutein was obtained by extraction with dichloromethane from the microalga after saponification. Partition values of lutein in the two-phase system of ethanol-water-dichloromethane at different ratios were measured by HPLC so as to assist the determination of an appropriate condition for washing water-soluble impurities in the crude lutein. Partition values of lutein in another two-phase system of ethanol-water-hexane at different ratios were also measured by HPLC for determining the condition for removing fat-soluble impurities. The water-soluble impurities in the crude lutein were removed by washing with 30% aqueous ethanol, and the fat-soluble impurities were removed by extraction with hexane. The final purity of lutein obtained was 90-98%, and the yield was 85-91%.

  13. Effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation with bioflocculant.

    PubMed

    Lei, Xueqian; Chen, Yao; Shao, Zongze; Chen, Zhangran; Li, Yi; Zhu, Hong; Zhang, Jingyan; Zheng, Wei; Zheng, Tianling

    2015-12-01

    In this study, bioflocculant from Cobetia marina L03 could be used for effective harvesting of the microalgae Chlorella vulgaris via flocculation-flotation. A flotation efficiency of 92.7% was observed when 20 mg L(-1) bioflocculant was tested for flocculating the microalgal cells with 5mM CaCl2. The bioflocculant was stable at wide ranges of pH and temperature, which is advantageous for its application under various conditions. Chemical analysis of the bioflocculant indicated that it is composed of 31.6% total sugar and 0.2% protein (w/w). This bioflocculant has potential for the high-efficiency harvesting of microalgae and may be useful in reducing one of the barriers to microalgal biofuel production.

  14. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide.

    PubMed

    Bach, Quang-Vu; Chen, Wei-Hsin; Sheen, Herng-Kuang; Chang, Jo-Shu

    2017-03-27

    This study aims at investigating the gasification behavior and kinetics of microalga Chlorella vulgaris ESP-31 before and after wet torrefaction. The raw and wet-torrefied microalgae were first gasified in a thermogravimetric analyzer under a continuous CO2 flow. Thereafter, the obtained thermogravimetric data were modeled for kinetic study, employing a seven-parallel-reaction mechanism. The decomposition of the microalgae in CO2 shows two reactive stages: devolatilization with two peaks and gasification with a peak accompanied by a shoulder, and the thermal decomposition of components in the samples can be clearly identified. Increasing wet torrefaction temperature lowers the height of the major devolatilization peak but enhances the height of the minor one. Moreover, the kinetic evaluation reveals that wet torrefaction affects most of the kinetic parameters of the microalgal components. Furthermore, wet torrefaction temperature influences the kinetic parameters of carbohydrate and lipid, but not on those of protein, "others", and chars.

  15. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus.

    PubMed

    Oukarroum, Abdallah

    2016-06-01

    Sensitivity of photosynthetic processes towards environmental stress is used as a bioanalytical tool to evaluate the responses of aquatic plants to a changing environment. In this paper, change of biomass density, chlorophyll a fluorescence and photosynthetic parameters during growth phases of two microalgae Chlorella vulgaris and Scenedesmus obliquus were studied. The photosynthetic growth behaviour changed significantly with cell age and algae species. During the exponential phase of growth, the photosynthesis capacity reached its maximum and decreased in ageing algal culture during stationary phase. In conclusion, the chlorophyll a fluorescence OJIP method and the derived fluorescence parameters would be an accurate method for obtaining information on maximum photosynthetic capacities and monitoring algal cell growth. This will contribute to more understanding, for example, of toxic actions of pollutants in microalgae test.

  16. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris.

    PubMed

    Vandamme, Dries; Eyley, Samuel; Van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim

    2015-10-01

    This study presents a novel flocculant for harvesting Chlorella vulgaris as model species for freshwater microalgae based on cellulose nanocrystals (CNCs), thus synthesized from a renewable and biodegradable resource. Cationic pyridinium groups were grafted onto CNCs by two separate one-pot simultaneous esterification and nucleophilic substitution reactions. Both types of modified CNCs were positively charged in the pH range 4-11. Both reactions yielded CNCs with a high degree of substitution (up to 0.38). A maximum flocculation efficiency of 100% was achieved at a dosage of 0.1 g g(-1) biomass. In contrast to conventional polymer flocculants, cationic CNCs were relatively insensitive to inhibition of flocculation by algal organic matter. The present results highlight the potential of these new type of nanocellulose-based flocculants for microalgae harvesting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass.

    PubMed

    Li, Yi; Xu, Yanting; Liu, Lei; Jiang, Xiaobing; Zhang, Kun; Zheng, Tianling; Wang, Hailei

    2016-10-01

    Bioflocculant from Shinella albus xn-1 could be used to harvest energy-producing microalga Chlorella vulgaris biomass for the first time. In this study, we investigated the flocculation activity and mode of strain xn-1, the characteristics of bioflocculant, the effect of flocculation conditions and optimized the flocculation efficiency. The results indicated that strain xn-1 exhibited flocculation activity through secreting bioflocculant; the bioflocculant with high thermal stability, pH stability and low molecular weight was proved to be not protein and polysaccharide, and flocculation active component was confirmed to contain triple bond and cumulated double bonds; algal pH, temperature and metal ions showed great impacts on the flocculation efficiency of bioflocculant; the maximum flocculation activity of bioflocculant reached 85.65% after the response surface optimization. According to the results, the bioflocculant from S. albus xn-1 could be a good potential in applications for high-efficiency harvesting of microalgae.

  18. Proteomic analysis of Chlorella vulgaris: Potential targets for enhanced lipid accumulation

    SciTech Connect

    Guarnieri, Michael T.; Nag, Ambarish; Yang, Shihui; Pienkos, Philip T.

    2013-11-01

    Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine these mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris. Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis.

  19. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-05-01

    Many protein extraction methods have been developed for plant proteome analysis but information is limited on the optimal protein extraction method from algae species. This study evaluated four protein extraction methods, i.e. direct lysis buffer method, TCA-acetone method, phenol method, and phenol/TCA-acetone method, using green algae Chlorella vulgaris for proteome analysis. The data presented showed that phenol/TCA-acetone method was superior to the other three tested methods with regards to shotgun proteomics. Proteins identified using shotgun proteomics were validated using sequential window acquisition of all theoretical fragment-ion spectra (SWATH) technique. Additionally, SWATH provides protein quantitation information from different methods and protein abundance using different protein extraction methods was evaluated. These results highlight the importance of green algae protein extraction method for subsequent MS analysis and identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.

    PubMed

    Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2016-10-01

    An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size.

  1. Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris.

    PubMed

    Geiger, Elisabeth; Hornek-Gausterer, Romana; Saçan, Melek Türker

    2016-07-01

    Organisms in the aquatic environment are exposed to a variety of substances of numerous chemical classes. The unintentional co-occurrence of pharmaceuticals and other contaminants of emerging concern may pose risk to non-target organisms. In this study, individual and binary mixture toxicity experiments of selected pharmaceuticals (ibuprofen and ciprofloxacin) and chlorophenols (2.4-dichlorophenol (2,4-DCP) and 3-chlorophenol (3-CP)) have been performed with freshwater algae Chlorella vulgaris. All experiments have been carried out according to the 96-h algal growth inhibition test OECD No. 201. Binary mixture tests were conducted using proportions of the respective IC50s in terms of toxic unit (TU). The mixture concentration-response curve was compared to predicted effects based on both the concentration addition (CA) and the independent action (IA) model. Additionally, the Combination Index (CI)-isobologram equation method was used to assess toxicological interactions of the binary mixtures. All substances individually tested had a significant effect on C. vulgaris population density and revealed IC50 values <100mgL(-1) after exposure period of 96-h. The toxic ranking of these four compounds to C. vulgaris was 2,4-DCP>ciprofloxacin>3-CP>ibuprofen. Generally, it can be concluded from this study that toxic mixture effects of all tested chemicals to C. vulgaris are higher than the individual effect of each mixture component. It could be demonstrated that IC50 values of the tested mixtures predominately lead to additive effects. The CA model is appropriate to estimate mixture toxicity, while the IA model tends to underestimate the joint effect. The CI-isobologram equation method predicted the mixtures accurately and elicited synergism at low effect levels for the majority of tested combinations.

  2. Optimising the bioreceptivity of porous glass tiles based on colonization by the alga Chlorella vulgaris.

    PubMed

    Ferrándiz-Mas, V; Bond, T; Zhang, Z; Melchiorri, J; Cheeseman, C R

    2016-09-01

    Green façades on buildings can mitigate greenhouse gas emissions. An option to obtain green facades is through the natural colonisation of construction materials. This can be achieved by engineering bioreceptive materials. Bioreceptivity is the susceptibility of a material to be colonised by living organisms. The aim of this research was to develop tiles made by sintering granular waste glass that were optimised for bioreceptivity of organisms capable of photosynthesis. Tiles were produced by pressing recycled soda-lime glass with a controlled particle size distribution and sintering compacted samples at temperatures between 680 and 740°C. The primary bioreceptivity of the tiles was evaluated by quantifying colonisation by the algae Chlorella vulgaris (C. vulgaris), which was selected as a model photosynthetic micro-organism. Concentrations of C. vulgaris were measured using chlorophyll-a extraction. Relationships between bioreceptivity and the properties of the porous glass tile, including porosity, sorptivity, translucency and pH are reported. Capillary porosity and water sorptivity were the key factors influencing the bioreceptivity of porous glass. Maximum C. vulgaris growth and colonisation was obtained for tiles sintered at 700°C, with chlorophyll-a concentrations reaching up to 11.1±0.4μg/cm(2) of tile. Bioreceptivity was positively correlated with sorptivity and porosity and negatively correlated with light transmittance. The research demonstrates that the microstructure of porous glass, determined by the processing conditions, significantly influences bioreceptivity. Porous glass tiles with high bioreceptivity that are colonised by photosynthetic algae have the potential to form carbon-negative façades for buildings and green infrastructure.

  3. Using oxidized liquid and solid human waste as nutrients for Chlorella vulgaris and cyanobacterium Oscillatoria deflexa

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Kalacheva, Galina; Tirranen, Lyalya; Gribovskaya, Iliada

    At stationary terrestrial and space stations with closed and partially closed substance exchange not only plants, but also algae can regenerate atmosphere. Their biomass can be used for feeding Daphnia and Moina species, which, in their turn, serve as food for fish. In addition, it is possible to use algae for production of biological fuel. We suggested two methods of human waste mineralization: dry (evaporation with subsequent incineration in a muffle furnace) and wet (oxidation in a reactor using hydrogen peroxide). The research task was to prepare nutrient media for green alga Chlorella vulgaris and cyanobacterium Oscillatoria deflexa using liquid human waste mineralized by dry method, and to prepare media for chlorella on the basis of 1) liquid and 2) liquid and solid human waste mineralized by wet method. The algae were grown in batch culture in a climate chamber with the following parameters: illumination 7 klx, temperature 27-30 (°) C, culture density 1-2 g/l of dry weight. The control for chlorella was Tamiya medium, pH-5, and for oscillstoria — Zarrouk medium, pH-10. Maximum permissible concentrations of NaCl, Cl, urea (NH _{2}) _{2}CO, and native urine were established for algae. Missing ingredients (such as salts and acids) for experimental nutrient media were determined: their addition made it possible to obtain the biomass production not less than that in the control. The estimation was given of the mineral and biochemical composition of algae grown on experimental media. Microbiological test revealed absence of foreign microbial flora in experimental cultures.

  4. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    PubMed

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations. Copyright © 2012. Published by Elsevier Ltd.

  5. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts

    PubMed Central

    Sibi, G.; Rabina, Santa

    2016-01-01

    Objective: The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methods: Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. Results: MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. Conclusion: The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. SUMMARY C. vulgaris extracts have potential anti

  6. [Effects of Branchionus calyciflorus culture media filtrate on Microcystis aeruginosa, Scenedesmus obliquus and Chlorella vulgaris colony formation and growth].

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Yang, Jiaxin

    2005-06-01

    To examine the possible information transfer by chemicals between zooplankton and algae, this paper studied the effects of Brachionus calyciflorus culture media filtrate on the colony formation and growth of Microcystis aeruginosa, Scenedesmus obliquus and Chlorella vulgaris. The results showed that the test filtrate could significantly promote the colony formation and population growth of S. obliquus, while no significant effect was observed on M. aeruginosa and C. vulgaris. The induced colony formation of S. obliquus increased its resistance to grazing, and thus, reduced the risk of its being grazed, which could be viewed as a kind of inducing defense. The accelerated growth of C. vulgaris and the toxin production of M. aeruginosa could also be interpreted as a defense mechanism against grazing. It maybe concluded that M. aeruginosa, S. obliquus and C. vulgaris could adopt different ecological strategies to resist the potential grazing by rotifer B. calyciflorus, and thus, to keep their population on a certain scale.

  7. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Addy, Min; Anderson, Erik; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-05-01

    To improve nutrients removal from wastewater and enhance lipid production, cultivation of Chlorella vulgaris in wastewater with waste glycerol generated from biodiesel production using scum derived oil as feedstock was studied. The results showed that nutrients removal was improved and lipid production of C. vulgaris was enhanced with the addition of waste glycerol into wastewater to balance its C/N ratio. The optimal concentration of the pretreated glycerol for C. vulgaris was 10gL(-1) with biomass concentration of 2.92gL(-1), lipid productivity of 163mgL(-1)d(-1), and the removal of 100% ammonia and 95% of total nitrogen. Alkaline conditions prompted cell growth and lipid accumulation of C. vulgaris while stimulating nutrients removal. The application of the integration process can lower both wastewater treatment and biofuel feedstock costs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    PubMed

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of iron and manganese on the formation of HAAs upon chlorinating Chlorella vulgaris.

    PubMed

    Ge, Fei; Wu, Xiuzhen; Wang, Na; Zhu, Runliang; Wang, Tong; Xu, Yin

    2011-05-15

    The major objective of the present study was to investigate the role of iron and manganese on the formation of haloacetic acids (HAAs) when algae are chlorinated at different pHs. The results showed that both iron and manganese can reduce the yields of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) on chlorinating green alga Chlorella vulgaris (C. vulgaris) at a pH range of 6.0-9.0, and the decline of DCAA and TCAA was shown to be more significant at the low pH range. At pH 6.0, DCAA and TCAA yields decreased by 44.5% and 57.3%, respectively with the addition of 0.5 mg L(-1) iron, and decreased 39.5% and 49.4%, respectively with the addition of 0.5 mg L(-1) manganese. The main reason for decreasing the yields of HAAs as shown by scanning electron microscope (SEM) is that Fe(OH)(3(am)) or MnO(2(am)) coat the algal cells, which then improves their agglomeration of algal cells which is also revealed by the laser particle size analysis (LPSA). Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Enhanced removal of Zn(2+) or Cd(2+) by the flocculating Chlorella vulgaris JSC-7.

    PubMed

    Alam, Md Asraful; Wan, Chun; Zhao, Xin-Qing; Chen, Li-Jie; Chang, Jo-Shu; Bai, Feng-Wu

    2015-05-30

    Microalgae are attracting attention due to their potentials in mitigating CO2 emissions and removing environmental pollutants. However, harvesting microalgal biomass from diluted cultures is one of the bottlenecks for developing economically viable processes for this purpose. Microalgal cells can be harvested by cost-effective sedimentation when flocculating strains are used. In this study, the removal of Zn(2+) and Cd(2+) by the flocculating Chlorella vulgaris JSC-7 was studied. The experimental results indicated that more than 80% Zn(2+) and 60% Cd(2+) were removed by the microalgal culture within 3 days in the presence up to 20.0mg/L Zn(2+) and 4.0mg/L Cd(2+), respectively, which were much higher than that observed with the culture of the non-flocculating C. vulgaris CNW11. Furthermore, the mechanism underlying this phenomenon was explored by investigating the effect of Zn(2+) and Cd(2+) on the growth and metabolic activities of the microalgal strains. It was found that the flocculation of the microalga improved its growth, synthesis of photosynthetic pigments and antioxidation activity under the stressful conditions, indicating a better tolerance to the heavy metal ions for a potential in removing them more efficiently from contaminated wastewaters, together with a bioremediation of other nutritional components contributed to the eutrophication of aquatic ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A

    PubMed Central

    Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae. PMID:24349166

  12. Metal distributions in complexes with Chlorella vulgaris in seawater and wastewater

    SciTech Connect

    Pascucci, P.R.; Kowalak, A.D.

    1999-10-01

    Divalent cadmium (Cd), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn) simultaneous complexes with an algal biomass Chlorella vulgaris were studied for bioremediation purposes in various aqueous media: distilled-deionized water (DDIW), seawater, nuclear-reactor pool water, and process wastewater. Reactions were monitored using various dry masses of algae at constant temperature and constant metal concentrations for reaction times ranging from 0 to 150 minutes. Complexes occurred within 30 minutes and reached a steady state after 80 to 120 minutes. Distribution constants (K{prime}{sub d}) were calculated for the complexes and relative orders of K{prime}{sub d} were reported. The K{prime}{sub d} are used to evaluate relative efficiency of metal remediation from waters. Lead, Cu, and Ni complexes had the greatest K{prime}{sub d} values and those metals were most efficiently removed from these waters. Zinc and Fe formed the most labile complexes. The order of K{prime}{sub d} values for complexes in DDIW was Pb > Cu > Cd > Zn, then Cu > Cd > Zn in seawater, Cd > Cu > Zn in reactor pool water, and Ni > Cd > Cu > Zn > Fe in wastewater. C. vulgaris biomass may potentially be used as an alternative to traditional water treatment methods for simultaneous extraction of metals from seawater, process wastewater, or drinking water.

  13. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.

    PubMed

    Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed

    2017-11-01

    Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The combined effect of bacteria and Chlorella vulgaris on the treatment of municipal wastewaters.

    PubMed

    He, P J; Mao, B; Lü, F; Shao, L M; Lee, D J; Chang, J S

    2013-10-01

    Impacts of Chlorella vulgaris with or without co-existing bacteria on the removal of nitrogen, phosphorus and organic matter from wastewaters were studied by comparing the wastewater treatment effects between an algae-bacteria consortium and a stand-alone algae system. In the algae-bacteria system, C.vulgaris played a dominant role in the removal of nitrogen and phosphorus, while bacteria removed most of the organic matter from the wastewater. When treating unsterilized wastewater, bacteria were found to inhibit the growth of algae at >231 mg/L dissolved organic carbon (DOC). Using the algae-bacteria consortium resulted in the removal of 97% NH4(+), 98% phosphorus and 26% DOC at a total nitrogen (TN) level of 29-174 mg/L. The reaction rate constant (k) values in sterilized and unsterilized wastewaters were 2.17 and 1.92 mg NH4(+)-N/(mg algal cell ·d), respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m(2) was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  16. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.

    PubMed

    Wu, Xia-yuan; Song, Tian-shun; Zhu, Xu-jun; Wei, Ping; Zhou, Charles C

    2013-12-01

    In this study, a modified microbial fuel cell (MFC) with a tubular photobioreactor (PHB) configuration as a cathode compartment was constructed by introducing Chlorella vulgaris to the cathode chamber used to generate oxygen in situ. Two types of cathode materials and light/dark cycles were used to test the effect on MFC with algae biocathode. Results showed that the use of algae is an effective approach because these organisms can act as efficient in situ oxygenators, thereby facilitating the cathodic reaction. Dissolved oxygen and voltage output displayed a clear light positive response and were drastically enhanced compared with the abiotic cathode. In particular, carbon paper-coated Pt used as a cathode electrode increased voltage output at a higher extent than carbon felt used as an electrode. The maximum power density of 24.4 mW/m2 was obtained from the MFC with algae biocathode which utilized the carbon paper-coated Pt as the cathode electrode under intermittent illumination. This density was 2.8 times higher than that of the abiotic cathode. Continuous illumination shortened the algal lifetime. These results demonstrated that intermittent illumination and cathode material-coated catalyst are beneficial to a more efficient and prolonged operation of MFC with C. vulgaris biocathode.

  17. Toxicity of Nickel Oxide Nanoparticles on a Freshwater Green Algal Strain of Chlorella vulgaris

    PubMed Central

    Oukarroum, Abdallah; Zaidi, Wassila; Samadani, Mahshid

    2017-01-01

    A freshwater microalga strain of Chlorella vulgaris was used to investigate toxic effects induced by nickel oxide nanoparticles (NiO-NPs) in suspension. Algal cells were exposed during 96 h to 0–100 mg L−1 of NiO-NPs and analyzed by flow cytometry. Physicochemical characterization of nanoparticles in tested media showed a soluble fraction (free Ni2+) of only 6.42% for 100 mg L−1 of NiO-NPs, indicating the low solubility capacity of these NPs. Toxicity analysis showed cellular alterations which were related to NiO-NPs concentration, such as inhibition in cell division (relative cell size and granularity), deterioration of the photosynthetic apparatus (chlorophyll synthesis and photochemical reactions of photosynthesis), and oxidative stress (ROS production). The change in cellular viability demonstrated to be a very sensitive biomarker of NiO-NPs toxicity with EC50 of 13.7 mg L−1. Analysis by TEM and X-ray confirmed that NiO-NPs were able to cross biological membranes and to accumulate inside algal cells. Therefore, this study provides a characterization of both physicochemical and toxicological properties of NiO-NPs suspensions in tested media. The use of the freshwater strain of C. vulgaris demonstrated to be a sensitive bioindicator of NiO-NPs toxicity on the viability of green algae. PMID:28473991

  18. Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris.

    PubMed

    Barhoumi, Lotfi; Dewez, David

    2013-01-01

    Toxicity of superparamagnetic iron oxide nanoparticles (SPION) was investigated on Chlorella vulgaris cells exposed during 72 hours to Fe3O4 (SPION-1), Co0.2Zn0.8Fe2O4 (SPION-2), or Co0.5Zn0.5Fe2O4 (SPION-3) to a range of concentrations from 12.5 to 400 μg mL(-1). Under these treatments, toxicity impact was indicated by the deterioration of photochemical activities of photosynthesis, the induction of oxidative stress, and the inhibition of cell division rate. In comparison to SPION-2 and -3, exposure to SPION-1 caused the highest toxic effects on cellular division due to a stronger production of reactive oxygen species and deterioration of photochemical activity of Photosystem II. This study showed the potential source of toxicity for three SPION suspensions, having different chemical compositions, estimated by the change of different biomarkers. In this toxicological investigation, algal model C. vulgaris demonstrated to be a valuable bioindicator of SPION toxicity.

  19. Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production.

    PubMed

    He, P J; Mao, B; Shen, C M; Shao, L M; Lee, D J; Chang, J S

    2013-02-01

    The feasibility of cultivating Chlorella vulgaris with wastewater containing high ammonia nitrogen concentrations was examined. The average specific growth rate of C. vulgaris was 0.92 d(-1) at 17 mg L(-1) NH4+-N, but declined to 0.33 d(-1) at NH4+-N concentrations of 39-143 mg L(-1). At 39 mg L(-1) NH4+-N, lipid productivity reached a maximum value (23.3 mg L(-1)d(-1)) and dropped sharply at higher NH4+-N levels, which demonstrated NH4+-N should be controlled for biodiesel production. C16 and C18 fatty acids accounted for 80% of total fatty acids. Increasing NH4+-N from 17 to 207 mg L(-1) yielded additional short-chain and saturated fatty acids. Protein content was in positive correlation with NH4+-N content from 17 mg L(-1) (12%) to 207 mg L(-1) (42%). Carbohydrate in the dried algae cell was in the range of 14-45%, with a peak value occurring at 143 mg L(-1) NH4+-N. The results demonstrate that product quality can be manipulated by NH4+-N concentrations of the initial feeds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production.

    PubMed

    Yang, Yi-Hung; Klinthong, Worasaung; Tan, Chung-Sung

    2015-12-01

    CO2-expanded methanol (CXM) was used to extract lipids from the microalgae Chlorella vulgaris (a total lipid content of 20.7% was determined by Soxhlet extraction with methanol at 373 K for 96 h) in a continuous mode. The CXM was found to be a superior solvent to methanol, ethanol, pressurized methanol and ethanol, and CO2-expanded ethanol for lipid extraction. The effects of operation variables including temperature, pressure and CO2 flow rate on extraction performance were examined using the response surface and contour plot methodologies. The optimal operating conditions were at a pressure of 5.5 MPa, a temperature of 358 K, a methanol flow rate of 1 mL/min and a CO2 flow rate of 3.0 mL/min, providing an extracted lipid yield of 84.8 wt% over an extraction period of 30 min. Compared with propane methanol mixture, CXM was safer and more energy efficient for lipid extraction from C. vulgaris.

  1. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae.

    PubMed

    Polonini, Hudson C; Brandão, Humberto M; Raposo, Nádia R B; Brandão, Marcos Antônio F; Mouton, Ludovic; Couté, Alain; Yéprémian, Claude; Sivry, Yann; Brayner, Roberta

    2015-05-01

    Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

  2. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    PubMed

    Kim, Sangwoo; Kim, Hanul; Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  3. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure.

    PubMed

    Rachlin, J W; Grosso, A

    1993-01-01

    Using the growth response of the green alga Chlorella vulgaris as a model system, the effects of combinations of the environmentally active cations Cd, Co, and Cu were evaluated. The 96-h static EC50 for these cations to C. vulgaris were, respectively, 0.89 microM, 9.0 microM, and 2.8 microM, yielding a toxicity series such that Cd > Cu > Co. The cation combinations of Cd + Cu, and Cu + Co acted synergistically, while Cd + Co, and the tri-metallic combination Cd + Cu + Co resulted in antagonistic interactions. Examination of these toxic combinations at 24, 48, 72, and 96 h indicate that the cellular response is not a uniform one. Failure of energy dispersive X-ray spectrophotometric analysis to demonstrate any intracellular incorporation of these cations (except for a weak cytoplasmic Cu peak at the 8.0 KEV position) suggests that the toxic actions of these cations at EC50 concentrations are exerted at the level of the plasma membrane.

  4. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments.

    PubMed

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤ 75 mg L(-1)) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L-1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L-1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health.

  5. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  6. Biological CO2 fixation using Chlorella vulgaris and its thermal characteristics through thermogravimetric analysis.

    PubMed

    Razzak, Shaikh A; Ali, Saad Aldin M; Hossain, Mohammad M; Mouanda, Alexis Nzila

    2016-11-01

    The present research is focused on cultivation of microalgae strain Chlorella vulgaris for bio-fixation of CO2 coupled with biomass production. In this regard, a single semi-batch vertical tubular photobioreactor and four similar photobioreactors in series have been employed. The concentration of CO2 in the feed stream was varied from 2 to 12 % (v/v) by adjusting CO2 to air ratio. The amount of CO2 capture and algae growth were monitored by measuring decrease of CO2 concentration in the gas phase, microalgal cell density, and algal biomass production rate. The results show that 4 % CO2 gives maximum amount of biomass (0.9 g L(-1)) and productivity (0.118 g L(-1) day(-1)) of C. vulgaris in a single reactor. In series reactors, average productivity per reactor found to be 0.078 g L(-1) day(-1). The maximum CO2 uptake for single reactor also found with 4 % CO2, and it is around 0.2 g L(-1) day(-1). In series reactors, average CO2 uptake is 0.13 g L(-1) day(-1) per reactor. TOC analysis shows that the carbon content of the produced biomass is around 40.67 % of total weight. The thermochemical characteristics of the cultivated C. vulgaris samples were analyzed in the presence of air. All samples burn above 200 °C and the combustion rate become faster at around 600 °C. Almost 98 wt% of the produced biomass is combustible in this range.

  7. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass

    PubMed Central

    2011-01-01

    Background Microalgae are a promising feedstock for biofuel and bioenergy production due to their high photosynthetic efficiencies, high growth rates and no need for external organic carbon supply. In this study, utilization of Chlorella vulgaris (a fresh water microalga) and Dunaliella tertiolecta (a marine microalga) biomass was tested as a feedstock for anaerobic H2 and CH4 production. Results Anaerobic serum bottle assays were conducted at 37°C with enrichment cultures derived from municipal anaerobic digester sludge. Low levels of H2 were produced by anaerobic enrichment cultures, but H2 was subsequently consumed even in the presence of 2-bromoethanesulfonic acid, an inhibitor of methanogens. Without inoculation, algal biomass still produced H2 due to the activities of satellite bacteria associated with algal cultures. CH4 was produced from both types of biomass with anaerobic enrichments. Polymerase chain reaction-denaturing gradient gel electrophoresis profiling indicated the presence of H2-producing and H2-consuming bacteria in the anaerobic enrichment cultures and the presence of H2-producing bacteria among the satellite bacteria in both sources of algal biomass. Conclusions H2 production by the satellite bacteria was comparable from D. tertiolecta (12.6 ml H2/g volatile solids (VS)) and from C. vulgaris (10.8 ml H2/g VS), whereas CH4 production was significantly higher from C. vulgaris (286 ml/g VS) than from D. tertiolecta (24 ml/g VS). The high salinity of the D. tertiolecta slurry, prohibitive to methanogens, was the probable reason for lower CH4 production. PMID:21943287

  8. Cyanobacterium Microcystis aeruginosa response to pentachlorophenol and comparison with that of the microalga Chlorella vulgaris.

    PubMed

    de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Ramos, V; Vasconcelos, V M; Vasconcelos, M Teresa S D

    2014-04-01

    Pentachlorophenol (PCP) effects on a strain of the cyanobacterium Microcystis aeruginosa were investigated at laboratory scale. This is the first systematic ecotoxicity study of the effects of PCP on an aquatic cyanobacterium. The microalga Chlorella vulgaris was studied in the same conditions as the cyanobacterium, in order to compare the PCP toxicity and its removal by the species. The cells were exposed to environmental levels of PCP during 10 days, in Fraquil culture medium, at nominal concentrations from 0.01 to 1000 μg L(-1), to the cyanobacterium, and 0.01 to 5000 μg L(-1), to the microalga. Growth was assessed by area under growth curve (AUC, optical density vs time) and chlorophyll a content (chla). The toxicity profiles of the two species were very different. The calculated effective concentrations EC20 and EC50 were much lower to M. aeruginosa, and its growth inhibition expressed by chla was concentration-dependent while by AUC was not concentration-dependent. The cells might continue to divide even with lower levels of chla. The number of C. vulgaris cells decreased with the PCP concentration without major impact on the chla. The effect of PCP on M. aeruginosa is hormetic: every concentration studied was toxic except 1 μg L(-1), which promoted its growth. The legal limit of PCP set by the European Union for surface waters (1 μg L(-1)) should be reconsidered since a toxic cyanobacteria bloom might occur. The study of the removal of PCP from the culture medium by the two species is an additional novelty of this work. M. aeruginosa could remove part of the PCP from the medium, at concentrations where toxic effects were observed, while C. vulgaris stabilized it. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Use of solvent mixtures for total lipid extraction of Chlorella vulgaris and gas chromatography FAME analysis.

    PubMed

    Moradi-Kheibari, Narges; Ahmadzadeh, Hossein; Hosseini, Majid

    2017-06-07

    Lipid extraction is the bottleneck step for algae-based biodiesel production. Herein, 12 solvent mixture systems (mixtures of three non-polar and two polar organic solvents) were examined to evaluate their effects on the total lipid yield from Chlorella vulgaris (C. vulgaris). Moreover, the extraction yields of three solvent systems with maximum extraction efficiency of esterifiable lipids were determined by acidic transesterification and GC-FID analysis. Three solvent systems, which resulted in a higher extraction yield, were further subjected to fatty acid methyl ester (FAME) analysis. The total lipid extraction yields (based on dry biomass) were (38.57 ± 1.51), (25.33 ± 0.58), and (25.17 ± 1.14) %, for chloroform-methanol (1:2) (C1M2), hexane-methanol (1:2) (H1M2), and chloroform-methanol (2:1) (C2M1), respectively. The extraction efficiency of C1M2 was approximately 1.5 times higher than H1M2 and C2M1, whereas the FAME profile of extracted lipids by H1M2 and C1M2 were almost identical. Moreover, the esterifiable lipid extraction yields of (18.14 ± 2.60), (16.66 ± 0.35), and (13.22 ± 0.31) % (based on dry biomass) were obtained for C1M2, H1M2, and C2M1 solvent mixture systems, respectively. The biodiesel fuel properties produced from C. vulgaris were empirically predicted and compared to that of the EN 14214 and ASTM 6751 standard specifications.

  10. Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures.

    PubMed

    Wang, Liang; Wang, Yingkuan; Chen, Paul; Ruan, Roger

    2010-12-01

    The present study, based on a previous batch-wise experiment, investigated a lab-scale semi-continuous cultivation of green microalgae Chlorella vulgaris (UTEX 2714), as a useful means for nutrient reduction as well as production of algal biomass which can be used as potential feedstock for the production of biofuel and other commodities, on 20 x diluted dairy manures. Both undigested and digested samples were applied in parallel experiments for comparison regarding the requirements of hydraulic retention times (HRTs), removal efficiencies of nitrogen, phosphorus, and chemical oxygen demand (COD), biomass productivities, and CO₂ sequestration abilities. It was demonstrated that algae grown in undigested dairy manure achieved removal rates of 99.7%, 89.5%, 92.0%, and 75.5% for NH₄+--N, TN, TP, and COD, respectively, under a 5-day HRT, while the HRT had to extend to 20 days in order to achieve 100.0% removal of NH₄+--N in digested one with simultaneous removals of 93.6% of TN, 89.2% of TP, and 55.4% of COD. The higher organic carbon contained in undigested dairy manure helped boost the growth of mixotrophic Chlorella, thus resulting in a much shorter HRT needed for complete removal of NH₄+--N. Moreover, algae grown in digested dairy manure provided more penitential than those grown in undigested one in CO₂ sequestration per milligram of harvested dried biomass (1.68 mg CO₂/mg dry weight (DW) vs 0.99 mg CO₂/mg DW), but did not surpass in total the amount of CO₂ sequestered on a 15-day period basis because of the better productivity gained in undigested dairy manure.

  11. Energetic response of Chlorella vulgaris to alpha radiation and PCB stress

    SciTech Connect

    Schaffer, S.A.

    1982-01-01

    This research project has evaluated the bioenergetic response of the green alga Chlorella vulgaris following acute exposure to either the physical stress of radiation or the chemical stress of PCBs. After exposure, changes in survival or growth, adenylate pools (ATP, ADP, and AMP), CO/sub 2/ fixation and oxygen evolution and uptake were measured. By employing anaerobic conditions, or the electron transport inhibitor DCMU or dark conditions separately and in specific combinations, this study evaluated the response of three separate algal ATP producing mechanisms (respiration, total and cyclic photophosphorylation) to alpha radiation or PCB. The use of the adenylate energy charge ratio as an indicator of stress was also evaluated. The results of the radiation experiments indicated that alpha particle exposure between 25 to 275 rads caused a one-hour latent demand for ATP due to radioinduced DNA repair. In order to compensate for this ATP demand, nonessential utilization of ATP was decreased by slowing the rate of carbon fixation. The results also suggest that use of radiation as a tool to study algal physiology. The data obtained from the PCB experiments again showed each phosphorylation mechanism to be insensitive to 10, 100 and 200 ppm Aroclor 1254 exposures. Data suggest, however, that PCBs caused an increased photosynthetic rate, and total adenylate pool with decreased growth. The use of the adenylate energy charge ratio as a stress indicator was assessed. Because this ratio did not fluctuate at doses of radiation or PCBs that caused reduced survival and growth rates, this study concluded that for Chlorella the adenylate energy charge ration was a poor indicator of sublethal stress.

  12. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals.

    PubMed

    Rai, U N; Singh, N K; Upadhyay, A K; Verma, S

    2013-05-01

    A concentration-dependent increase in activity of antioxidant enzymes (catalase, ascorbate peroxidase, glutathione, superoxide dismutase) and carotenoid, MDA level have been observed in the green alga Chlorella vulgaris following chromium exposure at different concentrations (0.01-100 μg ml(-1)). Simultaneously, decrease in growth rate, chlorophyll and protein contents was observed. In case of ascorbate peroxidase, glutathione peroxidase and superoxide dismutase a bell shaped dose response was evident, however, lipid peroxidation followed a linear relationship along with catalase activity, which could be used as biomarker of Cr toxicity and played important role in providing tolerance and subsequently, high accumulation potential of chromium in C. vulgaris. In present investigation, the green alga C. vulgaris respond better under chromium stress in terms of tolerance, growth and metal accumulating potential at higher concentration of Cr (VI) which could be employed in decontamination of chromium for environmental cleanup. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  14. The role of phosphorus in the metabolism of arsenate by a freshwater green alga, Chlorella vulgaris.

    PubMed

    Baker, Josh; Wallschläger, Dirk

    2016-11-01

    A freshwater microalga, Chlorella vulgaris, was grown in the presence of varying phosphate concentrations (<10-500μg/L P) and environmentally realistic concentrations of arsenate (As(V)) (5-50μg/L As). Arsenic speciation in the culture medium and total cellular arsenic were measured using AEC-ICP-MS and ICP-DRC-MS, respectively, to determine arsenic biotransformation and uptake in the various phosphorus scenarios. At high phosphate concentration in the culture medium, >100μg/L P, the uptake and biotransformation of As(V) was minimal and dimethylarsonate (DMAs(V)) was the dominant metabolite excreted by C. vulgaris, albeit at relatively low concentrations. At common environmental P concentrations, 0-50μg/L P, the uptake and biotransformation of As(V) increased. At these higher As-uptake levels, arsenite (As(III)) was the predominant metabolite excreted from the cell. The concentrations of As(III) in these low P conditions were much higher than the concentrations of methylated arsenicals observed at the various P concentrations studied. The switchover threshold between the (small) methylation and (large) reduction of As(V) occurred around a cellular As concentration of 1fg/cell. The observed nearly quantitative conversion of As(V) to As(III) under low phosphate conditions indicates the importance of As(V) bio-reduction at common freshwater P concentrations. These findings on the influence of phosphorus on arsenic uptake, accumulation and excretion are discussed in relation to previously published research. The impact that the two scenarios of As(V) metabolism, As(III) excretion at high As(V)-uptake and methylarsenical excretion at low As(V)-uptake, have on freshwater arsenic speciation is discussed.

  15. CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana.

    PubMed

    Adamczyk, Michał; Lasek, Janusz; Skawińska, Agnieszka

    2016-08-01

    CO2 biofixation was investigated using tubular bioreactors (15 and 1.5 l) either in the presence of green algae Chlorella vulgaris or Nannochloropsis gaditana. The cultivation was carried out in the following conditions: temperature of 25 °C, inlet-CO2 of 4 and 8 vol%, and artificial light enhancing photosynthesis. Higher biofixation were observed in 8 vol% CO2 concentration for both microalgae cultures than in 4 vol%. Characteristic process parameters such as productivity, CO2 fixation, and kinetic rate coefficient were determined and discussed. Simplified and advanced methods for determination of CO2 fixation were compared. In a simplified method, it is assumed that 1 kg of produced biomass equals 1.88 kg recycled CO2. Advance method is based on empirical results of the present study (formula with carbon content in biomass). It was observed that application of the simplified method can generate large errors, especially if the biomass contains a relatively low amount of carbon. N. gaditana is the recommended species for CO2 removal due to a high biofixation rate-more than 1.7 g/l/day. On day 10 of cultivation, the cell concentration was more than 1.7 × 10(7) cells/ml. In the case of C. vulgaris, the maximal biofixation rate and cell concentration did not exceed 1.4 g/l/day and 1.3 × 10(7) cells/ml, respectively.

  16. Micro-columns packed with Chlorella vulgaris immobilised on silica gel for mercury speciation.

    PubMed

    Tajes-Martínez, P; Beceiro-González, E; Muniategui-Lorenzo, S; Prada-Rodríguez, D

    2006-02-28

    A method has been developed for mercury speciation in water by using columns packed with Chlorella vulgaris immobilised on silica gel. The method involves the retention of CH(3)Hg(+) and Hg(2+) in micro-columns prepared by packing immobilised algae in polypropylene tubes, followed by selective and sequential elution with 0.03 and 1.5M HCl for CH(3)Hg(+) and Hg(2+), respectively. The adsorption capacity of the micro-algae for Hg(2+) and CH(3)Hg(+) has been evaluated using free and immobilised C. vulgaris. The efficiency uptake for both species at pH 3 was higher than 97%. Studies were carried out on the effect of retention and elution conditions for both species. Furthermore, the stability of mercury species retained on algae-silica gel micro-columns and lifetime of the columns were also investigated. Hg(2+) showed a higher stability than CH(3)Hg(+) at 0 degrees C (21 and 3 days, respectively) and a better lifetime than for the organic species. The developed method was applied to the analysis of spiked tap, sea and wastewater samples. Recovery studies on tap and filtered seawater provided results between 96+/-3 and 106+/-2 for Hg(2+) and from 98+/-5 to 107+/-5 for CH(3)Hg(+), for samples spiked with single species. For samples spiked with both CH(3)Hg(+) and Hg(2+), the average recoveries varied from 96+/-5 to 99+/-3 and from 103+/-6 to 115+/-5 for Hg(2+) and CH(3)Hg(+), respectively. However, the percentages of retention and elution on wastewater and unfiltered seawater were only adequate for the inorganic species.

  17. Photosystem II Excitation Pressure and Photosynthetic Carbon Metabolism in Chlorella vulgaris.

    PubMed Central

    Savitch, L. V.; Maxwell, D. P.; Huner, NPA.

    1996-01-01

    Chlorella vulgaris grown at 5[deg]C/150 [mu]mol m-2 s-1 mimics cells grown under high irradiance (27[deg]C/2200 [mu]mol m-2 s-1). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687-694). To assess the possible role(s) of feed-back mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6-phosphate and sucrose/starch indicated that cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6- bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feed-back on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed. PMID:12226279

  18. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae).

    PubMed

    Piotrowska-Niczyporuk, Alicja; Bajguz, Andrzej; Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2012-03-01

    The present study was undertaken to test the influence of exogenously applied phytohormones: auxins (IAA, IBA, NAA, PAA), cytokinins (BA, CPPU, DPU, 2iP, Kin, TDZ, Z), gibberellin (GA(3)), jasmonic acid (JA) as well as polyamine - spermidine (Spd) upon the growth and metabolism of green microalga Chlorella vulgaris (Chlorophyceae) exposed to heavy metal (Cd, Cu, Pb) stress. The inhibitory effect of heavy metals on algal growth, metabolite accumulation and enzymatic as well as non-enzymatic antioxidant system was arranged in the following order: Cd > Pb > Cu. Exogenously applied phytohormones modify the phytotoxicity of heavy metals. Auxins, cytokinins, gibberellin and spermidine (Spd) can alleviate stress symptoms by inhibiting heavy metal biosorption, restoring algal growth and primary metabolite level. Moreover, these phytohormones and polyamine stimulate antioxidant enzymes' (superoxide dismutase, ascorbate peroxidase, catalase) activities and ascorbate as well as glutathione accumulation by producing increased antioxidant capacity in cells growing under abiotic stress. Increased activity of antioxidant enzymes reduced oxidative stress expressed by lipid peroxidation and hydrogen peroxide level. In contrast JA enhanced heavy metal toxicity leading to increase in metal biosorption and ROS generation. The decrease in cell number, chlorophylls, carotenoids, monosaccharides, soluble proteins, ascorbate and glutathione content as well as antioxidant enzyme activity was also obtained in response to JA and heavy metals. Determining the stress markers (lipid peroxidation, hydrogen peroxide) and antioxidants' level as well as antioxidant enzyme activity in cells is important for understanding the metal-specific mechanisms of toxicity and that these associated novel endpoints may be useful metrics for accurately predicting toxicity. The data suggest that phytohormones and polyamine play an important role in the C. vulgaris responding to abiotic stressor and algal

  19. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    PubMed

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  20. Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris.

    PubMed

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. The addition of 30-50 mg L(-1) alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. These results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Impact of excipients in the chronic toxicity of fluoxetine on the alga Chlorella vulgaris.

    PubMed

    Silva, Aurora; Santos, Lúcia H M L M; Delerue-Matos, Cristina; Figueiredo, Sónia A

    2014-01-01

    Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance (fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their ecotoxicity. Effective concentrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L⁻¹ were obtained in the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.

  2. Isolation of a novel lutein-protein complex from Chlorella vulgaris and its functional properties.

    PubMed

    Cai, Xixi; Huang, Qimin; Wang, Shaoyun

    2015-06-01

    A novel kind of lutein-protein complex (LPC) was extracted from heterotrophic Chlorella vulgaris through aqueous extraction. The purification procedure contained solubilization of thylakoid proteins by a zwitterionic detergent CHAPS, anion exchange chromatography and gel filtration chromatography. Both wavelength scanning and HPLC analysis confirmed that lutein was the major pigment of the protein-based complex, and the mass ratio of lutein and protein was determined to be 9.72 : 100. Besides showing lipid peroxidation inhibition activity in vitro, LPC exerted significant antioxidant effects against ABTS and DPPH radicals with IC50 of 2.90 and 97. 23 μg mL(-1), respectively. Meanwhile, in vivo antioxidant activity of the complex was evaluated using the mice hepatotoxicity model; LPC significantly suppressed the carbon tetrachloride-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and decreased hepatic malondialdehyde (MDA) levels and the hepatosomatic index. Moreover, LPC could effectively restore the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the treated mice livers. Our findings further the progress in the research of natural protein-based lutein complexes, suggesting that LPC has the potential in hepatoprotection against chemical induced toxicity and in increasing the antioxidant capacity of the defense system in the human body.

  3. The boosted biomass and lipid accumulation in Chlorella vulgaris by supplementation of synthetic phytohormone analogs.

    PubMed

    Liu, Tingting; Liu, Fei; Wang, Chao; Wang, Zhenyao; Li, Yuqin

    2017-02-07

    This study attempted at maximizing biomass and lipid accumulation in Chlorella vulgaris by supplementation of natural abscisic acid (ABA) or synthetic 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-naphthaleneacetic acid (NAA) hormone analogs. Amongst three tested additives, NAA-treatment performed remarkable promoting effect on cell growth and lipid biosynthesis. The favorable lipid productivity (418.6mg/L/d) of NAA-treated cells showed 1.48 and 2.24 times more than that of 2,4-D and ABA. NAA-treatment also positively modified the proportions of saturated (C16:0 and C18:0) and monounsaturated fatty acids (C18:1) which were prone to high-quality biofuels-making. Further, NAA-treatment manipulated endogenous phytohormones metabolism leading to the elevated levels of indole-3-acetic acid, jasmonic acid, and salicylic acid and such hormone accumulation might be indispensable for signal transduction in regulating cell growth and lipid biosynthesis in microalgae. In addition, the economic-feasibility and eco-friendly estimation of NAA additive indicated the higher possibilities in developing affordable and scalable microalgal lipids for biofuels.

  4. Harvesting Chlorella vulgaris by magnetic flocculation using Fe₃O₄ coating with polyaluminium chloride and polyacrylamide.

    PubMed

    Zhao, Yuan; Liang, Wenyan; Liu, Lijun; Li, Feizhen; Fan, Qianlong; Sun, Xiaoli

    2015-12-01

    The harvesting of Chlorella vulgaris was investigated by magnetic flocculation, where the natural magnetite was used as magnetic seeds and the polyaluminium chloride (PACl) and polyacrylamide (PAM) were used as the coating polymer on the Fe3O4 surface. The composite modes of PACl, PAM, and Fe3O4 and their effects on harvesting were studied. The results showed that adding the composite PACl/Fe3O4 first (at (0.625 mmol Al/L)/(10 g/L)) followed by the addition PAM (at 3mg/L) was the optimum dosing strategy. Following this strategy, 99% of cells could be harvested in less than 0.5 min, and it could overcome negative impacts from pH and algal organic matter. Compared to PACl, ζ-potentials of PACl/Fe3O4 were found to be increased substantially from -4.9-8.5 mV to 1.5-19.5 mV at pH range 2.1-12.3. The charge neutralization of PACl/Fe3O4 and sweeping of PAM play an important role in magnetic harvesting of microalgal cells.

  5. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris

    PubMed Central

    Awaluddin, S. A.; Thiruvenkadam, Selvakumar; Izhar, Shamsul; Hiroyuki, Yoshida; Danquah, Michael K.; Harun, Razif

    2016-01-01

    Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180–374°C), extraction time (1–20 min), biomass particulate size (38–250 μm), and microalgal biomass loading (5–40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production. PMID:27366748

  6. Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass.

    PubMed

    dos Santos, Raquel Rezende; Moreira, Daniel Mendonça; Kunigami, Claudete Norie; Aranda, Donato Alexandre Gomes; Teixeira, Cláudia Maria Luz Lapa

    2015-01-01

    The use of lipids obtained from microalgae biomass has been described as a promising alternative for production of biodiesel to replace petro-diesel. It involves steps such as the cultivation of microalgae, biomass harvesting, extraction and transesterification of lipids. The purpose of the present study was to compare different methods of extracting total lipids. These methods were tested in biomass of Chlorella vulgaris with the solvents ethanol, hexane and a mixture of chloroform:methanol in ratios 1:2 and 2:1. The solvents were associated with other mechanisms of cell disruption such as use of a Potter homogenizer and ultrasound treatment. The percentage of triglycerides in the total lipids was determinated by the glycerol-3-phosphate oxidase-p-chlorophenol method (triglycerides monoreagent K117; Bioclin). Among the tested methods, the mixture of chloroform:methanol (2:1) assisted by ultrasound was most efficient, extracting an average of 19% of total lipids, of which 55% were triglycerides. The gas chromatographic analysis did not show differences in methyl ester profiles of oils extracted under the different methods.

  7. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris

    PubMed Central

    2014-01-01

    Background MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris. Results Exposure to MWCNT and cotton CNF led to reductions on algal growth and cell viability. NP exposure induced reactive oxygen species (ROS) production and a decreased of intracellular ATP levels. Addition of NPs further induced ultrastructural cell damage. MWCNTs penetrate the cell membrane and individual MWCNTs are seen in the cytoplasm while no evidence of cotton CNFs was found inside the cells. Cellular uptake of MWCNT was observed in algae cells cultured in BB medium, but cells cultured in Seine river water did not internalize MWCNTs. Conclusions Under the conditions tested, such results confirmed that exposure to MWCNTs and to cotton CNFs affects cell viability and algal growth. PMID:24750641

  8. Growth of Chlorella vulgaris on sugarcane vinasse: the effect of anaerobic digestion pretreatment.

    PubMed

    Marques, Sheyla Santa Isabel; Nascimento, Iracema Andrade; de Almeida, Paulo Fernando; Chinalia, Fábio Alexandre

    2013-12-01

    Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m(3)CH4 kgCODvinasse (-1). The highest productivity of Chlorella vulgaris biomass (70 mg l(-1) day(-1)) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l(-1) day(-1). Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.

  9. Release of reduced inorganic selenium species into waters by the green fresh water algae Chlorella vulgaris.

    PubMed

    Simmons, Denina Bobbie Dawn; Wallschläger, Dirk

    2011-03-15

    The common green fresh water algae Chlorella vulgaris was exposed to starting concentrations of 10 μg/L selenium in the form of selenate, selenite, or selenocyanate (SeCN(-)) for nine days in 10% Bold's basal medium. Uptake of selenate was more pronounced than that of selenite, and there was very little uptake of selenocyanate. Upon uptake of selenate, significant quantities of selenite and selenocyanate were produced by the algae and released back into the growth medium; no selenocyanate was released after selenite uptake. Release of the reduced metabolites after selenate exposure appeared to coincide with increasing esterase activity in solution, indicating that cell death (lysis) was the primary emission pathway. This is the first observation of biotic formation of selenocyanate and its release into waters from a nonindustrial source. The potential environmental implications of this laboratory observation are discussed with respect to the fate of selenium in impacted aquatic systems, the ecotoxicology of selenium bioaccumulation, and the interpretation of environmental selenium speciation data generated, using methods incapable of positively identifying reduced inorganic selenium species, such as selenocyanate.

  10. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris.

    PubMed

    Soštarič, Maja; Klinar, Dušan; Bricelj, Mihael; Golob, Janvit; Berovič, Marin; Likozar, Blaž

    2012-02-15

    The microalga Chlorella vulgaris was cultured in a combined medium obtained by mixing standard Jaworski medium with a solution from the modified Solvay process that contained only NaHCO(3) and NH(4)Cl. Cell number, pH and nitrogen content were monitored throughout growth. Lipids were extracted from lyophilised biomass using CHCl(3)-MeOH. A combination of grinding, microwave treatment and sonication proved to give the best lipid extract yield. Freeze-dried algal biomass was also utilised for thermal degradation studies. The degradation exhibited three distinct regions - primary cell structure breakage paralleled by evaporation of water, followed by two predominant exothermic degradation processes. The latter were modelled using nth order apparent kinetics. The activation energies of the degradation processes were determined to be 120-126kJ/mol and 122-132kJ/mol, respectively. The degradation model may be readily applied to an assortment of thermal algal processes, especially those relating to renewable energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation.

    PubMed

    Fradique, Mónica; Batista, Ana Paula; Nunes, M Cristiana; Gouveia, Luísa; Bandarra, Narcisa M; Raymundo, Anabela

    2010-08-15

    Microalgae are able to enhance the nutritional content of conventional foods and hence to positively affect human health, due to their original chemical composition. The aim of the present study was to prepare fresh spaghetti enriched with different amounts of microalgae biomass (Chlorella vulgaris and Spirulina maxima) and to compare the quality parameters (optimal cooking time, cooking losses, swelling index and water absorption), chemical composition, instrumental texture and colour of the raw and cooked pasta enriched with microalgae biomass with standard semolina spaghetti. The incorporation of microalgae results in an increase of quality parameters when compared to the control sample. The colour of microalgae pastas remained relatively stable after cooking. The addition of microalgae resulted in an increase in the raw pasta firmness when compared to the control sample. Of all the microalgae studied, an increase in the biomass concentration (0.5-2.0%) resulted in a general tendency of an increase in the pasta firmness. Sensory analysis revealed that microalgae pastas had higher acceptance scores by the panellists than the control pasta. Microalgae pastas presented very appellative colours, such as orange and green, similar to pastas produced with vegetables, with nutritional advantages, showing energetic values similar to commercial pastas. The use of microalgae biomass can enhance the nutritional and sensorial quality of pasta, without affecting its cooking and textural properties. Copyright (c) 2010 Society of Chemical Industry.

  12. Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process.

    PubMed

    Du, Zhenyi; Hu, Bing; Shi, Aimin; Ma, Xiaochen; Cheng, Yanling; Chen, Paul; Liu, Yuhuan; Lin, Xiangyang; Ruan, Roger

    2012-12-01

    This study investigated the feasibility of using recovered nutrients from hydrothermal carbonization (HTC) for cultivation of microalga Chlorella vulgaris. Different dilution multiples of 50, 100 and 200 were applied to the recycled process water from HTC and algal growth was compared among these media and a standard growth medium BG-11. Algae achieved a biomass concentration of 0.79 g/L on 50 × process water after 4 days. Algae removed total nitrogen, total phosphorus and chemical oxygen demand by 45.5-59.9%, 85.8-94.6% and 50.0-60.9%, respectively, on differently diluted process water. The fatty acid methyl ester yields for algae grown on the process water were 11.2% (50 ×), 11.2% (100 ×) and 9.7% (200 ×), which were significantly higher than 4.5% for BG-11. In addition, algae cultivated on process water had 18.9% higher carbon and 7.8% lower nitrogen contents than those on BG-11, indicating that they are very suitable as biofuel feedstocks.

  13. Ecotoxicity tests using the green algae Chlorella vulgaris--a useful tool in hazardous effluents management.

    PubMed

    Silva, Aurora; Figueiredo, Sónia A; Sales, M Goreti; Delerue-Matos, Cristina

    2009-08-15

    The treatment efficiency of laboratory wastewaters was evaluated and ecotoxicity tests with Chlorella vulgaris were performed on them to assess the safety of their environmental discharge. For chemical oxygen demand wastewaters, chromium (VI), mercury (II) and silver were efficiently removed by chemical treatments. A reduction of ecotoxicity was achieved; nevertheless, an EC50 (effective concentration that causes a 50% inhibition in the algae growth) of 1.5% (v/v) indicated still high level of ecotoxicity. For chloride determination wastewaters, an efficient reduction of chromium and silver was achieved after treatment. Regarding the reduction of ecotoxicity observed, EC50 increased from 0.059% to 0.5%, only a 0.02% concentration in the aquatic environment would guarantee no effects. Wastewaters containing phenanthroline/iron (II) complex were treated by chemical oxidation. Treatment was satisfactory concerning chemical parameters, although an increase in ecotoxicity was observed (EC50 reduced from 0.31% to 0.21%). The wastes from the kinetic study of persulphate and iodide reaction were treated with sodium bisulphite until colour was removed. Although they did not reveal significant ecotoxicity, only over 1% of the untreated waste produced observable effects over algae. Therefore, ecotoxicity tests could be considered a useful tool not only in laboratory effluents treatment, as shown, but also in hazardous wastewaters management.

  14. Sorption Capacity Measurement of Chlorella Vulgaris and Scenedesmus Acutus to Remove Chromium from Tannery Waste Water

    NASA Astrophysics Data System (ADS)

    Ardila, Liliana; Godoy, Rubén; Montenegro, Luis

    2017-08-01

    Tanning process is a polluting activity due to the release of toxic agents into the environment. One of the most important of those toxic chemicals is chromium. Different alternatives have been proposed for the removal of this metal from tanning waste water which include the optimization of the productive processes, physicochemical and biochemical waste water treatment. In this study, the biological adsorption process of trivalent chromium was carried out in synthetic water and tannery waste water through two types of native green microalgae, called Chlorella vulgaris and Scenedesmus acutus in Free State and immobilized in PVA state. This, considering that cellular wall of microalgae has functional groups like amines and carboxyl that might bind with trivalent chromium. Statistical significance of variables as pH temperature, chromium and algae concentrations was evaluated just like bio sorption capacity of different types of water and kind of bioadsorbent was calculated to determine if this process is a competitive solution comparing to other heavy metal removal processes.

  15. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis.

    PubMed

    Agrawal, Ankit; Chakraborty, Saikat

    2013-01-01

    This work uses thermo-gravimetric, differential thermo-gravimetric and differential thermal analyses to evaluate the kinetics of pyrolysis (in inert/N(2) atmosphere) and (oxidative) combustion of microalgae Chlorella vulgaris by heating from 50 to 800 °C at heating rates of 5-40 °C/min. This study shows that combustion produces higher biomass conversion than pyrolysis, and that three stages of decomposition occur in both cases, of which, the second one--consisting of two temperature zones--is the main stage of devolatization. Proteins and carbohydrates are decomposed in the first of the two zones at activation energies of 51 and 45 kJ/mol for pyrolysis and combustion, respectively, while lipids are decomposed in its second zone at higher activation energies of 64 and 63 kJ/mol, respectively. The kinetic expressions of the reaction rates in the two zones for pyrolysis and combustion have been obtained and it has been shown that increased heating rates result in faster and higher conversion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris.

    PubMed

    Sharma, Amit Kumar; Sahoo, Pradeepta Kumar; Singhal, Shailey; Joshi, Girdhar

    2016-09-01

    The present study explores the integrated approach for the sustainable production of biodiesel from Chlorella vulgaris microalgae. The microalgae were cultivated in 10m(2) open raceway pond at semi-continuous mode with optimum volumetric and areal production of 28.105kg/L/y and 71.51t/h/y, respectively. Alum was used as flocculent for harvesting the microalgae and optimized at different pH. Lipid was extracted using chloroform: methanol (2:1) and having 12.39% of FFA. Effect of various reaction conditions such as effect of catalyst, methanol:lipid ratio, reaction temperature and time on biodiesel yields were studied under microwave irradiation; and 84.01% of biodiesel yield was obtained under optimized reaction conditions. A comparison was also made between the biodiesel productions under conventional heating and microwave irradiation. The synthesized biodiesel was characterized by (1)H NMR, (13)C NMR, FTIR and GC; however, fuel properties of biodiesel were also studied using specified test methods as per ASTM and EN standards.

  17. Technique for harvesting unicellular algae using colloidal gas aphrons. [Chlorella vulgaris

    SciTech Connect

    Honeycutt, S.S.; Wallis, D.A.; Sebba, F.

    1983-01-01

    A novel technique using colloidal gas aphron (CGA) dispersions has been investigated for harvesting Chlorella vulgaris, a unicellular green algae, from dilute suspension. CGA are very small gas bubbles, on the order of 25 ..mu..m in diameter, that are each encapsulated in an aqueous shell of surfactant solution. The process is based on the technology of CGA flotation, which involves the formation of algae-bubble complexes and their subsequent flotation to the surface. At neutral pH, the efficiency of algae removal was maximized when a cationic surfactant (lauryl pyridinium chloride) was used for CGA generation. At pH 10, both the cationic and anionic (sodium dodecyl benzene sulfonate) CGA dispersions yielded comparable removals. Addition of small quantities of alum (to 10/sup -4/M) improved removals using the cationic CGA, and at pH 10 this combination yielded the maximum removals that were achieved: 52.1% removal after a single application of CGA dispersion (1 to 1, dispersion to sample volume ratio), and 89.2% removal after an additional application. 12 references, 1 figure, 2 tables.

  18. Combined Extraction Processes of Lipid from Chlorella vulgaris Microalgae: Microwave Prior to Supercritical Carbon Dioxide Extraction

    PubMed Central

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO2) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO2). Work performed with pressure range of 20–28 Mpa and temperature interval of 40–70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO2 allowed to obtain the highest extraction yield (4.73%) compared to SCCO2 extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO2 extraction had the highest concentrations of fatty acids compared to SCCO2 extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO2, microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged. PMID:22272135

  19. Population growth of Euchlanis dilatata (Rotifera): combined effects of methyl parathion and food (Chlorella vulgaris).

    PubMed

    Sarma, S S; Nandini, S; Gama-Flores, J L; Fernandez-Araiza, M A

    2001-01-01

    In the present work, the combined impact of four concentrations (0, 0.0625, 0.125, and 0.25 mg/L) of methyl parathion and three densities (0.5 x 10(6), 1.0 x 10(6), and 2.0 x 10(6) cells/mL) of the green alga Chlorella vulgaris on the population growth of Euchlanis dilatata was studied. In general, regardless of the food level, an increase in the concentration of methyl parathion resulted in a significant reduction of the maximal population density and rate of population increase. The population growth rate in the controls ranged from 0.248 to 0.298; rates were lower in the presence of the pesticide. At any toxicant concentration, rotifers fed higher algal density showed significantly higher population growth compared with those at lower food levels. An interaction between toxicant and food level was evident on the population growth of E. dilatata. Results have been discussed in light of the protective role of algal density on the toxic effects of insecticides on rotifers and the differences in susceptibility to toxicants between planktonic and littoral rotifers.

  20. UVA-induced reset of hydroxyl radical ultradian rhythm improves temporal lipid production in Chlorella vulgaris.

    PubMed

    Balan, Ranjini; Suraishkumar, G K

    2014-01-01

    We report for the first time that the endogenous, pseudo-steady-state, specific intracellular levels of the hydroxyl radical (si-OH) oscillate in an ultradian fashion (model system: the microalga, Chlorella vulgaris), and also characterize the various rhythm parameters. The ultradian rhythm in the endogenous levels of the si-OH occurred with an approximately 6 h period in the daily cycle of light and darkness. Further, we expected that the rhythm reset to a shorter period could rapidly switch the cellular redox states that could favor lipid accumulation. We reset the endogenous rhythm through entrainment with UVA radiation, and generated two new ultradian rhythms with periods of approximately 2.97 h and 3.8 h in the light phase and dark phase, respectively. The reset increased the window of maximum lipid accumulation from 6 h to 12 h concomitant with the onset of the ultradian rhythms. Further, the saturated fatty acid content increased approximately to 80% of total lipid content, corresponding to the peak maxima of the hydroxyl radical levels in the reset rhythm.

  1. Photoperiod and temperature influence cadmium's effects on photosynthesis-related gene transcription in Chlorella vulgaris.

    PubMed

    Qian, Haifeng; Li, Jingjing; Pan, Xiangjie; Jiang, Haiyan; Sun, Liwei; Fu, Zhengwei

    2010-09-01

    Routine metal compound toxicity tests are performed at one constant photoperiod and temperature. There is little knowledge about the interactions between metal compound toxicity and photoperiod or temperature. The purpose of this study was to analyze the effects of photoperiod and temperature on cadmium (Cd) toxicity in the fresh alga, Chlorella vulgaris, both singly and in combination. Exposure to 2 or 4 microM Cd alone significantly decreased the transcription of the photosynthesis-related genes psbA, psaB and rbcL. Three-way ANOVA analysis showed that both temperature and photoperiod interacted with the dosage of Cd to influence the abundance of psbA and psaB, but not rbcL. Specifically, psbA transcription was more sensitive to Cd under long photoperiods or high temperatures than under short photoperiods or low temperatures. Because photoperiod and temperature have certain impacts on the toxicity of metal compounds, these two environmental factors should be given more attention in laboratory research. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Statistical optimization of harvesting Chlorella vulgaris using a novel bio-source, Strychnos potatorum.

    PubMed

    Abdul Razack, Sirajunnisa; Duraiarasan, Surendhiran; Santhalin Shellomith, A S; Muralikrishnan, Keerthana

    2015-09-01

    The present study was aimed at harvesting microalga, Chlorella vulgaris, by bioflocculation using seed powder of clearing nut, Strychnos potatorum. The research was essentially the prime step to yield a large biomass for utilising the cells in biodiesel production. Optimization of the parameters influencing bioflocculation was carried out statistically using RSM. The optimized conditions were 100 mg L(-1) bioflocculant concentration, 35 °C temperature, 150 rpm agitation speed and 30 min incubation time and resulted in a maximum efficiency of 99.68%. Through cell viability test, using Trypan blue stain, it was found that cells were completely intact when treated with bioflocculant, but destroyed when exposed to chemical flocculant, alum. The overall study represented that S. potatorum could potentially be a bioflocculant of microalgal cells and a promising substitute for expensive and hazardous chemical flocculants. Moreover, this bioflocculant demonstrated their utility to harvest microalgal cells by economically, effectively and in an ecofriendly way.

  3. Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: Isotope fractionation and proteomic approaches.

    PubMed

    Liu, Na; Li, Feng; Ge, Fei; Tao, Nengguo; Zhou, Qiongzhi; Wong, Minghung

    2015-08-01

    Removal of ammonium (NH4(+)-N) by microalgae has evoked interest in wastewater treatment, however, the detailed mechanisms of ammonium assimilation remain mysterious. This study investigated the effects of NH4(+)-N concentration on the removal and biotransformation efficiency by Chlorella vulgaris F1068, and explored the mechanisms by (15)N isotope fractionation and proteome approaches. The results showed NH4(+)-N was efficiently removed (84.8%) by F1068 at 10mgL(-1) of NH4(+)-N. The isotope enrichment factor (ε=-2.37±0.08‰) of (15)N isotope fractionation revealed 47.6% biotransformation at above condition, while 7.0% biotransformation at 4mgL(-1) of NH4(+)-N (ε=-1.63±0.06‰). This was due to the different expression of glutamine synthetase, a key enzyme in ammonium assimilation, which was up-regulated 6.4-fold at proteome level and 18.0-fold at transcription level. The results will provide a better mechanistic understanding of ammonium assimilation by microalgae and this green technology is expected to reduce the burden of NH4(+)-N removal for municipal sewage treatment plants.

  4. Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris.

    PubMed

    Deng, Lin; Wang, Hongli; Deng, Nansheng

    2006-11-16

    In this thesis, the photochemical reduction of hexavalent chromium Cr(VI) in the presence of algae, Chlorella vulgaris, was investigated under the irradiation of metal halide lamps (lambda = 365 nm, 250 W). The affecting factors of photochemical reduction were studied in detail, such as exposure time, initial Cr(VI) concentration, initial algae concentration and pH. The rate of Cr(VI) photochemical reduction increased with algae concentration increasing, exposure time increasing, initial Cr(VI) concentration decreasing and the decrease of pH. When pH increased to 6, the rate of Cr(VI) photochemical reduction nearly vanished. When initial Cr(VI) concentration ranged from 0.4 to 1.0 mg L(-1) and initial algae concentration ranged from ABS(algae) (the absorbency of algae) = 0.025 to ABS(algae) = 0.180, According to the results of kinetic analyses, the kinetic equation of Cr(VI) photochemical reduction in aqueous solution with algae under 250 W metal halide lamps was V0 = kC(0)(0.1718)A(algae)(0.5235) (C0 was initial concentration of Cr(VI); A(algae) was initial concentration of algae) under the condition of pH 4.

  5. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid.

    PubMed

    Park, Ji-Yeon; Choi, Sun-A; Jeong, Min-Ji; Nam, Bora; Oh, You-Kwan; Lee, Jin-Suk

    2014-06-01

    Hypochlorous acid treatment of a microalga, Chlorella vulgaris, was investigated to improve the quality of microalgal lipid and to obtain high biodiesel-conversion yield. Because chlorophyll deactivates the catalyst for biodiesel conversion, its removal in the lipid-extraction step enhances biodiesel productivity. When microalgae contacted the hypochlorous acid, chlorophyll was removed, and resultant changes in fatty acid composition of microalgal lipid were observed. The lipid-extraction yield after activated clay treatment was 32.7 mg lipid/g cell; after NaClO treatment at 0.8% available chlorine concentration, it was 95.2 mg lipid/g cell; and after NaCl electrolysis treatment at the 1 g/L cell concentration, it was 102.4 mg lipid/g cell. While the contents of all of the unsaturated fatty acids except oleic acid, in the microalgal lipid, decreased as the result of NaClO treatment, the contents of all of the unsaturated fatty acids including oleic acid decreased as the result of NaCl electrolysis treatment.

  6. Inhibition of Alkaline Flocculation by Algal Organic Matter for Chlorella vulgaris

    SciTech Connect

    Vandamme, Dries; Beuckels, Annelies; Vadelius, Eric; Depraetere, Orily; Noppe, Wim; Dutta, Abhishek; Foubert, Imogen; Laurens, Lieve; Muylaert, Koenraad

    2016-01-01

    Alkaline flocculation is a promising strategy for the concentration of microalgae for bulk biomass production. However, previous studies have shown that biological changes during the cultivation negatively affect flocculation efficiency. The influence of changes in cell properties and in the quality and composition of algal organic matter (AOM) were studied using Chlorella vulgaris as a model species. In batch cultivation, flocculation was increasingly inhibited over time and mainly influenced by changes in medium composition, rather than biological changes at the cell surface. Total carbohydrate content of the organic matter fraction sized bigger than 3 kDa increased over time and this fraction was shown to be mainly responsible for the inhibition of alkaline flocculation. The monosaccharide identification of this fraction mainly showed the presence of neutral and anionic monosaccharides. An addition of 30–50 mg L-1 alginic acid, as a model for anionic carbohydrate polymers containing uronic acids, resulted in a complete inhibition of flocculation. Furthermore, these results suggest that inhibition of alkaline flocculation was caused by interaction of anionic polysaccharides leading to an increased flocculant demand over time.

  7. Combined extraction processes of lipid from Chlorella vulgaris microalgae: microwave prior to supercritical carbon dioxide extraction.

    PubMed

    Dejoye, Céline; Vian, Maryline Abert; Lumia, Guy; Bouscarle, Christian; Charton, Frederic; Chemat, Farid

    2011-01-01

    Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO(2)) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO(2)). Work performed with pressure range of 20-28 Mpa and temperature interval of 40-70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO(2) allowed to obtain the highest extraction yield (4.73%) compared to SCCO(2) extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO(2) extraction had the highest concentrations of fatty acids compared to SCCO(2) extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO(2), microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.

  8. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    PubMed

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  9. [Mechanisms of 232Th effects on Chlorella vulgaris Beljer and modifications of it's toxic effect with caffeine and buthionine sulfoximine].

    PubMed

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S

    2006-01-01

    232Th effects and its modifications with caffeine and D, L-buthionine-(S, R)-sulphoximine in Chlorella vulgaris Beijer cells was studied with use an optical density measure after 24 hours growth. Was shown relationship between concentration and toxic effect that is nonlinear and characterized with three parts different in induced damages level. In the first concentration range (0.001-1.551 micromol/l) chlorella growth parameters don't significantly differ from control ones. In the second one (1.724-3.017 micromol/1) statistically significant increase of optical density is but the effect does not dependent on 232Th concentration. The 232Th concentration (>3.448 micromol/l) increase the monotonous decrease in optical density was observed. The main role in 232Th toxic effect decrease make processes of DNA reparation, but not free radical scavenging with glutathione.

  10. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%).

  11. Effects of arsenate (AS5+) on growth and production of glutathione (GSH) and phytochelatins (PCS) in Chlorella vulgaris.

    PubMed

    Jiang, Ying; Purchase, Diane; Jones, Huw; Garelick, Hemda

    2011-09-01

    The effect of arsenate (As5+) on growth and chlorophyll a production in Chlorella vulgaris, its removal by C. vulgaris and the role of glutathione (GSH) and phytochelatins (PCs) were investigated. C. vulgaris was tolerant to As5+ at up to 200 mg/L and was capable of consistently removing around 70% of the As5+ present in growth media over a wide range of exposure concentrations. Spectral analysis revealed that PCs and their arsenic-combined complexes were absent, indicating that the high bioaccumulation and tolerance to arsenic observed was not due to intracellular chelation. In contrast, GSH was found in all samples ranging from 0.8 mg/L in the control to 6.5 mg/L in media containing 200 mg/L As5+ suggesting that GSH plays a more prominent role in the detoxification of As5+ in C. vulgaris than PC. At concentrations below 100 mg/L cell surface binding and other mechanisms may play the primary role in As5+ detoxification, whereas above this concentration As5+ begins to accumulate inside the algal cells and activates a number of intracellular cell defense mechanisms, such as increased production of GSH. The overall findings complement field studies which suggest C. vulgaris as an increasingly promising low cost As phytoremediation method for developing countries.

  12. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    PubMed

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris.

  13. Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption

    PubMed Central

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-01-01

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15–1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%–20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control. PMID:25690037

  14. Cultivation of Chlorella vulgaris and Arthrospira platensis with recovered phosphorus from wastewater by means of zeolite sorption.

    PubMed

    Markou, Giorgos; Depraetere, Orily; Vandamme, Dries; Muylaert, Koenraad

    2015-02-16

    In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15-1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%-20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control.

  15. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    PubMed

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action.

  16. Impact of nitrophenols on the photosynthetic electron transport chain and ATP content in Nostoc muscorum and Chlorella vulgaris.

    PubMed

    Umamaheswari, A; Venkateswarlu, K

    2004-06-01

    Concentration-dependent inhibition of the photosynthetic electron transport chain (photosystem I (PS I), photosystem II (PS II) and whole chain reaction) and ATP content was observed in Nostoc muscorum and Chlorella vulgaris grown with o-nitrophenol, m-nitrophenol, or 2,4-dinitrophenol. Although the extents of inhibition of the photosynthetic electron transport chain in both organisms were similar, PS II was more sensitive than PS I and whole chain reaction to the nitrophenols. Depletion of the ATP pool was noted in nitrophenol-grown cultures, probably as a consequence of nearly complete inhibition of the photosynthetic electron transport chain.

  17. Biomass and oil production by Chlorella vulgaris and four other microalgae - Effects of salinity and other factors.

    PubMed

    Luangpipat, Tiyaporn; Chisti, Yusuf

    2017-09-10

    Five nominally freshwater microalgae (Chlorella vulgaris, Choricystis minor, Neochloris sp., Pseudococcomyxa simplex, Scenedesmus sp.) with a known ability to produce high-levels of lipids for possible use as fuel oils were evaluated for their ability to thrive and produce lipids in seawater and brackish water. Only C. vulgaris was found to thrive and produce lipids in full strength seawater. Seawater tolerant strains of C. vulgaris are unusual. Lipid productivity in nutrient sufficient seawater exceeded 37mgL(-1)d(-1) and was nearly 2-fold greater than in freshwater. Although other microalgae such as C. minor had higher lipid productivities (e.g. 45mgL(-1)d(-1)), they did not thrive in seawater. The lipid content of the C. vulgaris biomass was nearly 16% by dry weight. The calorific value of the seawater-grown C. vulgaris biomass exceeded 25kJg(-1). Compared to continuously illuminated cultures, a 12/12h light-dark cycle reduced lipid productivity of C. vulgaris by ∼30%, but did not affect the lipid content of the biomass. Biomass yield on phosphate was nearly 27% higher in seawater compared to in freshwater. While C. vulgaris has been extensively studied in freshwater, it has not been examined to any detail in full strength seawater. Studies in seawater are essential for any future large scale production of algal oils for biofuels: seawater is available cheaply and in large amounts whereas there is a global shortage of freshwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris.

    PubMed

    Pandit, Priti Raj; Fulekar, Madhusudan H; Karuna, Mallampalli Sri Lakshmi

    2017-04-07

    Two microalgae strains including Chlorella vulgaris and Acutodesmus obliquus were grown on BG11 medium with salinity stress ranging from 0.06 to 0.4 M NaCl. Highest lipid content in C. vulgaris and A. obliquus was 49 and 43% in BG11 amended with 0.4 M NaCl. The microalgal strains C. vulgaris and A. obliquus grow better at 0.06 M NaCl concentration than control condition. At 0.06 M NaCl, improved dry biomass content in C. vulgaris and A. obliquus was 0.92 and 0.68 gL(-1), respectively. Stress biomarkers like reactive oxygen species, antioxidant enzyme catalase, and ascorbate peroxidase were also lowest at 0.06 M NaCl concentration revealing that both the microalgal strains are well acclimatized at 0.06 M NaCl concentration. The fatty acid composition of the investigated microalgal strains was also improved by increased NaCl concentration. At 0.4 M NaCl, palmitic acid (37%), oleic acid (15.5%), and linoleic acid (20%) were the dominant fatty acids in C. vulgaris while palmitic acid (54%) and stearic acid (26.6%) were major fatty acids found in A. obliquus. Fatty acid profiling of C. vulgaris and A. obliquus significantly varied with salinity concentration. Therefore, the study showed that salt stress is an effective stress that could increase not only the lipid content but also improved the fatty acid composition which could make C. vulgaris and A. obliquus potential strains for biodiesel production.

  19. Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa.

    PubMed

    Kumari, Rima; Barsainya, Manjari; Singh, Devendra Pratap

    2017-02-01

    Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO3 + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45-100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.

  20. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens.

    PubMed

    An, Byoung-Ki; Kim, Kwan-Eung; Jeon, Jin-Young; Lee, Kyung Woo

    2016-01-01

    This experiment was carried out to investigate the effects of dried chlorella powder (Chlorella vulgaris; DCP) and chlorella growth factor (CGF) on growth performance, serum characteristics, meat qualities and humoral immune responses in broiler chicks. A total of 1050 day-old Ross male broiler chicks were randomly divided into 35 pens (30 chicks/pen) and subjected to one of seven dietary treatments. A non-medicated corn-soybean meal base diet was considered as negative control (NC) and added with either antibiotic (PC), three levels of DCP (NC diets added with 0.05, 0.15 or 0.5 % DCP) or two levels of CGF (NC diets added with 0.05 or 0.15 % CGF). The final body weight and daily weight gain in PC and groups fed diets with 0.15 or 0.5 % DCP were heavier (p < 0.001) than those of NC and CGF-treated groups. Serum total lipid concentrations were lower (p = 0.001) in groups fed diets with 0.5 % DCP and 0.05 or 0.15 % CGF compared with PC group. The levels of serum IgG (p = 0.050) and IgM (p = 0.010) were elevated in chicks fed diets with DCP and CGF compared with the PC or NC group. Meat qualities such as cooking loss, meat color, and pH, of edible meats were not altered by dietary treatments. Collectively, these results indicate that dietary DCP, but not CGF, exerted growth-promoting effect, and both DCP and CGF affected humoral immune response in broiler chicks.

  1. Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris.

    PubMed

    Qian, Haifeng; Li, Jingjing; Pan, Xiangjie; Sun, Liwei; Lu, Tao; Ran, Hongyu; Fu, Zhengwei

    2011-11-01

    The relationships between metal uptake and antioxidant enzyme activities or a response to membrane lipid peroxidation (i.e., malondialdehyde production) in Chlorella vulgaris exposed to Cu and Cd compounds singly and in combination were investigated. The results showed that bioaccumulation of a single metal was influenced by the presence of the other metal. The activities of superoxide dismutase and peroxidase increased to more than fivefold of the control after exposure to Cu(1.5 μM) alone or to Cu(1.5 μM) with Cd mixtures. Malondialdehyde levels in C. vulgaris also increased to approximately twofold of the control after exposure to high concentration of Cu(1.5 μM) alone or to Cu and Cd mixtures. However, Cd alone did not significantly increase the levels of antioxidant enzymes or malondialdehyde.

  2. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.

    PubMed

    Park, Won-Kun; Moon, Myounghoon; Kwak, Min-Su; Jeon, Seungjib; Choi, Gang-Guk; Yang, Ji-Won; Lee, Bongsoo

    2014-11-01

    Mass cultivation of microalgae is necessary to achieve economically feasible production of microalgal biodiesel, but the high cost of nutrients is a major limitation. In this study, orange peel extract (OPE) was used as an inorganic and organic nutrient source for the cultivation of Chlorella vulgaris OW-01. Chemical composition analysis of the OPE indicated that it contains sufficient nutrients for mixotrophic cultivation of C. vulgaris OW-01. Analysis of biomass and FAME production showed that microalgae grown in OPE medium produced 3.4-times more biomass and 4.5-times more fatty acid methyl esters (FAMEs) than cells cultured in glucose-supplemented BG 11 medium (BG-G). These results suggest that growth of microalgae in an OPE-supplemented medium increases lipid production and that OPE has potential for use in the mass cultivation of microalgae.

  3. Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations.

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; Melão, Maria da Graça G; Parrish, Christopher C

    2013-03-15

    Fatty acids are the fundamental structural components of membrane lipids, and the degree of saturation of the long hydrocarbon chains in microalgae contributes to regulation of growth, biomass production and reproduction of aquatic consumers. This research aimed at evaluating the effects of cadmium (2×10(-8); 10(-7) mol L(-1) Cd) on lipid class and fatty acid composition of the microalga Chlorella vulgaris under varying phosphate (PO(4)(3-)) concentrations (6.0×10(-7) to 2.3×10(-4) mol L(-1)). Under PO(4)(3-) limitation and Cd stress, the storage lipid class triacylglycerol (TAG) was the most accumulated among the lipid classes. Fatty acid composition revealed that the degree of saturation increased with increasing Cd stress and PO(4)(3-) limitation. Decreasing PO(4)(3-) and increasing Cd concentrations resulted in higher saturated fatty acid (SAFA) and monounsaturated FA (MUFA) concentrations. Total polyunsaturated FA (PUFA) and ω3 PUFA, and PUFA:SAFA ratios were higher in the control (2.3×10(-4) mol L(-1) PO(4)(3-)) cells than in either PO(4)(3-) limitation or Cd stress, or in the combination of both stresses. Contrasting with all the other PUFAs, 18:2n - 6 increased as PO(4)(3-) limitation increased. A significant positive relationship of PUFAs, acetone mobile polar lipids (AMPL) and phospholipids (PL) with phosphate concentration in the culture media was obtained, while TAG concentrations had a positive association with total MUFA and SAFA. Total SAFA, 14:0, 18:1n - 9 and 18:2n - 6 were positively correlated with Cd and negatively with PO(4)(3-) concentrations. The microalga responded to combined PO(4)(3-) limitation and Cd exposure by increasing its total lipid production and significantly altering its lipid composition. The FA 18:2n - 6 may be considered a stress biomarker for PO(4)(3-) limitation and Cd stress in C. vulgaris. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Phytochelatin induction by selenate in Chlorella vulgaris, and regulation of effect by sulfate levels.

    PubMed

    Simmons, Denina B D; Emery, R J Neil

    2011-02-01

    Phytochelatins (PCs) are short metal detoxification peptides made from the sulfur-rich molecule glutathione. The production of PCs by algae caused by Se exposure has never been studied, although many algae accumulate Se, forming Se-rich proteins and peptides, and higher plants have demonstrated PC production when treated with Se; therefore, a goal of the current study was to examine whether Se induces PC production in algae. Furthermore, selenate is thought to compete with sulfate in the S assimilation pathway, and sulfate therefore may have a protective effect against the toxic effects of high doses of Se in algae. Hence, the interaction of selenate and sulfate was investigated with respect to the induction of PCs. Chlorella vulgaris was cultured in media with either low (31.2 µM) or high (312 µM) concentrations of sulfate. These cultures were exposed to selenate in doses of 7, 35, and 70 nM for 48 h. In a separate treatment, Cd (890 nM) was added as a positive PC-inducing control, and one no-metal negative control was used. Total Se and Se speciation were determined, and glutathione, phytochelatin-2, and phytochelatin-3 were quantified in each of cell digests, cell medium, and cell lysates. We found that PCs and their precursor glutathione were induced by selenate as well as by a Cd control. The high concentration of sulfate was able to counter selenate-induced production of PCs and glutathione. These data support two possible mechanisms: a negative feedback system in the S assimilation pathway that affects PC production when sulfate is abundant, and competition for uptake at the ion transport level between selenate and sulfate. © 2010 SETAC.

  5. Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: An organelle-level attempt.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong

    2016-12-01

    The priority pollutant chromium (Cr) was ubiquitous and great efforts have been made to reduce Cr (VI) into less-toxic Cr (III) by alga for the convenient availability and low expense. However, the functional role of organelle inside the algal cell in Cr (VI) reduction was poorly understood. In this study, organelles in green algae Chlorella vulgaris were extracted and further decorated for Cr (VI) reduction tests. Results showed that the chloroplast exhibited not only adsorption ability of total Cr (21.18% comparing to control) but also reduction potential of Cr (VI) (almost 70% comparing to control), whose most suitable working concentration was at 17μg/mL. Furtherly, the isolated thylakoid membrane (ITM) showed better Cr (VI) reduction potential with the presence of sodium alginate (SA), even though the Hill reaction activity (HRA) was inhibited. As for photosystem II (PSII), the addition of mesoporous silica SBA-15 enhanced the reduction ability through improving the light-harvesting complex (LHC) II efficiency and electron transport rate. On the whole, the reduction ability order of the three kinds of materials based on chloroplast in C. vulgaris was PSII@SBA-15>Chloroplast>ITM@SA. The attempt made in this study to reduce the Cr (VI) with C. vulgaris organelles might not only offer basement to detect the potential action mechanism of Cr (VI) reduction by C. vulgaris but also provide a new sight for the scavenge of heavy metal with biological materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Chia, Mathias Ahii; Lombardi, Ana Teresa; da Graça Gama Melão, Maria; Parrish, Christopher C

    2015-03-01

    Metals have interactive effects on the uptake and metabolism of nutrients in microalgae. However, the effect of trace metal toxicity on amino acid composition of Chlorella vulgaris as a function of varying nitrogen concentrations is not known. In this research, C. vulgaris was used to investigate the influence of cadmium (10(-7) and 2.0×10(-8)molL(-1) Cd) under varying nitrogen (2.9×10(-6), 1.1×10(-5) and 1.1×10(-3)molL(-1)N) concentrations on its growth rate, biomass and biochemical composition. Total carbohydrates, total proteins, total lipids, as well as individual amino acid proportions were determined. The combination of Cd stress and N limitation significantly inhibited growth rate and cell density of C. vulgaris. However, increasing N limitation and Cd stress stimulated higher dry weight and chlorophyll a production per cell. Furthermore, biomolecules like total proteins, carbohydrates and lipids increased with increasing N limitation and Cd stress. Ketogenic and glucogenic amino acids were accumulated under the stress conditions investigated in the present study. Amino acids involved in metal chelation like proline, histidine and glutamine were significantly increased after exposure to combined Cd stress and N limitation. We conclude that N limitation and Cd stress affects the physiology of C. vulgaris by not only decreasing its growth but also stimulating biomolecule production. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties

    NASA Astrophysics Data System (ADS)

    Annamalai, Jayshree; Nallamuthu, Thangaraju

    2014-09-01

    In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.

  8. The Dietary Effects of Fermented Chlorella vulgaris (CBT®) on Production Performance, Liver Lipids and Intestinal Microflora in Laying Hens

    PubMed Central

    Zheng, L.; Oh, S. T.; Jeon, J. Y.; Moon, B. H.; Kwon, H. S.; Lim, S. U.; An, B. K.; Kang, C. W.

    2012-01-01

    Fermented Chlorella vulgaris CBT® was evaluated for its effects on egg production, egg quality, liver lipids and intestinal microflora in laying hens. One hundred and eight Hy-line Brown layers (n = 108), 80 wk of age, were fed a basal diet supplemented with CBT® at the level of 0, 1,000 or 2,000 mg/kg, respectively for 42 d. Egg production was measured daily and egg quality was measured every two weeks. Five eggs from each replicate were collected randomly to determine egg quality. Egg production increased linearly with increasing levels of CBT® supplementation (p<0.05), although there was no significant effect of treatment on feed intake. Egg yolk color (p<0.001) and Haugh unit (p<0.01) improved linearly with increasing dietary CBT®. Hepatic triacylglycerol level was linearly decreased with increasing dietary CBT® (p<0.05). The supplemental CBT® resulted in linear (p<0.001) and quadratic (p<0.01) response in population of cecal lactic acid bacteria. In conclusion, fermented Chlorella vulgaris supplemented to laying hen diets improved egg production, egg yolk color, Haugh unit and positively affected the contents of hepatic triacylglycerol and the profiles of cecal microflora. PMID:25049560

  9. Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties

    NASA Astrophysics Data System (ADS)

    Annamalai, Jayshree; Nallamuthu, Thangaraju

    2015-06-01

    In this study, biosynthesis of self-assembled gold nanoparticles (GNPs) was accomplished using an aqueous extract of green microalga, Chlorella vulgaris. The optical, physical, chemical and bactericidal properties of the GNPs were investigated to identify their average shape and size, crystal nature, surface chemistry and toxicity, via UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and antimicrobial activity. The sizes of the spherical self-assembled cores of the synthesized GNPs ranged from 2 to 10 nm. The XRD patterns showed a (111) preferential orientation and the crystalline nature of the GNPs. The results of the FTIR analysis suggested that the peptides, proteins, phenol and flavonoid carried out the dual function of effective Au III reduction and successful capping of the GNPs. Human pathogen Candida albicans and Staphylococcus aureus were susceptible to synthesized aqueous GNPs. Thus, biosynthesis, stabilization and self-assembly of the GNPs by Chlorella vulgaris extract can be an example of green chemistry and effective drug in the medicinal field.

  10. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    PubMed Central

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-01-01

    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during

  11. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice.

    PubMed

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-12-01

    The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during aging.

  12. Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Bashan, Yoav

    2015-01-01

    Accumulation of intracellular ammonium and activities of the enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were measured when the microalgae Chlorella vulgaris was immobilized in alginate with either of two wild type strains of Azospirillum brasilense or their corresponding indole-3-acetic acid (IAA)-attenuated mutants. After 48 h of immobilization, both wild types induced higher levels of intracellular ammonium in the microalgae than their respective mutants; the more IAA produced, the higher the intracellular ammonium accumulated. Accumulation of intracellular ammonium in the cells of C. vulgaris followed application of four levels of exogenous IAA reported for A. brasilense and its IAA-attenuated mutants, which had a similar pattern for the first 24 h. This effect was transient and disappeared after 48 h of incubation. Immobilization of C. vulgaris with any bacteria strain induced higher GS activity. The bacterial strains also had GS activity, comparable to the activity detected in C. vulgaris, but weaker than when immobilized with the bacteria. When net activity was calculated, the wild type always induced higher GS activity than IAA-attenuated mutants. GDH activity in most microalgae/bacteria interactions resembled GS activity. When complementing IAA-attenuated mutants with exogenous IAA, GS activity in co-immobilized cultures matched those of the wild type A. brasilense immobilized with the microalga. Similarity occurred when the net GS activity was measured, and was higher with greater quantities of exogenous IAA. It is proposed that IAA produced by A. brasilense is involved in ammonium uptake and later assimilation by C. vulgaris. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Demography of zooplankton (Anuraeopsis fissa, Brachionus rubens and Moina macrocopa) fed Chlorella vulgaris and Scenedesmus acutus cultured on different media.

    PubMed

    Morales-Ventura, Jesús; Nandini, S; Sarma, S S S; Castellanos-Páez, Maria Elena

    2012-09-01

    Generally zooplankton growth is often limited by the quality of their algal diet. A cheaper common practice in aquaculture, is to culture algae with fertilizers; however, the demography of zooplankton when fed these algae has not yet been evaluated. We studied the population growth and life table demography of the rotifers Anuraeopsis fissa and Brachionus rubens, and the cladoceran Moina macrocopa. For this, the algae Scenedesmus acutus or Chlorella vulgaris were cultured on defined (Bold's basal) medium or the commercial liquid fertilizer (Bayfolan). Experiments were conducted at one algal concentration 1.0 x 10(6) cells/mL of C. vulgaris or its equivalent dry weight of 0.5 x 10(6) cells/mL of S. acutus. The population dynamics were tested at 23 +/- 1 degrees C in 100 mL transparent jars, each with 50mL of the test medium, with an initial density of 0.5indiv/mL, for a total of 48 test jars (3 zooplankton 2 algal species x 2 culture media x 4 replicates). For the life table experiments with M. macrocopa, we introduced 10 neonates (<24h old) into each test jar containing the specific algal type and concentration. For the rotifer experiments, we set 5mL tubes with one neonate each and 10 replicates for each algal species and culture medium. We found that the average rotifer life span was not influenced by the diet, but for M. macrocopa fed S. acutus cultured in Bold's medium, the average lifespan was significantly lower than with the other diets. The gross and net reproductive rates of A. fissa (ranging from 18-36 offspring per female) were significantly higher for C vulgaris cultured in Bold medium. Regardless of the culture medium, Chlorella resulted in significantly higher gross and net reproductive rates for B. rubens than S. acutus diets. The reproductive rates of M. macrocopa were significantly higher in all the tested diets except when fed with S. acutus in Bold medium. The population increase rate, derived from growth experiments of A. fissa and B. rubens

  14. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).

  15. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions.

    PubMed

    Dauda, Suleiman; Chia, Mathias Ahii; Bako, Sunday Paul

    2017-06-01

    The broad application of titanium dioxide nanoparticles (n-TiO2) in many consumer products has resulted in the release of substantial quantities into aquatic systems. While n-TiO2 have been shown to induce some unexpected toxic effects on aquatic organisms such as microalgae, the influence of changing nutrient conditions on the toxicity of the metal has not been investigated. We evaluated the toxicity of n-TiO2 to Chlorella vulgaris under varying nitrogen conditions. Limited nitrogen (2.2μM) decreased growth and biomass (dry weight and pigment content), while lipid peroxidation (malondialdehyde content), glutathione S-transferase activity (GST) and peroxidase (POD) activity were increased. Similarly, exposure to n-TiO2 under replete nitrogen condition resulted in a general decrease in growth and biomass, while GST and POD activities were significantly increased. The combination of limited nitrogen with n-TiO2 exposure further decreased growth and biomass, and increased GST and POD activities of the microalga. These results suggest that in addition to the individual effects of each investigated condition, nitrogen limitation makes C. vulgaris more susceptible to the effects of n-TiO2 with regard to some physiological parameters. This implies that the exposure of C. vulgaris and possibly other green algae to this nanoparticle under limited or low nitrogen conditions may negatively affect their contribution to primary production in oligotrophic aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium.

    PubMed

    Kumar, Martin S; Miao, Zhihong H; Wyatt, Sandy K

    2010-08-01

    Large amount of waste produced in the livestock industry could be reused to produce valuable products such as microalgae, which are used predominantly in the primary treatment of wastewater for bioremediation. In this study digested piggery effluent was used as nutrient source to substitute mineral nutrients for culturing feed grade Chlorella vulgaris. Two experiments were conducted to investigate the effect of total ammonia nitrogen (TAN) levels, inoculum mediums and the feeding frequencies on the performance of C. vulgaris. The first experimental results showed that 20mg TAN/l in the culture media resulted in better algal SGR (0.345/day; P>0.05). The adding 200 ml effluent into 10 l culture medium at the start (20.6 mg TAN/l) in the second experiment resulted in a large increase of algal population from day 1 to 6 and reached 11.9 million algae/ml at day 6. This study indicated that high production of C. vulgaris could be achieved at short time by feeding digested effluent once. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  17. Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water.

    PubMed

    Jin, Jing; Yang, Lihua; Chan, Sidney M N; Luan, Tiangang; Li, Yan; Tam, Nora F Y

    2011-01-30

    The removal and degradation of tributyltin (TBT) by alginate immobilized Chlorella vulgaris has been evidenced in our previously published work. The present study was further to investigate the effect of spiked nutrient concentrations on the TBT removal capacity and degradation in the same alginate immobilized C. vulgaris. During the 14-d experiment, compared to the control (natural river water), the spiked nutrient groups (50% or 100% nutrients of the commercial Bristol medium as the reference, marked as 1/2N or 1N) showed more rapid cell proliferation of microalgae and higher TBT removal rate. Moreover, significantly more TBT was adsorbed onto the alginate matrix, but less TBT was taken up by the algal cells of the nutrient groups than that of the control. Mass balance data showed that TBT was lost as inorganic tin in the highest degree in 1N group, followed by 1/2N group and the least was in the control, but the relative abundance of the intermediate products of debutylation (dibutyltin and monobutyltin) were comparable among three groups. In conclusion, the addition of nutrients in contaminated water stimulated the growth and physiological activity of C. vulgaris immobilized in alginate beads and improved its TBT degradation efficiency. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The growth behavior of Chlorella vulgaris in the presence of 4-chlorophenol and 2,4-dichlorophenol.

    PubMed

    Sahinkaya, Erkan; Dilek, Filiz B

    2009-03-01

    Toxicity of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) on the growth of Chlorella vulgaris was investigated in batch reactors. Results revealed that 4-CP did not adversely affect the growth of algae up to 20mg/L, however higher concentrations inhibited growth appreciably and no growth was detected at 100mg/L. 4-CP also caused some physiological changes in the algal cells as increasing initial 4-CP concentration caused a linear decrease in chlorophyll a (chl-a) content of the cell. 2,4-DCP up to 20mg/L did not exert toxic effect on the growth of C. vulgaris, rather an induction effect was evident. Unlike a linear decrease with 4-CP, no exact correlation between 2,4-DCP concentration and chl-a content of the cell was observed, but it was certain that the presence of 2,4-DCP caused some physiological changes in the cell of C. vulgaris. No biodegradation of 4-CP and 2,4-DCP was observed over a 30-day incubation.

  19. Photosensitized destruction of Chlorella vulgaris by Methylene Blue or Nuclear Fast Red combined with hydrogen peroxide under visible light irradiation.

    PubMed

    McCullagh, Cathy; Robertson, Peter K J

    2006-04-01

    A considerable number of investigations have started to elucidate the essential roles biological agents play in the biodeterioration of stone. Chemical biocides are becoming increasingly banned because of the environmental and health hazards associated with these toxic substances. The present study reports the photodynamic effect of Methylene Blue (MB) and Nuclear Fast Red (NFR) in the presence of hydrogen peroxide (H2O2) on the destruction of the algae Chlorella vulgaris (C. vulgaris) under irradiation with visible light. Illumination of C. vulgaris in the presence of MB or NFR combined with H2O2 results in the decomposition of both the algal species and the photosensitizer. The photodynamic effect was investigated under aerobic and anaerobic conditions. Differences in mechanism type are reported and are dependent on both the presence and the absence of oxygen. The behavior of each photosensitizer leads to a Type II mechanism and a Type I/Type II combination for MB and NFR, respectively, being concluded. This novel combination could be effective for the remediation of biofilm-colonized stone surfaces.

  20. First Report of Pseudobodo sp, a New Pathogen for a Potential Energy-Producing Algae: Chlorella vulgaris Cultures

    PubMed Central

    Zhang, Bangzhou; Yang, Luxi; Zhang, Huajun; Zhang, Jingyan; Li, Yi; Zheng, Wei; Tian, Yun; Liu, Jingwen; Zheng, Tianling

    2014-01-01

    Chlorella vulgaris, is a kind of single-celled green algae, which could serve as a potential source of food and energy because of its photosynthetic efficiency. In our study, a pathogenic organism targeting C. vulgaris was discovered. The algae-lytic activity relates to a fraction from lysates of infected C. vulgaris that was blocked upon filtration through a 3 µm filter. 18S rRNA gene sequence analysis revealed that it shared 99.0% homology with the protist Pseudobodo tremulans. Scanning electron microscope analysis showed that Pseudobodo sp. KD51 cells were approximately 4–5 µm long, biflagellate with an anterior collar around the anterior part of the cell in unstressed feeding cells. Besides the initial host, Pseudobodo sp. KD51 could also kill other algae, indicating its relatively wide predatory spectrum. Heat stability, pH and salinity tolerance experiments were conducted to understand their effects on its predatory activities, and the results showed that Pseudobodo sp. KD51 was heat-sensitive, and pH and salinity tolerant. PMID:24599263

  1. The effects of hydraulic retention time (HRT) on chromium(VI) reduction using autotrophic cultivation of Chlorella vulgaris.

    PubMed

    Lee, Ling; Hsu, Chih-Yuan; Yen, Hong-Wei

    2017-09-04

    Chromium is an acutely toxic heavy metal that is known to be a carcinogen. Of the two predominant forms of chromium, Cr(III) and Cr(VI), Cr(III) has only about one thousandth the toxicity of Cr(VI). Using microalgal biomass is one way to remove Cr(VI) from the environment. Four days of hydraulic retention time (HRT) was required to completely reduce 10 mg/L of Cr(VI) in the influent. Microalgal biomass is conventionally regarded as an adsorbent in most Cr(VI) reduction studies. However, this study found that Chlorella vulgaris had the potential to convert Cr(VI) to Cr(III) through the enzymatic route of chromium reductase although the measured chromium reductase activity of C. vulgaris was less than that reported values obtained in bacteria. X-ray absorption near-edge spectroscopy (XANES) analysis further showed the absorption edge of Cr(III) in Cr(VI)-treated C. vulgaris, supporting the assumption of Cr(VI) potentially being converted to less-toxic Cr(III).

  2. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production.

    PubMed

    Wong, Y K; Ho, Y H; Ho, K C; Leung, H M; Yung, K K L

    2017-04-01

    Chlorella vulgaris was cultivated under limitation and starvation and under controlled conditions using different concentrations of nitrate (NaNO3) and phosphate (K2HPO4 and KH2PO4) chemicals in modified Bold basal medium (BBM). The biomass and lipid production responses to different media were examined in terms of optical density, cell density, dry biomass, and lipid productivity. In the 12-day batch culture period, the highest biomass productivity obtained was 72.083 mg L(-1) day(-1) under BBM - NcontrolPlimited condition. The highest lipid content, lipid concentration, and lipid productivity obtained were 53.202 %, 287.291 mg/L, and 23.449 mg L(-1) day(-1) under BBM - NControlPDeprivation condition, respectively. Nitrogen had a major effect in the biomass concentration of C. vulgaris, while no significant effect was found for phosphorus. Nitrogen and phosphorus starvation was found to be the strategy affecting the lipid accumulation and affected the lipid composition of C. vulgaris cultures.

  3. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    PubMed

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO3, NaNO2, NH4Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents.

  4. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass.

    PubMed

    Gokhale, S V; Jyoti, K K; Lele, S S

    2008-06-01

    Biosorption of chromium (VI) was studied using both fresh and spent algal biomass of Spirulina platensis and Chlorella vulgaris. Both showed comparable behavior suggesting that biosorption is primarily a surface phenomenon. Biosorption rate was very fast during the first five minutes, in which almost 50% of the chromium (VI) was adsorbed. Two step kinetic model was proposed for biosorption. Equilibrium data obeyed Freundlich and Langmuir adsorption isotherms. Fresh algal biomass of S. platensis gave maximum of 73.6% biosorption of chromium (VI) in 100 ppm solution at 1 g l(-1) cell loading. For improved economics, beta-carotene was extracted from S. platensis and the spent biomass was used for chromium (VI) biosorption. The maximum biosorption by spent biomass was increased to 86.2%. Thus, this two step process not only showed improved efficiency in biosorption ( approximately 17% increase) but also gave valuable byproduct, namely beta-carotene.

  5. Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment.

    PubMed

    Postma, P R; Pataro, G; Capitoli, M; Barbosa, M J; Wijffels, R H; Eppink, M H M; Olivieri, G; Ferrari, G

    2016-03-01

    The synergistic effect of temperature (25-65 °C) and total specific energy input (0.55-1.11 kWh kgDW(-1)) by pulsed electric field (PEF) on the release of intracellular components from the microalgae Chlorella vulgaris was studied. The combination of PEF with temperatures from 25 to 55 °C resulted in a conductivity increase of 75% as a result of cell membrane permeabilization. In this range of temperatures, 25-39% carbohydrates and 3-5% proteins release occurred and only for carbohydrate release a synergistic effect was observed at 55 °C. Above 55 °C spontaneous cell lysis occurred without PEF. Combined PEF-temperature treatment does not sufficiently disintegrate the algal cells to release both carbohydrates and proteins at yields comparable to the benchmark bead milling (40-45% protein, 48-58% carbohydrates).

  6. Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle.

    PubMed

    Discart, V; Bilad, M R; Marbelia, L; Vankelecom, I F J

    2014-01-01

    A membrane photobioreactor (MPBR) is a proven and very useful concept in which microalgae can be simultaneously cultivated and pre-harvested. However, the behavior with respect to accumulation of algogenic organic matter, including transparent exopolymeric particles (TEPs), counter ions and unassimilated nutrients due to the recycling of the medium is still unclear, even though the understanding of this behavior is essential for the optimization of microalgae processing. Therefore, the dynamics of these compounds, especially TEPs, during coupled cultivation and harvesting of Chlorella vulgaris in an MPBR with permeate recycle are addressed in this study. Results show that TEPs are secreted during algae cell growth, and that their presence is thus inevitable. In the system with permeate recycle, substances such as counter ions and unassimilated nutrients get accumulated in the system. This was proven to limit the algae growth, together with the occurrence of bioflocculation due to an increasing broth pH.

  7. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy.

    PubMed

    Xie, Tonghui; Xia, Yun; Zeng, Yu; Li, Xingrui; Zhang, Yongkui

    2017-02-27

    Protein production from microalgae requires both high cell density during cultivation and high protein content in cells. Heterotrophic microalgae can achieve high cell density, and yet are confronted with the problem of low protein content. Based on over-compensation strategy, a new concentration-shift method was proposed to cultivate heterotrophic Chlorella vulgaris, aiming to increase protein content. With a prior starvation period, microalgae utilized more nitrate and accumulated more proteins compared to one-stage cultivation. Considering the convenience of operation, nitrate-added culture was adopted for producing heterotrophic microalgae, rather than sterile centrifugal culture. Operating parameters including nitrate concentration in N-deficient medium, N-starved time and nitrate concentration in N-rich medium were optimized, which were 0.18gl(-1), 38h and 2.45gl(-1), respectively. Under the optimized conditions, protein content in heterotrophic Chlorella reached 44.3%. Furthermore, the heterotrophic microalga was suggested to be a potential single-cell protein source according to the amino acid composition.

  8. Assessment of a tannin-based organic polymer to harvest Chlorella vulgaris biomass from swine wastewater digestate phycoremediation.

    PubMed

    Mezzari, M P; da Silva, M L B; Pirolli, M; Perazzoli, S; Steinmetz, R L R; Nunes, E O; Soares, H M

    2014-01-01

    This study investigated the efficiency of an organic tannin polymer alone or amended with polyacrylamide to harvest Chlorella vulgaris biomass grown in a laboratory-scale photobioreactor treating swine wastewater digestate. The effect of biomass concentration, tannin (TAN) dosages and changes in pH were evaluated in jar test experiments. Among the TAN concentrations tested (11, 22, 44, 89, 178 mg L(-1)), 11 mg L(-1) showed the highest biomass recovery (97%). The highest coagulation/ flocculation efficiencies were obtained at pH 5 to 7. Flocculation efficiency improved from 50 to 97% concomitant with the increasing biomass concentrations from 45 to 165 mg L(-1), respectively. Recovery efficiencies above 95% were achieved with the same TAN dosage (11 mg L(-1)) irrespective of the concentration of organic carbon present (75 to 300 mg TOC L(-1)). Overall, the results suggest that TAN could become an interesting alternative choice of non-toxic organic polymer for harvesting Chlorella sp. from organic-rich wastewater.

  9. Chlorella vulgaris Attenuates Dermatophagoides Farinae-Induced Atopic Dermatitis-Like Symptoms in NC/Nga Mice

    PubMed Central

    Kang, Heerim; Lee, Chang Hyung; Kim, Jong Rhan; Kwon, Jung Yeon; Seo, Sang Gwon; Han, Jae Gab; Kim, Byung Gon; Kim, Jong-Eun; Lee, Ki Won

    2015-01-01

    Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD. PMID:26404252

  10. The mechanisms of detoxification of As(III), dimethylarsinic acid (DMA) and As(V) in the microalga Chlorella vulgaris.

    PubMed

    Pantoja Munoz, L; Purchase, D; Jones, H; Raab, A; Urgast, D; Feldmann, J; Garelick, H

    2016-06-01

    The response of Chlorella vulgaris when challenged by As(III), As(V) and dimethylarsinic acid (DMA) was assessed through experiments on adsorption, efflux and speciation of arsenic (reduction, oxidation, methylation and chelation with glutathione/phytochelatin [GSH/PC]). Our study indicates that at high concentrations of phosphate (1.62mM of HPO4(2-)), upon exposure to As(V), cells are able to shift towards methylation of As(V) rather than PC formation. Treatment with As(V) caused a moderate decrease in intracellular pH and a strong increase in the concentration of free thiols (GSH). Passive surface adsorption was found to be negligible for living cells exposed to DMA and As(V). However, adsorption of As(III) was observed to be an active process in C. vulgaris, because it did not show saturation at any of the exposure periods. Chelation of As(III) with GS/PC and to a lesser extent hGS/hPC is a major detoxification mechanism employed by C. vulgaris cells when exposed to As(III). The increase of bound As-GS/PC complexes was found to be strongly related to an increase in concentration of As(III) in media. C. vulgaris cells did not produce any As-GS/PC complex when exposed to As(V). This may indicate that a reduction step is needed for As(V) complexation with GSH/PC. C. vulgaris cells formed DMAS(V)-GS upon exposure to DMA independent of the exposure period. As(III) triggers the formation of arsenic complexes with PC and homophytochelatins (hPC) and their compartmentalisation to vacuoles. A conceptual model was devised to explain the mechanisms involving ABCC1/2 transport. The potential of C. vulgaris to bio-remediate arsenic from water appeared to be highly selective and effective without the potential hazard of reducing As(V) to As(III), which is more toxic to humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Optimization of Chlorella vulgaris and bioflocculant-producing bacteria co-culture: enhancing microalgae harvesting and lipid content.

    PubMed

    Wang, Y; Yang, Y; Ma, F; Xuan, L; Xu, Y; Huo, H; Zhou, D; Dong, S

    2015-05-01

    Microalgae are a sustainable bioresource, and the biofuel they produce is widely considered to be an alternative to limited natural fuel resources. However, microalgae harvesting is a bottleneck in the development of technology. Axenic Chlorella vulgaris microalgae exhibit poor harvesting, as expressed by a flocculation efficiency of 0·2%. This work optimized the co-culture conditions of C. vulgaris and bioflocculant-producing bacteria in synthetic wastewater using response surface methodology (RSM), thus aiming to enhance C. vulgaris harvesting and lipid content. Three significant process variables- inoculation ratio of bacteria and microalgae, initial glucose concentration, and co-culture time- were proposed in the RSM model. F-values (3·98/8·46) and R(2) values (0·7817/0·8711) both indicated a reasonable prediction by the RSM model. The results showed that C. vulgaris harvesting efficiency reached 45·0-50·0%, and the lipid content was over 21·0% when co-cultured with bioflocculant-producing bacteria under the optimized culture conditions of inoculation ratio of bacteria and microalgae of 0·20-0·25, initial glucose concentration of <1·5 kg m(-3) and co-culture time of 9-14 days. This work provided new insights into microalgae harvesting and cost-effective microalgal bioproducts, and confirmed the promising prospect of introducing bioflocculant-producing bacteria into microalgae bioenergy production. This work optimized the co-culture conditions of microalgae (C. vulgaris) and bioflocculant-producing bacteria (F2, Rhizobium radiobacter) in synthetic wastewater using response surface methodology, aiming to enhance C. vulgaris harvesting and lipid produced content. Bioflocculant-producing microbes are environmentally friendly functional materials. They avoid the negative effects of traditional chemical flocculants. This work provided new insights into microalgae harvesting and cost-effective production of microalgal bioproducts, and confirmed the

  12. Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris.

    PubMed

    Janczyk, P; Halle, B; Souffrant, W B

    2009-11-01

    It is generally accepted that the intestinal microbiota plays an important role in sustaining health and productivity of animals. Chlorella vulgaris, a naturally occurring green microalga, is believed to influence performance and health, including bird reproduction and egg quality. The nutritive value of open or indoor cultured C. vulgaris depends upon the technological process used to treat the algal mass. In the present paper, it is presented and discussed how 2 differentially processed C. vulgaris powders (spray-dried: SD-CV; bullet-milled and spray-dried: BMSD-CV) affected crop and cecal microbiota in laying hens. Polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA gene fragments was applied. The diversity of the crop universal bacterial DGGE fingerprints was not affected (6.4 +/- 1.65, 5.4 +/- 1.19, and 5.5 +/- 1.35 in the control, SD-CV, and BMSD-CV, respectively). Most of the bands from the corresponding positions in the gels were closely related to Lactobacillus sp. The DGGE fingerprints of V2-V3 fragments of 16S rRNA of crop lactobacilli had lower diversity in the control hens (8.7 +/- 1.22) than in the SD-CV (9.2 +/- 1.77) and BMSD-CV (9.9 +/- 1.88); thus, feeding C. vulgaris resulted in increased lactobacilli diversity in crop. A band closely related to Lactobacillus ingluviei was present in 9 out of 12 hens in the control group but in only 1 bird in the SD-CV and in 5 out of 11 birds in the BMSD-CV, suggesting a negative effect of C. vulgaris on this lactobacillus. Feeding C. vulgaris to laying hens also resulted in increased bacterial community diversity in the ceca. No effect of the technological processing of the microalgae on the microbial diversity could be observed. The diversity of the ceca universal bacterial DGGE fingerprints was lower in the control group than in the SD-CV and BMSD-CV (5.6 +/- 1.72 vs. 9.16 +/- 2.64 and 9.31 +/- 2.41, respectively). Most of the sequences retrieved from the DGGE bands

  13. Effect of lipophilic extract of Chlorella vulgaris on alimentary hyperlipidemia in cholesterol-fed rats.

    PubMed

    Sano, T; Kumamoto, Y; Kamiya, N; Okuda, M; Tanaka, Y

    1988-01-01

    The effect of glycolipid (GL) and phospholipid (PL) fractions obtained from Chlorella on serum lipid level and fecal excretion of steroids were examined in cholesterol-fed rats. The increase of the level of serum lipids were inhibited by the feeding of GL, PL and Chlorella powder almost the same degree. Fecal excretion of steroids (mostly of cholesterol, deoxycholic and lithocholic acid) were increased by feeding of GL and PL fractions. It is concluded that the feeding of each fraction inhibits the absorption of exogenous steroids and promotes turnover of bile acids in liver to suppress the increase of serum cholesterol level caused by administration of high cholesterol diet.

  14. Simultaneously upgrading biogas and purifying biogas slurry using cocultivation of Chlorella vulgaris and three different fungi under various mixed light wavelength and photoperiods.

    PubMed

    Cao, Weixing; Wang, Xue; Sun, Shiqing; Hu, Changwei; Zhao, Yongjun

    2017-10-01

    In order to purify biogas slurry and biogas simultaneously, three different fungi, Pleurotus geesteranus (P. geesteranus), Ganoderma lucidum (G. lucidum), and Pleurotus ostreatus (P. ostreatus) were pelletized with Chlorella vulgaris (C. vulgaris). The results showed that the optimal light wavelength ratio for red:blue was 5:5 for these three different fungi-assisted C. vulgaris, resulting in higher specific growth rate as well as nutrient and CO2 removal efficiency compared with other ratios. G. lucidum/C. vulgaris was screened as the best fungi-mialgae for biogas slurry purification and biogas upgrading with light/dark ratio of 14h:10h, which was also confirmed by the economic efficiency analysis of the energy consumptions. These results will provide a theoretical foundation for large-scale biogas slurry purifying and biogas upgrading using microalgae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  16. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris.

    PubMed Central

    Yoshida, Takehito; Hairston, Nelson G.; Ellner, Stephen P.

    2004-01-01

    Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities. Grazed algae were better defended, yielding rotifer growth rate 32% below that of animals fed non-grazed algae, but they also had diminished competitive ability, with a growth rate under nutrient-limiting conditions 28% below that of non-grazed algae. Grazed algae also had a smaller cell size and were more concentrated in carbon and nitrogen. Thus, C. vulgaris genotypes vary phenotypically in their position along a trade-off curve between defence against grazing and competitive ability. This genetic variation underlies rapid algal evolution that significantly alters the ecological predator-prey cycles between rotifers and algae. PMID:15347519

  17. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula.

    PubMed

    Valderrama, Luz T; Del Campo, Claudia M; Rodriguez, Claudia M; de- Bashan, Luz E; Bashan, Yoav

    2002-10-01

    Laboratory-scale experiments were performed to develop a procedure for biological treatment of recalcitrant anaerobic industrial effluent (from ethanol and citric acid production) using first the microalga Chlorella vulgaris followed by the macrophyte Lemna minuscula. This recalcitrant dark-colored wastewater, containing high levels of organic matter and low pH, prevents the growth of microalgae and macrophytes, and therefore, could not be treated by them. Therefore, the wastewater was diluted to 10% of the original concentration with wash water from the production line. Within 4 days of incubation in the wastewater, C. vulgaris population grew from 5 x 10(5) to 2 x 10(6) cells/mL. This culture reduced ammonium ion (71.6%), phosphorus (28%), and chemical oxygen demand (COD) (61%), and dissolved a floating microbial biofilm after 5 days of incubation. Consequently, L. minuscule was able to grow in the treated wastewater (from 7 to 14 g/bioreactor after 6 days), precipitated the microalgal cells (by shading the culture), and reduced other organic matter and color (up to 52%) after an additional 6 days of incubation. However, L. minuscula did not improve removal of nutrients. This study demonstrates the feasibility of combining microalgae and macrophytes for bioremediation of recalcitrant industrial wastewater.

  18. Purifying synthetic high-strength wastewater by microalgae chlorella vulgaris under various light emitting diode wavelengths and intensities

    PubMed Central

    2013-01-01

    The high-strength wastewater is now well known as a threat to the natural water since it is highly possible to arouse water eutrophication or algal blooms. The effects of various light emitting diode wavelengths and intensities on the microalgae biological wastewater treatment system was studied in this research. The various nutrient removals and economic efficiencies represented similar variation trends, and these variations under both high C and N loading treatments were similar too. The order for microalgae C. vulgaris reproduction in terms of dry weight and nutrient removal efficiency both were red > white > yellow > blue, under high carbon and nitrogen loading treatments, indicating that the red light was the optimum light wavelength. Furthermore, considering the optimal light intensity in terms of nutrient removal efficiency was 2500 and 2000 μmol/m2•s, while in terms of economic efficiency was 1000, 1500 and 2000 μmol/m2•s. Therefore, the optimum light intensity was found to be 2000 μmol/m2•s. In addition, the optimal experimental illumination time was determined as 120 h. The Chlorella vulgaris microalgae biological wastewater treatment system utilized in this research was able to purify the high-strength carbon and nitrogen wastewater effectively under optimum light wavelength and intensity. PMID:24499586

  19. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    PubMed

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A comparative study of the biosorption of iron(III)-cyanide complex anions to Rhizopus arrhizus and Chlorella vulgaris

    SciTech Connect

    Aksu, Z.; Calik, A.

    1999-03-01

    In this study a comparative biosorption of iron(III)-cyanide complex anions from aqueous solutions to Rhizopus arrhizus and Chlorella vulgaris was investigated. The iron(III)-cyanide complex ion-binding capacities of the biosorbents were shown as a function of initial pH, initial iron(III)-cyanide complex ion, and biosorbent concentrations. The results indicated that a significant reduction of iron(III)-cyanide complex ions was achieved at pH 13, a highly alkaline condition for both the biosorbents. The maximum loading capacities of the biosorbents were found to be 612.2 mg/g for R.arrhizus at 1,996.2 mg/L initial iron(III)-cyanide complex ion concentration and 387.0 mg/g for C. vulgaris at 845.4 mg/L initial iron(III)-cyanide complex ion concentration at this pH. The Freundlich, Langmuir, and Redlich-Peterson adsorption models were fitted to the equilibrium data at pH 3, 7, and 13. The equilibrium data of the biosorbents could be best fitted by all the adsorption models over the entire concentration range at pH 13.

  1. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2012-02-01

    The growth and lipid productivity of an isolated microalga Chlorella vulgaris ESP-31 were investigated under different media and cultivation conditions, including phototrophic growth (NaHCO(3) or CO(2), with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO(2), with light). C. vulgaris ESP-31 preferred to grow under phototrophic (CO(2)), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.e., Basal medium and Modified Bristol's medium), reaching a biomass concentration of 2-5 g/l. The growth on nitrogen-limiting MBL medium resulted in higher lipid accumulation (20-53%) but slower growth rate. Higher lipid content (40-53%) and higher lipid productivity (67-144 mg/l/d) were obtained under mixotrophic cultivation with all the culture media used. The fatty acid composition of the microalgal lipid comprises over 60-68% of saturated fatty acids (i.e., palmitic acid (C16:0), stearic acid (C18:0)) and monounsaturated acids (i.e., oleic acid (C18:1)). This lipid composition is suitable for biodiesel production.

  2. Nitrous Oxide (N2O) production in axenic Chlorella vulgaris microalgae cultures: evidence, putative pathways, and potential environmental impacts

    NASA Astrophysics Data System (ADS)

    Guieysse, B.; Plouviez, M.; Coilhac, M.; Cazali, L.

    2013-10-01

    Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O) is generated from axenic Chlorella vulgaris cultures. In batch assays, this production is magnified under conditions favouring intracellular nitrite accumulation, but repressed when nitrate reductase (NR) activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO) acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO), the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems (e.g. 1.38-10.1 kg N2O-N ha-1 yr-1 in a 0.25 m deep raceway pond operated under Mediterranean climatic conditions). These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  3. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.

    PubMed

    Chen, Chun-Yen; Lee, Po-Jen; Tan, Chung Hong; Lo, Yung-Chung; Huang, Chieh-Chen; Show, Pau Loke; Lin, Chih-Hung; Chang, Jo-Shu

    2015-06-01

    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry.

  4. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.

    PubMed

    Atta, Madiha; Idris, Ani; Bukhari, Ataullah; Wahidin, Suzana

    2013-11-01

    Light quality and the intensity are key factors which render microalgae as a potential source of biodiesel. In this study the effects of various intensities of blue light and its photoperiods on the growth and lipid content of Chlorella vulgaris were investigated by using LED (Light Emitting Diode) in batch culture. C. vulgaris was grown for 13 days at three different light intensities (100, 200 and 300 μmol m(-2)s(-1)). Effect of three different light and dark regimes (12:12, 16:08 and 24:00 h Light:Dark) were investigated for each light intensity at 25°C culture temperature. Maximum lipid content (23.5%) was obtained due to high efficiency and deep penetration of 200 μmol m(-2)s(-1) of blue light (12:12 L:D) with improved specific growth (1.26 d(-1)) within reduced cultivation time of 8 days. White light could produce 20.9% lipid content in 10 days at 16:08 h L:D.

  5. A hermetic self-sustained microbial solar cell based on Chlorella vulgaris and a versatile charge transfer chain

    NASA Astrophysics Data System (ADS)

    Pan, Keliang; Zhou, Peijiang

    2015-10-01

    A hermetic noble-metal-free membrane-less microbial solar cell (MSC) is established. The substances decomposition and regeneration in this MSC are carried out only by Chlorella vulgaris simultaneously. The conversion of metabolism types of C. vulgaris is controlled only by illumination. By using a pleiotropic redox mediator and a cupric hexacyanoferrate modified cathode, a two-phase three-stage charge transfer chain is formed. Through this pathway, the one microorganism self-sustained system gets a long-term power output up to 0.04773 mW/cm2 at 0.423 V without any material exchange with external, which is 50 times higher than that obtained from the original system. Benefiting from this electron buffer system, the battery will achieve an electricity generation in both light and dark conditions. There is almost no consumption of any substrates throughout the stabilized process, and no more additions are required. This maintenance-free and extremely inexpensive reactor with a simple structure and a long service life demonstrates the possibility of combining the microbial, chemical and photo cells.

  6. Growth, survival and reproduction in Chlorella vulgaris and C. variegata with respect to culture age and under different chemical factors.

    PubMed

    Agrawal, S C; Manisha

    2007-01-01

    Batch cultures of Chlorella vulgaris and C. variegata reproducing about twice every 5 d within 0-15 d had vegetative cells and autospore mother cells in the ratio of about 19 : 1. Continuous slow or negligible and/or no growth in > 15-d-old control cultures or in young cultures supplied with the antibiotics streptomycin, penicillin, amoxycillin (10-1000 ppm) or tetracycline (10, 100 ppm), and pesticides carbofuran, gammaxine, moticop or iralon (1-100 ppm) was due to slow autospore mother cells dehiscence (leading to an increase in their percentage); while negligible and/or no growth of both algal species in sewage water (100, 25%), detergent (0.1-1%), petrol or kerosene (5-20 %), benzene, toluene or phenol (5, 10%) and pesticides rogor or endosulfan (1, 10 ppm) was due to vegetative cells failure to differentiate into auto-spore mother cells (leading to decreased/zero autospore mother cells percentage) and/or rapid death of all cells. C. variegata was equally or slightly more sensitive to different chemical stress than C. vulgaris.

  7. Evolutionary trade-off between defence against grazing and competitive ability in a simple unicellular alga, Chlorella vulgaris.

    PubMed

    Yoshida, Takehito; Hairston, Nelson G; Ellner, Stephen P

    2004-09-22

    Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities. Grazed algae were better defended, yielding rotifer growth rate 32% below that of animals fed non-grazed algae, but they also had diminished competitive ability, with a growth rate under nutrient-limiting conditions 28% below that of non-grazed algae. Grazed algae also had a smaller cell size and were more concentrated in carbon and nitrogen. Thus, C. vulgaris genotypes vary phenotypically in their position along a trade-off curve between defence against grazing and competitive ability. This genetic variation underlies rapid algal evolution that significantly alters the ecological predator-prey cycles between rotifers and algae.

  8. Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus).

    PubMed

    Zahran, Eman; Risha, Engy

    2014-12-01

    Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. A novel culture medium designed for the simultaneous enhancement of biomass and lipid production by Chlorella vulgaris UTEX 26.

    PubMed

    Ramírez-López, Citlally; Chairez, Isaac; Fernández-Linares, Luis

    2016-07-01

    A novel culture medium to enhance the biomass and lipid production simultaneously by Chlorella vulgaris UTEX 26 was designed in three stages of optimization. Initially, a culture medium was inferred applying the response surface method to adjust six factors [NaNO3, NH4HCO3, MgSO4·7H2O, KH2PO4, K2HPO4 and (NH4)2HPO4], which were selected on the basement of BBM (Bold's Basal Medium) and HAMGM (Highly Assimilable Minimal Growth Medium) culture media. Afterwards, the nitrogen source compound was optimized to reduce both, ammonium and nitrate concentrations. As result of the optimization process, the proposed culture medium improved 40% the biomass (0.73gL(-1)) compared with the BBM medium and 85% the lipid concentration (281mgL(-1)), with respect to HAMGM medium. Some culture media components concentrations were reduced up to 50%. Gas chromatography analysis revealed that C16:0, C18:0, C18:1, C18:2 and C18:3 were the major fatty acids produced by C. vulgaris UTEX 26.

  10. The reduction of Chlorella vulgaris concentrations through UV-C radiation treatments: A nature-based solution (NBS).

    PubMed

    Chen, Erika S; Bridgeman, Thomas B

    2017-03-25

    Algal blooms have become a pressing issue in inland freshwater systems on local and global scales. A plausible approach to reducing algae without the use of chemical/biological agents is through the use of UV-C radiation from lamps potentially powered by in situ solar panels to eliminate algae. Yet, the quantitative scientific base has not been established. Our objective is to conduct a controlled experiment to quantify the effectiveness of UV-C radiation on the reduction of Chlorella vulgaris, a common algal species in the Great Lakes region. A full factorial design of three intensities of UV-C radiation (0, 15, and 30W) and three sources of C. vulgaris was constructed to test the corresponding hypotheses. Empirical models were constructed to predict the reductions. UV-C radiation effectively reduced the algal concentration with clear differences by radiation level and source of algal water. Algal concentration decreased exponentially over time, with distinct decreasing trends among the radiation intensities and the samples. With 15W UV-C radiation, algal concentration of three samples were reduced to 75.3%, 51.5%, and 70.0% of the initial level within an hour, respectively. We also found a clear density-dependent reduction rate by UV radiation. Using this information, more efficient treatment systems could be constructed and implemented for cleaning algae-contaminated water.

  11. Effects of Dietary Fermented Chlorella vulgaris (CBT(®)) on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks.

    PubMed

    Oh, S T; Zheng, L; Kwon, H J; Choo, Y K; Lee, K W; Kang, C W; An, B K

    2015-01-01

    Fermented Chlorella vulgaris was examined for its effects on growth performance, cecal microflora, tibia bone strength, and meat qualities in commercial Pekin ducks. A total of three hundred, day-old male Pekin ducks were divided into three groups with five replicates (n = 20 ducklings per replicate) and offered diets supplemented with commercial fermented C. vulgaris (CBT(®)) at the level of 0, 1,000 or 2,000 mg/kg, respectively for 6 wks. The final body weight was linearly (p = 0.001) increased as the addition of fermented C. vulgaris into diets increased. Similarly, dietary C. vulgaris linearly increased body weight gain (p = 0.001) and feed intake (p = 0.001) especially at the later days of the feeding trial. However, there was no C. vulgaris effect on feed efficiency. Relative weights of liver were significantly lowered by dietary fermented C. vulgaris (linear effect at p = 0.044). Dietary fermented C. vulgaris did not affect total microbes, lactic acid bacteria, and coliforms in cecal contents. Finally, meat quality parameters such as meat color (i.e., yellowness), shear force, pH, or water holding capacity were altered by adding fermented C. vulgaris into the diet. In our knowledge, this is the first report to show that dietary fermented C. vulgaris enhanced meat qualities of duck meats. In conclusion, our study indicates that dietary fermented C. vulgaris exerted benefits on productivity and can be employed as a novel, nutrition-based strategy to produce value-added duck meats.

  12. Effects of Dietary Fermented Chlorella vulgaris (CBT®) on Growth Performance, Relative Organ Weights, Cecal Microflora, Tibia Bone Characteristics, and Meat Qualities in Pekin Ducks

    PubMed Central

    Oh, S T.; Zheng, L.; Kwon, H. J.; Choo, Y. K.; Lee, K. W.; Kang, C. W.; An, B. K.

    2015-01-01

    Fermented Chlorella vulgaris was examined for its effects on growth performance, cecal microflora, tibia bone strength, and meat qualities in commercial Pekin ducks. A total of three hundred, day-old male Pekin ducks were divided into three groups with five replicates (n = 20 ducklings per replicate) and offered diets supplemented with commercial fermented C. vulgaris (CBT®) at the level of 0, 1,000 or 2,000 mg/kg, respectively for 6 wks. The final body weight was linearly (p = 0.001) increased as the addition of fermented C. vulgaris into diets increased. Similarly, dietary C. vulgaris linearly increased body weight gain (p = 0.001) and feed intake (p = 0.001) especially at the later days of the feeding trial. However, there was no C. vulgaris effect on feed efficiency. Relative weights of liver were significantly lowered by dietary fermented C. vulgaris (linear effect at p = 0.044). Dietary fermented C. vulgaris did not affect total microbes, lactic acid bacteria, and coliforms in cecal contents. Finally, meat quality parameters such as meat color (i.e., yellowness), shear force, pH, or water holding capacity were altered by adding fermented C. vulgaris into the diet. In our knowledge, this is the first report to show that dietary fermented C. vulgaris enhanced meat qualities of duck meats. In conclusion, our study indicates that dietary fermented C. vulgaris exerted benefits on productivity and can be employed as a novel, nutrition-based strategy to produce value-added duck meats. PMID:25557680

  13. Cultivation of microalgae (Oscillatoria okeni and Chlorella vulgaris) using tilapia-pond effluent and a comparison of their biomass removal efficiency.

    PubMed

    Attasat, S; Wanichpongpan, P; Ruenglertpanyakul, W

    2013-01-01

    The uptake of dissolved nutrients by microalgae is the primary way to remove nitrogen in aquaculture systems. Many authors have studied the use of microalgae to treat wastewater from aquaculture. However, excessive microalgae accumulation may cause high levels of organic matter and suspended solids in the final effluent. Thus, an efficient way to remove excess algae is needed in wastewater treatment. In this study, the potential of the filamentous cyanobacterium, Oscillatoria okeni, and the green alga, Chlorella vulgaris, to remove nitrate-nitrogen from tilapia-pond effluent was assessed. The results indicated that C. vulgaris exhibited higher specific rate of growth and rate of nitrate utilization than O. okeni. However, O. okeni has the advantage over C. vulgaris in solid-liquid separation by filtration and sedimentation after treatment.

  14. The interactive effects of microcystin-LR and cylindrospermopsin on the growth rate of the freshwater algae Chlorella vulgaris.

    PubMed

    Pinheiro, Carlos; Azevedo, Joana; Campos, Alexandre; Vasconcelos, Vítor; Loureiro, Susana

    2016-05-01

    Microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are the most representative cyanobacterial cyanotoxins. They have been simultaneously detected in aquatic systems, but their combined ecotoxicological effects to aquatic organisms, especially microalgae, is unknown. In this study, we examined the effects of these cyanotoxins individually and as a binary mixture on the growth rate of the freshwater algae Chlorella vulgaris. Using the MIXTOX tool, the reference model concentration addition (CA) was selected to evaluate the combined effects of MC-LR and CYN on the growth of the freshwater green algae due to its conservative prediction of mixture effect for putative similar or dissimilar acting chemicals. Deviations from the CA model such as synergism/antagonism, dose-ratio and dose-level dependency were also assessed. In single exposures, our results demonstrated that MC-LR and CYN had different impacts on the growth rates of C. vulgaris at the highest tested concentrations, being CYN the most toxic. In the mixture exposure trial, MC-LR and CYN showed a synergistic deviation from the conceptual model CA as the best descriptive model. MC-LR individually was not toxic even at high concentrations (37 mg L(-1)); however, the presence of MC-LR at much lower concentrations (0.4-16.7 mg L(-1)) increased the CYN toxicity. From these results, the combined exposure of MC-LR and CYN should be considered for risk assessment of mixtures as the toxicity may be underestimated when looking only at the single cyanotoxins and not their combination. This study also represents an important step to understand the interactions among MC-LR and CYN detected previously in aquatic systems.

  15. Toxicity of fluorotelomer carboxylic acids to the algae Pseudokirchneriella subcapitata and Chlorella vulgaris, and the amphipod Hyalella azteca.

    PubMed

    Mitchell, Rebecca J; Myers, Anne L; Mabury, Scott A; Solomon, Keith R; Sibley, Paul K

    2011-11-01

    Perfluorinated acids (PFAs) have elicited significant global regulatory and scientific concern due to their persistence and global pervasiveness. A source of PFAs in the environment is through degradation of fluorotelomer carboxylic acids (FTCAs) but little is known about the toxicity of these degradation products. Previous work found that FTCAs were two to three orders of magnitude more toxic to some freshwater invertebrates than their PFA counterparts and exhibited comparable chain-length-toxicity relationships. In this study, we investigated the toxicity of the 6:2, 8:2, and 10:2 saturated (FTsCA) and unsaturated (FTuCA) fluorotelomer carboxylic acids to two species of freshwater algae, Chlorella vulgaris and Pseudokirchneriella subcapitata, and the amphipod, Hyalella azteca. C. vulgaris was generally the most sensitive species, with EC₅₀s of 26.2, 31.8, 11.1, and 4.2 mg/L for the 6:2 FTsCA, 6:2 FTuCA, 8:2 FTuCA, and 10:2 FTsCA, respectively. H. azteca was most sensitive to the 8:2 FTsCA and 10:2 FTuCA, with LC₅₀s of 5.1 and 3.7 mg/L. The toxicity of the FTCAs generally increased with increasing carbon chain length, and with saturation for most of the species tested, with the exception of P. subcapitata, which did not exhibit any trend. These observations agree with chain-length-toxicity relationships previously reported for the PFCAs and support the greater toxicity of the FTCAs compared to PFCAs. However, the toxicity values are approximately 1000-fold above those detected in the environment indicating negligible risk to aquatic invertebrates.

  16. The effect of oil sands process-affected water and model naphthenic acids on photosynthesis and growth in Emiliania huxleyi and Chlorella vulgaris.

    PubMed

    Beddow, Jessica; Johnson, Richard J; Lawson, Tracy; Breckels, Mark N; Webster, Richard J; Smith, Ben E; Rowland, Steven J; Whitby, Corinne

    2016-02-01

    Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future.

  17. Identification and characterization of genes encoding two novel LEA proteins in Antarctic and temperate strains of Chlorella vulgaris.

    PubMed

    Liu, Xiaoxiang; Wang, Yali; Gao, Hong; Xu, Xudong

    2011-08-15

    An Antarctic strain (NJ-7) of Chlorella vulgaris possesses the same 18S rRNA sequence as that of a temperate strain (UTEX259), but shows significantly higher freezing tolerance than the latter. Suppression subtractive hybridization (SSH) was performed to identify genes of intensified expression in NJ-7 relative to UTEX259. Among the genes identified, Ccor1 and Ccor2, co-organized in the same gene cluster Ccor1-Ccor2-Ccor1-Ccor2, showed much higher expression levels in NJ-7 than in UTEX259 at both 20°C and 4°C. As detected by Northern blot and Western blot analyses, the two genes were cold-inducible in NJ-7 but almost not expressed in UTEX259. Their encoded products are predicted to share 55.7% identity to each other and possess physicochemical characteristics similar to that of late embryogenesis abundant (LEA) proteins in plants. The purified recombinant Ccor1 and Ccor2 showed high heat-stability and could act as cryoprotectants to lactate dehydrogenase in vitro. Based on their expression patterns and protein characteristics, we propose that Ccor1 and Ccor2 are two novel LEA proteins and are related to the greatly enhanced freezing tolerance in the Antarctic strain. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate.

    PubMed

    Chen, Chun-Yen; Yeh, Kuei-Ling; Su, Huei-Meei; Lo, Yung-Chung; Chen, Wen-Ming; Chang, Jo-Shu

    2010-01-01

    The autotrophic growth of an oil-rich indigenous microalgal isolate, identified as Chlorella vulgaris C--C, was promoted by using engineering strategies to obtain the microalgal oil for biodiesel synthesis. Illumination with a light/dark cycle of 14/10 (i.e., 14 h light-on and 10 h light-off) resulted in a high overall oil production rate (v(oil)) of 9.78 mg/L/day and a high electricity conversion efficiency (E(c)) of 23.7 mg cell/kw h. When using a NaHCO(3) concentration of 1,500 mg/L as carbon source, the v(oil) and E(c) were maximal at 100 mg/L/day and 128 mg/kw h, respectively. A Monod type model was used to describe the microalgal growth kinetics with an estimated maximum specific growth rate (mu(max)) of 0.605 day(-1) and a half saturation coefficient (K(s)) of 124.9 mg/L. An optimal nitrogen source (KNO(3)) concentration of 625 mg/L could further enhance the microalgal biomass and oil production, leading to a nearly 6.19 fold increase in v(oil) value. Copyright 2010 American Institute of Chemical Engineers

  19. Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions.

    PubMed

    Abedini Najafabadi, Hamed; Malekzadeh, Mohammad; Jalilian, Farhad; Vossoughi, Manouchehr; Pazuki, Gholamreza

    2015-03-01

    In this research, a two-stage process consisting of cultivation in nutrient rich and nitrogen starvation conditions was employed to enhance lipid production in Chlorella vulgaris algal biomass. The effect of supplying different organic and inorganic carbon sources on cultivation behavior was investigated. During nutrient sufficient condition (stage I), the highest biomass productivity of 0.158±0.011g/L/d was achieved by using sodium bicarbonate followed by 0.130±0.013, 0.111±0.005 and 0.098±0.003g/L/d for sodium acetate, carbon dioxide and molasses, respectively. Cultivation under nitrogen starvation process (stage II) indicated that the lipid and fatty acid content increased continuously to a maximum value at day 2. Using carbon dioxide resulted in highest cell density, while using sodium acetate led to the highest fatty acid content. Molasses was not as effective as other carbon sources, but by taking into account its lower price, it can be considered as a suitable carbon source for algal lipid productivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.

    PubMed

    Tran, Dang-Thuan; Yeh, Kuei-Ling; Chen, Ching-Lung; Chang, Jo-Shu

    2012-03-01

    An indigenous microalga Chlorella vulgaris ESP-31 grown in an outdoor tubular photobioreactor with CO(2) aeration obtained a high oil content of up to 63.2%. The microalgal oil was then converted to biodiesel by enzymatic transesterification using an immobilized lipase originating from Burkholderia sp. C20. The conversion of the microalgae oil to biodiesel was conducted by transesterification of the extracted microalgal oil (M-I) and by transesterification directly using disrupted microalgal biomass (M-II). The results show that M-II achieved higher biodiesel conversion (97.3 wt% oil) than M-I (72.1 wt% oil). The immobilized lipase worked well when using wet microalgal biomass (up to 71% water content) as the oil substrate. The immobilized lipase also tolerated a high methanol to oil molar ratio (>67.93) when using the M-II approach, and can be repeatedly used for six cycles (or 288 h) without significant loss of its original activity.

  1. Investigation and modeling of the effects of light spectrum and incident angle on the growth of Chlorella vulgaris in photobioreactors.

    PubMed

    Souliès, Antoine; Legrand, Jack; Marec, Hélène; Pruvost, Jérémy; Castelain, Cathy; Burghelea, Teodor; Cornet, Jean-François

    2016-03-01

    An in-depth investigation of how various illumination conditions influence microalgal growth in photobioreactors (PBR) has been presented. Effects of both the light emission spectrum (white and red) and the light incident angle (0° and 60°) on the PBR surface were investigated. The experiments were conducted in two fully controlled lab-scale PBRs, a torus PBR and a thin flat-panel PBR for high cell density culture. The results obtained in the torus PBR were used to build the kinetic growth model of Chlorella vulgaris taken as a model species. The PBR model was then applied to the thin flat-panel PBR, which was run with various illumination conditions. Its detailed representation of local rate of photon absorption under various conditions (spectral calculation of light attenuation, incident angle influence) enabled the model to take into account all the tested conditions with no further adjustment. This allowed a detailed investigation of the coupling between radiation field and photosynthetic growth. Effects of all the radiation conditions together with pigment acclimation, which was found to be relevant, were investigated in depth. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:247-261, 2016.

  2. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    PubMed

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Enhancing bio-butanol production from biomass of Chlorella vulgaris JSC-6 with sequential alkali pretreatment and acid hydrolysis.

    PubMed

    Wang, Yue; Guo, Wanqian; Cheng, Chieh-Lun; Ho, Shih-Hsin; Chang, Jo-Shu; Ren, Nanqi

    2016-01-01

    This study presents a successful butanol production method using alkali and acid pretreated biomass of Chlorella vulgaris JSC-6. The butanol concentration, yield, and productivity were 13.1g/L, 0.58mol/mol sugar, 0.66g/L/h, respectively. Nearly 2.93L/L of biohydrogen was produced during the acidogenesis phase in ABE fermentation. The hydrogen yield and productivity were 0.39mol/mol sugar and 104.2g/L/h respectively. In addition, the high glucose consumption efficiency (97.5%) suggests that the hydrolysate pretreated with NaOH (1%) followed by H2SO4 (3%) did not contain inhibitors to the fermentation. It was also discovered that an excess amount of nitrogen sources arising from hydrolysis of highly concentrated microalgal biomass negatively affected the butanol production. This work demonstrates the technical feasibility of producing butanol from sustainable third-generation feedstock (i.e., microalgal biomass).

  5. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.

    PubMed

    Borecka, Marta; Białk-Bielińska, Anna; Haliński, Łukasz P; Pazdro, Ksenia; Stepnowski, Piotr; Stolte, Stefan

    2016-05-05

    This paper presents the investigation of the influence of salinity variations on the toxicity of sulfapyridine, sulfamethoxazole, sulfadimethoxine and trimethoprim towards the green algae Chlorella vulgaris after exposure times of 48 and 72 h. In freshwater the EC50 values ranged from 0.98 to 123.22 mg L(-1) depending on the compound. The obtained results revealed that sulfamethoxazole and sulfapyridine were the most toxic, while trimethoprim was the least toxic pharmaceutical to the selected organism. Deviations between the nominal and real test concentrations were determined via instrumental analysis to support the interpretation of ecotoxicological data. The toxicity effects were also tested in saline water (3, 6 and 9 PSU). The tendency that the toxicity of selected pharmaceuticals decreases with increasing salinity was observed. Higher salinity implies an elevated concentration of inorganic monovalent cations that are capable of binding with countercharges available on algal surfaces (hydroxyl functional groups). Hence it can reduce the permeability of pharmaceuticals through the algal cell walls, which could be the probable reason for the observed effect. Moreover, for the classification of the mode of toxic action, the toxic ratio concept was applied, which indicated that the effects of the investigated drugs towards algae are caused by the specific mode of toxic action. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Population growth of Brachionus macracanthus (Rotifera) in relation to cadmium toxicity: influence of algal (Chlorella vulgaris) density.

    PubMed

    Nandini, S; Chaparro-Herrera, Diego De Jesús; Cárdenas-Arriola, Sara Leticia; Sarma, S S S

    2007-08-01

    In the present work, we quantified the harmful effects of Cd(+ 2) to Brachionus macracanthus using both acute (median lethal) and chronic (population growth) toxicity tests. Chronic toxicity tests were conducted under 4 different concentrations (0.000625-0.005 mg L(- 1)) of cadmium chloride at 23 degrees C under 3 food (Chlorella vulgaris) levels (0.5 x 10(6), 1.0 x 10(6) and 2.0 x 10(6) cells mL(- 1)) using static renewal system for three weeks. The median lethal concentration bioassayed at 24 h (LC(50)) for B. macracanthus was 0.19 mg L(- 1) of CdCl(2). Cadmium adversely affected the population growth of B. macracanthus at all tested concentrations. Increase in algal food had a positive effect on the rotifer growth in controls; with increase in Cd levels, the population growth of B. macracanthus decreased even under the highest food level tested. The peak population abundance of B. macracanthus in controls at the highest food level of 2.0 x 10(6) cells mL(- 1) was 40 ind. mL(- 1). Depending on the heavy metal concentration and the algal level, the population growth rate (r) of B. macracanthus varied from 0.02 to 0.28 day(- 1). The relatively higher sensitivity of B. macracanthus to cadmium toxicity is discussed in relation to other species of the same genus.

  7. Role of extracellular polymeric substances from Chlorella vulgaris in the removal of ammonium and orthophosphate under the stress of cadmium.

    PubMed

    Chen, Biao; Li, Feng; Liu, Na; Ge, Fei; Xiao, Huaixian; Yang, Yixuan

    2015-08-01

    The interactions between the soluble extracellular polymeric substances (S-EPS), bound EPS (B-EPS) of algae and heavy metal, would affect the removal of ammonium (NH4(+)-N) and orthophosphate (PO4(3-)-P) from wastewater by algae-based techniques. This study investigated the role of Cd(2+)-mediated EPS from Chlorella vulgaris on NH4(+)-N and PO4(3-)-P removal. The results showed that the removal efficiencies of NH4(+)-N and PO4(3-)-P still separately remained 62.6% and 64.9% under 1.0mg/L Cd(2+), compared to those without Cd(2+), mainly attributing to enhanced S-EPS and B-EPS contents of the algae. The increased of PS (polysaccharides) and PN (proteins, e.g., tryptophan-like and tyrosine-like components) led to accelerated interactions of Cd(2+) with PS and PN in EPS fractions, especially for B-EPS, due to a higher detected distribution of Cd(2+) (e.g., about 55.4% in B-EPS). Thus, algae-based techniques are stable treatment methods for wastewater in which NH4(+)-N and PO4(3-)-P coexist with heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater.

    PubMed

    Arun, Jayaseelan; Shreekanth, Sivaraman Jayachandran; Sahana, Ravishankar; Raghavi, Meenakshi Sundaram; Gopinath, Kannappan Panchamoorthy; Gnanaprakash, Dhakshinamoorthy

    2017-11-01

    In this study, liquefaction of Chlorella vulgaris biomass grown in photo-bioreactor using wastewater as source of nutrition was studied and influence of process parameters on the yield of bio-oil was analysed. Different biomass to water ratio (5g/200ml, 10g/200ml, 15g/200ml, and 20g/200ml) was taken and bio-oil yield at various temperatures ranging from 220 to 340°C was studied. Catalyst loading of the range 2.5-8%wt of NaOH was also studied to analyse the influence of catalyst concentration on bio-oil yield. Obtained bio-oil was characterized using Gas Chromatography Mass Spectroscopy (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). Results showed that maximum bio-oil yield of 26.67%wt was observed at operating conditions of 300°C, 15g/200ml biomass load and 2.5%wt of NaOH at 60min holding time. Fatty acids and other high carbon compounds were detected in the bio-oil obtained through liquefaction process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The effects of pH on the growth of Chlorella vulgaris and its interactions with cadmium toxicity.

    PubMed

    Rachlin, J W; Grosso, A

    1991-05-01

    The effects of pH alone, and in combination with exposure to 0.89 microM cadmium, on the growth response of the green alga Chlorella vulgaris were evaluated. Acidic (3.0-6.2) and alkaline (8.3-9.0) pH values retarded the growth of this alga. Optimal growth occurred when the pH of the medium was adjusted to values of 7.5 and 8.0. When the cells were exposed to pH adjusted medium plus the presence of 0.89 microM Cd, a value known to reduce population growth by 50% at the control pH of 6.9, the affects were additive at the acidic (3.0-5.0) pH ranges. At alkaline pH values of 8.3-9.0 all toxicity responses could be explained by pH adjustment alone, indicating that additional cadmium toxicity was absent. At pH values of 7.5 and 8.0, cadmium toxicity was mitigated against, and resultant growth at pH 8.0 was at the same enhanced rate as this pH without cadmium.

  10. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.

    PubMed

    Shen, Xiao-Fei; Chu, Fei-Fei; Lam, Paul K S; Zeng, Raymond J

    2015-09-15

    In this study the heterotrophic cultivation of Chlorella vulgaris NIES-227 fed with glucose was investigated systematically using six media types; combinations of nitrogen repletion/depletion and phosphorus repletion/limitation/depletion. It was found that a high yield of fatty acids (0.88 of fed glucose-COD) and a high content of fatty acid methyl esters (FAMEs) (89% of dry weight) were obtained under nitrogen starved conditions. To our knowledge it is the first report on such high COD conversion yield and FAME content in microalgae. The dominant fatty acid (>50%) was methyl oleate (C18:1), a desirable component for biodiesel synthesis. FAME content under nitrogen starved conditions was significantly higher than under nitrogen sufficient conditions, while phosphorus had no significant influence, indicating that nitrogen starvation was the real "fatty acids trigger" in heterotrophic cultivation. These findings could simplify the downstream extraction process, such as the extrusion of oil from soybeans, and could reduce operating costs by improving the fatty acid yield from waste COD.

  11. Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense.

    PubMed

    Meza, Beatriz; de-Bashan, Luz E; Hernandez, Juan-Pablo; Bashan, Yoav

    2015-06-01

    Accumulation of intra-cellular phosphate, as polyphosphate, was measured when the microalga Chlorella vulgaris was immobilized in alginate with either of two wild-type strains of the microalgae growth-promoting bacterium Azospirillum brasilense or their corresponding IAA-attenuated mutants. Wild type strains of A. brasilense induced higher amounts of intra-cellular phosphate in Chlorella than their respective mutants. Calculations comparing intra-cellular phosphate accumulation by culture or net accumulation by the cell and the amount of IAA that was produced by each of these strains revealed that higher IAA was linked to higher accumulations of intra-cellular phosphate. Application of four levels of exogenous IAA reported for A. brasilense and their IAA-attenuated mutants to cultures of C. vulgaris enhanced accumulation of intra-cellular phosphate; the higher the content of IAA per culture or per single cell, the higher was the amount of accumulated phosphate. When an IAA-attenuated mutant was complemented with exogenous IAA, accumulation of intra-cellular phosphate at the culture level was even higher than phosphate accumulation with the respective wild type strains. When calculating the net accumulation of intra-cellular phosphate in the complementation experiment, net intra-cellular phosphate induced by the IAA-attenuated mutant was completely restored and was similar to the wild strains. We propose that IAA produced by A. brasilense is linked to polyphosphate accumulation in C. vulgaris. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts.

    PubMed

    Makpol, Suzana; Yeoh, Thong Wei; Ruslam, Farah Adilah Che; Arifin, Khaizurin Tajul; Yusof, Yasmin Anum Mohd

    2013-08-16

    Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs.

  13. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts

    PubMed Central

    2013-01-01

    Background Human diploid fibroblasts (HDFs) undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular ageing. Even though beneficial effects of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction (TRF) have been reported, ongoing studies in relation to ageing is of interest to determine possible protective effects that may reverse the effect of ageing. The aim of this study was to evaluate the effect of P. betle, C. vulgaris and TRF in preventing cellular ageing of HDFs by determining the activity of antioxidant enzymes viz.; catalase, superoxide dismutase (SOD) and glutathione peroxidase. Methods Different passages of HDFs were treated with P. betle, C. vulgaris and TRF for 24 h prior to enzymes activity determination. Senescence-associated beta-galactosidase (SA β-gal) expression was assayed to validate cellular ageing. Results In cellular ageing of HDFs, catalase and glutathione peroxidase activities were reduced, but SOD activity was heightened during pre-senescence. P. betle exhibited the strongest antioxidant activity by reducing SA β-gal expression, catalase activities in all age groups, and SOD activity. TRF exhibited a strong antioxidant activity by reducing SA β-gal expression, and SOD activity in senescent HDFs. C. vulgaris extract managed to reduce SOD activity in senescent HDFs. Conclusion P. betle, C. vulgaris, and TRF have the potential as anti-ageing entities which compensated the role of antioxidant enzymes in cellular ageing of HDFs. PMID:23948056

  14. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves.

    PubMed

    Zheng, Hongli; Yin, Jilong; Gao, Zhen; Huang, He; Ji, Xiaojun; Dou, Chang

    2011-08-01

    A comparative evaluation of different cell disruption methods for the release of lipids from marine Chlorella vulgaris cells was investigated. The cell growth of C. vulgaris was observed. Lipid concentrations from different disruption methods were determined, and the fatty acid composition of the extracted lipids was analyzed. The results showed that average productivity of C. vulgaris biomass was 208 mg L⁻¹ day⁻¹. The lipid concentrations of C. vulgaris were 5%, 6%, 29%, 15%, 10%, 7%, 22%, 24%, and 18% when using grinding with quartz sand under wet condition, grinding with quartz sand under dehydrated condition, grinding in liquid nitrogen, ultrasonication, bead milling, enzymatic lysis by snailase, enzymatic lysis by lysozyme, enzymatic lysis by cellulose, and microwaves, respectively. The shortest disruption time was 2 min by grinding in liquid nitrogen. The unsaturated and saturated fatty acid contents of C. vulgaris were 71.76% and 28.24%, respectively. The extracted lipids displayed a suitable fatty acid profile for biodiesel [C16:0 (~23%), C16:1 (~23%), and C18:1 (~45%)]. Overall, grinding in liquid nitrogen was identified as the most effective method in terms of disruption efficiency and time.

  15. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    PubMed

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results.

  16. Bioavailability of wastewater derived dissolved organic nitrogen to green microalgae Selenastrum capricornutum, Chlamydomonas reinhardtii, and Chlorella vulgaris with/without presence of bacteria.

    PubMed

    Sun, Jingyi; Simsek, Halis

    2017-07-01

    Effluent dissolved organic nitrogen (DON) is problematic in nutrient sensitive surface waters and needs to be reduced to meet demanding total dissolved nitrogen discharge limits. Bioavailable DON (ABDON) is a portion of DON utilized by algae or algae+bacteria, while biodegradable DON (BDON) is a portion of DON decomposable by bacteria. ABDON and BDON in a two-stage trickling filter (TF) wastewater treatment plant was evaluated using three different microalgal species, Selenastrum capricornutum, Chlamydomonas reinhardtii and Chlorella vulgaris and mixed cultured bacteria. Results showed that up to 80% of DON was bioavailable to algae or algae+bacteria inoculum while up to 60% of DON was biodegradable in all the samples. Results showed that C. reinhardtii and C. vulgaris can be used as a test species the same as S. capricornutum since there were no significant differences among these three algae species based on their ability to remove nitrogen species. Copyright © 2017. Published by Elsevier B.V.

  17. Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors.

    PubMed

    Concas, Alessandro; Steriti, Alberto; Pisu, Massimo; Cao, Giacomo

    2014-02-01

    Recent works have shown that specific strains of microalgae are capable to simultaneously increase their growth rate and lipid content when cultured under suitable concentrations of iron. While these results are promising in view of the exploitation of microalgae for producing biofuels, to the best of our knowledge, no mathematical model capable to describe the effect of iron on lipid accumulation in microalgae, has been so far proposed. A comprehensive mathematical model describing the effect of iron on chlorophyll synthesis, nitrogen assimilation, growth rate and lipid accumulation in a freshwater strain of Chlorella vulgaris is then proposed in this work. Model results are successfully compared with experimental data which confirm the positive effect of growing iron concentrations on lipid productivity of C. vulgaris. Thus, the proposed model might represent a useful tool to optimize iron-based strategies to improve the lipid productivity of microalgal cultures.

  18. Chlorella vulgaris as a lipid source: Cultivation on air and seawater-simulating medium in a helicoidal photobioreactor.

    PubMed

    Frumento, Davide; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Converti, Attilio; Al Arni, Saleh; da Silva, Milena Fernandes

    2016-03-01

    The freshwater microalga Chlorella vulgaris was cultured batchwise on the seawater-simulating Schlösser medium either in a 1.1-L-working volume helicoidal photobioreactor (HeP) or Erlenmeyer flask (EF) as control and continuously supplying air as CO2 source. In these systems, maximum biomass concentration reached 1.65 ± 0.17 g L(-1) and 1.25 ± 0.06 g L(-1) , and maximum cell productivity 197.6 ± 20.4 mg L(-1)  day(-1) and 160.8 ± 12.2 mg L(-1)  day(-1) , respectively. Compared to the Bold's Basal medium, commonly employed to cultivate this microorganism on a bench-scale, the Schlösser medium ensured significant increases in all the growth parameters, namely maximum cell concentration (268% in EF and 126% in HeP), maximum biomass productivity (554% in EF and 72% in HeP), average specific growth rate (67% in EF and 42% in HeP), and maximum specific growth rate (233% in EF and 22% in HeP). The lipid fraction of biomass collected at the end of runs was analyzed in terms of both lipid content and fatty acid profile. It was found that the seawater-simulating medium, despite of a 56-63% reduction of the overall biomass lipid content compared to the Bold's Basal one, led in HeP to significant increases in both the glycerides-to-total lipid ratio and polyunsaturated fatty acid content compared to the other conditions taken as an average. These results as a whole suggest that the HeP configuration could be a successful alternative to the present means to cultivate C. vulgaris as a lipid source. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:279-284, 2016. © 2016 American Institute of Chemical Engineers.

  19. Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.).

    PubMed

    Zouzelka, Radek; Cihakova, Pavlina; Rihova Ambrozova, Jana; Rathousky, Jiri

    2016-05-01

    Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40-70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag(+) concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists

  20. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Zhang, Ping; Li, Zhe; Lu, Lunhui; Xiao, Yan; Liu, Jing; Guo, Jinsong; Fang, Fang

    2017-06-01

    Stressful conditions can stimulate the accumulation of carotenoids in some microalgae. To obtain more knowledge of the stress response, we studied the effects of different N concentrations on unicellular content of carotenoids using Raman spectroscopic technique; cellular stoichiometric changes and the fluorescence parameters of Chlorella vulgaris were concomitantly studied. Initially, we optimized the Raman scattering conditions and demonstrated the feasibility of unicellular carotenoid analysis by Raman spectroscopic technique. The results showed that an integration time of 10 s, laser power at 0.1 mW and an accumulation time of 1 were the optimum conditions, and the peak height at 1523 cm- 1 scaled linearly with the carotenoid content in the range of 0.625-1440 mg/L with a recovery rate of 97% 103%. In the experiment, seven different nitrogen levels ranging from 0 to 2.48 × 105 μg/L were imposed. Samples were taken at the start, exponential phase and end of the experiment. The results showed that nitrogen stress can facilitate the synthesis of carotenoids, while at the same time, excessive nitrogen stress led to lower proliferative and photosynthetic activity. Compared with carotenoids, chlorophylls were more sensitive to nitrogen stress; it declined dramatically as stress processed. There existed no significant differences for Fv/Fm among different nitrogen levels during the exponential phase, while in the end, it declined and a significant difference appeared between cells in 2.48 × 105 μg/L N and other experimental levels. Photosynthetic efficiency, namely the C/N mole ratio in algal cells, didnot significantly change during the exponential phase; however, apparent increases ultimately occurred, except for the stable C/N in BG11 medium. This increase matched well with the carotenoid decline, indicating that an increasing cellular C/N mole ratio can be used as an indicator of excessive stress in carotenoid production. Besides, there also existed an inverse

  1. Kinetic model of Chlorella vulgaris growth with and without extremely low frequency-electromagnetic fields (EM-ELF).

    PubMed

    Beruto, Dario T; Lagazzo, Alberto; Frumento, Davide; Converti, Attilio

    2014-01-01

    Chlorella vulgaris was grown in two bench-scale photobioreactors with and without the application of a low intensity, low frequency electromagnetic field (EM-ELF) of about 3mT. Cell concentration and tendency of cells to form aggregates inside the reactor were recorded over a 30 days-time period at 0.5L-constant medium volume in the temperature range 289-304K. At 304K, after a cultivation period of 15 days, the rate of cell death became predominant over that of growth. In the temperature range 289-299K, a two step-kinetic model based on the mitotic division and the clusterization processes was developed and critically discussed. The best-fitted curves turned out to have a sigmoid shape, and the competition between mitosis and clusterization was investigated. Without EM-ELF, the temperature dependence of the specific rate constant of the mitotic step yielded an apparent total enthalpy of 15±6kJmol(-1), whose value was not influenced by the EM-ELF application. The electromagnetic field was shown to exert a significant effect on the exothermic clusterization step. The heat exchange due to binding between cells and liquid medium turned out to be -44±5kJmol(-1) in the absence of EM-ELF and -68±8kJmol(-1) when it was active. Optical microscopy observations were in agreement with the model predictions and confirmed that EM-ELF was able to enhance cell clusterization.

  2. Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: interaction, adaptation and oxidative stress.

    PubMed

    Ahmad, Farooq; Yao, Hongzhou; Zhou, Ying; Liu, Xiaoyi

    2015-11-01

    The potential toxicity of CoFe2O4 nanobeads (NBs) in Chlorella vulgaris was observed up to 72h. Algal cell morphology, membrane integrity and viability were severely compromised due to adsorption and aggregation of NBs on algal surfaces, release of Fe(3+) and Co(2+) ions and possible mechanical damage by NBs. Interactions with NBs and effective decrease in ions released by aggregation and exudation of algal cells as a self defense mechanism were observed by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and inductively coupled plasma mass spectrometry (ICP-MS). The results corroborated CoFe2O4 NBs induced ROS triggered oxidative stress, leading to a reduction in catalase activity, activation of the mutagenic glutathione s-transferase (mu-GST) and acid phosphatase (AP) antioxidant enzymes, and an increase in genetic aberrations, metabolic and cellular signal transduction dysfunction. Circular dichroism (CD) spectra indicated the weak interactions of NBs with BSA, with slight changes in the α-helix structure of BSA confirming conformational changes in structure, hence the potential for functional interactions with biomolecules. Possible interferences of CoFe2O4 NBs with assay techniques and components indicated CoFe2O4 NBs at lower concentration do not show any significant interference with ROS, catalase, mu-GST and no interference with CD measurements. This study showed ROS production is one of the pathways of toxicity initiated by CoFe2O4 NBs and illustrates the complex processes that may occur between organisms and NBs in natural complex ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of Reaction Temperature on Biodiesel Production from Chlorella vulgaris using CuO/Zeolite as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Dianursanti; Delaamira, M.; Bismo, S.; Muharam, Y.

    2017-02-01

    Human needs for fossil energy increase every year. Biodiesel is the main way to resolve this world problem. Biodiesel produces from vegetable oil. But then, the alternative way came from the uses of microalgae in Chlorella vulgaris type causes by its simplicity of growing. In the other hand, this microalgae known for its high lipid content by considering several parameter such as light intensity, medium nutrition, pH and also salinity. Lipid content will be extracted by using Bligh-Dryer method which will be reacted with methanol along transesterification. Beside, there come another matter which is the utilization of homogeny catalyst. The difficulty of separation is the main matter so then biodiesel need to be washed in case normalizing the pH and this process will decrease the quality of biodiesel. To resolve this problem, we’ll be using a heterogeneous catalyst, zeolite, with ability to catalyst the process. Zeolite is easier to separate from the biodiesel so there will not be needed washing process. Heterogeneous catalyst work as well as homogeneous. Variation implemented on transesterification included reaction temperature of 40°C, 60°C, and 80°C. Reaction time, catalyst percentage and the solvent amount remain steady on 4 hours, 3% and 1:400. Complete best result obtained at 60°C with the yield of 36,78%. Through this, heterogeneous catalyst CuO/Zeolite proved to have a capability for replacing homogeneous catalyst and simplify the production of biodiesel particularly in separation step.

  4. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.

    PubMed

    Gong, Ning; Shao, Kuishuang; Feng, Wei; Lin, Zhengzhi; Liang, Changhua; Sun, Yeqing

    2011-04-01

    Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorellavulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC(50) values of 32.28 mg NiOL(-1). Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  5. Bio-conversion rate and optimum harvest intervals for Moina australiensis using digested piggery effluent and Chlorella vulgaris as a food source.

    PubMed

    Ward, A J; Kumar, M S

    2010-04-01

    The bio-conversion rate of Moina australiensis fed with Chlorella vulgaris grown on digested piggery effluent at three different feeding rates was determined and a 2, 3 and 4-day harvest interval strategy was investigated. This study indicates that C. vulgaris is a suitable food source for M. australiensis. A significant difference (P < or = 0.001) in the feeding rate against mean total populations was found among treatments. The increase in the amount of algae fed accelerated the production rate, and the population density peaked faster in the high C. vulgaris fed treatment. The BCR calculated from this experiment indicates that for every 1000 mg of C. vulgaris fed there was an increase of 437.9 mg of M. australiensis biomass produced. A significant difference (P < or = 0.001) in biomass production among the different harvest interval treatments was observed. The 2-day harvest interval treatment produced 7.78 g of M. australiensis followed by 6.89 g in the 3 day and 5.01 g in the 4-day harvest interval treatment. This study provides strong evidence that M. australiensis can utilise the bacterial blooms and bio-films associated with digested piggery effluent as a food source.

  6. Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells.

    PubMed

    Saygideger, Saadet Demirors; Okkay, Ozlem

    2008-03-01

    In this study, effect of different 2,4 -dichlorophenoxyacetic acid (2,4-D) concentrations (0.0, 9.10(-5), 9.10(-4), 9.10(-3) and 9.10(-2) mM) on growth rate, content of protein and chlorophyll-a in Chlorella vulgaris and Spirulina platensis cells was investigated. The most stimulatory effect on growth rate, protein and pigment ratio of C. vulgaris and S. platensis was observed at 9.10(-4) mM concentrations of 2,4-D. The results show that low concentrations of 2,4-D have hormonal effect due to being a synthetic auxin. Cell number protein and pigment rates were inhibited at 9.10(-2) mM concentration in C. vulgaris. Such parameters were inhibited in S. platensis, both at 9.10(-3) and 9.10(-2) mM 2,4-D concentrations. This is due to herbicidal effect of high concentrations of 2,4-D. S. platensis was found to be more sensitive than S. vulgaris to 2,4-D applications. The use of algae as bio-indicators in herbicide contaminated fresh water habitats, was discussed.

  7. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-05-18

    Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett-Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L(-1) day(-1) and lipid dry weight of 0.64 g L(-1) as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of -6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.

  8. Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal Wistar rats

    PubMed Central

    Jeong, Hyejin; Kwon, Hye Jin

    2009-01-01

    The aim of this study was to examine the hypoglycemic effect of chlorella in 6 week-old type 2 diabetic Goto-Kakizaki (GK, n=30) rats and 6 week-old normal Wistar (n=30) rats. Animals were randomly assigned to 3 groups respectively, and were fed three different experimental diets containing 0%, 3% or 5% (w/w) chlorella for 8 weeks. In diabetic GK rats, the insulinogenic-indices were not significantly different among the groups. The concentrations of fasting plasma glucagon and hepatic triglyceride, and the insulin/glucagon ratios of the GK-3% chlorella and GK-5% chlorella groups were significantly lower than those of the GK-control group. The HOMA-index and the concentrations of fasting blood glucose and plasma insulin of the GK-3% chlorella and GK-5% chlorella groups were slightly lower than those of the GK-control group. In normal Wistar rats, the insulinogenic-indices were not significantly different among the normal groups, but that of the Wistar-5% chlorella group was slightly higher than the other groups. The concentrations of fasting blood glucose and plasma insulin, and the HOMA-index of the Wistar-5% chlorella group were a little higher, and the fasting plasma glucagon concentration and the insulin/glucagon ratio of the Wistar-5% chlorella group were significantly higher than those of the Wistar-control and Wistar-3% chlorella groups. In conclusion, this study shows that the glucose-stimulated insulin secretion was not affected by the intake of chlorella, which could be beneficial, however, in improving insulin sensitivity in type 2 diabetic GK and normal Wistar rats. PMID:20016698

  9. Elimination of bicarbonate interference in the binding of U(VI) in mill-waters to freeze-dried Chlorella vulgaris

    SciTech Connect

    Greene, B.; Henzl, M.T.; Hosea, J.M.; Darnall, D.W.

    1986-01-01

    Freeze-dried preparations of Chlorella vulgaris will accumulate U(Vl) from alkaline, bicarbonate-containing waters collected from uranium mill process streams, provided that the pH is pre-adjusted to between 4.0 and 6.0. Bicarbonate ion complexes the uranyl ion in these waters and seriously interferes with the binding of U(Vl) to the algal cells at pH values above 6.0. No binding of U(Vl) to the algae occurred at the natural pH of 8.0 when Chlorella vulgaris was suspended in untreated mull-waters containing up to 2.5 x 10/sup -4/M U(Vl). However, when the pH of these waters was lowered from 8.0 to near 5.0, with nitric acid, nearly quantitative binding of U(Vl) to the alga was achieved. Binding is rapid and largely unaffected by ions including Na/sup +/, Cl/sup -/, NO/sub 3//sup -/, /sup -/OAc, and SO/sub 4//sup 2 -/. Our results indicate that provided steps are taken to eliminate bicarbonate interference, such as adjustment of the pH to near 5.0, dried algal biomass could prove useful for the removal and recovery of U(Vl) from high carbonate-containing waters.

  10. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera).

    PubMed

    Lucía-Pavón, E; Sarma, S S; Nandini, S

    2001-01-01

    In order to maintain rotifer populations during periods of low algal production, it is necessary to offer alternate diets, some of which include forms of preserved algae. The present work is based on the effect of live and dead Chlorella vulgaris on the population growth of Brachionus calyciflorus and Brachionus patulus. The experimental design consisted of three algal levels (0.5 x 10(6), 1.5 x 10(6) and 4.5 x 10(6) cells ml-1) offered in three forms (living, frozen and heat-killed). The maximal population density values for B. calyciflorus ranged from 55 +/- 1 ind. ml-1 (at 0.5 x 10(6) cells ml-1) to 471 +/- 72 ind. ml-1 (at 4.5 x 10(6) cells ml-1) with live Chlorella, but was much lower (6 +/- 1 to 26 +/- 6 ind. ml-1) with frozen or heat-killed alga under comparable food levels. However, the maximum population density of B. patulus under live or or heat-killed Chlorella was similar at comparable algal levels but when offered frozen algae it was four times less. The highest mean peak population density was 1,277 +/- 83 ind. ml-1 under 4.5 x 10(6) cells ml-1. The rate of population increase for B. calyciflorus varied from 0.50 to 0.79 using live Chlorella, but under comparable conditions, this range was lower (0.21 to 0.31) for B. patulus. Results have been discussed in light of possible application for aquaculture.

  11. Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae).

    PubMed

    Bajguz, Andrzej; Piotrowska-Niczyporuk, Alicja

    2013-10-01

    The relationships between brassinosteroids (BRs) (brassinolide, BL; 24-epiBL; 28-homoBL; castasterone, CS; 24-epiCS; 28-homoCS) and auxins (indole-3-acetic acid, IAA; indole-3-butyric acid, IBA; indole-3-propionic acid, IPA) in the regulation of cell number, phytohormone level and metabolism in green alga Chlorella vulgaris were investigated. Exogenously applied auxins had the highest biological activity in algal cells at 50 μM. Among the auxins, IAA was characterized by the highest activity, while IBA - by the lowest. BRs at 0.01 μM were characterized by the highest biological activity in relation to auxin-treated and untreated cultures of C. vulgaris. The application of 50 μM IAA stimulated the level of all detected endogenous BRs in C. vulgaris cells. The stimulatory effect of BRs in green algae was arranged in the following order: BL > 24-epiBL > 28-homoBL > CS > 24-epiCS > 28-homoCS. Auxins cooperated synergistically with BRs stimulating algal cell proliferation and endogenous accumulation of proteins, chlorophylls and monosaccharides in C. vulgaris. The highest stimulation of algal growth and the contents of analyzed biochemical parameters were observed for the mixture of BL with IAA, whereas the lowest in the culture treated with both 28-homoCS and IBA. However, regardless of the applied mixture of BRs with auxins, the considerable increase in cell number and the metabolite accumulation was found above the level obtained in cultures treated with any single phytohormone. Obtained results confirm that both groups of plant hormones cooperate synergistically in the control of growth and metabolism of unicellular green alga C. vulgaris. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. Increased Growth of the Microalga Chlorella vulgaris when Coimmobilized and Cocultured in Alginate Beads with the Plant-Growth-Promoting Bacterium Azospirillum brasilense†

    PubMed Central

    Gonzalez, Luz E.; Bashan, Yoav

    2000-01-01

    Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments. PMID:10742237

  13. Crystallization and preliminary X-ray diffraction analysis of the homing endonuclease I-CvuI from Chlorella vulgaris in complex with its target DNA

    PubMed Central

    Redondo, Pilar; Merino, Nekane; Villate, Maider; Blanco, Francisco J.; Montoya, Guillermo; Molina, Rafael

    2014-01-01

    Homing endonucleases are highly specific DNA-cleaving enzymes that recognize long stretches of DNA. The engineering of these enzymes provides novel instruments for genome modification in a wide range of fields, including gene targeting, by inducing specific double-strand breaks. I-CvuI is a homing endonuclease from the green alga Chlorella vulgaris. This enzyme was purified after overexpression in Escherichia coli. Crystallization experiments of I-CvuI in complex with its DNA target in the presence of Mg2+ yielded crystals suitable for X-ray diffraction analysis. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 62.83, b = 83.56, c = 94.40 Å. The self-rotation function and the Matthews coefficient suggested the presence of one protein–DNA complex per asymmetric unit. The crystals diffracted to a resolution limit of 1.9 Å using synchrotron radiation. PMID:24637769

  14. Pretreatment of poultry manure anaerobic-digested effluents by electrolysis, centrifugation and autoclaving process for Chlorella vulgaris growth and pollutants removal.

    PubMed

    Wang, Mengzi; Wu, Yu; Li, Baoming; Dong, Renjie; Lu, Haifeng; Zhou, Hongde; Cao, Wei

    2015-01-01

    Different pretreatments (electrolysis, centrifugation and autoclaving) coupled with Chlorella vulgaris biological system was used for the treatment of poultry manure anaerobic-digested effluents. The pretreated effluents were used as the growth medium for algal cultivation. The pollutant removal efficiencies of the combined treatments were determined. Electrochemical pretreatment can efficiently remove the ammonia (NH4+), total phosphorus (TP), total organic carbon (TOC), total carbon (TC), turbidity and bacteria in the digested effluents. About 100.0% NH4+, turbidity and bacteria, 97.6% TP, 81.5% TOC and 96.6% inorganic carbon were removed by 5-h electrochemical treatment. The maximal algal biomass accumulation (0.53 g L(-1)) was obtained from culture in the effluents pretreated with 2-h electrolysis. The pollutants removal amounts by the combination of electrolysis and biological treatment were much higher than the other combinations.

  15. NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris.

    PubMed

    Zhang, Wenlin; Tan, Nicole G J; Li, Sam F Y

    2014-01-01

    Live green algae are promising candidates for phytoremediation, but a suitable algal species which bio-accumulates high concentrations of heavy metals, and survives well in industrial water is yet to be identified. Potential metabolic engineering may be applied to improve algal phytoremediation performance, but the metal tolerance and bioaccumulation mechanisms in green algae have to be first fully understood. In this study, NMR-based metabolomics was used to study the effect of different metal species (copper, cadmium and lead) and metal concentrations in green microalgae, Chlorella vulgaris. High Cu concentrations influenced substantial decrease in organic osmolytes (betaine and glycerophosphocholine), which indicated Cu-induced redox imbalance. Accompanying redox imbalance, growth inhibition and photosynthesis impairments in Cu-spiked C. vulgaris revealed a clear relationship between Cu toxicity and redox homeostasis. As these metabolic changes were less prominent in Cd and Pb-spiked cultures, we inferred metal-specific toxicity in C. vulgaris, where redox active Cu(2+) is more potent than non-redox active Cd(2+) and Pb(2+) in causing redox imbalance. Subsequently, ICP-MS and LC-MS/MS quantification shed light on the metal-specific bioaccumulation and detoxification mechanisms. The metal bioconcentration factor (BCF) correlated well with the phytochelatin (PC) content in Cu and Cd-spiked C. vulgaris biomass. High BCF and PC levels with increasing Cu and Cd exposure concentrations indicated that PCs played a significant role in Cu and Cd bioaccumulation and detoxification. In contrast, the undetectable PC levels in Pb-spiked cultures despite high Pb BCF suggest an alternative detoxification mechanism for Pb: either by passive absorption to the algal cell wall or interaction with glutathione (GSH).

  16. Production of Chlorella vulgaris as a source of essential fatty acids in a tubular photobioreactor continuously fed with air enriched with CO2 at different concentrations.

    PubMed

    Ortiz Montoya, Erika Y; Casazza, Alessandro A; Aliakbarian, Bahar; Perego, Patrizia; Converti, Attilio; de Carvalho, João C Monteiro

    2014-01-01

    To reduce CO2 emissions and simultaneously produce biomass rich in essential fatty acids, Chlorella vulgaris CCAP 211 was continuously grown in a tubular photobioreactor using air alone or air enriched with CO2 as the sole carbon source. While on one hand, nitrogen-limited conditions strongly affected biomass growth, conversely, they almost doubled its lipid fraction. Under these conditions using air enriched with 0, 2, 4, 8, and 16% (v/v) CO2 , the maximum biomass concentration was 1.4, 5.8, 6.6, 6.8, and 6.4 gDB L(-1) on a dry basis, the CO2 consumption rate 62, 380, 391, 433, and 430 mgCO2 L(-1) day(-1) , and the lipid productivity 3.7, 23.7, 24.8, 29.5, and 24.4 mg L(-1) day(-1) , respectively. C. vulgaris was able to grow effectively using CO2 -enriched air, but its chlorophyll a (3.0-3.5 g 100gDB (-1) ), chlorophyll b (2.6-3.0 g 100gDB (-1) ), and lipid contents (10.7-12.0 g 100gDB (-1) ) were not significantly influenced by the presence of CO2 in the air. Most of the fatty acids in C. vulgaris biomass were of the saturated series, mainly myristic, palmitic, and stearic acids, but a portion of no less than 45% consisted of unsaturated fatty acids, and about 80% of these were high added-value essential fatty acids belonging to the ω3 and ω6 series. These results highlight that C. vulgaris biomass could be of great importance for human health when used as food additive or for functional food production.

  17. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, Natalia F.; Zolotareva, Elena K.

    2017-02-01

    Nanoaquachelates, the nanoparticles with the molecules of water and/or carboxylic acids as ligands, are used in many fields of biotechnology. Ultra-pure nanocarboxylates of microelements are the materials of spatial perspective. In the present work, the effects of copper and selenium nanoaquachelates carboxylated with citric acid on biomass accumulation of the green algae Chlorella vulgaris were examined. Besides, the efficiency of the reactions of the light stage of photosynthesis was estimated by measuring chlorophyll a fluorescence. The addition of 0.67-4 mg L-1 of Cu nanocarboxylates resulted in the increase in Chlorella biomass by ca. 20%; however, their concentrations ranging from 20 to 40 mg L-1 strongly inhibited algal growth after the 12th day of cultivation. Se nanocarboxylates at 0.4-4 mg L-1 concentrations also stimulated the growth of C. vulgaris, and the increase in biomass came up to 40-45%. The addition of Se nanocarboxylates at smaller concentrations (0.07 or 0.2 mg L-1) at first caused the retardation of culture growth, but that effect disappeared after 18-24 days of cultivation. The addition of 2-4 mg L-1 of Cu nanocarboxylates or 0.4-4 mg L-1 of Se nanocarboxylates caused the evident initial increase in such chlorophyll a fluorescence parameters as maximal quantum yield of photosystem II photochemistry ( F v/ F m) and the quantum yield of photosystem II photochemistry in the light-adapted state ( F v'/ F m'). Photochemical fluorescence quenching coefficients declined after 24 days of growth with Cu nanocarboxylates, but they increased after 6 days of the addition of 2 or 4 mg L-1 Se nanocarboxylates. Those alterations affected the overall quantum yield of the photosynthetic electron transport in photosystem II.

  18. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats.

    PubMed

    Tsiplakou, E; Abdullah, M A M; Skliros, D; Chatzikonstantinou, M; Flemetakis, E; Labrou, N; Zervas, G

    2017-04-01

    Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro-organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross-bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C18:1 , trans-11 C18:1 and monounsaturated fatty acids (MUFA), while the proportions of C18:0 and long-chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C18:1 -producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane-producing bacteria and protozoa.

  19. Oxygen-18 exchange as a measure of accessibility of CO/sub 2/ and HCO/sub 3//sup -/ to carbonic anhydrase in Chlorella vulgaris (UTEX 263)

    SciTech Connect

    Tu, C.K.; Acevedo-Duncan, M.; Wynns, G.C.; Silverman, D.N.

    1986-04-01

    The exchange of /sup 18/O between CO/sub 2/ and H/sub 2/O in stirred suspensions of Chlorella vulgaris (UTEX 263) was measured using a membrane inlet to a mass spectrometer. The depletion of /sup 18/O from CO/sub 2/ in the fluid outside the cells provides a method to study CO/sub 2/ and HCO/sub 3//sup -/ kinetics in suspensions of algae that contain carbonic anhydrase since /sup 18/O loss to H/sub 2/O is catalyzed inside the cells but not in the external fluid. Low-CO/sub 2/ cells of Chlorella vulgaris (grown with air) were added to a solution containing /sup 18/O enriched CO/sub 2/ and HCO/sub 3//sup -/ with 2 to 15 millimolar total inorganic carbon. The observed depletion of /sup 18/O from CO/sub 2/ was biphasic and the resulting /sup 18/O content of CO/sub 2/ was much less than the /sup 18/O content of HCO/sub 3//sup -/ in the external solution. Analysis of the slopes showed that the Fick's law rate constant for entry of HCO/sub 3//sup -/ into the cell was experimentally indistinguishable from zero (bicarbonate impermeable) with an upper limit of 3 x 10/sup -4/ s/sup -1/ due to experimental errors. The Fick's law rate constant for entry of CO/sub 2/ to the sites of intracellular carbonic anhydrase was large, 0.013 per second, but not as great as calculated for no membrane barrier to CO/sub 2/ flux (6 per second). The experimental value may be explained by a nonhomogeneous distribution of carbonic anhydrase in the cell (such as membrane-bound enzyme) or by a membrane barrier to CO/sub 2/ entry into the cell or both. The CO/sub 2/ hydration activity inside the cells was 160 times the uncatalyzed CO/sub 2/ hydration rate.

  20. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris.

    PubMed

    Mykhaylenko, Natalia F; Zolotareva, Elena K

    2017-12-01

    Nanoaquachelates, the nanoparticles with the molecules of water and/or carboxylic acids as ligands, are used in many fields of biotechnology. Ultra-pure nanocarboxylates of microelements are the materials of spatial perspective. In the present work, the effects of copper and selenium nanoaquachelates carboxylated with citric acid on biomass accumulation of the green algae Chlorella vulgaris were examined. Besides, the efficiency of the reactions of the light stage of photosynthesis was estimated by measuring chlorophyll a fluorescence. The addition of 0.67-4 mg L(-1) of Cu nanocarboxylates resulted in the increase in Chlorella biomass by ca. 20%; however, their concentrations ranging from 20 to 40 mg L(-1) strongly inhibited algal growth after the 12th day of cultivation. Se nanocarboxylates at 0.4-4 mg L(-1) concentrations also stimulated the growth of C. vulgaris, and the increase in biomass came up to 40-45%. The addition of Se nanocarboxylates at smaller concentrations (0.07 or 0.2 mg L(-1)) at first caused the retardation of culture growth, but that effect disappeared after 18-24 days of cultivation. The addition of 2-4 mg L(-1) of Cu nanocarboxylates or 0.4-4 mg L(-1) of Se nanocarboxylates caused the evident initial increase in such chlorophyll a fluorescence parameters as maximal quantum yield of photosystem II photochemistry (F v/F m) and the quantum yield of photosystem II photochemistry in the light-adapted state (F v'/F m'). Photochemical fluorescence quenching coefficients declined after 24 days of growth with Cu nanocarboxylates, but they increased after 6 days of the addition of 2 or 4 mg L(-1) Se nanocarboxylates. Those alterations affected the overall quantum yield of the photosynthetic electron transport in photosystem II.

  1. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    SciTech Connect

    Zuniga, Cristal; Li, Chien -Ting; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C.; McConnell, Brian O.; Long, Christopher P.; Knoshaug, Eric P.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Betenbaugh, Michael J.; Zengler, Karsten

    2016-07-02

    The green microalgae Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Moreover, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine.

  2. Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis.

    PubMed

    Liang, Zhijie; Liu, Yan; Ge, Fei; Xu, Yin; Tao, Nengguo; Peng, Fang; Wong, Minghung

    2013-08-01

    To achieve better removal of NH4(+) and TP in wastewater, a new algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis was investigated in a 6-d experiment. The results showed that 78% of NH4(+) could be removed in the combined system, while 29% in single algae system and only 1% in single bacteria system. Approximately 92% of TP was removed in the combined system, compared with 55% and 78% in single algae and bacteria system, respectively. B. licheniformis was proven to be a growth-promoting bacterium for C. vulgaris by comparing Chl a concentrations in the single and combined systems. In the removal process, pH of the combined system was observed to reduce significantly from 7.0 to 3.5. Whereas with pH regulated to 7.0, higher removal efficiencies of NH4(+) (86%) and TP (93%) were achieved along with the recovery of algal cells and the increase of Chl a. These results suggest that nutrients in wastewater can be removed efficiently by the algae-bacteria combined system and pH control is crucial in the process. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. Effects of various LED light wavelengths and light intensity supply strategies on synthetic high-strength wastewater purification by Chlorella vulgaris.

    PubMed

    Yan, Cheng; Zhao, Yongjun; Zheng, Zheng; Luo, Xingzhang

    2013-09-01

    Chemical fertilizer agricultural wastewater is a typical high-strength wastewater that has dramatically triggered numerous environmental problems in China. The Chlorella vulgaris microalgae biological wastewater treatment system used in this study can effectively decontaminate the high-strength carbon and nitrogen wastewater under an optimum light wavelength and light intensity supply strategy. The descending order of both the dry weight for C. vulgaris reproduction and wastewater nutrient removal efficiency is red > white > yellow > purple > blue > green, which indicates that red light is the optimum light wavelength. Furthermore, rather than constant light, optimal light intensity is used for the incremental light intensity strategy. The phases for the optimal light intensity supply strategy are as follows: Phase 1 from 0 to 48 h at 800 μmol m(-2) s(-1); Phase 2 from 48 to 96 h at 1,200 μmol m(-2) s(-1); and Phase 3 from 96 to 144 h at 1,600 μmol m(-2) s(-1). Additionally, the optimal cultivation time is 144 h.

  4. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2011-11-01

    Microalgae are recognized for serving as a sustainable source for biodiesel production. This study investigated the effect of nitrogen starvation strategies and photobioreactor design on the performance of lipid production and of CO(2) fixation of an indigenous microalga Chlorella vulgaris ESP-31. Comparison of single-stage and two-stage nitrogen starvation strategies shows that single-stage cultivation on basal medium with low initial nitrogen source concentration (i.e., 0.313 g/L KNO(3)) was the most effective approach to enhance microalgal lipid production, attaining a lipid productivity of 78 mg/L/d and a lipid content of 55.9%. The lipid productivity of C. vulgaris ESP-31 was further upgraded to 132.4 mg/L/d when it was grown in a vertical tubular photobioreactor with a high surface to volume ratio of 109.3 m(2)/m(3) . The high lipid productivity was also accompanied by fixation of 6.36 g CO(2) during the 10-day photoautotrophic growth with a CO(2) fixation rate of 430 mg/L/d. Analysis of fatty acid composition of the microalgal lipid indicates that over 65% of fatty acids in the microalgal lipid are saturated [i.e., palmitic acid (C16:0) and stearic acid (C18:0)] and monounsaturated [i.e., oleic acid (C18:1)]. This lipid quality is suitable for biodiesel production.

  5. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions1

    PubMed Central

    Zuñiga, Cristal; Li, Chien-Ting; Zielinski, Daniel C.; Guarnieri, Michael T.; Antoniewicz, Maciek R.; Zengler, Karsten

    2016-01-01

    The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. PMID:27372244

  6. Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris.

    PubMed

    Markou, Giorgos; Iconomou, Dimitris; Sotiroudis, Theodore; Israilides, Cleanthes; Muylaert, Koenraad

    2015-11-01

    Herein a new approach of exploiting poultry litter (PL) is demonstrated. The suggested method includes drying of PL with simultaneously striping and recovery of ammonia, followed by the direct combustion of dried PL. The generated ash after the combustion, and the striped ammonia consequently, could be used as nutrient source for the cultivation of microalgae or cyanobacteria to produce feed additives. The present study explored the application of PL ash and recovered ammonia for the cultivation of Arthrospira platensis and Chlorella vulgaris. For a simultaneously 90% dissolution of ash potassium and phosphorus, a ratio of acid to ash of 0.02mol-H(+)/g was required. The optimum mass of ash required was 0.07-0.08g/g dry biomass, while the addition of ammoniac nitrogen of 8-9mgN per g of dry biomass per day was adequate for a satisfactory production of A. platensis and C. vulgaris. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Enzymatic pretreatment of Chlorella vulgaris for biogas production: Influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency.

    PubMed

    Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2016-01-01

    Two biocatalysts, namely carbohydrases and proteases, were assessed for organic matter solubilisation and methane yield enhancement of microalgae biomass. This study evidenced Chlorella vulgaris carbohydrate accumulation (40% on VSS basis) when grown in urban wastewater. Despite of the carbohydrate prevailing fraction, protease pretreatment showed higher organic matter hydrolysis efficiency (54%). Microscopic observation revealed that carbohydrases affected slightly the cell wall while protease was not selective to wall constituents. Raw and pretreated biomass was digested at 1.5 kg tCOD m(-3) day(-1) organic loading rate (OLR1) and 20 days hydraulic retention time (HRT). The highest methane yield (137 mL CH4 g COD in(-1)) was achieved in the reactor fed with protease pretreated C. vulgaris. Additionally, anaerobic digestion was conducted at OLR2 (3 kg tCOD m(-3) day(-1)) and HRT (15 days). When compared to raw biomass, methane yield increased 5- and 6.3-fold at OLR1 and OLR2, respectively. No inhibitors were detected during the anaerobic digestion.

  8. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions

    DOE PAGES

    Zuniga, Cristal; Li, Chien -Ting; Huelsman, Tyler; ...

    2016-07-02

    The green microalgae Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organismmore » to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Moreover, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine.« less

  9. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    PubMed

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  10. Evaluation of nutrients removal (NO3-N, NH3-N and PO4-P) with Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and a consortium of these microorganisms in the treatment of wastewater effluents.

    PubMed

    Gómez-Guzmán, Abril; Jiménez-Magaña, Sergio; Guerra-Rentería, A Suggey; Gómez-Hermosillo, César; Parra-Rodríguez, F Javier; Velázquez, Sergio; Aguilar-Uscanga, Blanca Rosa; Solis-Pacheco, Josue; González-Reynoso, Orfil

    2017-07-01

    In this research removal of NH3-N, NO3-N and PO4-P nutrients from municipal wastewater was studied, using Chlorella vulgaris, Pseudomonas putida, Bacillus cereus and an artificial consortium of them. The objective is to analyze the performance of these microorganisms and their consortium, which has not been previously studied for nutrient removal in municipal wastewater. A model wastewater was prepared simulating the physicochemical characteristics found at the wastewater plant in Chapala, Mexico. Experiments were carried out without adding an external carbon source. Results indicate that nutrient removal with Chlorella vulgaris was the most efficient with a removal of 24.03% of NO3-N, 80.62% of NH3-N and 4.30% of PO4-P. With Bacillus cereus the results were 8.40% of NO3-N, 28.80% of NH3-N and 3.80% of PO4-P. The removals with Pseudomonas putida were 2.50% of NO3-N, 41.80 of NH3-N and 4.30% of PO4-P. The consortium of Chlorella vulgaris-Bacillus cereus-Pseudomonas putida removed 29.40% of NO3-N, 4.2% of NH3-N and 8.4% of PO4-P. The highest biomass production was with Bacillus cereus (450 mg/l) followed by Pseudomonas putida (444 mg/l), the consortium (205 mg/l) and Chlorella vulgaris (88.9 mg/l). This study highlights the utility of these microorganisms for nutrient removal in wastewater treatments.

  11. Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake.

    PubMed

    Upadhyay, A K; Singh, N K; Singh, R; Rai, U N

    2016-02-01

    The present study was conducted to assess the responses of rice (Oryza sativa L. var. Triguna) by inoculating alga; Chlorella vulgaris and Nannochlropsis sp. supplemented with As(III) (50µM) under hydroponics condition. Results showed that reduced growth variables and protein content in rice plant caused by As toxicity were restored in the algae inoculated plants after 7d of treatment. The rice plant inoculated with Nannochloropsis sp. exhibited a better response in terms of increased root, shoot length and biomass than C. vulgaris under As(III) treatment. A significant reduction in cellular toxicity (thiobarbituric acid reactive substances) and antioxidant enzyme (SOD, APX and GR) activities were observed in algae inoculated rice plant under As(III) treatment in comparison to uninoculated rice. In addition, rice treated with As(III), accumulated 35.05mgkg(-1)dw arsenic in the root and 29.96mgkg(-1)dw in the shoot. However, lower accumulation was observed in As(III) treated rice inoculated with C. vulgaris (24.09mg kg(-1)dw) and Nannochloropsis sp. (20.66mgkg(-1)dw) in the roots, while in shoot, it was 20.10mgkg(-1)dw and 11.67mgkg(-1)dw, respectively. Results demonstrated that application of these algal inoculum ameliorates toxicity and improved tolerance in rice through reduced As uptake and modulating antioxidant enzymes. Thus, application of algae could provide a low-cost and eco-friendly mitigation approach to reduce accumulation of arsenic in edible part of rice as well as higher yield in the As contaminated agricultural field.

  12. Fast algal eco-toxicity assessment: Influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU.

    PubMed

    Camuel, Alexandre; Guieysse, Benoit; Alcántara, Cynthia; Béchet, Quentin

    2017-06-01

    In order to develop a rapid assay suitable for algal eco-toxicity assessments under conditions representative of natural ecosystems, this study evaluated the short-term (<1h) response of algae exposed to atrazine and DCMU using oxygen productivity measurements. When Chlorella vulgaris was exposed to these herbicides under 'standard' low light intensity (as prescribed by OECD201 guideline), the 20min-EC50 values recorded via oxygen productivity (atrazine: 1.32±0.07μM; DCMU: 0.31±0.005μM) were similar the 96-h EC50 recorded via algal growth (atrazine: 0.56μM; DCMU: 0.41μM), and within the range of values reported in the literature. 20min-EC50 values increased by factors of 3.0 and 2.1 for atrazine and DCMU, respectively, when light intensity increased from 60 to 1400μmolm(-2)s(-1) of photosynthetically active radiation, or PAR. Further investigation showed that exposure time significantly also impacted the sensitivity of C. vulgaris under high light intensity (>840μmolm(-2)s(-1) as PAR) as the EC50 for atrazine and DCMU decreased by up to 6.2 and 2.1 folds, respectively, after 50min of exposure at a light irradiance of 1400μmolm(-2)s(-1) as PAR. This decrease was particularly marked at high light intensities and low algae concentrations and is explained by the herbicide disruption of the electron transfer chain triggering photo-inhibition at high light intensities. Eco-toxicity assessments aiming to understand the potential impact of toxic compounds on natural ecosystems should therefore be performed over sufficient exposure times (>20min for C. vulgaris) and under light intensities relevant to these ecosystems.

  13. Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06.

    PubMed

    Khan, Masil; Yoshida, Naoto

    2008-02-01

    The main objective of this laboratory scale experiment was to study the effect of l-glutamic acid on the growth in media and removal of ammonium from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. It was observed that higher levels (1.0% and 1.5%) of l-glutamic acid compared to control (0% l-glutamic acid) negatively affected growth of C. vulgaris NTM06 and enhanced removal of ammonium from ammonium solution as well as natural wastewater. After 24h of incubation, 99% of 169.3mg NH(4)(+)-N/l was removed from ammonium solution by 1.5% l-glutamic acid treated C. vulgairs NTM06 cultures; removal in case of control was 70%. In case of natural wastewaters with initial ammonium concentrations of 1550, 775, 310 and 155 mg NH(4)(+)-N/l, removal after 48 h of incubation were 60%, 88%, 61% and 55% respectively. Ammonium removals from ammonium solutions of pH 4.0-8.0 were similar, whereas adsorption of ammonium ions on to the surface of dead C. vulgaris NTM06 cells was around 11%. Compared to dark, cultures incubated under the light showed higher initial removal of ammonium, however, after 24h, differences were not significant. Further research on the role of l-glutamic acid in micro-algal treatment of wastewater and its combination with other approaches such as co-immobilization of micro-algae with other organisms, starvation of micro-algal cells and the use of polymers is recommended.

  14. Effects on growth, antioxidant enzyme activity and levels of extracellular proteins in the green alga Chlorella vulgaris exposed to crude cyanobacterial extracts and pure microcystin and cylindrospermopsin.

    PubMed

    Campos, Alexandre; Araújo, Pedro; Pinheiro, Carlos; Azevedo, Joana; Osório, Hugo; Vasconcelos, Vitor

    2013-08-01

    Toxic cyanobacteria and cyanotoxins have been pointed as important players in the control of phytoplankton diversity and species abundance, causing ecological unbalances and contamination of the environment. In vitro experiments have been undertaken to address the impact of toxic cyanobacteria in green algae. In this regard the aim of this work was to compare the toxicity of two cyanobacteria species, Aphanizomenon ovalisporum and Microcystis aeruginosa, to the green alga Chlorella vulgaris by assessing culture growth when exposed for three and seven days to (I) cyanobacterial cell extracts and (II) pure toxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN). The biochemical response of the green alga to pure toxins was also characterized, through the activity of the antioxidant markers glutathione S-transferase (GST) and glutathione peroxidase (GPx) and the expressed extracellular proteins in seven-day exposed cultures. A. ovalisporum crude extracts were toxic to C. vulgaris. Pure toxins up to 179.0 µg/L, on the other hand, stimulated the green alga growth. Growth results suggest that the toxicity of A. ovalisporum extracts is likely due to a synergistic action of CYN and other metabolites produced by the cyanobacterium. Regarding the green alga antioxidant defense mechanism, CYN at 18.4 and 179.0 µg/L increased the activity of GPx and GST while MC-LR inhibited the enzymes' activity at a concentration of 179.0 µg/L demonstrating a contrasting mode of action. Moreover the identification of F-ATPase subunit, adenylate cyclase, sulfate ABC transporter, putative porin, aspartate aminotransferase, methylene-tetrahydrofolate dehydrogenase and chlorophyll a binding proteins in the culture medium of C. vulgaris indicates that biochemical processes involved in the transport of metabolites, photosynthesis and amino acid metabolism are affected by cyanobacterial toxins and may contribute to the regulation of green alga growth. Copyright © 2013 Elsevier Inc. All

  15. Lysine acetylsalicylate increases the safety of a paraquat formulation to freshwater primary producers: a case study with the microalga Chlorella vulgaris.

    PubMed

    Baltazar, Maria Teresa; Dinis-Oliveira, Ricardo Jorge; Martins, Alexandra; Bastos, Maria de Lourdes; Duarte, José Alberto; Guilhermino, Lúcia; Carvalho, Félix

    2014-01-01

    Large amounts of herbicides are presently used in the industrialized nations worldwide, with an inexorable burden to the environment, especially to aquatic ecosystems. Primary producers such as microalgae are of especial concern because they are vital for the input of energy into the ecosystem and for the maintenance of oxygen in water on which most of other marine life forms depend on. The herbicide paraquat (PQ) is known to cause inhibition of photosynthesis and irreversible damage to photosynthetic organisms through generation of reactive oxygen species in a light-dependent manner. Previous studies have led to the development of a new formulation of PQ containing lysine acetylsalicylate (LAS) as an antidote, which was shown to prevent the mammalian toxicity of PQ, while maintaining the herbicidal effect. However, the safety of this formulation to primary producers in relation to commercially available PQ formulations has hitherto not been established. Therefore, the aim of this study was to evaluate the toxicity of the PQ+LAS formulation in comparison with the PQ, using Chlorella vulgaris as a test organism. Effect criterion was the inhibition of microalgal population growth. Following a 96 h exposure to increasing concentrations of PQ, C. vulgaris growth was almost completely inhibited, an effect that was significantly prevented by LAS at the proportion used in the formulation (PQ+LAS) 1:2 (mol/mol), while the highest protection was achieved at the proportion of 1:8. In conclusion, the present work demonstrated that the new formulation with PQ+LAS has a reduced toxicity to C. vulgaris when compared to Gramoxone(®). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Combined effect of concentrations of algal food (Chlorella vulgaris) and salt (sodium chloride) on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera).

    PubMed

    Peredo-Alvarez, Víctor M; Sarma, S S; Nandini, S

    2003-06-01

    Salinity is an important variable influencing the density and diversity of rotifers. Studies on salt tolerance of rotifers have so far concentrated on euryhaline species while very little information is available on non-euryhaline taxa. In the present work, we have evaluated the combined effects of Chlorella vulgaris and sodium chloride on the population growth of two freshwater rotifers B. calyciflorus and B. patulus. A 24 hr acute tolerance test using NaCl revealed that B. calyciflorus was more resistant (LC50 = 3.75 +/- 0.04 g l-1) than B. patulus (2.14 +/- 0.09 g l-1). The maximal population density (mean +/- standard error) for B. calyciflorus in the control at 4.5 x 10(6) cells ml-1 (algal level) was 80 +/- 5 ind. ml-1, which was nearly a fifth of the one for B. patulus (397 +/- 7 ind. ml-1) under comparable conditions. Data on population growth revealed that regardless of salt concentration, the density of B. calyciflorus increased with increasing food levels, while for B. patulus, this trend was evident only in the controls. Regardless of salt concentration and algal food level, the day of maximal population density was lower (4 +/- 0.5 days) for B. calyciflorus than for B. patulus (11 +/- 1 day). The highest rates of population increase (r values) for B. calyciflorus and B. patulus were 0.429 +/- 0.012 and 0.367 +/- 0.004, respectively, recorded at 4.5 x 10(6) cells ml-1 of Chlorella in the controls. The protective role of algae in reducing the effect of salt stress was more evident in B. calyciflorus than B. patulus.

  17. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  18. A Comparative Study on the Effects of Millisecond- and Microsecond-Pulsed Electric Field Treatments on the Permeabilization and Extraction of Pigments from Chlorella vulgaris.

    PubMed

    Luengo, Elisa; Martínez, Juan Manuel; Coustets, Mathilde; Álvarez, Ignacio; Teissié, Justin; Rols, Marie-Pierre; Raso, Javier

    2015-10-01

    The interdependencies of the two main processing parameters affecting "electroporation" (electric field strength and pulse duration) while using pulse duration in the range of milliseconds and microseconds on the permeabilization, inactivation, and extraction of pigments from Chlorella vulgaris was compared. While irreversible "electroporation" was observed above 4 kV/cm in the millisecond range, electric field strengths of ≥10 kV/cm were required in the microseconds range. However, to cause the electroporation of most of the 90 % of the population of C. vulgaris in the millisecond (5 kV/cm, 20 pulses) or microsecond (15 kV/cm, 25 pulses) range, the specific energy that was delivered was lower for microsecond treatments (16.87 kJ/L) than in millisecond treatments (150 kJ/L). In terms of the specific energy required to cause microalgae inactivation, treatments in the microsecond range also resulted in greater energy efficiency. The comparison of extraction yields in the range of milliseconds (5 kV, 20 ms) and microseconds (20, 25 pulses) under the conditions in which the maximum extraction was observed revealed that the improvement in the carotenoid extraction was similar and chlorophyll a and b extraction was slightly higher for treatments in the microsecond range. The specific energy that was required for the treatment in the millisecond range (150 kJ/L) was much higher than those required in the microsecond range (30 kJ/L). The comparison of the efficacy of both types of pulses on the extraction enhancement just after the treatment and after a post-pulse incubation period seemed to indicate that PEF in the millisecond range created irreversible alterations while, in the microsecond range, the defects were a dynamic structure along the post-pulse time that caused a subsequent increment in the extraction yield.

  19. Molecular cloning and stress-dependent expression of a gene encoding Delta(12)-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7.

    PubMed

    Lu, Yandu; Chi, Xiaoyuan; Yang, Qingli; Li, Zhaoxin; Liu, Shaofang; Gan, Qinhua; Qin, Song

    2009-11-01

    The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15 degrees C and 3.9-fold at 4 degrees C compared to the alga at 25 degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.

  20. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.

    PubMed

    Cheirsilp, Benjamas; Suwannarat, Warangkana; Niyomdecha, Rujira

    2011-07-01

    A mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was performed to enhance lipid production from industrial wastes. These included effluent from seafood processing plant and molasses from sugar cane plant. In the mixed culture, the yeast grew faster and the lipid production was higher than that in the pure cultures. This could be because microalga acted as an oxygen generator for yeast, while yeast provided CO(2) to microalga and both carried out the production of lipids. The optimal conditions for lipid production by the mixed culture were as follows: ratio of yeast to microalga at 1:1; initial pH at 5.0; molasses concentration at 1%; shaking speed at 200 rpm; and light intensity at 5.0 klux under 16:8 hours light and dark cycles. Under these conditions, the highest biomass of 4.63±0.15 g/L and lipid production of 2.88±0.16 g/L were obtained after five days of cultivation. In addition, the plant oil-like fatty acid composition of yeast and microalgal lipids suggested their high potential for use as biodiesel feedstock. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size.

    PubMed

    Ouyang, Shaohu; Hu, Xiangang; Zhou, Qixing

    2015-08-19

    The interactions between nanomaterials and cells are fundamental in biological responses to nanomaterials. However, the size-dependent synergistic effects of envelopment and internalization as well as the metabolic mechanisms of nanomaterials have remained unknown. The nanomaterials tested here were larger graphene oxide nanosheets (GONS) and small graphene oxide quantum dots (GOQD). GONS intensively entrapped single-celled Chlorella vulgaris, and envelopment by GONS reduced the cell permeability. In contrast, GOQD-induced remarkable shrinkage of the plasma membrane and then enhanced cell permeability through strong internalization effects such as plasmolysis, uptake of nanomaterials, an oxidative stress increase, and inhibition of cell division and chlorophyll biosynthesis. Metabolomics analysis showed that amino acid metabolism was sensitive to nanomaterial exposure. Shrinkage of the plasma membrane is proposed to be linked to increases in the isoleucine levels. The inhibition of cell division and chlorophyll a biosynthesis was associated with decreases in aspartic acid and serine, the precursors of chlorophyll a. The increases in mitochondrial membrane potential loss and oxidative stress were correlated with an increase in linolenic acid. The above metabolites can be used as indicators of the corresponding biological responses. These results enhance our systemic understanding of the size-dependent biological effects of nanomaterials.

  2. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  3. Sensing of phosphates by using luminescent Eu(III) and Tb(III) complexes: application to the microalgal cell Chlorella vulgaris.

    PubMed

    Nadella, Sandeep; Sahoo, Jashobanta; Subramanian, Palani S; Sahu, Abhishek; Mishra, Sandhya; Albrecht, Markus

    2014-05-12

    Phenanthroline-based chiral ligands L(1) and L(2) as well as the corresponding Eu(III) and Tb(III) complexes were synthesized and characterized. The coordination compounds show red and green emission, which was explored for the sensing of a series of anions such as F(-), Cl(-), Br(-), I(-), NO3(-), NO2(-), HPO4(2-), HSO4(-), CH3COO(-), and HCO3(-). Among the anions, HPO4(2-) exhibited a strong response in the emission property of both europium(III) and terbium(III) complexes. The complexes showed interactions with the nucleoside phosphates adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). Owing to this recognition, these complexes have been applied as staining agents in the microalgal cell Chlorella vulgaris. The stained microalgal cells were monitored through fluorescence microscopy and scanning electron microscopy. Initially, the complexes bind to the outer cell wall and then enter the cell wall through holes in which they probably bind to phospholipids. This leads to a quenching of the luminescence properties.

  4. Combined effects of heavy metal (Hg) concentration and algal (Chlorella vulgaris) food density on the population growth of Brachionus calyciflorus (Rotifera: Brachionidae).

    PubMed

    Perez, Teresa Ramirez; Sarma, S S S

    2008-03-01

    The combined effects of two food levels (0.5 x 10(6) and 1.5 x 10(6) cells ml(-1) of Chlorella vulgaris) and five concentrations (0, 0.000625, 0.00125, 0.0025, 0.005 mg l(-1) of HgCl2) of mercury on the population growth of the rotifer Brachionus calyciflorus was evaluated. The growth experiments were conducted for 18 days at 23+/-1 degrees C under continuous fluorescent illumination. For each food level - heavy metal combination, we maintained 3 replicates. Our data showed that regardless of food level, increase in the heavy metal concentration in the medium resulted in decreased population growth of B. calyciflorus. At any given heavy metal concentration, B. calyciflorus grown under higher food levels had higher population abundance. The rate of population increase was significantly influenced by both the heavy metal concentration and the algal level. The highest population growth rate (0.435+/-0.003 per day) was observed in controls at 1.5 x 10(6) cells ml(-1). The results of this study were discussed in relation to the protective role of algal density against heavy metal toxicity.

  5. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.

    PubMed

    Ren, Hongyan; Tuo, Jinhua; Addy, Min M; Zhang, Renchuan; Lu, Qian; Anderson, Erik; Chen, Paul; Ruan, Roger

    2017-09-08

    To improve nutrients removal from real centrate wastewater and enhance the microalgae biomass production, cultivation of Chlorella vulgaris in lab and a pilot-scale photobioreactor with waste glycerol was studied. The results showed the optimal concentration of the crude glycerol was 1.0gL(-1) with the maximum biomass productivity of 460mgL(-1)d(-1) TVS, the maximum lipid content of 27%, the nutrient removal efficiency of all above 86%, due to more balanced C/N ratio. The synergistic relationship between the wastewater-borne bacteria and the microalgae had significant good influence on nutrient removal. In pilot-scale wastewater-based algae cultivation, with 1gL(-1) waste glycerol addition, the average biomass production of 16.7gm(-2)d(-1), lipid content of 23.6%, and the removal of 2.4gm(-2)d(-1) NH4(+)-N, 2.7gm(-2)d(-1) total nitrogen, 3.0gm(-2)d(-1) total phosphorous, and 103.0gm(-2)d(-1) of COD were attained for 34days semi-continuous mode. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of pH control and concentration on microbial oil production from Chlorella vulgaris cultivated in the effluent of a low-cost organic waste fermentation system producing volatile fatty acids.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Choi, Yun-Nam; Xu, Xu; Shin, Dong Yun; Park, Jong Moon

    2015-05-01

    The objective of this study was to investigate the feasibility of applying volatile fatty acids (VFAs) produced from low-cost organic waste to the major carbon sources of microalgae cultivation for highly efficient biofuel production. An integrated process that consists of a sewage sludge fermentation system producing VFAs (SSFV) and mixotrophic cultivation of Chlorella vulgaris (C. vulgaris) was operated to produce microbial lipids economically. The effluents from the SSFV diluted to different concentrations at the level of 100%, 50%, and 15% were prepared for the C. vulgaris cultivation and the highest biomass productivity (433±11.9 mg/L/d) was achieved in the 100% culture controlling pH at 7.0. The harvested biomass included lipid contents ranging from 12.87% to 20.01% under the three different effluent concentrations with and without pH control. The composition of fatty acids from C. vulgaris grown on the effluents from the SSFV complied with the requirements of high-quality biodiesel. These results demonstrated that VFAs produced from the SSFV are favorable carbon sources for cultivating C. vulgaris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparative study of the trophic transfer of two mercury compounds--HgCl/sub 2/ and CH/sub 3/HgCl--between Chlorella vulgaris and Daphnia magna. Influence of temperature

    SciTech Connect

    Baudou, A.; Ribeyre, F.

    1981-12-01

    A comparative study is presented of the transfer of HgCl/sub 2/ and CH/sub 3/HgCl between a species representative of the ''producer'' level -- Chlorella vulgaris -- and a primary consumer -- Daphnia magna. The experiment was carried out at two temperatures, 10 and 18/sup 0/C, and the concentration of metal in the environment was 1 ..mu..g.l/sup -1/ (1 ppb). Results seem to indicate that the two contaminants, which are first introduced into the environment and then fixed by the unicellular algae, retain their specific property of crossing the digestive barrier of the consumer link.

  8. Nitrous oxide (N2O) production in axenic Chlorella vulgaris cultures: evidence, putative pathways, and potential environmental impacts

    NASA Astrophysics Data System (ADS)

    Guieysse, B.; Plouviez, M.; Coilhac, M.; Cazali, L.

    2013-06-01

    Using antibiotic assays and genomic analysis, this study demonstrates nitrous oxide (N2O) is generated from axenic C. vulgaris cultures. In batch assays, this production is magnified under conditions favoring intracellular nitrite accumulation, but repressed when nitrate reductase (NR) activity is inhibited. These observations suggest N2O formation in C. vulgaris might proceed via NR-mediated nitrite reduction into nitric oxide (NO) acting as N2O precursor via a pathway similar to N2O formation in bacterial denitrifiers, although NO reduction to N2O under oxia remains unproven in plant cells. Alternatively, NR may reduce nitrite to nitroxyl (HNO), the latter being known to dimerize to N2O under oxia. Regardless of the precursor considered, an NR-mediated nitrite reduction pathway provides a unifying explanation for correlations reported between N2O emissions from algae-based ecosystems and NR activity, nitrate concentration, nitrite concentration, and photosynthesis repression. Moreover, these results indicate microalgae-mediated N2O formation might significantly contribute to N2O emissions in algae-based ecosystems. These findings have profound implications for the life cycle analysis of algae biotechnologies and our understanding of the global biogeochemical nitrogen cycle.

  9. Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris.

    PubMed

    Markou, Giorgos; Muylaert, Koenraad

    2016-09-01

    Herein the effect of increasing light intensity on the degree of ammonia toxicity and its impact on the photosynthetic performance of Arthrospira and Chlorella was investigated using Chl fluorescence as a technique to characterize their photosystem II (PSII) activity. The results revealed that the increase of light intensity amplifies the ammonia toxicity on PSII. Chl fluorescence transients shown that at a given free ammonia (FA) concentration (100mg-N/L), the photochemistry potential decreased by increasing light intensity. The inhibition of the PSII was not reversible either by re-incubating the cells under dark or under decreased FA concentration. Moreover, the decrease of photochemical and non-photochemical quenching (NPQ) of fluorescence suggest that ammonia toxicity decreases the open available PSII centers, as well the inability of PSII to transfer the generated electrons beyond QA. The collapse of NPQ suggests that ammonia toxicity inhibits the photoprotection mechanism(s) and hence renders PSII more sensitive to photoinhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris &Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR).

    PubMed

    Quraishi, Khurrum Shehzad; Bustam, Mohamad Azmi; Krishnan, Sooridarsan; Aminuddin, Noor Fathanah; Azeezah, Noraisyah; Ghani, Noraini Abd; Uemura, Yoshimitsu; Lévêque, Jean Marc

    2017-10-01

    A promising method of Carbon dioxide (CO2) valorization is to use green microalgae photosynthesis to process biofuel. Two Phase Partitioning Bioreactors (TPPBR) offer the possibility to use non-aqueous phase liquids (NAPL) to enhance CO2 solubility; thus making CO2 available to maximize algae growth. This requires relatively less toxic hydrophobic Ionic Liquids (ILs) that comprise a new class of ionic compounds with remarkable physicochemical properties and thus qualifies them as NAPL candidates. This paper concerns the synthesis of ILs with octyl and butyl chains as well as different cations containing aromatic (imidazolium, pyridinium) and non-aromatic (piperidinum, pyrrolidinium) rings for CO2 absorption studies. The authors measured their respective toxicity levels on microalgae species, specifically, Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii. Results revealed that octyl-based ILs were more toxic than butyl-based analogues. Such was the case for bmim-PF6 at double saturation with an absorbance of 0.11, compared to Omim-PF6 at 0.17, bmim-NTf2 at 0.02, and Omim-NTf2 at 0.14, respectively. CO2 uptake results for ILs bearing octyl-based chains compared to the butyl analog were 54% (nCO2/nIL) (i.e., moles of CO2 moles of IL) and 38% (nCO2/nIL), respectively. Conclusively, 1-butyl-1-methylpiperidinium absorbed 13% (nCO2/nIL) and appeared the least toxic, having an absorbance of 0.25 at 688 nm (double saturation at 7 d) compared to 1-butyl-3-methylimidazolium, which showed the highest toxicity with zero absorbance. Accordingly, these findings suggest that 1-butyl-1-methylpiperidinium is capable of transporting CO2 to a system containing green microalgae without causing significant harm; thus allowing its use in TPPBR technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment.

  12. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.

    PubMed

    Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood

    2016-02-01

    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively.

  13. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state ¹H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol.

    PubMed

    Bono, Michael S; Garcia, Ravi D; Sri-Jayantha, Dylan V; Ahner, Beth A; Kirby, Brian J

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols.

  14. Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State ¹H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol

    PubMed Central

    Bono Jr., Michael S.; Garcia, Ravi D.; Sri-Jayantha, Dylan V.; Ahner, Beth A.; Kirby, Brian J.

    2015-01-01

    In this study, we cultured Chlorella vulgaris cells with a range of lipid contents, induced via nitrogen starvation, and characterized them via flow cytometry, with BODIPY 505/515 as a fluorescent lipid label, and liquid-state 1H NMR spectroscopy. In doing so, we demonstrate the utility of calibrating flow cytometric measurements of algal lipid content using triacylglyceride (TAG, also known as triacylglycerol or triglyceride) content per cell as measured via quantitative 1H NMR. Ensemble-averaged fluorescence of BODIPY-labeled cells was highly correlated with average TAG content per cell measured by bulk NMR, with a linear regression yielding a linear fit with r2 = 0.9974. This correlation compares favorably to previous calibrations of flow cytometry protocols to lipid content measured via extraction, and calibration by NMR avoids the time and complexity that is generally required for lipid quantitation via extraction. Flow cytometry calibrated to a direct measurement of TAG content can be used to investigate the distribution of lipid contents for cells within a culture. Our flow cytometry measurements showed that Chlorella vulgaris cells subjected to nitrogen limitation exhibited higher mean lipid content but a wider distribution of lipid content that overlapped the relatively narrow distribution of lipid content for replete cells, suggesting that nitrogen limitation induces lipid accumulation in only a subset of cells. Calibration of flow cytometry protocols using direct in situ measurement of TAG content via NMR will facilitate rapid development of more precise flow cytometry protocols, enabling investigation of algal lipid accumulation for development of more productive algal biofuel feedstocks and cultivation protocols. PMID:26267664

  15. [Effects of azithromycin and Chlorella vulgaris treatment on certain cytokine values and NK cell activity in an acute murine toxoplasmosis model].

    PubMed

    Çelik Payçu, Deniz Gözde; Büyükbaba Boral, Özden

    2017-01-01

    Toxoplasmosis is a common infection with a complicated treatment process. Azithromycin (AZT) is a macrolide antibiotic that can be effectively used in patients with cerebral and ocular toxoplasmosis and has fewer side effects. Chlorella vulgaris (CV), a single-cell green algae that contains nutrients and has various biological effects. CV extract (CVE) has been shown to have protective effects against infections via immune enhancement by increasing the cytotoxicity of NK cells, IL-12 and IFN-γ levels. The aim of this study was to investigate the protective effects of AZT and CV, individually and in combination, against acute toxoplasmosis in mice, and their effects on NK cell cytotoxixity, IL-12, IFN-γ, and IL-2 levels. Six groups of mice (Balb/c) were formed. With the exception of the healthy control (HC) group, all other groups were infected with 1 ml (11 x 104 trofozoit/ml) Toxoplasma gondii RH strain trophozoites. No further action was performed for infected control (IC) group. After 24 hours from trophozoite infection, CVE was given to CV group, AZT to azithromycin group and CVE + AZT combination to CV + AZT group by oral gavage for 6 days. All of the mice from IC, CV, AZT and CV + AZT groups were sacrified on the 8th day of the infection and serum, peritoneal fluid and spleen samples were collected. Trophozoite count of the groups were determined in all groups except HC group and the average growth inhibition activity was calculated by using the growth inhibition formula. In all groups IL-12, IFN-γ, IL-2 levels were measured with ELISA method and cytotoxicity of the NK cells were measured using Cytotox 96 Non-Radioactive Cytotoxicity Assay. The number of trophozoites were significantly lower in the CV group than the IC group (p< 0.001), and also significantly lower in CV + AZT combination group than the AZT group. According to the growth inhibition calculations CV treatment showed 88.6%, AZT treatment 98.46%, AZT + CV combination treatment 99

  16. Bioaccumulation of arsenic by freshwater algae and the application to the removal of inorganic arsenic from an aqueous phase. Part II. By Chlorella vulgaris isolated from arsenic-polluted environment

    SciTech Connect

    Maeda, S.; Nakashima, S.; Takeshita, T.; Higashi, S.

    1985-01-01

    Green algae, Chlorella vulgaris Beijerinck var. vulgaris, isolated from an arsenic-polluted environment, was examined for the effects of arsenic levels, arsenic valence, temperature illumination intensity, phosphate levels, metabolism inhibitors, heat treatment on the growth, and arsenic bioaccumulation. The following conclusions were reached from the experimental results: (a) The growth of the cell increased with an increase of arsenic(V) levels of the medium up to 1000 ppm, and the cell survived even at 10,000 ppm; (b) The arsenic bioaccumulation increased with an increase of the arsenic level. The maximum accumulation of arsenic was about 50,000 ..mu..g As/g dry cell; (c) The growth decreased with an increase of the arsenic(III) level and the cell was cytolyzed at levels higher than 40 ppm; (d) No arsenic(V) was bioaccumulated by a cell which had been pretreated with dinitrophenol (respiratory inhibitor) or with heat. Little effect of NaN/sub 3/ (photosynthesis inhibitor) on the bioaccumulation was observed. 8 references, 2 figures, 6 tables.

  17. Uptake and accumulation of exogenous docosahexaenoic acid by Chlorella.

    PubMed

    Hayashi, M; Yukino, T; Maruyama, I; Kido, S; Kitaoka, S

    2001-01-01

    Tuna oil or its hydrolysate was added to a culture of Chlorella for its nutritional fortification as a feed for rotifer. Exogenous docosahexaenoic acid (DHA) in its free form was taken up by the cells of Chlorella vulgaris strain K-22 and by other strains, but tuna oil was not taken up by the cells. Accumulated DHA was found by electron microscopy in the cells in oil droplets. All strains of Chlorella used in these experiments took up exogenous DHA into the cells. It seems that the structure of the cell wall did not affect the uptake of DHA into the Chlorella cells.

  18. Effects of Chlorella vulgaris on tumor growth in mammary tumor-bearing Balb/c mice: discussing association of an immune-suppressed protumor microenvironment with serum IFNγ and IgG decrease and spleen IgG potentiation.

    PubMed

    Khalilnezhad, Ahad; Mahmoudian, Elham; Mosaffa, Nariman; Anissian, Ali; Rashidi, Mohsen; Amani, Davar

    2017-02-22

    Chlorella vulgaris (CV) has exhibited immune-enhancing and protective activities against cancer and infections. However, there is an increasing concern about the use of Chlorella species in human, regarding its various molecules with antigenic features found in infectious microorganisms. Our goal was to investigate the impact of higher concentrations of CV on tumor growth in spontaneous mouse mammary tumor (SMMT) models. Balb/c mice were daily given CV powder at doses of 0, 200, or 300 mg/kg for 42 days (CONTROL, CV200, and CV300 groups, respectively; n = 6/group). On day 14, the SMMT was inoculated. Tumor volume (TV) and body weight (BW) were monitored on 5-day intervals following tumor challenge. On day 43, blood, spleen, lungs, and tumor tissues were collected. Histopathological examinations on lungs and tumor tissues were performed following hematoxylin-eosin staining. Intratumor expression of 27 genes was assessed by real-time PCR. Total IgG, IFNγ, and IL-4 levels in serum and spleen culture supernatant were measured by ELISA. The TV/BW index showed significant increase in the CV200 group compared to the CONTROL (p = 0.047). The CV200 tumors exhibited more malignant phenotype, higher angiogenesis rate, and lower peritumoral neutrophil and macrophage-to-lymphocyte infiltration ratio compared to the CONTROL. Serum concentrations of IFNγ, IL-4, and IgG were declined, and the spleen IFNγ and IgG production was higher in the CV200 compared to the CONTROL. The IL-1β, IL-10, TGFβ1, FOXP3, HO-1, Gr1, CD11b, PCNA, LCN2, iNOS2, VEGFR2, CD31, and CD105L expressions were markedly increased in the CV200 tumors compared to the CONTROL (p = 0.001, 0.002, 0.006, 0.021, 0.004, 0.030, 0.016, 0.031, 0.025, 0.008, 0.014, 0.022, and 0.037, respectively). The changes in cytokine, IgG and gene expression values considerably correlated with tumor size, as well as with each other. Our data provided evidence that C. vulgaris at a specific dose (200 mg/kg) promoted

  19. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.

    PubMed

    Tran, Dang-Thuan; Chen, Ching-Lung; Chang, Jo-Shu

    2013-05-01

    In this work, a one-step extraction/transesterification process was developed to directly convert wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 into biodiesel using immobilized Burkholderia lipase as the catalyst. The microalgal biomass (water content of 86-91%; oil content 14-63%) was pre-treated by sonication to disrupt the cell walls and then directly mixed with methanol and solvent to carry out the enzymatic transesterification. Addition of a sufficient amount of solvent (hexane is most preferable) is required for the direct transesterification of wet microalgal biomass, as a hexane-to-methanol mass ratio of 1.65 was found optimal for the biodiesel conversion. The amount of methanol and hexane required for the direct transesterification process was also found to correlate with the lipid content of the microalga. The biodiesel synthesis process was more efficient and economic when the lipid content of the microalgal biomass was higher. Therefore, using high-lipid-content microalgae as feedstock appears to be desirable. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Optimization of ferric chloride concentration and pH to improve both cell growth and flocculation in Chlorella vulgaris cultures. Application to medium reuse in an integrated continuous culture bioprocess.

    PubMed

    Lecina, Martí; Nadal, Gisela; Solà, Carles; Prat, Jordi; Cairó, Jordi J

    2016-09-01

    Combined effect of ferric chloride and pH on Chlorella vulgaris growth and flocculation were optimized using DoE. Afterwards, an integrated bioprocess for microalgae cultivation and harvesting conceived as a sole step was run in continuous operation mode. Microalgae concentration in a 2L-photobioreactor was about 0.5gL(-1) and the efficiency of flocculation in the coupled sedimentation tank was about 95%. Dewatered microalgae reached a biomass concentrations increase about 50-fold, whereas it was only about 0.02gL(-1) in the clarified medium. Then, the reuse of the clarified medium recovered was further evaluated. The clarified medium was reused without any further nutrient supplementation, whereas a second round of medium reuse was performed after supplementation of main nutrients (phosphate-sulfate-nitrate), micronutrients and ferric chloride. The medium reuse strategy did not affect cell growth and flocculation. Consequently, the reuse of medium reduces the nutrients requirements and the demand for water, and therefore the production costs should be reduced accordingly.

  1. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation.

    PubMed

    Sakarika, Myrsini; Kornaros, Michael

    2016-11-01

    The goal of the present study was to investigate the pH range that can support the growth of C. vulgaris, and, more specifically, to identify the optimal pH for the microalga's growth, under heterotrophic conditions. Furthermore, the effect of pH on the accumulation of intracellular lipids was studied. A wide range of pH values was tested using the respective buffer solutions. The optimal pH for biomass growth and lipid accumulation under sulfur limitation was found to be 7.5, resulting in maximum specific growth rate of 0.541days(-1) and maximum total lipid content of 53.43%ggDW(-1). The fatty acid composition of C. vulgaris was found to be unrelated to pH, as the lipid content did not present significant variations in the pH values tested. The fatty acid profile was mainly composed of monounsaturated fatty acids (MUFAs) with the dominant one being oleic acid (C18:1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to Chlorella vulgaris: new insight into the variation of toxicity of ZnO NPs under aging process.

    PubMed

    Zhang, Hong; Huang, Qing; Xu, An; Wu, Lijun

    2016-10-01

    Zinc oxide nanoparticles (ZnO NPs) are one of the most abundantly applied nanomaterials in nanotechnology-based industries and they may cause unexpected environmental and health risks with their physicochemical transformations in the environment. Currently, there is still a lack of the in-depth understanding of the toxicity of aged ZnO NPs to aquatic organisms, particularly demanding quantitative analysis of the physicochemical transformations to distinguish their contributions in the toxicity assessment. For this purpose, therefore, we initiated the study of the toxicity of aged ZnO NPs to the model aquatic microalga, i.e. Chlorella vulgaris, and with the aid of spectroscopic tools for characterization and quantification of the physicochemical transformations, we scrutinized the toxicity variations for ZnO NPs with different aging times. As a result, we found that the toxicity altered in an abnormal manner with the aging time, i.e. the toxicity of aged ZnO NPs for 30 days showed the higher toxicity to the green alga than the fresh ZnO NPs or the ZnO NPs aged for longer time (e.g. 120 and 210 days). Through spectroscopic tools such as XRD, FTIR and Raman spectroscopy, we made both the qualitative and quantitative assessments of the physicochemical changes of the ZnO NPs, and confirmed that in the early stage, the toxicity mainly stemmed from the release of zinc ions, but with longer aging time, the neoformation of the nanoparticles played the critical role, leading to the overall reduced toxicity due to the less toxic hydrozincite and zinc hydroxide in the transformed compounds.

  3. Ultraviolet and 5'fluorodeoxyuridine induced random mutagenesis in Chlorella vulgaris and its impact on fatty acid profile: a new insight on lipid-metabolizing genes and structural characterization of related proteins.

    PubMed

    Anthony, Josephine; Rangamaran, Vijaya Raghavan; Gopal, Dharani; Shivasankarasubbiah, Kumar T; Thilagam, Mary Leema J; Peter Dhassiah, Magesh; Padinjattayil, Divya Shridhar M; Valsalan, VinithKumar N; Manambrakat, Vijayakumaran; Dakshinamurthy, Sivakumar; Thirunavukkarasu, Sivaraman; Ramalingam, Kirubagaran

    2015-02-01

    The present study was aimed at randomly mutating the microalga, Chlorella vulgaris, in order to alter its cellular behaviour towards increased lipid production for efficient biodiesel production from algal biomass. Individual mutants from ultraviolet light (UV-1 (30 s exposure), UV-2 (60 s exposure) and UV-3 (90 s exposure)) and 5'fluorodeoxyuridine (5'FDU-1 (0.25 mM) and 5'FDU-2 (0.50 mM)) exposed cells were identified to explore an alternative method for lipid enhancement. A marginally significant decrease in biomass in the UV mutants; marked increase in the lipid content in UV-2 and 5'FDU-1 mutants; significant increase in saturated fatty acids level, especially in UV-2 mutant; insignificant increase in lipid production when these mutants were subjected to an additional stress of nitrogen starvation and predominantly enhanced level of unsaturated fatty acids in all the strains except UV-2 were noted. Chloroplast ultrastructural alterations and defective biosynthesis of chloroplast specific lipid constituents were observed in the mutants. Modelling of three-dimensional structures of acetyl coA carboxylase (ACCase), omega-6, plastid delta-12 and microsomal delta-12 fatty acid desaturases for the first time and ligand-interaction studies greatly substantiated our findings. A replacement of leucine by a serine residue in the acetyl coA carboxylase gene of UV-2 mutant suggests the reason behind lipid enhancement in UV-2 mutant. Higher activity of ACCase in UV-2 and 5'FDU-1 strongly proves the functional consequences of gene mutation to lipid production. In conclusion, algal mutants exhibited significant impact on biodiesel production through structural alterations in the lipid-metabolizing genes, thereby enhancing lipid production and saturated fatty acid levels.

  4. Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase.

    PubMed

    Jusoh, Malinna; Loh, Saw Hong; Chuah, Tse Seng; Aziz, Ahmad; Cha, Thye San

    2015-03-01

    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.

  5. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide.

    PubMed

    Huang, Yun; Xiong, Wei; Liao, Qiang; Fu, Qian; Xia, Ao; Zhu, Xun; Sun, Yahui

    2016-12-01

    To investigate light transmission and cells affinity to CO2, Chlorellavulgaris was attached to microfiltration membrane that laid on the solidified BG11 medium compared to that in suspended cultivation mode in this study. The results showed that C. vulgaris showed a 30.4% higher biomass production (103gm(-2)) in attached than in suspend system. The upper layer of biofilm with a thickness of 41.31μm (the corresponding areal density of 40gm(-2)) was effectively illuminated under light intensity of 120μmolm(-2)s(-1) and more than 40% of the microalgal cells were in light even the areal density was high to 100gm(-2). While only 2.5% of the cells were effectively illuminated in the suspended cultivation system. Furthermore, microalgae cells in biofilm showed a higher affinity to CO2 compared with that in suspension, and CO2 saturation point of microalgae cells in biofilm was 1.5% but 4.5% in suspension.

  6. Removal and biodegradation of nonylphenol by different Chlorella species.

    PubMed

    Gao, Q T; Wong, Y S; Tam, N F Y

    2011-01-01

    All four Chlorella species, including one commercially available species, Chlorella vulgaris and three local isolates, Chlorella sp. (1 uoai), Chlorella sp. (2f5aia) and Chlorellaminiata (WW1), had a rapid and high ability to remove nonylphenol (NP). Among these species, C. vulgaris had the highest NP removal (nearly all NP was removed from the medium) and degradation abilities (more than 80% of NP was degraded) after 168 h, followed by WW1 and 1 uoai; 2f5aia had the lowest NP degradation ability. The NP removal by C. vulgaris was less affected by growth conditions, but its biodegradation efficiency was significantly increased by temperature and light intensity, suggesting that the biodegradation ability was positively related to photosynthetic and metabolic activities. These results indicated that C. vulgaris was the most suitable species for effective removal and biodegradation of NP, especially under 25 °C with light illumination and initial biomass between 0.5 and 1.0 mg chlorophyll l(-1). Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Germination behavior, biochemical features and sequence analysis of the RACK1/arcA homolog from Phaseolus vulgaris

    PubMed Central

    Islas-Flores, Tania; Guillén, Gabriel; Islas-Flores, Ignacio; Román-Roque, Carolina San; Sánchez, Federico; Loza-Tavera, Herminia; Bearer, Elaine L.; Villanueva, Marco A.

    2010-01-01

    Partial peptide sequence of a 36 kDa protein from common bean embryo axes showed 100% identity with a reported β-subunit of a heterotrimeric G protein from soybean. Analysis of the full sequence showed 96.6% identity with the reported soybean Gβ -subunit, 86% with RACK1B and C from Arabidopsis and 66% with human and mouse RACK1, at the amino acid level. In addition, it showed 85.5, 85 and 83% identities with arcA from Solanum lycopersicum, Arabidopsis (RACK1A) and Nicotiana tabacum, respectively. The amino acid sequence displayed seven WD40 domains and two sites for activated protein kinase C binding. The protein showed a constant expression level but the mRNA had a maximum at 32 h post-imbibition. Western immunoblotting showed the protein in vegetative plant tissues, and in both microsomal and soluble fractions from embryo axes. Synthetic auxin treatment during germination delayed the peak of RACK1 mRNA expression to 48 h but did not affect the protein expression level while the polar auxin transport inhibitor, naphtylphtalamic acid had no effect on either mRNA or protein expression levels. Southern blot and genomic DNA amplification revealed a small gene family with at least one member without introns in the genome. Thus, the RACK1/arcA homolog from common bean has the following features: (1) it is highly conserved; (2) it is both soluble and insoluble within the embryo axis; (3) it is encoded by a small gene family; (4) its mRNA has a peak of expression at the time point of germination stop and (5) its expression is only slightly affected by auxin but unaffected by an auxin transport blocker. PMID:19832940

  8. Screening high oleaginous Chlorella strains from different climate zones.

    PubMed

    Xu, Jin; Hu, Hanhua

    2013-09-01

    In outdoor cultivation, screening strains adapted to a wide temperature range or suitable strains for different environmental temperatures is of great importance. In this study, triacylglycerol (TAG) content of 23 oil-producing Chlorella strains from different climate zones were analyzed by thin layer chromatography. Four selected Chlorella strains (NJ-18, NJ-7, NMX35N and NMX139N) with rather high TAG content had higher total lipid content compared with Chlorella vulgaris SAG 211-11b. In particular, NJ-18 displayed the highest TAG productivity among the four high oil-producing Chlorella strains. Accumulation of TAGs in strain NMX35N changed a little from 30 to 40°C, showing a desirable characteristic of accumulating TAGs at high temperatures. Our results demonstrated that NJ-18 and NMX35N had suitable fatty acid profiles and good adaption to low and high temperatures respectively. Therefore, cultivation of the two Chlorella strains together might be a good option for economic biodiesel production during the whole seasons of the year.

  9. Pemphigus vulgaris

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000882.htm Pemphigus vulgaris To use the sharing features on this page, please enable JavaScript. Pemphigus vulgaris (PV) is an autoimmune disorder of the ...

  10. Ecological role of algobacterial cenosis links (chlorella - associated microflora or associated bacteria)

    NASA Astrophysics Data System (ADS)

    Pechurkin, N. S.

    The problems of interrelation of microalgae and bacteria in the "autotroph - heterotroph" aquatic biotic cycle are discussed. The cause and mechanisms of algobacterial cenosis formation still have been explained contradictorily. This work views the results of experimental and theoretical study of algobacterial cenosis functioning by the example of microalga Chlorella vulgaris and associated microflora. The representatives of Pseudomonas mainly predominate in the Chlorella microbial complex. The experiment at non-sterile batch cultivation of Chlorella on Tamya medium showed that the biomass of microorganisms increases simultaneously with the increase of microalgal biomass. Microflora of Chlorella can use organic materials evolved by Chlorella after photosynthesis for reproduction. Moreover, microorganisms can use dying cells of Chlorella, i.e. form the "producer - reducer" biocycle. To understand the cenosis-forming role of microalgae the mathematical model of the "autotroph - heterotroph" aquatic biotic cycle was constructed taking into consideration the opportunities for microorganisms of using Chlorella photosynthates, dying cells and contribution of links to the nitrogen cycle. The theoretical investigation showed that the biomass of associated bacteria growing on glucose and detritus exceeds the biomass of bacteria using only microalgal photosynthates, which is comparable with experimental data.

  11. Increase in Chlorella strains calorific values when grown in low nitrogen medium.

    PubMed

    Illman; Scragg; Shales

    2000-11-01

    The calorific value of five strains of Chlorella grown in Watanabe and low-nitrogen medium was determined. The algae were grown in small (2L) stirred tank bioreactors and the best growth was obtained with Chlorella vulgaris with a growth rate of 0.99 d(-1) and the highest calorific value (29 KJ/g) was obtained with C. emersonii. The cellular components were assayed at the end of the growth period and the calorific value appears to be linked to the lipid content rather than any other component.

  12. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography.

    PubMed

    Hodač, Ladislav; Hallmann, Christine; Spitzer, Karolin; Elster, Josef; Faßhauer, Fabian; Brinkmann, Nicole; Lepka, Daniela; Diwan, Vaibhav; Friedl, Thomas

    2016-08-01

    Chlorella and Stichococcus are morphologically simple airborne microalgae, omnipresent in terrestrial and aquatic habitats. The minute cell size and resistance against environmental stress facilitate their long-distance dispersal. However, the actual distribution of Chlorella- and Stichococcus-like species has so far been inferred only from ambiguous morphology-based evidence. Here we contribute a phylogenetic analysis of an expanded SSU and ITS2 rDNA sequence dataset representing Chlorella- and Stichococcus-like species from terrestrial habitats of polar, temperate and tropical regions. We aim to uncover biogeographical patterns at low taxonomic levels. We found that psychrotolerant strains of Chlorella and Stichococcus are closely related with strains originating from the temperate zone. Species closely related to Chlorella vulgaris and Muriella terrestris, and recovered from extreme terrestrial environments of polar regions and hot deserts, are particularly widespread. Stichococcus strains from the temperate zone, with their closest relatives in the tropics, differ from strains with the closest relatives being from the polar regions. Our data suggest that terrestrial Chlorella and Stichococcus might be capable of intercontinental dispersal; however, their actual distributions exhibit biogeographical patterns. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Comparative toxicity and structure-activity in Chlorella and Tetrahymena: Monosubstituted phenols

    SciTech Connect

    Jaworska, J.S.; Schultz, T.W. )

    1991-07-01

    The relative toxicity of selected monosubstituted phenols has been assessed by Kramer and Truemper in the Chlorella vulgaris assay. The authors examined population growth inhibition of this simple green algae under short-term static conditions for 33 derivatives. However, efforts to develop a strong predictive quantitative structure-activity relationship (QSAR) met with limited success because they modeled across modes of toxic action or segregated derivatives such as positional isomers (i.e., ortho-, meta-, para-). In an effort to further their understanding of the relationships of ecotoxic effects of phenols, the authors have evaluated the same derivatives reported by Kramer and Truemper in the Tetrahymena pyriformis population growth assay, compared the responses in both systems and developed QSARs for the Chlorella vulgaris data based on mechanisms of action.

  14. Water Permeability of Chlorella Cell Membranes by Nuclear Magnetic Resonance

    PubMed Central

    Stout, Darryl G.; Steponkus, Peter L.; Bustard, Larry D.; Cotts, Robert M.

    1978-01-01

    Measurement by two nuclear magnetic resonance (NMR) techniques of the mean residence time τa of water molecules inside Chlorella vulgaris (Beijerinck) var. “viridis” (Chodot) is reported. The first is the Conlon and Outhred (1972 Biochim Biophys Acta 288: 354-361) technique in which extracellular water is doped with paramagnetic Mn2+ ions. Some complications in application of this technique are identified as being caused by the affinity of Chlorella cell walls for Mn2+ ions which shortens the NMR relaxation times of intra- and extracellular water. The second is based upon observations of effects of diffusion on the spin echo of intra- and extracellular water. Echo attenuation of intracellular water is distinguished from that of extracellular water by the extent to which diffusive motion is restricted. Intracellular water, being restricted to the cell volume, suffers less echo attenuation. From the dependence of echo amplitude upon gradient strength at several values of echo time, the mean residence time of intracellular water can be determined. From the mean residence time of intracellular water, the diffusional water permeability coefficient of the Chlorella membrane is calculated to be 2.1 ± 0.4 × 10−3 cm sec−1. PMID:16660456

  15. Population of Vibrational State of Carotenoid Molecules in Living Cells of Chlorella

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shuichi; Hirata, Kuniko; Kushida, Takashi

    1980-07-01

    Stokes and anti-Stokes Raman spectra have been measured in living cells of Chlorella vulgaris as well as in chloroform, toluene, benzene and β-carotene. Population in the vibrational state has been determined by taking account of resonance Raman effect. The result shows that this population is well explained by thermal distribution even in the case of living biological cells, contrary to recently reported observation of some population enhancement. Possible experimental artifacts are discussed.

  16. Detoxification of chlorella supplement on heterocyclic amines in Korean young adults.

    PubMed

    Lee, Inyeong; Tran, Minhphuong; Evans-Nguyen, Theresa; Stickle, Dawn; Kim, Soyeon; Han, Jaegab; Park, Jong Y; Yang, Mihi

    2015-01-01

    Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) have been established as carcinogenic chemicals in Western diet. This study was performed to estimate HCA exposure levels in Korean daily life and to assess the ability of Chlorella vulgaris to detoxify carcinogenic HCAs in a randomized, double blind, placebo-controlled crossover study with chlorella supplement (N=6, all females, age: 27.17±7.73yr) for 2 weeks. We analyzed HCAs in hydrolyzed urine specimens using LC/TOF-MS. As results, urinary levels of MeIQx, PhIP, and IQx-8-COOH were 323.36±220.11ng/L, 351.59±254.93ng/L, and 130.85±83.22ng/L, respectively. Effects of chlorella to reduce urinary MeIQx were marginally significant (before, 430±226.86pg/mL vs. after, 174.45±101.65pg/mL: 0.05chlorella supplementation. In conclusion, our study demonstrates that current daily levels of HCA exposure in Korean young adults are not lower than those in the Western world. In addition, the effects of chlorella's to detoxify HCAs likely occur by interfering e with absorption or metabolism.

  17. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    PubMed Central

    Sibi, G.

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  18. Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel

    NASA Astrophysics Data System (ADS)

    Izzati Ishak, Nur; Muniandy, S. V.; Periasamy, Vengadesh; Ng, Fong-Lee; Phang, Siew-Moi

    2017-08-01

    Not Available Project supported by the Science Fund from the Ministry of Higher Education of Malaysia under the Fundamental Research Grant Scheme (Grant No. FRGS: FP057-2014A) and the Fund from the University of Malaya Research Grant (Grant No. UMRG: RP020A-14AFR).

  19. Pheophorbide b ethyl ester from a chlorella vulgaris dietary supplement.

    PubMed

    Chee, Chin Fei; Rahman, Noorsaadah Abdul; Zain, Sharifuddin M; Ng, Seik Weng

    2008-09-24

    In the title compound, C(37)H(38)N(4)O(6), four five-membered nitro-gen-bearing rings are nearly coplanar. Two N atoms in two these five-membered rings have attached H atoms, which contribute to the formation of intra-molecular N-H⋯N hydrogen bonds [N⋯N = 2.713 (5)-3.033 (6) Å].

  20. Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Gerulová, Kristína

    2015-06-01

    Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  1. Electroporation of Chlorella vulgaris to enhance biomethane production.

    PubMed

    Garoma, Temesgen; Shackelford, Trevor

    2014-10-01

    This research investigated the feasibility of using electroporation (EP) as a pretreatment method for algal biomass used as feedstock for anaerobic digestion. The results showed that pretreating algal biomass with EP significantly improved the soluble COD (SCOD), increasing it to more than 830% at 28 kWh/m(3) treatment intensity (TI). Besides TI, culture conditions also affected the performance of the EP process. On the basis of SCOD, a sample pH of 7.0 and cell concentration of 13.2g/L were found to be optimal for the EP process. Despite a direct relationship between TI and ionic strength (IS), SCOD decreased with increasing IS. At 35 kWh/m(3) TI, bio-CH4 production increased by as high as 110%. It was also observed that lower TI levels resulted in high rates of gain per energy input compared to higher degrees of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions.

    PubMed

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144 h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96 h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions.

  3. [Effect of spectra on growth of chlorella and isochrysis].

    PubMed

    Mao, An-Jun; Wang, Jing; Lin, Xue-Zheng; Meng, Ji-Wu

    2008-05-01

    Focusing on the speed and efficiency, the effects of different spectra on the growth of chlorella vulgaris and isochrysis galbana Parke 8701 were investigated by using monochromatic LED (light-emitting diode) and fluorescent lamp as light sources. It was concluded that continuous spectra accelerate the top-growth-rate, blue light has the best efficiency, and the combination of them can obtain a good balance of speed and efficiency. For the purpose of measuring spectra as a parameter of irradiation quantitatively, spectra-absorbability-coefficient defined as the quanta-absorbability- efficiency of spectra for algae was calculated by means of absorption spectra of algae and emission spectra of light sources. Compared with the experimental results the coefficients of different light sources have a positive correlation to their efficiency for growth, so the coefficient can be used to elementarily quantify the relation between the spectra and the efficiency for growth.

  4. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    PubMed Central

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  5. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    PubMed

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm), PAR plus ultraviolet-A (320-400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280-320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  6. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions.

    PubMed

    Choix, Francisco J; de-Bashan, Luz E; Bashan, Yoav

    2012-10-10

    The effect of the microalgae-growth promoting bacterium Azospirillum brasilense on accumulation of total carbohydrates and starch in two species of Chlorella (Chlorella vulgaris and Chlorella sorokiniana), when the bacterium and each microalga were jointly immobilized in alginate beads was studied under autotrophic conditions for 144 h in synthetic medium. The interaction of the bacterium with the microalgae enhanced accumulation of total carbohydrate and starch. Cells of Chlorella accumulated the highest amounts of carbohydrate after incubation for 24h. Yet, this did not coincide with the highest affinity and volumetric productivity measured in these cultures. However, after incubation for 72 h, mainly in jointly immobilized treatments of both microalgae species, the cultures reached their highest total carbohydrate content (mainly as starch) and also the highest affinity and volumetric productivity. These results demonstrate the potential of A. brasilense to affect carbohydrates and starch accumulation in Chlorella spp. when both microorganisms are co-cultured, which can be an important tool for applications of microalgae.

  7. Chlorella: 125 years of the green survivalist.

    PubMed

    Krienitz, Lothar; Huss, Volker A R; Bock, Christina

    2015-02-01

    Chlorella, the archetype of unicellular green algae, is a high-performance primary producer in aquatic and terrestrial ecosystems. Under the simple spherical morphology of Chlorella, many other 'green balls' unfolded as independent phylogenetic lineages as a result of convergent evolution. By contrast, green algae with strikingly different phenotypes were unmasked as close relatives of Chlorella by modern molecular techniques. Here, we point to the increasing impact of these diverse protists on ecology, evolution, and biotechnology in the light of integrative taxonomy.

  8. Acne vulgaris.

    PubMed

    Robertson, Kevin M

    2004-08-01

    Acne vulgaris is a common inflammatory skin condition that presents management difficulties to cosmetic surgeons. Acute management and treatment focuses on early diagnosis as well as treatment with topical agents, oral antibiotics, hormonal therapy,and nonablative chemical peel and laser applications. The treatment of postinflammatory scarring must be individualized to address potential macular dyschromia, cystic lesions,epithelial bridges, or deep pitted scars. A review of interventional options is presented to apply to the spectrum of acne scarring as well as a review of the literature to address objectively published reports on efficacy.

  9. Acne vulgaris

    PubMed Central

    2011-01-01

    Introduction Acne vulgaris affects over 80% of teenagers, and persists beyond the age of 25 years in 3% of men and 12% of women. Typical lesions of acne include comedones, inflammatory papules, and pustules. Nodules and cysts occur in more severe acne and can cause scarring and psychological distress. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical and oral treatments in people with acne vulgaris? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 69 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: topical treatments (adapalene, azelaic acid, benzoyl peroxide, clindamycin, erythromycin [alone or plus zinc]; isotretinoin, tetracycline, tretinoin); and oral treatments (doxycycline, isotretinoin, lymecycline, minocycline, oxytetracycline, tetracycline). PMID:21477388

  10. Acne vulgaris.

    PubMed

    Purdy, Sarah; de Berker, David

    2011-01-05

    Acne vulgaris affects over 80% of teenagers, and persists beyond the age of 25 years in 3% of men and 12% of women. Typical lesions of acne include comedones, inflammatory papules, and pustules. Nodules and cysts occur in more severe acne and can cause scarring and psychological distress. We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical and oral treatments in people with acne vulgaris? We searched: Medline, Embase, The Cochrane Library, and other important databases up to February 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 69 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review we present information relating to the effectiveness and safety of the following interventions: topical treatments (adapalene, azelaic acid, benzoyl peroxide, clindamycin, erythromycin [alone or plus zinc]; isotretinoin, tetracycline, tretinoin); and oral treatments (doxycycline, isotretinoin, lymecycline, minocycline, oxytetracycline, tetracycline).

  11. Acne vulgaris

    PubMed Central

    2008-01-01

    Introduction Acne vulgaris affects over 80% of teenagers, and persists beyond the age of 25 years in 3% of men and 12% of women. Typical lesions of acne include comedones, inflammatory papules, and pustules. Nodules and cysts occur in more severe acne and can cause scarring and psychological distress. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of topical and oral treatments in people with acne vulgaris? We searched: Medline, Embase, The Cochrane Library and other important databases up to June 2007 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 67 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: topical treatments (adapalene, azelaic acid, benzoyl peroxide, clindamycin, erythromycin (alone or plus zinc), isotretinoin, tetracycline, tretinoin), and oral treatments (doxycycline, isotretinoin, lymecycline, minocycline, oxytetracycline, tetracycline). PMID:19450306

  12. Chlorella viruses isolated in China

    SciTech Connect

    Zhang, Y.; Burbank, D.E.; Van Etten, J.L. )

    1988-09-01

    Plaque-forming viruses of the unicellular, eukaryotic, exsymbiotic, Chlorella-like green algae strain NC64A, which are common in the United States, were also present in fresh water collected in the People's Republic of China. Seven of the Chinese viruses were examined in detail and compared with the Chlorella viruses previously isolated in the United States. Like the American viruses, the Chinese viruses were large polyhedra and sensitive to chloroform. They contained numerous structural proteins and large double-stranded DNA genomes of at least 300 kilobase pairs. Each of the DNAs from the Chinese viruses contained 5-methyldeoxycytosine, which varied from 12.6 to 46.7% of the deoxycytosine, and N{sup 6}-methyldeoxyadenosine, which varied from 2.2 to 28.3% of the deoxyadenosine. Four of the Chinese virus DNAs hybridized extensively with {sup 32}P-labeled DNA from the American virus PBCV-1, and three hybridized poorly.

  13. Acne vulgaris.

    PubMed

    Aydemir, Ertuğrul H

    2014-03-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous unit and it is observed equally in both sexes and nearly all races. It generally begins at puberty, but the healing period is variable. There is no known etiological factor, except genetic tendency. Androgens play a very limited role in some female patients. The effects of cosmetics, foods and drinks are also discussible and too limited. There are four factors in acne pathogenesis: Increase of the sebum excretionKeratinization of infrainfundibulumBacterial colonization of the follicleInflammation It is mainly observed on the face and back, shoulders and chest. Initial lesions are comedons. Papules, pustules and cysts of severe types follow it. The most important factor in treatment is a very good patient-physician communication. Topical or systemic treatment or both can be used depending on the severity of acne. Benzoyl peroxyde, azelaic acid, AHA's antibiotics, retinoic acid and derivatives are the topical choices. For systemic treatment antibiotics are the most commonly used medicines, but isotretinoine has a very spesific place with the possibility of permanent healing. All kind of treatments need approximately six months for a good result.

  14. Acne vulgaris.

    PubMed

    Moradi Tuchayi, Sara; Makrantonaki, Evgenia; Ganceviciene, Ruta; Dessinioti, Clio; Feldman, Steven R; Zouboulis, Christos C

    2015-09-17

    Acne vulgaris is a chronic inflammatory disease - rather than a natural part of the life cycle as colloquially viewed - of the pilosebaceous unit (comprising the hair follicle, hair shaft and sebaceous gland) and is among the most common dermatological conditions worldwide. Some of the key mechanisms involved in the development of acne include disturbed sebaceous gland activity associated with hyperseborrhoea (that is, increased sebum production) and alterations in sebum fatty acid composition, dysregulation of the hormone microenvironment, interaction with neuropeptides, follicular hyperkeratinization, induction of inflammation and dysfunction of the innate and adaptive immunity. Grading of acne involves lesion counting and photographic methods. However, there is a lack of consensus on the exact grading criteria, which hampers the conduction and comparison of randomized controlled clinical trials evaluating treatments. Prevention of acne relies on the successful management of modifiable risk factors, such as underlying systemic diseases and lifestyle factors. Several treatments are available, but guidelines suffer from a lack of data to make evidence-based recommendations. In addition, the complex combination treatment regimens required to target different aspects of acne pathophysiology lead to poor adherence, which undermines treatment success. Acne commonly causes scarring and reduces the quality of life of patients. New treatment options with a shift towards targeting the early processes involved in acne development instead of suppressing the effects of end products will enhance our ability to improve the outcomes for patients with acne.

  15. Acne vulgaris.

    PubMed

    Wilson, B B

    1989-09-01

    Acne vulgaris is a disease of the pilosebaceous unit that affects nearly all persons to some degree during the teenage years. It is a disease that should be treated because of the anxiety and disfigurement it causes in the affected patient. Acne therapy is directed against the three probable pathogenic processes in acne: (1) abnormal keratinization of the sebaceous follicle, (2) excessive production of sebum, and (3) proliferation of bacteria in the follicle. Superficial acne consisting of comedones and small papulopustules will frequently respond to topical therapy such as retinoic acid, benzoyl peroxide, and topical antibiotics. Deeper lesions require systemic antibiotics of which tetracycline is the drug of choice. Severe, recalcitrant cystic acne usually responds well to the oral retinoid, isotretinoin. The severe teratogenic effects of isotretinoin on a developing fetus make this a risky drug to prescribe for women with childbearing potential. In such cases the greatest precautions should be taken to avoid pregnancy during a course of isotretinoin. Such precautions include pregnancy testing, contraceptive counseling, and the use of at least two effective forms of birth control in sexually active women.

  16. Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater

    NASA Astrophysics Data System (ADS)

    Commault, Audrey S.; Laczka, Olivier; Siboni, Nachshon; Tamburic, Bojan; Crosswell, Joseph R.; Seymour, Justin R.; Ralph, Peter J.

    2017-07-01

    The chlorophyte microalga Chlorella vulgaris has been exploited within bioindustrial settings to treat wastewater and produce oxygen at the cathode of microbial fuel cells (MFCs), thereby accumulating algal biomass and producing electricity. We aimed to couple these capacities by growing C. vulgaris at the cathode of MFCs in wastewater previously treated by anodic bacteria. The bioelectrochemical performance of the MFCs was investigated with different catholytes including phosphate buffer and anode effluent, either in the presence or absence of C. vulgaris. The power output fluctuated diurnally in the presence of the alga. The maximum power when C. vulgaris was present reached 34.2 ± 10.0 mW m-2, double that observed without the alga (15.6 ± 9.7 mW m-2), with a relaxation of 0.19 gL-1 d-1 chemical oxygen demand and 5 mg L-1 d-1 ammonium also removed. The microbial community associated with the algal biofilm included nitrogen-fixing (Rhizobiaceae), denitrifying (Pseudomonas stutzeri and Thauera sp., from Pseudomonadales and Rhodocyclales orders, respectively), and nitrate-reducing bacteria (Rheinheimera sp. from the Alteromonadales), all of which likely contributed to nitrogen cycling processes at the cathode. This paper highlights the importance of coupling microbial community screening to electrochemical and chemical analyses to better understand the processes involved in photo-cathode MFCs.

  17. Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions.

    PubMed

    Takeshita, Tsuyoshi; Ota, Shuhei; Yamazaki, Tomokazu; Hirata, Aiko; Zachleder, Vilém; Kawano, Shigeyuki

    2014-04-01

    The microalgae family Chlorella species are known to accumulate starch and lipids. Although nitrogen or phosphorous deficiencies promote starch and lipids formation in many microalgae, these deficiencies also limit their growth and productivity. Therefore, the Chlorellaceae strains were attempted to increase starch and lipids productivity under high-light-intensity conditions (600-μmol photons m(-2)s(-1)). The 12:12-h light-dark (LD) cycle conditions elicited more stable growth than the continuous light (LL) conditions, whereas the starch and lipids yields increased in LL conditions. The amount of starch and lipids per cell increased in Chlorella viscosa and Chlorella vulgaris in sulfur-deficient medium, and long-chain fatty acids with 20 or more carbon atoms accumulated in cells grown in sulfur-deficient medium. Accumulation of starch and lipids was investigated in eight strains. The accumulation was strain-dependent, and varied according to the medium and light conditions. Five of the eight Chlorella strains exhibited similar accumulation patterns.

  18. Biology and Industrial Applications of Chlorella: Advances and Prospects.

    PubMed

    Liu, Jin; Chen, Feng

    2016-01-01

    Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

  19. The development of photosynthesis in a greening mutant of chlorella and an analysis of the light saturation curve.

    PubMed

    Herron, H A; Mauzerall, D

    1972-07-01

    Photosynthetic oxygen evolution considerably precedes the rise in chlorophyll during the greening of a yellow mutant of Chlorella vulgaris. Dark-grown cells required 20 times more light to saturate photosynthesis than light-grown or normal cells. The chlorophyll appears to add first to active reaction centers, then to fill in a more general antenna. The carotenoid pigments seem to add more randomly to the reaction centers. The shape of the light saturation curves can be explained with the assumption that an excitation in the antenna can reach several reaction centers. The efficiency of the total unit is constant during the greening process.

  20. Cathodic arcs

    SciTech Connect

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  1. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta).

    PubMed

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.

  2. Reclamation of wastewater for polyculture of freshwater fish: bioassays using Chlorella and Gambusia.

    PubMed

    Liang, Y; Wong, M H

    2000-11-01

    The feasibility of using the secondary effluents from two sewage treatment plants in Hong Kong (Yuen Long and Shek Wu Hui) for fish culture was assessed. Total ammonia contents in the two sewage effluents surpassed the level of 2 mg L(-1) recommended for wastewater fish culture. The two sewage effluents both needed essential elements for supporting algal Chlorella vulgaris growth, whereas only sewage effluent from Yuen Long had contaminants at toxic levels. Total ammonia in water explained more than 80% variations of toxicity of water samples to Gambusia patruelis, mosquito fish, according to regression analysis. Removal of ammonia from the sewage effluent is necessary before being used for fish culture. In addition, the rather high levels of heavy metals (Cu, Zn, Cd) in the effluent should be closely monitored.

  3. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella.

    PubMed

    Cheng, Y-S; Labavitch, J M; VanderGheynst, J S

    2015-01-01

    The effect of CO2 concentration on the relative content of starch, lipid and cell wall carbohydrates in microalgal biomass was investigated for the four following Chlorella strains: C. vulgaris (UTEX 259), C. sorokiniana (UTEX 2805), C. minutissima (UTEX 2341) and C. variabilis (NC64A). Each strain had a different response to CO2 concentration. The starch content was higher in UTEX259 and NC64A cultured with 2% CO2 in the air supply than in cells cultured with ca. 0·04% CO2 (ambient air), while starch content was not affected for UTEX 2805 and UTEX 2341. The lipid content was higher in Chlorella minutissima UTEX 2341 cultured in 2% CO2 than in cells cultured in ambient air, but was unchanged for the other three strains. All four Chlorella strains tended to have a higher percentage of uronic acids and lower percentage of neutral sugars in their cell wall polysaccharide complement when grown with 2% CO2 supply. Although the percentage of neutral sugars in the cell walls varied with CO2 concentration, the relative proportions of different neutral sugar constituents remained constant for both CO2 conditions. The results demonstrate the importance of considering the effects of CO2 on the cell wall carbohydrate composition of microalgae. Microalgae have the potential to produce products that will reduce society's reliance on fossil fuels and address challenges related to food and feed production. An overlooked yet industrially relevant component of microalgae are their cell walls. Cell wall composition affects cell flocculation and the recovery of intracellular products. In this study, we show that increasing CO2 level results in greater cell wall polysaccharide and uronic acid content in the cell walls of three strains of microalgae. The results have implications on the management of systems for the capture of CO2 and production of fuels, chemicals and food from microalgae. © 2014 The Society for Applied Microbiology.

  4. Substitution of stable isotopes in Chlorella

    NASA Technical Reports Server (NTRS)

    Flaumenhaft, E.; Katz, J. J.; Uphaus, R. A.

    1969-01-01

    Replacement of biologically important isotopes in the alga Chlorella by corresponding heavier stable isotopes produces increasingly greater deviations from the normal cell size and changes the quality and distribution of certain cellular components. The usefulness of isotopically altered organisms increases interest in the study of such permuted organisms.

  5. CLONING AND EXPRESSING TRYPSIN MODULATING OOSTATIC FACTOR IN Chlorella desiccata TO CONTROL MOSQUITO LARVAE.

    PubMed

    Borovsky, Dov; Sterner, Andeas; Powell, Charles A

    2016-01-01

    The insect peptide hormone trypsin modulating oostatic factor (TMOF), a decapeptide that is synthesized by the mosquito ovary and controls the translation of the gut's trypsin mRNA was cloned and expressed in the marine alga Chlorella desiccata. To express Aedes aegypti TMOF gene (tmfA) in C. desiccata cells, two plasmids (pYES2/TMOF and pYDB4-tmfA) were engineered with pKYLX71 DNA (5 Kb) carrying the cauliflower mosaic virus (CaMV) promoter 35S(2) and the kanamycin resistant gene (neo), as well as, a 8 Kb nitrate reductase gene (nit) from Chlorella vulgaris. Transforming C. desiccata with pYES2/TMOF and pYDB4-tmfA show that the engineered algal cells express TMOF (20 ± 4 μg ± SEM and 17 ± 3 μg ± SEM, respectively in 3 × 10(8) cells) and feeding the cells to mosquito larvae kill 75 and 60% of Ae. aegypti larvae in 4 days, respectively. Southern and Northern blots analyses show that tmfA integrated into the genome of C. desiccata by homologous recombination using the yeast 2 μ circle of replication and the nit in pYES2/TMOF and pYDB4-tmfA, respectively, and the transformed algal cells express tmfA transcript. Using these algal cells it will be possible in the future to control mosquito larvae in the marsh.

  6. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products.

    PubMed

    Salati, Silvia; D'Imporzano, Giuliana; Menin, Barbara; Veronesi, Davide; Scaglia, Barbara; Abbruscato, Pamela; Mariani, Paola; Adani, Fabrizio

    2017-04-01

    A local strain of Chlorella vulgaris was cultivated by using cheese whey (CW), white wine lees (WL) and glycerol (Gly), coming from local agro-industrial activities, as C sources (2.2gCL(-1)) to support algae production under mixotrophic conditions in Lombardy. In continuous mode, Chlorella increased biomass production compared with autotrophic conditions by 1.5-2 times, with the best results obtained for the CW substrate, i.e. 0.52gL(-1)d(-1) of algal biomass vs. 0.24gL(-1)d(-1) of algal biomass for autotrophic conditions, and protein content for both conditions adopted close to 500gkg(-1) DM. Mixotrophic conditions gave a much higher energy recovery efficiency (EF) than autotrophic conditions, i.e. organic carbon energy efficiency (EFoc) of 32% and total energy efficiency (Eft) of 8%, respectively, suggesting the potential for the culture of algae as a sustainable practice to recover efficiently waste-C and a means of local protein production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Influence of Chlorella powder intake during swimming stress in mice.

    PubMed

    Mizoguchi, Toru; Arakawa, Yukari; Kobayashi, Michie; Fujishima, Masaki

    2011-01-07

    We used the forced swimming test to investigate the influence of Chlorella powder intake during muscle stress training in mice. After day 14, swimming time was about 2-fold longer for Chlorella intake mice than for control swimming mice. Microarray analysis revealed that the global gene expression profile of muscle from the Chlorella intake mice was similar to that of muscle from the intact (non-swimming) mice, and the profile of these two groups differed from that of the control (swimming) mice. Gene ontology and pathway analyses of gene expression data showed that oxidoreductase activity and the leukotriene synthesis pathway were repressed in the Chlorella intake mice following the swimming test. In addition, measurements of free fatty acids, glucose, triglycerides, and lactic acid in the blood of Chlorella intake mice were higher than that of control mice. These findings suggest that metabolism in tissues is altered by Chlorella intake. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Lupus vulgaris of external nose.

    PubMed

    Bhandary, Satheesh Kumar; Ranganna, B Usha

    2008-12-01

    Lupus vulgaris is the commonest form of cutaneous tuberculosis which commonly involve trunk and buttocks. Lupus vulgaris affecting nose and face, are rarely reported in India. This study reports an unusual case of lupus vulgaris involving the external nose that showed dramatic outcome after six months of anti- tubercular treatment.

  9. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  10. Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)

    PubMed Central

    Zou, Shanmei; Fei, Cong; Song, Jiameng; Bao, Yachao; He, Meilin; Wang, Changhai

    2016-01-01

    Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella–like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential “specific barcode” for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes. PMID:27092945

  11. Psoriasiform lupus vulgaris.

    PubMed

    Padmavathy, L; Rao, L Lakshmana; Ethirajan, N; Dhanlaklshmi, M

    2008-04-01

    Tuberculosis is a major public health problem in both developing and developed countries. Cutaneous Tuberculosis constitutes a minor proportion of extra-pulmonary manifestations of Tuberculosis. Lupus Vulgaris (LV) is one of the clinical variants of Cutaneous Tuberculosis. A case of a large plaque type psoriasiform lesion of lupus vulgaris on the thigh, of 15 years' duration, in an 18-year-old girl is reported. This case highlights the ignorance level among the patients and consequent failure to avail proper anti-tuberculous treatment despite campaign in print and audio visual media.

  12. Effect of Chlorella intake on Cadmium metabolism in rats

    PubMed Central

    Shim, Jee Ae; Son, Young Ae; Park, Ji Min

    2009-01-01

    This study was performed to investigate the effect of chlorella on cadmium (Cd) toxicity in Cd- administered rats. Sixty male Sprague-Dawley rats (14 week-old) were blocked into 6 groups. Cadmium chloride was given at levels of 0 or 325 mg (Cd: 0, 160 ppm), and chlorella powder at levels of 0, 3 and 5%. Cadmium was accumulated in blood and tissues (liver, kidney and small intestine) in the Cd-exposed groups, while the accumulation of Cd was decreased in the Cd-exposed chlorella groups. Fecal and urinary Cd excretions were remarkably increased in Cd-exposed chlorella groups. Thus, cadmium retention ratio and absorption rate were decreased in the Cd exposed chlorella groups. Urinary and serum creatinine, and creatinine clearance were not changed in experimental animals. In addition, metallothionein (MT) synthesis in tissues was increased by Cd administration. The Cd-exposed chlorella groups indicated lower MT concentration compared to the Cd-exposed groups. Moreover, glomerular filtration rate (GFR) was not changed by dietary chlorella and Cd administration. According to the results above, this study could suggest that Cd toxicity can be alleviated by increasing Cd excretion through feces. Therefore, when exposed to Cd, chlorella is an appropriate source which counteracts heavy metal poisoning, to decrease the damage of tissues by decreasing cadmium absorption. PMID:20016697

  13. Effect of Chlorella intake on Cadmium metabolism in rats.

    PubMed

    Shim, Jee Ae; Son, Young Ae; Park, Ji Min; Kim, Mi Kyung

    2009-01-01

    This study was performed to investigate the effect of chlorella on cadmium (Cd) toxicity in Cd- administered rats. Sixty male Sprague-Dawley rats (14 week-old) were blocked into 6 groups. Cadmium chloride was given at levels of 0 or 325 mg (Cd: 0, 160 ppm), and chlorella powder at levels of 0, 3 and 5%. Cadmium was accumulated in blood and tissues (liver, kidney and small intestine) in the Cd-exposed groups, while the accumulation of Cd was decreased in the Cd-exposed chlorella groups. Fecal and urinary Cd excretions were remarkably increased in Cd-exposed chlorella groups. Thus, cadmium retention ratio and absorption rate were decreased in the Cd exposed chlorella groups. Urinary and serum creatinine, and creatinine clearance were not changed in experimental animals. In addition, metallothionein (MT) synthesis in tissues was increased by Cd administration. The Cd-exposed chlorella groups indicated lower MT concentration compared to the Cd-exposed groups. Moreover, glomerular filtration rate (GFR) was not changed by dietary chlorella and Cd administration. According to the results above, this study could suggest that Cd toxicity can be alleviated by increasing Cd excretion through feces. Therefore, when exposed to Cd, chlorella is an appropriate source which counteracts heavy metal poisoning, to decrease the damage of tissues by decreasing cadmium absorption.

  14. Inoculation lupus vulgaris.

    PubMed

    Sehgal, V N; Jain, S; Gupta, R

    1992-01-01

    An 11-years-old girl with lupus vulgaris on the right buttock following inoculation is described. The diagnosis was formed by the history, morphological characteristics, Mantoux test, histopathology, and was supported by an affirmative response to short course intensive chemotherapy (6 months). This route of infection acquires special significance with the worldwide-spread of HIV infection.

  15. Sonography of acne vulgaris.

    PubMed

    Wortsman, Ximena; Claveria, Pedro; Valenzuela, Fernando; Molina, Maria Teresa; Wortsman, Jacobo

    2014-01-01

    The purpose of this study was to assess the sonographic morphology of the clinical and subclinical pathology of facial acne vulgaris. We studied patients with facial acne vulgaris diagnosed by certified dermatologists, and using a standardized protocol for sonographic examinations, we sequentially described the sonographic pathomorphologic characteristics. Lesions of particular interest to the referring clinician were also analyzed separately. Additionally, acne involvement was staged clinically and sonographically (SOS-Acne) using morphologic definitions of the relevant lesions and predefined scoring systems for gradation of the severity of acne lesions. A total of 245 acne lesions in 20 consecutive patients were studied. Sonographic abnormalities consisted of pseudocysts, folliculitis, fistulas, and calcinosis. Most conditions were subclinical and mostly due to lesion extensions deep into the dermis and hypodermis (52% of pseudocysts and 68% of fistulas). The statistical concordance between acne severity scores assigned by two separate clinicians was strong (κ = 0.8020), but the corresponding sonographic scores generally showed more severe and clinically occult involvement. Facial acne vulgaris often involves deeper tissues, beyond the reach of the spatially restricted clinical examination; these subclinical conditions can be detected and defined with sonography. Additionally, acne vulgaris is amenable to sonographic scoring.

  16. Growth of Chlorella pyrenoidosa in Recycled Medium

    PubMed Central

    Leone, Donald E.

    1963-01-01

    Bench-scale studies with Chlorella pyrenoidosa 7-11-05 were conducted in a 4-liter culture vessel with a used and recycled medium. Algal cultures were maintained for periods of several weeks by supplementing the nutrient medium with minimal amounts of certain salts. An algal strain was maintained for a period of up to 72 days with a supplemented recycled medium. No inhibition was observed as the result of any autotoxic materials. Rather dense cultures were maintained in the presence of high bacterial populations. PMID:14063786

  17. Lupus vulgaris: difficulties in diagnosis.

    PubMed

    Rhodes, Julia; Caccetta, Tony Philip; Tait, Clare

    2013-05-01

    Lupus vulgaris is one of the most common forms of cutaneous tuberculosis. It presents a diagnostic challenge due to its paucibacillary nature. This is a report of a case of a delayed diagnosis of lupus vulgaris, presenting as perianal and peristomal plaques, followed by a review of the diagnostic tools for lupus vulgaris and their limitations. © 2012 The Authors. Australasian Journal of Dermatology © 2012 The Australasian College of Dermatologists.

  18. Pemphigus vulgaris and disseminated nocardiosis.

    PubMed

    Martín, F J; Pérez-Bernal, A M; Camacho, F

    2000-09-01

    Infectious diseases, in particular septicaemia from Staphylococcus aureus, Proteus vulgaris and Pseudomonas aeruginosa, are the most severe and frequent complications for the immunosuppressive therapy of pemphigus. Infection by Nocardia asteroides in subjects with pemphigus vulgaris is rare. We report the sixth case found of such an association; the subject died of disseminated nocardiosis while receiving steroids and immunosuppressive drugs, 4 years after being diagnosed with chronic pemphigus vulgaris.

  19. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae).

    PubMed

    Luo, Wei; Pflugmacher, Stephan; Pröschold, Thomas; Walz, Norbert; Krienitz, Lothar

    2006-08-01

    The most recent revision of the genus Chlorella, based on biochemical and SSU rDNA analyses, suggested a reduction to a set of four "true" spherical Chlorella species, while a growing number of morphologically different species such as Micractinium (formerly Micractiniaceae) were found to cluster within the clade of "true"Chlorella. In this study, the generic concept in Chlorellaceae to Chlorella and Micractinium was evaluated by means of combined SSU and ITS-2 rDNA sequence analyses and biotests to induce development of bristles on the cell wall. Molecular phylogenetic analyses of Chlorella and Micractinium strains confirmed their separation into two different genera. In addition, non-homoplasious synapomorphies (NHS) and compensatory base changes (CBC) in the secondary structures of SSU and ITS-2 rDNA sequences were found for both genera using this approach. The Micractinium clade can be differentiated into three different genotypes. Using culture medium of the rotifer Brachionus calyciflorus, phenotypic plasticity in Chlorella and Micractinium was studied. Non-bristled Micractinium cells developed bristles during incubation with Brachionus culture medium, whereas Chlorella did not produce bristles. Grazing experiments with Brachionus showed the rotifer preferred to feed on non-bristled cells. The dominance of colonies versus solitary cells in the Micractinium culture was not correlated with the "Brachionus factor". These results suggest that morphological characteristics like formation of bristles represent phenotypic adaptations to the conditions in the ecosystem.

  20. Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29.

    PubMed

    Goncalves, Elton C; Johnson, Jodie V; Rathinasabapathi, Bala

    2013-11-01

    Algal lipids are ideal biofuel sources. Our objective was to determine the contributors to triacylglycerol (TAG) accumulation and lipid body formation in Chlorella UTEX29 under nitrogen (N) deprivation. A fivefold increase in intracellular lipids following N starvation for 24 h confirmed the oleaginous characteristics of UTEX29. Ultrastructural studies revealed increased number of lipid bodies and decreased starch granules in N-starved cells compared to N-replete cells. Lipid bodies were observed as early as 3 h after N removal and plastids collapsed after 48 h of stress. Moreover, the identification of intracellular pyrenoids and differences in the expected nutritional requirements for Chlorella protothecoides (as UTEX29 is currently classified) led us to conduct a phylogenetic study using 18S and actin cDNA sequences. This indicated UTEX29 to be more phylogenetically related to Chlorella vulgaris. To investigate the fate of different lipids after N starvation, radiolabeling using ¹⁴C-acetate was used. A significant decrease in ¹⁴C-galactolipids and phospholipids matched the increase in ¹⁴C-TAG starting at 3 h of N starvation, consistent with acyl groups from structural lipids as sources for TAG under N starvation. These results have important implications for the identification of key steps controlling oil accumulation in N-starved biofuel algae and demonstrate membrane recycling during lipid body formation.

  1. Lung and lupus vulgaris.

    PubMed

    Mukta, V; Jayachandran, K

    2011-04-01

    Lupus vulgaris is chronic, postprimary, paucibacillary cutaneous tuberculosis found in individuals with moderate immunity and high degree of tuberculin sensitivity. Eighty percent of the lesions are on the head and neck. We present the case of a 38 year old lady who was admitted with complaints of worsening breathlessness and low grade fever of one month duration. Examination showed multiple, nontender skin ulcers on bilateral lumbar areas, two oozing serosanguinous discharge and others scarred in the centre. Respiratory system examination and chest X-ray revealed right sided pleural effusion. On investigation, pleural fluid was tuberculous in nature. Skin biopsy from the edge of ulcer was also suggestive of tuberculosis. Patient is doing well on antituberculous drugs. This case highlights the importance of cutaneous manifestations of systemic disease and is an example of the unusual presentation of lupus vulgaris in a case of pleural effusion.

  2. Lung and lupus vulgaris

    PubMed Central

    Mukta, V.; Jayachandran, K.

    2011-01-01

    Lupus vulgaris is chronic, postprimary, paucibacillary cutaneous tuberculosis found in individuals with moderate immunity and high degree of tuberculin sensitivity. Eighty percent of the lesions are on the head and neck. We present the case of a 38 year old lady who was admitted with complaints of worsening breathlessness and low grade fever of one month duration. Examination showed multiple, nontender skin ulcers on bilateral lumbar areas, two oozing serosanguinous discharge and others scarred in the centre. Respiratory system examination and chest X-ray revealed right sided pleural effusion. On investigation, pleural fluid was tuberculous in nature. Skin biopsy from the edge of ulcer was also suggestive of tuberculosis. Patient is doing well on antituberculous drugs. This case highlights the importance of cutaneous manifestations of systemic disease and is an example of the unusual presentation of lupus vulgaris in a case of pleural effusion. PMID:21712924

  3. [Cefaclor induced pemphigus vulgaris].

    PubMed

    Scardina, G A; Conti, N M; Messina, P

    2004-01-01

    Pemphigus is a chronic disease with an outcome that is not without risk. It is characterised by loss of the intraepithelial cell-cell relationship (acantholysis). Underlying the disease is an autoimmune disorder in which the desmosomes are damaged by antibodies directed against particular molecules called desmogleins (particularly 3 and 1). Various types of pemphigus have been described with different antibody profiles and clinical signs. In the present paper, a case of pemphigus vulgaris associated with the medication cefaclor monohydrate is reported. Histological and immunological evaluation of the biopsy sample led to a diagnosis of pemphigus vulgaris. The patient, who was not hospitalised, was treated with corticosteroids and systemic immunosuppressors. At present she is being controlled by low doses of systemic corticosteroids. Early diagnosis and the timely introduction of the therapeutic protocol permitted complete remission of the lesions observed at the level of the oral and conjunctival mucosa, preventing the involvement of other locations.

  4. Pemphigus vulgaris in pregnancy.

    PubMed

    Salzberg, Kelsey W; Gero, Melanie J; Ragsdale, Bruce D

    2014-10-01

    We report the case of a 34-year-old woman who was diagnosed with pemphigus vulgaris (PV) during pregnancy. The patient presented with widespread blistering dermatitis and associated burning and pruritus. At 6 weeks' gestation the patient was admitted to the hospital to expedite her diagnosis and initiate treatment. A skin biopsy revealed suprabasal acantholysis, and direct immunofluorescence demonstrated diffuse intercellular IgG in the epidermis and basal intercellular C3, which confirmed the diagnosis of PV. Treatment with corticosteroids was instituted after discussions with the patient about possible adverse effects to the fetus. Pemphigus vulgaris is rare in pregnancy and active PV presents potential threats of fetal spread and transient lesion production, which is associated with increased mortality and morbidity in the fetus. Our patient had active PV and required treatment throughout her pregnancy. The pregnancy progressed to premature delivery of the neonate without skin lesions or apparent complications.

  5. Structural Organization of DNA in Chlorella Viruses

    PubMed Central

    Wulfmeyer, Timo; Polzer, Christian; Hiepler, Gregor; Hamacher, Kay; Shoeman, Robert; Dunigan, David D.; Van Etten, James L.; Lolicato, Marco; Moroni, Anna; Thiel, Gerhard; Meckel, Tobias

    2012-01-01

    Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes. PMID:22359540

  6. Algicidal Effect of Bromine and Chlorine on Chlorella pyrenoidosa

    PubMed Central

    Kott, Yehuda; Hershkovitz, Galila; Shemtob, A.; Sless, J. B.

    1966-01-01

    Chlorella pyrenoidosa was found to grow rapidly in tap water. Peak growth was reached after 2 to 3 days. Chlorine and bromine, added to such water, were shown to be effective inhibitors of algal growth. Bromine and bromamine were primarily algicidal, whereas chlorine and chloramines were mainly algistatic. It is assumed that the mechanisms of action of these halogens on Chlorella are not the same. PMID:5914499

  7. Chlorella sorokiniana Extract Improves Short-Term Memory in Rats.

    PubMed

    Morgese, Maria Grazia; Mhillaj, Emanuela; Francavilla, Matteo; Bove, Maria; Morgano, Lucia; Tucci, Paolo; Trabace, Luigia; Schiavone, Stefania

    2016-09-29

    Increasing evidence shows that eukaryotic microalgae and, in particular, the green microalga Chlorella, can be used as natural sources to obtain a whole variety of compounds, such as omega (ω)-3 and ω-6 polyunsatured fatty acids (PUFAs). Although either beneficial or toxic effects of Chlorella sorokiniana have been mainly attributed to its specific ω-3 and ω-6 PUFAs content, the underlying molecular pathways remain to be elucidated yet. Here, we investigate the effects of an acute oral administration of a lipid extract of Chlorella sorokiniana, containing mainly ω-3 and ω-6 PUFAs, on cognitive, emotional and social behaviour in rats, analysing possible underlying neurochemical alterations. Our results showed improved short-term memory in Chlorella sorokiniana-treated rats compared to controls, without any differences in exploratory performance, locomotor activity, anxiety profile and depressive-like behaviour. On the other hand, while the social behaviour of Chlorella sorokiniana-treated animals was significantly decreased, no effects on aggressivity were observed. Neurochemical investigations showed region-specific effects, consisting in an elevation of noradrenaline (NA) and serotonin (5-HT) content in hippocampus, but not in the prefrontal cortex and striatum. In conclusion, our results point towards a beneficial effect of Chlorella sorokiniana extract on short-term memory, but also highlight the need of caution in the use of this natural supplement due to its possible masked toxic effects.

  8. Escherichia coli survival in the presence of Chlorella vulgaris in a nutrient supplemented freshwater medium

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of agricultural irrigation pond water is an on-going concern. Others have reported that fecal bacteria survival can be mediated by algae in natural ecosystems. The effect of bovine manure nutrient supplementation on the survival of E. coli in the presence of the single-celled ...

  9. Nitrogen and Phosphorus Biomass-Kinetic Model for Chlorella vulgaris in a Biofuel Production Scheme

    DTIC Science & Technology

    2010-03-01

    oxygen and absorb carbon dioxide. They are considered photosynthetic , oxygenic autotrophs, because they use light energy to convert carbon dioxide...not masked by other pigments and both chlorophyll a and b are present. In addition they have β- and γ- carotene and several xanthophylls. These...The first stage was the appearance of new daughter cells followed by (2) the appearance of photosynthetically , chlorophyll- rich active cells, then

  10. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-01-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process.

  11. Control of CO₂ input conditions during outdoor culture of Chlorella vulgaris in bubble column photobioreactors.

    PubMed

    Guo, Zhi; Phooi, Wei Boon Alfred; Lim, Zi Jian; Tong, Yen Wah

    2015-06-01

    A study on the optimization of CO2 usage during outdoor microalgae cultivation in order to further maximize the CO2 to biomass conversion efficiency is presented. A constant supply of CO2 was found to be non-essential for culturing microalgae outdoors in 80 L (8 L×10 sets) bubble columns. Among the different CO2 input conditions that were studied, 2% CO2 with intermittent supply and 2%+4% CO2 alternation did not affect the algal growth as compared to having a constant supply of 2% CO2. However, during both input conditions, the CO2 to biomass conversion efficiency was doubled while the amount of CO2 used was reduced by 50%. The algal biomass obtained was found to have a higher carbohydrate yield but a lower protein yield as compared to previously published studies. The findings from this study could be applied for large-scale microalgae production so as to minimize cultivation and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Enhancement of Chlorella vulgaris harvesting via the electro-coagulation-flotation (ECF) method.

    PubMed

    Wong, Y K; Ho, Y H; Leung, H M; Ho, K C; Yau, Y H; Yung, K K L

    2016-12-30

    This article explores the potential of using an electro-coagulation-flotation (ECF) harvester to allow flotation of microalgae cells for surface harvesting. A response surface methodology (RSM) model was used to optimize ECF harvesting by adjusting electrode plate material, electrode plate number, charge of the electrodes, electrolyte concentration, and pH value of the culture solution. The result revealed that three aluminum electrode plates (one anode and two cathodes), brine solution (8 g/L), and acidity (pH = 4) of culture solution (optimized ECF harvester) The highest flocculant concentration was measured at 2966 mg/L after 60 min and showed a 79.8 % increase of flocculation concentration. Such results can provide a basis for designing a large-scale microalgae harvester for commercial use in the future.

  13. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, LEPOMIS MACROCHIRUS, AND VIBRIO FISCHERI TO TOLUENE

    EPA Science Inventory

    The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...

  14. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, LEPOMIS MACROCHIRUS, AND VIBRO FISCHERI

    EPA Science Inventory

    The research presented here is a continuation of work designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (W...

  15. Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels.

    PubMed

    Menon, Kavya R; Balan, Ranjini; Suraishkumar, G K

    2013-06-01

    Microalgae have significant potential to be an important alternative energy source, but the challenges to the commercialization of bio-oil from microalgae need to be overcome for the potential to be realized. The application of stress can be used to improve bio-oil yields from algae. Nevertheless, the understanding of stress effects is fragmented due to the lack of a suitable, direct quantitative marker for stress. The lack of understanding seems to have limited the development of stress based strategies to improve bio-oil yields, and hence the commercialization of microalgae-based bio-oil. In this study, we have proposed and used the specific intracellular reactive species levels (siROS) particularly hydroxyl and superoxide radical levels, separately, as direct, quantitative, markers for stress, irrespective of the type of stress induced. Although ROS reactions are extremely rapid, the siROS level can be assumed to be at pseudo-steady state compared to the time scales of metabolism, growth and production, and hence they can be effective stress markers at particular time points. Also, the specific intracellular (si-) hydroxyl and superoxide radical levels are easy to measure through fluorimetry. Interestingly, irrespective of the conditions employed in this study, that is, nutrient excess/limitation or different light wavelengths, the cell concentrations are correlated to the siROS levels in an inverse power law fashion. The composite plots of cell concentration (y) and siROS (x) yielded the correlations of y = k1  · x(-0.7) and y = k2  · x(-0.79) , for si-hydroxyl and si-superoxide radical levels, respectively. The specific intracellular (si-) neutral lipid levels, which determine the bio-oil productivity, are related in a direct power law fashion to the specific hydroxyl radical levels. The composite plot of si-neutral lipid levels (z) and si-hydroxyl radical level (x) yielded a correlation of z = k3  · x(0.65) . More interestingly, a nutrient shift caused a significant change in the sensitivity of neutral lipid accumulation to the si-hydroxyl radical levels. Copyright © 2013 Wiley Periodicals, Inc.

  16. Toxic effects of organic solvents on the growth of chlorella vulgaris and Selenastrum capicornutum

    SciTech Connect

    El Jay, A.

    1996-10-01

    Organic solvents can make their way into the environment as industrial wastes and components of pesticide formulations. In laboratory bioassays, the use of organic solvents is unavoidable since many pesticides and organic pollutants have low water solubilities and need to be dissolved in organic solvents prior to addition into experimental systems. So, one area of concern with laboratory bioassays is the stress imposed on test organisms by organic solvents. Most reports on the comparative toxicity of solvents towards test organisms deals with the effects of solvents on fish and aquatic invertebrates with some data available for blue-green algae and green algae. The US Environmental Protection Agency recommends maximum allowable limits of 0.05% solvent for acute tests and 0.01% for chronic tests but, in the literature, the nature of the solvent and the final concentration used vary among the different authors and are often higher than EPA limits due to problems associated with the use of small test volumes and toxicant solubility. Organic solvents can cause toxic effects on their own, but it has been also reported that they can interact with pesticides to alter toxicity. The first step in choosing a solvent for use in bioassays should be a detailed screening to identify solvents with inherently low toxicity to the test organism, followed by an interaction study (pesticide and solvent interactions) to choose the best concentration to use. The purpose of this study is to compare the inhibitory effects of our solvents used in pesticide bioassays towards the growth of two green algae. 18 refs., 4 figs., 1 tabs.

  17. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, LEPOMIS MACROCHIRUS, AND VIBRIO FISCHERI TO TOLUENE

    EPA Science Inventory

    The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...

  18. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, LEPOMIS MACROCHIRUS, AND VIBRO FISCHERI

    EPA Science Inventory

    The research presented here is a continuation of work designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (W...

  19. Laser Activation of Rapid Absorption Changes in Spinach Chloroplasts and Chlorella 1

    PubMed Central

    Hildreth, W. W.; Avron, M.; Chance, B.

    1966-01-01

    The kinetics of the 520 mμ absorption change in spinach chloroplasts and Chlorella vulgaris following a flash from the ruby laser have been determined as follows: rise halftime ≤ 0.3 × 10−6 second; rapid recovery halftime = 5 to 6 × 10−6 second; intermediate recovery halftime = 4 × 10−4 second (spinach chloroplasts only); slow recovery halftime = 12 to 170 × 10−3 second, dependent on the measuring light intensity and aerobicity of the suspension. The rapid phase of the 520 mμ reaction is approximately independent of temperature, from 295° to 77° Absolute. With increasing oxygenation of the sample, the extent of the rapid phase decreases, the extent of the slow phase increases, while the extent of the intermediate phase in spinach chloroplasts remains constant. In spinach chloroplasts, no recovery halftime of the 3 recovery phases for the 520 mμ absorption change was observed to correspond to the halftime for oxidation of cytochrome f (t½ = 1.3 × 10−3 second). PMID:16656366

  20. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.

    PubMed

    Laliberté, G; Hellebust, J A

    1989-11-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent K(m) values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments.

  1. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation 1

    PubMed Central

    Laliberté, Gilles; Hellebust, Johan A.

    1989-01-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent Km values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments. PMID:16667157

  2. Antineoplastic effects of Chlorella pyrenoidosa in the breast cancer model.

    PubMed

    Kubatka, Peter; Kapinová, Andrea; Kružliak, Peter; Kello, Martin; Výbohová, Desanka; Kajo, Karol; Novák, Miroslav; Chripková, Martina; Adamkov, Marián; Péč, Martin; Mojžiš, Ján; Bojková, Bianka; Kassayová, Monika; Stollárová, Nadežda; Dobrota, Dušan

    2015-04-01

    There has been considerable interest in both clinical and preclinical research about the role of phytochemicals in the reduction of risk for cancer in humans. The aim of this study was to determine the antineoplastic effects of Chlorella pyrenoidosa in experimental breast cancer in vivo and in vitro. In this experiment, the antineoplastic effects of C. pyrenoidosa in the chemoprevention of N-methyl-N-nitrosourea-induced mammary carcinogenesis in female rats were evaluated. Chlorella powder was administered through diet at concentrations of 0.3% and 3%. The experiment was terminated 14 wk after carcinogen administration. At autopsy, mammary tumors were removed and prepared for histopathological and immunohistochemical analysis. In vitro cytotoxicity assay, parameters of apoptosis, and proliferation after chlorella treatment in human breast adenocarcinoma (MCF-7) cells were carried out. Basic parameters of experimental carcinogenesis, mechanism of action (biomarkers of apoptosis, proliferation, and angiogenesis), chosen metabolic variables, and side effects after long-term chlorella treatment in animals were assessed. Chlorella at higher concentration suppressed tumor frequency by 61% (P < 0.02) and lengthened tumor latency by 12.5 d (P < 0.02) in comparison with the controls. Immunohistochemical analysis of rat tumor cells showed caspase-7 expression increase by 73.5% (P < 0.001) and vascular endothelial growth factor receptor-2 expression decrease by 19% (P = 0.07) after chlorella treatment. In a parallel in vitro study, chlorella significantly decreased survival of MCF-7 cells in a dose-dependent manner. In chlorella-treated MCF-7 cells, a significant increase in cells having sub-G0/G1 DNA content and significant increase of early apoptotic and late apoptotic/necrotic cells after annexin V/PI staining assay were found. Decreases in mitochondrial membrane potential and increasing reactive oxygen species generation were observed in the chlorella-treated MCF-7

  3. Weld arc simulator

    DOEpatents

    Burr, Melvin J.

    1990-01-30

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  4. Weld arc simulator

    SciTech Connect

    Burr, M.J.

    1989-03-01

    An arc voltage simulator for an arc welder permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  5. Weld arc simulator

    SciTech Connect

    Burr, M.J.

    1990-01-30

    This patent describes an arc voltage simulator for an arc welder which permits the welder response to a variation in arc voltage to be standardized. The simulator uses a linear potentiometer connected to the electrode to provide a simulated arc voltage at the electrode that changes as a function of electrode position.

  6. The immunogenetics of pemphigus vulgaris.

    PubMed

    Gazit, Ephraim; Loewenthal, Ron

    2005-01-01

    Pemphigus vulgaris (PV) is an autoimmune blistering disease of the skin of unknown etiology. While various environmental factors have been implicated as triggering agents, HLA association is probably the most important predisposing factor. The aim of this review is to highlight the association of HLA with pemphigus vulgaris. In addition, we present recent results showing a possible association with the nonclassical HLA-G antigen.

  7. [Acne vulgaris: endocrine aspects].

    PubMed

    Dekkers, O M; Thio, B H; Romijn, J A; Smit, J W A

    2006-06-10

    Androgens play an important part in the development of acne vulgaris. Androgen levels in patients with acne are higher than those in controls and people with the androgen insensitivity syndrome do not develop acne. Local factors other than androgen plasma levels, also play a part in the development of acne. The skin contains enzymes that convert precursor hormones to the more potent androgens such as testosterone and dihydrotestosterone. Androgen synthesis can therefore be regulated locally. The effects of androgens on the skin are the result of circulating androgens and enzyme activity in local tissues and androgen receptors. Acne is a clinical manifestation of some endocrine diseases. The polycystic ovary syndrome has the highest prevalence. In women with acne that persists after puberty, in 10-200% of cases polycystic ovary syndrome is later diagnosed. The mechanism of hormonal anti-acne therapy may work by blocking the androgen-production (oestrogens) or by blocking the androgen receptor (cyproterone, spironolactone).

  8. Salt stimulated respiration of Chlorella fusca.

    PubMed

    Löppert, H G

    1976-01-01

    ATP contents have been measured before and after addition of KCl (5 mM final concentration) to suspensions of Chlorella in distilled water under different conditions of energy supply. The levels decreased immediately after salt addition and returned to the original values under conditions both of oxidative phosphorylation and of cyclic photophosphorylation, but not under conditions of fermentation. It appears that this decrease in the ATP level is the cause for salt stimulated respiration (S.S.R.). Furthermore, it is shown that cycloheximide and EDTA, which interact with Rb+ uptake (active and ATP-driven) at low salt concentration, also reduce S.S.R. From this parallelism it is concluded that the ATPase involved in Rb+ uptake at low salt concentration is also responsible for S.S.R. at high salt concentration. As S.S.R. provides far more energy than is required for the small influx of ions it is suggested that the ATPase is decoupled by the salt from ion transport.

  9. Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts.

    PubMed

    Wu, Li-chen; Ho, Ja-an Annie; Shieh, Ming-Chen; Lu, In-Wei

    2005-05-18

    Liver fibrosis is a chronic liver disease that will further develop to cirrhosis if severe damage continues to form. A potential treatment for liver fibrosis is to inhibit activated hepatic stellate cell (HSC) proliferation and, subsequently, to induce HSC apoptosis. It has been reported that antioxidants are able to inhibit the proliferation of HSCs. In this study, the aqueous extract of spirulina was chosen as the source of antioxidant to investigate the inhibitory effect on the proliferation of HSC. The growth inhibitory effects of aqueous spirulina and chlorella extract on human liver cancer cells, HepG2, were also studied and compared in pairs. Results indicated that the total phenol content of spirulina was almost five times greater than that of chlorella (6.86 +/- 0.58 vs 1.44 +/- 0.04 mg tannic acid equivalent/g of algae powder, respectively). The antioxidant activity of spirulina determined by the ABTS*+ method was higher than chlorella (EC50: 72.44 +/- 0.24 micromol of trolox equivalent/g of spirulina extract vs 56.09 +/- 1.99 micromol of trolox equivalent/g of chlorella extract). Results of DPPH* assay also showed a similar trend as the ABTS*+ assay (EC50: 19.39 +/- 0.65 micromol of ascorbic acid equivalent/g of spirulina extract vs 14.04 +/- 1.06 micromol of ascorbic acid equivalent/g of chlorella extract). The aqueous extracts of these two algae both showed antiproliferative effects on HSC and HepG2, but spirulina was a stronger inhibitor than chlorella. Annexin-V staining showed that aqueous extract of spirulina induced apoptosis of HSC after 12 h of treatment. In addition, the aqueous extract of spirulina triggered a cell cycle arrest of HSC at the G2/M phase.

  10. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.

    PubMed

    Tang, Haiying; Chen, Meng; Garcia, M E D; Abunasser, Nadia; Ng, K Y Simon; Salley, Steven O

    2011-10-01

    Microalgae are among the most promising of non-food based biomass fuel feedstock alternatives. Algal biofuels production is challenged by limited oil content, growth rate, and economical cultivation. To develop the optimum cultivation conditions for increasing biofuels feedstock production, the effect of light source, light intensity, photoperiod, and nitrogen starvation on the growth rate, cell density, and lipid content of Chlorella minutissima were studied. The fatty acid content and composition of Chlorella minutissima were also investigated under the above conditions. Fluorescent lights were more effective than red or white light-emitting diodes for algal growth. Increasing light intensity resulted in more rapid algal growth, while increasing the period of light also significantly increased biomass productivity. Our results showed that the lipid and triacylglycerol content were increased under N starvation conditions. Thus, a two-phase strategy with an initial nutrient-sufficient reactor followed by a nutrient deprivation strategy could likely balance the desire for rapid and high biomass generation (124 mg/L) with a high oil content (50%) of Chlorella minutissima to maximize the total amount of oil produced for biodiesel production. Moreover, methyl palmitate (C16:0), methyl oleate (C18:1), methyl linoleate (C18:2), and methyl linolenate (C18:3) are the major components of Chlorella minutissima derived FAME, and choice of light source, intensity, and N starvation impacted the FAME composition of Chlorella minutissima. The optimized cultivation conditions resulted in higher growth rate, cell density, and oil content, making Chlorella minutissima a potentially suitable organism for biodiesel feedstock production.

  11. Brain abscesses during Proteus vulgaris bacteremia.

    PubMed

    Bloch, Jennifer; Lemaire, Xavier; Legout, Laurence; Ferriby, Didier; Yazdanpanah, Yazdan; Senneville, Eric

    2011-08-01

    Proteus vulgaris is only rarely the cause of multiple septic metastases. We describe multiple brain abscesses due to P. vulgaris in an immunocompetent patient successfully treated by antibiotic therapy and colonectomy.

  12. Gas arc constriction for plasma arc welding

    NASA Technical Reports Server (NTRS)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  13. Pemphigus Vulgaris Presented with Cheilitis

    PubMed Central

    Safaie Naraghi, Zahra; Behrangi, Elham

    2014-01-01

    Background. Pemphigus vulgaris is an autoimmune blistering disease affecting the mucous membrane and skin. In 50 to 70% of cases, the initial manifestations of pemphigus vulgaris are oral lesions which may be followed by skin lesions. But it is unusual for the disease to present with initial and solitary persistent lower lip lesions without progression to any other location. Main Observations. We report a 41-year-old woman with dry crusted lesions only on the lower lip, clinically resembling actinic cheilitis and erosive lichen planus, but histopathological evaluation showed unexpected results of suprabasal acantholysis and cleft compatible with pemphigus vulgaris. We treated her with intralesional triamcinolone 10 mg/mL for 2 sessions and 2 g cellcept daily. Patient showed excellent response and lesions resolved completely within 2 months. In one-year follow-up, there was no evidence of relapse or any additional lesion on the other sites. Conclusion. Cheilitis may be the initial and sole manifestation of pemphigus vulgaris. Localized and solitary lesions of pemphigus vulgaris can be treated and controlled without systemic corticosteroids. PMID:25328720

  14. Genetic architecture of acne vulgaris.

    PubMed

    Lichtenberger, Ramtin; Simpson, Michael A; Smith, Catherine; Barker, Jonathan; Navarini, Alexander A

    2017-06-07

    Acne vulgaris is a ubiquitary skin disease characterized by chronic inflammation of the pilosebaceous unit resulting from bacterial colonization of hair follicles by Propionibacterium acnes, androgen-induced increased sebum production, altered keratinization and inflammation. Here we review our current understanding of the genetic architecture of this intriguing disease and want to show rare and corresponding diseases like PCOS with acne vulgaris. We conducted a data research identifying genome-wide association studies (GWAS), candidate genes studies as case reports for acne vulgaris. Moreover, we included GWAS for the PCOS as it revealed shared genes with acne vulgaris. The data research revealed from different ethnic populations sixteen genes with single nucleotide polymorphisms (SNPs), two repeat polymorphisms, one gene mutation as five diseases associated with acne vulgaris. Moreover, the GWAS PCOS identified twenty-six SNPs from twenty-one susceptible loci. The genetic architecture is complex which has been revealed by GWAS. Further and larger studies in different populations are required to confirm or disprove results from candidate gene studies as well to identify signals that may overlap between different populations. Finally, studies on rare genetic variants in acne and associated diseases like PCOS may deepen our understanding of its pathogenesis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Ozone Inhibition of Photosynthesis in Chlorella sorokiniana

    PubMed Central

    Heath, Robert L.; Frederick, Paula E.; Chimiklis, Phrosene E.

    1982-01-01

    Exposure of Chlorella sorokiniana (07-11-05) to ozone inhibits photosynthesis. In this study, the effects of ozone on O2 evolution and fluorescence yields are used to characterize this inhibition. At an ozone dose of about 3 micromoles delivered to 2 × 109 cells, the photosynthetic rate of the cells is inhibited 50%, as indicated by a decrease in bicarbonate-stimulated O2 evolution (control rate, 1.4 ± 0.3 × 10−15 moles per cell per minute). Normal patterns of chlorophyll fluorescence are also altered. Upon continuous exposure to ozone (3.5 × 10−7 moles O3 per minute), three stages of change in relative fluorescence yields are observed: (a) a rise in variable yield with no corresponding change in nonvariable yield (after 1-2 minutes), which was interpreted to be a shift in the energy flow pathway; (b) a decline in variable yield with a slight rise in nonvariable yield (requiring 3-5 minutes), interpreted to be a blockage in the CO2 fixation pathways; and (c) complete blockage of variable yield with a concurrent decline in nonvariable yield (8-10 minutes), interpreted to be a destruction of the pigment system. The timing of each stage depended upon the ozone concentration and its delivery rate to the cell suspension. These results are compared with ozone-induced decline in photosynthesis and leaf water potential changes reported for other plant systems. Evidence is also presented to suggest that ozone effects on the photosynthetic processes are attributable to ionic imbalances brought about by ozone interaction with the plasmalemma rather than a direct effect on the chloroplast. PMID:16662164

  16. Secondary symbiosis between Paramecium and Chlorella cells.

    PubMed

    Kodama, Yuuki; Fujishima, Masahiro

    2010-01-01

    Each symbiotic Chlorella species of Paramecium bursaria is enclosed in a perialgal vacuole (PV) membrane derived from the host digestive vacuole (DV) membrane. Algae-free paramecia and symbiotic algae are capable of growing independently and paramecia can be reinfected experimentally by mixing them. This phenomenon provides an excellent model for studying cell-to-cell interaction and the evolution of eukaryotic cells through secondary endosymbiosis between different protists. However, the detailed algal infection process remains unclear. Using pulse labeling of the algae-free paramecia with the isolated symbiotic algae and chase method, we found four necessary cytological events for establishing endosymbiosis. (1) At about 3 min after mixing, some algae show resistance to the host lysosomal enzymes in the DVs, even if the digested ones are present. (2) At about 30 min after mixing, the alga starts to escape from the DVs as the result of the budding of the DV membrane into the cytoplasm. (3) Within 15 min after the escape, the DV membrane enclosing a single green alga differentiates to the PV membrane, which provides protection from lysosomal fusion. (4) The alga localizes at the primary lysosome-less host cell surface by affinity of the PV to unknown structures of the host. At about 24 h after mixing, the alga multiplies by cell division and establishes endosymbiosis. Infection experiments with infection-capable and infection-incapable algae indicate that the infectivity of algae is based on their ability to localize beneath the host surface after escaping from the DVs. This algal infection process differs from known infection processes of other symbiotic or parasitic organisms to their hosts. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Phaseolus vulgaris - recalcitrant potential.

    PubMed

    Hnatuszko-Konka, Katarzyna; Kowalczyk, Tomasz; Gerszberg, Aneta; Wiktorek-Smagur, Aneta; Kononowicz, Andrzej K

    2014-11-15

    Since the ability to genetically engineer plants was established, researchers have modified a great number of plant species to satisfy agricultural, horticultural, industrial, medicinal or veterinary requirements. Almost thirty years after the first approaches to the genetic modification of pulse crops, it is possible to transform many grain legumes. However, one of the most important species for human nutrition, Phaseolus vulgaris, still lacks some practical tools for genomic research, such as routine genetic transformation. Its recalcitrance towards in vitro regeneration and rooting significantly hampers the possibilities of improvement of the common bean that suffers from many biotic and abiotic constraints. Thus, an efficient and reproducible system for regeneration of a whole plant is desired. Although noticeable progress has been made, the rate of recovery of transgenic lines is still low. Here, the current status of tissue culture and recent progress in transformation methodology are presented. Some major challenges and obstacles are discussed and some examples of their solutions are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales.

    PubMed

    Kobayashi, Naoko; Barnes, Austin; Jensen, Travis; Noel, Eric; Andlay, Gunjan; Rosenberg, Julian N; Betenbaugh, Michael J; Guarnieri, Michael T; Oyler, George A

    2015-12-01

    Chlorella species from the UTEX collection, classified by rDNA-based phylogenetic analysis, were screened based on biomass and lipid production in different scales and modes of culture. The lead candidate strains of C. sorokiniana UTEX 1230 and C. vulgaris UTEX 395 and 259 were compared between conditions of vigorous aeration with filtered atmospheric air and 3% CO2 shake-flask cultivation. The biomass of UTEX 1230 produced 2 times higher at 652 mg L(-1) dry weight under both ambient CO2 vigorous aeration and 3% CO2 conditions, while UTEX 395 and 259 under 3% CO2 increased to 3 times higher at 863 mg L(-1) dry weight than ambient CO2 vigorous aeration. The triacylglycerol contents of UTEX 395 and 259 increased more than 30 times to 30% dry weight with 3% CO2, indicating that additional CO2 is essential for both biomass and lipid accumulation in UTEX 395 and 259.

  19. Low pressure arc electrode

    NASA Technical Reports Server (NTRS)

    Lenn, P. D.; Richter, R.

    1970-01-01

    Reducing the pressure in the vicinity of the arc attachment point by allowing the gas to flow through a supersonic nozzle minimizes local heating rates, prevents ablation, and increases the efficiency of coaxial gas-flow arcs.

  20. Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production.

    PubMed

    Sun, Zheng; Zhou, Zhi-gang; Gerken, Henri; Chen, Feng; Liu, Jin

    2015-05-01

    The growth and oil production of nine Chlorella strains were comparatively assessed and Chlorellaprotothecoides CS-41 demonstrated the greatest lipid production potential. The effects of different nitrogen forms and concentrations, phosphorus concentrations and light intensities on growth and oil production were studied in laboratory columns. C. protothecoides CS-41 accumulated lipids up to 55% of dry weight, with triacylglycerol and oleic acid being 71% of total lipids and 59% of total fatty acids, respectively. High biomass and lipid productivities were achieved in outdoor panel PBRs, up to 1.25 and 0.59 g L(-1) day(-1), or 44. 1 and 16.1 g m(-2) day(-1), respectively. A two-stage cultivation strategy was proposed to enhance the algal biomass and lipid production. This is the first comprehensive investigation of both indoor and outdoor photoautotrophic C. protothecoides cultures for oil production, and C. protothecoides CS-41 represents a promising biofuel feedstock worthy of further exploration.

  1. Signalling pathways in pemphigus vulgaris.

    PubMed

    Li, Xiaoguang; Ishii, Norito; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2014-03-01

    Acantholysis in pemphigus vulgaris is induced by binding of autoantibodies to desmoglein 3 (Dsg3). The roles of signalling pathways on development of acantholysis have recently been extensively studied. In the study by Sayar et al., recently published in Exp Dermatol, epidermal growth factor receptor (EGFR) signalling was activated in both in vivo and in vitro pemphigus vulgaris experimental models. However, while EGFR inhibitors suppressed activity of p38 mitogen-activated protein kinase (p38MAPK) linearly, they suppressed activity of c-Myc and acantholysis in a non-linear, V-shaped relationship. These findings indicated complicated interactions among EGFR, p38MAPK and c-Myc in pemphigus vulgaris pathology.

  2. Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the Microalga C. sorokiniana.

    PubMed

    Rosenberg, Julian N; Kobayashi, Naoko; Barnes, Austin; Noel, Eric A; Betenbaugh, Michael J; Oyler, George A

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L-1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18:1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18:2 relative to 18:1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L(-1) d(-1) to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L-1 d-1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis.

  3. Comparative Analyses of Three Chlorella Species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana

    PubMed Central

    Barnes, Austin; Noel, Eric A.; Betenbaugh, Michael J.; Oyler, George A.

    2014-01-01

    While photosynthetic microalgae, such as Chlorella, serve as feedstocks for nutritional oils and biofuels, heterotrophic cultivation can augment growth rates, support high cell densities, and increase triacylglycerol (TAG) lipid content. However, these species differ significantly in their photoautotrophic and heterotrophic characteristics. In this study, the phylogeny of thirty Chlorella strains was determined in order to inform bioprospecting efforts and detailed physiological assessment of three species. The growth kinetics and lipid biochemistry of C. protothecoides UTEX 411, C. vulgaris UTEX 265, and C. sorokiniana UTEX 1230 were quantified during photoautotrophy in Bold's basal medium (BBM) and heterotrophy in BBM supplemented with glucose (10 g L−1). Heterotrophic growth rates of UTEX 411, 265, and 1230 were found to be 1.5-, 3.7-, and 5-fold higher than their respective autotrophic rates. With a rapid nine-hour heterotrophic doubling time, Chlorella sorokiniana UTEX 1230 maximally accumulated 39% total lipids by dry weight during heterotrophy compared to 18% autotrophically. Furthermore, the discrete fatty acid composition of each strain was examined in order to elucidate lipid accumulation patterns under the two trophic conditions. In both modes of growth, UTEX 411 and 265 produced 18∶1 as the principal fatty acid while UTEX 1230 exhibited a 2.5-fold enrichment in 18∶2 relative to 18∶1. Although the total lipid content was highest in UTEX 411 during heterotrophy, UTEX 1230 demonstrated a two-fold increase in its heterotrophic TAG fraction at a rate of 28.9 mg L−1 d−1 to reach 22% of the biomass, corresponding to as much as 90% of its total lipids. Interestingly, UTEX 1230 growth was restricted during mixotrophy and its TAG production rate was suppressed to 18.2 mg L−1 d−1. This constraint on carbon flow raises intriguing questions about the impact of sugar and light on the metabolic regulation of microalgal lipid biosynthesis. PMID:24699196

  4. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    PubMed

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  5. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: Progress, challenge and perspective.

    PubMed

    Yang, Bo; Liu, Jin; Jiang, Yue; Chen, Feng

    2016-10-01

    The species of Chlorella represent a highly specialized group of green microalgae that can produce high levels of protein. Many Chlorella strains can grow rapidly and achieve high cell density under controlled conditions and are thus considered to be promising protein sources. Many advances in the genetic engineering of Chlorella have occurred in recent years, with significant developments in successful expression of heterologous proteins for various applications. Nevertheless, a lot of obstacles remain to be addressed, and a sophisticated and stable Chlorella expression system has yet to emerge. This review provides a brief summary of current knowledge on Chlorella and an overview of recent progress in the genetic engineering of Chlorella, and highlights the advances in the development of a genetic toolbox of Chlorella for heterologous protein expression. Research directions to further exploit the Chlorella expression system with respect to both challenges and perspectives are also discussed. This paper serves as a comprehensive literature review for the Chlorella community and will provide valuable insights into future exploration of Chlorella as a promising host for heterologous protein expression.

  6. Uptake and bioaccumulation of three PCBs by Chlorella fusca

    SciTech Connect

    Wang, K.; Rott, B.; Korte, F.

    1982-01-01

    This paper reports the bioaccumulation of three PCBs (2,4'-dichlorobiphenyl, 2,4,6,2'-tetrachlorobiphenyl and 2,4,6,2',4'-pentachlorobiphenyl) by the green alga Chlorella fusca under various conditions. A probable pattern of the bioconcentration mechanism is suggested. No metabolites were extracted from algae or water 6 days after incubation with PCBs.

  7. Utilization of papaya waste and oil production by Chlorella protothecoides

    USDA-ARS?s Scientific Manuscript database

    Algae derived oils have outstanding potential for use in biodiesel production. Chlorella protothecoides has been shown to accumulate lipid up to 60% of its cellular dry weight with glucose supplementation under heterotrophic growth conditions. To reduce production costs, alternative carbon feedstock...

  8. Evaluation of Chlorella as a Decorporation Agent to Enhance the Elimination of Radioactive Strontium from Body

    PubMed Central

    Ogawa, Kazuma; Fukuda, Tadahisa; Han, Jaegab; Kitamura, Yoji; Shiba, Kazuhiro; Odani, Akira

    2016-01-01

    Background Release of radionuclides, such as 137Cs and 90Sr, into the atmosphere and the ocean presents an important problem because internal exposure to 137Cs and 90Sr could be very harmful to humans. Chlorella has been reported to be effective in enhancing the excretion of heavy metals; thus, we hypothesized that Chlorella could also enhance the elimination of 137Cs or 90Sr from the body. We evaluated the potential of Chlorella as a decorporation agent in vitro and in vivo, using 85Sr instead of 90Sr. Methods In vitro experiments of adsorption of 137Cs and 85Sr to Chlorella were performed under wide pH conditions. The maximum sorption capacity of Chlorella to strontium was estimated using the Langmuir model. A 85Sr solution was orally administrated to mice pretreated with Chlorella. At 48 h after 85Sr administration, the biodistribution of radioactivity was determined. Results In the in vitro experiments, although 85Sr barely adsorbed to Chlorella at low pH, the 85Sr adsorption ratio to Chlorella increased with increasing pH. The maximum sorption capacity of Chlorella to strontium was 9.06 mg / g. 137Cs barely adsorbed to Chlorella under any pH conditions. In the biodistribution experiments, bone accumulation of radioactivity after 85Sr administration was significantly decreased in the Chlorella pretreatment group compared with the non-treatment control group. Conclusions In conclusion, these results indicated that Chlorella could inhibit the absorption of 90Sr into the blood and enhance the elimination of 90Sr from the body through adsorption in intestine. Further studies are required to elucidate the mechanism and the components of Chlorella needed for adsorption to strontium and could promote the development of more effective decorporation agents. PMID:26828430

  9. Rotating arc spark plug

    DOEpatents

    Whealton, John H.; Tsai, Chin-Chi

    2003-05-27

    A spark plug device includes a structure for modification of an arc, the modification including arc rotation. The spark plug can be used in a combustion engine to reduce emissions and/or improve fuel economy. A method for operating a spark plug and a combustion engine having the spark plug device includes the step of modifying an arc, the modifying including rotating the arc.

  10. Pemphigus vulgaris with tense bullae.

    PubMed

    Nguyen, Emilie T; Lin, Shinko K; Wu, Jashin J

    2015-01-01

    We report a case of a 51-year-old woman with a history of type II diabetes mellitus and dyslipidemia presenting with pain, swelling, and crusting of the lips. One year after onset of mucosal lesions, she developed an abdominal eruption with several tense vesicles and bullae on an erythematous base. The hematoxylin and eosin stain sample was consistent with a diagnosis of pemphigus vulgaris. The tense bullae of our patient highlight a rare phenotype of pemphigus vulgaris, which fits the mucocutaneous type because of involvement of the oral mucosa, with the exception of the findings of tense bullae.

  11. Pemphigus Vulgaris with Tense Bullae

    PubMed Central

    Nguyen, Emilie T; Lin, Shinko K; Wu, Jashin J

    2015-01-01

    We report a case of a 51-year-old woman with a history of type II diabetes mellitus and dyslipidemia presenting with pain, swelling, and crusting of the lips. One year after onset of mucosal lesions, she developed an abdominal eruption with several tense vesicles and bullae on an erythematous base. The hematoxylin and eosin stain sample was consistent with a diagnosis of pemphigus vulgaris. The tense bullae of our patient highlight a rare phenotype of pemphigus vulgaris, which fits the mucocutaneous type because of involvement of the oral mucosa, with the exception of the findings of tense bullae. PMID:25663209

  12. DC arc weld starter

    DOEpatents

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  13. [Research status and prospect on hot water extract of Chlorella: the high value-added bioactive substance from Chlorella].

    PubMed

    Zhuang, Xiuyuan; Huang, Yingming; Zhang, Daojing; Tao, Liming; Li, Yuanguang

    2015-01-01

    Chlorella is nutritious and has been used as a functional food much earlier than the other microalgae. C. pyrenoidosa, the potential microalgae which is currently cultured and developed for the new strategic industry of biofuels production and biological CO2 fixation, is a new resource food announced by the Ministry of Health of the People's Republic of China late 2012. Accumulation of high value-added substances in C. pyrenoidosa during the cultivation for lipid makes it possible to reduce the costs for C. pyrenoidosa-based biofuels production. Among these potential substances, hot water extract of Chlorella (CE), commercially known as "Chlorella growth factor", is the unique one that makes Chlorella more precious than the other algae, and the market price of CE is high. It is believed that CE is effective in growth promotion and immunoregulation. However, there is no systematic analysis on the research status of CE and its bioactivity. The present report summarized recent research progress of CE and its bioactivity. Generally, besides the main effect on immunoregulation and tumor inhibition, CE was efficient in improving metabolic syndrome, scavenging for free radicals, protecting against ultraviolet damage, chelating heavy metals, and protecting liver and bowel. Several major challenges in CE research as well as its prospects were also analysed in the present report.

  14. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    PubMed

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol.

  15. STUDIES ON THE CHANGE OF THE CONCENTRATIONS OF INTERMEDIATES DURING PHOTOSYNTHESIS OF CHLORELLA AND ISOLATED CHLOROPLASTS.

    DTIC Science & Technology

    The chages in the concentrations of intermediates and the distribution of C(14) after photosynthesis in C(14)02 by Chlorella and isolated...changes in the concentrations of intermediates in Chlorella during the transition from light to dark and vice versa are independent of CO2, but...dependent on anaerobiosis. (2) In Chlorella photosynthesis is inhibited even by a concentration of monoiodoacetic acid which is 100 times lower than that

  16. Disseminated lupus vulgaris.

    PubMed

    Garg, Taru; Ramchander; Shrihar, Rashmi; Gupta, Tanvi Pal; Aggarwal, Shilpi

    2011-01-01

    follicular plugging and multiple epithelioid cell granulomas, rimmed by lymphocytes in the deeper portion of the dermis, mainly peri-appendageal. Stain for acid-fast bacteria was negative. Cultures from the skin lesions were negative. The patient was diagnosed as having lupus vulgaris with multiple lesions of varying morphology at different sites with pulmonary tuberculosis and healed lymph node involvement.

  17. Rethinking Recycling in Arcs

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  18. Arc initiation in cathodic arc plasma sources

    SciTech Connect

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  19. Long arc stabilities with various arc gas flow rates

    NASA Astrophysics Data System (ADS)

    Maruyama, K.; Takeda, K.; Sugimoto, M.; Noguchi, Y.

    2014-11-01

    A new arc torch for use in magnetically driven arc device was developed with a commercially available TIG welding arc torch. The torch has a water-cooling system to the torch nozzle and has a nozzle nut to supply a swirling-free plasma gas flow. Its endurance against arc thermal load is examined. Features of its generated arc are investigated.

  20. Biosorption of Lead from Wastewater Using Fresh Water Algae Chlorella.

    PubMed

    Kanchana, S; Jeyanthi, J

    2014-04-01

    The potential use of fresh water algae Chlorella to sorb lead ions from wastewater was evaluated in this study. Fourier transform infra-red analysis of algal species revealed the presence of amino, carboxylic, hydroxyl and carbonyl groups, which were responsible for biosorption of lead ions. Batch sorption experiments were performed to determine the effects of contact time, biosorbent dosage and pH on the adsorption of Pb2+ ions. The optimum conditions of biosorbent dosage, pH and contact time were found to be l0 g/L, 5 and 100 min respectively. The applicability of the Langmuir and Freundlich isotherms for representation of the experimental data was investigated. The adsorption of lead ions on the algae Chlorella fitted well with Freundlich isotherm with a very high correlation coefficient.

  1. Fatty acid composition of Chlorella and Spirulina microalgae species.

    PubMed

    Otleş, S; Pire, R

    2001-01-01

    Two New Age foods which contain high concentrations of whole food nutrients are the single-celled microalgae Chlorella and Spirulina. They are accepted as functional foods, which are defined as products derived from natural sources, whose consumption is likely to benefit human health and enhance performance. These foods are used as a supplement/ingredient or as a complete food to enhance the performance and state of the human body, or improve a specific bodily function. Functional foods are used mainly as products to nourish the human body after physical exertion or as a preventive measure against ailments. We determined the fatty acid compositions, particularly polyunsaturated fatty acid compositions, of Chlorella and Spirulina by capillary column-gas chromatography. The data obtained show that Spirulina contains unusually high levels of gamma-linolenic acid, an essential polyunsaturated fatty acid.

  2. Extensive keloid formation after pemphigus vulgaris.

    PubMed

    Sako, Eric Y; Workwick, Scott

    2015-11-18

    Pemphigus vulgaris is an immunobullous disease characterized by intraepidermal blister formation. These blisters eventually rupture, leaving erosions that are slow to heal, often leaving hyperpigmented patches, but no scars. We describe a case of a 67- year-old man with pemphigus vulgaris who suffered severe keloidal scarring after the pemphigus lesions became infected. His keloids were treated with intralesional corticosteroids with some improvement. Pemphigus vulgaris, a process confined to the epidermis, may lead to scarring in predisposed individuals, particularly if infection occurs.

  3. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  4. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    NASA Astrophysics Data System (ADS)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  5. [Therapy-resistant "psoriasis vulgaris"].

    PubMed

    Kempter, W; Stein, A; Bauer, A; Wozel, G

    2009-04-01

    A 61-year-old patient had a 25-year history of erythematous scaling lesions, diagnosed and treated as psoriasis vulgaris. He presented with a growing nodule within the erythematous plaque. Biopsy shows epithelioid cell granulomas with prominent Langhans giant cells. There was no sign of a squamous cell carcinoma. The tuberculin test was strongly positive and M. tuberculosis complex was detected in the biopsy material by PCR. He was diagnosed with lupus vulgaris, the most frequent form of cutaneous tuberculosis. Other types include tuberculosis verrucosa cutis, tuberculosis cutis orificialis and disseminated military tuberculosis. The patient was treated with rifampicin, isoniazid, pyrazinamide and ethambutol for two months, following a four month treatment with rifampicin and isoniazid. The skin lesions rapidly resolved under antituberculotic treatment.

  6. Therapeutic Agents in Acne Vulgaris

    PubMed Central

    Stewart, Wm. D.; Maddin, Stuart; Nelson, A. J.; Danto, J. L.

    1963-01-01

    A total of 120 consecutive patients with pustular and cystic acne vulgaris were selected for study. Patients were assigned a placebo and a tetracycline medication in a random method. Of the 53 patients who were given tetracycline, 45 showed some response, which was fair in 19 and excellent in 26. Of the 55 patients who received placebo, 24 showed no response while 31 showed some improvement. No side effects were reported. The difference in response between the two groups is statistically significant. It is concluded that administration of 250 mg. tetracycline four times daily, even for periods as short as two weeks, enhances the likelihood of improvement of cystic or pustular acne vulgaris. PMID:14079132

  7. THE EFFECT OF CERTAIN RESPIRATORY INHIBITORS ON THE RESPIRATION OF CHLORELLA

    PubMed Central

    Emerson, Robert

    1927-01-01

    Chlorella, when made heterotrophic by means of certain sugars, respires like other heterotrophic cells when subjected to the respiratory inhibitors, hydrocyanic acid, hydrogen sulfide, and carbon monoxide. Whether the case of Chlorella is typical for green cells in general remains to be seen. Experiments with various other green organisms are being carried out, in hope of settling this point. PMID:19872337

  8. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes.

    PubMed

    Shibata, Shinya; Natori, Yu; Nishihara, Terumi; Tomisaka, Kazue; Matsumoto, Keisuke; Sansawa, Hiroshi; Nguyen, Van Chuyen

    2003-10-01

    The antioxidant activities of Chlorella in vitro and in vivo were investigated. Chlorella showed a strong antioxidant effect compared to various vegetables in a 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. To evaluate the antioxidant and anti-cataract effects in vivo, a 7.3% Chlorella powder was fed to rats with streptozotocin-induced diabetes for 11 wk. At the end of the experiment, Chlorella had decreased the blood glycated hemoglobin (hemoglobin A1c) and serum cholesterol levels significantly, however, it had not affected the serum glucose concentration. The serum lipid peroxide value (TBARS value) in the rats fed Chlorella was lower than that of the control rats. In the liver and kidney, Chlorella also reduced chemiluminescent intensities. In addition, it delayed the development of lens opacities. The lens lipid peroxide content of the rats fed Chlorella was lower than that of the control rats, however the differences were not significant. These results indicate that Chlorella has antioxidant activity and may be beneficial for the prevention of diabetic complications such as cataracts.

  9. In the Arc

    NASA Image and Video Library

    2010-04-15

    NASA Cassini spacecraft image holds an unseen treasure orbiting within the bright arc of Saturn G ring: the tiny moonlet Aegaeon. Too small to be seen here, it is thought to be the source of the debris forming the bright arc in the lower right.

  10. TIGER Arc Modification Application

    SciTech Connect

    Armstrong, Hillary

    1995-03-06

    The application enables the geometric correction of TIGER arcs to a more accurate spatial data set. This is done in a structured automated environment according to Census Bureau guidelines and New Mexico state GIS standards. Arcs may be deleted, added, combined, split, and moved relative to a coverage or image displayed in the background.

  11. WSTF electrical arc projects

    NASA Astrophysics Data System (ADS)

    Linley, Larry

    1994-09-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  12. WSTF electrical arc projects

    NASA Technical Reports Server (NTRS)

    Linley, Larry

    1994-01-01

    The objectives of these projects include the following: validate method used to screen wire insulation with arc tracking characteristics; determine damage resistance to arc as a function of source voltage and insulation thickness; investigate propagation characteristics of Kapton at low voltages; and investigate pyrolytic properties of polyimide insulated (Kapton) wire for low voltage (less than 35 VDC) applications. Supporting diagrams and tables are presented.

  13. Lazy arc consistency

    SciTech Connect

    Schiex, T.; Gaspin, C.; Regin, J.C.; Verfaillie, G.

    1996-12-31

    Arc consistency filtering is widely used in the framework of binary constraint satisfaction problems: with a low complexity, inconsistency may be detected and domains are filtered. In this paper, we show that when detecting inconsistency is the objective, a systematic domain filtering is useless and a lazy approach is more adequate. Whereas usual arc consistency algorithms produce the maximum arc consistent sub-domain, when it exists, we propose a method, called LAC{tau}, which only looks for any arc consistent sub-domain. The algorithm is then extended to provide the additional service of locating one variable with a minimum domain cardinality in the maximum arc consistent sub-domain, without necessarily computing all domain sizes. Finally, we compare traditional AC enforcing and lazy AC enforcing using several benchmark problems, both randomly generated CSP and real life problems.

  14. Acute and chronic toxic effects of chloramphenicol on Scenedesmus obliquus and Chlorella pyrenoidosa.

    PubMed

    Zhang, Wei; Sun, Wenfang; An, Shuai; Xiong, Bang; Lin, Kuangfei; Cui, Xinhong; Guo, Meijin

    2013-08-01

    The acute and chronic toxicological effects of Chloramphenicol (CAP) on Scenedesmus obliquus and Chlorella pyrenoidosa are not well understood. The indoor experiments were carried to observe and analyze the CAP induced changes. Results of the observations have showed that CAP exposure could significantly inhibit the growth of Scenedesmus obliquus in almost all the treated groups, while Chlorella pyrenoidosa exhibited less sensitivity. Chlorophyll-a syntheses of Scenedesmus obliquus were all inhibited by CAP exposure, while Chlorella pyrenoidosa displayed obvious stimulation effect. Catalase (CAT) and Superoxide dismutase (SOD) activities of both algae were promoted in all the treatments. The experimental results indicated that the growth and Chlorophyll-a syntheses of Scenedesmus obliquus were more sensitive in response to CAP exposure than that of Chlorella pyrenoidosa. While for CAT and SOD activities, Chlorella pyrenoidosa showed more susceptible. This research provides a basic understanding of CAP toxicity to aquatic organisms.

  15. Sporotrichoid lupus vulgaris: A rare presentation.

    PubMed

    Maheshwari, Anshul; Tiwari, Siddhi; Mathur, Deepak K; Bhargava, Puneet

    2015-01-01

    Lupus vulgaris is the most common presentation of cutaneous tuberculosis in India and can present as papular, nodular, plaque, ulcerative, vegetating, and tumid forms. Unusual variants include the frambesiform, gangrenous, ulcerovegetating, lichen simplex chronicus, myxomatous, and sporotrichoid types. We describe a rare sporotrichoid presentation of lupus vulgaris on the leg of a 28-year-old female of 12 years duration.

  16. Sporotrichoid lupus vulgaris: A rare presentation

    PubMed Central

    Maheshwari, Anshul; Tiwari, Siddhi; Mathur, Deepak K.; Bhargava, Puneet

    2015-01-01

    Lupus vulgaris is the most common presentation of cutaneous tuberculosis in India and can present as papular, nodular, plaque, ulcerative, vegetating, and tumid forms. Unusual variants include the frambesiform, gangrenous, ulcerovegetating, lichen simplex chronicus, myxomatous, and sporotrichoid types. We describe a rare sporotrichoid presentation of lupus vulgaris on the leg of a 28-year-old female of 12 years duration. PMID:25821736

  17. Pemphigus vulgaris with solitary toxic thyroid nodule.

    PubMed

    Alfishawy, Mostafa; Anwar, Karim; Elbendary, Amira; Daoud, Ahmed

    2014-01-01

    Background. Pemphigus vulgaris is an autoimmune vesiculobullous disease, affecting the skin and mucous membranes. It is reported to be associated with other autoimmune diseases including autoimmune thyroid diseases. However we report herein a case of pemphigus vulgaris associated with autonomous toxic nodule. Case Presentation. A 51-year-old woman was evaluated for blisters and erosions that develop on her trunk, face, and extremities, with a five-year history of progressively enlarging neck mass, and a past medical history of pemphigus vulgaris seven years ago. The condition was associated with palpitation, dyspnea, and heat intolerance. Thyroid function tests and thyroid scan were compatible with the diagnosis of thyrotoxicosis due to autonomous toxic nodule. Exacerbation of pemphigus vulgaris was proved by skin biopsy from the patient which revealed histologic picture of pemphigus vulgaris. Conclusion. Autoimmune thyroid diseases are reported to associate pemphigus vulgaris. To our knowledge, this case is the first in the English literature to report association between pemphigus vulgaris and autonomous toxic nodule and highlights the possibility of occurrence of pemphigus vulgaris with a nonautoimmune thyroid disease raising the question: is it just a coincidence or is there an explanation for the occurrence of both conditions together?

  18. Autoimmunity to desmocollin 3 in pemphigus vulgaris.

    PubMed

    Mao, Xuming; Nagler, Arielle R; Farber, Sara A; Choi, Eun Jung; Jackson, Lauren H; Leiferman, Kristin M; Ishii, Norito; Hashimoto, Takashi; Amagai, Masayuki; Zone, John J; Payne, Aimee S

    2010-12-01

    Pemphigus vulgaris is a blistering disease associated with autoantibodies to the desmosomal adhesion protein, desmoglein 3. Genetic deficiency of desmoglein 3 in mice mimics autoimmunity to desmoglein 3 in pemphigus vulgaris, with mucosal-dominant blistering in the suprabasal layer of the epidermis. Mice with an epidermal-specific deletion of desmocollin 3, the other major desmosomal cadherin isoform expressed in the basal epidermis, develop suprabasal blisters in skin that are histologically identical to those observed in pemphigus vulgaris, suggesting that desmocollin 3 might be a target of autoantibodies in some pemphigus vulgaris patients. We now demonstrate that desmocollin 3 is an autoantigen in pemphigus vulgaris, illustrated in a patient with mucosal-dominant blistering. Six of 38 pemphigus vulgaris and one of 85 normal serum samples immunoprecipitate desmocollin 3 (P = 0.003). Incubation of patient IgG with human keratinocytes causes loss of intercellular adhesion, and adsorption with recombinant desmocollin 3 specifically prevents this pathogenic effect. Additionally, anti-desmocollin 3 sera cause loss of keratinocyte cell surface desmocollin 3, but not desmoglein 3 by immunofluorescence, indicating distinct cellular pathogenic effects in anti-desmocollin and anti-desmoglein pemphigus, despite their identical clinical presentations. These data demonstrate that desmocollin 3 is a pathogenic autoantigen in pemphigus vulgaris and suggest that pemphigus vulgaris is a histological reaction pattern that may result from autoimmunity to desmoglein 3, desmocollin 3, or both desmosomal cadherins.

  19. Lupus vulgaris with squamous cell carcinoma.

    PubMed

    Motswaledi, Mojakgomo Hendrick; Doman, Chantal

    2007-12-01

    Tuberculosis is still a significant problem in developing countries. Cutaneous forms of tuberculosis account for approximately 10% of all cases of extrapulmonary tuberculosis. Cutaneous tuberculosis may be because of true infection with Mycobacterium tuberculosis or because of tuberculids. Tuberculids are immunological reactions to haematogenously spread antigenic components of M. tuberculosis. True cutaneous tuberculosis may be because of inoculation or haematogenous spread of M. tuberculosis to the skin. Lupus vulgaris is the commonest form of true cutaneous tuberculosis. Other forms of true cutaneous tuberculosis are tuberculous chancre, tuberculosis verrucosa cutis, scrofuloderma, periorificial tuberculosis and miliary tuberculosis of the skin. Lupus vulgaris is usually chronic and progressive. It occurs in patients with moderate to high immunity against M. tuberculosis as evidenced by strongly positive tuberculin test. Long-standing cases of lupus vulgaris may be complicated by squamous cell carcinoma (SCC). We describe a patient who had undiagnosed lupus vulgaris for 35 years until she developed SCC on the lesion of lupus vulgaris.

  20. Welding arc initiator

    DOEpatents

    Correy, Thomas B.

    1989-01-01

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome.

  1. Welding arc initiator

    DOEpatents

    Correy, T.B.

    1989-05-09

    An improved inert gas shielded tungsten arc welder is disclosed of the type wherein a tungsten electrode is shielded within a flowing inert gas, and, an arc, following ignition, burns between the energized tungsten electrode and a workpiece. The improvement comprises in combination with the tungsten electrode, a starting laser focused upon the tungsten electrode which to ignite the electrode heats a spot on the energized electrode sufficient for formation of a thermionic arc. Interference problems associated with high frequency starters are thus overcome. 3 figs.

  2. Arc spraying in China

    NASA Astrophysics Data System (ADS)

    Liu, Xianjun

    2001-03-01

    Although are spraying is not a new technique, recent development of arc spraying device systems, spray wires, research on the coating mechanism, and the dynamic behavior of spraying make it a most active thermal spray process. In China, the arc spraying technique is the most efficient way for long life corrosion protection of steel structures. In addition, the arc spraying process is widely used for renovation and surface modification of machine components, mold making for plastic products, high-temperature corrosion resistance for waterwalls of boilers, antisliding coatings, self-lubricating coatings, etc.

  3. Tokamak ARC damage

    SciTech Connect

    Murray, J.G.; Gorker, G.E.

    1985-01-01

    Tokamak fusion reactors will have large plasma currents of approximately 10 MA with hundreds of megajoules stored in the magnetic fields. When a major plasma instability occurs, the disruption of the plasma current induces voltage in the adjacent conducting structures, giving rise to large transient currents. The induced voltages may be sufficiently high to cause arcing across sector gaps or from one protruding component to another. This report reviews a tokamak arcing scenario and provides guidelines for designing tokamaks to minimize the possibility of arc damage.

  4. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  5. Metal halide arc discharge lamp having short arc length

    NASA Technical Reports Server (NTRS)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  6. Therapeutic Agents in Acne Vulgaris

    PubMed Central

    Stewart, William D.; Maddin, Stuart; Nelson, A. J.; Danto, J. L.

    1965-01-01

    A total of 379 patients with pustular and cystic acne vulgaris were selected for study in three groups. Each group was assigned one of the following medications: benzyl penicillin, erythromycin, sulfadimethoxine, or placebo; these were to be compared with tetracycline, a medication whose effectiveness was previously demonstrated in this type of acne. The study revealed a larger number of favourable responses to tetracycline and erythromycin than to sulfadimethoxine. Sulfadimethoxine, however, produced a greater number of favourable responses than did the benzyl penicillin or the placebo; the last-named had equivalent results. PMID:20328262

  7. Arc Voltage Between Deion Grid Affected by Division of Arc in Magnetic Driven Arc

    NASA Astrophysics Data System (ADS)

    Inuzuka, Yutaro; Yamato, Takashi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Magnetic driven arc has been applied to DC breaker and fault current limiters. However, it has not been researched, especially stagnation and re-strike of the arc. In this paper, the arc voltage between deion grid affected by division of arc in magnetic driven arc and arc behavior are measured by using the oscilloscope and HSVC (High Speed Video Camera). As a result, arc voltage increased because of division of the arc. The arc mean moving speed increases with increasing the external magnetic field. However, when the arc was not stalemate, the arc moving speed does not change so much. The arc re-strike time increases and stalemate time decreases with increasing the external magnetic field. Therefore, the anode spot moving speed increases 8 times because arc re-strike occurs easily with the external magnetic field. Thus, the erosion of electrodes decreases and the arc movement becomes the smooth. When the arc is divided, the arc voltage increased because of the electrode fall voltage. Therefore, the arc voltage increases with increasing the number of deion grid.

  8. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  9. ARC-1964-A-31910

    NASA Image and Video Library

    1964-01-24

    Dr. Dean R. Chapman a Ames Research Center scientists studing tektits, holding a simulated tektite created in the Ames arc jet facility (left) and authentic Australian tektite over a map of Australia.

  10. Filtered cathodic arc source

    DOEpatents

    Falabella, S.; Sanders, D.M.

    1994-01-18

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge is described. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45[degree] to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles. 3 figures.

  11. Filtered cathodic arc source

    DOEpatents

    Falabella, Steven; Sanders, David M.

    1994-01-01

    A continuous, cathodic arc ion source coupled to a macro-particle filter capable of separation or elimination of macro-particles from the ion flux produced by cathodic arc discharge. The ion source employs an axial magnetic field on a cathode (target) having tapered sides to confine the arc, thereby providing high target material utilization. A bent magnetic field is used to guide the metal ions from the target to the part to be coated. The macro-particle filter consists of two straight solenoids, end to end, but placed at 45.degree. to one another, which prevents line-of-sight from the arc spot on the target to the parts to be coated, yet provides a path for ions and electrons to flow, and includes a series of baffles for trapping the macro-particles.

  12. Characterization and Quantitation of Vitamin B12 Compounds in Various Chlorella Supplements.

    PubMed

    Bito, Tomohiro; Bito, Mariko; Asai, Yusuke; Takenaka, Shigeo; Yabuta, Yukinori; Tago, Kazunori; Ohnishi, Masato; Mizoguchi, Toru; Watanabe, Fumio

    2016-11-16

    Vitamin B12 was determined and characterized in 19 dried Chlorella health supplements. Vitamin contents of dried Chlorella cells varied from <0.1 μg to approximately 415 μg per 100 g of dry weight. Subsequent liquid chromatography/electrospray ionization-tandem mass spectrometry analyses showed the presence of inactive corrinoid compounds, a cobalt-free corrinoid, and 5-methoxybenzimidazolyl cyanocobamide (factor IIIm) in four and three high vitamin B12-containing Chlorella tablets, respectively. In four Chlorella tablet types with high and moderate vitamin B12 contents, the coenzyme forms of vitamin B12 5'-deoxyadenosylcobalamin (approximately 32%) and methylcobalamin (approximately 8%) were considerably present, whereas the unnaturally occurring corrinoid cyanocobalamin was present at the lowest concentrations. The species Chlorella sorokiniana (formerly Chlorella pyrenoidosa) is commonly used in dietary supplements and did not show an absolute requirement of vitamin B12 for growth despite vitamin B12 uptake from the medium being observed. In further experiments, vitamin B12-dependent methylmalonyl-CoA mutase and methionine synthase activities were detected in cell homogenates. In particular, methionine synthase activity was significantly increased following the addition of vitamin B12 to the medium. These results suggest that vitamin B12 contents of Chlorella tablets reflect the presence of vitamin B12-generating organic ingredients in the medium or the concomitant growth of vitamin B12-synthesizing bacteria under open culture conditions.

  13. Chlorella is an effective dietary source of lutein for human erythrocytes.

    PubMed

    Miyazawa, Taiki; Nakagawa, Kiyotaka; Kimura, Fumiko; Nakashima, Yuya; Maruyama, Isao; Higuchi, Ohki; Miyazawa, Teruo

    2013-01-01

    Chlorella contains a high amount of carotenoids, especially lutein, and has received attention as a possible dietary source for improving carotenoid levels in human blood. In the present study, we performed a 2-month single arm human study, and investigated the efficacy of Chlorella supplementation (9 g Chlorella/day; equivalent to 32 mg lutein/day) on lutein and other carotenoid concentrations in plasma as well as erythrocytes of 12 healthy subjects. Following Chlorella supplementation, lutein was the predominant carotenoid in erythrocytes, showing a 4-fold increase (from 14 to 54 pmol/mL packed cells). After the one month without Chlorella ingestion, erythrocyte lutein then decreased to a basal level (17 pmol/mL packed cells). Erythrocyte carotenoid (lutein, zeaxanthin, α-carotene, and β-carotene) levels were proportional to plasma carotenoid levels. The results suggest the transfer of Chlorella carotenoids, especially lutein, from plasma lipoprotein particles to the erythrocyte membrane. Chlorella intake would be effective for improving and maintaining lutein concentrations in human erythrocytes.

  14. Berberis vulgaris: specifications and traditional uses

    PubMed Central

    Rahimi-Madiseh, Mohammad; Lorigoini, Zahra; Zamani-gharaghoshi, Hajar; Rafieian-kopaei, Mahmoud

    2017-01-01

    The medicinal plants from genus Berberis are particularly important in traditional medicine and the food basket of Iranians. Given various plants from genus Berberis and their economic, nutritional, and medicinal status in Iran, this study seeks to investigate the findings of recent studies on the phytochemical characteristics, specifications, and uses of Berberis vulgaris. In this review article, 350 articles were initially retrieved from reliable scientific databases using relevant search terms. Then, 230 articles were selected and 120 were excluded after a primary analysis. Finally, 98 articles related to the subject under study were meticulously examined and the required data were extracted and classified according to the research purposes. The findings were divided into eight separate sections: Introducing Berberidaceae family, different species of Berberis, pharmaceutical organs, B. vulgaris nutrition facts and minerals, the antioxidants and alkaloids compounds in fruit and other organs, action mechanisms of preventing and treating diseases, traditional uses of B. vulgaris, and its properties reported by recent studies. The results briefly indicate that B. vulgaris contains a large number of phytochemical materials including ascorbic acid, vitamin K, several triterpenoids, more than 10 phenolic compounds and more than 30 alkaloids. Therefore B. vulgaris may have anti-cancer, anti-inflammatory, antioxidant, antidiabetic, antibacterial, analgesic and anti-nociceptive and hepato-protective effects. Regarding the use of different organs of B. vulgaris in traditional medicine and their confirmed effects in the recent studies, it is possible to use different organs of B. vulgaris, especially fruit, to develop new drugs. PMID:28656092

  15. Electric arc saw apparatus

    DOEpatents

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  16. [Culture medium based on biogas slurry and breeding of oil Chlorella].

    PubMed

    Zhao, Feng-Min; Mei, Shuai; Cao, You-Fu; Ding, Jin-Feng; Xu, Jia-Jie; Li, Shu-Jun

    2014-06-01

    The oil chlorella cultivation and biogas slurry treatment were combined. The biogas slurry provided water and nutrient for growing chlorella, at the same time, harmless treatment of biogas slurry was realized. This paper cultivated 4 species of oil chlorella in the mixed medium of biogas slurry and green algae medium (the volume ratios were 1 : 9, 1 : 3, 1 : 1 and 3 : 1, respectively), and compared their oil productivity to select the best oil chlorella species and the optimal culture medium. The results showed that, the combination of medium and chlorella species to reach the highest oil productivity was a volume ratio of 1 : 3 and the chlorella species BJ05, and the oil productivity of chlorella BJ05 was 9.20 mg x (L x d)(-1), higher than that in green algae medium [8.66 mg x (L x d)(-1)]. In mixed medium with a volume ratio of 1:3, the effect of adding different nutrients into the green algae medium on the oil productivity was examined, and the results showed that, sodium carbonate and citric acid had no negative effect on the oil productivity of chlorella BJ05. in the absence of sodium carbonate and citric acid, the oil productivity of chlorella BJ05 was 9.36 mg x (L x d)(-1), and the removal of COD (chemical oxygen demand), total nitrogen, total phosphorus and ammonia nitrogen rates were 59%, 75%, 61% and 100%, respectively. Deficiency in other nutrients had negative effect on the oil productivity. Therefore, the culture medium was further optimized to the mixed medium of biogas slurry and green algae medium with a volume ratio of 1 : 3 and without addition of sodium carbonate and citric acid.

  17. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  18. Thermography in psoriasis vulgaris evaluation.

    PubMed

    Zalewska, A; Gralewicz, G; Owczarek, G; Wiecek, B

    2005-01-01

    Psoriasis vulgaris is a chronic inflammatory skin disease with a strong genetic component, characterized by hyperkeratosis, dermal inflammatory infiltrate and increased angiogenesis. The aim of the present study was to employ thermography in evaluation of psoriatic lesions localized in different parts of the body. A series of in-patients with stable plaque type psoriasis vulgaris were included. ThermaCam INFRAMETRICS 290E thermocamera with temperature resolution of 0.1 °C was used in the study. Both visual and thermal images of 84 areas of lesional and lesion-free skin in patients were taken and analyzed. All the skin lesions were divided into 4 groups, according to their location i.e. found on the upper limbs, lower limbs, chest and back. Increased temperature was observed over psoriatic lesions located in the chest and upper limbs. To the contrary, skin lesions located on the back and lower limbs presented lower temperature. It is conceivable to speculate that lower temperature revealed within the lower parts of the body may explain to some extend slower regression of the lesions located in this region in comparison to skin lesions located over the upper parts of the body.

  19. Hypertrophic lupus vulgaris: an unusual presentation.

    PubMed

    Jain, Vijay K; Aggarwal, Kamal; Jain, Sarika; Singh, Sunita

    2009-07-01

    Lupus vulgaris is the most common form of cutaneous tuberculosis occurring in previously sensitized individuals with a high degree of tuberculin sensitivity. Various forms including plaque, ulcerative, hypertrophic, vegetative, papular, and nodular forms have been described. A 30-year-old male patient presented with a very large hypertrophic lupus vulgaris lesion over left side of chest since 22 years. Histopathological examination showed granulomatous infiltration without caseation necrosis. The Mantoux reaction was strongly positive. Hypertrophic lupus vulgaris of such a giant size and that too at an unusual site is extremely rare and hence is being reported.

  20. HYPERTROPHIC LUPUS VULGARIS: AN UNUSUAL PRESENTATION

    PubMed Central

    Jain, Vijay K; Aggarwal, Kamal; Jain, Sarika; Singh, Sunita

    2009-01-01

    Lupus vulgaris is the most common form of cutaneous tuberculosis occurring in previously sensitized individuals with a high degree of tuberculin sensitivity. Various forms including plaque, ulcerative, hypertrophic, vegetative, papular, and nodular forms have been described. A 30-year-old male patient presented with a very large hypertrophic lupus vulgaris lesion over left side of chest since 22 years. Histopathological examination showed granulomatous infiltration without caseation necrosis. The Mantoux reaction was strongly positive. Hypertrophic lupus vulgaris of such a giant size and that too at an unusual site is extremely rare and hence is being reported. PMID:20161866

  1. Diagnosis and clinical features of pemphigus vulgaris.

    PubMed

    Venugopal, Supriya S; Murrell, Dédée F

    2012-05-01

    Autoimmune bullous diseases are associated with autoimmunity against structural components that maintain cell-cell and cell-matrix adhesion in the skin and mucous membranes. They include those where the skin blisters at the basement membrane zone and those where the skin blisters within the epidermis (pemphigus vulgaris, pemphigus foliaceus, and other subtypes of pemphigus). The variants of pemphigus are determined according to the level of intraepidermal split formation. There are 5 main variants of pemphigus: pemphigus vulgaris, pemphigus foliaceus, pemphigus erythematosus, drug-induced pemphigus, and paraneoplastic pemphigus. This review focuses only on pemphigus vulgaris.

  2. Diagnosis and clinical features of pemphigus vulgaris.

    PubMed

    Venugopal, Supriya S; Murrell, Dédée F

    2011-07-01

    Autoimmune bullous diseases are associated with autoimmunity against structural components that maintain cell-cell and cell-matrix adhesion in the skin and mucous membranes. They include those where the skin blisters at the basement membrane zone and those where the skin blisters within the epidermis (pemphigus vulgaris, pemphigus foliaceus, and other subtypes of pemphigus). The variants of pemphigus are determined according to the level of intraepidermal split formation. There are 5 main variants of pemphigus: pemphigus vulgaris, pemphigus foliaceus, pemphigus erythematosus, drug-induced pemphigus, and paraneoplastic pemphigus. This review focuses only on pemphigus vulgaris.

  3. Coagulation-flocculation of marine Chlorella sp. for biodiesel production.

    PubMed

    Sanyano, Naruetsawan; Chetpattananondh, Pakamas; Chongkhong, Sininart

    2013-11-01

    Harvesting of marine Chlorella sp. by autoflocculation and flocculation by addition of coagulant with pH adjustment was investigated in this study. Autoflocculation provided low efficiency. Response surface methodology was employed to optimize the coagulant dosage and pH for flocculation. Aluminium sulfate and ferric chloride were investigated coagulants. The empirical models from RSM are in a good agreement with the experimental results. The optimum flocculation was achieved at ferric chloride dosage 143 mg/L, pH 8.1 and settling time 40 min. Biomass concentration also presented the significant effect on harvesting efficiency. Lipid extracted from marine Chlorella sp. cultivated in urea fertilizer medium with hexane as a solvent is suitable to produce biodiesel according to it contains high proportion of saturated fatty acids. The crude lipid should be purified to remove some impurities before making biodiesel. As the free fatty acid content was higher than 1% a two-step biodiesel production is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chlorella suppresses methylmercury transfer to the fetus in pregnant mice.

    PubMed

    Uchikawa, Takuya; Maruyama, Isao; Kumamoto, Shoichiro; Ando, Yotaro; Yasutake, Akira

    2011-10-01

    To investigate the effects of chlorella on methylmercury (MeHg) transfer to the fetus during pregnancy, female C57BL/6N mice (aged 10 weeks) were housed for 7 to 8 weeks, from 4 weeks before mating to birth, with diets containing 0% or 10% chlorella powder (CP) and MeHg-containing drinking water (2 µg Hg/ml). The consumption volume of the MeHg-containing water was limited to 15 ml/mouse/week throughout the experiment. Distilled water and a basal diet (0% CP) was given to control mice. Except for the mating period, during the 5(th) week, mice were housed individually until parturition. Two neonates were randomly selected from each mother mouse within 24 hr after parturition for Hg analysis of the blood, brain, liver, and kidneys. Mother mice were sacrificed on the same day as neonates to obtain tissue samples for Hg analysis. The blood and brain Hg levels of both neonates and mothers in the CP diet group were significantly lower than those in the basal diet group. Although the hepatic and renal Hg levels were not significant in mothers between the two dietary groups, in neonates, the CP diet group showed significantly lower Hg levels in these tissues than the basal diet group. The results obtained here revealed that continuous CP intake suppressed MeHg transfer to the fetus, in addition to effective suppressing MeHg accumulation in brains of the mothers.

  5. Ornithine decarboxylase encoded by chlorella virus PBCV-1.

    PubMed

    Morehead, Tiara A; Gurnon, James R; Adams, Byron; Nickerson, Kenneth W; Fitzgerald, Lisa A; Van Etten, James L

    2002-09-15

    Sequence analysis of the 330-kb genome of chlorella virus PBCV-1 revealed an open reading frame, A207R, which encodes a protein with 37-41% amino acid identity to ornithine decarboxylase (ODC) from many eukaryotic organisms. The a207r gene was cloned and the protein was expressed as a His-A207R fusion protein in Escherichia coli. The recombinant protein catalyzes pyridoxal 5'-phosphate-dependent decarboxylation of ornithine to putrescine, the first step in the polyamine biosynthetic pathway. The enzyme has a pH optimum of 9.0 and a temperature optimum of 42 degrees C, and it requires dithiothreitol for maximal activity. The enzyme has a K(m) for ornithine of 0.78 mM and a specific activity of 100 micromol/min/mg protein. PBCV-1 ODC is quite sensitive to the competitive inhibitor L-arginine and the irreversible inhibitor difluoromethylarginine but it is less sensitive to the irreversible inhibitor difluoromethylornithine. The a207r gene is expressed both early and late in PBCV-1 infection and is highly conserved among the chlorella viruses. The 42-kDa PBCV-1 ODC (372 amino acids) is the smallest ODC in the databases and, to our knowledge, is the first virus-encoded ODC.

  6. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  7. Safety evaluation of Whole Algalin Protein (WAP) from Chlorella protothecoides.

    PubMed

    Szabo, Nancy J; Matulka, Ray A; Chan, Teresa

    2013-09-01

    Microalgae such as Chlorella spp., were once consumed as traditional human foods; now they are being developed as ingredients for modern diets. Whole Algalin Protein (WAP) from dried milled Chlorella protothecoides was evaluated for dietary safety in a 13-week feeding trial in rodents with genotoxic potential evaluated using in vitro and in vivo assays and the likelihood of food allergy potential evaluated via human repeat-insult patch test (HRIPT). In the subchronic study, rats consumed feed containing 0, 25,000, 50,000 or 100,000 ppm WAP for 92-93 days. No treatment-related mortalities or effects in general condition, body weight, food consumption, ophthalmology, urinalysis, hematology, clinical chemistry, gross pathology, organ weights, and histopathology occurred. Several endpoints exhibited statistically significant effects, but none was dose-related. The no-observed-adverse-effect level (NOAEL) was based on the highest WAP concentration consumed by the rats and was equivalent to 4805 mg/kg/day in males and 5518 mg/kg/day in females. No mutagenicity occurred in Salmonella typhimurium or Escherichia coli tester strains (≤5000 μg/plate WAP) with or without mutagenic activation. No clastogenic response occurred in bone marrow from mice administered a single oral dose (2000 mg/kg WAP). Skin sensitization was not induced by WAP via HRIPT, indicating little potential for food allergy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The statistical difference between bending arcs and regular polar arcs

    NASA Astrophysics Data System (ADS)

    Kullen, A.; Fear, R. C.; Milan, S. E.; Carter, J. A.; Karlsson, T.

    2015-12-01

    In this work, the Polar UVI data set by Kullen et al. (2002) of 74 polar arcs is reinvestigated, focusing on bending arcs. Bending arcs are typically faint and form (depending on interplanetary magnetic field (IMF) By direction) on the dawnside or duskside oval with the tip of the arc splitting off the dayside oval. The tip subsequently moves into the polar cap in the antisunward direction, while the arc's nightside end remains attached to the oval, eventually becoming hook-shaped. Our investigation shows that bending arcs appear on the opposite oval side from and farther sunward than most regular polar arcs. They form during By-dominated IMF conditions: typically, the IMF clock angle increases from 60 to 90° about 20 min before the arc forms. Antisunward plasma flows from the oval into the polar cap just poleward of bending arcs are seen in Super Dual Auroral Radar Network data, indicating dayside reconnection. For regular polar arcs, recently reported characteristics are confirmed in contrast to bending arcs. This includes plasma flows along the nightside oval that originate close to the initial arc location and a significant delay in the correlation between IMF By and initial arc location. In our data set, the highest correlations are found with IMF By appearing at least 1-2 h before arc formation. In summary, bending arcs are distinctly different from regular arcs and cannot be explained by existing polar arc models. Instead, these results are consistent with the formation mechanism described in Carter et al. (2015), suggesting that bending arcs are caused by dayside reconnection.

  9. Phaseolus vulgaris endornavirus 1 and Phaseolus vulgaris endornavirus 2 infecting common bean Phaseolus vulgaris genotypes show differential infection patterns between gene pools

    USDA-ARS?s Scientific Manuscript database

    We investigated the occurrence of two plant endornaviruses, Phaseolus vulgaris endornavirus 1 (PvEV-1) and Phaseolus vulgaris endornavirus 2 (PvEV-2), in breeding-lines, cultivars, landraces, and wild genotypes of common bean (Phaseolus vulgaris) as well as other Phaseolus species collected from two...

  10. Acne vulgaris: clinical features, assessment and treatment.

    PubMed

    McWilliam, J

    Acne vulgaris is the most common form of acne. This article outlines the psychological effects of the condition and describes the treatments available. There is also a brief description of other forms of acne.

  11. Berberis Vulgaris and Berberine: An Update Review.

    PubMed

    Imenshahidi, Mohsen; Hosseinzadeh, Hossein

    2016-11-01

    Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    USDA-ARS?s Scientific Manuscript database

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  13. Removal of Nitrogen and Phosphorus From Reject Water Using Chlorella vulgaris Algae After Partial Nitrification/Anammox Process.

    PubMed

    Gutwinski, Piotr; Cema, Grzegorz

    2016-01-01

    Wastewater containing nutrients like ammonia, nitrite, nitrate and phosphates have been identified as the main cause of eutrophication in natural waters. Therefore, a suitable treatment is needed. In classical biological processes, nitrogen and phosphorus removal is expensive, especially due to the lack of biodegradable carbon, thus new methods are investigated. In this paper, the new possibility of nitrogen and phosphorus removal in side stream after the partial nitrification/Anammox process is proposed. Research was carried out in a lab-scale vertical tubular photobioreactor (VTR) fed with real reject water, from dewatering of digested sludge, after partial nitrification/Anammox process from lab-scale sequencing batch reactor (SBR). Nitrogen and phosphorus concentrations were measured every three days. The average nitrogen and phosphorus loads were 0.0503 ± 0.036 g N g(vss)/d and 0.0389 ± 0.013 g P g(vss)/d accordingly. Results have shown that microalgae were able to efficiently remove nitrogen and phosphorus. The average nitrogen removal was 36.46% and phosphorus removal efficiency varied between 93 and 100%.

  14. Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach.

    PubMed

    Zhou, Hui; Wang, Xiaojun; Zhou, Ying; Yao, Hongzhou; Ahmad, Farooq

    2014-06-01

    The toxicity of ZnO nanoparticles (NPs) has been widely investigated because of their extensive use in consumer products. The mechanism of the toxicity of ZnO NPs to algae is unclear, however, and it is difficult to differentiate between particle-induced toxicity and the effect of dissolved Zn(2+). In the work discussed in this paper we investigated particle-induced toxicity and the effects of dissolved Zn(2+) by using the chiral perturbation approach with dichlorprop (DCPP) as chiral perturbation factor. The results indicated that intracellular zinc is important in the toxicity of ZnO NPs, and that ZnO NPs cause oxidative damage. According to dose-response curves for DCPP and the combination of ZnO NPs with (R)-DCPP or (S)-DCPP, the toxicity of DCPP was too low to perturb the toxicity of ZnO NPs, so DCPP was suitable for use as chiral perturbation factor. The different glutathione (GSH) content of algal cells exposed to (R)-DCPP or (S)-DCPP correlated well with different production of reactive oxygen species (ROS) after exposure to the two enantiomers. Treatment of algae with ZnO NPs and (R)-DCPP resulted in reduced levels of GSH and the glutathione/oxidized glutathione (GSH/GSSG) ratio in the cells compared with the control. Treatment of algae with ZnO NPs and (S)-DCPP, however, resulted in no significant changes in GSH and GSH/GSSG. Moreover, trends of variation of GSH and GSH/GSSG were different when algae were treated with ZnSO4·7H2O and the two enantiomers. Overall, the chiral perturbation approach revealed that NPs aggravated generation of ROS and that released Zn(2+) and NPs both contribute to the toxicity of ZnO NPs.

  15. Symbiotic Chlorella vulgaris of the ciliate Paramecium bursaria plays an important role in maintaining perialgal vacuole membrane functions.

    PubMed

    Kodama, Yuuki; Inouye, Isao; Fujishima, Masahiro

    2011-04-01

    Treatment of symbiotic alga-bearing Paramecium bursaria cells with a protein synthesis inhibitor, cycloheximide, induces synchronous swelling of all perialgal vacuoles at about 24h after treatment under a constant light condition. Subsequently, the vacuoles detach from the host cell cortex. The algae in the vacuoles are digested by the host's lysosomal fusion to the vacuoles. To elucidate the timing of algal degeneration, P. bursaria cells were treated with cycloheximide under a constant light condition. Then the cells were observed using transmission electron microscopy. Results show that algal chloroplasts and nuclei degenerated within 9h after treatment, but before the synchronous swelling of the perialgal vacuole and appearance of acid phosphatase activity in the perialgal vacuole by lysosomal fusion. Treatment with cycloheximide under a constant dark condition and treatment with chloramphenicol under a constant light condition induced neither synchronous swelling of the vacuoles nor digestion of the algae inside the vacuoles. These results demonstrate that algal proteins synthesized during photosynthesis are necessary to maintain chloroplastic and nuclear structures, and that inhibition of protein synthesis induces rapid lysis of these organelles, after which synchronous swelling of the perialgal vacuole and fusion occur with the host lysosomes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  16. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, AND LEPOMIS MACROCHIRUS TO COPPER AND CYANIDE

    EPA Science Inventory

    The research presented here was designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters ...

  17. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.

    PubMed

    Huang, Yun; Sun, Yahui; Liao, Qiang; Fu, Qian; Xia, Ao; Zhu, Xun

    2016-09-01

    To improve light penetrability and biomass production in batch cultivation, a cultivation mode that periodically pre-harvesting partial microalgae cells from suspension with culture medium recycling was proposed. By daily pre-harvesting 30% microalgae cells from the suspension, the average light intensity in the photobioreactor (PBR) was enhanced by 27.05-122.06%, resulting in a 46.48% increase in total biomass production than that cultivated in batch cultivation without pre-harvesting under an incident light intensity of 160μmolm(-2)s(-1). Compared with the semi-continuous cultivation with 30% microalgae suspension daily replaced with equivalent volume of fresh medium, nutrients and water input was reduced by 60% in the proposed cultivation mode but with slightly decrease (12.82%) in biomass production. No additional nutrient was replenished when culture medium recycling. Furthermore, higher pre-harvesting ratios (40%, 60%) and lower pre-harvesting frequencies (every 2, 2.5days) were not advantageous for the pre-harvesting cultivation mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Acute and chronic toxicity of emerging contaminants, alone or in combination, in Chlorella vulgaris and Daphnia magna.

    PubMed

    Pablos, María Victoria; García-Hortigüela, Pilar; Fernández, Carlos

    2015-04-01

    This work presents the toxicity results of different compounds classified as emerging contaminants on primary producers and primary consumers in the aquatic compartment. The objectives were to (1) obtain acute and chronic toxicity results for algae and Daphnia magna using standardised or currently used tests, (2) study the relationship between the effects on the impaired feeding rate for daphnia and the effects of reproduction and (3) examine the responses on daphnia and algae after binary combinations of environmentally relevant compounds and perfluorooctane sulfonate (PFOS). Toxicity data on personal care products (PCPs), not reported in the scientific literature up to now, are presented. The results confirmed that the Daphnia feeding bioassay can be a sensitive, ecologically relevant endpoint to detect sublethal effects and could complement the information obtained with the reproduction test on Daphnia. The results also suggested that the concomitant occurrence of PFOS and other emerging contaminants in the aquatic compartment could affect the toxicity of some compounds according to their lipophilicity.

  19. BEHAVIORAL AND PHYSIOLOGICAL RESPONSES OF DAPHNIA MAGNA, CHLORELLA VULGARIS, CORBICULA FLUMINEA, AND LEPOMIS MACROCHIRUS TO COPPER AND CYANIDE

    EPA Science Inventory

    The research presented here was designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters ...

  20. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions

    PubMed Central

    Azaman, Siti Nor Ani; Nagao, Norio; Yusoff, Fatimah M.; Tan, Sheau Wei

    2017-01-01

    The responses of two species of microalgae, Chlorella sorokiniana and Chlorella zofingiensis, were compared regarding their morphological and biochemical properties under photoautotrophic and mixotrophic conditions. These microalgae were cultured under both conditions, and their crude ethanolic extracts were examined for their pigment and total phenolic contents. In addition, the microalgae’s antioxidant activities were determined using a DPPH radical scavenging assay and a ferric reducing antioxidant power (FRAP) assay. Both strains showed increases in cell size due to the accumulation of lipid bodies and other cell contents, especially carotenoids, under the mixotrophic condition. Notably, reductions in phenolic and chlorophyll contents were observed to be associated with lower antioxidant activity. C. zofingiensis compared with C. sorokiniana, demonstrated higher antioxidant activity and carotenoid content. This study showed that different species of microalgae responded differently to varying conditions by producing different types of metabolites, as evidenced by the production of higher levels of phenolic compounds under the photoautotrophic condition and the production of the same levels of carotenoids under both photoautotrophic and mixotrophic conditions. PMID:28929006